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Abstract

This paper introduces the even-odd POMDP,
an approximation to POMDPs in which the
world is assumed to be fully observable ev-
ery other time step. The even-odd POMDP
can be converted into an equivalent MDP, the
2MDP, whose value function, V �

2MDP
, can

be combined online with a 2-step lookahead
search to provide a good POMDP policy. We
prove that this gives an approximation to the
POMDP's optimal value function that is at
least as good as methods based on the opti-
mal value function of the underlying MDP.
We present experimental evidence that the
method gives better policies, and we show
that it can �nd a good policy for a POMDP
with 10,000 states and observations.

1. Introduction

The Partially Observable Markov Decision Problem
(POMDP) is the most general model of a single agent
interacting with a partially observable environment.
Consequently, solving POMDPs is a central goal of
arti�cial intelligence. However, the great generality of
the model also means that no single method can be ex-
pected to solve all POMDPs e�ectively and e�ciently.
Indeed, the problem of �nding optimal solutions for
POMDPs is PSPACE-hard (Papadimitriou & Tsitsik-
lis, 1987). The best exact algorithms for POMDPs
can solve problems with around 100 states and a small
number of possible observations (Cassandra, Littman,
& Zhang, 1997).

In response to this state of a�airs, several authors
have explored methods for the approximate solution of
POMDPs (Parr & Russell, 1995; Littman, Cassandra,
& Kaelbling, 1995; Rodr�iguez, Parr, & Koller, 2000).
Some of these methods involve �rst solving the under-
lying MDP to �nd the value function V �

MDP
of the

optimal policy assuming that the states of the envi-

ronment are fully observable. This value function can
then be employed to construct approximately optimal
policies for the original POMDP.

In some domains, the history of sensor readings and
actions is su�cient to determine the true state of the
environment. Such domains can be solved by comput-
ing the current state, and then using V �

MDP
to choose

actions. The necessary sensor and environment models
can be provided by the programmer or learned from
the environment. An important discovery here was
that a complete model of the environment and of the
sensors is not needed. It is only necessary to make
\utile distinctions"|that is, to model only those as-
pects of the environment required for representing the
value functions of good policies (McCallum, 1995).

Unfortunately, there are many domains that are inher-
ently uncertain: even when the agent has a complete
and correct model of the environment, the agent can
be \lost"|that is, the agent may have a large amount
of uncertainty about the current state of the environ-
ment. In such domains, the optimal policy may involve
\avoiding getting lost" (i.e., avoiding states where ac-
tions become highly uncertain) and also \acting when
lost" (i.e., taking actions to gather information or to
act robustly in the absence of information).

As an example of the need to avoid getting lost, con-
sider a robot that has a choice of two di�erent hall-
ways to traverse. One hallway is completely dark and
provides no visual landmarks. The other hallway is
brightly-lit and has many visual landmarks. Even
when the second hallway requires traveling a longer
distance to reach the goal, it may still be the optimal
choice, because the robot avoids getting lost in the
dark hallway (and colliding with obstacles).

An example of the need to act when lost is the task of
disease diagnosis. Given a patient's initial symptoms,
a physician may be uncertain about the true state of
the patient (i.e., the disease). The physician must have
a policy for how to act (i.e., by performing tests and
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Figure 1. POMDPs illustrating (a) delayed need to observe and (b) delayed opportunity to observe.

prescribing therapies) under this uncertainty.

Fortunately, in cases where the e�ects of actions are
immediately apparent, both of these problems can be
solved by performing a shallow lookahead search, eval-
uating the leaf nodes in this search tree using V �

MDP
,

and backing-up these values to choose the best ac-
tion to perform. For the robot, a shallow lookahead
search reveals that the robot rapidly becomes uncer-
tain of its position. The expected value of the re-
sulting positions according to V �

MDP
is poor, so the

robot prefers the well-lit hallway. In the medical di-
agnosis case, many successful diagnostic systems have
been based on a one-step value-of-information (VOI)
calculation (Howard, 1966). The physician considers
the expected utility of choosing a therapy immediately
versus the expected utility of performing one test and
then choosing the therapy after the test results are
known. Greedy VOI often works extremely well, both
for choosing the best test to perform and for deciding
when to stop testing and recommend a therapy.

