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The question of how an internal tide interacts with the frontal

zone in a coastal upwelling region is examined theoretically and is

studied with field observations. A lineai self-adjoint governing equa-

tion is derived for inertial-internal waves propagating transverse to

a frontal region. The effects of horizontal density gradients and hori-

zontal and vertical shears of the mean alongshore flow are included,

as well as the customary effects of vertical density gradients and of

the Earthts rotation. The frontal interaction affects the lines of con-

stant phase and the passband for inertial-internal waves.

The temporal conservation of energy law, the variational prin

ciple, and the spatial conservation law are derived for the case of

variable bottom topography, a free surface, and with frontal interac-

tion. These results are used to set the mixed initial-boundary value

problem for inertial-internal waves in a coastal region.

Redacted for privacy



The method of characteristics is used to solve the mixed initial-

boundary value problem for the inertial-internal wave equation with

constant coefficients. The solution technique developed involves the

use of the boundary conditions to analytically extend the given Cauchy

data. Cases are considered with and without the frontal interaction

and for waves propagating in regions with parallel boundaries and

with a wedge-shape. The slope of the isopycnals affects the slope of

the characteristics. A significant asymmetry in the upgoing and down-

going characteristics is introduced when the slope of the isopycnals

is in the same order of magnitude as the slope that the character-

istics would have without the frontal interaction. An extension of the

method of characteristics is used to solve the mixed initial-boundary

value problem formally when the inertial-internal wave equation has

variable coefficients. Two frontal models are examined which pro-

duce analytical coefficients in the governing equation.

A technique is developed for the spectrum analysis of pairs of

complex-valued velocity series (hodographs) sampled at different

spatial points. It separates the spectra into clockwise and anticlock-

wise rotating components and allows the calculation of the coherence

squared and phase of each component. The coherence squared is in-

variant under coordinate rotation.

Through the use of a moored array of recording sensors, and

of hydrographic samples, field observations were conducted during



August-September 1966 over the Oregon continental shelf at 45° N.

The array had ten-kilometer horizontal spacings between three array

sites. The array sites extended seaward from 10 kilometers off-

shore. At each site, two sets of sensors were separated vertically

by 40 meters.

Evidence is presented to show that

i) The mean flow, computed for a two-week period, was

equatorward and onshore immediately above the permanent

frontal layer and poleward and onshore at the base of the

permanent frontal layer.

ii) The observed vertical shear in the mean alongshore flow

agreed with that given by the thermal wind equation; i. e.,

the baroclinic component of the mean alongshore flow in the

subsurface frontal region was in approximate geostrophic

equilibrium.

iii) The dynamic stabilitywas lowest near the base of the perma-

nent frontal layer. The Richardson number attained critically

low values, which were associated with the semidiurnal inter-

nal tide.

On the basis of this and other evidence, a schematic model is pro-

posed for the mean cross-stream flow in the frontal zone.

The statistical evidence from the moored, recording sensors

indicates that:



i) The semidiurnal internal tide had a vertical amplitude of

about five meters and a horizontal speed of about 5 cm/sec.

This motion propagated onshore as a progressive wave and

had an onshore-offshore wavelength of about 30 kilometers

in the vicinity of the array; its coherency over a wavelength

was generally low, suggesting the occurrence of many wave

frequencies not in phase within a measurement bandwidth,

unsteadiness of the wave motion, phase modulation by the

time-varying flow regime, or unsteady wave generation.

ii) The largest inertial velocity component, with an amplitude of

about 3 cm/sec, was found at the boundary between the con-

tinental shelf and slope. A substantial fraction of the inertial

motion was temporally coherent for 36 days at that site.

iii) Spectral peaks were present at higher harmonics of the tidal

motions, especially at the three and four cycles per day fre-

quencies. Spatially coherent tidal harmonics existed, sug-

gesting the occurrence of nonlinear effects.
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FRONTISPIECE

"Three phenomena are basic factors in the hydrodynamics of
the geophysical fluids:

(1) their stratification,
(2) the curvature of the level surfaces,
(3) the rotation of the Earth (or planet).

It requires little observational material to establish the exist-
ence of these three factors, but their dynamic interaction in the fluid
is so complex that even large amounts of observational material are
of little help in understanding the situation. A theoretical analysis
appears to be the only way to clarify it" (Eckart, 1960, p. 94-95).

"Oceanography is an observational science" (Cox, 1968).

"I should like to make it clear, finally, that I am not belittling
the survey type of oceanography, nor even purely theoretical specu-
lation. I am pleading that more attention be given to a difficult mid-
dle ground: the testing of hypotheses. I have not explored this middle
ground very thoroughly, and the few examples given in this book may
not even be the important ones; but perhaps they are illustrative of
the point of view in which attention is directed not toward a purely de-
scriptive art, nor toward analytical refinements of idealized oceans,
but toward an understanding of the physical processes which control
the hydrodynamics of oceanic circulation. Too much of the theory of
oceanography has depended upon purely hypothetical physical pro-
cesses. Many of the hypotheses suggested have a peculiar dream-
like quality, and it behooves us to submit them to especial scrutiny
and to test them by observation" (Stommel, 1965, p. 178).



THE INTERACTION OF AN INTERNAL TIDE WITH THE
FRONTAL ZONE IN A COASTAL UPWELLING REGION

I. INTRODUCTION

A. General

The thesis of this dissertation is that the semidiurnal internal

tide interacts with the mean flow of the frontal zone in a coastal up-

welling region to produce critically low dynamic stability for the

mean flow and to modify the internal tide as well. The basis for

this thesis was the observation in September 1965 (Collins, Mooers,

Stevenson, Smith, and Pattullo, 1968) that the semidiurnal tide was

strongly baro clinic over Oregon's continental shelf in the presence of

coastal upwelling. The thesis is investigated by two paths of inquiry

the development of a hydrodynamical theory for the interaction, and

the examination of observational evidence relevant to the interaction.

For these inquiries it is necessary to have an understanding of

i) The mean flow in the frontal zone of a coastal upwelling

region.

ii) The tidal and other long wave motions in a density stratified

ocean near a coastal barrier on a rotating sphere.

'The heuristic notion that an internal tide influences coastal
upwelling was originally advanced by Defant (1949) from observations
off northwest Africa.



iii) The physics of inertial-internal waves. 2

iv) The mathematics of the solution theory for inertial-internal

waves in a wedge_shaped region with variable density strati-

fi cation.

v) The spectral properties of the existent time-dependent

motions.

B. The Frontal Zone in a Coastal Upwelling Region

Off the west coast of North America, as off the west coast of

most continents, the predominant, mesoscale physical process at low

and mid-latitudes is that of coastal upwelling3 in the hemispheric

summer. Because of the Earth's rotation, equatorward winds pro-

duce both equatorward and offshore flow in the "surface layer." In

addition, there is at least occasionally observed a poleward flow in

the "lower layer" over the continental shelf and slope (Collins et al.,

1968 and Chapter X).

Figure 1 is a schematic portrayal of the mean flow field for the

2The term inertial-internal wave refers to the class of body
waves that can exist in a fluid which is influenced by both the Earth's
rotation (inertial) and the Ocean's density stratification (internal).
The semidiurnal internal, or baroclinic, tide is one specific wave in
this class for Oregon's latitude and coastal density field; it is the
most significant inertial-internal wave in this study.

3Coastal upwelling is a process by which water from a depth of
up to several hundred meters offshore is introduced into the upper
few meters of the water column near shore; the process is thought to
be generally, but not exclusively, wind induced.



uoj ;;o uoio.i utiidn je;soD1{uuoz re;uoq; jo pi; o; uw otjj

sJe4ewoIiMoc -

MOldOIVM3lOd

MOldaJVMioI.VflO3

iaqsID4UeU!4UO3IID4ueu!1uoD

3NOZ 8V3HS HD/H C/VP'
NO/SS3AN/ 38/7IPW3SW3I

(.'IVI..Lvri av ivi

ff1ji4,

m

_____I



frontal zone in the coastal upwelling region off Oregon; the figure is

the simple model upon which the theory is formulated and the obser-

vations of the mean flow are interpreted. A more intricate pattern

for the cross-stream4 flow is introduced in Chapter X. The coastal

region is strongly density stratified, and the permanent pycnocline

rises inshore, forming an inclined frontal layer during the upwelling

season. The frontal layer tends to break the surface, forming a sur-

face front; the surface front occurs 5 to 25 kilometers offshore in a

quasi_steady fashion. The frontal layer descends from near the sur-

face to a depth of about 100 meters 50 kilometers offshore, roughly

paralleling the sloping bottom of the continental shelf. The sub-

region of the coastal upwelling region significantly influenced by the

phenomena associated with the inclined frontal layer is referred to as

the frontal zone. The alongshore flow described is similar to the

more familiar flows parallel to frontal surfaces in the atmosphere.

The wind stress acting on the sea surface plays a role for coastal up-

welling fronts analogous to that of frictional drag at the Earth's sur-

face for atmospheric surface fronts.

The frontal zone has significant horizontal density gradients

and is a region of relatively intense divergence and convergence in

4The cross-stream flow is the flow component in the vertical
plane normal to the alongshore flow, thus it is also normal to the bot-
tom contours.



5

the cross-stream flow, and so also of relatively intense vorticity.

The inclined frontal layer is vulnerable to annihilation, a process

termed frontolysis. Yet the frontal layer is a quasi-steady phenome-

non, hence it must be sustained by a transverse circulation (see the

small arrows in Figure 1), a process termed frontogenesis. Turbu-

lent mixing is expected to occur in the frontal zone in order to form

the water mass of the frontal layer. The occurrence of turbulent

mixing suggests that hydrodynamic instability mechanisms may be

significant in the frontal zone.

Since the wind field is neither steady nor statistically station-

ary, coastal upwelling itself is neither steady nor statistically sta-

tionary. Coastal upwelling does have at least three generalized

phases: inception, steady_state, and decay. All phases may occur

several times in an upwelling season and may be overlapping, since

the wind field fluctuates on various time scales.

In addition to purely transient phenorena, there may be very

long_period (time scale of a month), free or forced motions present

whose relation to coastal upwelling is unknown. Observations mdi-

cate that there are also shorter period phenomena superimposed on

the "mean" coastal upwelling flow regime: several-day periodicities

(time scale of a week), inertial5 and tidal motions (time scale of a

5A pure inertial motion is barotropic and has a period equal to
one-half pendulum day; the inertial period at the latitude of this study,
44° 50' to 44°56'N, is about 16. 9 hours.



day), and Visl-Brunt oscillations (time scale of minutes). Semi-

diurnal baroclinic motions are striking: the semidiurnal horizontal

speeds are the same order of magnitude as those of the umeanT flow.

The interaction of the semidiurnal baroclinic motions (internal tides)

with the coastal upwelling frontal zone has been selected for examina-

tion, though the other wave motions present may also have significant

interactions.

A simple model of the propagation of a surface tide from south

to north along the west coast of North America is shown in Figure Za.

In the presence of density stratification, as the semidiurnal surface

tide propagates alongshore, the internal tide is generated over the

continental slope, Figure Zb. The internal tide then propagates in the

onshore and offshore directions, Figure 2c. The reason that the in-

ternal tide is more strongly refracted in shallow water than the sur-

face tide is that the onshoreoffshore wave number for the internal

tide is much greater than either the onshore-offshore or the along-

shore wave number for the surface tide, while the alongshore wave-

number of the internal tide is probably equal to that of the surface

tide. This subject is discussed fully in Appendix 1. The coordinate

system is defined in the figure; x is positive onshore, y is posi-

tive poleward, and z is positive upward. The origin is on the sea

surface at the seaward edge of the continental shelf off Depoe Bay,

Oregon.



a

L I

Line of Constant Phase for Surface Tide

Deep Ocean Continental Slope Continental Shelf

Mean Sea Surface (z O)

b
Surface Tide elevation (z

Lrn0nefltnbn5

Internal Tide
Genera/ian Zo::

I

C

N

7

y I,-.
I

c I i

I
I

Internal Tide
.4s

I
Generation Zone-

I

I
I

I

I

I__ - ______
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C. Theoretical Analysis

A complete theoretical analysis of the interaction of an internal

tide with a frontal zone is beyond the limits of the present under stand-

ing of the processes involved. Theoretical analysis is used to study

key features of this interaction problem and to lay the foundations for

more general studies. Observations are used to motivate the theo-.

retical development. Both the mean flow of the coastal upwelling

frontal zone and the propagation of the internal tide in such a region

are governed by the hydrodynamics of rotating, continuously strati-

fied, weakly viscid, incompressible fluids with variable bottom

topography and a free surface. A mixture of observations, of approx-

imate hydrodynamical theory, and of exact mathematical theory is

used to develop the plausibility of the physical model of the interac-

tion.

A detailed derivation is given for the governing equation, GE,

of the interaction. The interaction is taken to be linear. The interac-

tion GE is similar to the customary GE for inertial-internal waves,

but it contains new terms. The new terms in the GE enter through

"Coriolis coupling" of the inertial-internal waves to the mean flow.

The GE governs inertial-internal waves propagating transverse to the

axis of a frontal zone. Thus, the GE may be valid for other frontal

zones in the Ocean and Atmosphere.



A general solution theory is outlined for inertial-internal waves/

propagating into a wedge-shaped regi,on with variable stratification.

Several wave problems are examined, including two analytical models

of frontal regions. The theory is based on the method of character-

istics applied to a mixed initial-boundary value problem. Because

this method is based on the fundamental mathematical properties of

the hyperbolic GE, it is appropriate for the study of waves whose GE

has constant or variable coefficients and of waves propagating in

regions with uniform or variable depth. Solutions are constructed

for the continental shelf region as suming that the continental slope

region can be treated as the source region for the semidiurna], inter-

nal tide.

The physical model is based on the roles which the permanent

pycnocline plays for coastal upwelling and for the propagation of

inertial-internal waves. Since a pycnocline is a waveguide for

inertial-internal waves, the vertical displacement amplitudes and the

vertical shears of the horizontal velocity of the wave motion are ex-

pected to be greatest in the pycnocline, or at its base. The hypothe-

sis is made that the semidiurnal internal tide produces critically low

dynamic stability at the base of the inclined frontal layer, inducing

turbulent mixing. Thus, the interaction has the character of a nega-

tive feedback process. As coastal upwelling develops, the inclined

frontal layer steepens and intensifies, becoming a more effective
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waveguide for inertiahinternal waves. But, as an effective wave-

guide, the dynamic stability of the frontal layer is reduced, causing /

the turbulent breakdown of the pycnocline.

D. Field Observations

The data introduced are principally field observations taken

from 15 August to 24 September 1966 on the Oregon continental shelf

and slope. Other data from this region are included to corroborate

some of the general contentions. The principal observations are

from a set of two to six-week time series of direct horizontal veloc-

ity and temperature measurements and from a set of hydrographic

stations. The field observations were designed to define the principal

properties of both the mean and the time-dependent flows in the up-

welling season. The direct current and temperature measurements

were made with moored, recording meters installed in a linear,

three-point array, Figure 3. The array elements were implanted at

10-kilometer increments normal to the bottom contours. The array

extended 30 kilometers offshore to the edge of the continental shelf.

The installations at 10, 20, and 30 kilometers offshore were installed

in water depths of 80, 140, and 200 meters, respectively, and they

are designated DB5, DB1O, and DB15, respectively. At each site,

current meters were installed at depths of 20 and 60 meters, and

thermographs at a depth of 20 meters. Four current meters and two
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Figure 3. Vertical section of array configuration and sample duration. Depths are given in

meters. :



12

thermographs ran sufficiently long to be of use to this study.

The vertical locations of the current meters were chosen to

sample above and at the base of the permanent pycnocline; the thermo-

graphs were placed near the base of the seasonal thermocline, and

thus the seasonal pycnocline. 6 The horizontal locations were selected

with the expectations that:

i) The semidiurnal internal tide propagates essentially normal

to the bottom contours.

ii) The onshore-offshore horizontal wavelength of the semidi-

urnal internal tide is of the order of 20 to 40 kilometers over

the continental shelf.

Thus, as installed, the array should have one-half-wavelength-

spacing and should be aligned normal to the bottom contours. The

sampling procedure consisted of forming ten-minute, integrated

measurements. Least squares harmonic and auto and cross spectrum

analyses were made of four current velocity and two thermograph

6The seasonal pycnocline is found at the base of the "surface
layer" and is not to be confused with the weaker, deeper, permanent
pycnocline, which forms the inclined frontal layer of prime interest
to the present study. The seasonal pycnocline is formed in the sum-
mer season by the seasonal halocline derived from the Columbia
River plume water and by the seasonal the rmocline formed by summer
heating. The permanent pycnocline is formed by the permanent halo-
clime and is usually weakened by a temperature inversion; the perma-
nent pycnocline is inclined upwards in the shoreward direction during
the summer season.
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records. Least squares harmonic analysis was also made of a single

sea level record.

The observations along the hydrographic line off Depoe Bay,

Oregon, were taken at the array stations and seaward along the nor-

mal to the bottom contours, Figure 4. At an anchor station, current

velocity profiles were taken under sufficiently controlled conditions

to make calculations of the dynamic stability. The profiles provided

information about the vertical structure of the flow, while the moored,

recording sensors provided time series which were sufficiently long

to resolve the principal periodic structure in the diurnal and semidi-

urnal tidal bands of the spectrum.
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II. DERIVATION OF THE GOVERNING EQUATION FOR THE
INERTIAL-INTERNAL WAVE FRONTAL INTERACTION

A. Introduction

The interaction of an inertial-internal wave propagating trans-

verse to a frontal zone is formulated from first principles to make

the physics clear. A general statement of the complete problem is

made; the rationale is then given for each simplification necessary to

achieve a reduction to a tractable and valid problem. The specific

interaction problem considered relates to a central problem of geo-

physical fluid dynamics, viz. , the interactions of wave-type motions

with mean flows which lead to turbulent mixing and momentum trans-

fers, either up or down the mass and momentum gradients.

B. Reduction of the Equations of Hydrodynamics for a Rotating
and Continuously Stratified Fluid to a System

of Equations for the Frontal Interaction

The fluid is considered to be weakly viscid, to be density strat-

ified, to be under the influence of gravity, and to be on a rotating

sphere. The effects of stresses on the free surface and the solid

boundaries and of variable fluid depth are also of significance. Sev-

eral of these phenomena are selectively disregarded in the deriva-

tion of the GE for the interaction. The Boussinesq approximation

(Boussinesq, 1903, p. 172-176; Phillips, 1966) is adopted; i.e.

.
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variations in density are neglected in the inertia terms of the vector

equation of motion but are included in the buoyancy term of the verti-

cal component of the equation. This approximation is generally ade-

quate except when finite amplitude effects are significant, e. g. , in

internal solitary waves (Long, 1965).

The pointwise conservation of fluid mass requires that

(1) +.pUOat

or

d
+ pV U = 0,

where p is the mass per unit volume, t is the time variable,
a

U is the three-dimensional particle velocity vector, ( ) is the
d apartial derivative with respect to time, -.-( ) = ( ) + U v( ) is

the total derivative with respect to time, and v is the three-

dimensional grad operator. Assuming that the motions of interest

are essentially isentropic, and using the thermodynamic relationship

for the speed of sound, c,

2 dp
c -( )s dp adiabatic

where p is the pressure, then

(2) at 2 dt
c



Assuming that the fluid is in hydrostatic balance,

(3) dp -pgdz,
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where z is the vertical coordinate, which is positive in the upward

direction. In terms of non-dimensionalized variables, (2) is

dp c 2 dp
dt c dt'

S

where c (gz)h/2 is the phase speed of a gravity wave, g is the

gravitational acceleration, and z is the scale depth. For inertial-

internal waves, the class of gravity waves of interest to this study,

z H, where p is the total density variation in a water col-

umn and H is the mean height of the column. In the Ocean,

5 2 cZ -6
c - 1. 5 x 10 cm/sec and c - 10 cm/sec; thus, (-) - 10
S C

5

thus (2) becomes:

dt

Therefore, the Ocean can be treated as an incompressible fluid for

the study of inertial-internal waves. The incompressibility condi-

tion analytically filters acoustic waves from hydrodynamical flows.

7The adiabatic density gradient, p0g/c, must be considered
when computing the static stability; the static stability is the key
parameter governing the propagation of inertial-internal waves and is
discussed in Sections III.B and X.D.



It yields the equation of continuity, EOC:

(4) (EOC): v U= 0,

which holds for the mean and fluctuating components of the flow sepa-

rately, and it also yields the reduced conservation of mass equation,

COM:

d a(5) (COM): VP = 0.

The COM is equivalent to the conservation of entropy relation because

surfaces of constant density are approximately surfaces of constant

entropy under the assumption of isentropic motions.

The three-dimensional Navier-Stokes equation of motion, EOM,

for a rotating, density stratified, incompressible fluid, is adapted

from Phillips (1966):

dU
(6) (EOM): +fxU-VTr-g k+vV U,

P0

where f is the Coriolis parameter, k is the vertical unit vector,

and v is the kinematic molecular viscosity. The U, ir, and p

variables are functions of space and time: 8

8The overbar denotes an ensemble average, i. e., the "mean
motion," (which may be spaceand time-dependent). The prime de-
notes a fluctuating component, i. e, , the turbulence, inertial-internal
waves, or both. p0 is the space-and time-averaged density. (The
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i) U=u+u'

ii) p = p + p + p', where p' and p < p.

iii) 1r=+iit

= -p-- + gz, which incorporates the Boussinesq approxima
p0

tion.

iv) p = p +p+ p, where p' and p<< p.

dUExpanding -- for use in the next step,

- - -_ - -
dU 8(u+u') + (u+u') v(u+u').

at

The ensemble average of (6) is then:

ai:: -- A-
(7) --+uvu+fxu=-v1T-g1-k++vvu,

where, using the Einstein summation convention, the components of

are
a .'

1= -u -j 8x.
3

zero-order state is assumed to be hydrostatic and barotropic so that
(Po)z = -p0g. ) Then, ( )' = 0. Invoking the ergodic hypothesis, the
"mean motion, or ensemble average, depends on the choice of space
and time scales. The ensemble average serves as an analytical fil-
ter to separate flow components of commensurate time and space
scales for individual study.



Using the EOC, a
= - U.'U

ax. i 3
3

1 a= - T.., (i,j = 1, 2, 3),
a. ij

0 3

where -r.. is the Reynolds stress tensor, which can be produced by

turbulence or irregular inertial-internal waves. It is customary to

introduce an eddy viscosity function in a form analogous to the mo-

lecular viscosity, viz., = (vA)u.' where the components of

operator A are

A.=N.-, (j=l,2,3)
j 3a.

and N is the eddy viscosity function.

The momentum equation for the mean motion, (7), is subtracted

from (6) to obtain the equation for the fluctuating flow:

-_ -_
au -- - - - - -_ -_ -

+vV U'-,(8)
2-

p

which includes interaction terms. The term is common to(7)

and (8) and provides for the momentum exchange between the mean

and the fluctuating flows. The sign of indicates whether momen-

turn is delivered to or derived from the mean flow: if is nega-

tive, it is a driving force for the mean flow; if it is positve, is a
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driving force for the fluctuating flow. The eddy viscosity concept is

usually formulated only for positive values of N; i. e. , the eddy

viscosity is arbitrarily constrained to act as a viscous drag force on

the mean flow. So-called "red shifts," due to negative eddy viscosity,

are observed in geophysical fluids, as well as commonsensical "blue

shifts," due to positive eddy viscosity (Starr, 1968). Therefore, there

is no substitute for computing empirically (cf. Webster, 1965) or cal-

culating theoretically (cf. Orlanski, 1968a, b), the Reynolds stresses.

Eventually, the present interaction problem may require an analysis

of by theory or observation.

Equation (5) is expanded for the analysis of the conservation of

mass for the mean and the fluctuating flows;

a
(9) (p+p') + (u+) .(p+p') = 0.at

Taking the ensemble average of (9), the equation for the mean density

field follows:

(10) +uvp -u''vp'

where

i

is the mass flux vector and where the EOC has been used. The di-

vergence of the mass flux vector is often replaced by the eddy dif-

fusivity concept, viz.



where

-v.. ;r =

B. K. (j = 1,2,3)
j

and is the eddy diffusivity function. The concept of eddy diffusiv-

ity suffers the same deficiencies that the eddy viscosity concept does.

Subtracting (10) from (9), the equation for the flucutating component

of the density field is:

a- -. - -r -. - -._

(11) --+u'v p+u vp'+uvp'=v M.

Two other dynamical aspects of the general problem are ex-

amined: the energy equation and the vorticity equation. Introducing

the relative vorticity, Vxii = (6) is rewritten as:

U2
g(p-p0) A 2-'.

(12) +(7x)x+v(+)=- k+vV U.
p0

The scala product of (12) with yields the energy equation, EE,

a '.u2 2(13) (EE): (--)+U.vir+U.v-- =-g ° W+vUV U,
p0

where W is the vertical component of velocity.

Taking W = , where is the vertical displacement,



multiplying (13) by p, and using the EOC, the EE is

+ v. =

where

E = KE + PE is the total energy per unit volume,

U2
KE = p is the kinetic energy per unit volume,

PE = ,g(p-p) is the potential energy per unit volume,

= p---+ ,g(p-p )-i-p-i-pgz) is the energy flux vector per unit

volume,
and

23

2-'-
D = iU v U is the frictional dissipation per unit vol-

ume and i. is the molecular dynamic

viscosity (I.L = pv).

Taking the curl of (12), the vorticity equation, yE, is obtained:

B

2-Pd - u
(14) (VE): vu w,

p0

where = I + is the absolute vorticity, and since

-. - - -.vf =0, and vw=v U0,

The buoyancy term, B, indicates that, even if =U = 0



24

initially and the fluid is inviscid, horizontal density gradients gener_

ate vorticity. Since a frontal zone is characterized by the existence

of strong horizontal density gradients, the VE states that vorticity

must be considered in the dynamics of a frontal zone. The EE and

VE can be separated into their mean and fluctuating components to

examine the interaction in terms of energy and vorticity exchange,

but that separation is not essential to the development of the present

problem.

The general formulation for the interaction of a mean flow with

a fluctuating flow has been stated in terms of the EOM, EOC, CaM,

EE, and VE. The first simplifications necessary to derive the GE

are:

i) A Hlocallyfl valid solution is sought, thus the Earth's sphericity

can be neglected. The restriction to a 'tlocal" solution per-

mits the use of Cartesian vice spherical coordinates and the

neglect of the beta effect, i. e. , is set equal to

zero. The neglect of the beta effect analytically filters

planetary waves from the problem.

ii) The inviscid approximation is made, which is valid for

strictly laminar flow where viscous effects are restricted to

boundary layers. Viscous boundary layers have a thickness
2

1/2 cm
of the order of 6 = (-) . For seawater, v - 0. 01 sec

-4and for the semidiurnal tide o - 10 so 6 1 0 cm. The



25

depth scale under consideration is H - 1O4 cm, so 6 << H.

The neglect of viscous effects is invalid for large-amplitude

motions or in the presence of sufficiently intense turbulence.

iii) It is assumed that both the mean and the fluctuating flows

are of sufficiently small amplitude to permit linearization.

This assumption is reasonable for the alongshore component

of the mean motion in the frontal zone. The validity of the

assumption is less clear for the cross-stream flow, but the

cross-stream flow is neglected in the final analysis. The

fluctuating component occasionally appears to assume an

asymmetrical, finite amplitude form indicative of nonlinear

effects, hence future studies may have to consider non-

linear effects. The linearization does not entail neglect of

the first-order interaction terms with the mean flow in the

equations for the fluctuating component; it does analytically

filter turbulent motions from the fluctuating component of

the flow.

At this stage, for the mean flow, (7) becomes

(15)

For the fluctuating flow, (8) becomes



d - - -p n tg A 1 a
(16) dt p p 8x. kj

where now

d a
v()

Similarly, (11) becomes

(17) p'+u''vp=v M.

The EOC, (4), continues to apply for each flow component.

Finally, the Reynolds stress and mass flux terms are neglected

in the analysis of inertial-internal waves, assuming that (i) these

terms in (15) are due to the effect of the turbulent flow and (ii) these

terms in (16) are not significant for the inertial-internal wave motion.

The Reynolds stress and mass flux terms due to the inertial-internal

waves vanish as a consequence of assuming simple harmonic motion,

SHM, for the time dependence. A restriction to SHM may eventually

be found undesirable in the present problem. If the turbulent field in

the frontal zone is sufficiently intense, the effect of Reynolds stress

and mass flux terms on inertial-internal waves must be reconsidered.

With the neglect of the Reynolds stress and mass flux terms, the

mean flow and the fluctuating flow are uncoupled as far as momentum

and mass transfers are concerned. The mean flow continues to mod-

ify the fluctuating flow, and the fluctuating flow can still affect the
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dynamic stability of the mean flow.

C. The Governing Equation for Inertial-Internal Waves
Propagating Transverse to a Frontal Zone

Since the flux terms are neglected, the system of equations

(16), (17), and (4) are reduced to:

(18) (EOM):

(19) (COM):

and

(20) (EOC):

d u _E ''- K,-+fxu+uvu=-vir
P0

dp
Vp 0,

V = 0,

where the primes, but not the overbars, have been dropped. The

geometry of the problem is established and further simplifications

are applied to reduce the system of equations:

1) The coastline, the bottom contours, and the longitudinal axis

of the frontal zone are considered to be parallel to the y-

axis.

ii) The semidiurnal surface tide propagates northward, parallel

to the positive y-axis, as a very long wave.

iii) The surface tide generates an internal tide which propagates

shoreward, parallel to the positive x-axis, with a much

shorter wavelength than that of the surface tide. Hence the

partial derivatives in the x- and z-directions of the internal



tide are appreciable while those in the y-direction are as-

sumed negligible. Due to the Coriolis effect, the y-

component of the inertial-internal wave's particle velocity

is not negligible.

iv) The mean flow and the mean density fields are considered

homogeneous in the y-direction. Due to the Coriolis effect,

the ycomponent of the mean flow is not neglected.

To further reduce the system of equations, scale analysis is

used to justify the neglect of the cross-stream flow. The cross-

stream flow enters the system of equations in the advective accelera-

tion and shear-interaction terms. The scales are based on the ob-

servations reported in Chapter X. Henceforth, partial differentiation

is denoted by subscripts.

The observations indicate that

6 -1
u -3x1O sec

x

-3 -1
u +1xlO sec
z

-5 -1
v Z_lxlO sec

x
and 3 -1

v -5xlO sec
z

where the shears are given in the poleward-onshore coordinate sys-

tern. Since

-.3 x and 2 x
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then the ratio of the vertical to the horizontal scale of the mean mo-
-3tion is r 2 x 10 . The slope of the isopycnals, s, is of the

order of 3 x 10, so r - s. This result is consistent with the

isentropic hypothesis for the mean flow. From the EOC,
- w0(u ) = 0(w ). Thus, 0(-) = r - s. Based on the observations,

x z U

the scale of the x-component of the mean velocity is taken to be

u - 10 cm/sec.
0

The ratio of the vertical to the horizontal scale of the fluctuat-

ing flow is taken to be equal to the order of magnitude of the slope

of the characteristics, X, and X - s. From the EOC, 0(u) = 0(w).
x wThen, since 0() = X, 0() - s. The ratio of the horizontal

uz U

to the time scale of the fluctuating flow is taken to be the horizontal

phase speed, Ch. For the semidiurnal internal tide off Oregon,

Ch
- 102 cm/sec. The time scale, T, of the fluctuating flow is

taken to be the period of the semidiurnal tide, so T Z 5 x 10 sec.

With the above scale estimates,

Q(Z) - 1 and =- 10_i.

Analogous results follow for the other fluctuating components. Thus,

the advective acceleration terms can be neglected, i. e., henceforth,

ddt'
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Also from the above, O(:) - - 1; analogous results fol-

low for uw and w w . Since
x z

0(Z) = O() Tiul - 10_i,

the terms involving the shears of the mean cross-stream flow can be

neglected.

Consequently, the mean cross-stream flow is completely neg_

lected in the system of equations for the interaction. The above argu-

ments are tenuous. There may be frontal zones elsewhere in the

Ocean, or occasions for the coastal frontal zone off Oregon, when the

neglect of the cross_stream flow can not be justified. Since

0(u) 0(v), then

Also

) = Tivi - 1.

Thus, the terms involving the shears of the mean alongshore flow can

not be neglected. This statement is also based on a tenuous argu-

ment, but it is shown below that the retention of uv + wv in the
x z

y- component momentum equation is necessary to be consistent with
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the inclusion of the mean horizontal density gradient in the equation

for p.

In component form, the reduced system of equations for the

fluctuating flow is:

(21) u -fv+fw=-1T,t v h x

(22) v +fu+uv +wv =0,t V X Z

(23) w -fu=-Trt h zp'
(24)

Pt
+ ux + = 0, and

(25) u +w =0,x z

where f and f are the horizontal and vertical components of

the Coriolis force,9 respectively. To simplify the following steps,

two functions are introduced:

2 2N =-g and M =-g,
P0 P0

91.Jsually, the horizontal component of the Coriolis force is neg-
lected. Since h. = at latitude 450 N, the latitude of the field ob-
servations, h is not neglected at this stage. Whenever h is set
equal to zero in this dissertation, it is understood that the so-called
traditional approximation is made. Since h' does not enter the
energy equation, setting h = 0 does not affect the energetics, and
it does simplify the analysis especially in the three-dimensional case,
where complex-valued solutions arise. It is fair to say that it is not
known whether any feature in the Ocean has been undetected or mis-
interpreted as a consequence of neglecting h Some of the conse-.
quences of neglecting h are considered inAppendix II.
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where N is the familiar Visl-Brunt frequency and M is its

horizontal analogue. Eliminating v between (21) and (22), (26) fol-

lows:

(26) f2+f v 1(u) + [f +f v 1(w) = -
v vx h t vz xt

similarly, eliminating p between (23) and (24), (27) follows:

(27) [H+N2]w + )+M2](u) zt-iT

The EOC permits the introduction of a stream function, i, such

that u and w = Ji. Cross-differentiating (26) and (27) and

subtracting to eliminate rr, the GE expressed in terms of iji is

obtained:

(28) U )tt+fvv+Vx)Jzz + [C tt2xx - [f+M2Ji

+ [f v -(M] +[(N2) -f V = 0.
V XZ X Z X V ZZ X

The terms involving the horizontal component of the Coriolis force

have cancelled. With variable coefficients, the GE is simpler in

terms of qi rather than ; with constant coefficients, there is no

preference.

The neglect of the cross-stream component of the mean flow in

the GE allows assuming the first-order equations for the frontal zone

to be simply the geostrophic equation for the alongshore flow:
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(29) = _;

and the hydrostatic relation:

(30) 0 -

Eliminating iT from (29) and (30) by cross-differentiation and sub-

traction, the thermal wind equation is obtained:

px
(31) fv =--g,vz p

0

or
M2.

Upon substitution of (31) into (28), the GE reduces to:

(32) )tt+ +fv] + t+N2 - 2M2 = 0,

or equivalently,

([( )tt+ + ([( = 0,

because (N2) = (M2) and (M2) (fv). Therefore, the GE,

(32), has the important property of self_adjointness.

SHM can be assumed for the time dependence of ti, i. e.,

e10t. Then, the final form of the GE is

(33) (GE): (N2-o2)qi - 2M24i (o-2-f2-fv)i = 0.



Since

and

= (o2-f (f+v))u (M2+iaIh)w

io = (M2iofh)u - (N2-o2)w,

then
2 2[(N -o )iT -(M +ioi )tr

x hz
U 10

and

where

[
(2

f (f + )) - (M2 - if ) ]vv x z h x

222 4= (N - )( -f (f +v )) + M 2 2
+crfh.
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Applying the EOC to u and w in their above forms, the equation

for ir is obtained:

(N2-02)Tr -(M2+irf )ir ) (o-2-f (f +v )ir +(M2-iof )ir
x h z v v x z h_x

Jx_k

In the case of constant coefficients, this equation for r is identical

to the GE for i.

With use of the reduced system of equations, (21) to (25), for

the fluctuating flow, the EE can be formed. Multiplying (21), (22),

and (23) by p and by u, v, and w, respectively, and adding the

three equations, the EFfollows:
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(34) (KE) -[(up)+ (wp) ] p [uv +wv I - pwg,
z 0 X Z

where the EOC has been used and

222
U +V +WKE=p ( ).

0 2

Take u and w where and r, are the horizontal

particle displacements, respectively, then (24) yields:

(p+p+p) = 0

p

neglecting the constant of integration without loss of generality,

WLOG. It follows that

2

-pwg = wpg +

= wpg (PE),

where
N2

2

PEp
2

Then (34) is written as

(35) E = -[(up) +(wp) I + w pg - p[uvv+wvvI,t

where wpg is a vertical flux of potential energy and
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-p[uv+wv] is the horizontal flux of kinetic energy. Assuming

that a volume of fluid is bounded by rigid boundaries so that no flow

work is performed at the boundaries, the spatial average of (35)

yields

(36) - p[uv+wv]

where ( ) denotes the spatial average. Integrating (36) with re-

spect to time from t 0 to t = T,

E(T) - E(o) gtp {tt]
where denotes the time average. The righthand side, RHS,

vanishes for T equal to an integral multiple of the wave period be-

cause v is in time-quadrature with u and w and because

and w are in time-quadrature. Therefore, the total energy is con-

served in a region bounded by rigid walls for the periodic motions

described by the equations of the interaction. If there is an interac-

tion of consequence to energy transfer, it must be due to dynamic

instability caused by the wave motion. As part of a more general

analysis in Chapter IV, with a re-definition of the energy, the con-

servation of energy is proved without restriction to SliM.

With the two-dimensional form of the problem, the principal

component of the vorticity is the y component, where
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-w = +-Uz x xx zz

N42 2M2L1J +f (f +v )qii -
XX XZ V V X__ZZ),

=-(
0

from the GE. The relation for establishes that inertial-

internal waves are rotational. Since j is a function of time, as

noted by Eckart (1961), vorticity is not constant. The Ocean's den-

sity stratification contributes the term ()2iji, while the Earth's
f I'

rotation contributes the term (-)2t.Ii to c Together with

the Ocean's density stratification, the frontal interaction contributes

the term together with the Earth's rotation, it contrib-

utes the term
2 zz

0

In summary, the linear interaction equations can be derived on

the basis of the following hypotheses: (i) A linear inertial-internal

wave is assumed to interact with a frontal flow while propagating

transverse to the frontal flow. (ii) The frontal flow is characterized

by strong horizontal density gradients and geostrophic and hydrostatic

balance. (iii) The phase velocity of the inertial-internal wave is

large compared to the cross_stream velocity, allowing the neglect of

the latter. Scale considerations require the inclusion of the terms

up + wp in the basic system of equations. The terms u and

wv have an equivalent effect on the GE; inclusion of wv requires

inclusion of uv by scale analysis. Finally, the inclusion of uv,



and the assumed hydrostatic and geostrophic equilibria of the mean

flow, assure the self-adjointness of the GE.

D. Classification of the Governing Equation

The GE can be written in the general form:

AF +BF +CF =0.
xx xz zz

The classification is based on the discriminant, 4 of the GE,

where B - 4AC:

i) If E > 0, the GE is hyperbolic,

ii) If t < 0, the GE is elliptic, and

iii) If = 0, the GE is parabolic.

For the case of frontal interaction,

and

A = N2 -

B = -2M2,

C = 02vvrx

=4{M4+(N2-o-2)(o-2-f (f+v))j



The GE is hyperbolic if and only if

or

whe r e

and

4 222M + (N -a- )(o- -f (f +v ))> 0,
V V X

a-b 2 a+b---<o- <---,

a N2 + f(f+v)

b = ((N2f(f+v))Z+4M4)h/Z.
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When the frontal interaction is neglected, a N2 + f2 and

b = N2 - f2, so f < a- < N defines the domain of hyperbolicity.

The frontal interaction can either expand or contract the domain

of hype rbolicity. For example, consistent with the observations re-

ported in Chapter X for the frontal zone, take

-4 -1
f 10 sec
v

-5 -1
v -10 sec

x

2 -4 -2N Z3x10 sec
and

3sZ3xlO
so

Thus,

M2 = -9 x

N2>>f(f+v) and N2>> )2M2J,
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so

Then

and

b z N? f (f +v ) + 2s2N2.

N2(1+s2) N2

a-b - 2 2zf(f+v)_sN
2 v v x

With the above values, 0. 63 x io8. The domain of hyper

bolicity is approximately 0. 8 f a- N. Since a- 0. 7 f for
v v

the dirunal tide at 45° N, the possibility exists that the dirunal tide,

as well as the semidiurnal tide, can exist as a baroclinic tide in the

frontal zone off Oregon. Since N2, s, and v vary with space

and time, then so does the domain of hyperbolicity.

E. Boundary Conditions

There are several boundary conditions, BCts, which are used

in the following chapters. The BCts are formulated for the stream

function. At a rigid boundary, z = z(x), the stream function must

be a constant, i. e.,

(RBC): z=z(x) = constant,

which is a principal or kinematic BC.

If the sea surface is treated as a free boundary, the BC must
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satisfy the condition that the perturbation pressure be conserved at

the sea surface, z = r(x). The linearized statement of this condi-

tion is

or

Since

(p

= +w I
= 0,

iTt =

at z=.

tx = at z =

and, with the frontal interaction and the neglect of

2 - 2
rr vvx - M w

= -(2-f(f+v)) M2,

from the x-component EOM, then

(FBC): 2vvx"z + M + gJ) = 0,

which is a natural or dynamic BC. In Chapter IV, the FBC is de-

rived in the process of developing the variational principle for the GE.

The significance of the FBC to inertial-internal waves is an is-

sue which is not thoroughly understood. Using L and D as the

-



42

horizontal and vertical scales of the wave motion, and neglecting the

frontal interaction, the FBC is necessary when

where

O() = =
qi Dxx

22
0 -f

y=(

For the semidiurnal internal tide, y L io6 cm, and

take D to be the water depth. Then, the FBC is necessary when

D - 10 cm. Because the FBC appears significant only for shallow

water, the RBC is commonly applied at the sea surface. For most of

the cases in Chapters VI, the RBC is applied at the sea surface, but

there are situations when the FBC is essential

When variables are separable, the FBC presents no analytical

difficulties. Its chief effect is to modify the eigenvalues of the solu-

tion. However, when variables are not separable, the influence of

the FBC is more subtle. Mechanical analogues for the GE are given

in Appendix IVto illustrate the FBC!s qualitative effects.

When the artifice of a vertical coastal barrier is adopted, the

RBC is ordinarily applied. For purposes of illustration, a lossy

boundary condition, LBC, is employed in some cases. The LBC ad-

mits non-zero normal velocity but requires no net mass flux across

the coastline. Thus, the coastline is treated as a flexible barrier
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which can absorb energy but not mass or momentum. In other words,

the fluid can do flow work on the flexible coastal barrier when the

LBC is invoked.



III. THE GENERAL PROPERTIES OF INERTIAL-INTERNAL
WAVES, WITH APPLICATION TO THE FRONTAL

INTERACTION PROBLEM OFF OREGON

A. Introduction

For over a century, inertial-internal waves have intrigued in-

vestigators for the following reasons:

i) The waves are ubiquitous in the Ocean and Atmosphere.

ii) The subtleties of the waves are challenging to detect, de-

scribe, and comprehend.

iii) The waves play essential roles in other dynamical processes.

iv) The waves affect the distribution of the physical, chemical,

biological, and geological properties of the Ocean.

Numerous studies of inertial-internal waves have been con-

ducted theoretically, experimentally, and obs ervationally, yet these

waves are not fully understood. However, several properties of

these waves have been determined reasonably well. Since it is im-

possible to examine all of the properties in a single theoretical, ex-

perimental, or observational study, and since ignorance of a key as-

pect of the waves can cause misinterpretations, it is necessary to

have abasicunderstanding of the physics of inertial-internal waves.

This chapter contains a discussion of the properties of inertial-

internal waves rather than an annotated bibliography. Several bibli-

graphies on inertial-internal waves have been prepared in the recent
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past, e.g., Lee (1965).

Several of the basic studies of the theory of inertial-internal

waves are cited here. Fjeldstad (1933, 1964) applied normal mode

theory to cases of variable N2(z) and compared his results to ob-

servations in a fjord; his success stimulated the modern investiga-

tions. Eckart (1960) applied the techniques of quantum mechanics to

the normal mode theory and initiated the study of inertial-internal

waves by ray theory and Poincare phase diagrams. Tolstoy (1963)

made a broad survey using a Lagrangian rather than an Eulerian

formulation. Phillips (1966) analyzed inertial-internal waves within

the theoretical framework of modern surface wave theory. Krauss

(1966a) published a comprehensive text on inertial-internal waves,

including material on the normal mode theory and the theory of char-

acteristics. Krauss (1966b) reviewed the contemporary knowledge of

inertial-internal waves.

B. General Properties of the Waves

Inertial-internal, internal, and inertial waves are distinguished

by their respective domains oi hyperbolicity. Free waves can exist

at frequencies within the domain of hyperbolicity, thus the domain of

hyperbolicity can be interpreted as a passband. In the case of con-

stant coefficients, the three-dimensional GE, derived in Appendix II,

for inertial-internal waves is:
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22 222 22(a-_f )ir =0,(N -a- )rr + (N -a- +f )rr 2f f irxx h yy vhyz v zz

222
(N -Cr )fv 2 2

< a- < N if f < N (the usual case),222 v
N -a- +fh

defines the passband which is of most interest. With the neglect of

and coefficients assumed constant, the GE is:

22 22(N -a- )(ir +n ) (a- -f )ir = 0,
xx yy zz

where, a- = f and a- = N are the low and high frequency limits,

respectively, for the passband.

Internal waves can occur only when the Earth's rotation can be\

neglected; they depend only on the effect of buoyancy. The GE is:

(N2-a-2)(ir +ir )
2-a-jr =0,

xx yy ZZ

where a- = 0 and a- = N are the low and high frequency limits,

respectively, for the passband.

Inertial waves can occur only when the Ocean's density strati-

fication can be neglected; they depend only on the effect of the Earth's

'°For the remainder of the dissertation, h is neglected and
the symbol f is used instead of In Appendix II, some of the con-
sequences of neglecting h are considered.



rotation. The GE is:

2 22
o (ir +11 )

- (f -o )ir = 0,
xx yy zz
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where a- = 0 and a- = f are the low and high frequency limits, re-

spectively, for the passband. The similarity of buoyancy and inertial

effects allows the application of results from studies of either internal

waves or inertial waves to the other, or to inertial-internal waves,

by analogy.

The observations of Fofonoff (1968b) give graphic proof of the

passband relation for inertial-internal waves; his temperature and

velocity spectra fall off rapidly outside the limit frequencies of the

passband. For a fixed frequency, there exists a critical latitude

poleward of which an inertial-internal wave can not propagate as a

free wave. Oregon is poleward of the critical latitude (about 30° N)

for the diurnal tides but equatorward of the critical latitude (about

72° N) for the semidiurnal tides.

With the frontal interaction, the passband is

f(f+v) - s2N2 - 2 (l+s2)N2.

Since v can be either positive or negative, the frontal interaction

can narrow or broaden the passband. The order. of- magnitude argu-

ment given in Section II. D. suggests that the frontal interaction off



Oregon broadens the passband. The observations discussed in Chap-

ter X indicate that v and s vary as functions of time and space.

Thus, the passband in the frontal zone of coastal upwelling varies

with time and space.

Except for finite spectral peaks at tidal and inertial frequencies,

there is a general tendency for the spectral slope of velocity spectra

to decrease with a minus 5/3-power dependence on frequency in the

passband, Ozmidov and Yampolskii (1965) and Fofonoff (1968b). A

minus 5/3-power law is also the frequency dependence of the energy

spectrum in the inertial sub-range of the equilibrium range for iso-

tropic turbulence. However, the physical conditions of the Ocean for

inertial-internal waves differ vastly from the ideal conditions for iso-

tropic turbulence. When dispersion relations for finite depth are in-

cluded in the analysis, power laws ranging from minus 1 to minus 2

are anticipated. Temperature spectra also tend to decrease with a

minus 5/3-power law. From the inspection of many spectra, Fofonoff

(1 968b) advanced the idea that there is a tendency for the development

of a saturation spectrum in the passband, at least in the deep ocean.

He interpreted this to mean that there may be a universal equi1ibrium,

involving coherent internal waves and incoherent turbulence, estab-

lished by shear instabilities of internal waves.

The upper frequency limit of inertial-internal waves is N(z),

the Visl-Brunt frequency, Visl (1925) and Brunt (1927). The



V.istl-Brunt frequency is the frequency of free oscillation of a water

parcel displaced from hydrostatic equilibrium in a stratified fluid.

It takes into account the adiabatic compressibility of sea water:

N2 = E - aT de = 1[
aT as az pO in situ adiabaticaz az

0

dO -lao g .where -i-) = - is the adiabatic lapse rate, E
dz p0 8z adiabatic c

is the static stability, and c is the speed of sound. Since, for the

-5- - -3 -3coastal region off Oregon, 10 < E(x, z) < 10 sec and since

(g/c)2 4.4 x 105sec2, the effects of compressibility can not be

neglected in the computation of N2 without verification. In the

upper layers of the Ocean, and in the coastal region off Oregon, an

approximate formula can usually be used:

do
E = &__!

p dz
0

- do t
dz

where is sigma.t, the density anomaly without regard for adia-

batic effects, and z is in units of centimeters.

Pure V.isa1-Brunt oscillations represent a strictly differen-

tial, or local, viewpoint. A kindred class of motion is that of internal

cellular waves.(Neumann, 1949), which admits finite depth and hori-

zontal wavelength.
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The characteristic relation,'' CR, is

N2(k2+2)

(k +. +m

2 2 22 2 2ir 2
assuming a- >> f . Replacing k + by K

(h)
where

2 nir2is the horizontal wavelength and m by (-fl-) for the nth

vertical mode in finite depth, H, then

2 N2
0 =n

1+ ( 2H

Thus, when - 2H, there can exist free motions at a discrete

set of frequencies less than N for a fixed 1i) Waves at or near

such frequencies have been associated with the occurrence of surface

slicks in coastal regions and with temperature oscillations (LaFond,

1962 and Carsola, etal. 1965). In the shallow waters of Massa-.

chusetts Bay, Halpern (1968) has detected high frequency stability

oscillations; the generation of the waves is correlated with the sur-

face tide.

In a theoretical analysis of internal tides, Vapnyar (1964) gave

The term characteristic relation, CR, is used repeatedly for
the equation which results from the GE when SHM is assumed for the

i(kx+.Cy+mz)spatial dependence, 1. e., 4i a e where k, and m
are the x, y, and z wave numbers, respectively.
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a physical theory linking the tides and V.isUá-Brunt oscillations. His

view is that the passage of a surface tide excites Vãisl-Brunt oscil-

lations. In turn, the Visl-Brunt oscillations excite the internal

normal modes at the tidal frequency, each of which propagates at its

own phase speed. Internal cellular waves could be present in the

time series of the present study.

Layered models, with each layer homogeneous in density, have

been extensively studied byDefant (1961), Rattray (1 960), Ichiye (1963),

and many others. There are analytical advantages to the study of

layered models, which yield interfacial waves rather than true inter-

nal (body) waves. The relevance of interfacial waves as idealizations

of inertial-internal waves remains uncertain. Some of the essential

physics of the inertial-internal waves are missed by the study of the

interfacial waves. For instance, interfacial waves concentrate all of

the vertical shear in horizontal velocity, or vorticity, at the density

discontinuity, while inertial-internal waves distribute the vorticity

throughout the fluid. Interfacial waves can be treated analytically as

irrotational, so a potential function can be defined in each layer.

Inertial-internal waves are rotational (shear) waves, as established

in Section II. C. , so no potential function exists for them.

As an eigenvalue problem, the GE and its BC's admit an infinite

number of solutions, or normal modes, when SOY is possible.

Fjeldstad (1933) initiated such studies. Yanowitch (1962) proved that,
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in the limit of an infinite number of layers, the eigenvalues for a lay-

ered system converge to those for a continuously stratified system.

The eigenvalues lead to calculation of the modal phase speed if the

horizontal wavelength is known; the modal phase speed is approxi-

mately inversely proportional to the modal number. The important

deduction that the largest amplitude of the waves is expected to occur

at the base of a pycnocline follows from the normal mode analysis

made by Tareev (1963).

Gossard and Munk (1954) and Gossard (1962) developed the

basic wave guide theory for fluid layers with N constant in each

layer. This case is intermediate between interfacial waves with p

discontinuous and inertial-internal waves with N continuous. They

found it possible for leaky waves to transfer momentum across a

waveguide, i.e., a layer in which N is a maximum. Eckart (1961)

found that it was possible for momentum to be exchanged between

waves trapped on two or more pycnoclines, or waveguides. Thus,

momentum transfer may occur across and between the permanent and

seasonal pycnoclines in the coastal upwelling region. The observa-

tions of the present study do not allow the examination of this possi-

bility.

