
Two Heuristics for Solving POMDPs Having a Delayed Need to
Observe

Valentina Bayer Zubek and Thomas Dietterich
bayer�cs�orst�edu tgd�cs�orst�edu

Department of Computer Science� Oregon State University� Corvallis� OR ����� USA

Abstract

A common heuristic for solving Partial�
ly Observable Markov Decision Problems
�POMDPs� is to �rst solve the underlying
Markov Decision Process �MDP� and then con�
struct a POMDP policy by performing a �xed�
depth lookahead search in the POMDP and
evaluating the leaf nodes using the MDP value
function� A problem with this approximation is
that it does not account for the need to choose
actions in order to gain information about the
state of the world� particularly when those ob�
servation actions are needed at some point in
the future� This paper proposes two heuristics
that are better than the MDP approximation
in POMDPs where there is a delayed need to
observe�

The �rst approximation� introduced in �	
� is
the even�odd POMDP� in which the world is
assumed to be fully observable every other time
step� The even�odd POMDP can be converted
into an equivalent MDP� the even�MDP� whose
value function captures some of the sensing
costs of the original POMDP� An online policy�
consisting in a 	�step lookahead search com�
bined with the value function of the even�MDP�
gives an approximation to the POMDP�s value
function that is at least as good as the method
based on the value function of the underlying
MDP� The second POMDP approximation is
applicable to a special kind of POMDP which
we call the Cost Observable Markov Decision
Problem �COMDP�� In a COMDP� the actions
are partitioned into those that change the state
of the world and those that are pure observa�
tion actions� For such problems� we describe
the chain�MDP algorithm� which in many cases
is able to capture more of the sensing costs than
the even�odd POMDP approximation�

We prove that both heuristics compute value
functions that are upper bounded by �i�e�� bet�
ter than� the value function of the underlying
MDP� and in the case of the even�MDP� also

lower bounded by the POMDP�s optimal value
function� We show cases where the chain�MDP
online policy is better� equal or worse than the
even�MDP online policy�

� Introduction

The Partially Observable Markov Decision Problem
�POMDP� models the interaction between a single agent
and a partially observable environment� Partial observ�
ability results from noisy� imperfect� or expensive sen�
sors� Noisy and imperfect sensors are not able to uncover
the complete state of the world� an agent with expensive
sensors may prefer not to incur the high cost of observing
the complete state of the world� For example� consider
a robot moving in a building� If its sensors detect only
walls� then rooms with similar con�gurations will look
the same� Even if its sensors give complete information�
they may require large amounts of battery power so that
it is too expensive to use them at all times� People must
deal with partial observability on a daily basis� Driving�
for example� involves acting and sensing in a partially
observable environment �the driver has a limited visibil�
ity of the road ahead and of surrounding cars��
Finding optimal solutions for POMDPs is undecidable

�
	
 and nearly optimal approximations are intractable
�


� Researchers have explored three main approaches
to POMDP approximation� Any POMDP can be con�
verted into a Markov Decision Problem �MDP� in be�
lief space �see below�� and one approach is to approxi�
mate this belief space MDP via value function approx�
imation� factored decomposition� discretization of the
belief state� or a combination of these �
�� 
�� �� 
��
�
� The second approach is based on solving the un�
derlying MDP �i�e�� the same POMDP but with a fully
observable state�� This approach computes the optimal
value function V �

MDP
and then applies it online to con�

struct policies for the POMDP ��� �
� Our approxima�
tion methods are related to this approach� The third
approach attempts to directly construct a �nite�state
controller that implements a good POMDP policy ���

�
�
POMDPs are di�cult to solve because the agent may

be highly uncertain about the current state of the envi�
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Figure 
� POMDP illustrating a delayed need to observe

ronment� i�e� it is �lost�� In many problems� the agent
needs to plan to gain information in order to �avoid get�
ting lost�� We call this the �need to observe��
As an example of the need to avoid getting lost� con�

sider a robot that has a choice of two di�erent hallways to
traverse� One hallway is completely dark and provides
no visual landmarks� The other hallway is brightly�lit
and has many visual landmarks� Even when the sec�
ond hallway requires traveling a longer distance to reach
the goal� it may still be the optimal choice� because the
robot avoids getting lost in the dark hallway �and col�
liding with obstacles��
An immediate need to observe can be detected by per�

forming a shallow lookahead search� evaluating the leaf
nodes in this search tree using V �

MDP
� and backing�up

these values to choose the best action to perform� For
the robot considering the dark hallway� this kind of shal�
low lookahead search reveals that the robot will rapidly
become uncertain of its position� The expected value of
the resulting positions according to V �

MDP
is poor� so the

robot prefers the well�lit hallway�
Unfortunately� a delayed need to observe is not de�

tected by the above method� Consider the �skier prob�
lem� in Figure 
� It involves a skiing robot that starts at
a known location at the top of the mountain and must
choose which trail to take� The upper trail is very safe�
so safe that the robot can ski this route with its eyes
closed� because the trail goes through a bowl�shaped val�
ley that naturally steers the robot down the center� The
lower trail is initially just as safe as the upper one� but
then it takes the skier along the side of a cli�� Here� the
skiing robot must constantly observe its position and ski
away from the cli� if it gets too close to the edge� Each
time the robot uses its vision system� it consumes battery
power� so the robot needs to minimize sensing� If this
problem is solved while ignoring the costs of observation
�i�e�� computing V �

MDP
�� the optimal policy will take the

lower trail� because it is shorter� However� when the cost
of observation is included� the upper policy is better� At
the start state there is no apparent di�erence between
the two paths �a limited lookahead will not detect any
need to observe on either trail�� and a shallow lookahead
search combined with V �

MDP
will choose the cli� trail�

The key di�culty is that there is a delayed need to ob�
serve �or equivalently� a delayed risk of getting lost�� and
the shallow lookahead search cannot overcome this delay�

To solve this problem� we need to propagate future ob�
servation costs backwards through the state space� such
that earlier states will become more informed about the
total cost of taking a certain path� This paper presents
two approximate solutions that work well when there is
a delayed need to observe� Because the methods involve
solving MDPs with the same number of states as the
original POMDP� they scale well to large POMDPs�
The �rst approximation� presented in detail in �	
� de�

�nes a new POMDP� the even�odd POMDP� in which the
full state of the environment is observable �for no cost�
at all times t where t is even� When t is odd� the environ�
ment returns the same observation information as in the
original POMDP �Figure 	�� We showed that the even�
odd POMDP can be converted into an equivalent MDP
�the even�MDP or 	MDP� with di�erent actions and re�
wards� The actions in this even�MDP are equivalent to
	�step lookaheads in the even�odd POMDP� Let V ��MDP

be the optimal value function for the 	MDP� Then we
get an improved approximation to the optimal POMDP
value function by performing a shallow lookahead search
and evaluating the leaf states using V �

�MDP
�

The 	�step lookahead of the even�MDP captures some
of the costs of observation if the �rst step creates enough
uncertainty about the state of the environment that the
agent chooses to make an observation action� In other
words� the even�MDP will incorporate the costs of ob�
servation in cases where those costs become immediately
apparent at some point in the future� For example� in
the skier domain� as the skier approaches the cli�� it
becomes immediately apparent �i�e�� to a 	�step looka�
head search� that there is a need to observe� Hence�
the V �

�MDP
will include those observations�but only at

times when t is odd� As the 	MDP is solved� these ob�
servation costs will be propagated backwards along the
temporal sequence of states so that in the starting state
at the top of the mountain� the robot skier will be able
to make the optimal decision to take the upper trail�
The even�MDP captures only a part of the observation

costs� because it only needs to sense at odd times t �since
the following state is assumed to be fully observable��
Sometimes this produces a bad approximation�
The second approximation to POMDPs attempts to

estimate observation costs at every time step� The model
we propose� Cost Observable Markov Decision Prob�
lems or COMDPs� partitions actions into purely obser�
vational �i�e�� �observation actions�� and state chang�
ing actions �i�e�� �world actions��� Eric Hansen showed
that a COMDP with only two observation actions�one
that reveals the entire state and the other that observes
nothing�can be converted into an MDP� provided there
is a bound on the number of world actions taken between
observation actions �see ��
� ��
� and also Sven Koenig�s
extension to sensor planning in ��
��
The chain�MDP algorithm is a heuristic for approxi�

mately solving COMDPs� starting with the MDP under�
lying the POMDP� and constructing a sequence of MDPs
M��M�� � � � whose reward functions have been modi�ed
to incorporate sensing costs� The sensing costs are esti�
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Figure 	� The even�odd POMDP fully observes the state
�for free� every other time step

mated by performing a 	�step lookahead in each state�
and evaluating the leaf nodes using the optimal value
function of the previous MDP in the sequence� If this 	�
step lookahead chooses a sensing action in a given state�
then the reward function at that state is modi�ed to
include the sensing cost�
In the skier problem� the value function of the last

MDP in the sequence of MDPs captures more of the ob�
servation costs than the value function of the even�MDP
and yields a better approximation� While the chain�
MDP method works very well in many cases� it is not
always superior to the even�MDP approximation� We
will show an example where it gives the same results
as the even�MDP and another example where the even�
MDP is superior� In general� therefore� neither method
dominates the other� but both are usually much better
than the MDP approximation�

� POMDP Notations

A POMDP is a tuple hS� A� O� Ptr�SjS�A�� Pobs�OjS�A��
R�SjS�A�� �i where S is the set of states of the world�
A is the set of actions� Ptr�st��jst� at� is the probability
of moving to state st�� at time t� 
� after performing
action at in state st at time t� R�st��jst� at� is the ex�
pected immediate reward for performing action at in st
causing a transition to st��� O is the set of observations�
Pobs�ot��jst��� at� is the probability of observing ot��
in state st�� at time t � 
� after executing at� and � is
the discount factor� The states� actions and observations
are discrete� We assume the model is known �the transi�
tion probabilities� the observation probabilities and the
rewards�� The rewards are negative or zero�
A Markov decision process �MDP� is a simpli�cation

of the POMDP where the agent is told the true state
s of the environment after each action� Any POMDP
can be converted into a continuous�state MDP called
the belief MDP� The states in this MDP� called belief
states� are probability distributions b such that b�st� �
P �stja�� o�� � � � � at��� ot� is the agent�s belief that the en�
vironment is in state st� given the entire action and ob�
servation history prior to t�
A policy � for an MDP is a mapping from states to

actions� Hence� a policy for the belief MDP is a mapping

from belief states to actions� The value function of a pol�
icy� V ��b� � E�

P
�

t��
�trt��
� is the expected cumulative

discounted reward of following policy � starting in belief
state b� The optimal policy �� maximizes V ��b� for all
belief states� The value function of the optimal policy is
denoted V �� We will say that a belief state b is �pure�
if b�s� � 
 for some state s� and instead of V �b� we will
write V �s��

� Even�Odd POMDP Approximation
The even�MDP method has two steps� �a� de�ne and
solve the even�MDP to obtain its optimal value function
V �
�MDP

� and �b� choose actions for the original POMDP
by performing a 	�step lookahead and evaluating the leaf
states using V ��MDP

�

��� Even�odd POMDP and Even�MDP

Given a POMDP we can de�ne a new POMDP� the even�
odd POMDP� where everything is the same except that
at even times t� the set of observations is the same as the
set of states �O � S�� and the observed state is the true
underlying state �Pobs�ojs� a� � 
 i� o � s�� Note that
at even times� the belief state will be pure� but at odd
times� the belief state may become �spread out�� The
optimal value function for the even�odd POMDP can
be computed by converting it into an equivalent MDP�
which we call the even�MDP �abbreviated 	MDP�� By
�equivalent� we mean that the value function for the
	MDP is the same as the value function for the even�
odd POMDP at even times t� At odd times� V �b� is
computed by performing a one�step lookahead search to
reach an even time�
The 	MDP is constructed as follows� The states

are the same as the even�odd POMDP�s �world� states�
Each action u in the 	MDP �Figure �� is a tuple
ha� a��� a

�

�� � � � � a
�

ni� where n � jOj� We will write u��
 � a
and u�oi
 � a�

i
� An action u is executed in state s in the

even�MDP by �rst performing a � u��
 in the even�odd
POMDP� The agent will move to state s� with probabil�
ity Ptr�s

�js� a�� and an observation o will be received with
probability Pobs�ojs

�� a�� The agent then executes action
a� � u�o
� which will cause a transition to state s�� with
probability Ptr�s

��js�� u�o
�� This is the fully observable
result state in the even�odd POMDP� The probability
transition function is Ptr�s

��js� u� �
P

s�
Ptr�s

�js� u��
��P
o
Pobs�ojs

�� u��
� � Ptr�s
��js�� u�o
�� The immediate re�

ward of executing action u in state s is R�s� u� �P
s�
Ptr�s

�js� u��
�� �R�s�js� u��
� � �
P

o
Pobs�ojs

�� u��
��P
s��
Ptr�s

��js�� u�o
�� R�s��js�� u�o
�
� The discount factor
of the 	MDP is ���
The �Bellman backup operator� for this 	MDP is

h�MDPV �s� �
maxuR�s� u� �

P
s��
Ptr�s

��js� u� � ��V �s����

By expanding the de�nitions� this can be simpli�ed to

h�MDPV �s� �
maxaR�s� a��P

o
�maxa�

P
s�
Ptr�s

�js� a� � Pobs�ojs
�� a��P

s��
Ptr�s

��js�� a�� � �R�s��js�� a�� � �V �s�����
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Figure �� LA�	�V �
�MDP

�b� computes the value for belief
state b using a 	�step lookahead search and evaluating
the leaf states s�� with V ��MDP

where R�s� a� �
P

s�
Ptr�s

�js� a� � R�s�js� a��

��� Improved Approximation

Let V �
POMDP

be the optimal value function for the
POMDP and V �

MDP
be the optimal value function for

the underlying MDP�

Theorem � �Bayer � Dietterich� ��	 
��
V �
POMDP

�s� � V �
�MDP

�s� � V �
MDP

�s�� for all s � S


Theorem 
 establishes that� on pure belief states�
V �
�MDP

is a better approximation to V �
POMDP

than
V �
MDP

� This result can be extended to arbitrary belief
states b by considering a 	�step lookahead process� Let
LA�n� be an operator de�ned such that �LA�n�V �b��
estimates the value of belief state b by performing an n�
step lookahead search in the original POMDP and eval�
uating the fully observable leaf states using V � Figure �
shows how LA�	�V �

�MDP
is computed�

Theorem � For all belief states b� V �
POMDP

�b� �
LA�	�V �

�MDP
�b� � LA�	�V �

MDP
�b� � LA�
�V �

MDP
�b�


Figure � depicts this relationship for a 	�state �nite�
horizon POMDP� All value functions are piecewise lin�
ear and convex� It is important to note that just
because LA�	�V �

�MDP
is a better approximation than

LA�	�V �
MDP

� this does not guarantee that it will produce
a better policy at run time� Nonetheless� it is usually the
case that the more accurately we approximate the value
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Figure �� Schematic diagram of the optimal POMDP
value function and three approximations to it for a 	�
state �nite�horizon POMDP

function� the better the performance of a greedy policy
that corresponds to that value function�
To choose actions in the original POMDP� we �rst

compute V �
�MDP

o�ine via value iteration� During on�
line execution� we maintain a belief state b� At each time
t� we perform the 	�step lookahead search to compute the
backed�up value LA�	�V �

�MDP
�b�� as in Figure �� and

choose the action with the best backed�up value� The
online policy needs to perform �at least� a 	�step looka�
head in order to choose an action that performs some
sensing �
�step lookahead assumes the resulting states
are fully observable� so no sensing is needed��
The even�MDP value function underestimates the ob�

servation costs because it only needs to observe at odd
times t� This is because at the end of the 	�step looka�
head the states are assumed to be fully observable� so the
second actions u�o
 of the even�MDP will not be chosen
on the basis of the observation information they might
provide� In the next section� we propose a heuristic that
tries to overcome this limitation�

� Cost Observable Markov Decision
Processes �COMDPs�

To de�ne the chain�MDP approximation� we need to be
able to separate out the cost of sensing from the cost
of acting in the world� In standard POMDPs� there
is no fundamental distinction between these two� ev�
ery action can simultaneously change the world and also
provide information about the world that reduces the
uncertainty in the current belief state� However� for the
chain�MDP method� we will require that the POMDP
have a special structure in which these two components
are separated� To do this� we de�ne a Cost Observ�
able Markov Decision Problem �COMDP� as a tuple
hS�A�C�O� Ptr�SjS�A�� Pobs�OjS�C�� RA�SjS�A�� RC�C�� �i�
where A is a set of world actions that change the state



of the world according to Ptr�SjS�A�� and C is a set of
observation actions that return observation information
according to Pobs�OjS�C�� The world actions give a re�
ward of RA�SjS�A�� and the observation actions give a
reward of RC�C�� which does not depend on the cur�
rent state� The set of states S and the discount factor
� are the same as in the POMDP de�nition� The set C
of observation actions must include an observation ac�
tion No�Obs that does not provide any information and
has zero cost� All other observation actions have posi�
tive costs �equivalently� they have negative rewards�� i�e��
they are �cost observable��
The COMDP works as follows� At each time t� a

COMDP policy � maps the current belief state bt to
a �world action� observation action� pair� �at� ct��� �
��bt�� The world action at is executed� which causes the
environment to move from state st to state st��� Then
the observation action ct�� is executed to return obser�
vation ot�� �see Figure ��� If ct�� � No�Obs� then no
observation information is received�
COMDPs are intended to model situations that arise

in diagnosis and active vision where there are many ob�
servation actions that do not change the world�
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Figure �� Decision diagram for a COMDP

It is easy to see that any COMDP can be converted
into an equivalent POMDP by de�ning each POMDP�s
action a�t � �at� ct��� as a pair of a world action at and
an observation action ct�� in the COMDP� Similarly� the
equivalent reward function R�st��jst� a

�

t� is the sum of
the world action�s reward RA�st��jst� at� and the obser�
vation action�s reward RC�ct���� However� the restric�
tion that there exist a No�Obs observation action in the
COMDP means that not all POMDPs can be converted
to COMDPs� because the No�Obs action means that ev�

observation action

RCRA

state world action 

RA RC

COMDP 

MDP state world action 

+

Figure �� Idea for approximately solving a COMDP

ery world changing action can be executed without re�
ceiving any observation information� We refer to the
set of POMDPs that are equivalent to COMDPs as EC�
POMDP �POMDPs that are Equivalent to COMDPs��

��� Approximation Algorithm for
COMDPs

The goal of our COMDP approximation algorithm is to
create an MDP that incorporates the cost of sensing�
That is� if the COMDP policy in a state s is to perform
an action a followed by an observation action c� then we
want an MDP where the cost for action a is changed to
re ect the cost for observation action c �see Figure ���
We can then compute the optimal value function for this
MDP by value iteration and employ it to choose actions
online� just as we used the even�MDP value function�
Table 
 shows the chain�MDP algorithm for construct�

ing this equivalent MDP� Let M� be the underlying
MDP for the COMDP� that is� an MDP with the same
S�A� Ptr�SjS�A�� RA�SjS�A� and � as the COMDP� but
where the state is fully observable after each world ac�
tion� Starting with M�� the chain�MDP algorithm iter�
atively constructs a series of MDPs M�� � � � �MK � The
MDPs are all identical to M�� except for the immediate
reward function� which is changed to include the cost of
observation actions�
To construct MDP Mi��� the chain�MDP algorithm

performs a lookahead search for each state st and action
at assuming the world is cost observable for one step
and fully observable in the second step� This lookahead
search considers all possible sequences �ct��� ot��� at����
During the lookahead� the cost of at is computed ac�
cording to the original COMDP�s reward function RA
for world actions� the cost of the observation action ct��
is computed according to the reward function RC for
observation actions� but the cost of at�� is computed
according to reward function Ri� from MDP Mi� since
this may include some observation costs� which otherwise
would not be captured by the 	�step lookahead� The re�
sulting states st�� are evaluated using the optimal value
function V �

Mi
of MDP Mi from the previous iteration�

The purpose of this lookahead search is not to com�
pute the backed�up value of the starting state st �as it
was in the even�MDP approximation�� but instead to
determine which observation action ct�� maximizes the
expected return of this 	�step lookahead� Let c�t�� be the
best observation action� The cost of this observation is