The most di�cult POMDPs are those where the conse-
quences of actions are not immediately apparent. Con-
sider the \skier problem" in Figure 1(a). It involves
a skiing robot that starts at a known location at the
top of the mountain and must choose which trail to
take. The upper trail is very safe|so safe that the
robot can ski this route with its eyes closed, because
the trail goes through a bowl-shape valley that nat-
urally steers the robot down the center. The lower
trail is initially just as safe as the upper one, but then
it takes the skier along the side of a cli�. Here, the
skiing robot must constantly observe its position to
avoid falling o� the cli�. Each time the robot uses its
vision system, it consumes battery power, so the robot
wants to minimize sensing. If this problem is solved
while ignoring the costs of observation (i.e., comput-
ing V �

MDP
), the optimal policy will take the lower trail,

because it is shorter. However, when the cost of ob-
servation is included, the upper policy is better. At
the start state there is no apparent di�erence between
the two paths, and a shallow lookahead search com-
bined with V �

MDP
will choose the cli� trail. The key

Table 1. Taxonomy of Di�cult POMDPs

Avoiding Acting
getting lost when lost

Immediate Two hallways Disease diagnosis
Delayed Skier Heaven-hell

di�culty is that there is a delayed need to observe (or
equivalently, a delayed risk of getting lost), and the
shallow lookahead search cannot overcome this delay.

The problem in Figure 1(b) is the \heaven and
hell" domain, in which there are two terminal states,
\heaven" and \hell", at the opposite ends of the top
hallway. In the initial state, the robot knows its po-
sition, but it does not know which terminal state is
heaven and which is hell, because the two possibili-
ties are equally likely. There is one way of �nding out
this information: the robot can walk down the hallway,
turn left, and read a sign that indicates where heaven
is. So the optimal POMDP policy is to go down, read
the sign, then go up and turn toward heaven. Now
consider computing V �

MDP
. In the underlying MDP,

there is no uncertainty about which terminal state is
heaven, so the MDP optimal policy is to go up and
turn appropriately. A shallow lookahead search using
V �
MDP

will therefore go upwards and then turn arbi-
trarily either left or right. The di�culty here is that
there is a delayed opportunity to observe.

Table 1 summarizes these four examples. \Immedi-
ate" and \Delayed" refer to the need or opportunity
to observe.

This paper presents a new algorithm for approximate
solution of POMDPs that works well when there is a
delayed need to observe (lower left box, Table 1). The
core idea is to de�ne a new POMDP, the even-odd
POMDP, in which the full state of the environment
is observable at all times t where t is even. When t

is odd, the environment returns the same information
as in the original POMDP. Following an observation
of Hansen (1994), we show that the even-odd POMDP
can be converted into an equivalent MDP (the 2MDP)



with di�erent actions and rewards. Let V �
2MDP

be the
optimal value function for the 2MDP. Then we get an
improved approximation to the optimal POMDP value
function by performing a shallow lookahead search and
evaluating the leaf states using V �2MDP

.

The 2MDP will incorporate the costs of observation
in cases where those costs become immediately appar-
ent at some point in the future. For example, in the
skier domain, as the skier approaches the cli�, it be-
comes immediately apparent (i.e., to a 2-step looka-
head search) that there is a need to observe. Hence,
the V �

2MDP
will include those observations|but only

at times when t is odd! As the 2MDP is solved, these
underestimated observation costs will be propagated
backwards along the temporal sequence so that in the
starting state at the top of the mountain, the robot
skier will be able to make the optimal decision to take
the upper trail.