Eckart (1960) remarked the possibility of using the theory of

characteristics to analyze inertial-internal waves, but he chose to
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use the WKBJ1
2 approximation to develop a ray theory. Magaard

(1962) and Sandstrom (1966) were the first to use the theory of char-

acteristics to construct solutions. Fofonoff (1966) applied the theory

of characteristics to the design of field observations, plotting the

characteristics seaward of an assumed source at the edge of the con-

tinental shelf. Longuet-Higgins (1969) has developed a theory for the

scattering of internal waves by irregular surfaces using the theory of

characteristics. Jones (1969) has initiated the study of the propaga_

tion of internal waves through a temporally and spatially dependent

velocity field with the aid of ray theory. The theory of characteristics

is used extensively in this dissertation rather than the normal mode

or ray theories.

The technique for finding the equation of the characteristics

from the GE is given in Section V. B. The characteristics have sev-

eral mathematical and physical interpretations:

a) They delimit the domains of influence and dependence for

initial value problems.

b) They define the trajectories along which discontinuities in

the solution, or shocks, propagate; i. e., they are colinear

with the group velocity and energy flux.

12The WKBJ approximation is the Wentzel, Kramers, Brillouin,
and Jeffreys approximation which assumes that the amplitude of a
wave varies slowly over a wavelength, allowing the development of a
ray theory from an approximate wave function in the case of variable
coefficients.
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c) They are lines of constant phase; i. e., they are perpendicu-

lar to the phase velocity and the vector wave number.

d) In the two-dimensional case, they are coplanar with particle

trajectories; i. e. , they are the x-z plane projections of

streamlines.

These properties are developed in this section and in Chapter V.

With the neglect of the horizontal asymmetry of the

three-dimensional GE vanishes so it is sufficient to consider the two-

dimensional case. For simplicity, neglect the frontal interaction.

Then the equation for the characteristics, ,, is

(N2-2)()2 - (2-f2)()2 = 0.

Assuming constant coefficients, then the solutions for are

= z - Rx

and
z + Rx,

where
Zf2

N -a-

and and T are the upgoing and downgoing characteristics

respectively. Let be a unit vector along constant, then

A (l,R)
(l+R2)h/2
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A vector wave number, i (k, m) is introduced; then the CR yields

- R2m2 = 0,

so ± R. The spatial phase of the solution corresponding to the

positive root of is kx - mz. Then the slope of a line of

constant phase is -) = -= R, or 0 constant is parallel todx9+ m
+ . +Let 0 be a unit vector along 0 constant, then

",
e (1(k)Z)1/Z

,+ -+and, since k = (k, _m), then 0 k 0. Therefore, the plus

vector wavenumbers are orthogonal to the upgoing characteristics,

since
ff

0. Similarly, i (k, m) and

so

(1,

(1+
(k)2)h/2

The phase and group velocities are analyzed in this section

without regard for the influence of boundaries. By definition, the

phase velocity is
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and the group velocity is

(cr,o ).
g km

Using the CR,

0
c = (k,m).

(1+R )m

Since

1
(k, _R2m), where R! =

g RR'm2
do

then
-

C C = 0.
g p

Therefore, the phase and group velocities are orthogonal, which is

then a general property of wave motions whose GE's dependence on

a- can be placed in the coefficient of one second-order term.

As a familiar counter-example, consider the case of the two-

dimensional Helmholtz equation whose spatial dependence is elliptic:

where the CR is

Then

and

+ +R2(a-)=O,xx yy

(k2+2) - RZ(a-) 0.

=-2(k,fl

= (k, £).= T
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c xc =0,
p g

the group and phase velocities are colinear, as for surface gravity

waves.

Since

then

For inertial-internal waves,

2 2 N2-a-2 1/2 a-a- N-a- -
Ic

I =C = -i )(k, m), thus m
m N f

(N2 - f2)RR'=a- 22'(N -a-

2 22 2 2 2 2 2 2
(N -a- ) (a- -f) a- -f 1/2 (N -a-

c (k, - m), thus C = (
g om(N2-f2) (N2_a-2)

g N2_f2

Thus, the propagation of inertial-internal waves is dispersive and
A - I'

anisotropic. Since T is perpendicular to k, then r, is parallel

to and orthogonal to . Therefore, parallels the char-
g p g

acteristics while is orthogonal to the characteristics. Because
p

discontinuities in the second and higher order derivatives do propa-

gate along characteristics, it is clear why
g

is parallel to the

characteristics. tends to the horizontal as N increases or
g

when a- tends to f; thus, a pycnocline serves as a waveguide,

especially as a- tends to f. As a corollary, lines of constant



phase tend to parallel a pycnocline. The EOC implies that

uk + wm = 0, or

where

U C = 0,
p

(u,w).

Thus, the particle velocity is orthogonal to c and '' and co-

planar with Cg and .

For the frontal interaction, the CR is

Then

(N2-2)k2 - 2kmM2 - (-f(f+v ))m2 = 0.

± M2± (M4+(N2-o-2)(o-2-f(f+v
)))l/2

m x
k 2 -(r _f(f+v))

which indicates the asymmetry of the upgoing and downgoing vertical

wave numbers, for a fixed horizontal wave number. Since

2 2 2±k +m =m t

where
2 2 2 1/2(N -o )(o -f(f+v ))) ]{(N2-o2)(N2-f(f))+2M4 ± 2M2(M4+

=
2 22

(N -a-

then
± a- (k,m±),(c ) =

p 2±m



thus

59

Similarly,

-± 1 l/Zcr
I(c) = (-;) -.m

! [(N2-f(f+ ))km + M2(k2-m2)].
m

Thus, there is also asymmetry in the phase and group velocities of

the upgoing and downgoing waves.

C. Further Properties of Inertial-Internal Waves, with
Application to the Coastal Region

The possible mechanisms for the generation of inertial-internal

waves include:

i) Inertial-internal waves may be generated by a surface wave

or an internal wave passing over a region of variable topog-

raphy(Zeilon, 1934; Rattray, 1960; CoxandSandstrom, 1962;

Ichiye, 1963; and Sandstrom, 1966).

ii) Internal tides may be generated by gravitational forces

(Petterson, 1934; and Krauss, 1966c), especially at the cri-

tical latitudes where resonance occurs.

iii) Internal waves may be generated by wave-wave interactions,

or scattering (Ball, 1964; Thorpe, 1966; and Kenyon, 1968).

The interactions could involve surface as well as internal

waves and would involve the vertical modal numbersas well



as frequencies and horizontal wave numbers.

iv) Inertial-internal waves may be generated by perturbation of

a mean flow from an equilibrium state (Fjeldstad, 1958), or

by the winds (Pollard, 1968).

Mechanism i) is probably the most significant for the generation of

the semidiurnal internal tide in the coastal region off Oregon.

Theories for layered models, such as those of Rattray (1960),

Ichiye (1963), and Weigand (1964), show that barotropic and baro-

clinic waves are coupled by stepped bottom topography, thus

barotropic waves can generate baroclinic waves with appreciable

amplitudes. For continuous models, Sandstrom (1966) used the meth-

od of characteristics, the RBC, and experimental evidence, to de-

velop the concept of a critical bottom slope: a wave sustains large

amplification when incident on a bottom whose slope approximates

that of the wave's upgoing characteristics.

The basic principle of inertial-internal wave reflection from a

sloping rigid boundary is demonstrated by the simple case of a plane

wave incident on a bottom surface with uniform slope at depth

z = -H - m x, where m > 0 is the bottom slope. Take
0 0 0

= cei +m for the downgoing wave and

+ i(k+xm+z)
=c e

for the upgoing wave; then qi + 4i. The RBC requires that



z=-H -m = constant for all x;
0 0

a necessary condition is that

Since

then

+ +
k -. mm =k +m m

0 0

= = R> 0,
m m

R+m
+ - 0m=m( R-m

0
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Therefore, if the slope is subcritical, i. e., if R > m, then

> m and k. Thus the absolute value of the wave number

is amplified upon reflection of a wave progressing up a slope. (This

relationship is investigated more generally in Chapter V. ) Conse-

quently, since and Rgl are inversely proportional to m,

from Section B, then R I and R I - 0 as a wave sustains an
p g

infinite number of reflections from a subcritical, sloping rigid bound-

ary. This property is analyzed further at the end of this section. It

is observed that the reflection rule is based on the fact that the

orientation of the characteristics and the wave numbers is fixed in

space, i. e., they are not oriented symmetrically with respect to the

normal to a sloping boundary as are wave number vectors for motions

governed by an elliptic GE.

The condition for a critical bottom slope, mc, is given for a
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fixed frequency by

22crf 1/2m =R( -)c 22N -o

or, for a fixed bottom slope, m, the critical frequency, °'
is given by

2 22m N +f )l/20
0

c 2m +1
0

The concept of subcritical, critical, and supercritical 'bottom

slopes is illustrated for a coastal region in Figure 5. The symbols

r and r, represent upgoing and dowugoing characteristics, re-

spectively, which is a convention maintained throughout the remainder

of this dissertation.

With the frontal interaction,

m
(N -o-

Since M2 < 0 in the case under consideration, and if v < 0,

as it is near the coastal boundary, then n > R; 1. e., the frontal

interaction exerts a stabilizing influence on bottom reflection.

Wunsch (1968, 1969) found partially separated normal

modes for a progressive wave in a wedge; he reproduced the qualita-

tive feature of marked amplification for near-critical bottom slopes.
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Figure 5. illustration of the concept of subcritical, critical, and super critical bottom slopes in
a coastal region



Thus, critical bottom slopes are thought to play a crucial role in the

generation of internal tides by surface tides.

In November 1966, Mesecar (1968) occupied a thermoprobe

station on the continental slope off Depoe Bay, Oregon for 115 hours.

The water depth was about 250 meters, and the distance offshore was

about 33 kilometers. The thermoprobe site was close to the seaward

sensor site of the present study, but it was occupied two months after

the observations on the continental shelf were completed. The the r-

moprobe sampled the lower three meters of the water column and

deeper than a meter into the sediments, once every hour.'3 Though

there were no detectable temperature gradients in the lower three

meters of the water column, he found large amplitude temperature

oscillations, of the order of 0. 2°C°to .0. 5°C The oscillations oc-

curred primarily at the semidiurnal frequency and its harmonics,

and they extended at least 36 but less than 121 centimeters into the

sediments. This is indirect evidence for strong semidiurnal bottom

currents on the continental slope. Recently, Korgen (1969) has ob-

tamed direct evidence of semidiurnal tidal speeds close to the conti-.

nental slope; they are an order of magnitude greater than those oh-

served over the continental shelf. For the location and season of

'3The sensors had a 15-second time constant. Samples were
taken once every 10 seconds for the first twenty-four hours. No short
period fluctuations were detected, hence a reduction in sampling rate
was made.
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Mesecar's observations, the best estimate of static stability is

E 1 to 2 x 105sec2. At the semidiurnal frequency, the critical

bottom slope, m, is then m 2 to 3 x io2, while the bottom

slope, m, is m 2 to 5 x 1 o_2. Hence, the bottom slope is

probably critical or supercritical for the semidiurnal internal tide,

which is consistent with Mesecar!s observations. Thorough time

series observations of both bottom currents and static stability over

the continental slope are necessary to verify this speculation. Since

the static stability field over the continental shelf and slope is affect-

ed by coastal upwelling, then the criticality of the bottom slope may

wax and wane with the state of coastal upwelling. If mc does vary

in such a manner, the generation process of internal tides may vary,

and the internal tide over the continental shelf may have its character

modulated too.

Because large horizontal velocities associated with inertial-

internal waves can occur near the sea bottom, such motions can pro-

duce net sediment transports and sand ripples (LaFond, 1961a).

These effects are expected to be most significant in shallow regions,

e. g., coastal regions. Associated with the observations of this dis-

sertation, there may be strong currents at the sea floor capable of

modifying the distribution of sediments. Neudeck (1969) has found

evidence for ripples in the sediments on the Oregon continental shelf

which appear to be consistent with generation by internal waves



propagating onshore. Simultaneous measurements of both geological

and physical properties near the bottom on the continental shelf have

yet to be made and promise to be useful for the study of inertial-

internal waves as well as geological processes.

The earlier observations of inertial-internal waves were based

on temperature measurements. The observations of Haurwitz,

Stommel, and Munk (1959) raised questions about the behavior of

inertial-internal waves over sloping bottoms and the lack of coher-

ence of tidal motions over relatively small spatial separations. The

analysis of Radok etal. (1967) showed that, in mid-ocean, the lunar

semidiurnal internal tide (M2) was incoherent withre spect tO the lunar

tide-producing forces. They attributed the random phase of the inter-

nal tide to the Ocean's variable temperature or current structure.

They noted that the order of magnitude of the r. m. s. surface eleva-

tion associated with the M2 internal tide is consistent with the ob-

served r. m. s. incoherent M2 surface elevations at coastal sta-

tions. (This is an example of where the FBC may play an essential

role. ) The measurements of Lee (1961), LaForid (1962), and Gaul

(1961) pioneered the study of internal waves in very shallow water,

the order of 20 meters deep; a fundamental lack of wave coherence

was found (Cox, 1962).

Dowling (1966) used a linear array on the continental shelf off

northwest Florida and found that high frequency internal waves obeyed
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the dispersion law derived for the ambient stratification and finite

depth; his measurements also suggested the existence of a continuum

of wave motions. He advanced the hypothesis that breaking internal

waves operate to establish a hyperbolic tangent density profile as an

equilibrium configuration. The tendency for the density structure

over the continental shelf off Oregon to have a hyperbolic tangent or

an exponential depth dependence has influenced the choice of the

frontal models employed in Chapter VII.

Summers and Emery (1963) found semidiurnal internal tides

propagating onshore from the continental slope with phase speeds of

350 cm/sec over the continental slope and of 50 cm/sec over the con-

tinental shelf off southern California; the wave crests were aligned

with the bottom contours and the wave amplitudes were of the order of

30 meters. (Their study served as early guidance for the design of

the observations and the theory of this dissertation. ) All but the

measurements of Gaul (1961) were concentrated near 30° N, where it

is difficult to resolve the inertial and diurnal motions.

Boston (1.964) employed current meters in the geographic vicin-

ity of Dowling's study; he found that the tidal motion was baroclinic

and that it had a character suggestive of an internal edge wave.

Mortimer (1963), using temperature measurements, in Lake Michigan,

at a latitude similar to Oregon's, has detected a myriad of barotropic

and baroclinic long wave motions under the influence of finite depth



and coastal boundaries, including baroclinic inertial motions. Using

current data, Malone (1968) confirmed the occurrence of baroclinic

inertial motions in Lake Michigan during the season of strong strati-

fication. The studies in Lake Michigan are of special interest be-

cause a coastal jet and coastal upwelling occur there, as well as off

Oregon. Recently, Warner (1968) made current measurements

off the coast of Nova Scotia, also at 450 N. The observational tech-

niques used were very similar to those reported in Chapters X and

XI. The spatial coherence of internal tides was found to be generally

lower than had been expected, a feature common to the observations

off Oregon.

Haurwitz (1954) discussed the spasmodic, inconclusive evidence

for the occurrence of internal tides in the deep ocean. Since the time

of his study, the evidence has become more convincing for the exist-

ence of internal tides, though it indicates a general lack of spatial

coherence (Webster, l968aand Munk and Phillips, l968).

Yasui (1961) advanced a theory for internal tides in the strong

front in western boundary current regions; his objective was to ex-

plain the observed lack of internal tides in such regions. His model

was based on a two-layered system with waves propagating along the

axis of the front. He found that the front would tend to block waves

attempting to cross it and would respond by tending to meander.

As this dissertation was in the final stages of revision, Healey



and LaBlond (1969) published an analysis of inertial-internal waves

propagating transverse to a geostrophic current. They did not make

the Boussinesq approximation in their theoretical analysis. (The GE

without the Boussinesq approximation is derived in Appendix V. ) As a

consequence, though the principal part of their GE is equivalent to

the GE of this dissertation, it includes terms with first-order partial

derivatives of small consequence. Two of their qualitative conclu-

sions are identical to deductions made in this dissertation, viz., an

asymmetry in a wave's phase as a function of depth, which is 0(s),

where s is the slope of an isopycnal, and an alteration of the pass-

band, which is 0(s2), are induced by the geostrophic current.

Not having made the Boussinesq approximation, they were able to

analyze the energy exchange of the interaction, which they found

0(), 1. e., very weak and negligible.

Most theoretical studies of internal waves in a shear flow, e. g.,

Phillips (1966) and Booker and Bretherton (1967), have been made at

high frequencies so that the Coriolis parameter could be neglected.

The concept of the critical level, i. e. , the level at which the mean

horizontal velocity and wave phase speed are equal, so

- u(z)k - v(z). = 0, has received recent attention. The signifi-

cance of the critical level is that a transfer of momentum from a

wave to a mean flow can occur there. Jones (1967) has included the

effects of rotation and has found two additional critical levels
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corresponding to o - u(z)k - v(z) = ±f, where f is the vertical

component of the Coriolis parameter. He also found that the solutions

to the wave equation differ markedly from the case without rotation in

the vicinity of the critical levels. In the two-dimensional case, the

relation for the most likely critical level reduces to

c (o)

Ch()U(Z)

where ch is the phase speed in the x-direction. Using the esti-

mates of ch(cr) from Figure 32 and u- 10 cm/sec from Chapter

X, then o 1. if could have a critical level. Thus, it is possible

that low frequency inertial-internal waves have critical levels in the

/
coastal region off Oregon. Advective accelerations are not generally

expected to be of significance for a wave propagating cross-stream in

the frontal zone of coastal upwelling because Ch >> u. They could

be significant for a wave attempting to propagate inshore of the sur-

face front because ch decreases as the depth decreases, or

alongshore because ch v. If the critical level existed for along-

shore propagation in the frontal zone, it would be expected to be found

near the surface front where the alongshore flow is the most intense,

or in the pycnoclinic jet at the base of the inclined frontal layer.
2Phillips (1968) has shown that vertical variations of N and

of vertical shear in the steady flow in a layer of finite thickness can
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lead to nonlinear interactions with internal waves causing the inter-

nal waves to be trapped in the layer without a loss of energy or mo-

mentum from the steady fields.

Garrett (1968) has examined the theoretical formulation of the

interaction between internal waves (without rotation) and a quite gen-

eral shear flow. He derived and compared the radiation and inter-

action stress tensors, which were not identical.

Shen (1967) studied the propagation of long internal waves

oriented at an arbitrary angle with respect to a mean wind with verti-.

cal shear. Neglecting the Coriolis force, he found that waves could

propagate at any angle and that the cross-wind modifies the perturba-

tion velocity to include a component of wave particle velocity perpen-

dicular to the direction of wave propagation. Similarly, in the case

of frontal interaction, if the Coriolis force is neglected, the along_

shore component of wave particle velocity, v, is excited due to the

effects of v and v on a wave propagating in the onshore-

offshore direction.

Bowden (1965) investigated horizontal mixing due to a shear cur-

rent, including the tidal as well as the steady component. Using the-

oretical flow models and observational material, he demonstrated

that shear flows led to enhanced horizontal mixing, while density

stratification suppressed vertical mixing. He attributed the turbulent

mixing to tidal fluctuations, and he concluded that such effects are
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likely to be significant in coastal waters.

In laboratory experiments with layered models, Zeilon (1934),

Keulegan and Carpenter (1961), and Weigand (1962) have observed

mixing associated with interfacial waves and the subsequent genera-

tion of secondary currents along the interface. Weigand's results are

of particular interest because he included a stepped shelf; he found

that water was mixed along the interface in shallow water and flowed

into deep water. There is a possible analogy to be drawn here with

the cross-stream flow at the base of the inclined frontal layer off

Oregon. This seaward flow carries newly formed water, which is

usually marked by a temperature inversion, as discussed in Chapter

The instability processes of internal waves are not fully under-

stood. Woods (1968) made in situ photographs of evidence for inter-

nal wave instability. His evidence indicates that the vertical and hori-

zontal scales of breaking internal waves are a few centimeters and

tens of meters, respectively, which are much smaller scales than

those of the observations in this dissertation.

A continental shelf is expected to manifest large amplitude

inertial-internal waves, especially near the coastline where linear

theory predicts the development of unbounded amplitudes. Griscom

(1965) constructed a nonlinear theoretical model for interfacial waves

which successfully reproduced observed waveforms in shallow water

.
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on the continental shelf off southern California. In shallow water off

southern California, LaFond (1961b) found that the character of the

nonlinear internal waveform, and associated surface slicks, was de-

pendent upon the position of the thermocline with respect to the sea

surface and sea bottom. Recent experimental (Davis andAcrivos,

1967a) and theoretical (Benjamin, 1966), studies have found the

existence of finite amplitude, solitary internal waves to be probable.

Thus, it is necessary to be cautious about the validity of the linear

theory and to be alert to the possible occurrence of finite amplitude

effects in the observations over the continental shelf.

The most thorough study of the damping of inertial-internal

waves is that of LeBlond (1966). He considered the case of continuous

density stratification and of damping by eddy viscosity. LeBlond

found that a long wave can not endure more than a few cycles as a

free wave in depths commensurate with those of a continental shelf,

though it can propagate to very large distances from the coast in the

deep ocean. Thus, the internal tide is expected to be damped as it

propagates shoreward over the continental shelf and to be amplified

upon reflection from the sloping bottom. The process of damping

may prevent the unbounded growth of inertial-internal waves by bot-

tom reflection.

The theory of characteristics is used to estimate the effective

horizontal wavelength, (h), and phase speed, ch, taking into
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account the influence of finite depth. Neglecting the frontal interac-

tion, since the slope of a characteristic (a line of constant phase) is

then

22dz a--f 1/2) =±(dx 2 2N -a-

z(x) N2-cr2 1/2±x-x dz.
0 z(x) a-_f

0

Taking the mean depth to be H, then ZB = -H, thus

z (x)=O zB(xz)_H
N2-a-2 1/2

(h)

So N2_a-2 1/2

z (x )=-H a-2f2
) dz

2
dz,

z(x)-0 a--f130 0 1

where z=z =0 is the vertical coordinate of the sea surface and
0

x=x1 i a the horizOntal coordinate of thèinterSection bfthesea surface

with the characteristic originating on the bottom surface at xx0

and where x=x2 is the horizontal coordinate of the intersection of

the bottom surface with the characteristic originating on the sea sur-

face at x=x1 . If the x_dependence of N2 is neglected, then

(h) Nç
2 2

2 ( a- )"2dz;22
a-

if the z-dependence of N2 is neglected, then



75

2H("°2 )l/2

where N2 is the average value of N2. For a wave of period

2'rrT = -, the effective horizontal phase speed is

2H N2-a- 1/2chT( 2
0 -f

Thus, several qualitative remarks follow:

i) Ch > 0, i. e., wavefronts do not propagate horizontally

at the Väisäl... Brunt frequency;

ii) ch -> oo, i. e., wavefronts propagate horizontally at in-

finite speed for inertial motions;
and

iii) Ch > 0, i. e., wavefronts never reach the coastline.

For the semidiurnal internal tide, a- ff and f lO4rad/sec,

the following values are obtained for the continental shelf off Oregon:

H (meters) NZ((1d)Z)

DB15toDB5 140 2x104

DB1O to DB5 110 2 x 1O

Then the estimated phase differences, AG, are:

(h,)
X (rn) c, (cm/sec)

35 78

28 62.



x (KM) EO (degrees)

DB15 to DB5 20 205

DB1O to DB5 10 130

Consistent with the above analysis, the effects of finite depth

on and are investigated. With finite depth, and
p g p

have, overall, only a horizontal component due to reflection of

the waves from the free and bottom surfaces, or, equivalently, due

to the influence of the BC'S.

is a waveguide effect; hence

ponent and are treated as sc

is approximated by m =

76

In other words, the effect of finite depth

c and c have no net vertical com-
p g

.lars below. The vertical wave number

where H is the mean depth over a

horizontal wavelength. Then, the CR yields

Thus

22
Tr o -f 1/2

2N -o

o-oH N2-o2 1/2k22
which is equivalent to the results obtained above for the analysis by

characteristics. From the CR,

2
N2k2+(.)2f2

2 TTZk

then
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C =0-
g k

2 22
1 H2(N-o-)=-

2_f2)p (N

(H)(_2 21/2 2 23/2-f ) (N -0 )

OTF (N2_f2)

Thus, several qualitative remarks follow:

i) c >0,
g

ii) c > 0,
g

and
iii) c >0,

g H-0

i. e., wave energy does not propagate at the

Vis'.l-Brunt frequency;

i. e.., wave energy does not propagate at the

inertial frequency;

i. e., wave energy never reaches the coast-

line.

2 2 2 1 HN2 HN 1/2
For f < a- << N , c () or (c c

g c ii pg

For the semidiurnal internal tide, and the previous estimates

of the parameters,

cm HN cm cmc () (---) C ()
p sec ii sec g sec

DB15 to DB5 78 63 51

DB1O to DB5 62 50 40

For a water depth of 140 meters, the phase speed of a surface tide

is about 38 meters /sec; thus, the surface tide propagates fifty times



as rapidly as the internal tide. Then a surface tide of progressive

wave type traverses the Depoe Bay array in a period of about 10

minutes, while the internal tide requires about 7 hours to make the

traverse. Consequently, with a 10-minute sampling rate, the sur-

face tide is essentially in-phase across the array, while the internal

tide is essentially out-of-phase across the array.

The method of characteristics has been used to deduce the lines

of constant phase for a progressive wave, as shown in Figures 6, 7 and

8. In Figure 6, the case of parallel boundaries and frontal interaction

is illustrated. The figure demonstrates how the frontal interaction

causes the wave to alternately accelerate and decelerate within an

effective wavelength and as a function of depth. In Figure 7, the

case of a wedge with subcritical bottom slope and no frontal inter-

action is illustrated. The figure demonstrates how the bottom slope

retards a progressive wave within an effective wavelength as the wave

propagates into a wedge. In Figure 8, the case of a wedge with sub-

critical bottom slope and with the frontal interaction is illustrated.

Constant values for the parameters were chosen; they are consistent

with the semidiurnal internal tide and the coastal region off Depoe

Bay, Oregon, in August-September 1966:

E Z. 7 x 104sec2,

5 1 x
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-5 -1v =-lxlO sec
x

= 1. 5f,
and -4 -1f=lxlO sec

Both the frontal interaction and the bottom slope have a significant

effect on the lines of constant phase.
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IV. THE PHYSICAL FORMULATION OF THE INERTIAL-
INTERNAL WAVE PROBLEM IN A COASTAL REGION

A. Introduction

The problem of the propagation of inertial-internal waves into

the coastal region off Oregon is conceived to be set in the following

manner. As shown in Figure 2, the surface, or barotropic, tide

propagates northward along the west coast of North America as a

boundary wave something like a Kelvin wave.14 A general discussion

of permissible motions along a coastal boundary is given in Appendix

I, where Figure 7 illustrates the Kelvin wave model of the semidi-

urnal surface tide. Under the proper conditions of density stratificaL

tion and bottom slope, the semidiurrial surface tide generates an in-

ternal, or baroclinic, tide. With the values of static stability ob-

served in the vicinity of the continental slope, the most likely region

for the generation process is over the continental slope since the bot-

torn slope there is approximately critical for the semidiurnal tide.

Thus, the continental slope is considered the source region for the

internal tide. Once generated, the internal tide propagates shoreward

14 Professor Walter H. Munk (1969) has noted that the lunar
sernidiurnal tide propagates along the west coast of North America at
a phase speed which is about 15% less than that of an ordinary Kelvin
wave. He is also analyzing and interpreting recent observations of
the offshore dependence of the tide. He thinks that the offshore de-
pendence of the tide may have some of the trignornetric character of
the leaky modes mentioned in Appendix I.



and seaward from the continental slope. With the internal tide propa-

gating essentially in the onshore-offshore-vertical plane, the prob-

lem is two-dimensionalized in the x-z-plane, but without neglect of

the y_component of velocity. If there is perfect reflection at the

coastline, a standing wave is established over the continental shelf.

If the source for the internal tide is steady, and if any existent energy

sinks are steady, a steady state motion occurs. With the presence of

energy sinks, the motion over the continental shelf has the character

of an incident and a partially reflected progressive wave.

Assuming a steady-state, 4' and its normal derivative, 4''

can be determined by measurements of the velocity field (u, v, w).

The initial line, C, is taken as the boundary between the continen

tal shelf and slope, C = [(Q,z): (z(0) < z <(0))}. Then

F(z) = 4'(O, z) and G'(z) = 4'(O, z) serve as initial data, 1. e. as

Cauchy data, CD, for constructing the solution to the inertial-internal

wave problem over the continental shelf. The measurement of v(O, z)

is not necessary for the determination of 4',
but v(O, z) does pro-

vide information on the alongshore wave number. (In Chapters V,

VI, and VII, the CD are assumed given.) The BC's are then applied

at the sea surface and sea bottom to construct solutions over the con-

tinental shelf. There are two linearly independent solutions, one cor-

responding to each element of the CD pair. The solutions are iridi-

vidually of the form of standing waves. From the two standing wave
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solutions, a progressive wave can be formed. The distinction be-

tween progressive and standing waves is made on the basis of the

time-averaged horizontal energy flux across C. The energy flux

across C is expressed in terms of the CD and their relative time

phases. Other fundamental physical questions are examined viz.,

the reformulation of the energy conservation law, the variational

principle from which the GE is derived, and the conservational law

which the solution to the GE obeys as a function of the horizontal co-

ordinate.

Several integrations are made over the coastal region and

around its boundaries. As shown in Figure 9, the x.-z plane cross

section of the coastal region is defined by D : [(x, z): (0< x < L and

zB(x) < z <ii(x))], where zB(x) and r(x) are the vertical co-

ordinates of the sea bottom and the sea surface, respectively, and

where 0 and L are the horizontal coordinates of the initial line

and the coastline, respectively. The boundary of R C D is

where

r = L)

r =[(x,z):(0<x<X<L and z=zB(x))],

= C = [(0, z) (zB(0)< z

r3[(x,z).(0<x<x<L and z=i(x))], and

= [(X,z) (zB(X)<z<r(X))].



x=X
XO r3 I

Z=q(0).
zo

= ZB(0)

Figure 9. The domain D = R j and r, the boundary of R. r . F4.



when X = L, R = D and F4 vanishes, since zB(L) = (L). The

outward unit normals, ', on r are:

i) For

torn slope,

(m,-l) dzB
2 1/2' where rn = - is the bot-

dx
(l+rn

ii) For F2, = (-1, 0),

iii) For F3, 4 = (0, 1), and

iv) For r'4, 4 = (1, 0).

The line integrals around F have the following limits of integration:

s(X)
I j ds= j ()ds,

F1 s=s(0)

where s = zB(x) is the coordinate of the bottom surface;

'2 S= ()dz= 5
dz,

F2 z_zB(0)

where i- is the coordinate of the sea surface;

13= 5Hdx= Mdx;

and (X)
14= 5 ()dz= 5

dz.
F4 z=zB(X)
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The following symbols are used for certain integrals in this chapter;

and

n=
51(x)

()dz
zB(x)

= )dxdz.

Two integrals occur frequently in the following sections:

and

i) P0 5 wdx p0 5

where

PE,

PE(X) 5 Vdx

is the total potential energy of the free surface in R and

where
2

i gl
V(x) 02

ii) P0 $ urdz =

r2

where F is the horizontal energy flux across C = r2.

Since = 0 for SHM, then F=r where



F=p $ td
Z ::Z

B
0)

is the time-averaged flow work across C and

p0=0
z=O

zt
-) uq

= p0g x=O
z=0

is twice the time-averaged advection (flux) of potential energy of the

sea surface across C.

B. The Time-Averaged Horizontal Energy Flux
Across the Initial Line

For simplicity, the case of constant coefficients is considered,

though the same results would follow for cases with variable coeffi-
15

cients. From Section VI. C., the general solutions for qi and ir

in the case of frontal interaction and constant coefficients are:

1-x2 {[X1F(z-X2x)-X2F(z-X1x)] + {G(z-X2x)-G(z-X1xfl}

'5The analysis would require evaluating ii at the initial line
from ii expressed in terms of an integral involving the CD and the
Riemann-Green function.



and

i(N2o2) {{X1F(zX2x)+XF(zxx)J + [G(z_X2x)+G(z_X1x)]},

where

F(z) = and G'(z) x'x=Ox= 0

are the CD and where and are the slopes of the upgoing

and downgoing characteristics, respectively. Thus,

and

zx=o
-F'(z)

i(N2_cr2)
(Xi+X2)

a- 2

Since F and G linearly independent, and since the time

dependence of F and G is only an implicit argument, a time

phase may be arbitrarily assigned to F and G. Take

and

ia-tF(z;t) = e F(z)

i(ot+4(z))Q()G(z;t) = e

The time dependence is considered understood when not explicitly dis-

played.
t

The time-averaged horizontal energy flux, F , across

C is
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F =
5'

[*u+nu*]dz,

where ( )* is complex conjugation

i40
C (N22)Ft(z)G(z)[-ie +ie Idz

2

22
= (N -o ) F'(z)G(z) sin (4(z))dz t

If F and G are inphase, then 4 = 0 for all z and F =0.

Therefore, the standing waves formed independently by F and G

combine to form a single standing wave, or an internal seiche,
I

shoreward of C. If 0 for all z, then FXJ = 0 only if

F'(z) and G(z) are orthogonal on r2 with respect to weight

function sin ( c(z)). Otherwise, a progressive wave exists. If

= N, FXJ = 0, as it must for the strictly vertical Visl-

Brunt oscillations.

C. The Energy Integral

The energy integral is formulated in a more general way than in

Chapter II. New definitions of energy components are necessary for

the analysis in the following sections. The analysis is valid for the

frontal interaction, variable coefficients, variable depth, and a free

surface.
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Rewrite the primitive equations:

(1) u - fv

(2) v + (f+v )u + wv = 0,t x z

(3) w +i=-Tr,
t: p Z

0

(4) Pt+u-x+w-z=o,
and

(5) u +w =0.x z

(1) and (3) are similar because there is a pressure term present,

while (2) and (4) are similar because of the absence of a pressure

term. This similarity of forms suggests treating u and w and

v and p in an analogous manner when forming energy integrals.

Take (u,w) = (, then (2) and (4) become

(2)' (v+(f,v)+v)t = 0,
or

v + (f+v) +
:;zr:,

= 0, WLOG

and

(4)'
+ zt = 0,

or

p + p + = 0, WLOG.

Eliminate v from (1) and p from (3) with the use of (2)' and (4)'

then
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(1)' Ut + [f(f+v)+M2]= x

and

(3)' wt + [M2N] = -Tr
z

Multiply (1)' by u = and (3)' by w '
then

t

2 2
U -

(1)" + f(f+v )(L) + M2 -U1T
x Zt x

and
2

w
(3)" + + M2t = -WIT

z

Add (1)" and (3)" and multiply by p, then

(6) ()(u2+w2) + ()(f(f+)2 + 2M2 + N22)) (up + wpt x z

= -(up) (wp),

by (5), the FOG. The LHS of (6) is taken to be the total energy per

unit volume, F. Integrate (6) over D, then

= S
o(um-w)ds

+ 5 updz - 5 wpdx
r1 Jl+m2

F - (PE),

since the RBC holds along r1. Thus,



(E+PE ) =F.st

Therefore, if = 0, then E + PE constant, without as-

suming SHM as in Chapter II. Thus, from Section B, energy is con-

served for a standing wave and not for a progressive wave.

The components of E are defined below:

2 2pu pw
0

2 ' 2

.

and

thus

= [f(f+)2 + M2],

= + M2],

E T + V, T TH + Tv, and V = VH + V,

where T and V represent kinetic and potential energy, respec-

tively, and the subscripts H and V represent horizontal and ver-

tical components, respectively. With the introduction of i, and

16with the assumption of SHM, then

16Having assumed SHM, then all of the energy terms implicitly
involve the products of first partials of t.i and of qi conjugate, or
the cross products of the partials of 4 and i and their conjugates
in Section D. This point is essential in Section D where the sum

+ 13 is shown to include the time-averaged horizontal energy flux
across C.
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2
T 2 , Tv = ),x

p f(f+v M20 x 2VH=z[ 2 2xz'
0 0

N 2
V xz1

Without the frontal interaction,

p

thus VH is the rotational potential energy. With the frontal inter-

action, both VH and are modified and v is not positive

definite.

Similarly, the Lagrangian, A., is required in the following

sections:

where

A = AH +

AH = TH and Av = Tv Vv.

Taking into account the potential energy of the free surface,

x
0 S



where A is then the Lagrangian for a vertical column.

D. The Variational Principle

The variational principle is discussed for three reasons:

i) The GE and BC's are placed on solid analytical and physical

grounds once the variational principle is obtained,

ii) It is the analysis for the variational principle which has led

to the proper identification of the components of E in

Section C, and

iii) The variational principle also leads to the proper interpreta-

tion of the spatial conservation law in Section E.

The mechanical system analyzed is a continuous system in two inde-

pendent variables; consequently, the variational principle involves

double integrals (Gelfand and Fomin, 1963). The principle of least

action is invoked and the action integral, J, is sought. Since x

is constant on C, x is time-like, and then

J= C Adx
0

x=O

f(f+v
2 ]dxdz

SSE

N2 2 x
1-(--) )(4i ) +(1-

2
)(i.Ii) +2

20 X
0

D

- -
,

a- r3
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Let t be varied to qi, where = q + e4 + 0(E2), E is an arbi-

trarily small parameter, and e , the class of admissible func-

tions. is defined to be the class of all functions which are twice

continuously differentiable in D and which vanish on con-

sistent with the RBC along the bottom surface, and which equal F(z)

on r2, consistent with the CD given on C. Vary J with re-

spect to 4, then

bJ E p { 53
1

X
) dxdz

L °- x x 2 x x z
0

D

- $
+ O(E2).

I'3

The condition for the first variation of J to vanish is that

+ M2J

+ [(2f(f+ )) +M2]}dxdz g$dx = 0.

Integrating by parts, this condition becomes

zI.=I +1 +1 +1 =0,
.1 0 1 2 3
1

where



10
5[(N2o2)qJ

- 2M2qi (o2f(f+v))qidxdz,

$ [m( (-N2) +M2 )- ( +(-f(f+v ds
x z 1/2X Z X (1+m)

= 0, because 4
vanishes on

12 = $ [(2-N2) + M2Idz
2

=
$

4(io-ir )dz, from the z-component EOM,
r2

(b 1(0)
= icr 4 lTdz icrcjlrl

z=zB(0)
and

r1(L)
13 XI(0)

Then

since

12 + 13 = icr F'(z)dz +
r2

+ $ +g4i ]dx,
x xxr3

z=1(L) z=zB(0)
= 0.

Since El. must vanish for any 4 e , take 4 = 0 on r
11

for a particular case, then I 0. But 4 is otherwise arbitrary,



thus

(N22) - 2M2 - (2-f(f±v)) = 0,

which is the GE. Again, as a particular case, let = 0 on

then

Since

+ 13 = 0. t
io F'(z)Trdz = F,

Ta p0

then J an extremum only if there is no time-averaged horizontal

energy flux across C. Finally, with FX/ 0, and for any non-

zero on F3, it is necessary that

and

= g4 at z=r(0)

(2-f(f+v)) + M2 + g - 0 on

which are both forms of the FBC.

The GE and the FBC have been derived by a variational prin-

ciple, subject to the kinematic constraint along the bottom boundaryIt
and the constraint of = 0, or the conservation of energy in

D. The identification of the component Tts and V's in the pre_

vious section has been shown to be consistent.



For an aliernative interpretation of J, A is examined in terms

of the pressure, p:

A

p
=

2cr

then

or,

J I Adx-PE
I) S
x=O

5wp+ (up) ]dxdz PE

= S wpdx 5 updz] PE
S

t

S pdx-Fxt 2cr s
2cr

2 i (x)t
2cr s2

dx----F -PE

t
J =

2cr

t
Thus, if F = 0, then

i) J=O.

ii) ÔJ = 0, and

iii) E is conserved.



With J 0, then

or

+ - PE = 0

TH+TVHVV+PE
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which proves the equipartition of the spatially averaged kinetic and

potential energy.

E. The Spatial Conservation Law for the Mixed
Initial - Boundary Value Problem

The GE is investigated to find the conservation law which the

solution obeys as a function of space (Courant and Hubert, 1962), in

contradistinction to the conservation of energy as a function of time.

The role of the FBC and RBC in determining the spatial distribution

of the energy quantities for the mixed initial-boundary value problem,

MIBVP, is determined. The condition of SHM in time continues to apply.

Since x is time-like for the MIBVP, the GE is multiplied by

p0
i and rearranged:

0

or,

(7)

wh e r e

) [(N2-2) - 2M2 - (2-f(f+))] = 0

V2 + h = 0,
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V2 z

1 N2 2
f(f+v) 2

q +
2

0 0

M2
f(f+v )

[( )+(l- )( )}},

x 2 xz
0 0

h = [(M2) ( )2+f ()2
- 2fv()J

p=-- [(fv -fv ) +(fv -fv )].
2 zz x xz z x xx z xz c z

2o

The divergence form of q prompts integration of (7) over R.

The areal integral over R is reduced to line integrals along r

to find the conservation law:

5$'
.+ h]dxdz = 0,

or

(8) S q.'cds H,
r

where

H = - hdxdz.

Then

j q.ndsI1+12+13+14,
r

where



and

Take

p0

'
0
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ds2 2 2-f(f+v 2 1/2,+ {M (qi ) +(oX X (1+m)

f(f+vx
'2 + (1-

2
)()2Jdz,

a-

-P0 e

'3 j [M
)2

+ (a-2-f(f+v ))( )]dx,
x x xZ

r
3

I =2c N2 2
f(f+v

4 2J + (1-
2

)()2Jdz.
0 a-

p0 i(x) N2
f(f+v

x)2 + (1x(x) (x)2 -1
2

)()2}dz
0 a-

B

= LH Lv

from Section C; then

= -x(0)
and

14 =

From the FBC,



where

13 = S
a-

2
1(X)=g(qi)

I

20- z=i(0)

= V (X) - V (0).
S S

Since qi + m4i = 0 on then

2
muB 2 2 2

2 1/2
{m (N -a- )(o-2-f(f+v))+2M2m}ds,

2a- (1+m )

X

UB zz_zB(x)
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The integrand of I is reduced further by introducing the equations

for the slopes of the characteristics derived in Section V. B.

S + R

and
= S - R,

wh e r e

-M
(N2-a-2)

and

(a-2_f(f+v ))
R=(S2+ X )1/2

(N2-a-2)

Thus,



2
-p muB

=
2 1/2

(N2-2)(X1-m)(-X2+m)ds.
(1+m

Take B = _I, then the spatial conservation law, (8), is reduced

to:

(9) (X)+V (X)=(0)+V (0)+B+H.
S S

law:
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Several deductions can be made from the spatial conservation

i) The law governs the balance between - Lv + V as

influenced by B and H.

ii) H contains the contribution of the frontal interaction; it can

be considered to represent the effects of internal reflections.

iii) x(°) can be written in terms of the CD:

x(0) =f [(1)(G'(z))2+(1
f(f+

x )(F'(z))2Jdz.
2

Thus, x(°) is unrelated to the horizontal energy flux

across C, and its time-average is not zero. For f(f+ v)

< o-2<N2, which excludes the anomalous, high and low fre-

quency inertial-internal waves, then x(x)> 0 for all x.

iv) V contains the effect of the free surface; if the sea sur...

face is rigid, V = 0 for all x.
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v) B contains the contribution from the horizontal kinetic

energy at the bottom. B = 0 for all x if m = 0 for all

x or o= N, i.e., for uniform depthor Visil-Brunt

oscillations, B makes no contribution. For

f(f+ v ) < o <N2, X > 0 and X <0, thus (X -m) is
x 1 2 1

of arbitrary sign and (-X2+m) > 0. If = m for all x,

then B is again zero; i. e. , for critical bottom slopes, B

makes no contribution to x+ V - H. If > m for all

x, then B > 0; i.e. , for subcritical bottom slopes,

x + V - H increases as x increases. Similarly, if

< m for all x, then B < 0; i. e. , for supercritical

bottom slopes, x + V - H decreases as x increases.

vi) As X L, then R D and vanishes, hence

X(X) ö(L), where ô(L) 0 only if LH Lv be-
comes infinite in the limit. Thus,

b(L) + V(L) = x(0) + V(0) + B(L) + H(L).

Neglecting the frontal interaction (H(L) = 0), and assuming

the sea surface rigid (V(L) = V(0) = 0),, in the case

of subcritical bottom slope, 6(L) = x(0) + B(L) > 0.

Therefore, LH Lv and v24i become unbounded at the

coastline for the case of subcritical bottom slope, no frontal

interaction, and a rigid sea surface. If either the frontal
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interaction or the free surface is included in the analysis,

v2&Ji need not become unbounded at the coastline. For the

critical and supercritical cases, i5X(L) can vanish. For

instance, in the super critical case with a rigid sea surface

and without the frontal interaction, there can be a balance

between x(0) and B(L).

In particular, the analysis of the conservation law has proved

the singular nature of the first order partial derivatives of iii, and

thus the velocity field, at the coastline in the case of a subcritical bot-

torn slope, a rigid sea surface, and no frontal interaction. This fea-.

ture of the solution is also demonstrated from an analysis of the

characteristics in Section VI. D. for constant coefficients and a uni-

form bottom slope. The analysis of this section is valid for a more

general bottom slope. The most important result is the demonstra-

tion that the free surface may play a crucial role in keeping the solu-

tion finite at the coastline.



V. THE MATHEMATICAL FORMULATION OF THE
MIXED INITIAL-BOUNDARY VALUE PROBLEM

FOR INERTIAL-INTERNAL WAVES

A. Introduction

In this and the two succeeding chapters, solution theories for a

set of problems for inertial-internal waves in a coastal region are

developed and applied. In this chapter, the foundations of the theory

of the MIBVP for hyperbolic, second order partial differential equa-

tions in two indpendent variables are discussed. The GE derived in

Chapter II for inertial-internal waves with the frontal interaction is

used in the discussion. Chapter VI treats cases for which the GE has

constant coefficients, and Chapter VII treats cases with variable coef-

fi ci e nt s.

B. Formulation in Terms of the Characteristic Coordinates

Since the GE is hyperbolic in the spatial variables for the fre-

quencies of the inertial-internal wave passband, there exist charac-

teristic surfaces in (x, z, qi)_ space associated with the solutions to

the GE. For problems involving variable density stratification and

variable bottom topography, a solution theory can be constructed

based upon the properties of the characteristic surfaces. When finite

amplitude effects become significant, the theory of characteristics

for the linear problem can be extended to analyze the quasi-linear
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equivalent to the GE. The two-dimensionalized problem can be ex-

amined in terms of its ordinary characteristics; for higher dimension-

al or higher order problems, bicharacteristics, and possibly higher

order characteristics, must be used, about which there is only lim-

ited knowledge and experience. Campbell and Robinson (1955) pre-

sent a discussion of the MIBVP, including a solution theory, for a

wedge-shaped region. The discussion which follows is largely based

on material to be found in Garabedian (1964), Courant and Hubert

(1962), and Abbott (1966).

There are three types of initial value problems:

i) The Cauchy problem, which occurs when the function and its

normal derivative, i. e. , the CD, are given along a non-

characteristic ground curve, i. e. , the initial line, C,

ii) The Goursat problem, which occurs when the CD are given

along a characteristic ground curve, i. e., an ordinary char-

acteristic, and the function, or its normal derivative, is

specified along a non-characteristic ground curve which in-

tersects the characteristic ground curve, and

iii) The characteristic initial value problem, which occurs when

the function is given along each of two intersecting charac-

teristics.

For the MIBVP, the CD are given on a non-characteristic mi-

tial line, C, and BC's are given on non-characteristic curves, B,
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except where noted. B '..j C = F, the boundary of D, where D

is the region for which the solution is sought. Consequently, the

MIBVP is composed of problem types i) through iii). The solution is

uniquely determined in the sub-region, R, the domain of influence,

bounded by the intersecting characteristics drawn through the terminii

of C.

If a characteristic is tangential to B, B is termed critical.

If one of the two characteristics intersecting at any point on B has

a segment in D in the positive direction of the time-like variable,

and if the other characteristic has a segment in D in the negative

direction, then B is termed subcritical. Otherwise, B is

termed supercritical. The three cases for B are illustrated in

Figure 6. If B is critical, the solution is over-determined in the

sense that the CD and BC can not be independently specified. If B

is supercritical, the solution is over-determined in the sense that

both elements of the CD can not be independently specified. If B

is subcritical, a BC can be used to extend each element of the CD

pair from C to CE independently. CE is the extension of C

which is necessary to enlarge the domain of influence to cover all of

D. This construction is indicated in Figure lOf. CE has two com-

ponents: CEt the extension of C above the sea surface, and CE

the extension of C below the sea bottom.

The general linear GE is
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(1) (GE): A4i + Bi + C4s 0
XX XZ ZZ

where A, B, and C are functions of x and z.

Through a change of variables, from (x, z) to (, ,) such that the

Jacobian, J(, r,), of the transformation does not vanish, the GE

is reduced to the canonical GE, the CGE: G(r1, ,, t.i,

where and are termed the characteristic coordinates. The

family of curves r and r, constant constitutes the family of char-

acteristic ground curves of the problem. In the case of constant co-

efficients, the CGE becomes 0, the one-dimensional wave

equation and the coordinate transformation is linear. When at least

one of A, B, and C are variable, the general canonical form is

usually the simplest reduction attainable since the coordinate trans-

formation is nonlinear. Because the solution theory of the one-

dimensional wave equation is well-known, it is relatively simple to

solve a problem with constant coefficients, accounting for the BC's

and boundary shapes. A significant difference is that the general

theory of second-order linear hyperbolic equations in two independent

variables is required to solve problems with variable coefficients.

The change of variables is performed in the usual manner,

yielding:

(2) L(4) = Q(,)qi+ 2Q(1,,)qi + Q(,r,)+ L(1)qi + L(,)qi, = 0,
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where the operator Q(r, s) is defined to be, with r and s as

dummy variables;

Q(r, s) A(r s ) + !B(r s +r s ) + C(r s ).xx 2 xz zx zz

To accomplish the coordinate transformation and reduction to

canonical form, it must be true that

For example,

implies that

Q(1,r1)=Q(,,,)=O and Q(1,,)O.

= 0

dz x +B±(BZ4AC)VZ
l' X2) ZA

where the discriminant, B2-4AC, is greater than zero in the do-

main of hyperbolicity of the GE. l
and are the slopes of the

characteristics. An identical relation follows for ,, so the equa-

tion with the positive slope is assigned to 1 and the one with a

negative slope to . It is convenient to take

(B24AC)VZ BRz
2A

and S=,
then

X1=S+R and X2=S-R.
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When R and S are constants, the characteristics are given by

and =z-X2x.

Again, in the domain of hyperbolicity of the GE, it follows that,

Q(m) =A(,X) 1 x 'x 4AC-B2
r 2 rj 2Azz zz z z

This condition on Q(ri, ,) is equivalent to satisfying the require-

mentthat i.e.,

[(B4AC)J
o.J=rjxz

Since Q(,r) and Q(,, ) = 0, and though L(4i) must be contin-

uous, 4 and may be discontinuous because they do not ap-

pear in the CGE. Thus i4i may have discontinuities in its second

and higher order derivatives with respect to and ,, but only

across characteristics r and , constant, respectively. Such

discontinuities correspond to "shocks;" they are constrained to propa-

gate along the characteristics. Finally, the CGE is:

-L(1)qi -
(3) (CGE): 2Q(,,)

If A, B, and C are constant, the RHS of (3) is zero. In

that case, the general solution of the CGE is that of D'Alembert:
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1
(4) +

which is derived in detail in Section VI. C. The arbitrary CD given

on C are

and

qi(O, z) = F(z)

dG
z) = G'(z), where G'(z) -

It is possible to apply the BC's to (4) to extend the CD over CE; this

technique of analytic extension is developed in the next chapter.

When the coefficients are not constant, a canonical form of the

solution does not necessarily exist. One approach is to solve the ad-

joint problem to find the corresponding Riemanu-Green function.

Then Riemann's method is used to reduce the problem to quadratures

to be carried out along C and the bounding characteristics; this

subject is pursued in Section F. Alternatively, the problem can be

treated as a first-order hyperbolic system of two equations; this ap-

proach is discussed in the next section.

C. Reduction to Hyperbolic Systems

The GE,

+ (X1+X2) + = 0,

can be written as
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(5) (w+X2w) - X1(u +X2u ) 0

or

(6) (w+?1w) - X2(u +X1w ) 0.

Because (5) and (6) have the form of directional derivatives along the

characteristics, they are a pair of coupled, first-order ordinary dif-

ferential equations equivalent to the GE.

Since

and

then (5) and (6) become

(7)

() +K () =()
X 1 z X

()x x,

w, - = 0,

an integration to be carried out along r constant, and

(8) w -Xu =0,
TI 21

an integration to be carried out along constant.

Because and are functions of TI and , the integra-

tions can not usually be accomplished in closed form. Formulas (7)

and (8) are readily adaptable to numerical solution, Section VII. E.

Though more formal procedures are generally necessary, in

this case, the Riemann invariants of the GE are found directly from
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(7) and (8). Integrating (7) along ri constant and (8) along

constant, then

w $ X1du

and
1 constant

S2 w Xdu
, constant

are the Riemann invariants along r and constant, respectively.

