Two Heuristics for Solving POMDPs Having a Delayed Need to

Observe

Valentina Bayer Zubek and Thomas Dietterich
bayer@cs.orst.edu tgd@cs.orst.edu
Department of Computer Science, Oregon State University, Corvallis, OR 97331 USA

Abstract

A common heuristic for solving Partial-
ly Observable Markov Decision Problems
(POMDPs) is to first solve the underlying
Markov Decision Process (MDP) and then con-
struct a POMDP policy by performing a fixed-
depth lookahead search in the POMDP and
evaluating the leaf nodes using the MDP value
function. A problem with this approximation is
that it does not account for the need to choose
actions in order to gain information about the
state of the world, particularly when those ob-
servation actions are needed at some point in
the future. This paper proposes two heuristics
that are better than the MDP approximation
in POMDPs where there is a delayed need to
observe.

The first approximation, introduced in [2], is
the even-odd POMDP, in which the world is
assumed to be fully observable every other time
step. The even-odd POMDP can be converted
into an equivalent MDP, the even-MDP, whose
value function captures some of the sensing
costs of the original POMDP. An online policy,
consisting in a 2-step lookahead search com-
bined with the value function of the even-MDP,
gives an approximation to the POMDP’s value
function that is at least as good as the method
based on the value function of the underlying
MDP. The second POMDP approximation is
applicable to a special kind of POMDP which
we call the Cost Observable Markov Decision
Problem (COMDP). In a COMDP, the actions
are partitioned into those that change the state
of the world and those that are pure observa-
tion actions. For such problems, we describe
the chain-MDP algorithm, which in many cases
is able to capture more of the sensing costs than
the even-odd POMDP approximation.

We prove that both heuristics compute value
functions that are upper bounded by (i.e., bet-
ter than) the value function of the underlying
MDP, and in the case of the even-MDP, also

lower bounded by the POMDP’s optimal value
function. We show cases where the chain-MDP
online policy is better, equal or worse than the
even-MDP online policy.

1 Introduction

The Partially Observable Markov Decision Problem
(POMDP) models the interaction between a single agent
and a partially observable environment. Partial observ-
ability results from noisy, imperfect, or expensive sen-
sors. Noisy and imperfect sensors are not able to uncover
the complete state of the world; an agent with expensive
sensors may prefer not to incur the high cost of observing
the complete state of the world. For example, consider
a robot moving in a building. If its sensors detect only
walls, then rooms with similar configurations will look
the same. Even if its sensors give complete information,
they may require large amounts of battery power so that
it is too expensive to use them at all times. People must
deal with partial observability on a daily basis. Driving,
for example, involves acting and sensing in a partially
observable environment (the driver has a limited visibil-
ity of the road ahead and of surrounding cars).

Finding optimal solutions for POMDPs is undecidable
[12] and nearly optimal approximations are intractable
[11]. Researchers have explored three main approaches
to POMDP approximation. Any POMDP can be con-
verted into a Markov Decision Problem (MDP) in be-
lief space (see below), and one approach is to approxi-
mate this belief space MDP via value function approx-
imation, factored decomposition, discretization of the
belief state, or a combination of these [10; 14; 8; 15;
3]. The second approach is based on solving the un-
derlying MDP (i.e., the same POMDP but with a fully
observable state). This approach computes the optimal
value function Vy;,p and then applies it online to con-
struct policies for the POMDP [4; 8]. Our approxima-
tion methods are related to this approach. The third
approach attempts to directly construct a finite-state
coiltroller that implements a good POMDP policy [7;
13].

POMDPs are difficult to solve because the agent may
be highly uncertain about the current state of the envi-

Longer
Trail

Start Goal

Shorter Trail

>

Cliff

Figure 1: POMDP illustrating a delayed need to observe

ronment, i.e. it is “lost”. In many problems, the agent
needs to plan to gain information in order to “avoid get-
ting lost”. We call this the “need to observe”.

As an example of the need to avoid getting lost, con-
sider a robot that has a choice of two different hallways to
traverse. One hallway is completely dark and provides
no visual landmarks. The other hallway is brightly-lit
and has many visual landmarks. Even when the sec-
ond hallway requires traveling a longer distance to reach
the goal, it may still be the optimal choice, because the
robot avoids getting lost in the dark hallway (and col-
liding with obstacles).

An immediate need to observe can be detected by per-
forming a shallow lookahead search, evaluating the leaf
nodes in this search tree using V3;pp, and backing-up
these values to choose the best action to perform. For
the robot considering the dark hallway, this kind of shal-
low lookahead search reveals that the robot will rapidly
become uncertain of its position. The expected value of
the resulting positions according to V}; ,p is poor, so the
robot prefers the well-lit hallway.

Unfortunately, a delayed need to observe is not de-
tected by the above method. Consider the “skier prob-
lem” in Figure 1. It involves a skiing robot that starts at
a known location at the top of the mountain and must
choose which trail to take. The upper trail is very safe—
so safe that the robot can ski this route with its eyes
closed, because the trail goes through a bowl-shaped val-
ley that naturally steers the robot down the center. The
lower trail is initially just as safe as the upper one, but
then it takes the skier along the side of a cliff. Here, the
skiing robot must constantly observe its position and ski
away from the cliff if it gets too close to the edge. Each
time the robot uses its vision system, it consumes battery
power, so the robot needs to minimize sensing. If this
problem is solved while ignoring the costs of observation
(i.e., computing V37 pp), the optimal policy will take the
lower trail, because it is shorter. However, when the cost
of observation is included, the upper policy is better. At
the start state there is no apparent difference between
the two paths (a limited lookahead will not detect any
need to observe on either trail), and a shallow lookahead
search combined with V};,p will choose the cliff trail.
The key difficulty is that there is a delayed need to ob-
serve (or equivalently, a delayed risk of getting lost), and
the shallow lookahead search cannot overcome this delay.