The even-odd POMDP is not a complete solution to
the problem of delayed need to observe, but we will see
that it produces substantial improvements in some in-
teresting synthetic problems. Furthermore, in domains
where the observation costs are not immediately ap-
parent, one can de�ne a k-step MDP that observes the
true state only once every k steps. As long as the need
to observe reveals itself within k steps, the observa-
tion cost will be captured and propagated backwards
through the state space.

This paper is organized as follows. Section 2 intro-
duces our notations. Section 3 introduces the even-odd
POMDP, the 2MDP, and shows that V �

2MDP
is a bet-

ter approximation to the optimal value function of the
POMDP, V �

POMDP
, than is V �

MDP
, the value function

of the underlying MDP. It also proves that this im-
provement is maintained when these value functions
are combined with a 2-step lookahead search. Sec-
tion 4 presents three experimental studies showing the
strengths and weaknesses of the 2MDP approximation.
It demonstrates that the 2MDP approximation can
solve a large POMDP. Conclusions are presented in
Section 5.

2. POMDP Notations

A POMDP is a tuple hS; A; O; Ptr(SjS;A);
Pobs(OjS;A); R(SjS;A); 
i where S is the set of states
in the world, A is the set of actions, Ptr(st+1jst; at)
is the probability of moving to state st+1 at time
t+ 1, after performing action at in state st at time
t, R(st+1jst; at) is the expected immediate reward for
performing action at in st causing a transition to st+1,
O is the set of observations, Pobs(otjst; at�1) is the

probability of observing ot in state st at time t, after
executing at�1, and 
 is the discount factor.

A Markov decision process (MDP) is a simpli�cation
of the POMDP where the agent can observe the true
state s of the environment after each action. Any
POMDP can be converted into a continuous-state
MDP called the belief MDP. The states in this MDP,
called belief states, are probability distributions b such
that b(st) = P (stja0; o1; : : : ; at�1; ot) is the agent's be-
lief that the environment is in state st, given the entire
action and observation history.

A policy � for an MDP is a mapping from states to ac-
tions. Hence, a policy for the belief MDP is a mapping
from belief states to actions. The value function of a
policy, V �(b) = E[

P
1

t=0

trt+1], is the expected cumu-

lative discounted reward of following policy � starting
in belief state b. The optimal policy �� maximizes
V �(b) for all belief states. The value function of the
optimal policy is denoted V �.

We will say that a belief state b is \pure" if b(s) = 1 for
some state s, and instead of V (b) we will write V (s).

3. The Even-Odd Approximation

3.1 Even-odd POMDP and Even MDP

Given a POMDP we can de�ne a new POMDP, the
even-odd POMDP, where everything is the same ex-
cept that at even times t, the set of observations is
the same as the set of states (O = S), and the ob-
served state is the true underlying state (Pobs(ojs; a) =
1 i� o = s). Note that at even times, the belief state
will be pure, but at odd times, the belief state may
become \spread out." The optimal value function for
the even-odd POMDP can be computed by convert-
ing it into an equivalent MDP, which we call the even
MDP (abbreviated 2MDP). By \equivalent" we mean
that the value function for the 2MDP is the same as
the value function for the even-odd POMDP at even
times t. At odd times, V (b) is computed by performing
a one-step lookahead search to reach an even time.

The 2MDP is constructed as follows. The states are
the same as the even-odd POMDP's (world) states.
Each action u in the 2MDP (Figure 2) is a tuple
ha; a01; a

0

2; : : : ; a
0

ni, where n = jOj. We will write
u[0] = a and u[oi] = a0i. An action u is executed
in state s by �rst performing a = u[0] in the even-odd
POMDP. The agent will move to state s0 with proba-
bility Ptr(s

0js; a), and an observation o will be received
with probability Pobs(ojs

0; a). The agent then executes
action a0 = u[o], which will cause a transition to state
s00 with probability Ptr(s

00js0; u[o]). This is the fully
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Figure 2. 2MDP has actions of the form ha; a01; a
0

2; : : : ; a
0

ni.

observable result state in the 2MDP. The probability
transition function is Ptr(s

00js; u) =
P

s0
Ptr(s

0js; u[0])�P
o
Pobs(ojs

0; u[0]) �Ptr(s
00js0; u[o]). The immediate re-

ward of executing action u in state s is R(s; u) =P
s0
Ptr(s

0js; u[0])� [R(s0js; u[0])+

P

o
Pobs(ojs

0; u[0])�P
s00
Ptr(s

00js0; u[o])� R(s00js0; u[o])]. The discount fac-
tor is 
2.