Since and ) generally depend on both 11 and T, and

J2 can not always be explicitly evaluated, yet they can be used as

conservation laws to check the solution. If and are con-

stant,

and

on

J2=w-X2u on

Formulas (7) and (8) constitute a non-symmetric system of

equations. For analytical purposes, it is desirable to have a sym-

metric system of equations. There are formal procedures for trans-

forming (5) and (6) to a symmetric system, but, in this case, it is

simpler to rewrite (7) and (8):

(7)' (w_X1u) + X2(w-1u) =

and

(8)' (w-X2u)+X1(w_X2u) = _[(X2)u+X1(X2)u].
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The form of (7)' and (8)' suggests defining canonical variables U1

and U as

U1 = w -

and
U2 = w - X2u.

Then (7)' and (8)' reduce to

(9) (U1) =

and

(10) (U) R(U U)x21= 2 1 2 TI'

where

and

[(x )lx
R1

[(x ) + (XZx 1 Zz
R2 (x1_x2)

The symmetric system of equations, (9) and (10), is awkward to

solve, but several deductions can be made:

i) If and X2 are constant, = R2 = 0. Thus,

U1 = J1 on TI constant and U2 = J2 on t constant.

ii) If and are variables, then x, and x may be

difficult to evaluate explicitly. In general, (9) and (10) must

be solved together with the equations for and .

iii) Since the system of equationàis Lipschitzian, the Cauchy-Picard
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Theorem can be applied to the first integrals of (9) and (10)

to prove formally the uniqueness and existence of the solu-

tion. The first integrals can be used as the basis of an

iterative procedure for the construction of a solution.

iv) In principle, (9) and (1.0) are integrated along r and ,

constant, respectively. At the intersection of r and ,

u and w are obtained from U1 and U2. This pro-

cedure continues until one of the characteristics strikes a

boundary, where the BC's are applied to switch from the

"incoming" characteristic to the "outgoing" one. The RBC

on a sloping boundary yields

(X-m)
U1 (X1-m) U

The FBC yields

eLe(X1)J e[e(x2x2)j

where 2 2
(X1-X2)(N -a-

2g

This differential equation reduces to quadratures which must

be carried out along the sea surface from the initial line.
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D. The Mixed Initial-Boundary Value Problem

The structure of the MIBVP is examined to understand how

CGE's with variable coefficients can be solved in bounded domains.

The linear, inhomogeneous CGE is discussed:

where

L(qi) = - f = 0,

-L(1)4 -L(,)qi
11

ZQfr), ,)

The first step is to reduce the full problem to a succession of

problems, each of which falls into one of three categories: a Cauchy

problem, CP; a Goursat problem, GP; or a characteristic initial

value problem, CIVP. In Figure lOa, the domain of interest is shown,

together with the field of limiting characteristics dividing the domain

into sub-domains where the problem is indicated to be one of the

three categories listedabove. InFigure lOe, the domain of interest is

shown in the corresponding plane of characteristics.

A CP governs the solution in only one sub-domain, D, the

curvilinear triangle bounded by C and the two intersecting charac-

teristics emanating from the extremities of C. For any point

R E D C iD, Figure lOb, the solution of the CP is
0 00

= SSfd1d.
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The GP's govern the solution in the sub-domains F. and G.,
1 1

which have a segment of either the sea surface, B1, or sea bot-

tom, B2, respectively, as one side of their curvilinear, triangular

boundaries. For F and G , with the CP solved in D , the
1 1 0

solution and its normal derivative are given along the characteristics

and Boundary conditions are also specified along B1 and

B2. For any point R1 E F1 C F1, Figure lOc, the solution of the

GP is

= - + + fdd

The solution is found in an analogous fashion for R2 E G1 C G1.

The CIVP's are located in the sub-domains E.; which are in-

terior, curvilinear rectangles bounded by characteristics. After two

GP's contiguous to E. have been solved, the solution is then known

along two of the bounding characteristics of E.. For example, the

solution is given along i separating F1 and E1 and

separating G1 and E1. For any point R3 e E1 C E1, Figure

lOd, the solution of the CIVP is

(R3) = - (S3) + + 3fdid.
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Thus, GP1s and CIVP's continue to be solved alternately until the

solution has been obtained for all of D. Each problem type involves

an integro-differential equation which could be solved by Picard's

method of successive approximation. The necessity to solve many

component problems and to use an iterative scheme is inefficient.

The next two sections are devoted to removing these deficiencies.

E. The Riemann-Green Function

The necessity to solve the above integro-differential equations

can be circumvented by employing the Riemann-Green function, W,

for the CGE. W is the solution to the adjoint GE, the AGE, and

certain auxiliary conditions:

i) (AGE): M(W) = W - g = 0,

where

[LwLw} L(1)
+ (-fl) JW,g + [(Q( Q( )

L (ri)ii) W = W for i

iii) w =
L()

1 Q(1 )
W, for and

iv) W=1 at 1=1'0

Thus, a CIVP must be solved for W. Together, the last three con-

ditions define a pair of ordinary differential equations and a boundary

condition common to each equation. This pair of equations can be
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solved at least implicitly. W has the property that L(W) = 0 when

W is considered a function of and . When W can be
0 0

found, the solution for i4.s can be written in terms of integrals along

C of products involving W and the CD.

Taking the CP in Figure lOb as an explicit example, then

(11) (R) R) + qi(Q )W(Q; R)]

where

Q
n 0

W(P; R)i(P)[ L(1)d-L()di1
,Jp Q(q, )

0

Q
c 0

W(P;

0

0
r 0

4(P)[W (P;R )d1-W (P;R)d],
P TI

0

P = (, c,).

Analogous formulae exist for the GP's and CIVP's. Since, if the

Riemann- Green function is known, surface integro - differential equa_

tions are replaced by line integrals, there is motivation for seeking

Riemann-Green functions. Specific cases are discussed in Chapter

VII and in Appendix I. Even when W can not be found in explicit

form, it generally can be reduced to quadratures. With W ex-

pressed in integral form, it can be substituted into the above formulae.
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By use of an asymptotic expansion for the integrand of the integral

representation of W, a bound for the solution to qi can be eval-

17
uated in the limit of large argument.

F. Solution of Mixed Initial-Boundary Value Problems
With the Use of the Riemann-Green Function

In a MIBVP, the BC's can be introduced into the formal solution

of a CP to find the rules for extension of the CD from C to all of

CE. In other words, by extending the CD from C to CE, the

MIBVP is converted into a "super" CP, Figure 1OL The termini of

C are P1 and Q1. The solution is sought in the triangle whose

domain of dependence is bounded by the characteristics emanating

from the termini, and E' of CE.

For conveneience, both boundaries, B1 = B1(1, ,) and

B2 = B2(1, c,),
are assumed rigid so that qi(B.) = 0, (i 1, 2),

WLOG. Write the integrals of (11) in the following form:

I(P , Q ;R ) I(P , S ;R ) + I(S , Q ;R ),
0 0 0 0 0 0 0 0 0

where S is any point between the P and Q on the CE.
0 0 0

Let R1 be the parameter of B1, then

17 This use of the Riemann-Green function was brought to the
attention of the author by Dr. R. B. Guenther, Department of Mathe-
matics, Oregon State University.



4i(R1) = 0 = qi(P1)W(P1;R1) + 4i(Q1)W(Q1;R1) + I(P1, Q1;R1),

or
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(12) [qi(P1)W(P1;R1) + I(P1, S1;R1fl = _[qi(Q1)W(Q1;R1) + I(S1, Q1;R1)],

where the characteristics which intersect at R1 emanate from P1

and Q1. Let S1 = P1, then the RHS of (12) is known while the

LHS contains the unknown functions qi(P) = F(P) and p(P) = G'(P)

for P1 < P < P1 and > Q. Since P1 and are deter-

mined as functions of R1, then the problem of extending the CD

from to I has been reduced to solving a pair of independent

Volterra integral equations of the third kind for F(P) and G(P).

Similarly, application of the boundary condition on B2 yields

another pair of independent Volte rra integral equations of the third kind

for F(Q) and G(Q), Q2 < Q < Q1 and P2< P1, allowing the extension

oftheCDfrom I to 13 Proceedinginastepwisefashion, F and G

can be extended to all of CE by alternate use of the integral equations.

Thus, the MIBVP can be solved in general if the Riemann-

Green function can be found and if the resultant integral equations can

be solved. More general boundary conditions could also be intro-

duced. In the next chapter, the above stepwise or "leapfrog" exten-

sion technique is employed in cases of constant coefficients. Then

the GE reduces to the one-dimensional wave equation, for which

w=1, so



qi(R )
0

.-[qi(P)+qi(Q)] +

Q
S0

{(P)d4(P)ch]
p
0

P

!
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which is D'Alembert's solution. In that case the integration can be

performed and there is no necessity to solve integral equations.
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VI. SOLUTIONS FOR FRONTAL MODELS WITH CONSTANT
COEFFICIENTS BY THE METHOD OF CHARACTERISTICS

AND THE EXTENSION OF THE CAtJCHY DATA

A. Introduction

The solution theory for frontal models with constant coefficients

is developed and applied. The cases of parallel and sloping bound-

aries and of symmetrical (without frontal interaction) and asymmetri_

cal (with frontal interaction) characteristics are considered. The

solution theory is based upon utilization of the BC's to derive reflec-.

tion rules for the extension of the CD as outlined in Section V. F.

The equivalence of normal mode solutions to solutions given by char-

acteristic theory is first demonstrated to illustrate the technique.

The general reflection rules are then derived and applied in a series

of cases.

The problem with constant coefficients can be formulated and

solved in terms of the stream function, 4, or the u and w

velocity components with equal facility. Use of the stream function

yields the most concise representation of the solution, while the use

of the velocity components yields the quantities actually sought. The

stream function has been chosen for the analysis.

In Sections B through F, a succession of cases with subcritical

bottom slopes (0 < m < are considered. The basic solution

technique is extended to supercritical (0 < < m) and critical
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(m bottom slopes in Sections G and H, respectively.

In all cases, it is considered that the solution is sought in a

coastal region, i. e. , shoreward of the initial line, C, located at

x = 0. It is understood that the CD would in principle be matched to

the deep ocean normal modes at C once the issue of net horizontal

energy flux across C was settled. The matching problem is dis-

cussed in Appendix I.

B. Equivalence of Normal Mode Solutions to Solutions
the Method of Characteristics when the Boundaries are

Parallel and when there is no Frontal interaction

The case studied is elementary because the upper and lower

boundaries are assumed parallel. A similar discussion has been

given by Sandstrom (1966) but with different objectives and logical

context.

The GE is:

where

xx 2zz 0,

2 2 o2-f2
x -R 2 2N -o

and qi is the stream function. N2 is assumed constant so that

is constant. The domain of interest is D : {(x, z) (0 < x < L,

-H < z < r) }. The bottom BC is

RBC: = CB : constant at Z = -H.



The surface BC is either

or

RBC: C : constant at z = 0

22
FBC: =Oatz=0.

xx g z

The BC at the vertical coastal barrier is either

or

RBC: = Cv : constant at x = L

LBC: 4= S(z;t) at x = L.
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The relations between CB, C, and C are left open for the

present; they are established successively to illustrate the imposition

of constraints on the solution. The CD are

and

CD: 4 =F(z)

4 = Gt(z) at x = 0, i. e., on C.

Normal Mode Solution

Normal mode theory is based on soy, so = X(x)Z(z) and

the BCts in x and z are satisfied by the forms chosen for X

and Z. The solutions for X and Z are of the form:

X = A cos (KXx) + B sin (KXx)
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Z C cos (K(z+O)) + D sin (K(z+O)),
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which are then subjected to the BC's. A and B are proportional

to e1t but with an arbitrary relative phase at this stage.

Treating first the BC's in z, for CB = 0, the RBC is sat-

isfied if e = H, so Z = sin (K(z+H)). D has been absorbed by

A and B. If the condition of no net mass flux thru a vertical col-

umn is imposed, C = CB. Then the RBC implies that KH = nrr,

n integer. Alternatively, the FBC implies that

(N2_o2)tan (K H) = , n : integer.
n Kgn

In either the FBC orRBC case, the eigenvalues, {K}, are deter-

mined, with little quantitative difference between the two sets of

eigenvalues. It suffices to treat each normal mode individually.

The BC's in x are next applied. First, the BC at x = L is

examined. The LBC implies that

S(z;t) = D[A cos (KXL) + B sin (KXL)J sin (K(z+H)).

Take
iotS(z, t) = S(z)e

and
S(z) = S sin (K(z+H)),

0

where
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S = D[A cos (KXL) + B sin (K?L)].

The RBC applied at x = L corresponds to S = 0, i. e.,

C = S = GB = G = 0 for continuity of qi along the boundary. If

S 4 0, there is still no net mass or momentum flux through the

coastal boundary; as an artifice for this discussion, the coastal

boundary is conceived to be a soft barrier which can absorb energy,

but not mass or momentum.

In either the LBC or RBC case, the values for A and B

are made dependent by the coastal BC. Their relation depends upon

the parameters S, K, X, and L. Take A Ae10 and

(io-t+)B = B e , where A and B are constants.
0 0 0

The CD are examined:

and

x=0
= F(z) = A sin (K(x+H))

x'x=O G'(z) KXB sin (K(z+H)).

Thus, once the coastal BC is fixed, there are no degrees of freedom

remaining in the problem, and the CD are constrained to obey the

above relations. The time-averaged horizontal energy flux, FL

is used to clarify the coastal BC. Since

u = -K cos (K(z+H))[A cos (KXx)+B sin (KXx)]

and



or

then

i(N2-o2)
¶1 = 4i,

z a- x

i(N2-o2)X
Tr = - cos (K( z+H))[-A sin(Kx)+B cos(KXx)],

a-

fbO

F = Re[- (t)d]
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= p A B (N2-cr2)XK sin()
o o o 4a-

where Re means the real part. Thus, if = 0, = 0 for

(must) (must)
all x. If S 0, 4 = 0, and B = -A cot(KXL). Then,

0 0 0

re-examining the CD,

and

F(z) = A sin (K(z+H))

Gt(z) = XKB sin (K(z+H))

= -XKA cot (KXL) sin (K(z+H))

= -XK cot (KXL)F(z).

The solution for X is then

thus

sin (KX (L - x))X =A sin(KXL)

sin(KX(L-x))
= A sin (K(z+H)) sin(KL)
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t
If 4 0, F is a uniform function of x. Given

F' L 0, then A and B are related, and S is determined
0 0 0

I

as a complex_valued function by FXI = constant.

The demonstration of the lack of arbitrariness in the setting of

the CD in the case of a vertical coastal barrier illustrates a key fea-

ture of the MIBVP. The loss of arbitrariness in the CD is a general

property of regions with supercritical bottom slopes.

Mixed Initial - Boundary Value Problem Solution

The objectives are to recover the preceding solution by the

method of characteristics and to demonstrate the technique as a proW

totype for subsequent sections. The GE is treated as a hyperbolic

equation in the spatial variables, and the BC's are investigated to de-

termine how they constrain the most general solutions so that the CD

can be extended to cover the CE in the region D.

The general solution to the GE has the form

qi(x, z) = f[F(z+Xx) + F(z-x)} +

where the CD are

and

CD: F(z) = qi(0, z)

G'(z) = qi (0, z),x
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as before.

The lines r z-Xx constant and , = z+Xx constant are the up-.

going and dowrigoing characteristics, respectively. The solution can

be expressed in terms of its Riemann invariants, Iu(11) and 'D'
1. e.,

where

and

qi(x, z) = I(r)
+

I [() G()}

= [F() + G()]

are invariant along the upgoing and downgoing characteristics, re-

spectively. If the CD can be extended over CE, the solution for

can be written for any point in D. After computing ii and t at

(x, z) D and computing the corresponding values for and

from the CD at z = r and z = , on CE,. respectively, qi(x, z) is

found from and

The CE is formed by determining the limiting characteristics;

Figure 11 represents the problem statement graphically. The

extreme-valued , intersects D at (L, 0), i. e. , = 0 + XL,

which emanates from (0, XL). Likewise, the extreme-valued r

intersects D at (L, -H), 1. e. , = -H - XL, which emanates

from (0, -H-XL). Therefore, the CE has been determined to be:
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CE: {(O, z): (-H - XL < z < XL)J.

The BC's are used to extend the CD to cover CE.. Analytically, this

problem is essentially that of finding a mapping of qi(D) onto 4i(CE),

i. e., all the information about the solution in D can be found from

the CD on CE. The BC1s are used to find reflection rules, RR1 and

RRZ, for extending the CD with respect to the sea surface andthe sea

bottom, respectively. it is convenient to define LE to be the lower

segment of CE over which the CD are not influenced by RR1; simi-

larly, UE is the upper segment of CE+ over which the CD are not in-

fluenced by RRZ.

z = 0:

The RBC is used to find the symmetry relation with respect to

i(x, 0) = 0 = [F(Xx)+F(-Xx)] + -[G(Xx)-G(-Xx)], for all x E D.

Since F and G are assumed independent, RR1 follows

and

where

RR1: F(z) = _F(_z)

G(z) = G(-z), for all z E CE- LE,

LE = {(0, z) : -H - X < z < -XL}.

Thus, F and G are odd and even functions, respectively, with
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respect to the origin. The RBC is again used to find the symmetry

relation with respect to z -H:

(x, -H) = 0 = [F(-H+Xx)+F(-H-Xx)] + {G(-H+Xx)-G(-H-Xx)],

for all x E D. F and G are still assumed independent, therefore

RRZ follows

RR2: F(-H+z) = -F(-H-z)

and G(-H+z) =

for all z E CE - UE, where UE {(o, z) : XL - H < z < XL}. Thus,

F and G are odd and even functions, respectively, with respect

to z=-H.

For RR1 and RR2 to be compatible, it is straightforward to

show that F and G must be periodic, with a period which is an

integer multiple of 2H. There is now enough information to extend

the CD to cover CE in a "leapfrogt' fashion, yet there is another BC

to satisfy.

The RBC applied at x = L implies

(L, z) = 0 = [F(z+XL)+F(z-XL)] + [G(z+XL)-G(zXL)],

for all z e D. This relation must impose a further restriction on

the solution. There are now only two degrees of freedom remaining:
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the relation of L to H and the independence of F and G.

Since the analysis must be valid for arbitrary L and H, the re-

striction imposed by the coastal BC must involve the coupling of F

and G. Then reflection rule three, RR3, follows

RR3: {F(z+XL)+F(z-L)] + 4 [G(z+XL)-G(z-XL)] 0.

The most direct way of demonstrating the necessity for this coupling

is to substitute forms for F(z) and G(z). The choice of

F(z) = A sin (1(z)
and

G(z) = B cos (1(z),

where
nil

is compatible with the RR1 and RR2. Then

and

F(z+XL) + F(z-XL) = ZA sin (Kz) cos (KXL)

G(z+XL) - G(z-XL) = -ZB sin (1(z) sin (KXL),

so that RR3 requires

B = XA cot (KXL).

Thus, the CD have been constrained to be:

x1x=O
= F(z) = A sin (1(z)



and

x'x=O = G'(z) = -BK sin (1(z)

= -X.K cot (KXL)A sin (1(z)

= -XK cot (KXL)F(z),
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which are equivalent to the results determined by normal mode the-

ory. Therefore, the imposition of the coastal BC represents a condi-

tion for back reflection, which removes the last element of arbitrari-

ness in the CD. The coupling of the CD does not occur in the case of

subcritical bottom slope in a wedge, but it does occur in the case of

supercritical bottom slope; the case of critical bottom slope is a de-

generate case in this regard.

A sample solution can now be constructed for any point

(x1, z1) E D. The first step is to evaluate the upgoing and downgoing

characteristics which intersect there, i. e.

and

= zi - Xx1

= zi + xx:i.

The second step is to evaluate the Riemann invariants at the points on

CE from which and emanate, i. e., at x = 0,

z = z1 - and z = + Xx1, respectively:



and
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= [F(1)+ G(1)}

[sin (K1)+ cot (KXL) cos (K1)]

=

= [sin (K1)- cot (KXL) cos (K1)].

The third step is to form j from the Riemann invariants:

t.li I +

= {{sin (K11)+ sin (K1)] - cot (KL){cos (K1)- cos (K1)]}

= {[sin (K(z1-Xx1))+ sin (K(z1+Xx1))]

- cot (KXL)[cos (K(z1-Xx1)) cos (K(z1+Xx1))J}

= A sin (Kz1)[cos (KXx1)_ cot (KXL) sin (KXx1)]

A sin (1(z1)

sin (KKL) (KX(L-x1)).

By inspection, 4i = 0 when z1 = 0, z1 = -H, or = L. Also,

at x1 = 0, i = A sin (1(z1) and ii = -XKA cot (KXL) sin (1(z1).

Therefore, 4i satisfies all of the BC's and the CD as well as the

GE; it is also equivalent to the solution by normal mode theory. Now

that the normal mode solution has been recovered by the method of

characteristics, the latter method, which is more fundamental, is
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extended to more general cases where normal modes do not apply.

Given the constraints on the CD, any suitable CD could be ex-.

panded in an infinite series of normal modes. With the method of

characteristics, the solution can be given as a single composite wave-

form.

C. Derivation of the Reflection Rules for Extension of the
Cauchy Data in the General Case

The reflection rules for extension of the CD are established un-

der general conditions for the case of constant coefficients in the GE.

The CGE, = 0, is solved subject to the CD. The upgoing and

downgoing characteristics are given by

and

respectively, where

and

= z - X1x

= z - X2x,

=S+R,

= S - R,

S =

R = (M4+(N2-o-2)(r2f(f 2 2+v ))) /(Nx

Since M2 = -sN2, N2 > 0, and s> 0 in an average

sense for the Oregon coastal region, then S 0. Then K1 > 0 and
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< 0, except for the anomalously high and low frequencies in the

inertial-internal wave passband.

and
x=O

= F(z)

x x=0

where z E CE, and it is assumed that the CD have been extended.

The actual extension of the CD is developed at a later stage.

The alongshore flow and density fields implied by the assump-

tion of constant coefficients for the GE are, for (x, z) E D:

and
V = ax - bz

= p(cx-dz),

where a, b, c, and d> 0. With the fields for v and p given

above, then

N2 = dg,

2M = -cg,

-px
5 = ..- = c/d,

pz

= -b,
z

V =a,x
and

-Vxr = = a/b,
V
z
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where r is the slope of an isotach. With the assumption of geo-.

2strophic equilibrium, fv M or fb = cg. For the computation

of the slopes of the characteristics, the quantities S and R are

needed:

and
(dg-2)

22
R [s2+ ° - _fa)31/2

(dg-o-2)

In the low frequency limit, r2 << N2 = dg, S = s and

where

Since

2 2 fa 1/2
R {s +t

22
2 IT-ft =

dg

fa- = rs,
dg

if r s, i. e., if the slope of the isotachs equals that of the iso-

pycnals, then R = t. In this case, the slopes of the characteristics

are
dz
dx =x =s+t

1
and

x2 = s - t.
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Since nlx=O where (qi,i,), and,

since i = at x=O, then +1) is the unit normal di-
.Jz

rected out of D and (4 -i4i )/iZ( . Because

and

then

Since

then

and

Hence

qi =qix +qiz
TI Xl Zi

+t4iz
X z

=

(-i) _xz1+x1
x and z (XX)

x = _1/(X -X
1 Z

= 1/(X1_X2)

z = -X /(X1_X2),
TI

qnhx=O =

1 [zGt(z)+Oi+Xz)Ft(z)LiZ(X1-X2)

By DtAlembert's solution to the one_dimensional wave equation,



(x, z) = [F()+F(1)] +f S
0dt,

where dt is the differential arc length along i = and

dt = ((dl)2+(d)2)1/2 2 dz. Consequently,

(x, z) +
( ix )

I {[X1F()_X2F(r)] +

The solution for all the other field variables can be found from iii.

In particular,

1T

2cr
{[X1F(,)+X2F(r)] + [G(,)+G(r)]},

from i and the x- or z-EOM.

wh e r e

and
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The solution can be recast in terms of its Riernann invariants:

4i(x, z) = +

-1
=

(X
X)[xZF(1) + G(1)}

1
= (xx)lF' + G(,)}.

Thus, as in the preceding section, the technique of triangulation in
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characteristic space can be used to find qi at any point in D from

the Riemann invariants constructed on CE, once it is determined how

to extend the CD to cover CE.

Again the CD are extended by successively applying the BC's.

Initially it is assumed that all the boundaries are rigid so that the

RBC applies; later, the sea surface is allowed to be a free surface

and the FBC is applied. First, the RBC is applied at z = 0:

= 0

Since F and G are independent, it follows that RR1 is:

RR1: F(yr) = yF(-r)
and

G(yr) =

where
x2

1

The LHS of RR1 represents the extension of F and G onto CE+,

while the argument of the RHS sweeps out values of r E CE LE,

where r is the parameter of CE.

Second, the RBC is applied along z = zb(x) =

z=-H(x) = 0 {{X1F(H(x)-X2x)-X2F(-H(x)-X1x)]

+ [G(H(x)-X2x)-G(-H(x)-X1x)]}
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Since F and G are still independent, it follows that RR2 is

RR2: F(-H(x)-X1x) = - !F(H(x)Xx)
and

G(-H(x)-X1x) G(-H(x)-X2x), for all x E D.

For no ambiguity in RR2, a necessary condition is that H(x) be a

monotonic function of x. For the physical case of interest, the bot-
dz

b dH(x)torn slope m(x) = -j--- = dx
> 0. For the present purpose, it

is sufficient to take m equal to a constant, then

(x) = -H(x) -[H -mx] = -H + mx, where m = H IL. The RR2
b o o 0

becomes for z E CE - UE,

RR2: F(-H -Tr) - 1F(-H +r)
0 0

and
G(-H-Tr) =

where

2 2For u << N

(X -m)
T- 1 R+S-m

(X2+m) R-S+m

T
t+s-rn
t- s+rn

For the physically interesting case of s m, i. e., isopycnals

paralleling the bottom slope, T 1. Since, as shown below, strong

wave amplification is produced as T 0, then the inclined frontal

layer exerts a stabilizing influence on inertial-internal waves in this

regard. The LHS of RR2 represents the extension of F and G



onto CE, while the argument of the RHS sweeps out values above

r = -H, where r is the parameter of CE. When there is no bot-

tom slope, m = 0 and T = -. When the slope of the upgoing char-

acteristic equals the bottom slope, ? = m and T = 0, which is

the degenerate, critical case for m > 0. When the slope of the

downgoing characteristic equals the bottom slope, X2 = m and

T = oc, which is the degenerate, critical case for m < 0. In the

subcritical case, < m < X1, there is no ambiguity in the ex-

tension of the CD. The degenerate supercritical (m > X1) and

critical (m cases are treated in Sections G and H, respec-

tively. In the subcritical case, and where m > S, then T < 1.

The general FBC requires:

(X1+X2)

g - (N2-2){X1X2+ 2
- 0, at Z = 0.

xx

RR1 becomes

RR1: (N22)[Ff(x )F'( )J = 0
2

and

(XX)ZGzxiGtl1+ (N2-2)
2

[X2G'(_2x)_X1G'(-X1x)] = 0,

for all x E D, and since F and C are independentS It follows that

RR1 can be re-written in more compact form:

RR1:
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and

where
(N2-2)(X1-X2)

Zg

These expressions can be reduced to quadratures to be carried out

along the sea surface from x = 0. Thus, the more subtle reflection

rule involving the FBC is now known.

With the reflection rules known, the process of "leapfrog" ex-

tension can be used to extend the CD:

i) F(z) and G(z) are given for -H < z < 0.

ii) F(z) and G(z) are extended from -H < z < 0 to

0<z<H, byRRl.

iii) F(z) and G(z) are extended from -H < z < 0 to

-(1+T)H<z<-H, byRR2.

iv) F(z) and G(z) are extended from -(l+T)H < z < -H

to yH<z<(l+T)yH, byRRl.

v) F(z) and G(z) are extended from 0<z<yH to

< z < - (l+T)H, by RRZ.

vi) This procedure is repeated until F and C are extended

to all of CE.

Hence, there exist systematic reflection rules by which the CD

can be extended for cases of asymmetrical characteristics, variable
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depth, and a free or rigid sea surface. Consequently, solutions

can be systematically constructed using the extended CD, the charac-

teristics, and the Riemann invariants. In the following sections, RR1

and RR2 are employed to construct solutions for a succession of

cases to illustrate the essential physics.

Having determined the extension of the CD to CE, the solutions

for u and w can be determined by operating on the Riemann in-

variants. Since

then

and

4i = +

u

= -[ia D'

w = Ir +

_l_x I- 2U1IDL

Clearly, once I and 'D are known, then I and I can be

determined, and, since they too are invariant, then the solutions for

u or w can be constructed directly.

The question of net horizontal energy flux has not been dis-

cussed in this section, nor shall it be in the subsequent sections.

From the analysis in Chapter IV, it is considered understood that the

individual contributions of F and G to iji have the character of

standing waves. Whether the two portions of the solution combine to



151

form a single standing, a single progressive, or a mixed wave can

be settled on the basis of the relative time phase between F and

C, as before.

D. The Solution for Inertial-Internal Waves in a Wedge
Without Frontal Interaction

The problem of inertial-internal wave propagation in a wedge

is solved without the frontal interaction. The wedge is defined to be

the domain D, where D {(x,z) (0 <x < L, -H + mx< z <

m constant and positive. A normal mode approach is not possible

because the sloping bottom does not permit SOy. Aspects of this

problem have been studied recently by Magaard (1962), Sandstrom

(1966), and Wunsch (l968a, 1969); similar qualitative results are

achieved in the present analysis.

This is a case with symmetric characteristics, i. e.,

-X2 = X. The general form of the solution for i reduces to:

i(x, z) = [F(z+Xx)+F(z-Xx)} + [G(z+Xx)-G(z-Xx)},

and the Riemann invariants are

= [F(z-Xx) - 4 G(z-Xx)]

and

'D 2-Xx) + .G(z+Xx)]



152

Here, y = 1 and T
(X_m ) < 1. The reflection rules become
X +m

RR1: F(r) _F(_r)

G(r) G(-r)

and

RR2: F(-H -Tr) = -F(-H +r)
0 0

G(-H -Tr) = G(-H +r),
0 0

where r is a dummy variable whose range is to be determined.

The geometry of the problem is given in Figure 12, where the case

of m = 2/5, X = 1, and T = 3/7 is illustrated. A few of

the characteristics are traced; the ones chosen are the limiting char-

acteristics for several intervals of extension on CE. The terminii of

CE are determined by the characteristics which intersect at (L, 0),

thus CE : {(o, z) : (-XL < z < XL)}.

The extension of the CD proceeds in the following fashion:

i) The CD are given on -H < z < 0.0-

ii) They are extended from -H < z < 0 to 0 < z < H, by

RR1.

iii) They are extended from -H < z < H to0- 0

-(l+2T)H < z < -H, by RR2.

iv) They are extended from -(l+2T)H < z < -H to

H<z<(1+2T)}L, byRRl.
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=
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I

T=3/7
VZ= -XL

Figure 12. Graphical solution for a case in a wedge and without
frontal interaction.
a. Extended CD
b. Domain D and limiting characteristics
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v) They are extended from H < z< (1+ZT)H to

-(1+2T(1+T))H < z< -(1+ZT)H, by RR2.

vi) They are extended from -(1+2(T+T2))H < z < -(1+2T)H

to (1+2T)H < z < (1+Z(T+T2))H, by RR1.

vii) They are extended from (1+ZT)H < z < (1+2(T+T2))H0

to -(1+Z(T+T2+T3)) < z < -(i+2(T+T2))H, by RR2.

viii) They are extended to all of the CE in the same manner.

It is apparent that the extension of the CD is performed in a "leapfrog'

fashion onto intervals bounded by the points A(rn), m : integer,

where

±A (0) = 0

A(l) =

A(Z) = ±H(1+ZT)

A(3) = ±H(1+2(T+T2))

Ath(4) = ±H(l+2(T+T2+T3))

rn-i
A(m) = ±H(1+2 T')

The A±(m)ts form a geometric progression and, since T < 1,

they have two limit points, ±A:
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A(m) >±H(l+2 T')
1=1

=

=

=±H (-b)o m

= ±XL =

thus ±A are the termini of CE. Therefore, an infinite number of

extensions of the CD, or reflections of the wave from the boundaries,

are required to reach the vertex of D. This fact raises an impor_

tant physical-philosophical point, though it presents no mathematical

difficulties. The troublesome point is that the infinite number of

wave reflections required to reach the vertex of the wedge is not con-

sistent with the steady-state assumption of i e10. This difficulty

with the problem takes diminished significance when the singular na-

ture of the solution in the vertex is recognized in subsequent steps.

The singularity in the vertex indicates a breakdown of the linear, in-

viscid theory and admits the possibility of an energy sink.

The Ath(m)ts form a partition of CE. It is convenient to de-

fine

B(m) B+(m) B(m),

where



and

Then

B(m): {z:(A(m-U<z <A(m))}

B(m): {z:(A(m)<z<A(m_fl)}, m = 1,2,...,co.

C = B(l), CE+ B+(m), and CE = B(m).
m=1 m=2
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Thus, RRJ is used to extend CD from B(m) to B+(m), and RR2

is used to extend CD from B(1) B+(1) to B(2) initially and

then from B+(m) to B(m+1) for all m.

The iterative nature of the "leapfrog extension, and the analy-

sis of the A±(m)Is, suggests seeking the rule for directly finding

the CD on B(m), m arbitrary, after the CD are set on B(1).

F and G are designated F±(z;m) and G±(z;m), respectively,

on B±(m). The general rule is derived by induction.

then

The problem of extending F is considered. Let

-H < z< 0
F (z)=) °

° F+(z;l)= -F(z;1), 0<z<H, byRRi,

i) F(z;Z) = -F(-H(l+)4), by RRZ

= -F(-H+TA(1)-Tz),

A(2) = -H (1+2T) < z < -H = A(1)
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ii) F+(z;Z) = -F(z;Z), by RR1

z= F (H (1+! )+)
o o T i.

-1 + -1= F (-H -T A (1)+T z),
0 0

A+(1) = H < z < H (1+ZT) A+(2)

iii) F(z;3) by RR2

=

-F (-H (1++ L) ---)
0 0 T T2 T2

H
= -F (-H - (1+ZT)- -a-)

0 OTZ T2

F(H+TZA(2)TZz),

A(3) = -H (1+2(T+T2)) < z < H (1+ZT) A(2)

iv) F+(z;3) = F (-H
0 0

A+(2) = H (1+ZT) < z < H (1+Z(T+T2)) = A+(3)

v) then by induction,
+ -m+ -m + +

F (z,m+1) F ( H T A (m)+T z),A (m)< z< A (m+1)
0 0

and
F(z;m+1) F (H+TmA(m)Tmz), K(m+1) < z < K(m).

With

1G(z;1), -H <z<O
G (z)<

0

° LG+(z;1) = G(z;1), O<z<H,
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then by analogy

and

-m + -m
(z;m+1) = G ( H T A (m)+T z),

0 0

+ +A (m)<z<A (m+1)

G(z;m+1) = G(H+TmA(m)Tmz),

A(m+1)< z <A(m).

The extended CD can be evaluated at the A(m)'s:

and

F(A(m),m+1)=±F (-H ),0 0

G (-H ),0 0

F±(A+(m+l),m+1) =

G(A(m+l),m+l) = G (H ),0 0

where the relation

-H ± TmA(m) = + H ± TmA(m1)
0 0

has been employed for the last two relations. Thus, the full range

of the CD extended to -H < z < H is mapped onto each of the suc-

cessively smaller B(m)'s. As a consequence, F and G

"wiggle" at an ever increasing rate, thus the partial derivatives of

4i in D grow without bound as T 0 with m. The re-

suit is consistent with the concept of the bounded beam phenomenon
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(Sandstrom, 1966), i. e. , large currents occur along a nearly critical

bottom slope. The increased rate of "wiggle" of F and G is an

intuitive way of expressing the fact that the effective wave number

increases after each reflection from the bottom boundary. In essence,

the incident wave "beats with the bottom slope" upon each reflection,

causing a shift to ever-increasing wave numbers.
+

In sub-domain D n
{(x, z) E B (n) and ZD E B (n))},

the downgoing and upgoing waves have the same wave numbers, which

allows a simple analysis of the phase and group speeds. Take the in-

cident wave number to be

D , the wave number in, n

the phase speed, (c),

(k , m ) at the initial line; then, in

(k ,m )=(k ,m ) >. Thus,
"

T'1

for the wave in D isa, a

(cp)n = = T'(-) = T(c) > ,

0 fl'OO

where (c ) is the phase speed of the incident wave. Similarly,
0

the group speed, (c ) , for the wave in D isgn n,n

(c) - [(N -f )m = T(c ) > 0,gna 2 22 go(k +m ) n*oO

where (cg)0 is the group speed of the incident wave. These re-

sults are consistent with the qualitative remarks of Section III. C. and

are rigorously correct. In sub-domains D (m n), the wave
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number, phase speed, and group speed of the downgoing and upgoing

waves are not equal.

For any point (x1, z1) in D, z = z - Xx and

ZD = = z + Xx are computed; then z E B (m) and E B+(n)

for some m and n, where m n except in regions contiguous

with the sea surface. Once m and n are determined, then F

and G can be computed, the Riemann invariants formed, 4i at

(x1, z1) formed, and u(x1, z1) and w(x1, z1) computed from 4i.

Actually, the solution need not be computed point-by-point but rather

for sub-domains Dm n
= {(x, z) :(z E B(m) and ZD E B+(n))}.

Several remarks are made:

i) Because F(A(n)) = 0 and G(+A(n)) = G(A(n)) for all n,

then F(A) = F(_A) = 0 and G(A) = G(_A), therefore

i(L, 0) = {F(A)F(..A)] + -[G(A)-G(-A)] 0. Thus, the

solution in the vertex of the wedge is zero, though the ampli-

tudes of the u and w fields increase without bound as

the vertex is approached.

ii) The linear theory is a small amplitude theory. The small

amplitude criterion is typically wx << a-, the wave fre-

quency, where w = . If the initial value for w is
x xx x

kA where k is the incident horizontal wave number and

A is the initial wave amplitude, then, after n reflections,

w = T2"(kA). Thus w - a-, when
1 in (kA/o-) and

x x 2 ln(T)



161

a finite amplitude theory becomes mandatory. For example,

for the semidiurna]. internal tide, cr 104sec', take

kz l/3x l05cm and A 10'cm/sec, so

kA -21/4 x 10 << 1. Since T has been taken to be 3/7

in Figure 12, then

n=4.

Thus, after four reflections a finite amplitude theory may

be necessary.

iii) The number of surface reflections which occur in a specified

percentage, P, of the distance from the initial line to the

vertex of the wedge can be determined:

A(n) A(n+i)
XL XL

or
n-i fl

()(1+2 T1) < P < ()(1+2 T1)

i=1 j1
so

()[l2(T (lT))<P<()112TTT)n
or

[(1 +T ) (1- T ) ( )P]
n+l m n

T <--- <T
2 -

Since
2X

1 +T =
X+m

and
2m1-T= X+m
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then

T' <(1P)(x) T
Since 0 <T < 1, then

in (l-P)+ in
n< <n+l.mT

For example, in the case chosen, in T -0. 85 and

in ( 0.34. Take P and P to be the values of P
n n+l

when the equalities on the left and on the right hold, respectively.

Then in (1_P3) -2. 21 or P3 8/9, and in (l_P4) -3. 06

or P4 20/2L, Therefore, on the basis of the above and the calcu-

lation in ii), small amplitude theory would breakdown for the hypoth-

esized wave at about (56 to 60/63's) of the distance from the seaward

edge of the continental shelf to the coastline.

E. The Solution for Inertial-Internal Waves with Frontal
Interaction when Boundaries are Parallel

A normal mode approach is not possible for cases with frontal

interaction, since the presence of the i term in the GE does not

permit SOV in x and z. The GE does separate in 11 and r,,

but, of course, the BC'S do not. The asymmetry introduced by the

term induces the asymmetry of the characteristics ii and

Naturally, this same asymmetry haunts the solution as well as the

problem. From Section C, the general solution for 4i has the form:
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(x, z)

The reflection rules for extending the CD are

RR1: F(yr) = -yF(- r)

G(yr) = G(-r)

and, since m 0, then T and
V

RRZ: F(-H = - !F(H +r)
oV V

G(-H ) G(-H +r),oV 0

where, again, r is the parameter of CE.

The character of the solution can be discerned by extending the

CD a few steps:

i) The CD are given on -H < z < 0.

ii) They are extended from -H < z < 0 to 0< z < yH, by

RR1.

iii) They are extended from -H < z < 0 to -H (1+--)< z< -H
0- 0 0

and from 0 < z < yH to -H (2+!) < z < -H (1+!), by- 0 0 0 V

RR2.

iv) They are extended from -H (1+--)< z< -H to0 y 0

yH < z< H (l+y) andfrom -H (2+!)<z <-H (1+!) to
0- 0 0 0 V
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H(1+y) < z < H(1+Zy), by RR1.

v) They are extended to all of CE in the same manner.

Figure 13 illustrates the pattern of the extension of the CD on CE and

the consequent solution types in D. The pattern can be summarized

by saying that the given CD are continued over intervals alternating

in length (yH and H ) and (--H and H ) over z> 0
0 0 y 0 0

and z < -H, respectively. There are three basic source types:

i) A, from a segment of CE H in length,

ii) B, from a segment of CE yH in length,
and H0

iii) C, from a segment of CE - in length.

When the prefixes U or D are added to the source type, it is

indicated whether the source type is supplied by upgoing or downgoing

characteristics, respectively. Four solution types emerge; they are

categorized by the length of the segments of CE from which their char-

acteristics emerge:

Solution
type CE segment lengths Source type

I: both segments H in length UA and DA

II: segments H and yH in length UA and DB
H0

Ill: segments - and H in length UC and DA
0

IV: segments and yH in length UC and DB.

Types I and IV occur in the interior; types II and Ill occur contiguous

with the upper and lower boundaries, respectively.



4 r4 r4 4 r

4
0

$
1

l

a

4
,

a
1
1

a

a a
a a

a

a
a
a
a

a a a

a
a
a
a

a

a
a

a S

I
I
a
a
a
a
a

.

a

a a
a

a
a

11 '

a
a
1
1

:a .

a a

a
a a

a a

\
/
/
)

a
a

a a
a
a

a
a
U

.
4

z
z
z



and

166

For a convenient example, take

F(z) = A sin (1(z)

G(z) B cos (1(z), for -H < z < 0,

where KR = nir for some n integer; this is a type A source.

Then the following extensions are made for n 1:

i) F(z) = _yA sin (K(_!))

yA sin (K-), and

G(z) = B cos (K), (0< z < yH);

this is a type B source.

ii) F(z) = - -s-A sin (K(-(1+y)H-zy))

=--A sin (Ky(H+z)), and

G(z) = B cos (K(-(1+y)H-zy)

= -B cos (y(H+z)),

this is a type C source.

(-H (1+!)< z < -H );
0 0

iii) F(z) = - !(A) sin ((-(l+y)H-zy))

A sin (K(!+1)H +z)
V 0

H
0= -A sin (K(+z), and

V

G(z) = B cos ((-(l+y)H-zy))

= -B cos (K(+z)), (H(2+!) < z <

this is a type A source.



iv) F(z) sin (Ky(H-))

= -A sin (K(zH)),

G(z) = -B cos (K(z_yH0)),

and

this is a type A source.
H

v) F(z) = y(A) sin (K(2!))vy
= yA sin

G(z) = -B cos

this is a type A source.

(yH < z < (l+y)H );
0-- 0

and

((l+y)H < z < (l+2y)H);

167

The pattern of the extension of the CD continues to repeat itself

to cover all of CE. The Riemann invariants are formed for each

source type:

i) For source typeA, both 'UA and are necessary:

and

-1
'UA(l) = (XX)lF(T1)+G(1fl

1= (x)[XzA sin (K1) + B cos (K1)]

1= (XX)l' +

=
(X

X)lA sin (K) + B cos (K)].

ii) For source type B, only
1DB

is necessary:



1 ()+Bcos ()].= (XX)[ZA sin

iii) For source type C, only is necessary:

1I(r) (xx)[XiA sin (y(H+1)) + B cos (y(H+1))J.

The four solution types are then computed:

i) Type I,

qi1 'tJA +

){[X2A sin (K(z-X1x)) - B cos (K(z-X1x))]

+ [X1A sin (K(z_X2x)) + B cos (K(z_X2x))]}.

ii) Type II,

Lull = 'UA(l) +

= ){[\2A sin (K(z-X1x)) - B cos (K(z-X1x))]

K+ [-X2A sin ((z-X2x)) + B cos ((zX2x))]}.
V

iii) Type III,

III 'IJC + IDA()

1 ){[-X1A sin(y(H +z-X1x))+ B cos(y(H +z-Xx))]
0 1

+ {X1A sin (K(z_X2x)) + B cos (K(z_X2x))]}.
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iv) Type IV,

I(r) +IDB()
1

= ){{-X1A sin(y(H +z-X1x))+ B cos(y(H0+z_X1x))J

+ [X2A sin ((zX2x) + B cos ((zX2x))J}.

The most important qualitative feature of the solution is that

the asymmetry of the characteristics, due to the existence of the

frontal zone, has induced alternating zones of increased, decreased,

normal, and anormal (i. e., mixed increased and decreased) wave

numbers. In other words, there are spatial zones where the wave

"wigglest' more or less than usual; therefore there are zones of rela-

tively high and low shear in the velocity of the wave. Another con-

sequence is that lines of constant phase are tilted with respect to the

vertical, i. e. , the waves tend to be "tipped over, " within an effective

wavelength. After two reflections from each boundary, the wave is

restored to its original form. The wave is characterized by an ef-

fective horizontal wavelength, (h) --), which is different
xl x2

than the horizontal wavelength, ZH(---), without the frontal

interaction.

The coastal BC is more difficult to apply in this case than in the

case of Section B. Because the geometry of the problem is con-

strained by the asymmetrical characteristics, A and B must
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satisfy two conditions to satisfy a coastal BC. Equivalently, the CD

can not be assumed to be Type I. The best procedure is to solve the

problem tlbackwardsu from the coastline, where the solution must be

Type I, to the initial line and then discover what solution type the CD

are required to be. Because of these complications, the essential

properties of the solution are illustrated in Figure 13 with the coast

treated as an open boundary.

F. The Solution for Inertial-Internal Waves with
Frontal Interaction in a Wedge

A slight extension of the analyses in Sections D and E is re-

quired to obtain the solution for inertial-internal waves with frontal

interaction in a wedge. Because the solution in a wedge i,s sought, it

is known from Section D that an infinite number of extensions of the

CD are required. Because the solution sought involves the frontal

interaction, it is known from SectionE that there are four basic solu-

tion types. Thus, the solution exhibits the properties of the solutions

of both Section D and E. In particular, the intervals of extension,

B±(m), both tend to decrease in length as m increases, as in

Section D, and tend to alternate in length by factors of y and

on CE+ and CE, respectively, as in Section E.

From Section C, the general solution for ii has the form:
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(x, z) =
){[X1F(z-X2x)-2F(z-X1x)] + [G(z-X2x)-G(z-X1x)]}

and the reflection rules for extending the CD are

RR1: F(r) = -yF(-r)

G(yr) G(-r)

and, assuming the bottom slope uniform,

RRZ: F(-H -Tr) = - F(-H +r)
0 y 0

G(_H -Tr) G(-H +r),
0 0

where, again, r is the parameter of CE. Since the general solu-

tion was examined in. detail in Sections D and F, it suffices to write

the first Type IV solution and to examine it indetail. Figure 14 illus-

trates the pattern of extension of the CD on CE. The region,

where the first Type IV solution occurs is indicated.

and

Take the CD to be given as

F(z) = A sin (1(z)

G(z) = B cos (1(z), (_H0 < z < 0),

where HK = n r, n : integer. The first Type IV solution has its

ID()ts coming from 0< z < on CE+ and its
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coming from -H (1+T) < z < -H on CE. The CD are extended
0 - 0

and the relevant Riemann invariants written in a single step:

=
(K K)lF + G()]

=
[yK1A sin (Ks) + B cos (Ks)]

'V V

= (KKZA sin (K) + B cos K)J (0< < yH)

and

1

Iu(T1) = (XK)[ZF(n1)(h1

= (KK) $lfl (K(H(1+))) -

1

r+H

= (K
K)[lA sin (K( T ))+ B cos (K(

T
0))],

(-H(1+T)<1 < -H).

Then for any point (x, z) in 1'

1
(z_Kx) (z-K2x)

4i(x, z)
(K1-K2) {[_KA sin (K ) + B cos (K )]

(z+H -K x) (z+H -K x)

+ [-K1A sin(K ) + B cos(K
1

)1}

The subregion D1 has a vertex on the surface boundary at

=-X2x='yH or x=-2 and z=0,



and one on the bottom boundary at

ii = -H + mx - X1x = -H(1+T)

or

and

Since

z - X

( )

HT
0

= (X-m)

H

(-X2+m)

XH20
(_K2+m)

z+H -X x01
H

=H and T
0

z= 0

H
x=

zO

H
(,O)= (x'X ){[-X2A sin (1(H) + B cos (1(H)]

Since

z-X2x

and

+ sin (K(0)) + B cos (K(0))] } 0.

H
= (-X2+m)

XH2o
(-X2+m)
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(z+H -X x)01 = -H
H 0
0

X= (-X2+m)

XHZo
Z= (-X2+m)

H XH
0 Zo

(-X+m)' (-X2+m)
{[X2A sin (0) + B cos (0)]

+ sin (-KH) + B cos (-KH)]}

I
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Thus, 4' in satisfies the BC's where it must.

To verify that the 4' in satisfies the GE, the second

order partial derivatives of 4' are evaluated:

and

ii) = -(X yD (X)2(K)2I()
XX 2

K2
4'zz

4' = D' X(K)21()
Xz 2

The GE is written as

4'xx
+ (Xi+Xz)4' + = 0.

Substituting into the GE, and considering the factors of

then
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+ + = 0,

KZand, considering the factors of ) I, then

+ (X1+X2)(-X1) + X1X2 = 0.

Thus, the solution in D4 is valid in all respects.

G. The Solution for Supercritical Bottom Slope

To elucidate the essential physics of the solution for super-

critical bottom slopes, it is sufficient to consider the case of no

frontal interaction and a uniform bottom slope.

The general solution for i4i has the form

= [F(z+Xx) + F(z-Xx)J + [G(z+xx) - G(z-Xx)].

The reflection rules are given in their coupled forms until it becomes

clear where F and G are independent:

RR1: [F(r)+F(r)} + 4[o(r)-G(r)} 0

and
[F(-H +s)+F(-H -Ts)] + -- [G(H +s)-G(-H -Ts)J = 0,

0 0 o o

or 2XH+(X-m)r
1

2XH+(X-m)r
RRZ: {F(r)+F(-(_0m ))] +-K[G(r)G(( X+m

= 0,
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where r and s are parameters of CE.

The geometry of the problem is shown in Figure l5a. It is

recognized that CE is (-H < -XL < r < XL). RR1 provides the rule

for the extension of the CD from -XL < r < 0 to 0 < r < XL. It

can be employed in its uncoupled form; i. e. , F and G can be

treated as independent over those intervals without ambiguity, thus

RR1: F(r) = _F(_r)

G(r) =G(-r), (-XL<r<XL).

Examination of the arguments in RR2 indicates that RRZ provides the

rule for the extension of the CD from -H < r < XL to -H < r < -XL,0- - 0-

hence there is an overlapping or ambiguity. Therefore, either F

or G can be arbitrarily specified on -H0 < r < _XL; the other is

determined on that interval by RR2. For example let F be speci-

fied on -H < r < -XL; then

2X}{+(Xm)r 2XH+(X-m)r
o

)) G(r) + X[F(r)+F(_( +mX +m

Thus, there is a subtle "overmapping" of G onto itself in the inter-

val -H < r< -XL.0-
In summary, there are two types of solutions in D:

i) Type I occurs in the sub-domain above z - Xx = -XL. This

solution type can be either a progressive or standing wave
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Figure 15. Graphical solution for a case without frontal interaction
in a wedge.
a. Supercritical bottom slope
b. Critical bottom slope
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depending on the time phase between F and G.

ii) Type II occurs in the sub-domain below z - Xx -XL. The

nature of this solution type is controlled by the Type I solu-

tion. For example, if Type I is a standirg wave, so is Type

II, and, if Type I is a progressive wave, Type II is a mix-

ture of standing and progressive waves.

A sample extension of the CD is given in Figure l5a; there are actually

more wiggles in G near r = -XL than the resolution of the figure

can convey.

The result follows that, since - XL -H , as X -! m,
0

then G in -H0 < r < -XL has increasingly large derivatives. This

result is consistent with the "bounded beam" concept, which has now

been derived from the perspective of a supercritical bottom slope

as well as from the perspective of a subcritical bottom slope.

H. The Solution for Critical Bottom Slopes (m = X)

The degeneracy induced by a critical bottom slope is established

for the case of a rigid sea surface, and then the solution is obtained

for the case of a free sea surface. It is sufficient to treat the case

without frontal interaction and with a uniform bottom slope.

The form of the general solution is the same as in the previous

section. The reflection rules for the extension of the CD are written

in their coupled forms:



RR1: X[F(r)+F(_r)] + [G(r)_G(_r)] 0, (-XL < r <XL),

where XL = H and
0

RR2: X[F(-H +2s)+F(-H )] + [G(-H +2s)-G(-H )] = 0, (0< s <ZXL),
0 0 0 0

where r and s are the parameters of CE. Several deductions

can be made:

i) RR1 requires that F(0) = 0

ii) RRZ requires that F(_H0) = 0

iii) Take -H0 + Zs = -r, then RRZ requires that

XF(-r) + G(-r) = G(-H).