To solve this problem, we need to propagate future ob-
servation costs backwards through the state space, such
that earlier states will become more informed about the
total cost of taking a certain path. This paper presents
two approximate solutions that work well when there is
a delayed need to observe. Because the methods involve
solving MDPs with the same number of states as the
original POMDP, they scale well to large POMDPs.

The first approximation, presented in detail in [2], de-
fines a new POMDP, the even-odd POMDP, in which the
full state of the environment is observable (for no cost)
at all times ¢ where ¢ is even. When ¢ is odd, the environ-
ment returns the same observation information as in the
original POMDP (Figure 2). We showed that the even-
odd POMDP can be converted into an equivalent MDP
(the even-MDP or 2MDP) with different actions and re-
wards. The actions in this even-MDP are equivalent to
2-step lookaheads in the even-odd POMDP. Let V5, pp
be the optimal value function for the 2MDP. Then we
get an improved approximation to the optimal POMDP
value function by performing a shallow lookahead search
and evaluating the leaf states using V3 pp-

The 2-step lookahead of the even-MDP captures some
of the costs of observation if the first step creates enough
uncertainty about the state of the environment that the
agent chooses to make an observation action. In other
words, the even-MDP will incorporate the costs of ob-
servation in cases where those costs become immediately
apparent at some point in the future. For example, in
the skier domain, as the skier approaches the cliff, it
becomes immediately apparent (i.e., to a 2-step looka-
head search) that there is a need to observe. Hence,
the V35, pp will include those observations—but only at
times when t is odd! As the 2MDP is solved, these ob-
servation costs will be propagated backwards along the
temporal sequence of states so that in the starting state
at the top of the mountain, the robot skier will be able
to make the optimal decision to take the upper trail.

The even-MDP captures only a part of the observation
costs, because it only needs to sense at odd times ¢ (since
the following state is assumed to be fully observable).
Sometimes this produces a bad approximation.

The second approximation to POMDPs attempts to
estimate observation costs at every time step. The model
we propose, Cost Observable Markov Decision Prob-
lems or COMDPs, partitions actions into purely obser-
vational (i.e., “observation actions”) and state chang-
ing actions (i.e., “world actions”). Eric Hansen showed
that a COMDP with only two observation actions—one
that reveals the entire state and the other that observes
nothing—can be converted into an MDP, provided there
is a bound on the number of world actions taken between
observation actions (see [5], [6], and also Sven Koenig’s
extension to sensor planning in [9])

The chain-MDP algorithm is a heuristic for approxi-
mately solving COMDPs, starting with the MDP under-
lying the POMDP, and constructing a sequence of MDPs
My, Ms, ... whose reward functions have been modified
to incorporate sensing costs. The sensing costs are esti-

t=0 t=1 t=2 t=3 =4
@) >
(Act, Act (Act, Act
Sense) Sense)
fully fully fully
observable observable observable
one one

observation observation
Figure 2: The even-odd POMDP fully observes the state
(for free) every other time step

mated by performing a 2-step lookahead in each state,
and evaluating the leaf nodes using the optimal value
function of the previous MDP in the sequence. If this 2-
step lookahead chooses a sensing action in a given state,
then the reward function at that state is modified to
include the sensing cost.

In the skier problem, the value function of the last
MDP in the sequence of MDPs captures more of the ob-
servation costs than the value function of the even-MDP
and yields a better approximation. While the chain-
MDP method works very well in many cases, it is not
always superior to the even-MDP approximation. We
will show an example where it gives the same results
as the even-MDP and another example where the even-
MDP is superior. In general, therefore, neither method
dominates the other, but both are usually much better
than the MDP approximation.

2 POMDP Notations

A POMDP is a tuple (S, A, O, P (S|S, A), Pops(O|S, 4),
R(S|S, A),) where S is the set of states of the world,
A is the set of actions, Pi,.(s¢+1]|st,at) is the probability
of moving to state sy;41 at time ¢t + 1, after performing
action a; in state s; at time ¢, R(s¢+1|st,at) is the ex-
pected immediate reward for performing action a; in sy
causing a transition to sg41, O is the set of observations,
Pops(0t4+1|St4+1,a¢) is the probability of observing o¢i1
in state s;11 at time ¢ + 1, after executing a;, and v is
the discount factor. The states, actions and observations
are discrete. We assume the model is known (the transi-
tion probabilities, the observation probabilities and the
rewards). The rewards are negative or zero.

A Markov decision process (MDP) is a simplification
of the POMDP where the agent is told the true state
s of the environment after each action. Any POMDP
can be converted into a continuous-state MDP called
the belief MDP. The states in this MDP, called belief
states, are probability distributions b such that b(s;) =
P(st|ag,01,...,at_1,0t) is the agent’s belief that the en-
vironment is in state s;, given the entire action and ob-
servation history prior to t.

A policy 7 for an MDP is a mapping from states to
actions. Hence, a policy for the belief MDP is a mapping

from belief states to actions. The value function of a pol-
icy, V™(b) = E[Y_;2 ¥'re41], is the expected cumulative
discounted reward of following policy 7 starting in belief
state b. The optimal policy 7* maximizes V7 (b) for all
belief states. The value function of the optimal policy is
denoted V*. We will say that a belief state b is “pure”
if b(s) = 1 for some state s, and instead of V' (b) we will
write V (s).