The \Bellman backup operator" for this 2MDP is

h2MDPV (s) =
maxuR(s; u) +

P
s00
Ptr(s

00js; u) � 
2V (s00):

By expanding the de�nitions, this can be simpli�ed to

h2MDPV (s) =
maxaR(s; a)+P

o

maxa0

P
s0
Ptr(s

0js; a) � Pobs(ojs
0; a)�P

s00
Ptr(s

00js0; a0) � (R(s00js0; a0) + 
V (s00));

where R(s; a) =
P

s0
Ptr(s

0js; a) � R(s0js; a): Standard
results tell us that h2MDP is a max-norm contraction
(under various conditions) and that it is monotonic
(i.e., for any pair of value functions Va and Vb, if for
all s, Va(s) � Vb(s) then h2MDPVa(s) � h2MDPVb(s)).
Furthermore, V �

2MDP
is the unique solution to the

�xed-point equation V = h2MDPV (Bertsekas & Tsit-
siklis, 1996).

3.2 Improved Approximation

Let V �
POMDP

be the optimal value function for the
POMDP and V �

MDP
be the optimal value function

for the underlying MDP. We show that V �
2MDP

is a
better approximation to V �

POMDP
than V �

MDP
. First

we prove that V �
2MDP

(s) � V �
MDP

(s) for all states s.
This, of course, makes sense, because the MDP opti-
mal value function has perfect information about all
the states, while the 2MDP only has perfect informa-
tion about every other state. Then we apply a similar
argument to show that V �

POMDP
(s) � V �

2MDP
(s) for

all s 2 S. This will show that on pure belief states,
V �
2MDP

is a better approximation to V �
POMDP

.

Theorem 1 V �
2MDP

(s) � V �
MDP

(s) for all s 2 S.

Proof: We begin by showing that h2MDPV
�

MDP
(s) �

V �
MDP

(s). Consider applying h2MDP to V �
MDP

:

h2MDPV
�

MDP
(s) =

maxaR(s; a)+P
o

maxa0

P
s0
Ptr(s

0js; a)Pobs(ojs
0; a)�P

s00
Ptr(s

00js0; a0)(R(s00js0; a0) + 
V �
MDP

(s00)):

If a� is the action that achieves the maximum in maxa,

h2MDPV
�

MDP
(s) =

R(s; a�)+P
o

maxa0

P
s0
Ptr(s

0js; a�)Pobs(ojs
0; a�)�P

s00
Ptr(s

00js0; a0)(R(s00js0; a0) + 
V �
MDP

(s00)):

By applying the inequality maxa
P

s
X(a; s) �P

s
maxaX(a; s) for a0 and s0, we can rewrite this as

h2MDPV
�

MDP
(s) �

R(s; a�)+P
o


P

s0
Ptr(s

0js; a�)Pobs(ojs
0; a�)�

maxa0

P
s00
Ptr(s

00js0; a0)(R(s00js0; a0) + 
V �
MDP

(s00)):

The last line is just the Bellman backup for theMDP :

h2MDPV
�

MDP
(s) �

R(s; a�)+P
o


P

s0
Ptr(s

0js; a�)Pobs(ojs
0; a�) � V �

MDP
(s0):

V �
MDP

(s0) does not depend on o, so
P

o
Pobs(ojs

0; a�)
becomes 1 and drops out to give us

h2MDPV
�

MDP
(s) �

R(s; a�) +
P

s0
Ptr(s

0js; a�)
V �
MDP

(s0):