Similarly, let -H0 + 2s r, then

XF(r) + G(r) =
thus

XIF(r)+F(-r)] + [G(r)-i-G(-r)J = 2G(-H).

iv) Substituting the results of iii) into RR1, it follows that

G(-r)

i. e. , G is a constant for all r. Then, from RR2, it

follows that F is zero for all r. Therefore, qi = 0

throughout D. This result can be achieved from first

principles by applying the RBC and treating the resultant
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Goursat problem or by applying the RBC and treating the re-

sultant extended Cauchy problem.

Allow the sea surface to be a free surface. Apply the RBC at

the sea bottom to i.i in the following form:

= [F((z+mx)+F(z-mx)] + [G(z+mx)-G(z-mx)].

Then at z -H + mx, the RBC yields

or,

and

Thus,

and

-F(-H) F(-H0+2mx) +

F(_H ) = 0
0

G(-H +Zmx) = G(-H ) - XF(-H +Zmx), for all x e D.
0 0 0

G(r) = G(_H) -

= F(z-mx).

The form for qi is consistent with the facts that the CD are

projected onto the sea surface along z - mx = constant and that the

downgoing wave must be perfectly reflected from the bottom surface.

Then the FBC requires that

22
0 -fm2F"(-mx) +

g
)F'(-mx) = 0
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Taking -m = r and K
2),

then
gm

or

F=FerF
0

+AH= F0[e (z_mx) - e

AH
where F = F e so that 41 0 along the bottom.

1 o z=-H +mx
0

Thus, assuming Ji cos (o-t), the velocity fields are

and

u(x, z;t) = AFe_z_m cos

-A(z-mx)w(x, z;t) mAF e cos (ot).
0

Then the vertical particle displacement is

rnAF
o A(z-mx),(x, z;t) e sin (at),

0

and the displacement of the sea surface is

mAF
i(x; t) = ,(x, 0; t) = emc sin (crt)

For a numerical example, let the surface tide have an amplitude of

1 meter at the coastline, then

mAF AH
r(L) = e ° sin (o't) = 102 sin (at) cm,



thus
AH

u(0, -H) = AFe ° cos (o-t)

o- 2
= 10 cos (at) cm/sec.m
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For the semidiurnaltide, o 3/Zx lO4sec', and take

m = 2/3 x io_2, so the bottom current at the at the seaward edge of

the shelf is
u(0, -H) cos (at) cm/sec,

22
which is a reasonable value. Since AH (o -f )L

, then, for
o gm

L 30 Km and f = 10 4sec,

AH 5/4x 108x 3x io6 =x 10 6x 10.
o 3 2 810 x2/3x10

0.006Thus the surf ace tide is amplified by a factor of e from the sea-

ward edge of the shelf to the coastline.

The role of the FBC is also investigated in the next section for

a case with non-uniform bottom slope.

I. An Exact Solution for an Asymptotically Critical
Bottom Slope

As observed in the previous section, the FBC admits exponen-

tial solutions in the case of uniform, critical bottom slopes. In this

section, exponential CD are assumed for a case with subcritical



bottom slope, and the water depth is allowed to vary with x in a

manner consistent with the solution for qi. The permissible bottom

shape is analyzed to determine how it is characterized.

The case of no frontal interaction is considered. The CD are

assumed to be:

and

then the solution is

The FBC requires that

thus

F(z) Ae

G(z)=O, at x=O;

A -K(z+Xx) -K(z-Xx)+e ]

- Kz= Ae cosh (KXx).

K
(N2-2)

Since the bottom surface must be a streamline, set C,
ZZb

Kzb A
e = cosh (KXx).

KH
Alternatively, since zb(0) = -H and i(O, -H0) = Ae °

C, then

z (x) = -H + in (cosh (KXx)).b oK



185

The coastline is at x L where zb(L) = 0 or

KH
1 -1 0

L cosh (e ).

The bottom slope, m, is

dzb
m(x) = = X tanh (KX.x),

thus

m(0) = 0
and

m(L) = ). tanh (K).L)

X (1- sech2 (KXL))2

-2KH
(l-e 0)1/2

For the semidiurnal tide in the coastal region, X 1 x l0 and

KZ 107cm. Take H = 3x lO5cm, then

-2KH
(1_e 0)1/2 (l_e_M6)h/'2 z 0. 24

and L2.4xl03km. Thus, m(L)z 0.24 2.4x103, and

the bottom slope is characterized as montonically increasing from

zero at x = 0 to the critical value, m = X, as x 00.

The streamlines parallel the bottom topography and the strength

of the flow increases exponentially downward along a vertical and

shoreward along a horizontal. Other solutions which are variations



on the basic form can be constructed. The essential feature is that

this is an additional case where the FBC plays a role in producing a

flow which is strongest along the bottom.
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VII. APPLICATION OF THE THEORY TO FRONTAL
MODELS WITH VARIABLE COEFFICIENTS

A. Introduction

Two cases with coefficients varying in both independent van-

ables are investigated as frontal models. The first step is to corn-

pute the explicit forms for the characteristics, if an integrating fac-

tor can be found; otherwise, there is the necessity of solving a pair

of integral equations:

x
±z(x) - z

5
X(x, z)dx,

0
x
0

where, on the initial in x = x
0

± ±z(x) z =

Picardts method of successive approximations can be employed to

solve the integral equations. A sufficient condition for convergence

of the approximation scheme is that by Lipschtzian with rexpect

to z, and a sufficient condition for that is for to be continu-

ously differentiable with respect to z, which is the case under most

oceanographically realistic conditions.

The second step is to reduce the GE to its canonical form, CGE,

which is generally not a wave equation. The CGE may have a



"functionally invariant solutions, t if the characteristics satisfy the

CGE, or the general solution may be found in terms of integrals of

arbitrary functions (Koshlyakov, Smirnov, and Gliner, 1964). Then

the general solution and the BC1s can be used to extend the CD.

Barring such good fortune, if the Riemann-Green function is known,

then the solution can be found from the resultant integral involving the

Riemann-Green function and the CD. An alternative approach is to

convert the second-order CGE to the canonical form of a pair of first-

order equations in either a symmetric or non-symmetric hyperbolic

system and carry out the integration along characteristics, which

usually involves a Picard scheme of successive approximations for a

symmetric system or a finite difference scheme for a non-symmetric

system. Another approach is to seek a finite difference solution of

the GE itself, in either the original coordinates or in the character-.

istic coordinates. Solving the CGE is most compatible with theory,

but it entails a mapping of the CD and the BC's from the (x, z) do-

main to the (i-i, ,)
domain and an inverse mapping of the solution.

The characteristic variables may separate in the CGE, and, if the

shape of the boundaries permits, which is unlikely, a pair of one-

dimensional eigenvalue problems must be solved.

To illustrate the solution theories, two cases are considered

which resemble actual frontal structures. In both cases, the exami-

nation is limited to low frequencies, such that << N2, and the



corresponding GE is:

GE: N2(x, z) - (fv(x, z)+M2(x,z)) - (2-f(f+v (x, z))) 0.

The two analytical models advanced for the frontal region are of pro_

gressive complexity.

B. Model Frontal Regimes

Instead of providing a table of numbers for the two-dimensional

fields of the variable coefficients and proceeding on a strictly numeri-

cal basis, an attempt is made to tiprobe the problem" with reasonable

analytical models. From the outset, it is anticipated that a numeri-

cal method will eventually be required. There are several criteria

which are sought in the models considered:

i) The self-adjoint nature of the GE should be preserved by the

chosen analytical coefficients, i. e., attention is restricted

to frontal regimes which are geostrophically balanced for

the mean flow component, v, parallel to the axis of the

frontal regime.

ii) Model A should exhibit a monotonically increasing N2(x, z)

as a function of both x and z. Such a model does not

exhibit a subsurface frontal layer yet it does have anintensi-

fication of the key parameters as both the surface and the

coastline are approached.



190

iii) In addition to exhibiting a monotonically increasing N2(x, z)

as a function of both x and z, Model B should have an

inclined frontal layer rising in the direction of increasing x.

The frontal layer is characterized as coinciding with a maxi-

mum in N2(x, z) as a function of both x and z.

The frontal models are sketéhed in Figure 16.

For the mean density field in Model A, one which is both expo-

nential in its x and z dependence is chosen:

thus

az -bxp(x, z) p + p(le ), with a> 0 and b> 0,

az-bx - az-bx,
p = -ape and p bLpe

z x

then the slope of an isopycnal, s, is given by

Defining

dz x bs=-) =---dx. p a
p z

E apg>0
0 p0

then
-p az-bxN =E= =Ee
p0 0

az-bxfv = =Ee
z p 0

0
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Model As Isopycnols

x=0 z=O x:L

Model Bss lsopycnals

b xO z=0 xL
'62

0.4 /0.6
- -' 0.8

1.0

z=zB(x)

Figure 16. Sketch of the field of isopycnals for frontal models with
variable coefficients.
a. Model A
b. Model B
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and

S az_bxfv - E ea o

2 azbxfv =sEex 0

without regard for functions of integration or boundary conditions,

i. e., only internal consistency has been imposed on the mean fields.

The more complex model, Model B, is based on a hyperbolic

tangent density dependence in both the x and z variables:

p p + p tanh (-a(z+d)+bx),

with a> 0 and b> 0, again, and 0 < d < H , where H is- 0 0

the water depth at x = 0. Since

and

then

again. Taking

again, then

2= -ap sech (-a(z+d)+bx)

= bp sech2 (-a(z+d)+bx),

dz bs=) =---=>0dx p a
P

E
apg

0 p
0

-p g
N2 = E

Z = E sech2 (-z(z+d)+bx),
p 0
0



and

- - gp
2fv = = -sE sech (_a(z+d)+bx),

x p 0
0

fv tanh (-a(z+d)+bx),

fv = s2E sech2 (-a(z+d)+bx).
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This model has a frontal surface, or center of the frontal layer; the

intersection of the frontal surface with the (x, z) plane is given by

_a(z+d)+bx 0. Thus, the frontal surface rises from a depth of

z = -d at x = 0 to intersect the sea surface, forming a surface

front, at s = if L; otherwise, it intersects the bottom. At

the frontal surface, v has a zero crossing and v has an ex-

t rem urn.

C. Frontal Interaction with Model A

The problem is examined systematically for Model A; in the

next section, it is studied in the same fashion for Model B. Using

the functions computed for the coefficients of the GE in the preceding

section, then:

GE:

aL-bx az-bx 2 2 2 az-bx= E e qi + 2sE e
o xx

(o -f -s E e )qi = 0.
xz V 0 ZZ

Take



and change variables to
b

then

22
0 -f

K2=
sE

0

a
-rand ve
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2 2 2 22
+LqJ (K2i2v2-1)vqi = 0.GE: j. q 4ivt4i -v (K .

LV VV

The slopes of the characteristics are found to be

and

1dy v-) =- = {1+Kv]di1 1

1¼
= [1-Kvpj.

Rewriting the equation for ,

+ + Kvdj. = 0.
V

This equation has an integrating factor, F =

thus

=0,22
'-Lv

1 = - K in (EL)

Then



and, similarly,

= ± + K in (p).
ILv

r and can be expressed in terms of x and z;

a b
b

and a b
b+Kx;

then

and

(-)
bK

2 21z = in
a aK
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Thus, the mapping from the (x, z) planeto the (ri, ) plane, and

its inverse, are determined in closed form.

The reduction of the GE to the CGE follows after L(1), L(,),

and Q(ri, ) have been evaluated from the set of first and second

order partial derivatives for r and ,:

1 1Ti=-----K---,

1

nv =
I.LV

1 1
r =--+K--

2.iv

nv

-
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2

11J4L 3
+K-,

LV I.E

1

2 2
ILV

2

ivy
IJ.v

Thus,

2 K'
2

r:I.Lv i}.iV

vv =vv

L(i) L() = -K2v and Q(, ) = -4K2,

and

L(1)
Q(i, ) Q(i ,)

=

Then

CGE: L() = 0,

but

1 (+)
2

thus

CGE: L() (i) = 0.

Alternatively, let a = r- and 3 = r + , then

CGE: L() aa 0.

The CGE is one for which the Riemann-Green function is known

(Garabedian, p. 150, 1964). Formulating the adjoint problem, then
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1 1 1
i) AGE: M(W) - ()[W+W]

+ 2

or

M(W)=Waa

ii) w 2(+) (=y)
1

iii) W 2(+) w (i=x)

iv) W = 1, (r=z, =y).

Together, ii) through iv) imply that

w for i=x or
1/2 1/2

(r+y) (x+)

to find W for all (i-i, ) it is necessary to change variables to

0
(-x)(,_y)
(+x)(+y)

The details of the solution technique are not essential, and it is suf-

ficient to know that

W(1, ; x, y) (1+) F(-, ; 1; r),
1/2 1/2

(r+y) (x+)

where F(a, b; c; d) is a hypergeometric function with arguments a,b,

c, and d. W satisfies i) through iv) above and also L (W) = 0.
(x, y)

The solution theory involving the Riemann-Green function, W, can

be used directly to evaluate 4, as outlined in Chapter V.



If the solution, i, can be separated in the (a, ) plane,

then

= C A (u)B (p),nn n
nwhere

and

A"+y A =0
n nn

B"+B' +y B =0.
n a n fl fl

is the separation constant and Cn is a constant coefficient.

Hence, the solution bases are:

and

A = (sin (ya), cos (yG))
n

Bn = onNonP

where J and N are zero order Bessel and Neumann functions,
0 0

respectively. In terms of x and z,

and

A = (sin nKt cos

B = (J
(2 az bx N (y2

az bx
n 0 n exp (------)), exp (-------))).

The physical boundaries of the problem do not permit SOV, but these

functional forms do give insight into the character of the solution.

This set of separable solutions could be used in an approximation
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scheme for obtaining a solution with boundary data given on bound-

aries not parallel in the (a., ) plane. The BC's can be readily ap-

plied along lines az - bx = constant, which would be satisfactory

for a uniform bottom slope of m = b/a, but not for a surface bound-

ary.

In the limit of a weak front, i. e., s 0 so b 0, then

22
az

GE: - e 4i =0.
xx E zz

0

a

With v

XX4 +!}=o,
vv V V

where
2 2

KZ=(EV )a>0.

With ;SOV,

then

and

= X(x)Z(v),

X = (sin (yKx), cos (yKx))

a a

Zn = (J (2ye2 ) N(2ye2)),

which are identical with the results obtained by taking the limit in the

separable solution for a strong front. The BC's can be satisfied for

parallel boundaries by solving the resultant eigenvalue problem,
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involving the eigenvalues {y}.

D. Frontal Interaction with Model B

Using the functions computed for the coefficients of the GE for

Model B in Section B,

GE: E sech2(-a(z+d)+bx)i + 2sE sech2(-a(z+d)+bx)i

- (2-f2-s2E sech2(-a(z+d)+bx)) 0.

Again, take

K2 > 0,

and change variables to p. = bx and v -a(z+d), then the GE is

reduced to

GE: - - (K2 cosh2(p.+v)-l) = 0.

The slopes of the characteristics are found to be

and

dv = 1 + K cosh (p.+v)
dp.

= = 1 - K cosh (p.+v).
dp.

To find the equations of the characteristics, examine the equation for

i rewritten as



K (p+v) -(+v)dv + [i+- (e + e )1d = 0.

Change variables to r = e and s eV, then

ds K 1 dr
(1) + 1+(rs+)]---- = 0.

2 rs rS

Take v = rs so that

dv ds dr
(2) v s r

Subtracting (1) and (2) and separating variables,

dv dr
K 2 --j:--'

+1)

which integrates to

in (r) + tan1(v) = 1

or,

2 -1 (+v)Fi+tan (e )=r

or,

- tan [ebx + - a(z+d)+bx1
= 11.

Similarly,
2 -1in(r)+jtan (v)=

or,
2 -1 (+v)

(e )=

or,
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Since

and

-bx + tan[e] r.

(T1-,)

2b

(1.r,)
!lfl [tan ((..)K)],z = -d + 2a a
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then the mapping from the (x, z) plane to the (r, ) plane and its

inverse are known in closed form.

The reduction of the GE to the CGE follows after L(r1), L(,),

and Qftt, ,)
have been evaluated from the set of first and second

order partial derivatives for 11 and :

1 = 1 + sech (+v),
K

1
= sech (p.+v),

- sech (p.+v) tanh (p.+v),

_i +! sech (+v)
p. K

V V

I 1VV p4L VV p.J.

1p.v 1p.p.'

Thus,

and

Then

L() = L(v) = K2 sinh +v)

Q(1, ,) -4,



thus

but

thus
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Take

then

L(i1) L() K2
Q( ) Q( )

sinh (+v),

2
K

qi ------sinh
4

(i+v)(4+) = 0;

1K
i + V = in {tani (+)I],

CGE: + [cot (K(+)
11r 4 2

(+qi) = 0.

and qJ-,

i + cot (p+q)[i+iJ 0;
pq 2

alternatively, let a = p - q and
I

= p + q, then

CGE: aa - - K cot (13)llJp = 0.

Formulating the adjoint problem

Ki) M(W) = W (-) cot (p+q)[W +W ] + K csc2(p+q)W 0
pq 2 p q

or

M(W) = W - W+ K cot ()W K csc2()W 0
aa

Kii) W = (-) cot (p+q)W, (q=y)
p 2

Kiii) W = (-) cot (p+q)W, (p=x)
q 2



iv) W = 1, (p=x,q=y).

Together, ii) through iv) imply that

Ksin (p+q)
1(12 K/2sin (p+y) sin (q+z)
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for p=x or q=y.

If it is assumed that the solution qi can be separated in the

(a, ) plane, then

where

and

DA(a)B(),

A" + y2A = 0

B" + K cot ()Bt + y2B = 0.

is the separation constant, and D is a constant coefficient.

The equation for B in normal form is, with

K

B = (sin (n))n n

2K2 KK2 2F" + [(y +) + ( )csc (p)]F = 0.
n n 4 2 4

With = a(a+K), then the solution bases for A are

A = (sin ((a(a+ K)t'2a), cos((a (a+
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for B, they are

K-i K-i
B (C

2 (cos()), (cos())),
n a a

n n

V Vwhere C (z) and D (z) are Gegenbauer, or ultraspherical func-

tions of degree p, of order v, and of argument z (Bateman,

1 953). When an n, the Gegenbauer functions become the Gegen-

bauer polynomials. Expressed in the original variables,

and

a Kbx

1 -a(z+d)+bx=2tan [e 1.

The forms for A and B could be used in an approximation

scheme.

If the solution to the adjoint problem is assumed separable in

the (a, I) plane, then

where

and

W = EtAn(a)Bn(P)

Att+y A =0n n n

B" - K cot ()B' + [y2 + Kcsc2()]B = 0.
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is a separation constant, and En is a constant coefficinet.

The solution for B is
n

B (sin (p))K/ZF (p),n n

where F satisfies the same equation as F for the GE. Thus,

A for W is the same as A for qi and B for W is

equal to B for multiplied by sinK(p).

The author has experimented with a host of techniques to find

W. The most complete result entails the use of the solution bases

as outlined in Cops on (1958). Even then W can only be reduced to

quadratures. Using the relations between the ultraspherical and as-

sociated Legendre functions, viz.

and

V

CV (cos (p))
2 (sin (p))Vp (cos (p))

V

DV (cos (p)) ()2 (sin (p)VQ (cos (p)),

K-ithen, with p

ipir
W(a, ;A,B) = sin(P))PSflZ(B) e

sin (B) sin (piT)

[pP (cos(B))P (cos(I))-P (cos(B))P (cos())]dX.
x+p )s+p X+p

This form is not readily solvable, but it could be used to obtain



asymptotic limits on the solution as mentioned in Section V. E.

In the limit of a weak front, s 0 so b 0, then

22
° cos2 (-a(z+d))4i = 0,GE: E

0

or, with

v =

- K2 cosh2(v)4i = 0,

where
2-f2 2)a >0.
0

Change variables to
-1 vp=2tan (e

and

q = Kx,

then the GE becomes

)qq - K cot (p)4i = 0.

Assuming SOV,

= Xn(X)Zn(X)i

then

X = (sin Kx), cos (yKx))

and
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where

and

K-i K-i
Z = (C2 (cos(p)), D2(cos(p))),

n a a
11 fl

-1 -.a(z+d)p=Ztan (e

2y =a (a +K).
n nfl

The expressions for X and Z are identical to those obtained
n n

by taking the limit b 0 in the separable solution for a strong

front. Groen (1948) considered a case similar to the weak front.

E. Numerical Solution Techniques

The background for this section is found in Forsythe and Wasow

(1960) and Garabedian (1964). In both Models A and B, the equations

of the characteristics were found explicitly and the GE was reduced

to a compact canonical form, viz.

(1) + = 0

or

(2) aa - f(13)iP1 = 0, (a=r-r, and Pri+,)

where, for Model A,

f() =



and for Model B,

= K cot (is).
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These forms are appreciably simpler than the original GE expressed

in the (x, z) plane. It would be very tedious to attempt to solve the

GE on a non-uniformly spaced, curvilinear grid commensurate with

the field of characteristics in the (x, z) plane. Considerations of

convenience and stability suggest carrying out the calculations in the

(ri, ) or (a, 3) plane at the expense of a possible loss of accuracy

through the inverse mapping of the solution. Because the objectives

are only qualitative, accuracy is not of paramount importance. Since

the characteristics tend to converge in the inclined frontal layer, a

more detailed solution is achieved for computations in the character-

istic plane than in the (x, z) plane precisely where the solution is

expected to have the most structure and is of the most interest.

%_..1___1 -

Form (2) is ideal for a finite difference scheme; it has the

additional advantage that the coordinate a is directly proportional

to the coordinate x, so that the initial line, (x = 0), in the

physical plane transforms into the axis, (a = 0), in the char

acteristic plane. Since x is time-like, then a is also time-like.

The central difference equivalents to the derivatives in (2) are;



and

f(: j+1i, jl'
()2+2J. .),

1, 3
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where the indices i and j correspond to a and j3, respec-

tively. Then (2) becomes

C.4i(3) 4i. = -tk . + A4i + B. . +
i+l,j i-1,j i,j 3 i,3

wh e r e

A = z[l2], B, = [2xf.], c =

and

For stability and convergence, it is necessary that 'y < 1. The CD

are 4i(0, P) = F(3) and 4i(0, 3) = G(3). The initial values for the

numerical calculations are

.=F(j)

and
2

= F(j) + aG(j) F"(j), i B' l,

where and are the coordinates of the sea bottom and

surface, respectively, at i = 1, the initial line in the (a, ) plane.

Both the upper and lower boundaries are assumed rigid so that the

boundary values for i are given as
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= 0 and 4i. 0, (i = 1, 2, . . . , i ),
1,

'

C

where i is the coordinate of the coastline in the (a, 1) plane.

The calculation proceeds with the use of (3). The velocity compo-

nents are found from 4i:

p

(4) Ti. i,j+li,j-111, 3

and
a P

(5) W ai+l, ji-1, j1 + j+1i, jl

No term including a enters (4) since a = 0.
z z

Method Two

From Equations (7) and (8) of Section V. C.,

(6) w - X u = 0 along constart
r1 2i1

and

(7) w, - X1u, = 0, along r constant

The following difference scheme is sufficient to approximate (6)

and (7):

(8) [w. -w. - I(j)[u. .'-u. .1 = 0, along ,.
1,3 i_l, j 1, 3 i-i, j 3

and

(9) [w. .-w.
lii

- J(i)[u. -u. = 0, along TI.,

1,3 1,3-1,3 1,3



where

1(j) [x'? .1
1,3 1-i,)

and

J(j)=[(Z)(Z)
I.i,j i,j-1

This pair of linear simultaneous equations can be solved for

the unknowns, u. and w. ., then
1,3 1,3

1(10) u. = [ui(i-1, j)_DI(i, j_l)}
1, j (J(i)_I(j))

1(11) w. =
1,

(J(1)1())[I(i)UI(i_l j)_J(i)DI(i, i-i)],

where

UI(i_l, i) = J(i)u1 j_l -

and
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DI(i, j-l) = I(j)u.1 w_1,

are the discrete analogues of the Riemanu invariants.

The expressions for and are evaluated in terms of

1 and r, from the analytical expressions for both Model A and

Model B. For Model A,

xl = = s[1+--]

and

2Kx2 =); = s[1_t



and, for Model B,

and

= -) = s[l+()(tan )) + cot())]
1

= = s[l_()(tan )) + cot())].

The BC's for this technique are applied through (8)
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and (9). Let characteristic 1. intersect the sea surface, which is

assumed rigid, at (i, i)' then w = 0, thus

w.
1, j-1

U. .=U. . -
1,3 i,j-i J(i)

Let the characteristic intersect a sloping bottom boundary at

(i, J), then w. . (m(j))u. .. Thus
1,3 1,3

U (I(j)m(j)) [I(flu. i_wi_i, ji

where there is one value of the bottom slope, m(j), assigned for

each The denominator does not equal zero for subcritical

bottom slopes. It has been found most convenient to adapt the above

equations to the grid and indices in the (a, 1) plane which is used

with Method One.

Methods One and Two have been computer programmed, as has

the mapping from the physical plane to the characteristic plane and
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the inverse mapping. Test calculations have been carried out by

both methods for Model B in a wedge. Because there are some doubts

about the results, though the phenomenon of bottom amplification of

the wave does appear, the solutions are not plotted or discussed in

this dissertation. The observations reported in Chapter X indicate

that the case of variable coefficients is important, thus it is planned

to continue this work in the future.
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VIII. HYDRODYNAMIC STABILITY

A. Introduction

For hydrodynamic instability to occur, perturbations on a

steady flow must overwhelm restoring forces. Then the perturba-

tions can grow or decay. The restoring forces for inertial-internal

waves are the Coriolis (rotational) force in the horizontal plane and

the buoyancy (gravitational) force in the vertical plane. The former

is related to geostrophic equilibrium while the latter is related to

hydrostatic equilibrium. For each restoring force, there is an as-

sociated frequency of free oscillation. Associated with the Coriolis

restoring force, there are free inertial oscillations at o = f, while

free Visl.-Brunt oscillations at o = N are associated with the

buoyancy restoring force. Without the frontal interaction, as o

the characteristics (and the group velocity) are cast into the horizon-

tal plane; however, as a- N, the characteristics (and the group

velocity) are cast into the vertical. Thus, inertial motions occur in

the horizontal plane while stability oscillations occur in the vertical

plane, as do their respective restoring forces.

With the frontal interaction, when a- N(1+s2)'2, then

the slope of both of the characteristics becomes approximately -

i. e., both characteristics are deflected downwards very steeply, but

not vertically. Also, when a---- [f(f+v)_s2N2]"2, then the
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slope of both of the characteristics becomes approximately s; i.e.,

both characteristics are deflected upwards nearly parallel to the iso-

pycnals. Further, when a----- N, the upgoing characteristics be-

come vertical, while the downgoing characteristics have a slope of
1 - 1/2approximately - -. Similarly, when a-- (f(f+v)) , the

downgoing characteristics become horizontal, while the upgoing char-

acteristics have a slope of about 2s. The anomalous behavior of

the characteristics, and of the group velocity as well, for a- - N

and a- - f raises the question of whether or not baro clinic instability

can occur for the frontal interaction.

The analytical properties of the GE are investigated to obtain

information about the stability of the motion. The main effects on

stability to be explored are those of finite depth and of the inclined

frontal layer. In the final section, the observable Richardson numbers

are introduced.

B. Baroclinic Stability

For an assumed mean flow, investigations of baroclinic stability

are generally made for the conditions of the growth of a perturbation

upon the mean flow. The GE for a- < a-, is elliptic, an analytical

property which has been exploited to derive theorems for stability

conditions (Stern, 1961 and Magaard, 1963). For the inertial-internal

wave problem, an approach appropriate to the hyperbolic GE must
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be employed.

If the perturbation motion paralleled the dominant mean flow,

the relevant stability problem would be some form of the inviscid

limit of the Orr-Sommerfeld equation (Lin, 1967), where the vertical

curvature of the mean flow plays a crucial role. In the limit of a

layered medium, such a problem reduces to the Kelvin-Helmholtz

instability problem (Lamb, 1945), where the instability criterion is

that the discrete analogue of the Richardson number be less than one.

Huppert (1968) examined the influence of rotation on Kelvin-

Helmholtz instability; he found that rotation plays a stabilizing role

for long waves.

The problem of perturbation motion transverse to the mean

flow apparently has not received a general treatment. A discussion

of the stability effects of horizontal density gradients on the propaga_

tion of inertial-internal waves has been given by Rhines (1963). The

GE derived in Chapter II for the frontal interaction is the two-

dimensional version of the one Rhines considered, except that the ef-

fects of v and v have been considered in the present analysis.

The question is: Can the effects of the horizontal density gradient

and of the horizontal and vertical shears in the mean flow upset the

stabilizing effects of the Coriolis force and of the vertical buoyancy

for Ce?

First the integral, or global, viewpoint is adopted, and then the
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differential, or local, viewpoint is taken. Writing the GE in its

divergence form, multiplying by s4i conjugate, and integrating over

D : [(x, z):(O < x < L, -H(x) < z <1(x))], the resultant integral reduces

to

- t -
V+PE

2cr st
as in Section IV. D. Thus, if 0, then cr is imaginary;

i. e., E either grows or decays with time, unless there is a sink

or source, respectively, in D not accounted for in the analysis.

Since T> 0, when PE + V< 0, then F 0 and cr is

imaginary. Since PE > 0, then V< 0 is a necessary condition

for baroclinic instability. Because

- çç[f(f+ )( + N )2
- 2M2 ]dxdz

x z x xz
2cr

D

=- SS2 (X+Z)2 +(qi)2(f(f+)-s2N2)]dxdz,
2cr

D

a necessary condition for V < 0 is that

f(f+v ) 22 2 XS >S +t-+ 5]
c N2

for at least one point (x, z) D. Since the characteristics are lines
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of constant phase, then

O()

And, since >.. - s for a- -. f, then it is feasible that s can be

greater than s for a- - f. Thus, an inclined frontal layer may

induce baroclinic instability.

Adopt the differential, or local, viewpoint, neglect the BC's, and

take qic eim. Then the CR yields

(N2-a)k2 - ZM2km - (o-2-f(f+v ))m2 = 0,

or, rearranging terms,

N2(k+sm)2+ (f(f+v)-s2N2)m2

2 2k +m

Let and correspond to the upgoing and downgoing

waves, respectively. Since a-2 < 0, if

then, if

or if

f(f+v
2 k 2 x

S > (()+s) +
N2m

f(f+v
k 2 x 1/2

N2

f(f+v(k 2 x 1/2>_s_(s
2m2 N
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baro clinic instability may occur.

Thus, an inclined frontal layer may cancel the stabilizing ef-

fects of gravity and of the Earths rotation. The implicit view taken

above is that a wave incident on a frontal zone has a fixed ratio of k

to m and that the interaction acts to alter the frequency.

If the view is taken that frequency is fixed, then, since

- = ..X or -?. , X and X become complex if

< v) - s2N2, 'or if N2(l+s2), which means that the

GE is elliptic.
1

and are equal if equality holds in the above

inequalities; then, a parabolic degeneracy exists for the GE.

A less degenerate situation occurs for

f(f+v) - s2N2 < f(f+v); then both and are positive.

From the beam viewpoint, Figure 17, the downgoing beam is de-

flected upwards and the upgoing beam is inclined more steeply than

the frontal layer. The upgoing beam strikes the sea surface and

never crosses the frontal layer; instead, the wave is reflected from

the sea surface and propagates in the _x-direction in the beam bound-

ed by the dotted lines.
. 2 2 2 2Similarly, if N < a- < N (l+s ), then and are

both negative and the upgoing and downgoing beams are both deflected

downwards by the inclined frontal layer. Thus, from the viewpoint

of fixed frequency, the inclined frontal layer exerts a waveguide ef-

fect, or a wave_blocking effect, for both the anomalously low and



L so

dz\ - dz\-
I

+ $ - t

Figure 17. Hypothetical case of wave-blocking by a strong frontal zone.
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high frequencies of the inertial-internal wave passband.

The present analysis of baroclinic instability has been cursory.

An analysis of the time-dependent problem may prove to be more

satisfactory. Perhaps the ray method of Jones (1969) will prove

profitable.

C. Dynamic Stability

The details of destabilization require knowledge of the micro-

scale of turbulent processes; the discussion in Section B is only ade-

quate on a mesoscale. A compatible bridge between the microscales

and mesoscales is the concept of dynamic stability. The Richardson

number (Richardson, 1920), is the parameter most widely used in

oceanography and meteorology as an indicator of dynamic stability.

The vertical shear in the horizontal flow of a stratified fluid repre-

sents a mechanism for extracting kinetic energy from the mean flow,

or from long waves, and increasing the potential energy of the fluid

through mixing. The flux Richardson number, Rf, is the ratio

between the buoyancy force and the destabilizing shear effect. Rf

is equivalent to the ratio of the titime rate of increase of potential

energy, PEt, due to turbulent mixing" to the "time rate of vertical

transfer of kinetic energy, KE, removed from the mean horizontal

flow:

.
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(PE)
Rf t_ gptw'

(KE) -- diit pwIu'

where g p'w' = gK is the vertical buoyancy flux,

-p w'u' = p N is the relevant component of Reynolds stress, K

is the vertical eddy diffusivity coefficient, N is the vertical eddy

viscosity coefficient, and Rf is the flux Richardson number. In an

alternative form,

K K
Rf- dz v E ----YRdiiZN dii2 N i'

pN v vvdz dz

where E is the static stability and Ri
2

is the gradient

Richardson number. Rf is determined by turbulence measurements,

while Ri is determined by the vertical gradients of the mean prop_

erties. Frequently, it is desired to know Rf while only Ri can

be computed; if N and K are known, Rf can be inferred.
v v

In the absence of accurate information, N is often assumed equal
v

to K. A critical Rf, or Ri, is employed as a stability cri-

terion. The critical value of Rf is unity, if the kinetic energy of

the turbulence is constant. Then, if the eddy Prandtl number,

(N/K), is equal to one, the critical value of Ri is also unity.

For several cases of wave motion studied analytically. (Miles, 1961;

Yih, 1965, and Proudman, 1952), the critical value for wave
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instability is Ri = 1/4.

The observations of this study do not permit calculation of Rf;

the observations do permit the calculation of certain Rits. In Sec-

tions D and E, inertial-internal wave theory is examined to determine

what predictions can be made for Ri; then observable Rits are

discussed in Sections F and G. In Section XI. H, observed Ri's

are reported for the field observations. The objective is to determine

whether or not the vertical shear of the horizontal velocity of the

semidiurnal internal tide is sufficiently large to make the frontal zone

occasionally dynamically unstable.

D. Inertial-Internal Wave Richardson Number

Munk (1966) derived the Richardson number for inertial-

internal waves, IGRN. His analysis is given a simple extension here

to include the effect of finite depth. Neglecting the frontal interac-

tion, since

and

then

and

2 2 -1u=(o -f ) (icnr +fir )x y

2 2 -1v = (o -f ) (urir -fir ),y x

2 2 -1u =(cr_f) (icrir +fir
z xz yz

2 2 -1
v (cr -f ) (icni -fir ).
Z yz xz
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Assuming SOV, take ir Z(z)et and set o-t - kx - y = 0

2222 222
after differentiation. The CR is (N -ci- )(k + ) - (cr -f )m = 0,

where m is the vertical wave number. it is expressed in terms

of the vertical displacement, ; since = w
2

2 2
(N -o

then Z' = _r(N o- ). Rotate coordinates to the major and minor

axes of the hodograph, i. e. , from velocity coordinates (u, v) to

(W1, W2), where W1 and W2 are the velocity components along

= and 02 = -, respectively, and 01 and 02 are

measured anticlockwise from east. Then

((W )
)2 2 (k2+2) (Z')2lz 2 2

(ci- -f

2 2 2 (N2-o-2)= o m 22'
(ci- -f

by the CR and the relation for it; similarly,

2 2 2 2 (N2-cr2)(W) =fm2z 2 2
(ci- -f )

The component IGRNs are then

22 2o--f N
IGRNW1=( 2 2 2

N -a- a- (m)2

and
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22 2cr-f NIGRNW2=(
2 2 2 2N-cr f(m,)

Since a- > f, and since W1 and W2 are in_quadrature, then

IGRNW1 <IGRN < IGRNW2 as a function of time. The wave motion

is dynamically stable as a- N, and it is dynamically unstable as

+
a- f for fixed .

Assuming a-2 << N2,

and

22(a-f) 1
IGRNW1

2 (,m)20

IGRNW2
(cr2f2) 1

2
f (cm)

If the depth, H, is assumed uniform so that m

is the vertical mode number; then

and

2 cr2where r =

r2 9/4, thus

(lr2)
IGRNW1

(nTr/H)2

(r2l)
IGRNW2

(r,nTr/H)2

where n

For the semidiurnal tide at latitude 45°,

0. 56
IGRNW1

(r,nrr/H)2
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and

1. 25IGRNW2Z
(r,nir/H)2

Let n 1 and assume representative values for and H:

T lOmeters and H... 100 meters. Then IGRNW1 5 and

IGRNW2 z 11, which are sufficiently close to dynamic instability to

merit observational scrutiny. As I 0, 01 0 and 02

then W1 u and W2 -v; thus, there is a slight tendency for

the u component to be less stable than the v component.

Using the critical Ri criterion for waves of Ri = 1/4, for

the W1 component, when (/H) > !_±, the motion becomes un

stable; similarly, for the W2 component, when (,/H) > ---, the

motion becomes unstable. For r and H fixed, there is a greater

tendency for the higher modes than for the lower modes to be unstable.

Considering the first mode only, when H, the motion tends to

be dynamically unstable. The order of. magnitude estimate for

is 1 0 meters, then the semidiurnal tide should tend to become un-

stable in a water depth of 10 meters on this basis.

Without density stratification, the phenomenon of shear ins tabil-

ity would not exist yet the stratification parameter, E = N2, does

not explicitly enter the final form for the stability criterion. N2

does enter implicitly through influencing the value for m(z); as

N2 increases, m(z) tends to increase, restricting to smaller



values for dynamic stability. Thus, the motions tend to be least

stable in the pycnocline, where N2 and tend to be the greatest.

E. Inertial-Internal Wave Richardson Number for
Frontal Interaction

The general problem of dynamic stability for the interaction is

not readily tractable. For simplicity, it is assumed that coefficients

are constant and simple waves are analyzed. Set

and

im
qj+ = Ae

(z-X1x)
io-t

e

im(z-X2x) itqi=Be e

where qj+ and qi are the stream functions of the upgoing and

downgoing waves, respectively. Then,

+ + 2+
u = m

and

=
i_.= -Ti

lj+

thus

+ -om +u=
similarly,

u=Tx0r.

Therefore,



and
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X 2N2
IGRNU+= 1

+2(om,)

X 2N2
IGRNU

2

(mc)2

Since - 0 when (f(f+v)), then so does IGRNU.

F. The Frontal Richardson Number

Consistent with the observations in the frontal zone off Oregon,

the vertical shear of the mean alongshore flow is given by the thermal

wind equation:

- - sE
v

z f

Then the frontal Richarson number, FRN, takes the heuristic form:

FRN= E

(V) sE

1. e., the dynamic stability is inversely proportional to the static

stability. The dynamic stability in a frontal zone assumes its small-

est value in the inclined frontal layer where the product of E

(frontal intensity) and s2 (square of the frontal slope) takes its

maximum value. A conservative estimate for the minimum FRN in

the permanent pycnocline off Oregon, based on f l04sec,
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-4 -2 -3
E 4 x 10 sec , and s 3 x 10 , yields a value of

max max

minimum FRN 3. Though the minimum dynamic stability of the

frontal zone may be rather low, the frontal zone is stable tim the

large, as it must be to exist as a quasi-steady phenomenon. The es-

timate of minimum FRN, which is based on hydrographic data alone,

is compared with results for the mean vertical shear based on direct

measurements in Section X. C.

G. Observable Richardson Numbers

For each of the observable Ri's, the complex representation

of the horizontal velocity is employed: W = u + iv. Then the magni-

tude of the shear vector, IWI2 = IuI2 + M2, is invariant un-

der coordinate rotation, and

E ERI= =

1w
i

,2 2lu +'v
z z z

is also invariant. RI takes into account shear due to directional

twist with depth as well as vertical variation in the speed. Each RI

can be written in component form:

then

RItJ= E and RIV= E
2 2'

lul Iv
I I

RIRm RIV
RIU+RIV
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With time series measurements, a plethora of Ri's can be

computed, including those related to the instantaneous, mean, vari-

ance, and spectral components of the flow. The other Ri's used

are designated as follows:

i) From the shear of the mean flow,

ERIM= d112 dV2() +

ii) From the r m. s. vertical shear of the flow,

ERIVAR = Var(u )+Var(v
z z

For peak values of shear, RIVAR is divided by 2 to ob-

tain the average minimum RIVAR.

iii) From the r. m. s. shear of the flow in a measurement band-

width, tao-, centered at o,

E
RIS(a-) [p (s-) + P (o-)]uu vvzz zz

iv) Alternatively, for the coherent portion of the motion at o,

least squares analysis yields amplitudes for the shear vec-

tor:

W = A cos (at) + iB sin (at)
z z z

and a time-dependent Ri is formed:
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ERIC(o;t) =
2

!w (cr;t)
z

v) A net Ri is formed from the mean shear W and the
z

coherent shear at a fixed frequency W(o,t):

E
RIN(cr, t) =

2
lW+W (o-,t)l

z z

In Section X. C.,, temporal minimum values of RIN are ex-

amined as a function of depth.

Within the limits of measurement error, all of the observable

Rits are upper bounds on the minimum values for the actual dynamic

stability because the observed shears are lower bounds on the maxi-

mum shears due to the finite spacing of sensors and the discrete

sampling in time.



233

IX. THE OBSERVATIONAL PLAN OF AUGUST-
SEPTEMBER 1966

A. Introduction

The objectives and design of the August_September 1966 field

observations are discussed. In Chapter X, the mean flow and hydro_

graphic fields established by the observations are examined, as well

as auxiliary properties of the oceanographic regime which are rele-

vant to the inertial-internal wave problem. In Chapter XI, the time

series of the velocity and temperature fields are analyzed to deter-

mine the evidence for and the properties of inertial-internal waves.

Thus, this chapter provides the planning background for the two

succeeding chapters.

B. The Observational Objectives

Because competing and variable phenomena occur simultaneous-

ly in the Ocean, especially in coastal regions, it is essential to have

a measure of the spectrum of motions. There is also a necessity for

an iterative approach to measurement. This philosophy is also es-

poused in Collins etal. (1968) and Fofonoff (1968a); its corollary is

that it is unrealistic to expect to make definitive measurements on

one or a few "outings. " The most pessimistic view is that there are

no repeatable or intelligible measurements to be made because the
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flow regime is completely nonstationary and has no typical behavior.

The optimistic view is that sensible patterns will eventually emerge

from both the mean and fluctuating components of the flow. The iter-

ative viewpoint has been chosen; it is an operational one in that each

set of planned observations can adapt to prior results and because it

embraces the possibility of disappointment in the realization of opti-

mistic expectations. In other words, one learns what works and what

does not work and proceeds accordingly along the same basic theme.

It was considered poor procedure to attempt to study tidal and inertial

motions in the coastal region without due regard for the effective

mean flow of coastal upwelling, and vice versa. On the basis of time

series measurements of currents and hydrography made in the coast-

al region in the summer of 1965 through the winter of 1966, analyzed

and discussed by Collins (1968) and Collins etal. (1968), it was ap-

parent that tidal and inertial motions were quite significant in the

coastal upwelling region. The two-headed question, which provided

the motivation for the thesis of this dissertation, presented itself:

how does the frontal zone of coastal upwelling modify the semidiurnal

internal tide and how does the semidiurnal internal tide, in turn,

modify the frontal zone of coastal upwelling? In August-September

1966, the second iterative step was taken. The observational effort

differed from that of 1965 to early 1966 primarily in the extension of

single vertical arrays of moored, recording sensors to a horizontal
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linear array, containing vertical array elements. In other words, an

oceanographic antenna was established. An intensive set of comple-

rnentary hydrographic data was also included. }fydrographic data

have been sampled for the past century and moored, recording meters

have been employed in the past decade; yet there had been few, if any,

attempts to integrate the two measurement techniques to define a flow

regime until the observations of August-September 1966.

Prior to the installation of the August-September 1966 array, a

list of hypotheses was formulated. This list, given below with only

minor editorial revisions, is divided into two components: one re-

garding the semidiurnal internal tides and the other the frontal zone of

coastal upwelling.

The hypotheses regarding the semidiurnal internal tides off

Oregon are:

i) They exist in the coastal region off Depoe Bay, Oregon.

ii) They are generated in the coastal region.

iii) They are composed of standing and progressive waves.

iv) They are refracted by bottom topography and are consequent

ly aligned parallel to bottom contours.

v) They are long-crested; i. e., they are essentially uniform

in the alongshore direction.

vi) They have measurable parameters, e. g., amplitude, period,

wavelength, phase speed, and propagation direction.
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vii) They can be described effectively by the first one or two

vertical modes.

viii) They tend to become unstable as they approach shallow water

and in the region of the inclined frontal layer.

ix) They coexist with inertial motions and may relate to the gen_

eration of the inertial motions.

The hypotheses regarding the frontal zone of coastal upwelling

off Oregon are:

x) The inclined frontal layer is present 10 to 30 kilometers

offshore in a water depth of 80 to 200 meters during the sea-

son of observations, mid August to late September.

xi) It is feasible to measure the mean and fluctuating components

of the flow in the vicinity of the frontal layer.

xii) The seaward dissipation of the prevalent temperature inver-

sion occurring at the base of the frontal layer is indicative of

low dynamic stability and, thus, of mixing in the frontal layer.

xiii) The occurrence of critically low dynamic stability is associ-

ated with the vertical shear of the semidiurnal internal tide.

xiv) Estimates of horizontal eddy coefficients can be made from

turbulent heat and momentum fluxes and mean flow calcula-

tio n s.

xv) The frontal flow field of coastal upwelling responds syste_

matically to the atmospheric forcing functions.

-
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Because of the sensor failures and inadequacies of the design of

the field observations, not all of the hypotheses were satisfactorily

tested. Hypothesis xiv) is tested in Mooers etal. (1969);

it is not discussed here because its relevance to the present study is

not sufficiently obvious. Hypothesis xv) is an entire topic in itself

and is not discussed here; Collins (1968) has taken several steps in

the investigation of this hypothesis.

C. The Design of the Observational Plan

The August-September 1966 observations were designed to test

the previously stated hypotheses with the available instrumentation,

the available data analysis techniques, the contemporary knowledge of

the coastal upwelling flow regime, and the contemporary theoretical

and observational understanding of inertial-internal waves. The

available instrumentation consisted of (i) six recording current me-

ters and four recording thermographs and (ii) standard shipboard

hydrographic equipment, viz., Nansen bottles with reversing ther-

mometers, bathythermographs, and a profiling current meter. The

moored, recording sensors provided data which have been examined

by standard statistical techniques for their gross features and by the

statistical techniques of time series analysis for their spectral con-

tent. The hydrographic data have been analyzed through preparation

of vertical profiles and sections to describe the oceanographic setting.
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The tide gauge record sampled at the Marine Science Center,

Newport, Oregon, had been intended to play a crucial role in testing

the phase relation between the surface tide and the internal tide; it

only functioned properly through a portion of the observations, but it

has been incorporated in the present study in a limited fashion.

Other data sets sampled include time series of atmospheric pressure

and winds, but they are not employed in the present study, except for

a summary of the wind field in Section X. C. , see Mooers etal. (1968).

The successful experience of July 1965 to February 1966 dem-

onstrated that it was feasible to moor the recording meters in a depth

of water of 1 00 to 140 meters. With the shallowest sensor at a depth

of 20 meters, there was little fear of data contamination from sur-
18face waves.

To detect an inertial-internal wave, at least two sensors in the

vertical and two in the horizontal are necessary. To define the fron-

tal flow regime, at least one sensor near the top of the inclined fron-

tal layer, at a depth of about 20 meters, and one near the base of it,

'8Because swell data were available, the 1965 current speed
data were inspected for episodes of weak winds and low swell which
were followed by episodes of high swell and no appreciable increase
in wind speed. The onset of high swell induced no apparent increase
in current speed. The question of data contamination by swell needs
further field verification. In the absence of full knowledge on this
issue, it is consistent with the information available to assume that
the sensor strings moved with the water column under the influence of
swell so that the sensors were blind to the particle velocities associ-
ated with swell.
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at a depth of about 60 meters, are necessary; similar measurements

are needed at two or more locations in the onshore-offshore direc-

tion.

The horizontal locations of the sensors were selected on the

basis of an estimate of the onshore-offshore location of the frontal

zone of coastal upwelling. It was estimated that the inclined frontal

layer tends to intersect the sea surface about 5 to 15 kilometers off-

shore and that the inclined frontal layer extends offshore to at least

the seaward edge of the continental shelf.

The horizontal spacing of the sensors was selected on the basis

of an estimate of the onshore-offshore wavelength of the semidiurnal

internal tide, The order of magnitude estimate for the fundamental

horizontal wavelength, of the semidiurnal internal tide was

20 to 40 kilometers, Section III. C. Since it was desirable to ob-

serve a wave over a sizable fraction of a wavelength, a horizontal

span of at least 20 kilometers for the sensor array was chosen.

The feasibility of extending the mooring scheme to depths

greater than 140 meters was uncertain. Thus, a compromise was

made by extending the array offshore only to a water depth of 200

meters, 1. e., to the seaward edge of the continental shelf. The

capability of the mooring scheme for holding in shallow water, and

the ability of the sensors to recover data uncontaminated by surface

wave motions in shallow water, were uncertain. Thus, a compromise
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was made by extending the array inshore only to a water depth of 80

meters. With these decisions on the terminal depths of the array,

the array span was then 20 kilometers, extending from 10 kilometers

to 30 kilometers offshore, and from a water depth of 80 meters to

that of 200 meters. Thus, the array spanned an appreciable fraction

of both the frontal zone of coastal upwelling and a semidiurnal internal

tidal wavelength.

The deployment of the six current meters involved a choice be-

tween placing two in the vertical at three horizontal points, placing

three in the vertical at two horizontal points, or incorporating some

redundancy in the array. The unwarranted assumption was made that

the current meters could be depended upon for a high percentage of

data recovery, and no significant redundancy was planned. With pre-

vious experience at placing two and three sensors in the vertical and

none with horizontal spacing, it was thought wise to explore the hori-

zontal structure at three positions and to be content with two samples

in the vertical. The third horizontal position was selected to be the

midpoint between the array termini. As shown in Figure 3, the ar-

ray consisted of current meters at depths of 20 and 60 meters, and

at distances 1 0, 20, and 30 kilometers offshore; these stations are

termed DB5, DB1O, and DB15, respectively.

The estimated positions and depths of the sensor strings were:



Sensor
site Latitude

DB5 44°50.21N
DB1O 44° 53. O'N
DB15 44° 56. O'N

Latitude

124° 10.7W
124° 17. 3'W
124° 24. 1'W
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Distance offshore
along array axis
(oriented 120° to Water
300°T) depth
(kilometers) (meters)

10.5 80
20. 5 140
30.8 200

The ratio of the vertical to the horizontal scale of the array was

40m -3=4x10
3lOx 10 m

while the slope of the semidiurnal tidal characteristic was

lxi - ()z 1 to lOx 10,

and the frontal slope was s 1 to 4 x 10. Since R X and

R - s, then the sensor spacing was reasonable for the study of both

the internal tide and the frontal flow. The current meters at DB1O,

60 meters, and at DB15, 20 meters, failed to give long records. For

dynamic stability calculations, the presumably most important verti

cal pair, at DB5, operated sufficiently long. With the types and lim-

ited number of sensors available, it was not possible to test hypothe_

ses ii) and vii); i. e., the generation and modal structure of internal

tides could not be examined.

The deployment of the four thermographs was influenced by the
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same considerations as the deployment of the current meters plus the

fact that the thermocline off Oregon is quite shallow, extending to a

depth of only 25 to 30 meters. It was decided to use a thermograph

at a depth of 20 meters at each of the three horizontal array positions.

The remaining thermograph was deployed on a separate mooring 10

kilometers southward of the linear onshore-offshore array and along

the same depth contour as the DB1O meter string. With the fourth

thermograph, it was hoped to test hypotheses iv) and v), i. e., the re-

fraction and long-crestedness of the internal tide, but that thermo-

graph failed to operate as did the other one at 20 kilometers offshore.

The thermographs at DB5 and DB1S did operate successfully.