3 Even-Odd POMDP Approximation

The even-MDP method has two steps: (a) define and
solve the even-MDP to obtain its optimal value function
Vovipps and (b) choose actions for the original POMDP
by performing a 2-step lookahead and evaluating the leaf
states using Vi pp-

3.1 Even-odd POMDP and Even-MDP

Given a POMDP we can define a new POMDP, the even-
odd POMDP, where everything is the same except that
at even times ¢, the set of observations is the same as the
set of states (O = 5), and the observed state is the true
underlying state (P,ps(o|s,a) = 1iff o = s). Note that
at even times, the belief state will be pure, but at odd
times, the belief state may become “spread out.” The
optimal value function for the even-odd POMDP can
be computed by converting it into an equivalent MDP,
which we call the even-MDP (abbreviated 2MDP). By
“equivalent” we mean that the value function for the
2MDP is the same as the value function for the even-
odd POMDP at even times ¢t. At odd times, V(b) is
computed by performing a one-step lookahead search to
reach an even time.

The 2MDP is constructed as follows. The states
are the same as the even-odd POMDP’s (world) states.
Each action u in the 2MDP (Figure 3) is a tuple
(a,dy,al, ..., a.), where n = |O]. We will write u[0] = a
and uf[o;] = a}. An action u is executed in state s in the
even-MDP by first performing a = u[0] in the even-odd
POMDP. The agent will move to state s’ with probabil-
ity Py-(s'|s, a), and an observation o will be received with
probability P,ps(o|s’,a). The agent then executes action
a' = ufo], which will cause a transition to state s” with
probability P;,.(s"|s’,u[o]). This is the fully observable
result state in the even-odd POMDP. The probability
transition function is Pi.(s"|s,u) = >, P (s'|s, u[0])-
> o Pobs(o|s’,u[0]) - P-(s"|s',ul0]). The immediate re-
ward of executing action u in state s is R(s,u) =
25 Por(s'|s,u[0])- [R(s'|s,u[0]) + 73, Pobs(o]s’, u[0])-
Yo Pir(s"]s' ulo])- R(s"|s',u[o])]. The discount factor
of the 2MDP is ~2.

The “Bellman backup operator” for this 2MDP is

hamppV (s) =
max, R(s,u) + Y . Pir(s"]s,u) - y2V (s").
By expanding the definitions, this can be simplified to
hamppV (s) =
max, R(s,a)+
Yo, ymaxy » o, Pi(s'|s,a) - Pops(o]s', a)-
2 Per(s"[s',a") - (R(s"[s",a') + 4V (s")),

The even-MDP has actions of the form
,al), where n = |O]

Figure 3:
! !
(a,dl,al, ...

*
Veven-MDP

Figure 4: LA(2)VS;pp(b) computes the value for belief
state b using a 2-step lookahead search and evaluating
the leaf states s” with V3, pp

where R(s,a) =, Pir(s'|s,a) - R(s'|s, a).

3.2 Improved Approximation

Let Vioupp be the optimal value function for the
POMDP and Vy;pp be the optimal value function for
the underlying MDP.

Theorem 1 (Bayer € Dietterich, [1; 2])
Veoupp(8) < Viupp(s) < Vipp(s), for all s € S.

Theorem 1 establishes that, on pure belief states,
Viwipp 1s a better approximation to VZ,,pp than
Vyrpp- This result can be extended to arbitrary belief
states b by considering a 2-step lookahead process. Let
LA(n) be an operator defined such that “LA(n)V(b)”
estimates the value of belief state b by performing an n-
step lookahead search in the original POMDP and eval-
uating the fully observable leaf states using V. Figure 4
shows how LA(2)V5,pp is computed.

Theorem 2 For all belief states b, Vipypp() <

LAR)VSyppb) < LAR)Vypp(b) < LAV pp(b).
Figure 5 depicts this relationship for a 2-state finite-
horizon POMDP. All value functions are piecewise lin-
ear and convex. It is important to note that just
because LA(2)VSypp is a better approximation than
LA(2)Vipp, this does not guarantee that it will produce
a better policy at run time. Nonetheless, it is usually the
case that the more accurately we approximate the value

*

MDP

e *

LA@V ppp

LA(L)V

*

LAV ompp

*
Veompp

P(sq) 1

Figure 5: Schematic diagram of the optimal POMDP
value function and three approximations to it for a 2-
state finite-horizon POMDP

function, the better the performance of a greedy policy
that corresponds to that value function.

To choose actions in the original POMDP, we first
compute V., pp offline via value iteration. During on-
line execution, we maintain a belief state b. At each time
t, we perform the 2-step lookahead search to compute the
backed-up value LA(2)Vyy,pp(b), as in Figure 4, and
choose the action with the best backed-up value. The
online policy needs to perform (at least) a 2-step looka-
head in order to choose an action that performs some
sensing (1-step lookahead assumes the resulting states
are fully observable, so no sensing is needed).

The even-MDP value function underestimates the ob-
servation costs because it only needs to observe at odd
times ¢. This is because at the end of the 2-step looka-
head the states are assumed to be fully observable, so the
second actions u[o] of the even-MDP will not be chosen
on the basis of the observation information they might
provide. In the next section, we propose a heuristic that
tries to overcome this limitation.