The right hand side is a Bellman backup for a partic-
ular action a�, so it is less than or equal to V �

MDP
(s),

which would be obtained by backing up the best action
for the MDP. Hence, we obtain h2MDPV

�

MDP
(s) �

V �
MDP

(s) for all s. Because h2MDP is monotonic,
the inequality is true when we apply h2MDP to
both sides: h2

2MDP
V �
MDP

(s) � h2MDPV
�

MDP
(s). By

induction, hk
2MDP

V �
MDP

(s) � V �
MDP

(s) for all k.
limk!1 hk

2MDP
V �
MDP

= V �
2MDP

� V �
MDP

. Q.E.D.

Theorem 2 V �
POMDP

(s) � V �
2MDP

(s) for all s 2 S.

Proof: By analogy with the 2MDP, we can de�ne
a 2mMDP based on a 2mPOMDP where the state is
observable only every 2m steps. The POMDP is the
limit of this process as m!1. We can also view the
2m+1MDP as a 2MDP whose underlying MDP is a
2mMDP . Hence, we can apply Theorem 1, and con-
clude that V �

2m+1MDP
� V �

2mMDP
8m � 1: In the limit,

V �
POMDP

(s) � : : : � V �
2m+1MDP

(s) � V �
2mMDP

(s) �
: : : � V �

2MDP
(s) � V �

MDP
(s)8s 2 S. Q.E.D.
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Figure 3. Schematic diagram of the optimal POMDP value
function and three approximations to it for a 2-state �nite-
horizon POMDP.

These two theorems establish that V �
2MDP

is a bet-
ter approximation to V �

POMDP
than V �

MDP
on pure

belief states. We extend this result to arbitrary belief
states b by considering a 2-step lookahead process. Let
LA(n) be an operator de�ned such that \LA(n)V (b)"
estimates the value of belief state b by performing an
n-step lookahead search and evaluating the fully ob-
servable leaf states using V . For example, LA(1) can
be written

LA(1)V (b) =
maxa

P
s
b(s)
P

s0
Ptr(s

0js; a)[R(s0js; a) + 
V (s0)]:

Theorem 3 For all belief states b, V �
POMDP

(b) �
LA(2)V �2MDP

(b) � LA(2)V �
MDP

(b) � LA(1)V �
MDP

(b).

Proof sketch: Because V �
2MDP

(s) � V �
MDP

(s)8s, we
can use this at the leaves of the 2-step lookahead to
prove that LA(2)V �

2MDP
(b) � LA(2)V �

MDP
(b) for an

arbitrary belief state b. The proof LA(2)V �
MDP

(b) �
LA(1)V �

MDP
(b) follows the pattern of the proof of The-

orem 1. Using LA(2)V �
2MDP

(b) � LA(1)V �
MDP

(b) and
an argument similar to Theorem 2, we can show that
LA(2m+1)V �

2m+1MDP
(b) � LA(2m)V �

2mMDP
(b) for all

m � 1. Taking the limit as m ! 1, we obtain
V �
POMDP

(b) � : : : � LA(2m)V �
2mMDP

(b) � : : : �
LA(2)V �

2MDP
(b). End of sketch.

Figure 3 depicts the relationship between the
value functions V �

POMDP
(b) � LA(2)V �

2MDP
(b) �

LA(2)V �
MDP

(b) � LA(1)V �
MDP

(b) for a �nite horizon
POMDP problem with 2 states. All four value func-
tions are piecewise linear and convex. It is important
to note that just because LA(2)V �

2MDP
is a better ap-

proximation than LA(2)V �
MDP

, this does not guaran-
tee that it will produce a better policy at run time.
Nonetheless, it is usually the case that the more accu-
rately we approximate the value function, the better

the performance of a greedy policy that corresponds
to that value function.