The sensor sampling rate was determined by two considera-

tions: the highest frequency inertial-internal waves expected and the

inherent limitations of the sensors. The highest frequencies antici-

pated were those associated with oscillations at the V.is1-Brunt

frequency. Since the static stability, E = N2, ranges from

1 x 10 to 1 x 103sec2, the period of Visl-Brunt oscillations,

TN, was expected to range from TN - 3 to 30 mm, where

TN = -. To define VisTh-Brunt oscillations, and to avoid aliasing

of spectra at lower frequencies, it was necessary to sample at a rate

of at least once per minute. Such a rapid sampling rate was not pos-

sible with the available sensors and the risk was taken of using a

sampling rate of once per 1 0 minutes. A sampling rate as high as
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once per 5 minutes was possible, but it was decided to double the

record duration which would have been possible with the 5-minute

sampling rate. Thus it is not possible to definitively discuss

Vislà'-Brunt oscillations in conjunction with internal tidal motions.

Since the tidal and inertial motions are of large amplitude, the risk

of serious contamination by aliasing from the Visgl- Brunt oscilla-

tions was thought to be small. The question of aliasing is examined

by looking for anamalous peaks in the computed spectra of Chapter

XI. With the sampling rate of once per 10 minutes, the Nyquist sam-

pling frequency was 3 cph, and the total potential record duration was

about 40 days, which was achieved within 10% for four of the ten sen-

sors. Using the semidiurnal tide as a frame of reference, the sam-

pling procedure chosen meant that the observations were made at

about every 1/75 of a wave cycle for a total of about 75 wave cycles.

One of the subtle hazards in observations from a moored array

is that there is a commitment to a spatially pointwise, temporally

semicontinuous viewpoint. The most obvious way to acquire a corn-

pensating, semicontinuous spatial view is to use the hydrographic

techniques in conjunction with a moored array. The hydrographic

techniques were used in several fashions:

a) To compute vertical profiles of the density anomaly, de-

tailed vertical profiles of temperature and salinity were

made alongside each sensor string at the beginning, in the



244

middle, and at the end of the observation period.

b) To compute vertical sections of the density anomaly, de-

tailed vertical sections of temperature and salinity were

made along the axis of the array from 1 0 to about 1 00 kilo-

meters offshore in the middle and at the end of the installa-

tion period.

c) Anchor stations were occupied for a lunar day at distances

of 45 (twice), 75, and 100 kilometers offshore in order to

detect tidal structure in the hydrographic fields; at one of the

stations 45 kilometers offshore, good quality vertical pro-

files of current meter observations were made from the

R/V Yaquina.

d) Several vertical profiles of current meter observations were

also taken close to the moored sensor strings (Mooers etal.,
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X. THE OREGON COASTAL OCEANOGRAPHIC REGIME

A. Introduction

The oceanographic setting of the August-September 1966 obser-

vations and the properties of the Oregon coastal regime relevant to

the propagation of inertial-internal waves are described. First, the

general flow regime off Oregon and the specific flow regime of the

frontal zone of coastal upwelling in August-September 1966 are dis-

cussed. Then, the seasonal fields of static stability off Oregon and

the field of static stability in the coastal region in August-September

1 966 are analyzed. Finally, the field of characteristics for the semi-

dirunal internal tide in the coastal region in August-September 1966

is examined.

B. General Description

The oceanographic regime off Oregon is typical of the mid-

latitude zone of the Ocean's eastern boundary regions (Wooster and

Reid, 1 963). There is a coastal regime consisting of the waters over

the continental shelf and slope, which extend to about 100 kilometers

offshore; a transition region about 100 kilometers wide; and an off-

shore regime seaward of 200 kilometers offshore. The mid-latitude

zone of eastern boundary regions is characterized by a weak, broad,

and shallow equatorward flow offshore. Because of the seasonal
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reversal of the alongshore wind, and because the wind and pressure

fields are highly variable on the time scale of days to weeks, the flow

of the coastal regime is very time_dependent. In the offshore region

off Oregon, the California Current flows equatorward on the average.

In the coastal region, the prevailing northerly winds yield an equator-

ward and offshore flow in the surface layer in the summer, while pre-

vailing southerly winds yield a poleward surface flow, the Davidson

Inshore Current, in the winter, There are other, interrelated dis-

tinctions between summer and winter: in the summer, density strati-

fication is intense, coastal upwelling predominates, and a coastal,

poleward undercurrent occurs, while in the winter both the density

and flow fields are more nearly uniform as a function of depth. These

properties determine the seasonal state of the mean flow with which

an internal tide interacts.

Smith (1964) and Smith, Pattullo, and Lane (1966) have made

comprehensive studies of coastal upwelling off Oregon. In the former

study, using hydrographic and atmospheric data, Smith tested models

of coastal and open-ocean upwelling adapted for the Oregon coastal

and offshore regions; his study encompassed the annual cycle. In the

latter paper, hypotheses were tested regarding the inception of up-

welling; the hydrographic and atmospheric data gave credence to the

applicability of the basic physical concepts of coastal upwelling to the

coastal regime off Oregon. Collins (1964) examined the annual march
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of the permanent pycnocline and made deductions about the flow re-

gime based on hydrographic data; he documented the onshore rise of

the permanent pycnocline in the spring and its descent in the autumn.

Collins (.1 968) analyzed time series of current velocity and tempera-

ture observations over the continental shelf off Oregon, representing

all but the spring season. These and other studies have established

the existence of coastal upwelling off Oregon and have contributed to

the understanding of coastal upwellingin general. The studies of

coastal upwelling off Oregon, and the more general studies of Yoshida

(1967) and Smith (1968), form the observational and deductive basis

for the mean flow upon which the present study is structured.

Paviova (1966) has presented hydrographic evidence, based on

data spanning a 35-year interval, for the seasonal structure of the

California Current System south of the Oregon border. In particular,

her work shows the existence of a poleward undercurrent near the

coastal boundary during the upwelling season; the undercurrent be-

comes most intense late in the summer and early autumn. Munk

(1950) has attributed the coastal countercurrent off southern Califor-

nia to a balance between the curl of the local wind stress and the ad-

vection of planetary vorticity. Yoshida (1967) has employed this

balance in layered, baroclinic models.

Yoshida and Tsuchiya (1957) linked the existence of a coastal,

poleward undercurrent to the occurrence of coastal upwelling. They
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chose a vertical section of density sampled about 100 kilometers from

the Depoe Bay hydrographic line to illustrate their contention. They

employed the thermal wind concept, which is illustrated in Figure 18.

A field of isopycnals is shown in Figure l8a which has upwarped iso-

pycnals overlying downwarped isopycnals. This field of isopycnals

is representative of the continental slope and shelf regions during

coastal upwelling, with the downwarped isopycnals occurring beneath

the permanent pycnocline. Vertical profiles of the thermal wind and

the resultant alongshore velocity are shown in Figures 18b and l8c,

respectively. Figure 18b is derived from Figure l8a and Figure l8c

from Figure 18b. The downwarping of isopycnals beneath the perma-

nent pycnocline during upwelling season and close to the continental

slope was taken by Yoshida and Tsuchiya (1957) as evidence for the

existence of a poleward undercurrent. Figures 18b and l8c illustrate

how a poleward undercurrent follows from such a density structure.

The direct current observations to be discussed shortly confirm their

deduction.

The concept of frictional cross-stream flow is introduced for an

aid to the interpretation of the observations in the next section. If the

balance in the y-component momentum equation for the mean flow is

fu N v , where N is the vertical coefficient of eddy viscosity,vzz v

then a frictional cross-stream flow exists. Introducing the thermal

wind relation into the frictional cross-stream flow relation,
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Figure 18. The thermal wind and frictional cross-stream flow
concepts.
a, Field of isopycnals
b. Vertical profile of alongshore thermal wind
c, Vertical profile of along shore flow
d. Vertical profile of frictional cross-stream flow
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A qualitative plot of u cc (p) is shown in Figure 18d; it is de-

rived from Figure lSc. The frictional cross-stream flow relation

predicts onshore flow above the center of the frontal layer and off-

shore flow beneath. Since the temperature inversion water was found

below the center of the frontal layer, and since it moved offshore

from its inshore source, the observed cross-stream flow of the tern-

perature inversion water was consistent with the hypothesized fric-

tional cross-stream flow.

A pictorial description of a simple model for the steady_state

coastal upwelling process was given in Figure 1; a more complete

schematic model is given in Figure 25, which is discussed in the next

section. A verbal description of the coastal upwelling flow regime

follows:

i) In the summer season, the mean north_northwesterly winds

cause a net offshore transport of water in the surface Ekman

19layer, which is of the order of 10 meters thick, They also

cause a southward flow in the alongshore direction, which

can be thought of as the barotropic component of the

'9An Ekman layer is a boundary layer in which frictional effects
predominate over other effects in the equations of motion.
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alongshore flow.

ii) Mass compensation requires a net onshore transport of wa-

ter in the bottom Ekman layer, which is also of the order of

10 meters thick.

iii) Since the water of the open ocean reservoir is density strati-

fied with a permanent pycnocline at a depth of about 1 00

meters, the net offshore transport of light water near the

surface and the net onshore transport of heavy water near

the bottom cause the permanent pycnocline to rise inshore,

forming an inclined frontal layer.

iv) The inclined frontal layer induces a uthermal wind. Thus,

there is a baroclinic component to the alongshore flow such

that the flow in the inclined frontal layer is increasingly

poleward relative to the surface flow as the depth increases

To the extent that the barotropic and baroclinic flow compo

nents can be considered linearly superimposed, the baro-

tropic flow induced by the wind, or inclination of the sea sur-

face, either operates to reinforce or to cancel the baroclinic

flow in the frontal layer. For instance, with the permanent

pycnocline at a fixed intensity and inclination, if the baro-

tropic flow is sufficiently southerly, the lower layer can

come to a standstill or be reversed to equatorward flow,

while the surface layer continues to flow equatorward. On
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the other hand, if the barotropic component relaxes, or re-

verses, the upper layer can come to a standstill or be re-

versed to poleward flow, while the lower layer continues to

flow poleward. Reversals similar to those described are ob-

served to occur on a time scale of several days to weeks.

v) The seasonal pycnocline develops at the base of the surface

Ekman layer. It is formed by the seasonal thermocline,

which develops from summer heating, and by the seasonal

halocline, which is derived from the mixing of surface layer

water with the relatively fresh water of the Columbia River

plume. The seasonal pycnocline breaks the sea surface to

form a surface front, which tends to block the offshore flow of

lower layer water that has been supplied to the surface Ekman

layer inshore. The seasonal and permanent pycnoclines

tend to merge beneath the surface front.

vi) The above remarks present only a steadystate model. When

the winds accelerate sufficiently, the permanent pycnocline

becomes more steeply inclined and breaks the surface,

forming a surface front, while the surface front formed by

the seasonal pycnocline propagates offshore, causing a

strong surface divergence to develop. The acceleration pro

cess may be largely advective. When the winds decelerate,

the response is less rapid because the process of developing



253

an inclined frontal layer is essentially irreversible, requir-

ing mixing for cancellation.

In summary, the vertical structure to the horizontal flow in the

frontal zone of coastal upwelling is divided as follows:

i) An Ekman layer at the sea surface, with the seasonal pycno_

dine at its base except in the vicinity of the surface front,

where the seasonal pycnocline must penetrate the surface

Ekman layer.

ii) An Ekman layer at the sloping bottom.

iii) A quasi-geostrophic interior where the effects of the inclined

frontal layer predominate over frictional effects due to the

stresses applied at the boundaries. The quasi-geostrophic

interior can be viewed as subdivided into a thin layer above

the frontal layer, the frontal layer per se, and a thick layer

beneath. A cross-stream flow occurs in the quasi-

geostrophic interior; it may be a purely frictional, purely

inertial,20 or a combination frictional-inertial flow.

The inclined frontal layer is a region where the processes of

frontogenesis, necessary for the development and the sustenance of

the frontal layer, and of frontolysis, necessary for the destruction of

20The term inertial is used here in connection with the advec-
tive acceleration terms in the equations of motion rather than as it
has been used elsewhere in this dissertation in connection with the
Coriolis terms.
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the frontal layer, are of significance. Secondary, cross-stream

flows in the vicinity of the frontal layer are anticipated. A dynamical

discussion of the cross-stream flow will be found in Mooers etal.

(1969) and a preliminary theoretical discussion of cross-stream flows

is found in Mooers (1968). Appreciable mixing occurs in the frontal

zone. If mixing is sufficiently intense, the isopycnals in the layer

beneath the inclined frontal layer become downwarped, intensifying

the tendency for northward flow there. Mixing warm, fresh waters

derived from the surface layer with cold, saline waters from the low-

er layer near the surface front replenishes the water mass of the

frontal layer. The freshly formed water mass of the frontal layer

sinks to the lower half of the inclined frontal layer and below and then

flows seaward, adding to the volume of the permanent pycnocline.

The temperature inversion in the lower half of frontal layer is a key

indicator of this flow pattern. The hydrological-optical investigation

of Pak etal. (1969) supports the deduced cross-stream flow pattern.

C. The Frontal Zone of Coastal IJpwelling in August-
September 1966

In Figure 19, vertical sections of the density anomaly, sigma_t,

are shown for August-September 1966; the positions of the moored,

recording sensors are indicated by solid symbols. The section shown

in Figure l9a was sampled two weeks after installation of the sensors,
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and the one shown in Figure 19b was sampled a month later, upon re-

covery of the sensors. The contoured fields of sigma_t are based on

single casts taken at each station; the sections were each sampled

during a two-day interval and the indicated vertical position of the

isopycnals could differ from their daily mean vertical position by as

much as ± 10 meters, due to inertial-internal waves or other causes.

The overall pattern was essentially the same in late August as it was

in late September, with exceptions noted below. The 24. 0 and 24. 6

isopycnals delimit the seasonal pycnocline and the 25. 4 and 26. 0 iso-

pycnals delimit the permanent pycnocline. Collins (1964) found the

latter to be reliable indicators of the permanent pycnocline. The sea-

sonal pycnocline has yet to be treated in similar detail. Thus, the

moored, recording sensors bracketed the inclined frontal layer

formed by the permanent pycnocline during the period of observation.

At 50 kilometers offshore, the seasonal pycnocline was found in

the depth zone of 10 to 20 meters deep, while the permanent pycno-

dine was foundinthedepthzoneofabout 50 to 90 meters deep there.

Both pycnoclines rose inshore; the seasonal pycnocline broke the sur

face about 10 to 20 kilometers offshore, while the permanent pycno_

dine rose to the depth zone of 20 to 40 meters deep about 10 kilo-

meters offshore. What occurred inshore of 10 kilometers is uncer-

tam, but the existent observations suggest that the region inshore of

10 kilometers offshore was quite variable, indicative of mixing. The
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vertical density gradient or, equivalently, the static stability, is tak-

en as the measure of frontal, or pycnocline, intensity. The seasonal

pycnocline was about four times as intense as the permanent pycno

dine at 50 kilometers offshore, while inshore the permanent pycno_

dine intensified by a factor of two. The slope of a pycnocline, or

frontal layer, is given by the slope of its fiducial isopycnals. The

overall frontal slope of the seasonal pycnocline was about

15 meters 0. 5 x l0 and that of the permanent pycnocline was
30 kilometers

40 meters
1about 40 kilometers I X lu

seasonal pycnocline was about

The maximum frontal slope of the

10 meters = i x io and that of
10 kilometers

30 meters -3
the permanent pycnocline was about 3 x 10 The

10 kilometers

largest values of the frontal slope for both the seasonal and permanent

pycnoclines were found at their inshore edges. The most significant

changes from August to September indicated by the sigma_t sections

were

i) The intensification of the seasonal pycnocline.

ii) The marked downwarping of the isopycnals beneath the in-

shore edge of the seasonal pycnocline.

iii) The reduction of the inclination of the isopycnals beneath the

inshore edge of the permanent pycnocline.

The three notable changes are consistent with increased mixing

occurring in the frontal zone as the decay phase of coastal upwelling

progresses. They are also consistent with the thermal wind concept
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and the observed increase of poleward flow in the lower layer 10 kilo-

meters offshore from late August to late September.

In Figure 20, the vertical sections of temperature, salinity and

sigma_t for mid August, late August, and late September 1966 are

shown. Four points are noted:

i) The seasonal pycnocline was the result of both a seasonal

halocline and a seasonal thermocline.

ii) The permanent pycnocline was the result of a halocline; in

fact, the temperature inversion near its base weakened the

effect of the halocline on the formation of the pycnocline.

iii) The temperature inversion was most intense inshore and fol-

lowed the descent of the frontal layer offshore.

iv) The inclined frontal layer weakened and became less steep

while the temperature inversion became more intense from

mid August to late September.

Since the temperature inversion was formed near the surface front,

and since it was subsequently advected offshore, it is used as an in-

dicator of cross-stream flow. The existence and the frontal signifi-

cance of the temperature inversion were first noted by Pattullo and

McAlister (1962). Mooers etal. (1969) explore its dynamical

interpretation further. The salinity and temperature structure is

representative of the summer season off Oregon. For inertial-

internal wave measurements, a recording salinograph would be more
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useful than a recording thermograph because salinity is generally,

though not always, a monotonic function of depth and has appreciable,

nearly uniform, vertical gradients over a considerable range of

depths, while temperature is a multiple-valued function of depth and

has weak or non_uniform vertical gradients over much of the water

column

The temperatue inversion was related to the flow field. Figure

21 shows a vertical section of temperature as a function of time sam-

pled at an anchor station 45 kilometers offshore. The instantaneous

depth of the secondary maximum2' in the instantaneous current speed

is shown by solid circles superimposed on the temperature field. The

most significant feature are:

i) The ±10 meter vertical displacements of the isotherms in the

temperature inversion at a depth of about 100 meters had a

semidiurnal character.

ii) The secondary maximum of instantaneous speed occurred in

the upper half of the temperature inversion; its depth also

had a semidiarnal character. Thus, appreciable vertical

shears and variability in the horizontal flow appear to have

occurred at the base of the pycnocline. These contentions

are examined more thoroughly in the following discussion.

21The primary maximum in both the instantaneous and the mean
current speed is found near the sea surface.
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Figure 22 shows the vertical profiles of the mean of the scalar

speed and of the speed of the vector mean for the data from which

Figure 21 was derived. The ratio, I, of the two profiles, depth-

for-depth, is a measure of the steadiness of the flow at each depth.

The secondary maximum of the speed of the vector mean occurred at

a depth of 105 to 120 meters; since I 4/3 in that depth zone, the

flow was quite steady there. The secondary maximum in the mean of

the scalar speed occurred at a depth of 80 to 90 meters; since I 5

in that depth zone, the flow was quite variable there.

Figure 23 displays vertical profiles of quantities computed from

the time series used in compiling Figures 21 and 22. The profiles extend

from the sea surface to a depthofonlyl0Ometers. Becauseobserva-

tions were made for only one-half the observation period below that

depth, and because calculations were made for the semidiurnal com-

ponent of the motion at each depth, it was safe to consider only the

results for the observations made over two semidiurnal cycles. The

vertical profiles of the lunar semidiurnal (M2) velocity component

magnitude and phase are shown in Figures 23a and 23b, respectively.

The values for the tidal estimates were obtained by least squares

analysis. The vertical profiles of the mean of the velocity compo_

nents, also obtained in the least squares analysis, are shown in Figure

23c. The M2 magnitude and phase and the mean of both velocity

components vary smoothly with depth. The secondary maximum in
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the M2 velocity magnitude at the base of the permanent pycnocline

is the most striking feature in Figure 23a. Appreciable vertical

shears are associated with the secondary maximum. The M2 phase

sustained a 1000 and a 180° variation from the surface to 100 meters

deep in the onshore and poleward components, respectively. The

variations in depth of the magnitude and phase of the M2 tide are

baroclinic effects, thus a semidiurnal internal tide was present in the

observations.

The mean profiles of Figure 23c indicate that the flow in the per-

manent pycnocline was poleward and offshore, while it was poleward

and onshore beneath the permanent pycnocline. These features of the

mean flow are consistent with the previous discussion about the ther-

mal wind and frictional cross-stream flow concepts upon careful analysis.

Vertical profiles of Richardson numbers for the mean flow, RIM,

and for the temporal minimum of the combination of the mean flow and

the M2 amplitude, mm (RIN(M2)), are shown in Figure 23d.

RIM indicates that the mean flow was dynamically stable and that it

was most stable in the pycnoclines, while it was least stable at the

top and at the base of each pycnocline. The vertical shear of the M2

velocity reduced the minimum Ri. The occurrence of critically

low values for mm (RIN(M2)) at the base and beneath the permanent

pycnocline is the most striking and convincing pattern. This result

is consistent with the thesis of this dissertation. (Instantaneous Ri's
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yield even smaller values, but, due to inevitable sampling errors,

the more conservative mm (RIN(M2)) has been displayed because

it is based on the least squares analysis for the full time series. )

Thus, there is evidence for the semidiurnal internal tide functioning

as a destabilizing, or mixing, agent in the frontal layer over the con-

tinental slope. In Section XI. H., Ri's computed for the time

series observed over the continental shelf at DB5, 10 kilometers off-

shore, are examined.

The directly measured and geostrophic winds (Mooers et al.,

1968), both indicate the following qualitative patterns:

i) Strong winds from the north-northwest occurred during the

first three weeks of August. This was a favorable condition

for coastal upwelling.

ii) Weak and variable winds, generally from the southwest, oc-

curred during the following week. This was an unfavorable

condition for coastal upwelling.

iii) Moderate winds from the north-northwest occurred during

the next week. This was a favorable condition for coastal

upwelling.

iv) Weak and variable winds, generally from the southwest, oc-

curred during the last three weeks of September. This was

an unfavorable condition for coastal upwelling.

The wind patterns suggest that the observations were made during the
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late stages of the coastal upwelling season and the initial stages of the

seasonal transition to southerly winds and the cessation of coastal up-

welling. The interval of common record durations, the last two

weeks of August, is characterized as favorable for coastal upwelling

in the first week and unfavorable in the second week. These corn-

ments must temper the interpretations placed on the mean calcula-

tions of the velocity and temperature fields.

In Tables 1, 2, and 3 the means and standard deviations of the

observations from the moored, recording sensors of the August-

September 1966 field observations are given.22 Several of the mean

flow features are noted from Table la:

i) The alongshore flow was southerly at a depth of 20 meters;

it was more intense at 10 kilometers than at 20 kilometers

offshore.

ii) The alongshore flow was northerly at a depth of 60 meters;

it was more intense at 30 kilometers than at 10 kilometers

22For most of the discussion, Tables la, 2a, and 3a are used,
In those tables, the velocity, temperature, and velocity differences
are given for common record lengths, each 339 hours long. The veloc-
ity and velocity differences resolved into alongshore (normal to the
array axis) and onshore (tangential to the array axis) components are
used. The axis of the array was aligned along 300 to 120° True,
while the bottom contours were aligned along 025 to 205° True, 030-
120° True, and 035_125° True at the 10, 20, and 30 kilometers off-
shore sites, respectively. In other words, the normal to the array
axis was oriented within ±5° of the bottom contours. The primed co-
ordinates and velocities are in the alongshoreonshore coordinate
system. The change of coordinates required a 30°, clockwise rotation.



Table 1. Statistics of the mean flow field.

Eastward Northward Speed Direction Onshore Polevard
Depoe Distance Water Sensor Record component(u) component(v) Scalar speed of vector of vector component (u) component (v')
Bay offshore depth depth duration (cm/sec) (cm/sec) (cm/sec) mean mean (cm/sec) (cm/sec)
station (kilometers) (meters) (meters) (No. of hours) mean= std. dev. mean- std. dev. mean± std. dcv. (cm/sec) (deg. true) mean mean

1 a. Based on hourly averages for common record lengths

5 10 80 20 339 -2.2 ± 11

5 10 80 60 339 +2.8 6
10 20 140 20 339 +4.5 ± 10
15 30 200 60 339 +6.0 ± 6

lb. Based on integrated 10-minute samples for full record lengths

5 10 80 20 346 -2.1 ±11
5 10 60 872 +2.7± 7

10 20 140 20 890 -0.8 ± 11

15 30 200 60 956 +4.8 ± 8

-17.9 12 23.4 7 18.0 187° +7.1 -16.6
+ 0.7 ± 9 11.0 ± 3 2.9 076 -2.0 2.0
-12.1 9 18.1 ± 6 12.9 160° --9.9 - 8.3
+ 7.9 ± 13 13.3 7 9.9 043 --1.2 9.8

-17.9 ± 12 23.4 7 18.0 187° +7.2 -16.5
+ 5. 1 13 14.3 ± 6 5.8 028° -0. 3 + 5.8
-13.6 ± 9 18.4 ± 6 13.6 183° +6. 1 -12.2
+ 3.9 ± 8 12.5 ± 3 6.2 051° +2.2 + 5.8

Table 2. Statistics of the mean temperature field.

Depoe Distance Water Sensor Record Temperature
Bay offshore depth depth duration (°C)
station (kilometers) (meters) (meters) (hours) mean std. dcv.

2a. Based on hourly averages for common record lengths

5 10 80 20 339 8.44 ± 0.6
15 30 200 20 339 10.19 1.2

2b. Based on integrated 10-minute samples for full record lengths

5 10 80 20 938 8.86 ± 1.2
15 30 200 20 482 10.72 ± 1.6

or
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23offshore.

iii) All sensors exhibited onshore flow. The flow was converging

and diverging onshore at the 20 and 60 meter levels, respec-

tively. The convergence at the 20 meter level was an order

of magnitude greater than the divergence at the 60 meter level.

iv) The speed of the vector mean flow had values between 2. 9

and 10 cm/sec, at a depth of 60 meters at 10 and 20 kilo-

meters offshore; the mean of the scalar speed had values

between 11 and l3cm/sec at those stations, respectively.

The flow was most variable at a depth of 60 meters, 10 kilo-

meters offshore, where I was about 4. At the other

sites, I was about 1. 3.

While a much higher sensor density is necessary to make un-

equivocal statements about the pattern of the mean flow for the last

two weeks in August 1966, the present observations allow some de-

ductions.

Figure 24 aids in the interpretation of Table la, the flow field,

and Table 2a, the temperature field. All sensors were located in the

quasi-geostrophic interior. Further,

23 From Table lb, the situation changed when the full six weeks
of data were used rather than the two weeks of common record length;
i.e.., the mean poleward flow intensified at 10 kilometers offshore
and diminished at 30 kilometers to the same value. Thus, the pole-
ward flow was greater at 10 kilometers than at 30 kilometers offshore
in the latter portion of the observation period.
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i) The sensor at a depth of 20 meters, 10 kilometers offshore

was at the upper boundary of the inclined frontal layer. The

flow had an onshore-component consistent with frictional

cross-stream flow. The mean temperature, 8. 4°C, mdi-

cates that interior water was present at the sensor.

ii) The sensor at a depth of 60 meters, 10 kilometers offshore

was below the inclined frontal layer. The flow had an on-

shore component, which may indicate that the site was gov-

erned by the bottom Ekman layer at that time.

iii) The sensor at a depth of 20 meters, 20 kilometers offshore

was at the upper boundary of the inclined frontal layer. The

flow had an onshore component, again consistent with fric-

tional cross-stream flow.

iv) The mean temperature, 10. 2° C, indicates that surface layer

water was present at a depth of 20 meters, 30 kilometers

offshore.

v) The sensor at a depth of 60 meters, 30 kilometers offshore

was near the center of the inclined frontal layer. Again, the

flow had an onshore component consistent with frictioial

cross-stream flow.

Vi) Under the hypothesis of frictional cross-stream flow, if the

sensor at a depth of 60 meters, 20 kilometers offshore had

operated, it would have indicated offshore flow because it
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wat at the base of the inclined frontal layer and in the tern-

perature inversion. In other words, the offshore flow as-

sociated with the temperature inversion t?leakedtt through the

array. Also, the array was too deep to detect the offshore

flow of the surface Ekman layer.

Figure 25 is a schematic of the cross_stream flow; it is based on the

observations depicted in Figure 24 , the hydrographic sections of

Figures 19 and 20, and the verbal model presented in Section B.

In Table 3, the mean velocity differences,and consequent shears

are presented; they are based on the same data as Table 1. The

principal properties of the mean shears and the mean temperature

gradient are summarized below:

i) The value of Vt computed at 10 kilometers offshore be-

tween the depths of 20 and 60 meters indicates a thermal

wind of -4.6 x 103sec'. The vertical section of sigma_t

of Figure 19 indicates that E 2 x 104sec2 and

-3 -4 -1
s 2 x 10 ,thus, with f = 10 sec , the thermal wind

relation, v' = predicts v' -4x 103sec
z f z

Thus, it is established that the alongshore flow was essentially

geostrophic in the interior. The value of Ut,

+1. 2 x 103sec, suggests that, in a complete theory for

inertial-internal waves in a frontal zone, it may also have

an appreciable effect for interactions. From the computed
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Table 3. Statistics of the mean shear field.

Depoe Bay Station! 1.ecord u-differences Shear v-differences Shear Mean shear vector up-differences Shear v'-differences Shear
sensor combination duration (cm/see) term value

-1 (dm/sec) term value magnitude direction (cm/see) term value
-1 (cm/see) term value

-1in difference (No. of hours) mean±std. dev. mean(sec ) mean±std. dev. mean(sec ) (sec) (deg. true) mean mean(sec ) mean mean(sec

3a. Based on hourly averages for common record lengths

D35, 20-6Osneters 319 -5.0 ±13 1.2x103 -18.6 ± 11 v -4.6x103 4.8 x103 194 +5.0 u +1.2x103 -18.6 v -4.6 x103

DB5-DB1O, 20 meters 339 -6.7 ± 15 u -7.7 x 10 6
- ± 11 v -6.6 x 10 6 10.0 x 10 229 -3.0 u -I. Ox 10 6

- 8.3 v', -8.3 x 10 6

DBS-DB1S, 60meters 339 -3.4±9 u -2.0x106 - 7.4±6 v -4.2x106 4.6x105 206 +0.8 u' +O.4x106 -8.1 v', -4.0x106

3b. Based on hourly averages for longest, common record lengths

DB5, 20-60 meters 345 -5.0 ±13 u -1.2x103 -18.6 ± 11. v -4.6x103 4.8 x103 194 +5.0 u +1.2x103 -18.6 v -4.6xl03

DBS-DB1O, 20 metes 343 -6.8 ± 15 U -7.8 x 10 6
- ± v -6.6 x 10 6

10.0 x 10
6

230 -3.1 u', -3.1 x 10 6
- 8.3 v -8.3 x 10

6

DB5-DB15, 60 meters 860 -2.2 ± 10 U -1.3 x 10 6
± 16 v +0.9 x 10 6 1.6 x 10 6

305 -2.5 u', -1.2 x 10 6
+ 0.2 v' +0.1 x 10 6

-I
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value of v' and the estimate of E, FRN 8, which is
z

about three times the minimum value estimated in Section

VIII. C.

ii) The values of u' at a depth of 20 and 60 meters between
x

10 and 20 kilometers and 10 and 30 kilometers offshore, re-

spectively, reflect the onshore convergences and divergences

noted ea.rlier. The mean temperature gradient at a depth of 20

meters indicates that warm water converged onshore, con-

sistent with frontogenesis. The corresponding values of

Vt are one order of magnitude less than the planetary vor-

ticity, f. (The term vt was not dropped from the GE

for the inertial-internal waves with frontal interaction in

order to maintain the self -adjointness of the GE and because

its maximum value may have been appreciably larger on

smaller spatial scales than those of the observations. )

Since r = _vt1/yt1 is about _l to -2 x 10, then r - s,

i.e., the slopes of the mean alongshore isotachs and of the

isopycnals were about equal but of opposite sign. The dif-

ference in the sign of r and s suggests that there was

a significant tilt and curvature to the sea surface.

In summary, the geostrophy of the alongshore flow in the inter-

ior, the existence of the inclined frontal layer in conjunction with a

temperature inversion at its base, and the existence of a poleward
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undercurrent are well-established by direct observation in the fontal

zone of coastal upwelling over the continental shelf off Oregon. The

hypothesized frictional cross-stream flow is consistent with the ob-

servations but still must be considered tentative until more detailed

observations are examined. Thus, hypotheses x) through xiii) of

Section IX. B. have been substantiated by the observations reported

in this section.

D. The Field of Static Stability

The hydrographic fields off Oregon have been under routine sur-

veilance for the past decade. The most important property of the

hydrographic fields for inertial-internal waves is the vertical density

gradient, or, equivalently, the static stability. The mean vertical

profiles of sigma_t, cr; static stability, E; and Vaisl-Brunt

period, TN. as a function of season and offshore position off New-

port, Oregon, are introduced in Figure 26. The Newport hydrograph-

icline is located about 75 kilometers to the south of the measurement

site off Depoe Bay, Oregon. The calculations of E(z) have been

made with and without the adiabatic correction; due primarily to the

temperature inversion, the correction amounts to as much as a 1 0%

difference between the two calculations. Since E(z) has a large

range, this is a small discrepancy for most purposes.

The offshore dependence is delineated by three categories:
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Figure 26e. Deep, offshore, vertical profiles of sigma-t, static stability, and Visl-Brunt
period off Newport, Oregon.
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i) Offshore: depth greater than 1000 meters and distance

greater than 72 kilometers offshore.

ii) Continental slope: depth greater than 200 meters and less

than 1000 meters and distance greater than 27 kilometers

but less than 72 kilometers offshore.

iii) Continental shelf: depth less than 200 meters and distance

less than 27 kilometers offshore.

The seasonal dependence is delineated by four categories:

i) Winter: December through February.

ii) Spring: March throughMay.

iii) Summer: June through August.

iv) Autumn: September through November.

These categories were chosen on the basis of information about the

horizontal and seasonal structure of coastal upwelling; though the

categories could be subdivided profitably, they are sufficient for the

present purposes.

The profiles are based on six years of data, from 1961 through

1966. The range of the number of samples in individual depth categor-

ies are listed:

Season
Winter Spring Summer Autumn

Offshore category mm max mm max mm max mm max
Offshore 16 66 16 39 21 79 23 55
Continental slope 6 21 5 6 28 39 11 15
Continental shelf 7 20 5 7 7 27 6 28
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In Figures 26a to 26d vertical profiles of O, E, and TN in

the upper 200 meters are shown for each season and each offshore

category. The position of the frontal layer is denoted by the dashed

lines at the depths of the fiducial isopycnals for the permanent pycno-

dine. The frontal layer is essentially level in the winter season. It

rises and intensifies in the onshore direction in the summer season.

In the spring and autumn seasons, the frontal layer occupies inter-

mediate positions. In the upper 200 meters, E(z) varies from

10 to 105sec2. Figure 26e shows the vertical profiles of o, E,

and TN to a depth of 1000 meters in the offshore region for the

summer and winter seasons. There is no difference in the summer

and winter profiles at depths greater than 125 meters. Most of the

variability is confined to the upper 60 meters, i. e. , above the frontal

layer. E(z) has a minimum of about 0. 1 x 104sec2 at a depth

of 900 meters. In the winter, the minimum value also occurs near

the surface, where E(z) has a maximum of about 10 x 104sec2

in the summer.

In the winter season, E(z) generally has a maximum of

2 x 104sec2 in the frontal layer at a depth of about 60 meters. In

-4 -2
the spring season, E(z) develops a maximum of 10 x 10 sec

and 2. 5 x 104sec2 at a depth of 10 meters over the continental

shelf and over the continental slope, respectively, corresponding to

the development of the seasonal pycnocline. In the summer season,



the maximum of E(z) continues to be associated with the seasonal

pycnocline and extends to the offshore region. Over the continental

shelf, the secondary maximum of E(z), associated with the frontal

layer, merges with the primary maximum associated with the sea-

sonal pycnocline. In the autumn season, the primary maximum of

E(z) continues to be associated with the seasonal pycnocline, but it

is only about 4 x 104sec2 and tends to occur deeper than during the

summer, at a depth of 20 to 40 meters, over the continental slope and

offshore.

In Figures 27 and 28, E(z) is displayed for the August-

September 1966 observations. The conversion graph in the lower

lefthand corner of Figures 27 and 28 can be used for computing TN

from E.

Figure 27 shows the mean vertical profiles of E(z) for the

four anchor stations of August..September 1966. They show the pri-

mary and secondary maxima in E(z) associated with the seasonal

and permanent pycnoclines, as noted in Figure 26. These curves dif-

fer from those of Figure 26 in the following ways:

i) They have about twice as much vertical detail.

ii) They are based on samples taken at a single spatial location.

iii) They are based on a dozen or more samples, as indicated,

taken over a period of a lunar day.

The profiles of Figures Z7ato 27care from the continental slope region,
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while that of Figure 27d is from the offshore region, The essential

features of Figure 27 are:

i) The primary maximum of E(z) intensified and deepend

from late August to late September over the continental

slope

ii) The primary maximum of E(z) is more intense at the sea-

ward edge of the continental slope and offshore than at the

inshore edge, which is consistent with the Columbia River

plume being more intense offshore than over the continental

shelf,

iii) The secondary maximum in E(z) is less distinct offshore

than over the continental slope; this point is verified by the

dashed curve of Figure 27c which shows E(z) evaluated at

the same depths as the less-densely sampled offshore profile

of Figure 27d.

Figures 28a and b show E(z) computed from single hydro-

graphic profiles for three different times during the observation in-

terval at the offshore and inshore termini of the sensor array. These

profiles indicate some of the detailed variability of E(z), in both

space and time. Overall, their general form is consistent with pre-

vious remarks for this season and the continental shelf. An anoma-

bus feature of importance was the minimum in E(z) found at a

depth of 40 to 60 meters in late September at the inshore terminus.
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This minimum was as small as 0. 1 x l04sec2, corresponding to

TN = 33 minutes at a depth of about 60 meters. At the same time,

the primary maximum in E(z) occurred at a depth of about 20

meters; it had a value of about 12 x lO4sec2, corresponding to

TN = 3 minutes. For the purpose of interpreting the possibility of

N(z) alia sing the spectra of Chapter XI, the following ranges of val-

ues are considered representative:

Depth

20 meters

E (see2) N (sec) TN (minutes)

2 to l2xl04 1 to 4xl02 3 to 8

60 meters 0, 1 to 3xlO4 0. 3 to 2x102 6 to 33.

E. The Field of Characteristics for the Semidiurnal
Internal Tide

On the basis of the hydrographic data sampled over the conti-

nental shelf in late August 1966 and the theory of Section V. B., the

fields of characteristics for the semidiurnal tide are displayed in Fig

ures 29to 31. To determine the fields of E(x, z) and of s(x, z), the

slope of the isopycnals, it would have been ideal to have made simul-

taneous anchor stations at 5 kilometer increments over the continental

shelf for a lunar day once each week throughout the period of moored

array observations. In practice, a smoothed version of the sigma-t

field for late August was used to estimate the values of E(x, z) and

s(x, z). The slopes of the characteristics were computed with and



without the frontal interaction. Without the frontal interaction,

and

dz 1.1 -4z+-x10 =X
1

-x,

where the relations << N2 and a- 1. 5f have been used.

Similarly, with the frontal interaction,

and

dz
)'_ =-) Zs+X

1 dx
11

= 5 - x.

In Figure 29 , the 1 and , characteristics are drawn sea-

ward and shoreward from an origin at DB5, 60 meters. The char-

acteristics for three representative values of E constant are il-

lustrated for the case without the frontal interaction. For the most

representative value of E, one beam, i. e., the domain of influ-

ence for an excitation between two characteristics, is indicated by

the hatched area; it illustrates the effect of beam contraction, equiva-

lent to a shift to higher wave numbers and to wave amplification, upon

reflection from the sloping bottom. The beam originates from the

depth zone of about 110 to 190 meters at the seaward edge of the
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Figure 29. The field of characteristics for the semidiurnal internal tide over the continental
shelf off Depoe Bay, Oregon. (Static stability is constant and there is no frontal
interaction
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continental shelf; it reaches DB5, 60 meters after one reflection from

the sea surface. After two reflections from the bottom, and two

further reflections from the surface, the beam has traversed 29 kilo-

meters of the continental shelf, i. e. to within 1 kilometer of the

coast. The vertical thickness of the beam is reduced from 80 meters

at the shelf edge to 4 meters at 1 kilometer from the coast. Such a

contraction corresponds to an amplification of the velocity field of the

wave by a factor of 20.

In Figure 30 , the characteristics are plotted for a case with

the frontal interaction. Both E and s are functions of x and

z. The downgoing and upgoing beams originating at the seaward edge

of the continental shelf between the depths of 22 and 45 meters are in-

dicated by the hatched areas. The fiducial isopycnals of the inclined

frontal layer are also portrayed. The beams exhibit the following

features:

1) Beam contraction occurs upon reflection from the sloping

bottom.

ii) When downgoing and upgoing, the beams experience expan-

sion and contraction, respectively, as they pass through the

inclined frontal layer.

iii) From 30 kilometers to 10 kilometers offshore, the width of

the beam bounded by solid lines expands by 60%, while that

of the beam bounded by dashed lines contracts by 80%. The
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net effect is that the semidiurnal internal tide is expected to

exhibit nearly uniform energy density over the sensor array.

iv) The beams tend to be deflected by the frontal layer.

v) Inshore of 10 kilometers offshore, the bottom slope is near-

ly critical.

vi) Points of common phase are shown on the figure. There is

a 180 degree phase reversal between 30 and about 14 kilo-

meters offshore and between about 14 and about 4 kilometers

offshore. Hence, the effective wavelength between 30 and

10 kilometers offshore is about 26 kilometers.

A single characteristic for the case of no frontal interaction, but E

a function of x and z, is shown by a dotted line terminating at

DB5, 60 meters. This characteristic illustrates the fact that the

frontal interaction does significantly modify the characteristics, con-

sistent with the thesis of this dissertation.

The same values of E(x, z) and s(x, z) as used for Figure

3D were used in computing the more complete field of characteristics

shown in Figure 3la. Figure 31b was determined from Figure 3la.

Positions of the sensors which operated usefully long are shown in

Figure 31. The realism of Figure 31 is limited by a lack of hydro-

graphic data from near the bottom and inshore of 10 kilometers off-

shore. From Figure 3la, it can be seen that there is a concentration

of characteristics, and thus energy associated with the seasonal
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Figure 31. Characteristics for the semidiurnal internal tide over the continental shelf off Depoe
Bay, Oregon.
a. Field of characteristics
b. Lines of constant phase
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pycnocline and the surface front near the sensor site 10 kilometers

offshore and at a depth of 20 meters. Again, the bottom slope is

nearly critical inshore of 10 kilometers within the limits of the ex-

trapolated hydrographic data. The lines of constant phase in Figure

31b are considerably distorted by the frontal zone. Figure 31b bears

a resemblance to Figure 9; the differences between the two figures

emphasizes the inadequacy of models with N2 constant. For a

progressive wave, phase differences between sensor sites can be ob-

tamed from Figure 31b.

- In Figure 32, the theoretical horizontal phase speed versus fre-

quency and the phase versus frequency functions are given for the

Depoe Bay array. The simplest possible model has been assumed,

i.e., a progre ssive wave onshore, uniform depth, constant N2,

and no frontal interaction. The curves are given for two representa-

tive values of N2. The cases of DB15 versus DB5 and of DBJO

versus DB are displayed. These curves are useful for comparison

with the phase results obtained from cross spectrum analysis in the

next chapter. They indicate that inertial-internal waves are essen-

tailly non-dispersive over the measurement band except near the

inertial frequency, about 1.4 cpd.
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d. Phase versus frequency function, DB1O vs DB5



297

XI. THE TIME SERIES ANALYSES OF THE OBSERVATIONS

A. Introduction

Four horizontal velocity, two temperature, and a sea level time

series are analyzed. The resolvable, coherent tidal components

have been removed from the original24 series to produce residual

series. Both the original and residual series are examined by spec-

trum analysis. The autospectra of the velocity and temperature time

series are examined to determine the frequencies at which energy

peaks occur and to characterize the spectra in general. The coher-

ence squared, phase, and axis functions of velocity series observed

at a single point are examined to identify coherent motion, the rota-

tional sense of the hodograph, and the hodograph orientation, respec-

tively. The coherence squared and phase functions of series ob-

served at various spatial separations are examined to seek evidence

for spatially coherent motions and to determine their direction and

speed of propagation. The spectra of the difference series are used

to make deductions about the presence of inertial-internal waves and

the dynamic stability of the frontal zone.

24 In this chapter, the expression original series is used for the
hourly averages of the 10-minute samples.



B. The Time Series Analyses

A myriad of practical considerations arise when treating sev-

eral time series with unequal record lengths. The most distressing

concern is the necessity, due to cost and time considerations, to se-

lect from a host of options without full experimentation. Most of the

options have been explored to a limited extent. The options available,

and the rationale for the selection of those employed, are discussed.

The practical limitations of the time series are also examined.

The data series were recorded continuously on photographic

films in an analog format. The films advanced once every 10 mm-

utes; thus, several discrete sets of analog records were created.

Upon reduction, the films provided digital series, which determined

the mode of the subsequent analyses. Each frame of the thermograph

films was exposed throughout a 1 0-minute cycle, while those for the

current meters were exposed for 9 minutes during each 10-minute

cycle. The difference in recording intervals was due to the difference

in film advance mechanisms; the difference in recording intervals

was accounted for in data conversion. Additional details about the

moored, recording meters, and their performance, can be found in

Mooersetal. (1968).

The number of lO-minute samples per series range between
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25about 2100 and 5700. The series were numerically tapered to

separate them into low-passed (half-power point of about 40 hours),

intermediate-passed (half-power points of about 6 and 40 hours), and

high-passed (half-power point of about 6 hours) components (Mooers

et al., 1968). The low_passed and high_passed records were ex-

amined in an exploratory fashion. The low-passed records contain

large amplitude (- 10 cm/sec) oscillations with periods of several

days, but the record durations were insufficient to define their spec-

tral structure. The high-passed records contain nolarge amplitude

oscillations and very little spectral structure of interest other than

at tidal harmonics and at what are probably frequencies of internal

celluar waves. The intermediate-passed records could have been

used for the analyses of the tidal frequencies; they have the advantage

over hourly averages of having had low frequency trends removed. It was

decided to use uniformly weighted hourly averages instead, which al-

lows a broader band study than that which the analysis of intermediate-

passed records permit. Because hourly averages were used, the

original records were decimated by a factor of six. Since it was

logistically impossible to install all of the sensors simultaneously,

and since the majority of the sensors failed before their recovery,

the time series have different start and stop times. For the

25A numerical taper is a weighted average applied in the time
domain; its equivalent in the frequency domain is a digital filter.
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maximum utilization of a time series, the entire time series is used

in some analyses. For the comparison of records sampled at differ-

ent spatial points or from different sensors at the same spatial point,

it is necessary to use common record durations. In Table 4, the

start and stop times, the common record durations, and the number

of samples for the hourly averages are listed. Acceptable sea level

data commenced at 12 00/! 8/24/66; 900 hourly values of this data

were used only in the tidal analysis, which was referenced to the corn-

mon start time of the other data series.

Timing errors are devastating for the calculation of spectra.

The worst estimate of frame count uncertaintyis four frames in 6000,

which is twice the greatest clock error observed (Mooers etal..,

1968). This error is equivalent to a one-half minute error during

each semidiurnal cycle. Thus, timing errors are not likely to be

significant in the time series of this study. An unequivocal statement

can not be made because there is present the spectre of erratic film

advance, which could give no apparent error in a long time series.

Excessive sensor string tilt would impair the performance of

the current meters. In the worst case, only 14% of the 10-minute

samples were recorded at a tilt in excess of 3°, corresponding to a

horizontal displacement in excess of 3 meters (Mooers et al. , 1968).

Thus, sensor string tilt was well within the operating range of the

current meters.



Table 4. Record durations (hourly averages).

Sensor Initial Common Common Common Common Common Terminal Sensor Totalstart No. of start No. of end No. of end No. of end No. of end No. of end No. ofSensor time samples time samples time samples time samples time samples time samples time samples
Common 1900/I 339 2100// 482 2000/! 568 10001/ 865 1900/!

8/15 8/29 9/4 9/8 9/20
DBS, 20 meters

Thermograph 1300/f
14001/8/15 6 + + + + 67 9/23 938Current meter 1300/i
2100/i

8/15 6 + - - 8/29 345

DB5, 60 meters
Current meter 1300/i

1900/I
8/15 6 + x + + - 9/20 871

DB1O, 20 meters
Current meter 1500/!

isoo,,
8/15 4 + x + + 20 9/21 889

DB15, 20 meters
Thermograph 1800/1

0900//8/15 1 + + - - - 9/8 568#

DB1S, 60 meters
Current meter 1900/ / 1200/

8/15 0 + x + + 89 9/24 954

# The final 85 samples were rejected because the onset of erratic film advance was suspected.
+ Sensor operating and analysis performed for this record length.
- Sensor not operating.
x Sensor operating but no analysis performed for this record length.
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The accuracy in vertical positioning of the sensors is estimated

to be ±1 meter referenced to mean sea level (Mooers etal., 1968),

It is possible for the moorings to drag along the bottom, and there

are limitations to the accuracy in determining the geographic position

of a mooring upon installation and recovery. The estimates of the

navigational uncertainty and of the stability of a moorings position

yield a positional accuracy of ±0. 5 Km (Mooers etal., 1968) or ±5%

of the horizontal spacing of the array.

The standard concepts and techniques of variance and spectrum

analyses (Blackman and Tukey, 1958; Bendat and Pierson, 1966;

Granger, 1964; and Jenkins and Watts, 1968), have been the primary

statistical tools used for analyzing the time series. The covariance

function for time series u(t) and v(t) is Covar('i) =u(t)v(t+T)t.

Their cross spectrum is P (cr) = P + iQ = F. T.(Covar (T)),
uV uv uv uv

where F. T. represents Fourier transformation and P anduv

'uv are the co and quadrature spectra, respectively. A few experi_

ments with fast Fourier transform (FFT) harmonic analysis (Cooley

and Tukey, 1965) were carried out. Because the time series anal-

yzed were of limited duration, no significant economic advantage

accrued from the use of the FFT, and the use of the present form of

FFT requires an undesirable shortening of already short records to

make the number of samples equal to a power of 2. Because the

spectra do not contain a few discrete lines widely separated in
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frequency, no obvious scientific advantage accrued from the use of

the FFT with high resolution. All series were not tested with the

FFT, thus the possibility exists that the FFT could be profitably em-

ployed on some of the residual series, in particular. The velocity

cross spectra sampled by a single sensor have been given a semi-

principal axis transformation, Appendix LII. The time series ob

served by different sensors have been treated as complex-valued ser-

ies and the cross spectra of the complex_valued series computed,

which maximizes the coherence squared for the clockwise and anti-

clockwise rotating components separately, Appendix III.

The two basic hypotheses on which the theory of spectrum

analysis is based are that

i) the time series are statistically stationary, and

ii) the time series are random variables.

Neither hypothesis is true in the case of this study; the first is false

due primarily to the low frequency variations associated with several

day waves and modifications in the state of coastal upwelling, while

the second is false due primarily to the presence of coherent waves

in the series, The failure of these hypotheses is not crucial for the

validity of spectrum analysis; it only degrades the ability to interpret

the statistical significance of the results. The spectra are the accu-

rate frequency domain representations of the time series, Confidence

limits are based on the series being a finite representation of an
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infinitely long, stationary Gaussian process, which is probably not

true, thus confidence limits are used only as rules-of-thumb. (In the

future, ensemble averages of spectra will be possible and confidence

intervals can then be determined empirically.

With the 10-minute samples, the Nyquist sampling frequency,

is 72 cycles per day, or 72 cpd. With the hourly averages,

= 12 cpd. In the analysis of digital records, the danger of aliasing

the spectra at frequencies less than
N

by spectral values from

frequencies greater than is always present. There are only

two safeguards against aliasing:

or

i) To sample sufficiently rapidly to define all the frequencies

whose amplitude of oscillation is either detectable by the

sensors resolution and time response, or is significant with

respect to the spectral levels at lower frequencies.

ii) To use a sensor whose time constant is sufficiently great to

effectively damp-out all the oscillations whose frequency is

greater than

To be certain that method i) applies, it is necessary to have sampled

sufficiently often at a greater rate than the desired to verify

that is sufficient. In the present case, the sensors did not per_

mit sampling significa.ntly faster than aid no rapid sampling

sensors were available. Examination of the spectra does indicate that

they decrease by several orders of mangitude as the frequency
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increases from the band of tidal frequencies, about 1 to 2 cpd, to

This argument does not rule out the possibility that aliasing is caused

by large, discrete energy peaks at frequencies greater than

For all practical purposes, method ii) does not apply to the current

meters employed because they have a very rapid response, of the

order of seconds. It does apply to the thermographs because they

have an e-folding time response of 10 minutes, which leads to a half-

power point at a frequency of about 100 cpd. The use of hourly aver-

ages, rather than simply hourly sub_samples, effectively filters the

aliased spectrum in the frequency band between 24 cpd and 72 cpd for

both the current meters and the thermographs. The equivalent filter

has a zero at 24 cpd and its first side lobe occurs at about 36 cpd and

yields a 95% reduction of the energy. The spectrum from 0 to 12 cpd

is aliased by the spectrum from 12 to 24 cpd due to hourly averaging.

The spectra have not been recolored for the effect of hourly averag-

ing; thus, the spectra should be multiplied by a factor which ranges

from about 1 at 6 cpd to about 2 at 12 cpd.