4 Cost Observable Markov Decision
Processes (COMDPs)

To define the chain-MDP approximation, we need to be
able to separate out the cost of sensing from the cost
of acting in the world. In standard POMDPs, there
is no fundamental distinction between these two: ev-
ery action can simultaneously change the world and also
provide information about the world that reduces the
uncertainty in the current belief state. However, for the
chain-MDP method, we will require that the POMDP
have a special structure in which these two components
are separated. To do this, we define a Cost Observ-
able Markov Decision Problem (COMDP) as a tuple

<S;Aac;O>Ptr(S|S; A)apobs(0|5> C)yRA(S|Sv A);RC(C))7>7

where A is a set of world actions that change the state

of the world according to P;.(S|S, A), and C is a set of
observation actions that return observation information
according to Pyps(0|S,C). The world actions give a re-
ward of R4(S|S, A), and the observation actions give a
reward of Ro(C), which does not depend on the cur-
rent state. The set of states S and the discount factor
~ are the same as in the POMDP definition. The set C
of observation actions must include an observation ac-
tion No-Obs that does not provide any information and
has zero cost. All other observation actions have posi-
tive costs (equivalently, they have negative rewards), i.e.,
they are “cost observable”.

The COMDP works as follows. At each time ¢, a
COMDP policy 7 maps the current belief state b; to
a (world action, observation action) pair: (at,ci41) =
7(bt). The world action a; is executed, which causes the
environment to move from state s; to state s;11. Then
the observation action ¢y is executed to return obser-
vation o;y1 (see Figure 6). If ¢;11 = No-Obs, then no
observation information is received.

COMDPs are intended to model situations that arise
in diagnosis and active vision where there are many ob-
servation actions that do not change the world.

Ra Ra

a(t) a(t+1)

0] S(t+1)

N

O(t+2

c(t+1) c(t+2)

Figure 6: Decision diagram for a COMDP

It is easy to see that any COMDP can be converted
into an equivalent POMDP by defining each POMDP’s
action aj = (at,cr41) as a pair of a world action a; and
an observation action ¢y in the COMDP. Similarly, the
equivalent reward function R(s+1|st,a}) is the sum of
the world action’s reward R4 (s¢+1]|st,a:) and the obser-
vation action’s reward R (ci+1). However, the restric-
tion that there exist a No-Obs observation action in the
COMDP means that not all POMDPs can be converted
to COMDPs, because the No-Obs action means that ev-

COMDP world action }—{ observation action
Ra Re
voP (s

RA + RC
Figure 7: Idea for approximately solving a COMDP

ery world changing action can be executed without re-
ceiving any observation information. We refer to the
set of POMDPs that are equivalent to COMDPs as EC-
POMDP (POMDPs that are Equivalent to COMDPs).
4.1 Approximation Algorithm for
COMDPs

The goal of our COMDP approximation algorithm is to
create an MDP that incorporates the cost of sensing.
That is, if the COMDP policy in a state s is to perform
an action a followed by an observation action ¢, then we
want an MDP where the cost for action a is changed to
reflect the cost for observation action ¢ (see Figure 7).
We can then compute the optimal value function for this
MDP by value iteration and employ it to choose actions
online, just as we used the even-MDP value function.

Table 1 shows the chain-MDP algorithm for construct-
ing this equivalent MDP. Let M; be the underlying
MDP for the COMDP, that is, an MDP with the same
S, A, P;.(S]S, A), Ra(S|S, A) and v as the COMDP, but
where the state is fully observable after each world ac-
tion. Starting with M, the chain-MDP algorithm iter-
atively constructs a series of MDPs M, ..., Mg. The
MDPs are all identical to M, except for the immediate
reward function, which is changed to include the cost of
observation actions.

To construct MDP M;, the chain-MDP algorithm
performs a lookahead search for each state s; and action
a¢ assuming the world is cost observable for one step
and fully observable in the second step. This lookahead
search considers all possible sequences (¢t41, 041, Gtt1)-
During the lookahead, the cost of a; is computed ac-
cording to the original COMDP’s reward function R4
for world actions, the cost of the observation action ¢;y1
is computed according to the reward function Rc for
observation actions, but the cost of a;; is computed
according to reward function R;, from MDP M;, since
this may include some observation costs, which otherwise
would not be captured by the 2-step lookahead. The re-
sulting states s;yo are evaluated using the optimal value
function V. of MDP M; from the previous iteration.

The purpose of this lookahead search is not to com-
pute the backed-up value of the starting state s; (as it
was in the even-MDP approximation), but instead to
determine which observation action c¢;4; maximizes the
expected return of this 2-step lookahead. Let cf,; be the
best observation action. The cost of this observation is

Table 1: Chain-MDP algorithm for approximately solv-
ing a COMDP

Let M be the underlying MDP for the COMDP (the states
are fully observable, at no cost), with the reward function
Ri(st41|st,ae) := Ra(seq1]st,at) = Rvupp(Se41]se, ar).

Let ¢ := 0 (iteration number)

Let ¢mqez be a limit on the number of iterations

repeat

e i:=i+1

e solve the MDP M; with reward R; to find its value func-
tion Vi,

e for each state s; and action a:

— perform a 2-step lookahead search to choose the
best observation action cjy;, and for each possible
observation o:+1, choose the best next action a;41.
At time t + 2, we assume the states si4o are fully
observable and we evaluate them using the value
V]C;[l. (St+2) Of MDP Mi.

— for every valid transition to a state s¢41, modify
the reward for action a; to include the cost for cj,

Riti(st+1]st,at) := Ra(st+1]st,at) + Ro(ciy)
until Ri4+1 = R; or ¢ > imax

Return the last MDP My, with reward Rx and value func-
tion V.

incorporated into the reward function for MDP M;,; by
adding it to Ra:

Riy1(sttalse,ar) := Ra(se+1]st, ar) + Re(cgyy)-

This rule is applied in all states s; unless they are ab-
sorbing states. We require that absorbing states keep
their MDP rewards unmodified so that the value of ev-
ery absorbing state remains zero.