3.3 Even MDP Approximation Algorithm

We compute V �2MDP
o�ine. To generate a policy for

the original POMDP, we maintain a belief state, and at
each time t we perform a 2-step lookahead (evaluating
the leaf states with V �

2MDP
), and choose the action

with the best backed-up value. This policy is called the
LA(2)V �

2MDP
policy. If the leaf states are evaluated

with V �
MDP

, we obtain the LA(2)V �
MDP

policy.

4. Experimental Studies

This section presents three experiments to demon-
strate the strengths and weaknesses of the method.

4.1 Example with Delayed Need to Observe

In the �rst example (Figure 4), a skier is at the known
start state on the left, and there are three trails leading
down the mountain to circled absorbing states on the
right. The skier has four possible actions: SE, N, E,
and EO. SE is only available in the start state, and it
deterministically takes the agent to the start of Trail
3 (reward �1). N deterministically moves the agent
north one square (reward �4). Bumping against a
\wall" leaves the state unchanged. E normally moves
east with probability 0.5 and southeast with probabil-
ity 0.5. The reward of E is normally �1, but �100 if
the skier goes over the cli�. E moves east with proba-
bility 1 in the start state and in all states where there
is no choice. The SE, N and E actions provide no ob-
servation information. The EO (east, observe) action
behaves like E and it deterministically tells the skier
its location (reward �2).

First consider what happens if Trail 2 is closed. In
this case, the 2MDP approximation chooses the opti-
mal policy. The policies corresponding to LA(1)V �

MDP

and LA(2)V �
MDP

will take Trail 3, whereas the opti-
mal POMDP policy and the LA(2)V �

2MDP
policy will

take Trail 1. The 2MDP value function, V �
2MDP

, de-
tects 2.5 out of 4 observations needed along Trail 3,
but this is enough to make it choose the optimal path.
Interestingly, because of the lookahead search, none of
the policies goes over the cli�. The LA(1)V �

MDP
policy

never chooses to observe. Instead it relies on the N ac-
tion to move away from the cli�. The LA(2)V �

MDP
pol-

icy will observe just as much on Trail 3 as the POMDP
optimal policy and the LA(2)V �

2MDP
policy would if

they were to take Trail 3. This shows that 2-step VOI
computations are enough to permit LA(2)V �

MDP
to act

sensibly in this case.
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Figure 4. Three paths for skiing down a mountain. There
is a delayed need to observe on Trails 2 and 3.
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Figure 5. A second skier example: the MDP and 2MDP
approximations take Trail 2, while the optimal POMDP
policy takes Trail 1.

Now suppose we open Trail 2. In this case, the policies
based on V �

MDP
still prefer Trail 3, and the optimal

POMDP policy is still Trail 1. But the LA(2)V �
2MDP

policy will choose Trail 2, because it detects too few of
the necessary observations to prefer the optimal path
(it only anticipates a need for 0.5 EO actions instead
of the 2 EO actions that will actually be required). At
run time, the policy does observe correctly.

Because the even MDP only needs to observe ev-
ery other time step, it underestimates the observation
costs of both Trail 2 and Trail 3.

4.2 Example of Gradually Getting Lost

Figure 5 shows a slightly di�erent skiing problem.
Here we have changed the dynamics so that the E
action moves east with probability 0.9 and southeast
with probability 0.1. The optimal POMDP policy
is to take Trail 1, but all the approximations take
Trail 2. The MDP approximations (LA(1)V �

MDP
and

LA(2)V �
MDP

) take Trail 2 for the same reasons as be-
fore: they cannot detect the need to observe. Unfortu-
nately, the 2MDP approximation has the same prob-
lem: the probability 0.1 of moving southeast is not
large enough to cause the 2-step lookahead to choose
an EO action. So the 2MDP does not detect the need
to observe. This illustrates a second weakness of the
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Figure 6. POMDP with 10000 states, 10001 observations
and 6 actions. Hazards are shown as triangles. The
(.7,.1,.1,.1) dynamics of an action are shown schematically
along with special cases for E and SE.