Disregarding the possible effects of high frequency surface

waves, which were discounted in Section IX, C., the primary aliasing

villain is expected to be the oscillations at the Vis.l'á-Brunt fre-

quency,
B

The alias A' at any frequency, f, is

f = 2nf ± f , n : integer; equivalently, either f+ = f _ 2nf orA N n A N

f = Znf - f . Assuming that the alias is due to Vaisl-Bruntn N A



osciallations, i.e.
A B'

then either f+
B 2N or

From Figure 28, for the sensors at a depth of 20

meters, 288
B

< 480 cpd, while for those at a depth of 60

meters, 48
B

< 240 cpd. For the original series, since

72 cpd, then, where (*) connotes no alias,

n
(cpd) at 20 meters

1 < Q(*); f > fN(*)

2 0<f<fN; f<0(*)
etc.

n
(cpd) at 60 meters

0(*);

< 0(*); 48< f < 240,

306

Thus, aliasing of the entire spectrum by
B

must be considered a

possibility. For the present study, it is assumed that the aliasingis

of no practical consequence. In defense of this assumption, it is re-

marked that the Vis].à-Brunt oscillations are vertical motions,

while the thermographs, which are the only sensors capable of detect-

ing vertical motions, effectively damp oscillations at frequencies

greater than or equal to the minimum value for
B

at the thermo-

graph sites. The question of aliasing by B' internal celluar

waves, surface waves, or other high frequency motions is one which

has yet to be put to explicit field test.

In digitizing an analog record, it is necessary to quantize a

record which in Nature is presumably continuous, The quantizing

operation introduces an error termed quantization (round_off) error
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or noise. The quantization noise sets a lower bound, or threshold,

on spectral levels which can be detected. An estimate of the quanti-

zation noise, is made by assuming that the underlying pro

cess, x(t), is uniformly distributed over the quantization interval,

± a where x is the resolution of the read-out device. Then

the mean quantization error, i , is zero, while the mean square
x

quantization error equals

2 1 2 (tx)2
o =- xdx=
x E,xJ 12

1x
2

If an average over R values is made, then the quantization noise is

2
0

2 x
R°x

Assuming that the quantization error is uniformly distributed over

frequency, the estimate of the quantization noise level is then

2

where is the Nyquist sampling frequency.

For the temperature and velocity data, the following values are ob-

tamed with R = 6 and = 12 cpd:



Temperature

Ix O.2C°

1/3 x 102(C0 )2

1/18 x 10(C° )2
Rx

I x 105(C0)Z/cpd

Velocity

4 cm/sec
24/3 (cm/sec)
22/9 (cm/sec)

-3 23 x 10 (cm/sec) cpd.

The spectra of the observations generally approach a level an order

of magnitude greater than the quantization noise level as the frequency

increases to fN 12 cpd.

The frequency resolution of a spectrum and the statistical sta-

bility of a spectral estimate are competing phenomena. Because the

time series are of unequal length, it is impossible to hold both the

fundamental bandwidth, f, and the degrees of freedom, v, con-

stant. For convenience in the comparison of spectra, tf has been

held constant. Because the maximum number of lags, M, was
f

chosen to be 72, then tf 1/6 cpd. Since the total number of

samples, N, used ranged from 339 to 865, and since
2(N-M/3)

v
M

then v ranged from 9 to 23. Experiments hove

been performed to increase v for the short records and to decrease

f for the long records but no noteworthy changes occurred in the

results. Ideally, it is desirable to center spectral estimates on fre-

quencies with the largest energy peaks, e. g. the lunar semidiurnal

(M2) and the inertial (I) frequencies., Since the M2 period and
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the I period are about 12. 5 and 17 hours, respectively, the mini-

mum maximum lag time to center spectral estimates on both M2

and I simultaneously, would have to be TM = 12.5 x 17 212 hours.

For vz 10, then a record duration of about 1060 hours would be

necessary. The majority of the time series were not nearly that long

so such a centering of spectral estimates was not possible. Much

longer records are necessary for further resolution of the semidiur-

nal and dirunal tides. Many of the interpretations in the following

sections are probably limited by the occurrence of many tidal lines

in a measurement bandwidth. All indications are that the choice of

M = 72 was as effective as any value for satisfying the conflicting

objectives.

The mean was removed from each time series prior to covari-

ance and spectrum calculations. The serieswere neither pre-whitened

nor detrended prior to covariance and spectrum calculations. (Since

the intermediate-passed series are essentially detrended, the objec-

tives of the present study could have been accomplished by using the

intermediate-passed series and recoloring their spectra. For the

least squares tidal analysis, the detrended, intermediate-passed ser-

ies might be preferable to the hourly-averaged series. ) The spec-

trum estimates have been smoothed by the use of the hamming spec-

trum window for side lobe suppression. Thus, the effective band-

width, (L'f)e, of the spectra is 1. 3 f 0. 2 cpd.
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For each spectrum displayed, the following items are indicated:

i) N, M, and v.

ii) 90% confidence limits for autospectra and the 90% signifi_

cance level for the coherence squared. The confidence lim-

its for the phase function are not given because they are not

well-unde rstood.

iii) Physical units for spectral density, in either (cm/sec)2/cpd

or (C° )2/cpd.

iv) A -5/3-power law spectrum for comparison to the observed

spectral continuum, though the spectra must be recolored.

v) The inertial frequency is identified by a vertical dashed line

in the upper panel.

vi) The clockwise and anticlockwise sense of rotation is noted

on each phase function by A for anticlockwise and C for

clockwise.

vii) The spectra of the original series are shown by heavy, solid

lines. The spectra of the residual series are shown by

light lines at frequencies where there is a distinguishable

difference between the residual and original series.

viii) The cohernece squared, phase, and axis functions are shown

by dots or dotted lines for the semi-principal axis calcula-

tions. They are only shown for the coherence squared and

phase functions when they can be distinguished from the
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values for the original and residual series in geographic co-

ordinates.

ix) In the complex spectra, the anticlockwise components are

indicated by solid lines, while the clockwise components are

indicated by dashed lines.

The frequency axis is in units of cycles per day (cpd), which facili-

tates comparison with the results of Collins (1968). The variance in

a measurement bandwidth is given by P(f) 2rrLf. The sensor iden-

tification is given in each figure caption.

C. The Resolvable Coherent Tides

Least squares analysis has been used to determine the tidal

constants for the resolvable diurnal, semidiurnal, and quarterdiurnal

frequencies in each time series. The inertial frequency has also

been fit to the residual series. This analysis determines the ampli_

tude and temporal phase of the coherent26 motion for each frequency

fit to the time series. The resultant residual series are subsequently

used to study the unresolvable and the incoherent motions by spectrum

analysis. Inspection of the amplitude and phase relations permits de-

ducing which tidal components are most significant and how the tidal

26The term coherent motion is used in the sense of amplitude_
and-phase-stable motion, not in the sense of motion statistically cor-
related at different spatial positions. The amplitude and phase values
for series of finite length are the effective stable values.
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components compare at different spatial locations.

In Table 5, the resolvable tidal frequencies are tabulated and

identified for each of the three common record durations. Rayleigh's

criterion27 was used for determining the resolvability. An adequate

set of diurnal tides were resolvable, but only a limited number of

semidiurnal tides could be resolved. Additional quarterdiurnal and

higher frequency tides could have been resolved. The sequence of fit

was largely based on the tidal analysis of current observations. re-

ported by Godin (1967). The choice of frequencies was also influenced

by the manual authored by Schuremann (1941) and some preliminary

tests. The amplitude and phase of the oscillations at the inertial fre-

quency are usually found to be so time-varying that least squares

analysis is ineffective (Webster, 1968a) for time series whose dura-

tion exceeds a few inertial cycles. For time series spanning only a

few inertial cycles on the continental shelf off Oregon, Collinsetal.

(1968) were able to perform a tidal analysis for the inertial amplitude

and phase. It was anticipated that it would be impossible to find co-

herent inertial oscillations in the present study, thus the inertial fre-

quency was not included in the original list. Subsequently, it was

found productive to fit the inertial frequency to the residual series,

27Rayleigh's criterion states that to resolve two frequencies,
f > f , the record duration must exceed 1

1 2 (f1_f2)



Table 5. Resolvable tidal frequencies.

Record duration

Speed Frequency Period (hours)

Tide name Symbol (deg/hour) (rad/hour) (hours) 339 568 865

Principal lunar semidiurnal M2
Principal solar semidiurnal S2

Smaller lunar elliptic semidiurnal L2

Larger lunar elliptic semidiurnal N2

Variational Semidiurnal
Luni -solar diurnal Ki
Principal lunar diurnal 01
Smaller lunar elliptic diurnal NOl

Largerlunar elliptic diurnal Qi
Smaller lunar elliptic diurnal 001
Smaller lunar elliptic diurnal Ji
Lunar quarterdiurnal M4

Luni-solar quarterdiurnal MS4

Solar quarterdiurnal S4

28. 9841 .505868
30. 0000 .523599
29. 5285 .515370
28. 4397 .496367
27. 9680 .488134
15.0411 .262516
13.9430 .243352
14. 4972 .253024
13.3987 .233851
16.1391 .281681
15.5854 .272018
57.9682 1.01174
58. 9841 1.02947
60. 0000 1.04720

12.4206 1 1 1*

12.0000 - 2 2

12.1916 - - 3

12.6583 - - 4

12.8718 - - 5

23.9345 2 3 6

25.8193 3 4 7

24.8324 - - 8

26.8684 - - 9

22. 3061 4 5 10

23.0985 - - 11

6.2103 5 6 12

6.1033 6 7 13

6.0000 7 8 14

Inertial I 21. 3000 0. 371755 16. 9000 A1**

Inertial minus principal
lunar semidiurnal 1MM 76. 9000 1. 342159 4.6814 A2

Inertial plus principal lunar
semidiurnal IMP 50.0000 0.872665 7. 2000 A3

Solar terdiurnal S3 45.0000 0. 785399 8.0000 A4

Lunar terdiurnal M3 41.8000 0. 729548 8. 61 24 AS

* Numerical entries indicate the sequence of fit for the three categories of record duration; the symbol (-) indicates that the
record duration is not sufficiently long to permit the resolution of the associated frequency.

** Al through AS were fit sequentially to the residual series after completion of the analysis for the tidal constants of the
frequencies above the dashed line.
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as well as two terdiurnal and the difference and summation frequencies

of the inertial motion and the principal lunar semidiurnal tide.

The results from the tidal analysis are presented in Table 6.

The tidal component at angular frequency, o of a time series, x(t)

is represented by x(t) = cx cos (ot) + sx sin (o-t), where cx

and sx are amplitude factors. For the horizontal velocity series,

the constants of the hodograph are given as well as the cosine and

sine amplitudes of the velocity components of the motions. (A discus-

sion of the terminology of the hodograph is given in Appendix ilL

The tidal frequencies were fitted sequentially. At the Nth step,

the variance of the residual was computed. Then the N+lst fre-

quency was added to the least squares analysis of the original record,

not the residual, Thus, the entry for the Nth frequency in the col-

umn labelled TIRESXII gives the percent of the original variance

remaining in the residual series after inclusion of the Nth

frequency in the analysis, It does not represent the percent of the

original variance accounted for by the Nth frequency in the final

step of the analysis, i. e. , when all frequencies are accounted for

simultaneously. After the final step, the variance of the residual

series is termed the incoherent variance; the difference between the

original and the incoherent variance is termed the coherent variance.

The system of equations resulting from the least squares calculation

was solved by Gauss-Seidel iteration. The solution was iterated until
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Table 6. Estimates of tidal constants.

Explanatoy Notes:

The quantities which are used in thistable are defined below:

U: x component of the velocity
V: y component of the velocity
T: temperature
Z: sea level
U: mean of U

mean of V
T: mean of T

mean of Z
tJVAR: variance of U
\TVAR: variance of V
TVAR: variance of T
ZVAR: variance of Z
CU: cosine amplitude of U
SU: sine amplitude of U
CV: cosine amplitude of V
SV: sine amplitude of V
CT: cosine amplitude of T
ST: sine amplitude of T
CZ: cosine amplitude of Z
SZ: sine amplitude of Z
Wi: amplitude of the semi- major axis of the hodograph
W2: amplitude of the semi-minor axis of the hodograph
o 1: orientation of the semi-major axis measured anticlocicwise from east
82: orientation of the semi-minor axis measured anticlockwise from east
a: temporal phase of the semi-major axis referenced to the common start time
ROT: rotational sense of the hodograph; C is clockwise and A is anticlockwise
E: eccentricity
AT: amplitude of T
OT: phase of T
AZ: amplitude of Z
OZ: phaseofZ
RESU: percentage of the original variance in the residual series of U
RESV: percentage of the original variance in the residual series of V
REST: percentage of the original variance in the residual series of T
RESZ: percentage of the original variance in the residual series of Z

When the five additional frequencies have been fit to the residual series, the quantities RESU,

etc. represent the percentage of the residual variance in the new residual series.

All units are in the c. g. s. system; 1. e., U and V are given in cm/sec, T is given in CO3

and Z is given in cm. The standard errors, s. e. 's, are given for tidal amplituddes, where

Incoherent variance 1/2
s. e.

No. of samples

The s. e. '5 are not given for the angular quantities among the tidal quantities. They are determined
by dividing the s. e. for the amplitude by the amplitude itself; the result is in units of a fraction of a

half- circle.
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Tide CU SU CV SV RESU RESV Wi 01 W2 U
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a ROT E

6a. ISite: DB5; Depth: 20 metersL Variable: Horizontal Velocity)

No. of Samples: 339: tJ= -2.2. UVAR = 117.5: V = -17.9. VVJ-iR 132.5

M2 -0.7 4.9 0.5 2.7 89.8 97.1 5.6 28 0.7 298 94
Ki -0.7 -.05 3.2 -0.3 89.4 92.9 3.3 282 0.5 12 177
01 -1.7 -1. 3 1.7 2.4 87.5 89.7 3.6 126 0.5 36 48
001 1.0 -0.3 -0.3 0.1 87.0 89.6 1.1 161 0.0 251 163
M4 -1.0 -0. 3 0. 1 0.8 86.6 89. 4 1.1 154. 0. 7 64 33
MS4 0.1 -1.4 0.0 -0.3 85.7 89.4 1.5 193 0.0 283 95
S4 0.4 0.4 0.8 0.1 85.5 89.1 1.0 58 0.2 328 18

U V UV
Incoherent variance 100.5 118.1 s. e. 0. 5 0.6
Coherent variance 17.0 14. 4

6b. _jSite: DB5; Depth: 60 meters: Variable: Horizontal Velocit

No. of Samples: 339; U = 2.8, UVAR = 31.5; V = 0.7, VVAR 86.2

M2 2. 2 -1. 1 -3. 1 0. 2 90. 3 94.5 3. 9 128 0.8 38 168
1<1 0.5 0.1 2.2 -1.1 89.9 90.7 2.5 261 0.3 171 154
01 0. 3 -0. 4 2. 0 1. 0 89. 4 87. 9 2. 2 86 0.5 176 26
001 0. 2 -0.0 -0. 2 -0. 2 89.4 87. 9 0. 3 296 0. 1 206 27
M4 0.3 -0.1 0.1 -0.2 89.2 87.8 0.4 222 0.2 132 1.44
MS4 -0.4 0. 3 -0.0 -0. 1 88.8 87.8 0.5 349 0. 1 79 135
S4 0. 2 -0. 1 -0. 3 -0. 1 88. 7 87.8 0. 4 313 0. 2 223 3

U V U V
Incoherent variance 27. 9 75. 8 s. e. 0. 3 0. 5
Coherent variance 3.6 10.4

No. ofSamples:568: 11=2.4. UVAR44.0; Vr0.5, VVAR126.7
M2 4.0 -0.9 -3.4 -0.8 77.9 95.9 5.2 140 1.2 50 178
S2 -0.9 1.8 -0.5 1.1 73.5 95.2 2.4 32 0.0 302 115
Ki 0.1 -0.0 2.0 -0.4 73.5 93. 8 2.0 268 0.0 358 167
01 0.4 -0.4 1.3 0.3 73.1 93.1 1.4 74 0.5 164 6
001 0.1 -0.4 -0.5 0.2 72.9 93.0 0.6 126 0.4 36 139
M4 0. 1 -0. 6 0. 2 0. 1 72.5 93.0 0.6 174 0. 2 264 99
MS4 -0. 1 0. 2 -0. 1 -0. 2 72. 4 93.0 0. 2 314 0. 1 44 91
S4 0.4 -0. 0 -0.4 -0. 1 72. 2 92. 9 0.6 315 0. 1 225 5jj V UV
Incoherent variance 31.8 117.8 s. e. 0.2 0.4
Coherent variance 12. 2 8. 9

C 0.77
A 0.74
C 0.74
A 0.94
C 0.23
A 0.99
C 0.58

C 0.65
C 0.80
A 0.62
C 0.42
C 0.44
A 0.67
C 0.39

C 0.63
C 0.96
A 0.97
A 0.46
C 0.28
A 0.52
A 0.47
C 0.74
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Tabel 6. (Continued)

Tide CU SU CV SV RESU RESV W1 0 w2 02 a ROT E

No. of Samtiles: 865: U 2.7. UVAR = 39.8; V5. 1, WAR = 157.3

M2 3.9 -1.8 -3.7 -0.2 79.7 95.7 5.5 140 1.4 50 167 C 0.60
S2 -0.6 2.0 -0.3 0.9 75.1 95.4 2.3 23 0.0 113 108 A 1.0
L2 -0.7 -1.2 -0.7 1.1 72.4 94.8 1.6 142 1.0 52 84 C 0.23
N2 -1.6 0.8 0.7 1.3 68.8 94.1 1.8 352 1.5 262 160 C 0.08
t2 0.1 -0. 3 -0.1 0.2 68.6 94.1 0.4 145 0.0 55 117 C 0.84

Ki -0. 2 0. 0 2. 4 -0. 2 68. 6 92. 7 2. 4 274 0.0 184 175 C 1. 0
01 0. 3 -0. 4 1. 4 0. 8 68. 4 91. 7 1. 6 85 0.5 175 28 A 0.54
NOl 0.1 -0.2 -0.3 0.2 68.3 91.7 0.4 121 0.0 31 133 C 0.75
91 0.2 0.3 0.5 -0.3 68.2 91.6 0.6 271 0.3 181 148 C 0.34
001 -0.0 -0.4 -0.3 -0.2 68.0 91.5 0.5 229 0.2 139 54 C 0.35
Ji 0.2 0.1 0.2 -0.5 68.0 91.4 0.6 275 0.2 185 106 C 0.42
M4 0. 2 -0. 3 0. 1 0.0 67.8 91.4 0.4 186 0. 1 276 219 A 0.64
MS4 0. 3 0. 2 -0.1 -0. 2 67.7 91.4 0.4 331 0. 1 241 41 C 0. 45

S4 0.4 -0.1 -0.3 0.0 67.5 91.4 0.5 147 0.0 57 167 C 0.82
U V

Incoherent variance 26. 9 143.7 s. e, 0. 2 0, 4
Coherentvariance 12.9 13.6

I -0.6 -0.6 -0.6 0.7 98.7 99.7 0.9 107 0.8 17 115 C 0.07
1MM -0. 1 0. 2 0. 1 0. 2 98. 6 99. 7 0. 3 35 0. 1 305 93 C 0.59
IMP -0. 1 -0. 1 0. 1 0. 2 98. 6 99. 7 0. 2 125 0. 1 35 45 C 0.57
S3 -0. 1 0. 2 -0. 2 0. 3 98.5 99. 6 0. 4 62 0. 0 152 121 A 0.85
M3 -0. 3 -0. 2 -0. 2 -0. 3 98. 3 99. 6 0.5 227 0. 0 317 44 A 0. 88

6c. (Site: DB1O; Depth; 20 meters; Variable: Horizontal Velocity)

No. of Samples: 339; U=4.5, UVAR1O9.3; V-12.1, VVAR 74.1

M2 8.7 -1.2 -2.6 -2.7 65.0 90.7 9.0 164 3.0 74 177 C 0.51
Ki -2.0 1.0 2.3 0.0 62.8 86.9 3.1 314 0.8 224 167 C 0.61
01 -1.1 1.1 1.5 0.6 61.8 85.0 1.9 312 1.3 222 170 C 0.20
001 1.8 1.0 1.3 -0.0 59.9 83.9 2.3 30 0.6 300 21 C 0.61
M4 0.8 1.0 0.9 -1.1 59.1 82.4 1.6 299 1.2 209 106 C 0.13
MS4 1.0 -0. 6 -0. 4 0. 6 58.5 82.0 1 3 148 0. 2 238 143 A 0. 72
S4 -0.3 0.5 0.5 -0.8 58.4 81.5 1.1 302 0.0 32 124 A 0.97

U V ..!L

Incoherent variance 63. 8 60. 3 s. e. 0. 4 0. 4
Coherentvariance 45.5 13.8



Table 6. (Continued)

Tide CU SU CV SV RESU RESV Wi 0 w2 0
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a ROT E

No. of Samples: 568; U= 1.3, UVAR = 106.3; V= -13.1, VVAR 63.1

M2 7.5 -0. 8 -3.0 -2. 6 70. 1 89.8 8. 1 338 2. 7 248 1 C

S2 -2.8 1.4 -0.5 2.7 65.5 84.0 3.7 38 1.8 308 132 C

Ki -1.1 1.0 1.8 -0.1 64.7 81.8 2.2 308 0.8 218 162 C
01 -0. 4 0. 7 1.4 0. 0 64. 5 80. 0 1. 5 291 0. 7 201 171 C

001 1.1 1.2 1.0 0.4 63.3 79.0 2.0 33 0.4 303 40 C

M4 -0. 3 0. 8 0. 9 ..0. 6 62. 9 78.0 1. 3 307 0.5 217 133 C

MS4 0.7 -0. 6 -0. 3 0. 3 62.6 77. 8 1.0 154 0.0 244 137 A

S4 -0.7 -0.2 0.3 -0.2 62.4 77.8 0.8 160 0.2 250 7 A

U V

Incoherent variance 66. 3 49. 0 s. e. 0. 3 0. 3
Coherent variance 40.0 14.1

0.50
0.35
0.50
0.37
0.68
0.48
0.92
0.54

No. of Samples: 865; U -0.7, UVAR1O8.7; V -13.5, VVAR67.6

M2 7.7 -0.4 -3.6 -2.7 69.2 86.4 8.5 334 2.7 244 .6 C 0.52
S2 -1.2 1.1 -1.0 1.8 68.1 83.4 2.6 52 0.4 322 127 C 0.73
L2 1. 8 0. 6 0. 1 -0. 6 66. 4 83. 2 1. 9 356 0. 6 266 20 C 0. 51

N2 -0. 2 -0. 7 0.5 1. 0 66. 2 82. 3 1. 3 121 0. 1 211 64 A 0. 82
ji2 -1.0 0.1 -0.2 -0.0 65.7 82.2 1.0 12 0.0 102 174 A 0.92
Ki -0.7 0.9 1.9 -0.5 65.3 79.7 2. 2 295 0. 6 205 157 C 0.56
01 -0. 4 0. 7 1. 8 0. 0 64. 9 77, 0 1. 9 285 0. 7 195 175 C 0. 46
NOl -0. 1 -0. 0 0. 3 -0.5 64. 9 76. 9 0. 6 271 0, 1 1 120 A 0. 73
91 -0.5 0.9 1.2 0.2 64.5 75.9 1.4 301 0.8 211 166 C 0.23
001 0.8 1.1 0.6 0.1 63.7 75.6 1.4 20 0.4 290 48 C 0.53
Ji -0. 2 -0.7 -0.6 -0.4 63.5 75.3 0.9 224 0. 3 134 53 C 0.45
M4 0.3 0. 7 0.4 -0.8 63. 3 74.8 1,1 309 0. 4 219 96 C 0. 42
MS4 0.7 -0.6 -0.5 0.3 62.9 74.5 1.1 148 0.1 58 145 C 0.86
S4 -0.6 -0.1 0.1 -0.0 62.8 74.5 0.6 172 0.0 262 9 A 0.85

U V
Incoherent variance 68. 2 50. 3 s. e. 0. 3 0. 2
Coherent variance 40.5 17. 3

I 0.0 0.4 0. 1 -0. 3 99. 8 99. 9 0.5 329 0. 1 239 92 C 0. 70
1MM -0. 4 0. 2 -0. 0 0. 1 99. 7 99. 9 0. 4 7 0. 1 277 153 C 0. 67
IMP 0.4 0.0 0. 1 -0.8 99. 6 99. 3 0.8 272 0,4 182 94 C 0. 33
S3 0.5 -0.1 -0.0 0.1 99.4 99.3 0.5 175 0.1 265 166 A 0.59
M3 -0.0 -0. 3 0. 2 -0. 1 99. 4 99. 2 0. 3 195 0. 2 285 95 A 0. 20
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Table 6. (Continued)

Tide CU SU CV SV RESU RESV W1 01 W2 02 a ROT

6d. (Site: DB15; Deh: 60 meters; Variable: Horizontal Velocity)

No. of Samples: 339; U = 5. 9, UVAR = 35.2; V 7.8, VVAR = 44.0

M2 0. 9 -1. 2 1. 7 -0. 3 99. 1 97. 7 2. 1 230 0. 8 320 154 A 0. 44

Ki -1.1 0.8 -1.4 0.7 97.2 96.0 2.0 49 0.2 139 150 A 0.86

01 -0.6 0. 9 0.6 1. 3 95. 9 93. 6 1. 6 59 0. 8 329 85 C 0. 31

001 0. 4 -0. 6 -0.6 0, 2 95.6 93, 4 0. 9 139 0. 3 49 141 C 0. 46

M4 -0. 9 -0. 1 -0. 1 0. 4 97. 5 93. 8 0. 9 184 0. 4 94 6 C 0. 37

MS4 0.1 -0.0 0.6 -0.3 97.5 947 0.7 263 0.0 173 151 C 1.00

S4 -0.0 0. 5 0. 5 0. 1 98. 2 95. 4 0. 5 68 0. 5 338 26 C 0. 05

U V U V

Incoherent variance 34.6 41. 9 s. e. 0. 3 0. 4

Coherent variance 0. 6 2. 1

No. of Samples: 568; U = 5.6, UVAR = 33. 8; V = 4. 8, VVAR = 55. 7

M2 1.3 -0.0 0.8 1.3 97.4 97.8 1.7 54 1.0 144 36 A 0.28

S2 0. 5 0, 3 -0.3 0. 5 96. 9 97. 5 0. 6 348 0. 6 78 20 A 0, 01

Ki -0. 8 0. 1 -0. 5 -0. 1 95. 9 97. 3 0. 9 209 0. 2 299 0 A 0. 72

01 -0. 7 -0. 2 -0. 3 0. 5 95.0 97. 0 0. 8 33 0. 5 303 167 C 0. 26

001 0.3 -0. 4 -0.3 0. 7 94.6 96.5 0. 9 124 0. 1 214 118 A 0. 74

M4 0.6 -0. 6 -0. 4 -0.6 93. 7 96. 1 0. 9 218 0. 6 128 104 C 0. 15

MS4 0. 3 -0. 6 0.0 0. 1 93.6 06. 1 0. 3 179 0. 1 269 170 A 0.61

S4 0.6 -0. 2 -0. 2 0. 5 93. 1 95. 8 0. 6 52 0. 5 322 144 C 0. 10

U V U V

Incoherent variance 31. 5 53. 4 s. e. 0. 2 0. 3

Coherent variance 2. 3 2. 3

No. of Samples: 865; U = 4. 8, UVAR = 45.5; V = 3. 8, VVAR 63.2

M2 1.1 0.1 1.0 0.6 98.5 98.4 1.6 45 0.4 135 19 A 0.57

S2 0.6 0.0 0. 2 0. 8 98. 1 97. 7 0. 9 62 0. 6 152 54 A 0. 22

L2 -0.3 0.0 1.0 1.0 98.0 96.3 1.4 99 0.2 9 45 C 0.70

N2 0. 3 -0. 7 -0. 3 0. 2 97. 5 96. 2 0. 8 155 0. 2 65 122 C 0. 65

J.2 0. 3 0. 8 0.3 -0. 2 96. 8 96. 1 0. 8 352 0. 3 262 69 C 0. 44

Ki -0.9 0.4 0.1 -0.4 95.5 96.0 1,0 340 0.3 70 150 A 0.50

01 -0. 8 -0. 3 -0. 2 -0. 1 94. 8 96.0 0. 8 195 0. 1 285 22 A 0. 85

NOl -0. 2 0. 8 -0. 3 0. 6 94. 1 95.6 1.0 40 0. 1 130 111 A 0. 78

91 0.0 0.9 0.3 0.0 93.2 95.5 1.0 0 0.3 270 89 C 0.54

001 0.2 -0.3 -0. 1 0.8 93.0 95. 1 0.9 111 0.2 201 101 A 0.65

Ji -0. 1 0. 2 -0. 5 -0. 2 93.0 95.0 0. 5 253 0. 2 343 4 A 0. 46

M4 -0. 1 -0. 5 -0. 4 -0.0 92. 7 94. 8 0. 5 214 0. 4 124 53 C 0. 11

MS4 0.2 0. 2 0.0 0. 2 92.6 94. 8 0. 4 35 0. 1 125 50 A 0. 46

U V U V

Incoherent variance 42. 1 59. 5 s. e. 0, 2 0. 3

Coherent variance 3. 4 3. 3
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Table 6. (Continued)

Tide CU SU CV SV RESU RESV Wi 01 w2 0 a ROT

I 1.2 -1.2 -2.0 -3.0 96.5 90.8 3.3 265 1.7 175 56 C 0.32
1MM -02 0. 1 -0.0 0. 1 96.5 90.8 0.2 20 0.1 290 150 C 0. 34
IMP -0.1 -0.3 -0.6 0.6 96.3 90.2 0.9 102 03 12 128 C 0.49
S3 0.4 0.2 0.2 -0.6 96.1 89.8 0.6 269 0.4 179 114 C 0.16
M3 0. 1 -0. 3 -0. 4 -0. 4 96. 0 89. 6 0. 6 245 o 3 155 58 C 0. 38

6e. (Site: DB 5 Depth: 20-60 meters: Variable: Horizontal Velocity Difference

No. of Samples: 339; LxU = -5.0, UVAR = 171.5; V = -18.6, VVAR = 116.2

M2 -2.8 6.0 3.6 2.5 87.1 91.6 6.7 10 4.3 280 109 C 0.22
Ki -1.2 -0.5 1.0 0.9 86.5 90.8 1.8 135 0.3 45 32 C 0.74
01 -2. 1 -0. 9 -0. 3 1. 4 85. 1 89. 9 2. 3 168 1.4 78 30 C 0. 25

001 0.8 -0.2 -0.1 0.3 84.9 89.9 0.9 166 0.3 256 159 A 0.53
M4 -1.3 -0.2 -0.1 1.0 84.4 89.4 1.3 171 1.0 81 16 C 0.12
MS4 0.5 -1.8 0.0 -0.2 83.4 89.4 1.8 186 0.0 96 105 C 0.99
S4 0.2 0.5 1.1 0.2 83.3 88.9 1.1 75 0.4 345 18 C 0.48

'U V U iV
Incoherent variance 142.9 103.3 S. e. 0.6 0. 6

Coherent variance 28.6 12.9

I 0.6 2.0 1.5 0.4 98.6 98.8 2.3 32 1.2 302 55 C 0.32
1MM 0.7 -0.2 -0.1 0. 2 98. 3 98.8 0. 7 164 0.1 254 159 A 0.68
IMP 1.2 -0.4 -1.1 -0.6 97.8 98.0 1.6 315 0.7 255 6 C 0.37
S3 -0.9 0.3 -0.0 0.4 97.6 98.0 1.0 10 0.3 280 158 C 0.50
M3 0. 9 -0. 6 0. 0 -0. 9 97. 1 97.5 1. 2 218 0. 6 128 123 C 0. 35

Tide CT ST REST AT OT

6f. (Site:DB5 Depth: 20 metersjTiab1e: Temperature)

No. of Samples: 339: T 8.44. TVAR = 0. 32

M2 0.10 0. 20 91 9 0. 23 63
Ki 0.01 0.00 91.8 0.01 21

01 0.03 0.07 90. 9 0.08 71

001 0.04 0.05 90. 3 0.06 53
M4 0.07 -0.10 88.1 0.12 306
MS4 0.02 -0.07 87.4 0.07 284
S4 -0.02 -0.02 87.3 0.03 217

T T
Incoherent variance 0. 28 s. e. 0. 03
Coherent variance 0.04
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Table 6. (Continued)

Tide CT ST REST AT OT

No. of Samples: 482; T= 8.34, TVAR = 0.40

M2 0.03 0.23 95.3 0.23 82

S2 0.19 -0.04 90.8 0.19 347

Ki -0. 00 0.02 90. 8 0.02 96

01 0.02 0.03 90. 7 0.03 61

001 0.02 0.00 90.6 . 02 3

M4 0.08 -0. 06 89.5 0. 10 323

MS4 0.01 -0.04 89. 3 0.04 279

S4 -0. 02 -0.02 89. 2 0.03 217
T T

Incoherent variance 0. 36 s. e. 0.03
Coherent variance 0.04

No. of Samples: 568; T= 8.24. TVAR = 0.41

M2 0.04 0. 20 96.5 0. 20 77

S2 0.17 -0.02 93.2 0. 17 352

1(1 0.01 0.02 93.1 0,02 62

01 0. 01 0. 03 93. 0 0.03 77

001 0.02 -0.01 93.0 0.03 345

J4 0.07 -0.04 92.3 0.08 327

MS4 0.02 -0.05 92.0 0.06 286

S4 -0.02 -0.01 92.0 0.03 206
T T

Incoherent variance 0. 38 s. e. 0.03
Coherent variaice 0.03

No. of Samples: 865; T 8.71, TVAR = 1.10

M2 -0.00 0. 25 96.8 0. 25 90

S2 0.08 0.07 96.3 0.11 41

L2 -0.15 0.02 95.4 0.15 171

N2 0. 05 -0.07 95. 1 0.09 306

0.01 0.08 94.8 0.08 84

Ki -0.02 0.04 94. 7 0.04 118

01 -0. 01 -0.04 94. 7 0.04 260

NOl -0.04 0.02 94.6 0.04 160

91 -0.01 -0.00 94.6 0.01 214

001 0.04 -0.01 94.6 0.04 343

Ji 0.02 0.01 94.5 0.02 30

M4 0.02 -0.05 94.4 0.05 290

MS4 -0.03 -0.04 94.4 0.04 233

S4 0.00 0.03 0.03 90
T T

Incoherent variance 1,04 S. e. 0,03
Coherent variance 0.06
I -0.05 -0. 04 99.8 0 . 06 216

1MM -0.00 0.02 99.8 0.02 100

IMP -0.03 -0.02 99,7 0 04 217

S3 -0.02 0.01 99.7 0.02 156

M3 -0.01 0.04 99.7 0.04 112
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Table 6. (Continued)

Tide CT ST REST AT OT

6g. (Site: DB15; Depth: 60 meters; Variable: Temperature)

No. of Samples: 339; T 10. 19. TVAR = 1. 38

M2 0. 42 -0. 24 91.6 0. 49 330

Ki -0. 24 0.02 89.4 0. 24 176

01 -0.04 -0. 26 86. 9 0. 27 262

001 -0. 10 0. 10 86. 1 0. 14 134

M4 -0.18 -0.04 85.0 0.18 193

MS4 -0.05 0. 15 84.0 0. 16 109

S4 -0.04 -0.03 83.9 0.05 216

T T
Incoherent variance 1.15 s. e, 0. 03

Coherent variance 0. 23

No. of Samples: 482; T = 10.73; TVAR = 2. 36

M2 0.61 -0. 25 90. 3 0. 66 338

S2 -0.03 0.14 89.9 0.14 102

Ki -0. 21 -0.02 89.6 0. 21 186

01 -0. 10 -0. 20 88.6 0.22 244

001 -0. 14 0.20 87.5 0. 24 124

M4 -0. 18 -0.08 86.8 0. 19 204

MS4 -0.02 0.08 86.7 0.08 101

S4 0.06 -0.02 86.6 0.06 346

-I--
Incoherent variance 2.05 s. e. 0. 03

Coherent variance 0. 31

Tide CZ SZ RESZ AZ OZ

6h. (Site: Newport. Orezon; Variable: Sea Level

No. of Samples: 900; Z = 270, ZVAR = 5080

M2 -69.6 45.1 36.4 82.9 147

S2 -28.7 - 2.6 27.9 28.9 18S

Li 1.2 5.9 27.4 6.0 78

N2 - 0.1 18.9 24.1 18.9 90

1.8 1.8 24.1 2.5 45

Ki 32.2 -11.1 12.3 34.0 341

01 22.1 20.5 4.0 30.1 43

NOi 0.2 - 1.4 4.0 1.5 279

91 7.2 0.1 3.5 7.2 1

001 1.5 1.2 3.5 1.9 38

Ji 3.4 - 1.5 3.4 3.8 336

M4 0.1 0.2 3.4 0.2 53
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Table 6. (Continued)

Tide CZ SZ RESZ AZ Oz

MS4 0.9 0. 6 3. 3 1 1 34

S4 - 0.1 0.5 3.3 0.5 102

Z Z

Incoherent variance 170 s. e. 0 4
Coherent variance 49I0

I - 0.3 - 0.5 99.9 0.6 240

1MM - 0.1 - 0. 2 99.9 0. 2 235

IMP - 0.3 - 0.4 99.8 0.5 226

S3 0.2 0.9 99,5 1.0 77

M3 0.0 0. 3 99.5 0. 3 87
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all cosine and sine amplitudes differed by no more than 0. 5% from the

preceding iterate. Three to six iterations were required. The num-

ber of significant figures tabulated for each tidal constant is consis-

tent with the standard error based on the residual variance. The

first frequency fit was the M2; the values for its constants varied

as much as 50% from the first to the last step in the sequential fit for

the sensor at a depth of 60 meters, 30 kilometers offshore.

The most significant features of Table 6 are summarized below:

i) The coherent variance ranged from 2 to 37% of the original

variance. In one case, DB15, 60 meters, 339 samples, the

incoherent variance increased in the last few steps, so the

estimates of tidal constants at the high frequencies are un-

stable in that case

ii) Without exception, the M2 component accounted for more

of the variance than any other component, ranging from about

1 to 14% of the original variance.

iii) The inertial frequency was generally the second largest corn-

ponent of the variance. In addition, Ki, 01, and S2

were generally large components.

iii) There was appreciable variability in the tidal constants esti-

mated for different spatial points and for different record

lengths at a single point. The variability was most marked

at DB1S, 60 meters, even for the M2 component.
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Not all of the information in Table 6 is discussed in detail. For

the present study, the M2 tide and I, the inertial frequency, are

analyzed in detail. The M2 tide had the following properties:

i) At DB5, the hodograph was oriented nearly parallel to the

bottom contours at a depth of 20 meters and nearly normal

to them at a depth of 60 meters. The two hodographs were

about equal in size but were nearly in-quadrature temporally.

The coherent vertical shear vector had a maximum ampli-

tude of 1.7 x lO sec, which is a factor of 3 less than

the mean shear. The temperature oscillation at 20 meters

was about 30° out-of-phase temporally with the adjacent

hodograph.

ii) At DB1O, 20 meters, the size of the hodograph was not

highly variable for the different record lengths, though its

orientation and phase changed. The hodograph was about

five times the size of those at DB5, and was oriented normal

to the bottom contours. For the common record length, it

led the hodograph at DB5, 20 meters by 83°, consistent with

onshore propagation and nearly a quarter-wavelength separa-

tion.

iii) At DB1S, the temperature at a depth of 20 meters led that at

DB5, 20 meters by 263°, which is consistent with onshore

propagation and about a 3/4 -wavelength separation. The
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size of the hodograph at a depth of 60 meters was about half

the size of that at DB5, 60 meters. It was the only hodo-

graph which rotated anticlockwise. Disregarding the short-

est common record, the two 60 meter hodographs were about

215° out-of-phase; the hodograph at DB15 assumed its larg

est value first, consistent with onshore propagation and

about 7/12-wavelength separation.

In summary, the M2 hodographs were not of uniform amplitude,

orientation, temporal phase, or rotational sense at the sensor sites.

The temporal phase differences between sensor sites were consistent

with the phase differences predicted in Figure 31 for an internal tide

propagating shoreward. The spatial and temporal non-uniformity of

the coherent M2 tide was consistent with the occurrence of a phase-

unstable internal tide.

The estimates of the I component of the motion were oh-

tamed for all the long records, i. e. , those in excess of five weeks

duration. I was statistically significant in all the records. All

hodographs rotated clockwise. The largest amplitude for I was

found at DB1 5, 60 meters, where the hodograph was oriented nearly

parallel with the bottom contours, the semi_major axis was

3. 3 cm/sec, while at DB1O, 20 meters I had an amplitude of

0. 5 cm/sec. I was also significant in the sea level record and the

temperature record at DB5, 20 meters. The sea level oscillation
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had an amplitude of 0. 6 cm, and was virtually in-phase with the hodo-

graph at DB1S, 60 meters. These results are consistent with the

theory for topographically trapped waves along a coastal barrier, see

Appendix I, I also had a significant coherent shear at DB5; its val-

ue was about 0. 6 x lO3sec, i.e., about 1/3 of the value for the

M2 shear.

ID. The Temperature Spectra and Their Correlation
Between Two Spatial Points

The autospectra and coherence squared phase functions for the

temperature series are shown in Figure 33. The principal features

of the autospectra are summarized:

i) The two spectra had similar shapes, but the spectrum sam-

pled at DB15 had higher values than those of the one sam-

pled at DB5. From Table 2, the variance at DB15, 20

meters was twice that at DB5, 20 meters. This difference

is consistent with the fact that, though the vertical tempera-

ture gradients at both sensors were essentially equal at the

beginning and at the end of the sample period, the gradients

were observed to differ by a factor of three in the middle of

the period. A factor of two difference in the gradients would

account for a factor of four difference in the spectra, and the

variance too. Since the gradient measurements were based
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on only three samples acquired in the observation period,

this explanation is only plausible. The vertical temperature

structure at DB15 was nearly linear while that at DB5 was

nonlinear, which could produce spurious harmonics. How-

ever, there is no evidence of the generation of spurious har-

monics in the spectrum at DB5.

ii) Both spectra had their maximum at the low frequency limit

and decreased sharply as the frequency increased to 1 cpd.

iii) At the semidiurnal frequency, both spectra achieved their

secondary maximum, corresponding to a vertical amplitude

of about 5 meters. The spectrum at DBl5 rose sharply in

the band f1 <f < 2 cpd, while that at DB5 rose sharply in

the band 1 < f < 2 cpd, with a distinct peak at f f1. The

peak at f = f1 may be indicative of the frontal interaction,

since the frontal interaction may open the inertial-internal

wave passband to frequencies less than f f1, thus motion

at I f1 would have had a vertical component. Alternative-.

ly, horizontal displacements in the presence of strong hori-

zontal temperature gradients may have produced the peak at

I = f1. Longer records and additional temperature sensors

are required to investigate this feature in detail.

iv) Both spectra decreased sharply for 2 < f < 3 cpd; they then

rose to their tertiary peak at 4 cpd. The ratio of the
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secondary to the tertiary peak was about 10:1 at DBJ5,

while it was only about 5:1 at D135. This difference suggests

a factor of two growth for the second harmonic of the semi-

diurnal motion as the wave propagated shoreward, as de-

ducedbelow.

v) At f > 4 cpd, the spectra continued to decrease and there

were peaks at higher harmonics of the semidiurnal motion.

The most significant peak was at about 6 cpd. which was the

third harmonic.

vi) The spectra of the residual series indicate a reduction in the

spectral peaks at 2 and 4 cpd, and the peak was essentially

removed at 1 cpd for DB15, 20 meters.

The coherence squared ('ye) and phase (0) of the two tem-

perature series provide essential information about the semidiurnal

tide, but, as can be seen from Figure 33, the results are complicat-

ed. The principal features of and 0 are summarized:

i) Overall, was statistically insignificant, but it had

numerous significant peaks, primarily at tidal harmonics.

ii) The 4 cpd motion was the most strongly correlated, while

the motions at the low frequency limit and in the band of

1 <f <f1 were also significantly correlated. The motion at

2 cpd was virtually incoherent; clearly something was awry

with the semidiurnal tide. It is not clear what could have



331

have been wrong; among the possibilities are that the wave

was not phase stable due to time variable generation or that

the wave's interaction with the time-variable frontal regime

phase modulated the wave. It is difficult to explain the lack

of coherency of the 2 cpd wave when confronted with the high

coherency of the 4 cpd wave.

iii) Overall, U was variable. Because was generally

small, U generally had low statistical significance through

most of the band. Since 0 did show some piecewise con-

tinuity, it is discussed further.

iv) The two series were out-of-phase at the low frequency limit.

Though 0 was not expected to be highly significant at f 0

due to the nature of the calculation, visual inspection of the

low-passed series (Mooers etal. , 1968) shows that the two

temperature series were out-of-phase. While the tempera-

ture decreased by about 1C° at DB5 during the observation

period, it increased by 2. 5C° at DB15, which is consistent

with a long period variation in coastal upwelling associated

with the observed wind shift.

v) The large variations in phase at 2 cpd are curious features.

The presence of the semidiurnal barotropic tides and of sev-

eral internal tides in a measurement bandwidth may have

complicated and degraded 0, as well as y2, at 2 cpd.
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iv) B had a surprising value at 1 cpd; it equaled 170° rather than

00. A similar phase difference for diurnal components was

determined in the tidal analysis recorded in Table 6. The

dirunal wave should be essentially in-phase at both sites, if

it propagated as a barotropic wave. The only existing the-

oretical mechanism for this feature is the frontal interaction,

which may have allowed the diurnal tide to propagate as an

internal tide.

vii) The unexpected behavior of and B at 1 and 2 cpd ap-

pears in the spectra of the residual as well as that of the

original series.

viii) If the motion was that of a standing wave in the onshore-

offshore direction, B should have equaled 0° or 180°. Since

B was seldom 0° or 180°, the phase function is interpreted

with a progressive wave model, The slope of 0 versus

f indicates the direction of propagation of progressive

waves; positive values indicate onshore propagation. The

O versus f template of Figure 32 is used for interpret-

ing the observed 0 versus f. The theoretical B vs f

function for N2 = 3 x 104sec2 gives the best agreement.

The waves propagated onshore in the frequency bands of

about 1 to 2 cpd, 3 to 4 cpd, and 7 to 8 cpd. Consistent with

theoretical expectations, the semidiurnal tide was about
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1000 to 150° out-of-phase between DB1S and DB5, with

DB15 leading DB5. In the non-dispersive range of the phase

speed, the progressive waves traveled at a phase speed of

about 60 cm/sec.

E. The Horizontal Velocity Component Spectra and Their
Correlation at Individual Spatial Points

The horizontal velocity component spectra, and their coherence

squared and phase functions, are presented in Figure 34 for each of

the four current sensors. The spectra of the original series are

shown by heavy solid lines and by heavy dashed lines for the u and

v spectra, respectively. The residual spectra are shown by light

lines and by dots for the u and v spectra, respectively. The

coherence squared and phase functions for the original and residual

series are shown by the heavy and light solid lines, respectively;

Their values for the semi_principal axis transformation of the residual

series are shown by dots.

The principal properties of the autospectra are summarized:

i) All four pairs of spectra were similar to those generally ob-

served elsewhere in the Ocean (Webster, 1968b), and re-

sembled the spectra previously computed from observations

taken off Oregon (Collins, 1968). The maximum of each

spectrum tended to occur at the low frequency limit. For

f> 0, there was a sharp decrease in spectral level followed



0

v1

I

,

Ii

Ci)

Cd)

-90%

0 2 4 6 8 10 12

0 2 4 6 8 10 2

FREQ&'ENC Y (cpo'i

Figure 34a. The horizontal velocity autospectra and their coher-
ence squared, phase, and axis functions at DB5, 20
meters.

334



b

Lu

- - 1 6 8 tO

90%

2

45.

(I)

0.

AL

-45_. I

0 2 4 6 8 tO 12

FREQUENCY (cpd)

Figure 34b. The horizontal velocity utospectra and their coher.-
ence squared, phase, and axis functions at DB5, 60
mete r S.

335



(I)

0 2 4 6 8 10 12

- 90%

336

0
: S..

AL 5:

_450
I I I I I I I

0 2 4 6 8 0 2

FREQUENCY (cpa')

Figure 34c. The horizontal velocity autospectra and their coher-
ence squared, phase, and axis functions at DB1O,
20 meters



d

I

K

oel II I Ill
0 2 4 6 8 10 12

0 2 4 6 8 10

90%

2

337

1

0

AL

_45
I I I I I I I

0 2 4 6 8 0 12

FREQUENCY (cpd)

Figure 34d. The horizontal velocity autospectra and their coher-
ence squared, phase, and axis functions at DB15,
60 meters.



338

by peaks in the region of the diurnal, inertia],and semidiur-

nal frequencies. There was a tendency for a decrease in

spectral level at higher frequencies.

ii) With the exception of DB1O, 20 meters, the v spectra

were greater than the u spectra at the low frequency lim-

it. This feature reflects the asymmetry imposed by the

coastal boundary and bottom contours, since it is natural to

expect the low frequency, large scale motions to be oriented

in the alongshore direction.

iii) With the exception of DB15, 60 meters, the u spectra

tended to dominate the v spectra in the frequency band of

f1 < f < 2 cpd; the notable exception was probably related to

the location of that sensor at the seaward edge of the conti-

nental shelf.

iv) At the diurnal frequency, there was a definite peak in the v

spectra, but not the u spectra, at DB5, 20 and 60 meters

and DBJO, 20 meters. There was no discernable diurnal

peak in the spectrum of either component at DB15, 60 meters,

though the value of the spectra at the diurnal frequency was

about the same as that found in the other spectra.

v) In all the spectra, there was a sharp rise in spectral level

at the inertial frequency, or slightly below, which was con-

sistent with inertial-internal wave theory. Yet, only in the



339

case of DB15, 60 meters was there a distinct peak at the

inertial frequency, which actually dominated the semidiurnal

peak. From the spectra, an estimate of the average peak

amplitude of the inertial motion is made:

Sensor Depth u v Ratio of
site (meters) (cm/sec) (cm/sec) u to v

DB5 20 4.5 3.5 1.3
DBS 60 1.2 1.2 1.0
DB1O 20 2.2 2.0 1.1
DB15 60 2.8 3,7 0.8.

The amplitude of the inertial motion was a function of spatial

position. There was a tendency for the inertial motion to be

isotropic, with possible exceptions at the shelf edge and in

the steepest part of the frontal layer, where the component

amplitudes were also greatest. The former result is con-

sistent with the theoretical concept that the inertial motion

tended to be trapped along the shelf edge, seeAppendix I.

The latter result is consistent with the inertial-internal wave

bandpass concept of this dissertation, which can account for

motion present at the inertial and lower frequencies in an in-

dined frontal layer. Since all of the inertial motion did not

persist as a steady wave, the above values are lower bounds

on the largest inertial amplitudes. The above values are

greater than the amplitudes of the coherent inertial motion

given in Table 6.
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vi) In all the spectra there was a significant peak at the semidi-

urnal frequency, though its qualitative shape and absolute

value were functions of spatial position. From the spectra,

an estimate of the average peak amplitude of the semidiur-

nal motion is made:

Sensor Depth u v Ratio of
site (meters) (cm/sec) (cm/sec) u to v
DB5 20 5. 2 4. 3 1. 2
DB5 60 3.9 3.3 1.2
DB1O 20 6.2 3.8 1.6
DB15 60 2. 2 2. 6 0. 8

The semidiurnal amplitudes tended to be greatest at 20 me-

ters and inshore. Their total range was only 2. 2 to 6. 2

cm/sec while the inertial amplitudes had a range of 1 2 to

4.5 cm/sec, or a spread of less than 1 to 3 compared to one

of nearly 1 to 4. Thus, the semidiurnal amplitude was

more uniform spatially than the inertial amplitude.

vii) The velocity sepctra were excited in the frequency band

3 <f <4 cpd. The quarterdiurnal peak is attributed to the

second harmonic of the semidiurnal motion, which was also

noted as significant in the temperature spectra. The spec-

tral peak near the terdiurnal frequency may have been the

third harmonic of the diurnal motion.

viii) The residual series have had their diurnal components sub-

stantially removed, while the semidiurnal peak has not been

eliminated in most cases. The latter is especially true at
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DB15, 60 meters,

The coherence squared and phase functions for the component

spectra are discussed below:

i) In the band 0 < f < 1 cpd, 'y2 was generally negligibly

small. The single exception is DB5, 60 meters, where the

two velocity components were nearly in-phase at the low

frequency limit. At f 1 cpd, for the residual series,

and its semi-principal axis transformationwere generally

significant.

ii) For f f1, y2 was unequivocally significant, with the

components rotating in-quadrature in a clockwise sense,

thus the inertial motion was highly coherent at each spatial

point.

iii) There was a general tendency for the u and v series to

be in-quadrature and to rotate clockwise in the band

< f < 6 cpd. At f 6 cpd, the Coriolis restoring
f

force's effectiveness is reduced in the ratio 0. 06,

thus it is not unexpected that the inertial effects on rotation

were small at frequencies greater than 6 cpd.

iv) At f = 2 cpd, was not significant in the original series

for DB5, 20 meters. Even the semi-principal axis trans.-.

formation resulted in only marginal significance for the

semidiurnal motion. Otherwise, there was a tendency for
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high values of in the band of f1 < f < 2 cpd, which is

consistent with the fact that a continuum of inertial-internal

waves may exist in this region of the spectrum. In this

band, there was a tendency for of the residual series,

and its semi_principal axis transformation, to be appreciably

greater than that of the original series, except at DB1O, 20

meters. At the latter site, was large in the original

series.

v) was significant near f = 3 and 4 cpd after semi-

principal axis transformation, indicating that the terdiurnal

and quarterdiurnal waves were also coherent motions.