Once the chain-MDP has computed its final MDP,
Mg, the value function Vz is applied to compute the
online policy as follows (see Figure 8). At run time, a
2-step lookahead search is performed starting from the
current belief state b; to find the (action, observation ac-
tion) = (a¢, ct41) with the best backed-up value. As in
the chain-MDP algorithm, the reward for a; is R4, the
reward for ¢,y is R¢, the reward for a;y; is Rg, and the
resulting states s;;» are evaluated using V3. It is impor-
tant to use Rk to evaluate a;y1—our experiments show
that this is responsible for a significant portion of the
improvement obtained from the chain-MDP approach.

We now prove that all the value functions V. are
less-than or equal to Vy;pp, the value function used in
the MDP approximation. This also holds for the value
function of the last MDP Mg, Vi, so it provides some
evidence that the chain-MDP approximation will be bet-
ter than the MDP approximation.

Theorem 3 R;(s'|s,a) < Rypp(s'|s,a) and
Vi, () < Virpp(s) for all s,5',a and i

Here, R; and Vy; are the reward and the value function

of MDP M; constructed by the chain-MDP algorithm in
its it" iteration.

Proof: For any of the MDPs M;, because
R;(s'|s,a) :== Rypp(s'|s,a) + Re(c*) and Re(c) <0 for
all observation actions ¢, then immediately R;(s'|s,a) <
Rypp(s'|s,a) = Ri(s'|s,a) for all s,s’,a. Let hMD Py,
be the Bellman backup operator for the MDP with
reward R;. We will prove that its value function
Vir.(s) < Vipp(s),Vs, using an argument similar
to the value iteration algorithm ([16]) to compute
the value functions. Let Vi,i(s) := 0,Vs, be the
initial value function. We will prove by induction
that h]]c\/[DPRl.Vinit(S) < h’fV[DPRleit(s),Vk,s, where

the notation hk,,,V means the operator was ap-
plied k£ times (equivalent to k iterations of value it-
eration). Base step: (kK = 1) hyppy, Vinit(s) <
harppg, Vinit(s) because R;(s'|s,a) < Ri(s'|s,a). In-

duction step: hﬁjll)PRi Vinit(s) < h’j}éPRleit(s) be-

cause R;(s'|s,a) < Ri(s'|s,a) and b pp. Vini(s) <
h’}VIDPRleit(s) (induction hypothesis).

limy 00 hlf\/[DpRi Vinit (5) < limg o0 hﬁ/‘poRl Vinit(s), so
Vir, () < Virpp(s),Vs. Q.E.D.

This theorem only relates the value function con-
structed by the chain-MDP algorithm to V35 p. But the
result can be extended to apply to the value functions
computed during online execution. Let LA®(2)V (b) be
the backed-up value for belief state b computed by an
online 2-step lookahead search in which the leaf nodes
are evaluated using value function V' and the second
step actions a;4+1 have reward function R. Using this
notation, LA®x (2)V%(b) is the backed-up value for be-
lief state b using the last MDP My computed by the
chain-MDP algorithm, whereas LARMPP (2)Vy L (b) is
the value computed using the underlying MDP’s value
function and reward function. The following theorem
says that the backed-up values computed online using
Mg are upper-bounded by the values computed online
using the MDP approximation.

Theorem 4 For all belief states b,
LAR(2)VE (b) < LARMPR (2)Vipp (D).

Proof: Because Rk (s'|s,a) < Rypp(s'|s,a) for all
s,8',a, and ViE(s) < Viipp(s),V¥s (from theorem 3 ap-
plied to the reward and value function of the last MDP
Mg computed by the chain-MDP algorithm), it can
be shown that LAR® (2)Vi(b) < LARMPP(2)VE(h) <
LARMpr (2)V¥ 05 (b). Q.E.D.

In the chain-MDP algorithm (Table 1), we have in-
cluded a maximum number of iterations i,,.,, because
otherwise the chain-MDP may loop forever through a
repeating series of MDPs. Here’s an example of how
this may happen. Assume the reward function Rs of
MDP M, captures some observation costs. In the next
iteration of the chain-MDP algorithm, the 2-step looka-
head evaluates the leaf states s¢yo using Vy; . It is pos-
sible that this time the lookahead will find that sens-
ing is not necessary, because the purpose is to maxi-

Therefore

Figure 8:

The chain-MDP online policy uses a
2-step lookahead exhaustive search to compute the best
(action a, observation action c) in a belief state b

mize the expected return of the lookahead, and the re-
sulting states s"” have lower values than before (during
the lookahead in iteration 1) since Vy, (s") < Virpp(s”),
plus Ry < Rarpp is used for a;q1. Therefore the reward
R3 will not be modified, R3 = Rypp # R2 and the al-
gorithm will oscillate. This looping may not be a prob-
lem, however, because our experiments to date have not
shown any special benefit to going beyond MDP M.

Instead of looping, another possible behavior of the
algorithm is that it terminates in one iteration, with
Mg = M;. This occurs when none of the 2-step looka-
head searches finds that an observation action is neces-
sary. In some problems, such as those where no obser-
vation actions are available, this can’t be avoided (see
Section 5.3). But in other problems, if no observations
are performed, uncertainty in the belief state gradually
accumulates until major errors are made. Neither the
even-MDP nor the chain-MDP approximations can han-
dle the graduate accumulation of uncertainty (see such
an example in Section 5.2).