2MDP approximation: the gradual accumulation of
uncertainty. If uncertainty accumulates gradually, the
2MDP approximation will not detect the need to ob-
serve, and it will behave just like the MDP approx-
imations. At execution time, the agent maintains a
belief state, so it realizes when the uncertainty has ac-
cumulated, and it will choose to observe. So even in
this case, it will usually avoid going over the cli�. The
LA(2)V �

MDP
and LA(2)V �2MDP

policies behave identi-
cally on this problem.

4.3 Large Example

To gain experience with a much larger problem, we
designed the maze shown in Figure 6. The agent starts
in the upper left corner of a 100�100 grid world, and it
must reach an absorbing state in the lower right corner.
Along the diagonal, there are several \hazard" states.
Each time the agent enters a hazard state, it gets a
reward of �1000, but the task does not terminate.

There are 6 actions: E, S, SE, EO, SO, and SEO. We
describe the E action, as the others are analogous. The
E action moves east with probability 0.7, northeast
with probability 0.1, southeast with probability 0.1,
and it stays in place with probability 0.1. If there
is a wall to the north, E moves east with probability
0.8, southeast with probability 0.1, and stays in place
with probability 0.1. A wall to the south is handled
symmetrically. If there is a wall to the east, E moves
north with probability 0.1, south with probability 0.1,
and stays in place with probability 0.8. In all cases,
the reward is �1. The E, S, and SE actions do not
return any observation information. The EO, SO, and
SEO actions have the same dynamics as E, S, and SE,
but they return the exact location of the agent as well,



with a reward of �10. We believe this problem is too
large to be solved by any of the exact algorithms.

We implemented the LA(2)V �
MDP

and LA(2)V �
2MDP

approximations. Value iteration required 30s to com-
pute V �

MDP
and 444s to compute V �

2MDP
. To test the

resulting online policies, we ran both for 100 trials.

The MDP optimal policy follows the diagonal towards
the goal|there is enough space between the hazards
to ensure that in a fully-observable world, the agent
can avoid hitting any hazards (with high probability).
When the LA(2)V �

MDP
policy is executed online, it

�rst performs a long series of SE actions (with no ob-
servation). This causes the belief state to spread out,
and when the belief state starts to include some points
near the hazards, it chooses to observe. It then ex-
hibits two general behaviors. If it discovers that it is
still near the diagonal, it continues to follow the diag-
onal, and it is forced to perform an average of 20 ob-
servations to avoid hitting the hazards. Otherwise, if
it discovers that it has drifted away from the diagonal,
then it follows a blind policy and goes \outside" the
hazards. This actually leads to better performance,
and online updating of V �

MDP
might yield improved

performance in these cases. Over the 100 trials, the
LA(2)V �

MDP
policy never hit a hazard.

The even MDP determines that in states close to the
hazards it is worth observing. V �

2MDP
includes these

observation costs and propagates them back through
the state space. Even if the true observation costs are
underestimated, they are enough to make the 2MDP
optimal policy go outside the hazards. When executed
online, LA(2)V �

2MDP
never performs any observations.

It executes 30 SE steps, then it turns E for 15 steps,
SE for 16 steps, then E, SE, E, SE, SE, E, followed by
40 SE actions, and �nally it alternates single S actions
with chains of SE actions. Over the 100 trials, this
policy hit a hazard twice.

Figure 7 summarizes the behavior of the two policies
by showing the steady state occupancy probabilities
of each. The MDP approximation stays primarily on
the diagonal. The distributions become concentrated
near the hazards and near the start and end states.
The 2MDP approximation follows the diagonal for a
while and then moves E of it. (There is actually a
tie, and it could have chosen to move S instead.) The
probabilities become concentrated along the east wall
north of the terminal state as the agent relies on the
walls to \funnel" it into the terminal state.