2vi) For f = 3. 5 cpd, y was significant at DB5, 60 meters

and DB1O, 20 meters. The corresponding autospectra also

show excitation at this frequency. Within the limits of the

spectral resolution, this frequency corresponds to the sum-

mation frequency for the inertial and sernidiurnal frequen-

cies, suggesting an interaction between the two.

The semi-principal axis transformation had its greatest effect
,,2 for DB5, 20 meters; it generally smoothed the phase func-

tions. The orientation of the semi-principal axis is displayed in the

lowest panel of each figure, where AL denotes the orientation of

the bottom contours. The pattern of the semi-principal axes is rather

erratic in all cases, but, with the exception of DBS, 20 meters, the
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axis orientation was aligned with the bottom contours for the semidi-

urnal motion.

F. The Spectra of Complex-Valued Horizontal Velo4y
Series and Their Correlation Between Different

Spatial Points

The spectrum calculations which result from treating pairs of

horizontal velocity series measured at different spatial positions as

pairs of complex-valued time series, W1 and W2, are presented in

Figure 35. The results for both the original and the residual series

are shown. The pairs chosen for analysis are DB15, 60 meters versus

DB5, 60 meters; DB1O, 20 meters versus DB5, 20 meters; and DB5, 20

meters versus DB5, 60 meters. The upper panel shows the auto-

spectra of anticlockwise (A) components, corresponding to positive

frequencies, for the two velocity series; similarly, the next panel

shows the autospectra of the clockwise (C) components, correspond-

ing to negative frequencies. For the original series, the values for

the A and C components are given by heavy solid lines and dashed

lines, respectively. For the residual series, the values for W1 and

W2 are given by light solid lines and dots, respectively. The co-

herence squared and phase functions of the original series are shown

in the lower panels by solid and dashed lines for the A and C compo-

nents, respectively. The values for the residual series are shown by

light solid lines and dots for the A and C components, respectively.
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From Appendix III, is automatically maximized in this type of

analysis.

The principal properties of the autospectra are summarized:

i) The A and C component spectra were similar in shape and

value except that the C component generally predominated in

the band f1 < f < 4 cpd.

ii) The A component spectra generally had a diurnal but no in-

ertial peak, while the opposite situation generally prevailed

for the C component spectra.

iii) The semidiurnal frequency had an energy peak in both the

A and C component spectra, with the latter predominating.

The C component of the residual series was only slightly

less than that of the original series at DB15, 60 meters,

which was in contrast to the A component. This result is

consistent with finding the M2 motion rotating anticlock-

wise at this site from tidal analysis in Section C.

iv) Energy peaks corresponding to tidal harmonics abounded.

v) The separation into A and C components gives a sharper

definition of the spectral peaks than observed in Figure 34.

The coherence squared and phase functions for the pairs of ser-

ies are discussed below:

i) was generally significant for both the A and C components

at the low frequency limit, except for the A component at



DB1O, 20 meters versus DB5, 20 meters.

ii) was significant at f 1 cpd for the A component; it

was only significant for the C component at DB5, 20 meters

versus 60 meters.

iii) was not significant at f = f1 except for the C compo_

nent between DB1O, 20 meters and DB5, 20 meters. Thus,

the inertial motion was coherent over a horizontal separa-

tion of 10 kilometers, though it was incoherent over a verti-

cal separation of 40 meters and a horizontal separation of

20 kilometers.

iv) was significant at f = 2 cpd for both components, ex-

cept for the C component between DB15, 60 meters and DB5,

60 meters and between DB1O, 20meters and DB5, 20 meters.

v) For f> 4 cpd, there was little significance to for

DB1S, 60 meters versus DB5, 60 meters, while there were

numerous significant peaks, primarily at tidal harmonics,

for the other pairs.

vi) For DB15, 60 meters versus DB5, 60 meters, the velocity

series were about 120° out-of-phase at low frequencies. The

C component was about 200° out-of-phase at f = 2 cpd. The

overall pattern of B vs f was consistent with the theoreti-
2 -4 -2cal 0 vs f template of Figure 32a and N = lx 10 sec

The slope of B vs f indicated onshore motion in the
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frequency bands 2 to 3 cpd, 4 to 6 cpd, and 7 to 9 cpd.

vii) For DB1O, 20 meters versus DB5, 20 meters, the velocity

series were in-phase at low frequencies. The C component

was out-ofphase at f = 2 cpd. 0 sustained complex van-

ations at higher frequencies. The overall pattern of 0 vs

f was consistent with the theoretical 0 vs f template of

Figure 32b and N2 = 3 x 104sec2. The slope of 0 vs

f indicated onshore motion in the frequency bands 2 to

3 cpd, 4 to 5 cpd, and 6 to 8 cpd.

viii) For DB5, 20 meters versus DB5, 60 meters, the velocity

series were in-phase at low frequencies. For f > f1, the

C component was essentially 180° out-ofphase. The A

component was roughly 180° out-ofphase for f > 4 cpd.

G. Spectra of Complex-Valued Horizontal Velocity and
Temperature and Their Correlation at a Single Point

The spectral quantities for the complex-valued velocity and the

temperature at DB5, 20 meters are presented in Figure 36. The

complex-valued velocity auto spectra have already been discussed in

Section F. Similar to the preceding figures, the values for the onigi-

nal series are given by heavy lines and those for the residual series

by light solid lines and dots. The temperature autospectrum has been

computed for a record length about two-thirds of that used for the



I

io2

'

C

/
\ -.--.-.-cJn

oo
S

0 \f

I

C flS

L

I1J

o
360

/ 0
000

FREQUENCY (cpd)

Figure 36. The autospectra of the complex-valued horizontal
velocity and of the temperature and their coherence
squared and phase functions for DB5, 20 meters.
(W is the complex-valued horizontal velocity and T is
the temperature at Dm5, 20 meters. A and C are the
anticlockwise and clockwise component spectra, re-
spectively.

350



351

calculations in Section D. From the autospectra, it is observed that:

i) There were spectral peaks near the low frequency limit,

2 cpd, and 4 cpd in all of the spectra.

ii) There was a diurnal peak at 1 cpd in the A component spec-

trum but not in the C component spectrum or the tempera-

ture spectrum.

The coherence squared and phase functions are discussed below:

1) Except for the A component spectrum of the residual at

f 1 and 2 cpd, 'y2 was statistically insignificant in the

band 0 < f < 4 cpd, where most of the energy occurred.

ii) For f> 4 cpd, had significant peaks which were gen-

erally associated with tidal harmonics.

iii) The peak in for 4 cpd is the peak of greatest inter-

est; for the residual series, it was significant in both the A

and the C components.

It is difficult to interpret these results. The difficulty may relate to

the fact that temperature oscillations are primarily manifestations of

vertical motions while velocity oscillations occur in the horizontal

plane. At the low frequencies, the hodographs of inertial-internal

waves are essentially confined to the horizontal plane. At the high

frequencies, the hodographs have a significant vertical component.

The ratio of the vertical to the horizontal velocity component is given

by the slope of a characteristic:
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22
- (

\l/2
dx'± '2 2'

dz -2The absolute value for '-) increases from about 0. 7 x 10 to
dx ±

2about 1.4 x 10 as the frequency increases from 2 to 4 cpd. Thus,the

pattern for as the frequency increases may be associated with

the shift from the predominance of the Coriolis restoring force to

that of the buoyancy restoring force,

H The Spectra of Horizontal Velocity Differences and
Their Correlation

Barotropic motions are uniform in the vertical, hence the baro-

tropic component has been removed from time series sampled at dif-

ferent depths on a common vertical by subtraction. Analogously, the

barotropic component could be extracted by averaging numerous ser-

ies sampled at points distributed uniformly from the surface to the

bottom on a common vertical. The barotropic component has been

removed from records sampled at the same depth and separated hori-

zontally by a small fraction of a barotropic wavelength but by a large

fraction of a baroclinic wavelength. Since the horizontal phase speed

of baroclinic motions is at least an order of magnitude less than that

of barotropic motions, the barotropic component has been removed

by subtraction. Analogously, the barotropic component could be ex-

tracted by averaging series sampled at numerous points distributed
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uniformly over at least one baroclinic wavelength. The difference

series are considered the baroclinic series.

Becauseonlyalimitednumberofsensorswereemployed, thebaro-

tropic component could not be extracted, but three baroclinic series

were formed. The effectiveness of the effort to remove the barotropic

component can be judged by applying several criteria to the resu1ts

i) In general, the spectra should be consistent with the-

oretical inertial-internal wave pas sband.

ii) The diurnal tide should be essentially barotropic, thus there

should be little evidence for diurnal motion in the spectra of

the difference series.

iii) The semidiurnal tide should have an appreciable baroclinic

component, hence there should be a significant spectral peak

for semidiurnal motion in the difference series.

One vertical and two horizontal difference series were formed

from the horizontal velocity series; their spectra are discussed be-

low. The residual and the semi-principal axis series are analyzed

only for the case shown in Figure 37a. The spectral quantities of the

vertical difference series for DB5, 20 meters minus DB5, 60 meters

are shown in Figure 37a. The autospectra had the following proper-

ties.

i) The spectra had the same form, with that of zu generally

greater than that of v but by less than a factor of three.
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ii) At low frequencies, the spectral levels rose and peaked.

iii) There was a decided trough in the spectra at the diurnal

frequency, as predicted.

iv) There was a rise in the spectra at the inertial, or slightly

lower, frequency, which is consistent with inertial-internal

wave theory for the frontal interaction, as predicted.

v) There was a maximum in both spectra at the semidiurnal

frequency, as predicted.

vi) There was a sharp decrease in the level of both spectra for

2
:f

f
:

3 cpd.

vii) At frequencies greater than 3 cpd, the spectral levels con-

tinued to decrease but at a lesser rate.

viii) The results for the residual series indicate a reduction in

the tidal peaks.

Thecoherence squaredandphasefunctions arediscussedbelow

i) In the low frequency limit, had marginal statistical sig

nificance, but it was significant at f = f1, or slightly lower.

At the low frequency limit, 0 corresponded to anticlockwise

rotation of the shear vector; it smoothly shifted to indicate

clockwise rotation of the shear vector at f = f1, or slightly lower.

ii) In the frequency band of f1 <f < 2 cpd, remained sig-

nificant, while 0 indicated that the shear vector rotated

clockwise. had its maximum at f = 2 cpd.
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iii) In the frequency band 2 cpd < f < 6 cpd, had peaks at

3, 4, 5 and 6 cpd, while the phase slowly varied within ±400

of 9O0.

iv) At frequencies greater than 6 cpd, continued to fluctu-

ate and 0 departed from -90°, indicating the reduced

effect of the Coriolis force on the shear vector at high fre-
28quencie s.

The spectral quantitites of the horizontal difference series for

DB5, 20 meters minus DB1O, 20 meters are shown in Figure 37b.

The principal properties of the autospectra are remarked:

i) The spectra were quite similar, with that of t v generally

greater than that of t u but by less than a factor of two.

ii) The u and ,e v spectra were similar to those of the

preceding figure and a detailed discussion is not necessary.

and 0 had the following properties:

i) ,2 and 0 were similar to those of the preceding figure in

the frequency band 0 < f < f, except for the decrease to

0 near f 1 cpd, which is consistent with predictions.

ii) In the band f1< f< 12 cpd, and 0 were similar to

28The only other spectra of vertical difference series known to
the author are those computed by Dr. G. Seidler (1968). His calcula-
tions were based on observations in the deep ocean separated by only
3 meters, yet his spectra exhibit the same qualitative features that
these do.
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those of the preceding figure, except that a well-formed

peak in did not occur at f = 5 cpd,

The spectral quantities of the horizontal difference series for

DB5, 60 meters minus DB15, 60 meters are shown in Figure 37c.

From the autospectra, the following results are remarked:

i) Again, the eu and v autospectra were quite similar;

the spectrum of v was greater than that of Eu by less

than a factor of three for 0< 3<f<4 cpd. At higher frequen

cies, tu and v were essentially equal.

ii) u and v were so similar to the two preceding cases

that only the exceptions are noted.

iii) The values for both iu and Lv at the low frequency

limit appreciably exceeded those at the inertial and semidi-

urnal frequencies.

iv) The semidiurnal peak dominated the distinct inertial peak

for both u and v.

The following remarks derive from the plots of and 0:

i) and 0 were similar to the two preceding cases, ex-

cept ther.e were no peaks in for f = 6 and 8 cpd; how-

ever, there were peaks at f = 7 and 9 cpd.

ii) At the low frequency limit, was significant and 0

was zero, thus u and v were correlated and in-

phase at low frequencies.



360

iii) The peak at the inertial frequency was more significant than

the sernidiurnal and quarterdiurnaL peaks.

iv) In the frequency band f1 < f < 6 cpd, 0 tended to be -9 0°.

The horizontal difference spectrum for the temperature series

at a depth of 20 meters at DB5 and DB15 has been computed but it is

not discussed for the following reasons:

i) The temperature autospectrum at DB15 dominated thatat DBS

by up to an order of magnitude, hence their difference series

was essentially the same as that for the series at DB15, and

ii) The significant difference series to examine is that of verti-

cal displacement, which was not computed since the vertical

temperature gradient is not sufficiently well-known at either

site to justify converting the temperature series to vertical

displacement series,

From the spectra of the vertical difference series in Figure

37a, deductions about the spectral Richardson Number, RIS, can be

made. RIS(f) had its minimum value at the semidiurnal frequency.

For the shear amplitude at f = 2 cpd, 1. 5 x l0"3sec and

1. 2 x l0'3sec"'. With E 2 x l0, then RISU(2) X 90

and RISV(2) 133. There was appreciable shear in the band

1. 3 < f < 2. 2 cpd. Integrating over this band,

-3 -13 1

'I 3.0 x l0 sec and 2.5 x 10 sec
LZ
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then RISU 20 and RISV 30 represent minimum Richard Num-

bers when all the motions in the band are in_phase. From Section

X. C., for the mean flow

thus

-3 -1 -3 -1-1.2 x 10 sec and -4.6 x 10 sec
LZ

RIUZ 150 and RIV 8.

When the conditions for the band-average of apply, and consid

ering the shear of the mean flow:

RItJ 75;mn

when they apply for the band-average of and again considering

the mean shear:

RIV.4,
n-i in

Thus, on the average, the low frequency inertial-internal shear

waves were insufficient to produce critically low dynamic stability.

Shear was also contributed by the low frequency motions with a time

scale of several days; it was of the same order of magnitude as that in

the band 1. 5 < f < 2. 2 cpd, and, on the average, it was not sufficient

alone or in combination with the mean and low frequency inertial-

internal wave shears to produce critically low dynamic stability.
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Thus, if the regime becomes dynamically unstable, it must be

on an instantaneous basis rather than in an average sense. The maxi-

mum magnitude of the shear vector of the lO-.minute samples was

1.4 x 1O2sec. Then, the minimum Ri was 1, which is the

critical value. Values very close to the minimum value occurred

frequently with a semidiurnal periodicity. The large values of the

shear vector were also associated with short period oscillations

superimposed on the tidal oscillation. The estimate of minimum Ri

is limited by the lack of knowledge of the instantaneous value for E,

as well as by the sampling rate and the sensor spacing.

In summary, the spectra were basically consistent with the the-

ory for inertial-internal waves, thus they supported hypothesis i) of

Section IX. B. There is some evidence, though not conclusive, for

the lowering of the low frequency end of the passband due to the ef-

fects of the frontal interaction. Increased spectral resolution is nec

essary to settle this point. The use of residual series, and their

semiprincipal axis transformations, generally improved the signifi-

cance of the spectrum calculations and their interpretation. The be-

havior of the A component spectra, particularly at the diurnal fre-

quency, was generally consistent with the model for barotropic mo-

tions along a coastal boundary in Appendix I. The spectra of complex-

valued horizontal velocity series are useful quantities and indicate a

general onshore propagation of waves within the inertial-internal wave
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passband, though some of the significant tidal harmonics appear to

have been propagating offshore, which is plausible if they were gen-

erated inshore. Thus, hypotheses iii) and vi) of Section IX. B. have

been substantiated. In particular, the vertical difference series of

horizontal velocity at DB5 was an effective measure of the baroclinic

motion. It can be speculated that, if additional vertical difference

series had been calculable from observations, that the technique of

spectrum analysis of complex-valued series would have been effective

for the analysis of inertial-internal waves. The possible analyses of

complex-valued horizontal velocity series were complicated by the

presence of the barotroic tides. The values of dynamic stability

computed, the general presence of tidal harmonics, and the complica.-

tions in the coherence squared and phase functions at the semidiurnal

frequency were all consistent with hypothesis viii) in Section IX. B.

about the stability of the internal tide. The tidal and spectrum anal-

yses indicated the coexistence of the semidiurnal internal tide and

inertial motions in all the series, consistent with hypothesis ix) of

Section IX. B. More complete observational arrays are necessary to

gain insight into the generation and interaction of internal tides and

inertial motions.



XII. CONCLUSIONS AND RECOMMENDATIONS

It is premature to expect a detailed, quantitative agreement be-

tween observations of inertial-internal waves and the linear theory

for inertialinternal waves in the frontal zone of a coastal upwelling

region, The principal difficulties are fundamental questions regard-

ing the phase stability, amplitude stability, the spatial coherence,

and the linearity of the waves, which can only be answered by further

observation. There are other questions involving the effects of the

low frequency variations of the frontal regime and the effects of the

mean cross-stream flow on inertial-internal waves. Nevertheless,

the existent observations and theory permit making several deduc-

tions.

The observations have been used to infer the key features of the

general, three-dimensional flow pattern in the frontal zone of the

coastal upwelling region off Oregon. The general flow pattern in the

coastal region during upwelling season is summarized:

For the alongshore flow,

i) The flow is equatorward in the upper 40 meters of the water

column,

ii) The flow is poleward beneath a depth of about 40 meters; it

tends to be concentrated beneath the inclined, permanent

frontal layer as a pycnoclinic jet.
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For the cross-stream flow,

iii) The flow is offshore in the surface Ekman layer, which is

about lOto 20 meters thick.

iv) Upwelled water sinks beneath the seasonal pycnocline and

flows offshore in a layer at a depth of about 10 to 30 meters.

v) The flow is onshore in the upper portion of the permanent

pycnocline in a layer at a depth of about 20 to 60 meters.

vi) The 'newly formed water mass, which is marked by a tem-

perature inversion, sinks beneath the inclined, permanent

frontal layer and flows offshore in a layer at a depth of about

40 to 80 meters.

vii) Beneath the flow described in vi) and above the bottom Ekman

layer, the flow is onshore.

viii) Within 10 to 20 meters of the bottom, the flow is also onshore

in the bottom Ekman layer.

Since this picaresque flow pattern is based on both deductive and in-

ductive reasoning, and since time_dependent effects may be substan-

tial, it is necessary to make time series observations with increased

vertical and horizontal detail to further verify and define the pattern.

The observations, and the inferences made from them, indicate that

a quite general study of frontal flows is feasible with existent tech-

niques and in the frontal zone of the coastal upwelling region off Ore-

g on.
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In August-September 1966, the mean horizontal flow field had

appreciable vertical shear, yet it was dynamically stable on the aver-

age, though there was evidence for significant mixing, e. g., the for-

mation and sustenance of the temperature inversion. Appreciable

vertical shears were produced by low frequency inertial-internal

waves in the inclined frontal layer, especially by the semidiurnal

internal tide and by motions with a temporal scale of several days

On the average, these motions were not sufficient to produce critically

low dynamic stability over a vertical scale of 40 meters. The time

series of ten-minute averages of vertical shear gave values for the

dynamic stability which approached critical values over a vertical

scale of 40 meters on a large fraction of the semidiurnal tidal cycles.

At the DBZ5 anchor station over the continental slope, and on a verti-

cal scale of five meters, the dynamic stability reached critical values

on a semidiurnal cycle in the center of the temperature inversion,

which was at the base of the inclined frontal layer. It is suggested,

if observations are made at a more rapid sampling rate (about once

per minute or faster) and over a smaller vertical scale (about five

meters or less), that direct evidence will be found for turbulent mix-

ing at the base of the inclined frontal layer and that it will be associ-

ated with the semidiurnal internal tide, inertial oscillations, and in-

ternal celluar waves.

The tidal and spectrum analyses of the horizontal velocity and
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temperature time series indicate:

i) The severalday, the semidiurnal, and the inertial motions

predominated in the spectra.

ii) The semidiurnal motion was less coherent than expected over

spatial separations less than a horizontal wavelength, while

the inertial motion was more temporally coherent than ex..

pected.

iii) The semidiurnal internal tide propagated onshore, and the

array of sensors spanned about a half wavelength. Several

bands of the spectra indicated onshore propagation, while

others indicated offshore propagation.

iv) The semidiurnal internal tide was not phase stable, either due to

unsteady generation and dis sipation, to modification by low fre -

quency modulations of the frontal zone, or to a complex ver-

tical modal structure.

v) The tidal harmonics were richly excited, which is indicative

of nonlinearities and interactions. The quarterdiurnal mo-

tion was especially marked and suprisingly coherent. The

summation frequency for the inertial frequency and the semi-

diurnal tide had an energy peak in some of the spectra and

was temporally coherent, as indicated by tidal analysis.

vi) The inertial motionhad an amplitude of 2 to 4cm! sec at the sea-

ward edge of the continental shelf, where t was temporally



coherent. This may be evidence for a topographically

trapped wave motion at a frequency slightly less than the

inertial frequency. The inertial motion also had a baroclinic

component 10 kilometers offshore.

The time series analyses suggest the following data analysis

recommendations:

i) Since a significant collection of time series for the coastal

region has been analyzed, or is in the process of analysis,

it is timely to consider making ensemble averages of spec-

tral quantities and determining confidence limits for the

spectral quantities on an empirical basis.

ii) Optimum methods for the analysis of the coherent and inco-

herent components of the spectra are in demand. Further

exploration for significant, coherent waves in the coastal

regime at frequencies other than the ordinary tidal frequen-

cies may be profitable. For instance, least squares tidal

analyses of time series observed in the coastal region should

routinely include the inertial frequency in the set of fre-

quencies fit to each time series.

iii) Statistical experiments are necessary for the improvement

of the estimates of coherency, cf, Tick (1967) and Jenkins

and Watts (1968). The technique of alignment (Jenkins and

Watts, 1968) should be attempted in the cross spectrum
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analyses; i. e. , the analyses should be tried with the Fourier

transform of the covariance offset an amount equal to the lag

value of the maximum covariance plus the ratio of the sensor

separation to the inertia1internal wave phase speed. Exper

iments are also necessary to determine the practical limits

and benefits of narrow-band spectrum analysis.

iv) Consideration should he given to routinely presenting all of

the one=dimensional spectral quantities in the coordinate

system of the array.

v) Least squares tidal analyses should be done on intermediate

passed series to attempt to improve the reliability of the re

suits by suppressing the effects of low frequency, large am

plitude oscillations, especially in the horizontal velocity

series.

On the basis of the observations, several field observations are

suggested. Though the field observations are not mutually exclusive,

practical problems of logistics may make them so, and thus they are

listed separately

i) A study of long waves (at tidal, inertial, and lower frequen-

cies) trapped, scattered, and generated over the continental

slope could be made with five stations at 2Okilometer spac-

ings from 20 to 100 kilometers offshore, each equipped

with recording current meters at lO-meter or 20-meter
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vertical increments in the upper 100 meters and at 25-meter

or 50-meter vertical increments below a depth of 100 meters.

Each station should also be equipped with three recording

thermographs at 5-meter increments (in order to define the

temperature gradients) in the upper 15 to 25 meters of the

water column, Since there is evidence for motions with per_

iods of two days to two weeks, the record durations should

be 100 to 200 days long. Bottom mounted pressure gauges at

each site would assist in mapping the waveforms of the baro-

tropic motions, Time series of atmospheric pressure and

of the winds would be necessary for the interpretation of the

re suits.

ii) A study of low frequency inertial-internal waveforms over

the continental slope and shelf could be made with two paral-

lel arrays separated by 10 to 40 kilometers in the alongshore

direction, each with five stations at 18, 20, 24, 30, and 40

kilometers offshore, and each equipped with recording cur-

rent meters and salinographs at 5-meter or 1 0-meter verti-

cal increments in the upper 100 meters, and 10meter or

20-meter vertical increments below. Within 20 meters of

the bottom, a sensor spacing of 5 meters would be useful for

detection of the abounded beam phenomenon predicted by

Sandstrom (1966). Record durations of 25 to 50 days should
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be adequate.

iii) A detailed study throughout the spectral band of inertial-

internal waves in the coastal upwelling frontal zone and of the

fine structure of the mean flow could be made with five sta-

tions at 6, 8, 11, 15, and ZO kilometers offshore, each with

recording current meters and thermographs or salinographs

at 5-meter or lO-meter vertical increments, Of particular

interest is the study of the mean flow and of wave motions in

the bottom and surface Ekman layers, as well as in the in-

tenor frontal layers, especially near the surface front. An

increase in sampling rate to once per minute is necessary

for defining the Väislä-Brunt oscillations. Record dura-

tions of 15 to 30 days should be adequate.

iv) In conjunction with i) to iii), lunar.day anchor stations should

be conducted alongside sensor sites. The measurement

techniques employed on anchor stations should be extended to

include STD's and pairs of profiling current meters. Of par

ticular interest is the use of simultaneous anchor stations to

study the temperature inversion and the dynamic stability in

the frontal layer both over the continental slope and in the

region of the most intense frontal slopes over the continental

shelf, i.e., near the surface front 5 to 15 kilometers off-

shore. Simultaneous anchor stations taken 10 to 40
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kilometers apart in the alongshore direction over the con-

tinental shelf and slope could answer, at least roughly, the

que stions about long cre stedne s s and directionality of the inter-

nal tides. More hydrographic casts to near the bottom over

the continental slope and shelf are necessary to compute

E(x, z) in detail and to determine for which frequencies the

bottom slopes are critical.

The above list suggests an abundance of sensors for three rea-

i) To obtain a redundancy in sensors to guard against malfunc-

tions and loss.

ii) To obtain spatial detail so the the modal structure and the

coherence squared and phase of the waves can be studied

carefully. With good vertical detail, the barotropic and

baroclinic components can be accurately separated.

iii) With sufficient vertical detail, observations of horizontal

velocity and vertical displacement would enable the. calcula-

tion of horizontal energy flux through a vertical column.

Also, Cauchy data as a function of frequency could be empir_

ically determined at one site. Then, as a function of fre-

quency, solutions to the mixed initial-boundary value prob_

lem could be calculated and compared to the observations at

the other sensor sites.
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The observations could be profitably attempted throughout the

year because the seasonal effects are likely to be marked; the obser-

vations are also worth repeating in subsequent years. The recom-

mendations listed do not exhaust the possibilities of observational

objectives, of sensor types, or of observational design; the recom-

mendations are restricted to topics discussed and to the instrumenta-

tion, with the exception of the recording salinographs, employed in

this dissertation, For instance, the recommendations do not include

the objective of linking the long-period variations in the flow regime

to the atmospheric-forcing functions. They also do not include the

observational technique of deploying Lagrangian current meters,

e. g. , parachute drogues or free-fall instruments, to map the off-

shore distribution of long_period horizontal displacements in the

frontal zone and over the continental slope.

The linear theory for the interaction of an inertial-internal

wave with a frontal zone has been derived, explored analytically for

cases with variable coefficients, and solved for cases with constant

coefficients and for a continental shelf with a rigid surface boundary

and with parallel and sloping bottom boundaries. The technique of

analytical extension of the Cauchy data is an effective means for the

construction of solutions for cases of subcritical, critical, and

supercritical bottom slopes, witheither a rigid or afree sea sur-

face boundary condition.
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The principal properties of the inertial-internal wave solutions

in the frontal zone of a coastal upwelling region are:

i) The frontal interaction gives the characteristics an asym-

metry, which induces alternating.zones of increased and de-

creased shear. The asymmetry also tilts the lines of con-

stant phase within an effective wavelength for a progressive

wave. The effective wavelength differs from the wavelength

without the frontal interaction.

ii) A sloping bottom boundary, with subcritical slope, pro-

duces zones of ever-increasing shear in the waves upon suc-

cessive reflections of the waves from the bottom. If the iso-

pycnals are inclined in the same sense as the bottom bound-

ary, the value of the critical bottom slope is greater than if

s 0. If they are inclined in the opposite sense, the value

of the critical bottom slope is less than if s 0. Thus,

the upwarped is opycnals over the continental shelf during

coastal upwelling season exert a stabilizing influence by

tending to make the bottom slope subcritical. Conversely,

when the isopycnals close to the bottom become downwarped,

they tend to make the bottom slope super critical.

iii) From i) and ii), temporal variations in the state of coastal

upwelling alter the positions of the lines of constant phase,

thus the phase stability of the waves is reduced. The
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temporal variations also alter the criticality of the bottom

slope, and, thus, probably the wave generation process.

iv) An inclined frontal layer affects the inertial-internal waves.

The frontal layer serves as a wave guide. If the frontal layer

is inclined, it can either open the inertial-internal wave

passband to frequencies less than the inertial frequency or

close the passband to frequencies greater than the inertial

frequency, depending upon the sign of (fv_s2N2). The in-

clined frontal layer also opens the passband to frequencies

greater than the Visl-Brunt frequency. Somewhat anal-

ogous to the concept of critical bottom slope, the concept of

critical frontal slope, s, is introduced:

2
-(N2-Cr2)(Cr2-f(f+v))

c N4

where s2 > 0 when Cr2 > N2 and when <f(f+v).

For s > s , and for N2 < Cr <N2(l+s2) or

(f(f+v)s2NZ) < <f(f+v), both the upgoing and downgo-

ing characteristics are oriented either downwards or up-

wards, respectively. Waves forwhich s > Sc are blocked.

by the inclined frontal layer, i. e. , back reflection occurs

from the sea surface or the sea bottom in the case of low

frequency or high frequency waves, respectively.
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v) The field of characteristics for the continental shelf off Depoe

Bay, Oregon in August-September 1966 indicates that the

semidiurnal internal tide had an effective wavelength of abou±

25 kilometers, measured onshore from the seaward edge of

the continental shelf. It also indicates that the array of sen-.

sors spanned about a half wavelength of the semidiurnal in-.

ternal tide and that very little bottom and frontal amplifica-

tion of the wave occurred over the half wavelength, except

near the surface front about 10 to 15 kilometers offshore.

Both deductions are consistent with the time series analyses

based on the observed time series. If observations had been

made between 2and 10 kilometers offshore, appreciable ampli-

fication of the wave would habe been observed, especially near

the bottom and near the surface in the inclined frontal layer.

In a coastal upwelling region, an inertial-internal wave is am-

plified by bottom reflection and tends to be concentrated in the in..

dined frontal layer, thus the lowest values of dynamic stability are

anticipated in the steepest part of the frontal layer over the continen-

tal shelf, i. e. , near the surface front. Therefore, when coastal up-

welling intensifies, which causes s and lvi to become greater,

the conditions for low dynamic stability of the frontal layer caused by

an internal tide are enhanced.

In the general case of variable coefficients, a sloping bottom,
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a free surface, and the frontal interaction, the following general anal-

yses have been made for inertial-internaiwaves over acontinenta1shelf

i) The action integral has been found by which the governing

equation can be derived from the calculus of variations.

This analysis has led to the identification of the horizontal

and vertical components of the kinetic and potential energies

and to a spatially-averaged equipartition principle.

ii) The energy integral has been derived. The horizontal

energy flux is expressed in terms of the vertical integral of

the time-averaged product of the two linearly independent

elements of the Cauchy data. If the horizontal energy flux

is zero, energy is conserved and a standing wave occurs

over the shelf; if it is non-zeros energy is not conserved and

a progressive wave occurs, whose direction of propagation

is given by the sign of the horizontal energy flux. This anal-

ysis has led to the deduction that observations must be made

which are equivalent to determining the vertical and tempor-

al structure of the Cauchy data at the seaward edge of the

shelf. Once the Cauchy data are determined, the solution

theory can be used to construct the solution over the shelf

with the temporal phase taken into account.

iii) The spatial conservation law has been derived; it determines

the growth of the solution inshore of the initial line, The
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interrelation between the Cauchy data, the bottom slope, the

potential energy of the free surface, and the inhomogeneities

of the mean velocity and density fields enter this analysis.

The criticality of. the bottom slope determines if the solution

decays or grows spatially shoreward of the initial line, The

sea surface boundary condition can play a crucial role in de-

termining whether or not the energy of the wave becomes un-

bounded in the vertex of the coastal wedge for the case of

subcritical bottom slopes; i. e, , allowing the sea surface to

be free and to have potential energy can remove the singu-

larity in the velocity fields at the vertex,

iv) The analysis of baroclinic instability has been carried out

from both the integral and the differential viewpoints. Not

surprisingly, the conditions for instability coincide with

those for frontal blocking.

The theoretical and observational studies suggest the following

recommendations for future theoretical work:

i) An analytical assault on the inertial-internal wave generation

problem in a coastal region is necessary. The problem

should be considered in its full three-dimensional form and

for a continuous density structure and a continuous bottom

topography. Cases with and without the frontal interaction

should be examined,
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ii) The free surface boundary conditions capacity for removing

the singularity in the velocity field at the vertex of a coastal

wedge should be exploited for constructing solutions.

iii) The mean cross-stream flow should be introduced into the

analysis of the frontal interaction, especially in shallow

water where the advective acceleration terms may become

significant.

iv) The frontal interaction problem should be considered for a

slowly-varying mean flow, The analysis may be best con-

ducted in wave number-frequency space, i. e. , with the use

of the techniques of geometrical optics and ray tracing.

v) The interaction of barotropic and baroclinic motions at the in-

ertial and tidal frequencies should be examined.

vi) More observables should be developed, and the hypotheses

used for the design of field observations should be refined,
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APPENDIX I

Long Wave Propagation Along a Meridional Boundary

The long wave of primary interest in this study is the semidi-

urnal tide, yet there are energy peaks in the spectra of Chapter XI

at the diurnal, inertial, quarterdiurnal, and other frequencies.

Though internal tides are the chief concern of this study, the surface

tides have contributed to the spectra of Chapter XL Also, the sur-

face tides are the ultimate source of the internal tides. For these

reasons, the classes of barotropic and baroclinic motion along a

coastal boundary oriented parallel to a meridian of longtidue are ex-

amined. The objectives are primarily qualitative.

The alongshore wavenumber, .Q, is not neglected in the fol-

lowing. The topics to be examined are:

i) For the interpretation of the spectra in Chapter XI, the per_

missible classes of barotropic (in Section A) and baro clinic

(in Section B) waves along a meridional boundary with van-

able depth.

ii) For the exploration of the theory for the three-dimensional

problem, the matching of solutions to the inertial-internal

wave problem over the continental shelf and slope to those

for deep water.

iii) Also for the interpretation of the spectra in Chapter XI, the
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spectral and hodographobservables for a simple coastal

model(in Sections C and D).

The permissible motions are those basic solutions to the un-

earized hydrodynamical equations which have no mass flux across the

coastal boundary and for which the sea surface and the normal com-

ponent of the mass flux are continuous at each variation in bottom

topography. The BC1s place constraints on the solutions which lead

to eigenvalue problems and dispersion relations. The general prob..

lem types are those of partial reflection of a wave at a vertical bar-

rier and of wave trapping by the barrier. The coastline, depth van-

ations, and pycnoclines all have waveguide effects. The first two

effects are analyzed to gain some insight into topographically leaky

and trapped modes; the waveguide effects of density variations have

been discussed in the text.

Waves with a functional form for the surface displacement, ,,

of = F(x, z) cos (crt-ly) are assumed. An infinitely long coastline

parallel to the y_axis is also assumed, with a monotonic depth,

z -h(x), variation in the x-direction only, such that h < 0.

and h are neglected, and f is represented by the s-

bol f.

A. Barotropic Cases

In a barotropic, inviscid, rotating system the linearized
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equations of motion are:

EOM's

(1) 0 - g, thus rr(z) g(_z),

i. e. , hydrostatic equilibrium is assumed,

(2)

and

(3) v + fu = lry = -g.

With h equal to the time-averaged depth, the linearized, vertically

integrated EOC is:

-
(4) EOC: (hu) + (hV)y + = 0, or (hU) =

where u and v are the depth-averaged horizontal velocity com-

ponents and = (u, v). Since F(x, z) F(x) in barotropic cases,

and using (2) and (3), the equation for the horizontal velocity com-

ponents are

(5) u g [-a-F +fFJ sin (crt-y)22 x(a- -f
and

(6) v g [o-.F-fF J cos (crt-.ey).22 x
(a- -f

Substituting (5) and (6) into (4), the GE is obtained:



where

GE: (hF ) + Q(x)F = 0,xx

22
Q(x) {0 _f

.- -h _.2h].
g
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The GE is a Sturm-Liouville equation. With the BC's, i. e. , < °0

x - o0

and hu, or h(f,-o-), 0 and the fact that h 0, the
x-0 x-0

problem constitutes a singular Sturm-Liouville system. The solu-

tions depend upon the sign of Q(x); their x-dependence is

sinusoidal-like where Q> 0 and exponential-like where Q < 0.

Forming the energy equation from the primitive equations,

ph( u+v
{Uç+Vy]=-pg(h). VH

and then integrating over a horizontal area, S:

22( u+v
2

)dxdy = pg[$(hi) d - v (ht)dxdy],

if h is continuous, and where B is the bounding curve of S

and d is the incremental arc length along B. With use of the

EOC:

22 2ru+v g,
p )h[ + =p g(hU), d s,

2

The total energy E is E = KE + PE, where



KE = p and PE = p0g

E is conserved if the normal component of the energy flux, p0hU.

vanishes onboundariesandiLp0hU is continuous which is as-

sured if ht5 and r, are separately continuous.

For uniform depth, and with the assumption of SHM, i. e.

F(x) x e', the CR is

or,

22 22gh[k +. I (a- _f ) = 0

k2
a-2-f2

gh

If a-> f, plane waves occur for k2 > 0; they are called Poincare

waves and > 0 or < 0. The high cut-off wave number, i
Co

is obtained when k = 0, so

1/2
' =±(
Co gh

Thus, . decreases to zero as a- f and as h oc. Expo_
Co

nentially damped waves occur for .1? > ; they are called Kelvin

waves, for which k2 < 0 and > 0 only. For a- and

fixed, k increases as h decreases; thus, a wave is refracted as

it propagates shoreward, i. e. , the orientation of wavefronts is
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aligned parallel to the coastline as shallow water is approached.

General Topography. As a consequence of requiring hu and

r, or, equivalently, h[-crF+fFJ and F, to be continuous func-

tions of x, hv is discontinuous where h is discontinuous.

Therefore, a depth discontinuity produces a vortex sheet, and a van-

ation in depth produces horizontal shears in the flow component tan-.

gential to the depth variation.

Reid (1958) analyzed the GE for gently-sloping bottoms of

semi-infinite extent, i. e., in the case of h(x) mx, - < x < 0,

where m > 0 is the bottom slope. When r> f, has a

positive and a negative roots. When Cr < f, .P has only positive

roots. When Cr = f, a singular case occurs which is discussed be-

low. For a-> f, Reid termed the permissible north- and south-

going modes free edge waves; for a- < f, Reid termed the north-

going wave a quasi-geostrophic edge wave. Recently, Robinson

(1964), Mysak (1967, 1968), and Longuet-Higgins (1967, 1968) have

examined the case of a- < f in greater generality; they have consid-

ered the effect of a depth transition of finite width on wave trapping.

Robinson and Mysak have discovered continental shelf waves theo-

retically which are different from the quasi-geostrophic waves; they

are due to a resonance involving the finite shelf width, the. Coriolis

force, and the alongshore wavelength of the atmospheric excitation

function. Mysak (1968) discussed his results, and the results of Reid,
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in a unified fashion. The phase speed, c, of the two types of low-

frequency waves is greatly different: for quasi- geostrophic waves

Cq = gm/f cm/sec, while for continental shelf waves

c Lf 2 x 10 cm/sec. For an ordinary Kelvin wave,

Ck = (gh)2 - 1. 7 x l0' cm/sec, thus Ck
= (cc)L'Z. Mooers and

Smith (1968) have detected continental shelf waves off Oregon; since

the period of continental shelf waves is of the order of several days,

these waves are not in the spectral band of interest to the present

study. Longuet-Higginst studies (1967, 1968) are general analyses of

double Kelvin waves, which can only propagate northwards along a

topographical barrier in the Northern Hemisphere. He has studied

these waves for an infinite domain, oo < x < +, with the geometry

h - h+, h <ao, and with the BC's 0, hence they are not
lxi 00

strictly applicable to waves trapped on a coastline. They exhibit

much the same qualitative behavior as that of the other low frequency,

topographically trapped waves mentioned, viz, the inertial frequency

is the upper frequency bound and the zero frequency is the lower fre-

quency bound for the first mode. Of special significance is the fact

that the double Kelvin waves are predicted to produce jet-like cur-

rents over a continental slope.

Sketches of the depth profile and Q(x) off Depoe Bay, Oregon,

are given in Figures 38a and b, respectively. The bottom profile is

based on Coast and Geodetic Survey Chart No. 1308N-22, 1968; it
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Figure 38a. Depth profile off Depoe Bay, Oregon.
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corresponds to the Depoe Bay hydrographic line, which is oriented

normal to the bottom contours. The upper portion of the figure shows

the bottom profile from the coastline to 60 kilometers offshore, while

the lower portion of the figure shows the bottom profile from 60 to

120 kilometers offshore, which is effectively in deep water. The bot-

torn profile has been approximated by a 5-segment and by a 2-

segment model. The 5-segment model was used in the plot of Q(x).

The 2_segment model was used for the calculation of the dispersion

law for inertial Kelvin waves. A single-step model has also been

used for dispersion calculations for the semidiurnal tide and other

frequencies of interest. The parameters of the models are tabulated

below:

Bottom profile parameters

Distance offshore Depth Slope
(kilometers) (meters) (x 102)

5-Segment Model

0 0 0.67
30 200 3

40 500 0

60 500 2.5
100 1500 7.5

>120 3000

2-Segment Model
0 0 0.67

30 200 2

110 1800 00

>110 3000

Single-Step Model
0 200

30
> 30 3000

00
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There are an infinite number of discrete values of I! permissible

for a fixed a- and a given h(x). The value of . chosen,

= l08cm, is an order of magnitude estimate for the lowest

mode of the semidiurnal tide, but there is no reason to believe that it

corresponds exactly to a permissible L. Q(x) is plotted for

a- = 3/4f, f, and 3/2 f, where f = l04sec, to indicate its

form for the diurnal, inertial, and semidiurnal motions, respectively.

Where Q(x) > 0, the region has the nature of a potential well. It

is remarked that

i) Potential wells occur over the continental shelf, the upper

reach of the continental slope, and the lower reach of the

continental slope,

ii) The potential wells have their greatest and least values for

the diurnal and semidiurnal frequencies, respectively, and

iii) The potential wells have their greatest and least values over

the lower reaches of the continental slope and over the con-

tinental shelf, respectively.

On the basis of Q(x), waves at the three.frequencies are expected

to be most strongly trapped over the lower reaches of the continental

slope.; a secondary wave trap is expected over the upper reaches of

the continental slope.

Inertial Kelvin Waves. The degenerate case, a- = f, serves

to introduce Kelvin waves. Take Ae cos (ft-ny); substitute



0

and u = u(x) sin (ft_.y) into (2) to find v:

v = e +u(x)} cos (ft_ky).

Substituting v into the EOC, and dropping the common sin (ft-ly)

factor, then

or

X _fAe=O(hu) + h Ae +u]
x f

(hue) = (fg)Ae2.

With the BC hu = 0 at x 0, then

f 2.x g.hu = Ae{(e -1) - SXe2h dx].
0

(must)
Since Ihul < oc as x -co, then

2 3 2x
c_cof + 2g. e h(x)dx 0,

'Jo

which is the dispersion relation. At the coast,

(h)0 = A gLh(0)
=

In the deep ocean, (hv) 0 , by the dispersion relation. Using
X - -00

the parameters from the 2_segment model to represent the bottom

U
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profile off Depoe Bay, Oregon, the dispersion relation yields:

-9 -11=6.lxlO cm

When the continental shelf and slope are neglected, the dispersion re-

lation for uniform depth,

f
1/2

(gh)

yields = 5. 8 x 109cm, hence there is only a 5% increase in

wave number when variable depth is considered in this case. Yet,

the solutions for variable depth have more interesting functional

forms than those for uniform depth, which require u(x) 0 for all

x, as seen below. The functions u(x) and v(x) are plotted in

Figure 39. The shear-inducing effect of variable depth is apparent.

u(x) has its greatest values over the continental shelf, while v(x)

has its greatest value at the boundary between the continental slope

and the deep ocean. Over the continental shelf, the wave's hodograph

has an eccentricity of about 0. 5 and rotates anticlockwise. This case

is rather unrealistic since it neglects the beta effect, thus it is only

valid at a single latitude. The model is not consistent with the obser-

vations reported in Chapter XI.

Uniform Depth. The case of uniform depth admits Kelvinwave

and standing wave solutions, which are the basic building blocks for

the case of stepped topography, which is considered next. The Kelvin
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(must)
wave case is limited by the fact that u = 0 at x = 0, which

implies, from (5) that -o-F + f.F 0. The form for F then

implies that u = 0 for all x. In this case, v is determined

from (6):

V = - e cos (ot-y).
0

The EOC yields the dispersion relation:

1/2
(gh)

For standing waves, -a-F + f.F = 0 implies that, for

F = A sin (kx) + B cos (kx), then

From the CR,

A f
B crk

k2 + :2 = 0,

there are Poincare wave solutions for cr> f; for Poincare waves,

is not constrained to be positive. When a- < (f2+gh2)1"2, k

becomes imaginary and only Kelvin waves are permissible.

Thus, in the degenerate case of uniform depth, the topographic

waves have their recognizable counterparts:



i) In a gross sense, the quasi-geostrophic waves become the

Kelvin waves but exist for all o.

ii) The edge waves become the Poincare waves.

Stepped Bottom. A single topographical step is considered,

though the analysis is readily extended to an arbitrary number of

steps (Munk, Snodgrass, and Gilbert, 1964). The depth is given by

S x e (0 < x < L), where S is shallow water
h(x) =

LhD, D x (oc <x < 0), where D is deep water.

The CR's for regions S and D are

and

Then

thus

22
(o -f ) = gh5(k+2)

22
(ci- -f ) = gh(k+2).

22h5(k-i-2) = h(k+ ),

2 hD 2 hD 2 2
k5 + (j-l) >kD since hD>hS.

As noted by Ichiye (1963), for a- > f, the case divides into three

subcases:

I: 0 < kD2 < k, yielding Poincare waves in D and S,

thus there are a total of four waves possible (two in D and
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two in S),

2 2 . .
II: < 0 < ks, yielding Kelvin waves in D and Poincare

waves in S, thus there are a total of three waves possible

(one in D and two in S), and

III: < k < 0, yielding Kelvin-type waves in both D and

S, thus there are a total of three waves possible (one in

D and two in S).

It is recognized that

i) There can be waves from D incident on S with complete

or partial reflection, subcase I.

ii) There can be waves in S which "leak" to D, subcase I

above without an incident wave in D.

iii) There can be wave s.trapped on the continental shelf, sub-

cases II and III above.

The BC's are then:

i) No net mass flux across the coastline,

hsusl = 0,
x=L

ii) Continuity of the sea surface at the shelf edge,

x=0 x=0
and

iii) Continuity of mass flux at the shelf edge,
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hDuDI =hsusI
x=0 x=0

There are three BC's to be satisfied and from three to four possible

waves. The following notation is used for the various wave types

S and D , where S and D are amplitudes of waves ina a a a

regions S and D, respectively, a I, R, or K, which de-

note incidentplane, reflected-plane and Kelvin waves, respectively.

Incident waves propagate in the positive x-direction and reflected

waves in the negative x-direction.

Subcase I (Poincare waves only): The surface displacements in

S and D are

and

-ikx ikx
= [Ste + SRe

S cos (ot-ly)

-ikx ikx
= [D1

D
+ DRe

D
I cos (crt-y),

respectively. This case admits several possible subcases but, bar-

ring waves with complex wave numbers and waves confined to the

shelf, the leaky mode subcase is of most interest, i. e., where

D cos (kDx+O) cos (irt_.y).

Application of the three BC's leads to:

i(-k5L) -i(c1-k5L)
i) S1e +SRe
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-1where = tan

ii) D cos 0 = S + S , and

iii) DO[kD sin :+ 8]hD = [S1e + SRe'JhS.

The compatability condition for i) to iii) requires that

h
[kD tan 0 + cot (ksL) + =

which is the dispersion relation. Since 0 is arbitrary, a continuum

of waves can exist for <
c. 0.

Subcase U (Two Poincare waves in shallow water and a Kelvin

wave in deep water): The surface displacements in S and D are

and

-ik5x ik5x
= [S1e +SRe J cos (crt_iy)

kDx
DKe cos (o-t_ly), respectively.

Application of the three BC's leads to a compatibility condition which

is the dispersion relation:

h5
2

(kD_)(kScot(ksL)_) 0.

Subcase III (Two Kelvin waves in shallow water and a Kelvin

wave in deep water): The surface displacements in S and D are
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-kx kx
= [Se +Spe I cos (ot-.y)

kDx
= DKe cos (crt-.y),

respectively. Analogous to Subcase II, the dispersion relation is

(k()2) + (kD )(ks coth (ksL) = 0.

Larsen (1966) computed the M2 tidal constants along the west

coast of North America from observations. Figure 40 is an adaption

of a figure given by Larsen. The phase speed and the amplitude of

the M2 tide are fairly consistent with Kelvin wavetype behavior.

The dispersion relation for trapped waves has been evaluated

for the semidiurnal and diurnal tides at the latitude of the Depoe Bay

array, 45° N. For the semidiurnal tide, values of

and

I 8.7x lO9cm,

ks= 2.2x 108cm',

k 6. 2 x l09cm

were obtained. For the diurnal tide, values of

I = 4. 2 x l09cm,
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ks = 1.7 x 1O8cm',
and kD = 6. 0 x 1O9cm

were obtained. The waveforms for t,, u, and v are shown in Fig-

ure 41 for both the semidiurnal and diurnal tides. The horizontal

velocity fields rotate anticlockwise for both the semidiurnal and diur-

nal tides, while the eccentricity of the diurnal tide is greater than that

of the semidiurnal tide over the continental shelf. The model is not

unequivocally consistent with the observations reported in Chapter Xl.

B. Baroclinic Cases

The baroclinic cases exhibit qualitative behavior similar to the

barotropic cases, but they have vertical structure, which admits

vertical modes to the analysis. Because of the existence of vertical

modes, with modal number m, energy can be transferred between

vertical modes whenever a reflection process occurs at a discontin-

uity in depth. When a barotropic wave is treated as the zeroth order

baroclinic mode, then energy can also be transferred from a baro-

tropic tide, m 0, to higher order, baroclinic modes.

Rattray (1960) considered a two-layered model with a baro-

tropic tide striking a continental shelf at normal incidence; he con-

sidered one case with a continental shelf of uniform depth and another

case with a shelf of uniform bottom slope. His model gives the con-

ditions under which the incident barotropic wave is partially converted
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Figure 41. Theoretical velocity field for the barotropic MZ and Ki
tides off Depoe Bay, Oregon. (Normalized to a 1 cm
sea surface amplitude at the coastline. )
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to a baroclinic wave propagating seaward and to another wave propa-

gating shoreward, which reflects and then propagates seaward, too.

Weigand (1962) experimentally verified Rattray's model in the lab-

oratory. Ichiye (1963) extended RattrayTs theory to include waves

incident at an arbitrary angle and to include Kelvin waves as well as

plane waves. He found that, as a function of frequency, resonance

conditions could favor the surface Kelvin wave solutions over the

plane wave solutions as the most effective generation mechanism for

internal waves propagating offshore. Weigand (1964) extended his

own and Rattrays theoretical and experimental work to include the

effects of non-normal angles of incidence and dissipation. The two-

layered models can be extended to an arbitrary number of layers, but

they are interfacial waves rather than the inertial-internal (body)

waves. Since the basic principles of wave propagation along a coast

have been illustrated in the barotropic case, and since it is the case

of continuous density stratification that is of interest, layered_models

are not discussed in detail.

Stepped Bottom. The case of continuous density stratification

and of a stepped bottom is outlined. Since the depth is uniform but

different in D and 5, then SOV applies:

= X(x)Z(z) cos (ot-.y).

With the FBC, and with N2 constant, the CR is
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22 2 22
2 (n) 2 (n) 2 (a- -f ) (nii) (o -f

. +(k ) = k
(N2a-2)

h g'

where gt is the reduced gravity, i. e.,

gt
ipg 103g.