An open theoretical question is whether the value
function returned by the chain-MDP algorithm is lower-
bounded by the optimal POMDP value function on pure
belief states, that is, whether Vi, pp(s) < ViE(s). If
this is true, it would imply that whenever the chain-MDP
algorithm produces a new MDP Mg # My, the online
backed-up value function using M is a better approxi-
mation than the one using M, and the resulting online
policy could be better than the policy computed from
the MDP approximation. Based on our experiments, we
believe Vg overestimates V5, pp-

5 Comparison Between the Two
Approximations

Now that we have introduced the even-MDP and chain-
MDP approximations, we will compare them experimen-
tally through a series of COMDP problems. The exam-
ples included here have a small number of states and are
intended to demonstrate the strengths and weaknesses of

the two methods. However, these small problems should
not be taken to be representative of the size and complex-
ity of POMDPs that can be solved. Both approximations
scale well with the number of states, because they only
involve solving MDPs. We demonstrated this in a pre-
vious study [2] where we presented a large EC-POMDP
example with 10000 states and observations that is far
beyond the capabilities of existing exact POMDP plan-
ning algorithms. However, the even-MDP approxima-
tion was easily computed, and the resulting policy gave
excellent performance. In an unpublished experiment,
we have applied the chain-MDP algorithm to this prob-
lem as well. It converges in 4 iterations and results in an
identical online policy. This policy is much better than
the policy computed using the MDP approximation.

5.1 Example with Delayed Need to
Observe

Our first example demonstrates a case in which the
chain-MDP produces the optimal policy, while the even-
MDP produces a sub-optimal policy (and both are better
than the MDP approximation).

Figure 9(a) shows a skier at the known start state
on the left, and there are three trails leading down the
mountain to circled absorbing states. The goal of the
skier is to reach the bottom of the mountain by the least
expensive path. Trail 1 is the longest path, but no sens-
ing is required to traverse it, so it is optimal. Trails 2
and 3 are shorter, but each of them runs along a cliff
where there is a danger of falling. To avoid this dan-
ger, the skier must observe its current position and take
corrective action if he gets too close to the edge. These
extra observation costs make Trails 2 and 3 suboptimal.

Here are the details concerning the world actions, ob-
servation actions, and reward functions for this example.
The skier has three world actions: SE, N, and E. SE is
only available in the start state, and it deterministically
takes the skier to the start of Trail 3 (reward —1). N
deterministically moves the skier north one square (re-
ward —4). Bumping against a “wall” leaves the state
unchanged. E normally moves east with probability 0.5
and southeast with probability 0.5. The reward of E is
normally —1, but an additional penalty of —100 is re-
ceived if the skier goes over the cliff. E moves east with
probability 1 in the start state and in all states where
there is no choice. There are two observation actions:
No-Obs (reward 0) and Obs (reward —1). There are two
observations: No-Cliff and Cliff. The first observation
action No-Obs does not provide any sensing, so it always
returns the observation No-Cliff. The second observa-
tion Obs deterministically returns the observation Cliff
in states immediately adjacent to the cliff, and No-Cliff
in all other states. The circled states and the cliff states
are absorbing and any world action performed in an ab-
sorbing state has zero cost (and, of course, the world ac-
tion transitions back to the same absorbing state). We
still charge the cost of observation actions even if they
are performed in absorbing states.

Because the number of reachable belief states in this

Table 2: Offline and online value functions V*(Start)

(Fig. 9 (a))
MDP even-MDP chain-MDP POMDP
Trail 1 —18 —18 —18 —18
Trail 2 17 —17.5 —-19 —-19
Trail 3 —16 —18.5 —20 —20

Table 5: Backed-up value functions in the initial belief
state of Fig. 9 (b). For the approximations, the operator
LA(2)V*(b) is used, and for the POMDP, VZ,pp

chain-MDP = MDP even-MDP POMDP

Trail 1
Trail 2

-9

-9

—d

—4.71

—4.71

—5.4

Table 3: Online policies’ preferences (Fig. 9 (a))

MDP even-MDP chain-MDP POMDP
[Trail 3] Trail2 | Trall | Traill |

problem is small and finite, we were able to compute
the POMDP optimal policy and compare it with the
even-MDP, chain-MDP, and MDP approximations. The
chain-MDP algorithm converges in two iterations, and
the resulting online policy is optimal; the even-MDP pro-
duces a sub-optimal policy; and the MDP approximation
is worse than either the even-MDP or chain-MDP poli-
cies (see Table 3).

The reason the chain-MDP beats the even-MDP ap-
proximation is that it captures more of the observation
costs. The value function computed by the chain-MDP
(Vy1,) captures the costs of 4 observation actions on Trail
3, and of 2 observation actions on Trail 2. In fact, for this
problem, Vy; captures all the necessary sensing costs. In
contrast, the even-MDP value function (V55,p) detects
only 2.5 observation actions on Trail 3 and 0.5 on Trail
2. The MDP value function, V3;pp, does not detect
any need to observe, since it assumes all states are fully
observable.

Table 2 shows the offline value functions V* computed
in the start state by the MDP, the even-MDP, the chain-
MDP and the POMDP; these values are also equal to the
online backed-up values in the initial “pure” belief state.

Interestingly, because of the online lookahead search,
none of the online policies goes over the cliff. The pol-
icy computed by the MDP approximation, LA(2)V;;pp,
will observe just as much on Trail 3 as the POMDP op-
timal policy would if the POMDP were to take Trail 3.
Similarly, the even-MDP policy, LA(2)V5,pp, Will ob-
serve just as much on Trail 2 as the POMDP optimal
policy would on this trail. This shows that 2-step looka-
head computations are enough to permit the MDP and
even-MDP approximations to give sensible, if not opti-
mal, results on this problem.

5.2 Example of Gradually Getting Lost

Our second example shows a case where neither the
chain-MDP nor the even-MDP approximations are able
to do better than the MDP approximation.