Table 2 summarizes the total cost (= �reward) per
trial received by the two methods. The MDP ap-
proximation gave an average cost of 239.52, whereas

Table 2. Cost ({reward) per trial, averaged over 100 trials
min max mean medn. 95%

MDP 136 398 239.52 271 [223,258.8]
2MDP 125 1136 160.34 140 [140.4,200.5]

the 2MDP approximation's average cost was 160.34.
The table reports a 95% bootstrap con�dence inter-
val, which shows that this di�erence is statistically
signi�cant. The LA(2)V �

2MDP
policy correctly antic-

ipated the need to observe along the diagonal, while
LA(2)V �

MDP
did not. The di�erence in performance

is due to the extra cost of observing incurred by the
LA(2)V �

MDP
policy near the hazards.

We expect a continuous change in the policy obtained
from the 2MDP approximation as the observation
cost changes. If the observation cost decreases, the
LA(2)V �

2MDP
policy will move closer to the diagonal,

and for zero observation cost it will be identical to the
LA(2)V �

MDP
policy. If the observation cost increases,

the LA(2)V �
2MDP

policy will move even further away
from the hazards.

It is interesting to ask how close the 2MDP approx-
imation comes to the optimal POMDP policy. From
Theorem 2, we know that V �

2MDP
(s0) � V �

POMDP
(s0)

is an upper bound on the value of the optimal policy,
where s0 is the start state. In terms of cost, this is a
lower bound, and in this problem it is 131.38. Hence,
we can reasonably assume that the cost of the optimal
POMDP policy is between 131.38 and 160.34 (the av-
erage cost of the 2MDP approximation). This shows
that the 2MDP approximation is a large improvement
over the MDP approximation.

5. Conclusions

The even MDP approximation provides a partial so-
lution to the problem of avoiding getting lost when
there is a delayed need to observe. While solving the
2MDP, a 2-step lookahead search detects cases where
there is an immediately obvious need to observe. Value
iteration then propagates the associated observation
costs backward through the state space so that ear-
lier states can detect a delayed need to observe. This
makes V �2MDP

more informed about future sensing in
a POMDP framework than V �

MDP
is.

There are two limitations to the method which re-
sult in an underestimate of the true observation costs.
First, if uncertainty accumulates gradually, the 2-step
lookahead will not choose to observe, because the belief
state after the �rst step will not be su�ciently di�used
to make an observation worthwhile. One solution to
this problem is to use a k-step lookahead, which will
capture the costs of sensing that are apparent within



(a) (b)

Figure 7. Steady state occupation probabilities for (a) the MDP approximation LA(2)V �

MDP and (b) the 2MDP approxi-
mation LA(2)V �

2MDP over 100 trials. The policy in (b) consistently avoids the hazards.

k steps. But the computational cost of this solution
grows exponentially with k.

The second limitation arises from the fact that the
2MDP only needs to observe at odd times t. This is
because at the end of the 2-step lookahead the states
are assumed to be fully observable. A consequence
of this is that the second actions u[o] of the 2MDP
will never be observation actions. We are currently
exploring modi�cations to the 2MDP approximation
that estimate observation costs at every step.

Despite these limitations, the 2MDP method per-
formed well on the �rst skier example and on a very
large maze problem. In addition, the value function
V �
2MDP

can provide an upper bound on the value of
the optimal POMDP policy, which can be useful for
evaluating hand-derived policies.

Because the 2MDP method incorporates a 2-step
value-of-information computation, it is also suitable
for solving problems, such as medical diagnosis, where
there is an immediate opportunity to observe, and the
two hallways problem, where there is an immediate
need to observe (see Table 1). However, the 2MDP
method does not provide any solution to problems
where there is a delayed opportunity to observe, such
as the \heaven and hell" problem.

The 2MDP method can be applied to very large
POMDPs because it only requires solving a Markov
decision problem, and existing reinforcement learning
algorithms can solve very large MDPs. This makes the
2MDP method the �rst scalable POMDP approxima-
tion that can anticipate the need to observe.
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