Table 
� Chain�MDP algorithm for approximately solv�
ing a COMDP

Let M� be the underlying MDP for the COMDP �the states
are fully observable� at no cost�� with the reward function
R��st��jst� at� �� RA�st��jst� at� � RMDP �st��jst� at��
Let i �� � �iteration number�
Let imax be a limit on the number of iterations
repeat

� i �� i	 


� solve the MDP Mi with reward Ri to �nd its value func�
tion V �

Mi

� for each state st and action at

� perform a 
�step lookahead search to choose the
best observation action c�t��� and for each possible
observation ot��� choose the best next action at���
At time t 	 
� we assume the states st�� are fully
observable and we evaluate them using the value
V �

Mi
�st��� of MDP Mi�

� for every valid transition to a state st��� modify
the reward for action at to include the cost for c

�

t��

Ri���st��jst� at� �� RA�st��jst� at� 	RC�c
�

t���

until Ri�� � Ri or i � imax
Return the last MDP MK � with reward RK and value func�
tion V �

K �

incorporated into the reward function for MDPMi�� by
adding it to RA�

Ri���st��jst� at� �� RA�st��jst� at� �RC�c
�

t����

This rule is applied in all states st unless they are ab�
sorbing states� We require that absorbing states keep
their MDP rewards unmodi�ed so that the value of ev�
ery absorbing state remains zero�
Once the chain�MDP has computed its �nal MDP�

MK � the value function V �
K

is applied to compute the
online policy as follows �see Figure ��� At run time� a
	�step lookahead search is performed starting from the
current belief state bt to �nd the �action� observation ac�
tion� � �at� ct��� with the best backed�up value� As in
the chain�MDP algorithm� the reward for at is RA� the
reward for ct�� is RC � the reward for at�� is RK � and the
resulting states st�� are evaluated using V

�

K
� It is impor�

tant to use RK to evaluate at���our experiments show
that this is responsible for a signi�cant portion of the
improvement obtained from the chain�MDP approach�
We now prove that all the value functions V �

Mi
are

less�than or equal to V �
MDP

� the value function used in
the MDP approximation� This also holds for the value
function of the last MDP MK � V

�

K
� so it provides some

evidence that the chain�MDP approximation will be bet�
ter than the MDP approximation�

Theorem � Ri�s
�js� a� � RMDP �s

�js� a� and
V �
Mi

�s� � V �
MDP

�s� for all s� s�� a and i

Here� Ri and V �
Mi

are the reward and the value function

of MDP Mi constructed by the chain�MDP algorithm in
its ith iteration�
Proof� For any of the MDPs Mi� because

Ri�s
�js� a� �� RMDP �s

�js� a��RC�c
�� and RC�c� � � for

all observation actions c� then immediately Ri�s
�js� a� �

RMDP �s
�js� a� � R��s

�js� a� for all s� s�� a� Let hMDPRi

be the Bellman backup operator for the MDP with
reward Ri� We will prove that its value function
V �
Mi

�s� � V �
MDP

�s���s� using an argument similar

to the value iteration algorithm ��
�
� to compute
the value functions� Let Vinit�s� �� ���s� be the
initial value function� We will prove by induction
that hk

MDPRi
Vinit�s� � hk

MDPR�
Vinit�s���k� s� where

the notation hk
MDP

V means the operator was ap�
plied k times �equivalent to k iterations of value it�
eration�� Base step� �k � 
� hMDPRi

Vinit�s� �

hMDPR�
Vinit�s� because Ri�s

�js� a� � R��s
�js� a�� In�

duction step� hk��
MDPRi

Vinit�s� � hk��
MDPR�

Vinit�s� be�

cause Ri�s
�js� a� � R��s

�js� a� and hk
MDPRi

Vinit�s� �

hk
MDPR�

Vinit�s� �induction hypothesis�� Therefore

limk�� hk
MDPRi

Vinit�s� � limk�� hk
MDPR�

Vinit�s�� so

V �
Mi

�s� � V �
MDP

�s���s� Q�E�D�
This theorem only relates the value function con�

structed by the chain�MDP algorithm to V �
MDP

� But the
result can be extended to apply to the value functions
computed during online execution� Let LAR�	�V �b� be
the backed�up value for belief state b computed by an
online 	�step lookahead search in which the leaf nodes
are evaluated using value function V and the second
step actions at�� have reward function R� Using this
notation� LARK �	�V �

K
�b� is the backed�up value for be�

lief state b using the last MDP MK computed by the
chain�MDP algorithm� whereas LARMDP �	�V �

MDP
�b� is

the value computed using the underlying MDP�s value
function and reward function� The following theorem
says that the backed�up values computed online using
MK are upper�bounded by the values computed online
using the MDP approximation�

Theorem � For all belief states b�
LARK �	�V �

K
�b� � LARMDP �	�V �

MDP
�b��

Proof� Because RK�s
�js� a� � RMDP �s

�js� a� for all
s� s�� a� and V �

K
�s� � V �

MDP
�s���s �from theorem � ap�

plied to the reward and value function of the last MDP
MK computed by the chain�MDP algorithm�� it can
be shown that LARK �	�V �

K
�b� � LARMDP �	�V �

K
�b� �

LARMDP �	�V �
MDP

�b�� Q�E�D�
In the chain�MDP algorithm �Table 
�� we have in�

cluded a maximum number of iterations imax� because
otherwise the chain�MDP may loop forever through a
repeating series of MDPs� Here�s an example of how
this may happen� Assume the reward function R� of
MDP M� captures some observation costs� In the next
iteration of the chain�MDP algorithm� the 	�step looka�
head evaluates the leaf states st�� using V

�

M�
� It is pos�

sible that this time the lookahead will �nd that sens�
ing is not necessary� because the purpose is to maxi�
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Figure �� The chain�MDP online policy uses a
	�step lookahead exhaustive search to compute the best
�action a� observation action c� in a belief state b

mize the expected return of the lookahead� and the re�
sulting states s�� have lower values than before �during
the lookahead in iteration 
� since V �

M�
�s��� � V �

MDP
�s����

plus R� � RMDP is used for at��� Therefore the reward
R� will not be modi�ed� R� � RMDP �� R� and the al�
gorithm will oscillate� This looping may not be a prob�
lem� however� because our experiments to date have not
shown any special bene�t to going beyond MDP M��
Instead of looping� another possible behavior of the

algorithm is that it terminates in one iteration� with
MK � M�� This occurs when none of the 	�step looka�
head searches �nds that an observation action is neces�
sary� In some problems� such as those where no obser�
vation actions are available� this can�t be avoided �see
Section ����� But in other problems� if no observations
are performed� uncertainty in the belief state gradually
accumulates until major errors are made� Neither the
even�MDP nor the chain�MDP approximations can han�
dle the graduate accumulation of uncertainty �see such
an example in Section ��	��
An open theoretical question is whether the value

function returned by the chain�MDP algorithm is lower�
bounded by the optimal POMDP value function on pure
belief states� that is� whether V �

POMDP
�s� � V �

K
�s�� If

this is true� it would imply that whenever the chain�MDP
algorithm produces a new MDP MK �� M�� the online
backed�up value function using MK is a better approxi�
mation than the one using M�� and the resulting online
policy could be better than the policy computed from
the MDP approximation� Based on our experiments� we
believe V �

K
overestimates V �

POMDP
�

	 Comparison Between the Two
Approximations

Now that we have introduced the even�MDP and chain�
MDP approximations� we will compare them experimen�
tally through a series of COMDP problems� The exam�
ples included here have a small number of states and are
intended to demonstrate the strengths and weaknesses of

the two methods� However� these small problems should
not be taken to be representative of the size and complex�
ity of POMDPs that can be solved� Both approximations
scale well with the number of states� because they only
involve solving MDPs� We demonstrated this in a pre�
vious study �	
 where we presented a large EC�POMDP
example with 
���� states and observations that is far
beyond the capabilities of existing exact POMDP plan�
ning algorithms� However� the even�MDP approxima�
tion was easily computed� and the resulting policy gave
excellent performance� In an unpublished experiment�
we have applied the chain�MDP algorithm to this prob�
lem as well� It converges in � iterations and results in an
identical online policy� This policy is much better than
the policy computed using the MDP approximation�

��� Example with Delayed Need to
Observe

Our �rst example demonstrates a case in which the
chain�MDP produces the optimal policy� while the even�
MDP produces a sub�optimal policy �and both are better
than the MDP approximation��
Figure ��a� shows a skier at the known start state

on the left� and there are three trails leading down the
mountain to circled absorbing states� The goal of the
skier is to reach the bottom of the mountain by the least
expensive path� Trail 
 is the longest path� but no sens�
ing is required to traverse it� so it is optimal� Trails 	
and � are shorter� but each of them runs along a cli�
where there is a danger of falling� To avoid this dan�
ger� the skier must observe its current position and take
corrective action if he gets too close to the edge� These
extra observation costs make Trails 	 and � suboptimal�
Here are the details concerning the world actions� ob�

servation actions� and reward functions for this example�
The skier has three world actions� SE� N� and E� SE is
only available in the start state� and it deterministically
takes the skier to the start of Trail � �reward �
�� N
deterministically moves the skier north one square �re�
ward ���� Bumping against a �wall� leaves the state
unchanged� E normally moves east with probability ���
and southeast with probability ���� The reward of E is
normally �
� but an additional penalty of �
�� is re�
ceived if the skier goes over the cli�� E moves east with
probability 
 in the start state and in all states where
there is no choice� There are two observation actions�
No�Obs �reward �� and Obs �reward !
�� There are two
observations� No�Cli� and Cli�� The �rst observation
action No�Obs does not provide any sensing� so it always
returns the observation No�Cli�� The second observa�
tion Obs deterministically returns the observation Cli�
in states immediately adjacent to the cli�� and No�Cli�
in all other states� The circled states and the cli� states
are absorbing and any world action performed in an ab�
sorbing state has zero cost �and� of course� the world ac�
tion transitions back to the same absorbing state�� We
still charge the cost of observation actions even if they
are performed in absorbing states�
Because the number of reachable belief states in this