Figure 9 (b) shows a slightly different skiing problem.

Table 4: Offline value functions V*(Start) (Fig. 9 (b))
chain-MDP = MDP even-MDP POMDP

Trail 1
Trail 2

—d

—d

-9

-3.8

—4.71

—5.4

Table 6: Online policies’ preferences (Fig. 9 (b))

chain-MDP = MDP even-MDP POMDP
| Trail 2 | Trail2 | Trail 1 |

Here we have changed the dynamics so that the E ac-
tion moves east with probability 0.9 and southeast with
probability 0.1. The optimal POMDP policy is to take
Trail 1, but all the approximations take Trail 2 (see Ta-
ble 6). The MDP approximation (LA(2)V;;pp policy)
takes Trail 2 for the same reasons as before: it cannot de-
tect the need to observe. Unfortunately, the even-MDP
approximation and the chain-MDP approximation have
the same problem: the probability 0.1 of moving south-
east is not large enough to cause the 2-step lookahead
to choose an observation action. So the even-MDP and
chain-MDP do not detect the need to observe. This illus-
trates a weakness of both approximations: the gradual
accumulation of uncertainty. If uncertainty accumulates
gradually, these approximations will not detect the need
to observe.

Interestingly, the value function computed offline by
the even-MDP approximation, Vy%,;pp, is a more accu-
rate approximation to the optimal value function than
the value functions computed by the chain-MDP and the
underlying MDP approximations. The reason is that
although the even-MDP does not detect a need to ob-
serve, its value function in state s; reflects the uncer-
tainty about the next state s;;1, by choosing the same
action a¢41 in belief state byy1. This uncertainty is elim-
inated at time ¢ 4+ 2 when the even-MDP is able to fully
observe the state s; 2. In contrast, both the chain-MDP
and the underlying MDP, when computing their value
functions, always assume the world states are fully ob-
servable at all times ¢. Hence, at time ¢ + 1, instead of
taking the action that is the best for all the (undifferenti-
ated) world states in belief state b;41, as the even-MDP
does, they will take the best action in every fully observ-
able state s¢4+1. On this problem, the chain-MDP makes
no changes to the reward function, and hence, it con-
verges to the underlying MDP. Table 4 shows the offline
values computed by the various methods.

On this problem, the increased accuracy of V., pp is
not enough to make it choose the optimal action when
applied online, but it does explain why sometimes the
even-MDP approximation can be better than the chain-
MDP approximation.

At execution time, the agent maintains a belief state,
so it realizes when the uncertainty has accumulated, and
it will choose to observe. As a result, the skier will usu-
ally avoid going over the cliff. Table 5 shows the value of
the start state computed by the online lookahead search.

0000000000000 0 Q| mn

O © Trail 1

C)OOOOOOOOOOOO@WH
Start O O g 3

Cliff

OXCRORORONONC)
O 00O

Cliff

(@)

@ O O @ Trail 2
Start O O @
keeeeeeeid]

Cliff
Trail 3

(b)

Figure 9: (a) Three paths for skiing down a mountain. There is a delayed need to observe on Trails 2 and 3. (b) A

second skier example

Figure 10: Example where no sensing is available

5.3 Example Where No Sensing is
Available

Our third example shows a case where the even-MDP ap-
proximation gives a better policy than either the chain-
MDP or the MDP approximations. The idea underlying
this example is to create a situation in which the in-
creased accuracy of V35, p results in a better policy.

Figure 10 shows a problem in which there is no sens-
ing available (that is, C = {No-Obs}). There are three
world actions aq, as and az. Actions as and asg have a
fixed reward of r < 0 in all states (except when executed
in absorbing states). Action ay is only available in the
start state, and it has a reward of 4.25 - r. Transition
probabilities are 1.0 unless indicated otherwise.

Because there is no sensing available, the chain-MDP
algorithm converges in one iteration and its value func-
tion is equal to V;;,p. As in the previous example,
Vowipp 18 a better approximation to Vp,,pp than
Virpp, because the even-MDP experiences uncertainty
for one time step, while the MDP assumes every state is
fully observable.

Online, in the start state, a 2-step lookahead using
Voupp prefers to take action a;, because its backed-up
value of 4.25-r is better than the backed-up value of 4.5-r
of either action ay or az. Consequently, the even-MDP
policy is optimal. In contrast, the chain-MDP overesti-
mates the backed-up value of actions as and a3 as 4 -r
(see Table 7), so it prefers either action as or as and
produces a suboptimal policy (Table 8).

Table 7: Action-value functions (Start state, Fig. 10)

chain-MDP = MDP even-MDP POMDP
aq 4.25-r 4.25-r 4.25-r
a 4-r 45-r 45-r

Table 8: Online actions in the Start state (Fig. 10)

chain-MDP = MDP even-MDP POMDP
[as or as | a; | ay |

6 Conclusions

This paper has introduced two methods—the even-
MDP and the chain-MDP—for obtaining approximate
solutions to POMDPs. The methods seek to over-
come a serious weakness of the commonly-used MDP
approximation—namely, that the MDP approximation
ignores the cost of observing the world. Both methods
work by constructing an MDP whose value function cap-
tures some of the cost of observation. The first method,
the even-MDP, is based on the even-odd POMDP in
which the state of the world is partially observable at
odd-numbered time steps and fully observable at even-
numbered time steps. It captures observation costs dur-
ing the odd-numbered time steps. The second method,
the chain-MDP, is based on the Cost Observable MDP
(COMDP), that separately models sensing and acting.
The chain-MDP algorithm constructs an MDP in which
the reward function has been modified to incorporate
observation costs. By capturing these observation costs,
both approximations usually give better policies than
the MDP approximation. This is particularly true when
there is a delayed need to observe—that is, when observa-
tion costs must be detected long before they are incurred.
The delay means that online strategies based on a shal-
low lookahead search using V}; , p cannot detect the need
to observe soon enough, but offline strategies that propa-
gate detected observation costs backwards through time
can succeed.