Table 	� O�ine and online value functions V ��Start�
�Fig� � �a��

MDP even�MDP chain�MDP POMDP
Trail 
 �
� �
� �
� �
�
Trail 	 �
� �
��� �
� �
�
Trail � �
� �
��� �	� �	�

Table �� Online policies� preferences �Fig� � �a��

MDP even�MDP chain�MDP POMDP
Trail � Trail 	 Trail 
 Trail 


problem is small and �nite� we were able to compute
the POMDP optimal policy and compare it with the
even�MDP� chain�MDP� and MDP approximations� The
chain�MDP algorithm converges in two iterations� and
the resulting online policy is optimal� the even�MDP pro�
duces a sub�optimal policy� and the MDP approximation
is worse than either the even�MDP or chain�MDP poli�
cies �see Table ���
The reason the chain�MDP beats the even�MDP ap�

proximation is that it captures more of the observation
costs� The value function computed by the chain�MDP
�V �
M�

� captures the costs of � observation actions on Trail
�� and of 	 observation actions on Trail 	� In fact� for this
problem� V �

M�
captures all the necessary sensing costs� In

contrast� the even�MDP value function �V �
�MDP

� detects
only 	�� observation actions on Trail � and ��� on Trail
	� The MDP value function� V �

MDP
� does not detect

any need to observe� since it assumes all states are fully
observable�
Table 	 shows the o�ine value functions V � computed

in the start state by the MDP� the even�MDP� the chain�
MDP and the POMDP� these values are also equal to the
online backed�up values in the initial �pure� belief state�
Interestingly� because of the online lookahead search�

none of the online policies goes over the cli�� The pol�
icy computed by the MDP approximation� LA�	�V �

MDP
�

will observe just as much on Trail � as the POMDP op�
timal policy would if the POMDP were to take Trail ��
Similarly� the even�MDP policy� LA�	�V �

�MDP
� will ob�

serve just as much on Trail 	 as the POMDP optimal
policy would on this trail� This shows that 	�step looka�
head computations are enough to permit the MDP and
even�MDP approximations to give sensible� if not opti�
mal� results on this problem�

��� Example of Gradually Getting Lost

Our second example shows a case where neither the
chain�MDP nor the even�MDP approximations are able
to do better than the MDP approximation�
Figure � �b� shows a slightly di�erent skiing problem�

Table �� O�ine value functions V ��Start� �Fig� � �b��

chain�MDP � MDP even�MDP POMDP
Trail 
 �� �� ��
Trail 	 ���� ����
 ����

Table �� Backed�up value functions in the initial belief
state of Fig� � �b�� For the approximations� the operator
LA�	�V ��b� is used� and for the POMDP� V �

POMDP

chain�MDP � MDP even�MDP POMDP
Trail 
 �� �� ��
Trail 	 ����
 ����
 ����

Table �� Online policies� preferences �Fig� � �b��

chain�MDP � MDP even�MDP POMDP
Trail 	 Trail 	 Trail 


Here we have changed the dynamics so that the E ac�
tion moves east with probability ��� and southeast with
probability ��
� The optimal POMDP policy is to take
Trail 
� but all the approximations take Trail 	 �see Ta�
ble ��� The MDP approximation �LA�	�V �

MDP
policy�

takes Trail 	 for the same reasons as before� it cannot de�
tect the need to observe� Unfortunately� the even�MDP
approximation and the chain�MDP approximation have
the same problem� the probability ��
 of moving south�
east is not large enough to cause the 	�step lookahead
to choose an observation action� So the even�MDP and
chain�MDP do not detect the need to observe� This illus�
trates a weakness of both approximations� the gradual
accumulation of uncertainty� If uncertainty accumulates
gradually� these approximations will not detect the need
to observe�
Interestingly� the value function computed o�ine by

the even�MDP approximation� V �
�MDP

� is a more accu�
rate approximation to the optimal value function than
the value functions computed by the chain�MDP and the
underlying MDP approximations� The reason is that
although the even�MDP does not detect a need to ob�
serve� its value function in state st re ects the uncer�
tainty about the next state st��� by choosing the same
action at�� in belief state bt��� This uncertainty is elim�
inated at time t�	 when the even�MDP is able to fully
observe the state st��� In contrast� both the chain�MDP
and the underlying MDP� when computing their value
functions� always assume the world states are fully ob�
servable at all times t� Hence� at time t � 
� instead of
taking the action that is the best for all the �undi�erenti�
ated� world states in belief state bt��� as the even�MDP
does� they will take the best action in every fully observ�
able state st��� On this problem� the chain�MDP makes
no changes to the reward function� and hence� it con�
verges to the underlying MDP� Table � shows the o�ine
values computed by the various methods�
On this problem� the increased accuracy of V �

�MDP
is

not enough to make it choose the optimal action when
applied online� but it does explain why sometimes the
even�MDP approximation can be better than the chain�
MDP approximation�
At execution time� the agent maintains a belief state�

so it realizes when the uncertainty has accumulated� and
it will choose to observe� As a result� the skier will usu�
ally avoid going over the cli�� Table � shows the value of
the start state computed by the online lookahead search�
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�� Example where no sensing is available

��� Example Where No Sensing is
Available

Our third example shows a case where the even�MDP ap�
proximation gives a better policy than either the chain�
MDP or the MDP approximations� The idea underlying
this example is to create a situation in which the in�
creased accuracy of V ��MDP

results in a better policy�

Figure 
� shows a problem in which there is no sens�
ing available �that is� C � fNo�Obsg�� There are three
world actions a�� a� and a�� Actions a� and a� have a
�xed reward of r � � in all states �except when executed
in absorbing states�� Action a� is only available in the
start state� and it has a reward of ��	� � r� Transition
probabilities are 
�� unless indicated otherwise�

Because there is no sensing available� the chain�MDP
algorithm converges in one iteration and its value func�
tion is equal to V �

MDP
� As in the previous example�

V �
�MDP

is a better approximation to V �
POMDP

than
V �
MDP

� because the even�MDP experiences uncertainty
for one time step� while the MDP assumes every state is
fully observable�

Online� in the start state� a 	�step lookahead using
V �
�MDP

prefers to take action a�� because its backed�up
value of ��	��r is better than the backed�up value of ����r
of either action a� or a�� Consequently� the even�MDP
policy is optimal� In contrast� the chain�MDP overesti�
mates the backed�up value of actions a� and a� as � � r
�see Table ��� so it prefers either action a� or a� and
produces a suboptimal policy �Table ���

Table �� Action�value functions �Start state� Fig� 
��

chain�MDP � MDP even�MDP POMDP
a� ��	� � r ��	� � r ��	� � r
a � � r ��� � r ��� � r

Table �� Online actions in the Start state �Fig� 
��

chain�MDP � MDP even�MDP POMDP
a� or a� a� a�


 Conclusions

This paper has introduced two methods�the even�
MDP and the chain�MDP�for obtaining approximate
solutions to POMDPs� The methods seek to over�
come a serious weakness of the commonly�used MDP
approximation�namely� that the MDP approximation
ignores the cost of observing the world� Both methods
work by constructing an MDP whose value function cap�
tures some of the cost of observation� The �rst method�
the even�MDP� is based on the even�odd POMDP in
which the state of the world is partially observable at
odd�numbered time steps and fully observable at even�
numbered time steps� It captures observation costs dur�
ing the odd�numbered time steps� The second method�
the chain�MDP� is based on the Cost Observable MDP
�COMDP�� that separately models sensing and acting�
The chain�MDP algorithm constructs an MDP in which
the reward function has been modi�ed to incorporate
observation costs� By capturing these observation costs�
both approximations usually give better policies than
the MDP approximation� This is particularly true when
there is a delayed need to observe�that is� when observa�
tion costs must be detected long before they are incurred�
The delay means that online strategies based on a shal�
low lookahead search using V �

MDP
cannot detect the need

to observe soon enough� but o�ine strategies that propa�
gate detected observation costs backwards through time
can succeed�
Of the two approximations� the chain�MDP method

captures more of the observation costs� This is because
it can incorporate costs at all times t rather than just at
the odd�numbered times� However� it requires that the
POMDP be an EC�POMDP� i�e�� that it be equivalent



to a COMDP� In contrast� the even�MDP approxima�
tion works for any POMDP� and it is better understood
theoretically� This paper has shown examples where
the chain�MDP gives better results than the even�MDP
and vice versa� so neither method is always superior
to the other� However� the cases where the even�MDP
gives better results are somewhat contrived situations in
which neither method detects a need to observe but the
even�MDP models the resulting uncertainty slightly bet�
ter� The cases where the chain�MDP method is better
are more typical cases in which sensing must be per�
formed� Consequently� when the chain�MDP method is
applicable�that is� when the POMDP is a COMDP�
we believe it will give better results than the even�MDP�
when both methods detect a great need for sensing�
Both methods share the same fundamental weak�

nesses� Neither method addresses the problem of acting
when the agent is lost �i�e�� where the agent is highly
uncertain about the current state of the environment��
Both methods also su�er from gradual accumulation of
uncertainty� If uncertainty accumulates gradually� the
o�ine 	�step lookaheads performed by these heuristics
will not detect the need to observe� because the belief
state after the �rst step will not be su�ciently di�used
to make sensing worthwhile� One solution to this prob�
lem is to conduct a k�step lookahead� which will capture
the costs of sensing that are apparent within k steps� But
the computational cost of this solution grows exponen�
tially with k� Another disadvantage of both even�MDP
and chain�MDP algorithms is that their o�ine computa�
tions are based only on belief states that result after the
agent starts in a known state and performs a single ac�
tion� These belief states are not very spread out� so they
are less likely to encompass situations where the agent
is highly confused about which state it is in� Therefore
both methods will� in general� underestimate the obser�
vation costs�
This paper has included the following theoretical re�

sults� First� we have shown that the even�MDP approxi�
mation is at least as good as the MDP approximation� in
terms of both the o�ine and online value functions that
it computes� Finally� we have shown that the o�ine and
online value functions computed by the chain�MDP are
upper�bounded by the value functions computed by the
MDP approximation� It remains an open problem to
prove that the chain�MDP never underestimates the op�
timal value of a belief state� Such a result would prove
that the chain�MDP is always at least as good as the
MDP approximation�
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