Of the two approximations, the chain-MDP method
captures more of the observation costs. This is because
it can incorporate costs at all times t rather than just at
the odd-numbered times. However, it requires that the
POMDP be an EC-POMDP, i.e., that it be equivalent

to a COMDP. In contrast, the even-MDP approxima-
tion works for any POMDP, and it is better understood
theoretically. This paper has shown examples where
the chain-MDP gives better results than the even-MDP
and vice versa, so neither method is always superior
to the other. However, the cases where the even-MDP
gives better results are somewhat contrived situations in
which neither method detects a need to observe but the
even-MDP models the resulting uncertainty slightly bet-
ter. The cases where the chain-MDP method is better
are more typical cases in which sensing must be per-
formed. Consequently, when the chain-MDP method is
applicable—that is, when the POMDP is a COMDP—
we believe it will give better results than the even-MDP,
when both methods detect a great need for sensing.

Both methods share the same fundamental weak-
nesses. Neither method addresses the problem of acting
when the agent is lost (i.e., where the agent is highly
uncertain about the current state of the environment).
Both methods also suffer from gradual accumulation of
uncertainty. If uncertainty accumulates gradually, the
offline 2-step lookaheads performed by these heuristics
will not detect the need to observe, because the belief
state after the first step will not be sufficiently diffused
to make sensing worthwhile. One solution to this prob-
lem is to conduct a k-step lookahead, which will capture
the costs of sensing that are apparent within £ steps. But
the computational cost of this solution grows exponen-
tially with k. Another disadvantage of both even-MDP
and chain-MDP algorithms is that their offline computa-
tions are based only on belief states that result after the
agent starts in a known state and performs a single ac-
tion. These belief states are not very spread out, so they
are less likely to encompass situations where the agent
is highly confused about which state it is in. Therefore
both methods will, in general, underestimate the obser-
vation costs.

This paper has included the following theoretical re-
sults. First, we have shown that the even-MDP approxi-
mation is at least as good as the MDP approximation, in
terms of both the offline and online value functions that
it computes. Finally, we have shown that the offline and
online value functions computed by the chain-MDP are
upper-bounded by the value functions computed by the
MDP approximation. It remains an open problem to
prove that the chain-MDP never underestimates the op-
timal value of a belief state. Such a result would prove
that the chain-MDP is always at least as good as the
MDP approximation.

References

(1] Bayer, V., Dietterich, T.: A POMDP Approx-
imation Algorithm that Anticipates the Need
to Observe. Technical Report 00-30-01, Oregon
State University, Dept. of Computer Science
(2000)

2] Bayer Zubek, V., Dietterich, T.. A POMDP
Approximation Algorithm that Anticipates the

[11]

[12]

[13]

[14]

Need to Observe. PRICAI 2000, LNAI 1886
(2000) 521-532
http://www.cs.orst.edu/~bayer/

Bonet, B., Geffner, H.: Planning with Incom-
plete Information as Heuristic Search in Be-
lief Space. AIPS 2000. AAATI Press/MIT Press
(2000) 52-61

Cassandra, A. R., Kaelbling, L.P., Kurien, J. A.:
Acting under Uncertainty: Discrete Bayesian
Models for Mobil-Robot Navigation. IROS-96.
IEEE (1996)

Hansen, E. A.: Cost-Effective Sensing Dur-
ing Plan Execution. AAAI-94. AAAT Press/MIT
Press (1994) 1029-1035

Hansen, E. A., Barto, A. G., Zilberstein, S.: Re-
inforcement Learning for Mixed Open-loop and
Closed-loop Control. NIPS-9, MIT Press (1996)

Hansen, E. A.: Solving POMDPs by Search-
ing in Policy Space. UAI-14. Morgan Kaufmann
(1998) 211-219

Hauskrecht, M.: Value-function Approximations
for Partially Observable Markov Decision Pro-
cesses. JAIR, vol. 13 (2000) 33-94

Koenig, S., Liu, Y.: Sensor Planning with Non-
Linear Utility Functions. ECP-99. Springer Ver-
lag (1999)

Littman, M. L., Cassandra, A. R., Kaelbling,
L.P.: Learning Policies for Partially Observable
Environments: Scaling Up. ICML-95. Morgan
Kaufmann (1995) 362-370

Lusena, C, Goldsmith,J., Mundhenk, M.: Non-
approximability Results for Markov Decision
Processes. Technical Report 275-98, University
of Kentucky. (1998)

Madani, O., Hanks, S., Condon, A.: On
the Undecidability of Probabilistic Planning
and Infinite-Horizon POMDPs. AAAI-99. AAAI
Press/MIT Press (1999) 541-548

McCallum, R. A.: Instance-based Utile Distinc-
tions for Reinforcement Learning with Hidden
State. ICML-95. Morgan Kaufmann (1995) 387—
396

Parr, R., Russell, S.: Approximating Opti-
mal Policies for Partially Observable Stochastic
Domains. IJCAI-95. Morgan Kaufmann (1995)
1088-1094

Rodrfguez, A., Parr, R., Koller, D.: Reinforce-
ment Learning Using Approximate Belief States.
NIPS-12, MIT Press (2000)

Sutton, R. S., Barto, A. G.: Reinforcement
Learning. MIT Press (1999)