Thus, for fixed and a-, there exists a set of n

n + 1, ... which are real. The cut-off wave number for the baro-
C

tropic wave is

22cr-f
£co_ hg

while the cut-off wave number for the nth mode baroclinic wave is

thus

22
2 2(o-.f).(nrr)cn hg'

I cn lOOn.
I
Co

Thus, conditions for trapping baroclinic modes in shallow water deteri-

orate as the modal number increases. The effect of baroclinicity on

refraction can be seen from the relations for the orientation of the

wave number vector: with

R
22

1/2
o gh
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2f2)l/Z
R =nTr(

g
lOOnRn o

where R is the radius of the wave number locus. With

1sin (0) j and sin (0) = 100 n (0),

where 0 is the orientation of the wave number measured from east,
0

then 0
1 n Thus, for a barotropic mode whose wave number

is oriented at an angle, 0, with respect to the coastline, the wave

numbers of the corresponding baroclinic modes tend to orient nearly

perpendicular to the coastline. These qualitative remarks demon-

strate that Rattray's modeling of the generation of interfacial tides by

a surface wave of normal incidence was quite realistic. They also sup-

port the two-dimensionalization of the inertial-internal wave problem

over the continental shelf, which was postulated in Chapter II.

For brevity, only the case of Poincare waves in S and D

is considered. Kelvin waves are also admissible, and a mixture of

Poincare and Kelvin waves can occur, depending upon the vertical

modal number. Solutions of the following form are sought:

oo .(n) .(n)
i. kx

= [A1e
k

+ ARe
P (n) cos

n=0



where

and

(-z), n = 0

13=S,D, p (z)z
=_ (n n> 1,

tan (Kh) (N2Z)
(n)

g

by the FBC. There are three BCts which must yet be satisfied:

j) = 0 for all z E (_hs, 0),

ii)
D

for all Z E (_hs, 0),

for all x e (-h5, 0)
iii) Du

L 0 for all Z E (hD, hs)

The first BC implies:

at x = L, the coastline,

(n)
S R 5kL-O)

(n ASI
where

(n)
kcr

(n)0
= tan'( );
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at x = 0, the shelf edge, and

at x=0.

this relation must hold for all n, then i) is satisfied exactly for all

z. The second and third BCts can be satisfied in only a vertically-

integrated sense, or mean-square sense, because the vertical modes

of D and S are different. Define 5 to bemn
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6 =

Then the second BC implies:
00

+ (n)A ('A + (m)A )6DRmnSI SR
m=0

for all n. Similarly, the third BC implies:

00

=
(m)

)8SR D1 DR mn
m=0

At this point, infinite-dimensional scattering, reflection, and trans-

mission matrices can be written formally. If conditions such as per-

fect reflection are imposed,, an infinite number of dispersion relations

result, one for each vertical mode. One solution procedure is to

solve interatively for an N-dimensional set of modes and to then in-

crease N until a satisfactory approximation is achieved. Ana-

logous to the approach made by Miles (1967b) for the problem of sur-

face wave diffraction at a continental shelf edge, the problem can be

attacked by defining excitations functions, E1(z) and E2(z), at

the shelf edge. Then E1(z) and E2(z) can be expanded in terms

(n) (n) (n) (n)of Dx=0 and Sx=0 and DUIx=o1C1 or, equivalently,

xix0 and (n)..1 Such a procedure can be generalized to
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the case of variable depth where the deep water solution is treated as

above and the shallow water solution is found by treating E1(z) and

E2(z) as Cauchy data on the initial line.

Baroclinic Inertial Kelvin Waves with Variable Topography.

This is the degenerate case, a- = f; it has more flexibility than when

a- f, as in the barotropic case. Assume N is constant and take

= eZ(z) cos (fty), u = u(x, z) sin (ft_ky), and

v = v(x, z) cos (ft_y). Then, from the primitive equations

'v(x, z) u(x, z) + 1Ze

Substituting into the EOC, it follows that

2 fZ"(u +u) + e (TZ +
(N2_f2)

0
x

or, neglecting the constant of integration and BC's for the moment:

Zn
u(x, z) -

(N -f
2 2

Je

From the primitive equations,

where

w = w(x, z) sin (ft_.y),

Z'f xw(x,z)= e
(N2-f2)
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These forms are used to satisfy the BC's:

i) RBC: w = 0, at z = 0 for all x, or Z'(0) = 0, and
2

ii) RBC: w = mu or, Z" + Z' + (N2-f2)Z = 0, atm(x)

z = zb(x) for all x.

From ii), the equation for Z is then a function of one parameter,

viz. s = z (x), since m(x) = s The form for s can be quite
b x

arbitrary but a simple example suffices for the present.

A simple case which imposes the constraint of finite depth in

the deep ocean, h(x): h, is given by zb(x) -h(1-e°), hence

h(0) = 0. Then

m(x) = ahe = a(h-h(x)).

Take s = zb, thus m(x) = a(h+s) and the equation for Z is:

where

Z + Z + K2Z = 0,ss a(h +s) s
0

K2 = L(N2f2)

Changing variables to t = h + s, thus t h0 and t 0, then
x 0 x .o0

Z +-Z +K2z=0.tt at t

In normal form, Z = F(t)G(t), where F(t) = t and
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Gtt + [K2- (-)(--l)]G = 0.

G has solutions of the form

where

G = AJ (kt) + BN (kt),
V V

v =(--_l).aa

If the condition Tt -b' 0 is imposed, e Z 0 orx oO t_* 0

()22() (.)2
urn [eZJ = lirn [e(At a a + Bt a

xø. oo oC

t,. 0

which requires B = 0 and 2, thus V . 2. The SBC requires

that
(L)

[(h +z)
a (K(h +z))]' = 0 at z = 0

0 v 0

or

(Kh )+h J'(Kh )=0,
a v 0 ov 0

which is the dispersion relation. The solution is not sought here, but

the basic principle has been illustrated, i. e., baroclinic inertial

Kelvin waves can be trapped along a coastal barrier with variable

topography. As in the barotropic case, this case is rather unrealistic

since the beta effect is neglected.
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Variable Topography. The problem of general topographical

variation is approached formally and reduced to quadratures in the

three-dimensional case. The problem is posed with a deep water

region of uniform depth and a coastal region of non-uniform depth.

The coordinate of the intersection of the deep water and shallow

water regions is again x = 0. A rational approach is to treat x = 0

as an initial line, forming a MIBVP. The GE is written in terms of

GE: (NZ2)( + ) - (2-f2) 0.
xx yy zz

The GE is a two-dimensional wave equation in the spatial variables

and could be treated in a general way as such, but the information

that the semidiurnal tide tends to propagate along the positive y_axis,

i. e. , iT = P(x, z) cos (u-t-.ey), is used to reduce the GE:

wh e r e

GE: P-R2P-2PO,

22
2 a--fR =( 2 2N -a-

Assuming constant coefficients, the GE is recognized as a telegraph

equation. The Riemann_Greents function for this equation is known,

Sneddon, (1957). Take F(z) = iT(0, z) and G1(z) = ir(0, z), then the

solution for the initial value problem is
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P(x, z) = [F(z+Rx) + F(z-Rx)J

z +R x
2 2 2)2)d+5 G'()J(((-z) -R

z-Rx

2 2 2 1/2z)_Rx) )d
1

z-i-Rx
+ -x F()

2 2 2 1/2z-Rx ((x) -R x

The Riemann-Green function,

W(p, ;x, z) J( ((z)2RZ(xp)2)h/2),

and its first derivative have been evaluated on the initial line, p = 0,

in the integrals. The complete solution to the MIBVP can be corn-

puted using the solution theory in Section V. F. Several points are

noted:

i) For uniform depth in shallow water, the effect of the coastal

BC is to remove the independence of F(z) and G(z),

ii) The issue of onshore-offshore energy flux is again settled on

the basis of the temporal phase relation between F(z) and

iii) Since u, v, and w can be expressed in terms of r, the

RBC and FBC can be written in terms of ii, giving the full

constraint to the arbitrariness of F(z) and G(z), i. e.

the algorithms for analytic extension of the CD can be
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derived.

Because the details of the analysis are lengthy, they are

not given here. The RBC applied at the sea surface requires

that F(z) and G(z) be even functions of z with respect

to the origin. The RBC applied at the sea bottom. imposes a

subtle rule for extension of F(z) and G(z); it involves

Volterra integral equations of the third kind,

iv) Once F(z) and G(z) have been completely specified,

they can be expanded in terms of the deep water normal

modes for the deep water solution, and

v) It is not yet clear how to treat the problem of converting

alongshore energy flux of the barotropic tide to onshore-

offshore energy flux of the baroclinic tide.

C. Spectral Observables

It is assumed that the depth and the density gradient are uni-

form and that a locally valid model of the internal tide consists of a

northward propagating Poincare wave over the continental shelf. At-

tention is focused on a discrete frequency and a single vertical mode.

iT is chosen to be of the form such that when it is substi-

tuted into the equation for U the CBC is satisfied:

A cos (o-t..y) cos (k(x_L)_8) + B cos (crty_k(x_L)+8),



where
-1 fO=tan (;:i:)
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and A and B are the depth-dependent amplitudes of the standing

and progressive wave components, respectively.

and

ii +fir 2 21/2
xt y [(a-k) +(ffl Iux,y,z)= =22 22(a--f) (a--.f)

X {A sin(k(xL) sin (a-ty)+Bcos(a-t-y-k(x-L))},

2 2 1/2[(a-k) +(ffl B cos (a-t_.y).UIL
(a-2-f2)

B represents the coastal energy "sink," or "source." Similarly,

v's dependence on iT is:

ir -firyt xv(x,y,z)-
2 2

(a- -f

[(a-i
)2(f)Z]l/Z
22

(a- -f

X {A sin(k(x-L)-(9-4)) cos (a-t-y) - B sin(at-y-k(x-L)

+ (O-4))},

where
-1 a-=tan

Using the relations



and

zt
2 2(N-f)

dT
T =rj(),

where r is the vertical displacement and T is the temperature,

dTT(x, y, z) =

dT

22
(N -a-

where

>< {Atcos(a-ty)cos(k(xL)o)+B1cos(a-tyk(xL)+e)},

dA dBAt= and Bt=_.
dz dz

For the computation of spectral quantieis, it is convenient to set

y = 0 and rewrite the expressions for u, v, and T in orthogonal

components:

u = u(a-){(A+B)sin(k(xL))sin(o-t)-i-Bcos(k(x_L))cos(a-t)J,

v = v(a-)[(A+B)sin(k(x_L)_(O_))cos(a-t)Bcos(k(x_L)).(Od?))sin(a-t)],

and

T = T(a-)[(A+B')cos(k(x_L)_O cos(crt)+B' sin(k(x-L)-O)sin(rt)],

where
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u(cr)
[(ok)2+(fl

)2] '/2

22
(0- -f

v(o) )2+(fk)21
1/2

22
(0- -f

dT
dz

T(o-)= 2 2
(N -a-

The autospectra are then

2

P (a-,x)
U [(A22AB) sn2(k(xL))+B2]

uu 2

x) = v2(a-)[(52+ZAB) sin2(k(x-L)-(O-))+B2]

and

PTT(a-,x)
T2(a-) [(A22AB) cos2(k(x-L)-e)+B2].

Thus, with a source or sink only (A = 0), the spectra of the car-

responding progressive wave component are spatially uniform; with

perfect reflection, the resultant spectra have the spatial structure of

a standing wave. The presence of the phase terms 0 and 4

means that the spectra for u, v, and T are not in-phase spatially.

Since
22

-1 (a- -f )k0-=-tan ' 2 2
(k +.2 )o-f
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P and P have the same spatial structure only if = 0,
uu vv

or A=O.

If A = 0, the ratio of the energy spectra of u and v is

Puu_ f k -RP crZ2 o
vv (-)()+1

P
If the hypothesis that . << k is valid, then (1)2

If B = 0, the ratio of the energy spectra of u and v is

in2(k(x-L)=R 5

p 2(k(x-L)-(O-))vv sin

If the hypothesis that <<k is valid, this ratio becomes

Puu -
Pvv

If the hypothesisis not valid, the ratio assumes all possible positive

values as a function of x; one consequence is that the nodal points

for u and v do not coincide.

Similarly, the cospectrum and quadrature spectrum are

.u(r)v(o)P (o;x, z) (A+B)B sin (O-)
uv 2

and
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-u(a)v(a-) {f(A2+2AB)sin2(k(x.L))+B2} cos(e-4)Q (a;x,z)uv 2

(A2-i-2AB)sin(k(x-L)cos(k(x-L))sin(e)}.

The coherence squared is unity; the phase function has spatial struc-

ture:

1
0 (o;x, z) = tan (-)uv

uv

= tan 1{[(A2+ZAB)sin2k(x-Li)+B2] cot(4-e)

- (A2+ 2AB)sin(k(x-L)) cos(k(x_L))}.

The cross spectral quantities can be used to test the hypothesis that

i << k; if the hypothesis is valid, 0 = , then

and

P =0,uv

-u(cr)v(o- [(A2+2AB) sin2(k(x-L))+B2],uv 2

IF

euv 2

When there is no source or sink at the coastal boundary (B = 0),

Q
Lu()v()

A2 sin(k(x-L)) sin(k(x-L)-(0-)),uv 2

and the signs of Q and 0 , oscillate spatially unless 8 =uv uv

i.e. , when 8 4, the direction of rotation will reverse whenever
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k(x-L) = (O-cf), (mod Zir) and whenever k(x_L) = 0, (mod 2ir).

The cross spectrum for u measured at two different spatial

points, (x19z1) and (x2,z2) is examined: where A(z) = Z(z)A

and B(z) = Z(z)B,

and

P (o;(x1,z1),(x2,z2))
U1 U2

2u (o-)
= -Z(z1)Z(z2)[(A+B)2sin(k(x1-L)sin(k(x2L)

+B2cos(k(x1 L)cos(k(x2-L))]

2
Q u(cr)u1u2(cr;(x1,z1),(x29z2)=

2
Z(z1)Z(z2)(A+B)Bsin(k(x2-x1)).

Again, the coherence squared is unity and

(A+B)B sin (k(x2-x1))

LAA+2Bsinkx1 -L))sin(k(x2L)+B2cos(k(x2-x1))
u1u2 = tan

If B=0, then

u1u2 Uz(z1)z(z2)AZ sin (k(x1-L)) sin (k2(x2L)),

Q 0u1u2 = 0, and u1u2 = 0 or rr,

depending on k(x2-x1), (mod 2Tr).
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If either (x1, z1) or (x2, z2) is a nodal point, all cross spectral

quantities are null. If A = 0, then

= z(z1)z(z2)B2 cos (k(x2x1)),

and

2
Q u(cr) 2

2
Z(z1)Z(z2)B sin (k(x2_x1)),

e = k(x2-x1)

Within the limitation of this simple model, the spectral quan-

tities calculated from observations potentially provide the means of

testing several basic hypotheses, viz.

i) << k, i. e. , the motion is essentially homogeneous in the

alongshore direction,

ii) A 0, there is a standing wave component to the motion, and

iii) B 0, there is a progressive wave component to the mo-

tion,

Analogous results would follow for an analysis of the solution to the

complete problem with variable depth and the frontal interactionS

D. Hodoraoh Observables

A hodograph, the spatial locus of a velocity vector as a function

of time, is a useful device for the analysis of wave fields. Since the

velocity vector at tidal frequencies is principally horizontal, the
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hodograph determined by the horizontal velocity vector is considered.

This, the projection of the hodograph on to the horizontal plane, is

most familiar from its common usage as the tidal ellipse. A con-

tinuum of hodographs exists, though custom has focused on discrete

frequencies for which a statistically stationary wave component is

anticipated; otherwise, the hodograph is more difficult to interpret.

The principal properties of the hodograph are:

i) The orientation of the major axis with respect to a fixed

reference axis, such as geographic east,

ii) The length of the semi-major and semi-minor axes,

and R2, respectively.
R-R

iii) The ratio E
1 2 where e is termed the eccentric-

R1+R2

ity.

iv) The sense of rotation of the velocity vector, and

v) The time phase of the radial vector with respect to a time

base.

The hodograph is generally a function of spatial position and its on-

entation relates to the direction of wave propagation. The formulae

of Doodson and Warburg, (1941, p. 180- 181), are used for calcula-

tions based on the velocity functions introduced in the previous sec-

tion. Since the algebraic and trignometnic manipulations are tedious,

the standing wave and progressive wave components are treated

separately. Once the hodograph for each of these has been found they
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can be combined to form the effective hodograph.

First, a standing wave only is assumed to exist (B 0); the

formulae lead to

and

R1 = u(o)A sin (k(x-L))

R2 = v(cr)A sin (k(x-L)-(O-c))

is in-phase with the pressure field. and can inter-

change their relative size and sign as a function of offshore position,

and thus the orientation of the ellipse. The sense of rotation

also varies as a function of offshore position. The eccentricity is

E
v(cr)sin(k(x-L)_(O_c))-u(cr)sin(k(x-L))
v(cr)sin(k(x-L)-(Oc))+u(c-)sin(k(x-L))

At the coastal boundary, (x = L), R2 tends to zero and the motion

becomes rectilinear with amplitude

= -vA sin (8-),

which also tends to zero for small .. When . << k, all hodo-

graphs rotate clockwise, and, for a-> f,

a-k= A( 2)sin (k(x_L)),
a-

R
2 a-i
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For a progressive wave only, A = 0 and B 0, the for-

mulae yield:

R
B 2 2 4 4 22{u +v +[u +v -2u v cos(2(0))]2}2

(2)1/2

and

- u +v +v -2u v cos(2(O-))J112}"2R2-,2 2 2 4 4 22

When .

crkBR1=
2 2

(0- -f

f
R2

and
cr-f

The phase relation of with respect to the pressure field is given

by the angle a, where

-1 -' v2sin(2(O-))
1.a=---tan

2 2u -v cos(2(e-c))

The orientation of the major axis, c, with respect to east is given

by the formula

-1 v(cr) sin(a+(O cu))=-tan 1cos(a)
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thus when . << k, 0° or 180°. In other words, when . << k

the hodograph is oriented east or west depending upon whether

there is a coastal sink or source. (A) can be computed from observa-

tions, thus the ratio /k can be estimated.

When << k, and o- - f, then, if there is both a progres-

sive and a standing wave component to the motion:

and

or

wh e r e

and

u = ( 2)[(A+B)sin(k(x-L))sin(t)+B cos(k(x-L))cos(t)]

fk
V = 2 2)[(A+B)sin(k(x_L))cos(crt)_Bcos(k(x_L))sin(crt)I

0 -f

u = o-c cos (o-t_L.IJ), thus = oc and

v = -fc sin (ot-), thus R2 = fc,

c = k 2)[(A+B)2sin2(k(xL))+B2cos2(k(xL))Jhh'2
0 -f

1 Ai=tan [(l+)tan(k(x-L))J,

a--fE =-

Therefore the horizontal velocity rotates clockwise, which is consis-

tent with the observations reported in Chapter XI. The observations

have yet to be examined thoroughly enough to test the other relation-

ships found in this and the preceding section.
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APPENDIX II

The Consequences of the Assumptions of Alongshore
Uniformity and of the Traditional Approximation

Since f = f at 450 latitude, the latitude of the observations,
h v

and since the along shore wavelengths of inertial-internal waves are

uncertain, the consequences of neglecting these two quantities for both

the GE and the hodograph are examined. For simplicity, the frontal

interaction terms are neglected but h
is assumed not zero and all

variables are assumed to have a y- as well as an x- and z-dependence;

SHM is assumed for the time dependence. The system of equations is

then:

i) iou - f v- f w =
v h X

ii) iav+fu=-ir
V y

iii) irw + fhu = -ir - g,

iv) u +v +w =0, andx y z

v) irp+wp =0
z

Eliminating p between iii) and v), then

22vi) (N -o )w + icrfhu = -iorr.

Eliminating v and u successively between i) and ii), then

-



and

vii) (v-f 2)u + if w = i + f
v h x vy

viii) (2f2)v - f f w -f + i
v vh vx y
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Eliminating u and w successively between vi) and vii), the equa_

tions for u and w in terms of are

2 2
[-i(o -f )orr +f (o ir -if orr )

v x h x v yix) w= D

and
{(N2-o2)(ioir +f ir )-o2f iT

x) u= X vy hz
D

where
2 2 2 2 22

D = (o ..f )(N -o ) + o f
v h

Then w is eliminated from viii):

22 22[-if f O1T -f (N -o )ir +io((N -o )+f )rrvhxv x h y
xi) v= D

To avoid unnecessary detail, the coefficients are assumed constant;

then the expressions for u, v, and w are substituted into iv), the

EOC. The GE in terms of iT is then:

GE: (N2-2)iT + (N2-2+f 2)
- (2f 2) - Zf f iT 0.

xx h yy v zz vhyz

Hence, the neglect of ( )y in the GE removes all the terms
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containing h but not conversely; with the neglect of h' the term

remains. Unless either f or ( ) is neglected, the van-
yy h y

ables will not separate in y and z, inducing asymmetry in the

solution and in the characteristics of the GE.

With the traditional approximation, h = 0, the hodograph is:

(i +f -f +i
(u,v,w)= xvy

f:)(Nz:2)

The singularities in the hodograph are at o = N and o = f; they

correspond to the singularities of the GE.

With the alongshore uniformity hypothesis, ( ) = 0, the hodo-

graph is:

22. 2 22 22. 2
[((IN -o )icr'rr -o f rr ),(-(JN _o )f it -urf f it ),(_(r_f )ior +f criii]

x hz vx vhz v z h x
(u,v,w)

D

While the neglect of ( )y removes the influence of h in the GE,

it does not remove
1h

from the hodograph. In this case, the singu-

larities of the GE are at o- = f and o- = N, while the singularities

of the hodograph, are at

where

± 1
= ([f2+N2 ± ((f2+N2)2 - 4f 2N2)'] 1/2

V

2 2 2
f f +f -h
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Since > N and o-
<
f, the singularities of the hodograph lie

outside the inertial, internal wave passband, causing no difficulty for

the velocity fields which are solutions to the GE.

The principle effect of h
on the velocity fields is to couple

the vertical pressure gradient to the horizontal velocity and the hori-

zontal pressure gradient to the vertical velocity. This effect may be

significant for the interpretation of observations.
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APPENDIX Ill

The Sptrum Analysis of Singletons and Pairs of
Two-Dimensional Velocity Vectors

The study of two-dimensional velocity vectors considers prop-.

erties of the components of the motion such as their cospectrum (for

a measure of the Reynolds stress spectrum) and coherence squared

(for a measure of the coherence of wave motion). The results for

one-dimensional spectrum analysis are dependent upon the coordinate

system in which the calculations are made. The analysis of this ap-

pendix allows removing the ambiguity in spectral quantities caused

by their dependence on the coordinate system of their measurement9

In Section A, the techniques for maximizing the Reynolds stress and

coherence squared are derived for a single two-dimensional veloc-

ity vector. In Section B, the geography of the hodograph is discussed

and the concept of negative frequency is introduced to current meas-

urements. In Section C, the technique for analyzing a pair of two-

dimensional velocity vectors as complex-valued functions is

29 On his visit to Oregon State University in December, 1967,
Dr. N. P. Fofonoff, Woods Hole Oceanographic Institution, stated that
he had derived these results recently, but they are not published. He
has applied the results to flow models based on the linearized equa-
tions of geophysical fluid dynamics.
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A. The Semi-Principal Axis Transformation

Velocity measurements are usually made in an arbitrary co-

ordinate system, e. g. , geographic coordinates. To study such quan-

titles as the Reynolds stress and the spectral coherence squared, it

is of interest to perform a rotation of axes. The rotation of axes is a

real orthogonal transformation. Rotation to the semi-principal axis32

of the covariance maximizes the Reynolds stress. Rotation to the

semi-principal axis of the cospectrum (or Reynolds stress spectrum)

for each frequency maximizes the Reynolds stress and coherence

squared at that frequency. The basic results are derived by using

trigonometric identities and differential calculus; they have also been

derived using Hermitian operator and matrix theory. The former

30Many of the concepts contained in this appendix have ana-
logues in optics, cf. Born and Wolf, 1965, with the study of polarized
and partially coherent light, as brought to my attention by Professor
M. S. LonguetHiggins, Department of Oceanography, Oregon State
University. In optics, right-handed and left-handed elliptical polari-
zations correspond to the two-dimensional clockwise and anticIock-
wise motions of marine hydrodynamics. In Born and Wolf(1965), the
concept of negative frequencies is not exploited for optics as it is in
Sections B and C.

31The author is indebted to Mr. Michael Ho, Graduate Student,
Department of Oceanography, Oregon State University for his meticu-
bus proofreading of this appendix.

32The term semi-principal axis is used because the transfor-
mation is real and involves the eigenvalues of the corresponding two-
dimensional matrix, while the term principal axis is its analogue for
complex transformation.
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approach is used here because it is more familiar, while the latter

has the advantages of being more efficient and of leading to analogues

with operators and variables of classical and quantum mechanics.

Maximum Reynolds Stress. The time-averaged horizontal com-

ponent of the Reynolds stress is u(t)v(t) Changing variables by

rotation through an arbitrary angle, B, from the unprimed to the

primed coordinates, then

and

x cos 8 + y sin 8

y' -x sin 0 + y cos 0,

where 0 > 0 for anticlockwise rotation.

The Reynolds stress in the primed coordinates is

u'v' (0) uv cos (20) + (v2-u2) sin (20),

where the time argument, t, has been dropped for convenience.

Maximizing utvt with respect to 0 and solving for the corres-

ponding 0, say 0, it follows that

22
1 -1 (v-u)0=tan [ - II.
2 Zuv

There ia an ambiguity of ±Tr in ze, but 20 is chosen to be the

root which occurs in either the first or fourth quadrant. Since



.2(v -usin(2O)=
2 2 222[(uv) +(v -u ) /4]l/2

and
uvcos(20)=

2 2 22+(v -u ) /4J1/2

then 2 2 22max u'v' = [(uv) + (v -u ) /4]1/2
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If v2 = u2, then 0 = 0, i. e. , no rotation is required for maxi-

mization, and u'v' = uv cos (20).

The preceding discussion serves as a model for the subsequent

development of its covariance and spectral analogues.

Autovariance and Covariance Functions. The autovariance

functions in the primed coordinates are given by

RutuT(T) = ut(t)ut(t+r)

Ruu(T) cos2(0) + R(T) sin20 + {R(T)+RT)]sinOcosO

and

R,(T) = vT(t)vt(t+T)

Ruu(T) sin2(0) + R(T) cos2(0) - [R (T)+R (T)] sin 0 cos 0.

Since

R (T) + R (T) = R (T) + R (T),uu v'v' uu vv

for all T, then

R (0) + R (0) = R (0) + R (0);u'u' v'v' uu vv
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therefore, the total variance and kinetic energy are conservedunder

coordinate rotation. Similarly, the covariance functions in the primed

coordinates are given by

R (T) = U'(t)v(t+T)
uTv

= [R(T )-R(-r)] sin 0 cos 0 + R(T) cos20 - R(T) sin20

and

R (T) = vl(t)ut(t+r)
vTuT

= [R(T)-R(T)] sin 0 cos 0 + R(T) cos20 - R(T) sin20.

The symmetry relation of the covariance function, viz.

R (T) = R (-i-), is used to break the covariance functions intouv vu

their even and odd parts, which are denoted E (-r) and 0 (T),uv uv

respectively:

and

E (T) 1[R,T)+R = (T)-R (T)J sin (20)
utvt 2 vu 2 vv uu

0 (T) = ![Rutvt(T)R (T)] = 0 (T).vlut uvu'v' 2

+ E (T) cos (20)
uv

Thus, the odd part of the covariance is conserved but not the even

part. (The covariance éould be maximized as a function of 0 for

each T by maximizing E(T). ) Since



and
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R(T) = R(T) cos2(0) + R(i-) sin2(0) + E(T) sin (20)

R1(T) = R(T) sin2(0) +R(T) cos2(0) - E(T) sin (20),

then, with reduction, it follows that

E2 (T) - R (T)R (T) = E2 (T) - R (T)R (T).uIvt u?u? v'v' uv uu vv

In summary, the three covariance invariants of real orthogonal

transformations are

and

I (r)=R (T)+R (r),
1 uu VV

R (T)-R (-r)uv vuI (-r)=O (T)-
2 uv 2

I (T) = R (T)R (T) - E2 (T),
3 uu vv uv

which are true for all ,-. These invariants are used below to note

their similarity in form to equivalent spectral quantities. The invari-

ants can also be found from the covariance matrixt

Since

(T) R (T)\ / R (T) E (T)+O (T[uU uv / uU uv uv
CM (-r)= 1=1UV \R (T) R (T)/ \E (T)-O (T) R (-r)\vu vv I \UV uv vv

i) trace (CM )=Iuv



and

2ii) det (CM ) = -I + Iuv 2 3
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then trace (CM (T)) and det (CM (T)) are conserved under
uv uv

real orthogonal transformation. The reason for three invariants un-

der coordinate rotation rather than merely two is that: (i) the odd

part of the correlation matrix is skew symmetric, so the odd part is

invariant (Ia), and (ii) the even part is symmetric, so the even

part's trace 1i and determinant (13) are also invariant.

Autospectrum and Crossspectrum. The spectral functions are

defined in the usual way. Take

F. T. to be the Fourier transform,

C. F. T. to be the Fourier cosine transform, and

S. F. T. to be the Fourier sine transform,

i) The u-autospectrumis P (o) = C. F. T. [R (T)], since
uu uu

R (T) is an even function,uu

ii) Similarly, the v-.auto spectrum is P(cr) C. F. T. [R(T)],

and

iii) The uv-crossspectrum is

P (o) = P (cr) + iQ (cr) = C.F.T.(E (T)) + iS.F.T.(O (T)),
uV uv uv uv uv

where P (o) is the uv_cospectrum, and Q (cr) is the uv-
uv uv

quadrature spectrum. The basic forms for the covariance functions

in the primed coordinates are Fourier transformed directly to obtain
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P = P cos2(0) + P sin2(8) + P sin (28),
uuI uu vv uv

P = P sin2(0) + P cos2(8) P sin (28),
vtvt uu vv uv

Q=Q,uv
and

P = P cos (20) + ! P -P J sin (20),
UV1 UV 2 vv uu

where the frequency argument, o-, has been suppressed for con-

venience. The above relations provide three spectral invariants ana-

logous to those for the covariance functions of the preceding section:

and

i) J P + P , which is proportional to the total horizontal
1 uu vv kinetic energy, whose time average is con-

served,

ii) = Q , which is proportional to frequency times
uv the angular momentum, and which is con-

stant for a particle undergoing elliptical
motion

iii) = P P2 , which is related to the eccentricity of theuuvv uv
h odog r a ph.

A spectral matrix can be formed:

f P \ IP P+iQ\
uu uv

1 I
uu uv uvj

SM =1 1=1uv P / -iQ
vu vv/ \UV UV VV

where

i) trace (SM ) = J and
uv 1

ii) =det(SM )=-J2+J.
uv uv 2 3

-

.
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Since SM is Hermitian, the alternative analysis by Hermitian

operator and matrix theory is convenient.

Maximization of the Coherence Squared and Co spectrum. The

spectral coherence squared is:

2 2P +Q
2 uv uv''uvP Puu vv

The spectral invariants are used to rerender the form for

since

and

then

-p2 -Q2 +'V2P p 0
uv uv uv uuvv

P2 +Q2 -P P =-uv uv uu vv uv

2 uv'uvP Puu vv

The objective is to find the angle of rotation, 00, which maximizes

(o;O). Since t > 0, because
I

12< p p by the

C-B-S inequality3 and since
uv

is invariant under coordinate

rotation, 0 also corresponds to [p p J maximum. Define
o uu v'v'

H tobe

33 The C-B-S inequality is the Cauchy-Bounakowski-Schwarz

inequality, viz. (Suvds)2< (Su2ds) (Sv2ds) in integral form.
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H(0) = P P = {![p +P ]2-P2 } sin2(20) + P P cos2(20)
u u! vv 4 uu vv uv uu vv

+ [i -P ] sin (20) cos (20).uv vv uu

Maximizing H(0) with respect to 0 while o is held fixed, then

P -P
0 'tan' VV UU

o 2Puv

Again, 20 is chosen to be the root which occurs in either the first

or fourth quadrant. It follows that

P2 +1[p -P ]2+Q2uv4 vv uu uvMax (2
) = ,(0)

!{p +puv
4 uu vv

It is noted that:

i) If P = P , no rotation is required for maximizationvv uu

and P = P cos (20),uv uv

ii) The CB-S inequality can be used to verify that

2 2
y < y (0 ) and P < P (0 )uv u1v' o uv u?v? o

iii) The maximum cospectrum is an invariant

2 1 (P -P )2]l/2Max(P )=P (0 )=[P +uv 0 uv 4 vv uu

= [p2 p P +!(P +p )2]1/2
uv uu vv 4 uu vv

1 21/2
=
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iv) The component energy spectra in the semi-principal axis

coordinates are

p +p j
p p VV

uu' v'v' 2 2

v) From iii) and iv), Max(y2) can be expressed in terms of

the invariants

Max(2 )=

[-J3+(J1/2)2]+J
or

uv (J1/2)2

(ReYnolds stress 2 ox angular momentum)2

Max(y2 )=
spectrum ) + spectrum

uv 2(kinetic energy spectrum)
and

vi) The phase, c, of the cross spectrum in the primed co-

ordinates is:

tan' [
u,vt

_l10 x angular momentum spectrum- an L Reynolds stress spectrum

Reynolds Stress. Using the form established for the maximum

Reynolds stress,

or

u'v' , it follows that:max

(I
)2 2 1 222

=uV +max (v -u )

22 - 2 2 1222
=uV +uv +(u'v'max (v +u )
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2 22
uv uv

by the C-B-S inequality; therefore

V +U
max 2

i. e. , the maximum Reynolds stress is less than or equal to the total

kinetic energy.

Cospectrum. In a similar manner, for the cospectrum, or

Reynolds stress as a function of frequency, it follows that

P +Puu vvO<maxP- u'v' 2
0

Since
no0 - fOO -

P do-=u2 and P d
2

0 0

then
00 2 2

maxP do-
U+V

0 0
uv 2

Also, since

P (9)do- = u'vt(0)

J
uV

then

n00 /-100

max (utv' (0)) = max P (0)dcr < max P do-.
0 e 0

U'Vt
0

U'V'

Finally,
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,00 :--
max u'v' < max P do-

U +V

0 0 0
u'v' :. 2

Thus, the integral of the maximum value of the cospectrum is bounded

below by the value of the maximum Reynolds stress and above by the

value of the kinetic energy. This result suggests that the proper

technique for integrating the Reynolds stress spectrum should be

sought.

Vector Reynolds Stress Spectrum. Since P,, is the magni_

tude of the Reynolds stress as a function of frequency oriented along

20!, then it is useful to define the Reynolds stress spectrum to be

the vector 'u'v" 20'), in polar coordinates. The integral of the

cospectrum is used in momentum flux calculations when the frequency-

dependent contribution of spectral bands to the Reynolds stress is

sought. To perform the integration, the concept of the vector Rey_

nolds stress spectrum is essential.

Since P = P cos (20') + -P J sin (20'), the fol-u'v' uv 2 vv uu

lowing geometric relation is recognized:

Tpuv

2vvuu'

34Dr. Stephen G. Pond, Department of Oceanography, Oregon
State University, suggested treating the cospectrum as the vector
Reynolds stress spectrum.



Then P = (P -P ]) in Cartesian coordinates. The
u'v' uv 2 vv uu

vector sum of P over all frequencies isu'v'

I -oo

coo

oo[P -P ]dcr

j P thr=( P dcr,$ vv uu
uv uv 2

22
= (uv, [v -u ]

in Cartesian coordinates. In polar coordinates,

0O

P ,dcr = (max u'v', 20)
'Jo

When band-averaging a Reynolds stress spectrum over the interval

the correct formula is then

cr 0
2 2

cc (P -P
(P ) ( )P vv uu

uv ave L. uv' L1 2.

o-=o-1

The contribution, iuv, to the maximum Reynolds stress pro-

duced by the Reynolds stress spectrum in the frequency interval

is calculated by projecting onto 20 and inte-

grating over the interval:
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°2

$ cos (2(0'-O))do

2

= cos (20) P cos (20')d + sin (20) c P sin (2O')d
UV' J U'V'

01

cr °2[P -P ]do

= cos (20) P dcr + sin (20)
VV UU

I uv 2
01 01

0 --
2 2 2[P_-P Jdo

P d+[vj vv uu
uv 2 2

0_I

222
[(uv )2 (v -u ) i/z

4 J

B. The Geography of the Hodograph and Negative Frequencies

To clarify the discussion of Section A, and to prepare for the

discussion of Section C, an examination of the geography of the hodo-

graph is made with simple models.

The hodographs considered here involve the total energy of the

motion, i. e. , both the coherent and incoherent components, based on

the energy spectra. In tidal analysis, the usual procedure is to ex-

amine hodographs (tidal ellipses) constructed from only the coheretit

component of the motion through least squares calculations.

At this stage, formulae are available to find the transformation
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of velocity components from the measurement coordinate frame to

the semi-principal axis coordinate frame.

There is another coordinate frame of special interest; it is the

set of axes coincident with the major and minor axes of the hodograph.

In this coordinate frame,

u = (A+C) cos (ot).
and

v" = (A_C) sin (ot),

where A and C are amplitude factors. A and C can as-

sume any non-negative, finite value. The eccentricity, E, is

E = A/C or C/A, whichever is less than one. Since, in the semi-

principal axis coordinate system,

Puflut, + P
V '1V

Pu'ut v'v' 2

FA2+C2,

the radius, R, of the hodograph along the semi_principal axes is

R = (A2+C2). By inspection,

A = C gives rectilinear motion along the x'T-axis,

A = -C gives rectilinear motion along the ylt_axis,

C = 0 gives anticlockwise circular motion,

A = 0 gives clackwise circular motion,

and



while

A > C gives anticlockwise elliptical motion,

C > A gives clockwise elliptical motion.
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Thus, A is the amplitude of the anticlockwise component of the

motion, while C is the amplitude of the clockwise component. The

characterizing property of the ellipse-axes coordinate system is that

= 0. The rotation from the (u, v) to the (u", v") velocity

components through the angle O
is then giver by

or

2P
-1 -1 uv01 =--tan p

0 =0
1 o4

The component energy spectra in the ellipse-axes coordinate system

are of special significance:

p +p [P -p ]uu vv vv uu
utIuht 2

- cos (2e)
2

+ P sin (20k)uv

p +p lIP -P ]uu vv vv uusin (20 ) - P cos (20 )
2 o 2 uv o

p +puu vv ±maxP
2 uv



and, similarly,

p +puu vvp maxPv'v" 2 uv
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which demonstrates that the Reynolds stress spectrum is related to

the eccentricity of the hodograph. It is recognized that P1,1 and

are the eigenvalues of the real (or, even) part of the spectral

matrix, thus they represent the squares of the lengths of the ellipse

semi-axes, as they must.

There is an efficient means for solving for the amplitude and

eccentricity of the hodograph from the spectral values:

since

p (A+C)2
2

and

p (A-C)2
vttvlt 2

then

and

thus

A±C=JP +P +ZmaxP G
uu vv uv

AC=1P +P -2maxP=H,
uu vv uv

G-H
E

G+H

Several properties of the hodograph can be deduced from the

preceding formulae and model:
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i) J =P +P
1 uu vv

ii) J = Q =
2 uv 2

(Q = 0 for E = 1, i.e. , for rectilinear motion)
uv

J - p p (=(P
)2

= !(A+c)2(A C)2 = (J
)2 in the case

3 uuvv uv 4 2

of a single sinusoid), and

iv) max [p2 + !(p p )2]l/2
uv uv 4 vv uu

= AC, thus

p 0 for E = 0, i.e. , for circular motion.
uv

An Example Hodograph. The geography of the hodograph is

illustrated in Figure 42a for the following model. In the measure-

ment coordinates, take

u = C cos ot + D sin ot

and

v = E cos ot + F sin ot;

then

p =4(C2+D2)uu L

p =4(E2+F2)vv

p J..(CE+DF)uv 2
and

Q =(CF-DE).uv
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For a quantitative example, take

D=1/2, E-1,

P = 3/2 + 1/8 = 13/8,
uu

P = 1/2 + 3/8 = 7/8
vv

P =--+uv 2

Q = 3/4 + 1/4 = 1,
uv

P +P
p =p uu vv

= =5/4,
u'u2 v'v' 2

=

(P -Pvv uu
+

1/2 27 9
+

1/2

uv' uv 4

00
1 -1=-tan

P -Pvv uu -tan (-;) = 15°,
2P uv

and
01 = -30°.

Since

and

then

G = (5/2 + 3/2)1/2 = 2

H = (5/2 3/2)1/2 = 1,

1 G+H 3 G-H
A=

2
=' C=±(

2

Choose C = + f, then

u" = (A+C) cos (crt) = 2 cos (ot)
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v" (A_C) sin (ot)

= I sin (rt).

The Concept of Negative Frequencies. In the coordinates of the

ellipse_axes, since

and

then

and

u = (A+C) cos (ot)

v = (A_C) sin (o-t)

u u+ + u = A cos (+ot) + C cos (-crt)

v = v+ + v = A sin (+ot) + C sin (-ot).

Thus, the hodograph can be conceived to consist of two counter-

rotating velocity vectors:

i) An anticlockwise motion with amplitude A and frequency

+o. and

ii) A clockwise motion with amplitude C and frequency -cr.

The complex-valued velocity vector, w, is defined to be

w = u + iv. It is clear that the autospectrum for w+ is p+ A2
ww

and that for w it is P = C2. Thus, there is physical mean-
ww

ing for spectra with negative as well as positive frequencies. The

total autospectrum for w is
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P +P AZ+CZ=P +P
ww ww ww uu vv

It also follows that

P+ - P = (A2-C2) = ZQ
ww ww UV

Thus, p+ and P are invariant under coordinate rotation.
ww ww

The two counter-rotating vectors corresponding to the hodo-

graph of Figure 42a are shown in Figure 42b.

C. Spectral Quantities for Pairs of Complex-Valued Time Series

For the study of the coherency of a pair of two-dimensional

velocity vectors, in addition to the component-wise coherence and

phase matrices, there is a quantity which measures the overall co-

herency of two velocity vectors. In essence, the coherency of a pair

of horizontal hodographs is considered. Each horizontal velocity vec-

tor series is written as a complex_valued series with real argument,

t, i. e., w(t) = u(t) + iv(t). The material of this section was de-

rived in a search for a technique which would provide quantitative re-

suits which were invariant under coordinate rotation.

Autovariance and Auto spectrum Functions. The autovariance

function for w is defined as, Jenkins and Watt (1968)

t
R (T) = w(t)w*(t+T)

ww
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Figure 42. The geography of the hodograph.
a. The hodograph ( (u, v): geographic coordinates;

(u, v'): semi-principal axes coordinates;
(ur, v"): ellipse-axes coordinates)

b. Decomposition of the hodograph into clockwise and
anticlockwise components
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where ( )* is the conjugate operator; in coordinate form,

R (T) = ER (T)+R (T)] + i[R (T)-R (T)],
ww uu vv vu uv

= [R (T)+R (T)] - i20 (T),uu vv uv

which is invariant under coordinate rotation by Section A. Then the

autospectrum is

P (o)=F.T.(R (T))
ww ww

[P (o)+P (o)I1 + ZQ (a-),uu vv uv

which is also invariant. P(o-) is not an energy spectrum in the

usual physical sense because it is two-sided; i. e. , it is neither odd

nor even as a function of frequency. The variance of w does equal

(OO

I P (a-)dcT.
) ww
-00

Covariance and Cross Spectrum Functions. The covariance

function for w1 and w2 is defined as

R (T) w (t)w(t+T)ww 1 2

= [R (T)+R (T)] + i[R (T)-R (T)].
u1u2 v1v2 v1u2 u1v2

When w1 and w2 undergo a coordinate transformation to w
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and w by a rotation through an angle of 01 and 0, respec-

tively, it follows that

i(02-01)
R (T)ewlw2 w1w2

Thus, the absolute value of the covariance function is invariant. The

cross spectrum is

P (cr) = F. T. (R (T)) = P (cr) + iQ (cr),
w1w2 w1wz w1w2 wlw2

where the cospectrum is

P (o-) = [P (o)+P (0-fl - [Q (o)-Q (0-)]

w1w2 u1u2 v1v2 v1u2 u1v2

and the quadrature spectrum is

Q (cr) [Q (o-)--Q (o)] + [P (cr)-P (r)].
w1w2 u1u2 V1V2 v1u2 u1v2

The absolute value of the cross spectrum is invariant under coordi-

nate rotation from the above. The forms of P (al and
w1w2

w
(a-) contain terms accounting for the component-wise coupling

12
of the two velocity vectors; these terms are the elements of the

component-wise cross spectral matrix.

Coherence Squared and Phase Functions. The coherence
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squared, y2, and phase, 4, are defined in the usual way,

dropping the frequency argument, o, for convenience:

12

2

''w1w2P Pw1w1 w2w2

[P +P +Q Q ]2+[Q +Q +P P
u1u2 v1v2 u1v2 v1u2 u1u2 v1v2 v1u2 u1v2

[P +P +ZQ ][P +P +ZQ
u1u1 v1v1 u1v1 u2u2 v2v2 U2V2

and
Q

-1 w1w2
= tan [

w1w2

(fQ +Q +P -P
u1u2 v1v2 v1u2 u1v2

=tan
I[P +P +Q -Q

Iuu2 v1v2 u1v2 v1u2

By the preceding remarks, is invariant under coordinate rota-

tion and cl + (0 -O ).ww w1w 2 1

It remains to prove that is bounded above by l.O
WiW2

The most instructive way to do this is to use a model for w1 and

w2 composed of a sum of sinusoids in each hypothetical measure-

ment bandwidth. Form w1 and w2 from a set of sinusoids:

u1 = A1 cos (ot) + B1 sin (ot),

= C1 cos (ot) + sin (crt),



and

thus

= A2 cos (ot) + B2 sin (ot),

v2 = C2 cos (ot) + D2 sin (ot),

= [(Acos (kt)+ sn ())+i(Ccos (kt)+ sin

and similarly for w2, where k is summed over the number of

frequencies in a measurement bandwidth. Dropping the superscript

k for convenience, it is straightforward to show that

and

1p = [(A +D )(A +D ) + (B -C )(B -C )]
wOw. 2k j j

i i j j13

Q [(A.+D)(B.-C) - (A.+D)(B.-C.)].
w.w. 1 1 3 j j 3

1 1

Now take

and

thus

and

1(k) = [(A.+D), (BC.)J

J(k) = [(A.+D), (B.-C.)J,

w.w. 213 k

Q =-[xT]=EITIIJI sin4,w.w. 2
ij k k

where 4 is the angle between 1(k) and J(k).
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With use of the CB-S inequality in summation form, it follows that

Therefore,

-_ -
ri cos + [E I' II sin ]2}

w.w. k1L1

{[ IIl2(IjI2 cos + IJI25in2)}
k k k

1 2 2=III ZIJI
k k

= P (a)P (a-).
w.w. w.w.11 J 3

2
V (°) < 1.0;
w.w.13

the equality holds only when 1= J for all k or when there is only

one sinusoid in a measurement band. and for complex_

valued series obey the same statistics as they do for real series.

The equations for the cospectrum and quadrature spectrum are in the

proper form for use in band-averaging a set of Fourier coefficients.

Since P = [(A+D)2 + (BC)2], then P = 0 if and
ww 2 ww

only if A and B(k) c(k) for all k. Thus, when the

denominator of vanishes, the numerator also vanishes.

Degenerate Cases. If one series is complex, e. g. , velocity,

and a second real, e. g. , temperature, set w1 = w = u + iv and

= S. Then



and

thus

and

P =P -Qw w ws us vs

Q =Q Q +Pw w ws us vs

[P -Q 1J2+[Q + 12
2 us vs us vs
ws P[P+P+2Q]

( Q +P
),Q =tan vs

ws P ..Qus vs
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If both series are real, i. e., and v2 = 0, then the

above formulae reduce to the ordinary forms in the cross spectrum

analysis of realvalued series.

The Complex Spectrum of a Pair of Hodographs. As seen in

Section B, the hodograph can be reduced to components with positive

and negative frequencies. The spectrum of the hodograph, Section

B, for positive and negative frequencies is recognized as the spec-

trum of a complex-valued series as discus sed above. The detailed steps

are illustrated for a pair of hodographs. Take u1 = (A1+C1)cos(ot+01)

and v1 = (A1-C1)sin(o-t+01), then

i(ot+81) ..i(c-t+e1)
= u1 + iv1 = [A1e +C1e ]

and an analogous form is used for w2. Thus,
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2 -1cTT 2 +10T
R (T)A1e +C1e

w1w1

R 2-iOT 210T,
w2w2(T) = A2e + C2e

and
i(T-(e1-e2))

R (-r) = A1A2e + C1C2e
w1w2

Then

and

P ( ) = A 26( ) + C ,ww o 1 0 1 0

2 2
P (o ) = A 6(o-o ) + C 6(oH-o ),ww o 2 o 2 o

i(O1O2) _i(O1_02)
P (0-) =A

12
A ö(oo )e + C C o(o+o )e12 o 12 o

thus

( )I

2 = A 2A
2(

) + C 2Cww o 1 2 o 1 2 o

where 6( ) is a Dirac delta function.

For a sum of sinusoids in a measurement band, the coherence

squared is then

I( (EA1A2)2

E(A1)2(A2)2

Y1w2=
(EC1C2)2

Z(C1)2(C2)2
,

Thus, there is a value of 2 defined for the anticlockwise
W1 W2
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(cr> 0) portion of w1 and w2 and a value for the clockwise,

(o- < 0) portion. Several special cases exist for the spectrum of the

hodograph:

i) A = C, P (_o) = P (o), rectilinear motion,
ww ww

ii) C = o, P (_o) = 0, pure anticlockwise motion,
ww

iii) A = 0, p (o-) = 0, pure clockwise motion.
ww

In general, P (-.o-) < P (a-) for net anticlockwise motion and
ww ww

vice versa for net clockwise motion.
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APPENDIX IV

Two Analogues of the Free Surface Boundary
Value Problem for Inertial-Internal Waves

Since the free surface boundary value problem, viz.

i) GE: R2 = 0, where

ii) RBC: 4i = constant = Q at z = -H, and

iii) FBC: + y = 0 at z = 0, where y

is rather unfamiliar, it is useful to examine a mechanical analogue.

As noted by Tikhonov and Samarskii (1963, p. 44), the boundary value

problem for the angular rotation of a rod undergoing small amplitude

torsional vibrations, 0, with a fixed end (x ) and a pulley on

the other end (x = 0), is formulated as:

iv) Ott - a20 = 0, where 2 GJ
xx

a =--, {0<x<; 0< t<oo],

k is Youngs modulus,

G is the shear modulus, and

J is the moment of inertia,

v) 0=0 at x=, and
vi) 0 + b20 = 0 at x = 0,tt x

where
2 2tx, xz, a

and
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2b -y
in the inertial-internal wave problem.

The behavior of qi in x is similar to that of 0 in time, t.

The effect of motion of a free surface on inertial-internal waves is

similar to that of a torque applied by a pulley, situated at the end of

a rod, on torsional vibrations of a rod. (If SOV applies, the FBC be-

comes:

22
(0- -f

2
gk

where k is the horizontal wave number. Then an analogy can be

made to a vibrating spring with an elastic attachment at x 0 z = 0

in the inertial-internal wave problem. ) To model the variable density

structure of the ocean, a rod of variable a2, i, e. density, diame-

ter, etc. would be appropriate. To model propagation of inertial-

internal waves into shallow water, shortening the rod from the fixed

end as a function of time would be appropriate.

A close analogy can be made to the problem of the motion of an

infinite string with a mass in the center which has been given an mi-

tial velocity, Tikhonov and Samarskii (1963, p. 81). For the inertial-

internal wave problem, consider a periodic point source perturbing

the free surface at x = 0. The domain is an infinite half-plane

(.00 < x < oo, - < z < 0), since the only conditions that can be
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applied in this case are at the free surface and the origin.

The formulation of the problem is:

i) and iii) as before, plus

vii) qi=O at x=O, z=O,

viii) ii = w at x = 0, z = 0, and
x 0

ix) ji constant along z = 0.
IxHoc

Since the GE has general solutions of the form f(z+ax) and g(zax),

the FBC is used to find the permissible forms of f and g. For

example, since

f') + ()2f() = 0, (=z+ax),
a

then b2
= C1e + C2

and g has the same form. The condition vii) implies that
bZ

C2 -C1; the condition viii) implies that -C1(--) a = w or

C = - . If g is written as
1

b2 °

bZ
-(--) I

g) = C3e a + C4, (1=z-ax),

athen C3 = w and C4 -C3. Thus,
b2
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b2
a a-(..--) (z+ax)

[i-e2o

-() (z-ax)b2
a a

qi {l..e20

to'

= {(z+ax)> 0; (x> 0, z < 0)},

{(z_ax)> 0;(x< 0, z<

= {otherwise},

where condition ix) is satisfied by inspection.

The streamlines are characteristics. The free surface and bodymo-

tion decay exponentially away from the origin and away from the char-

acteristics through the origin, respectively. Since this is a linear

theory, a general, harmonic surface perturbation can be decomposed

into such motions. Of course this problem is idealized, but it illus-.

trates the influence of a harmonically perturbed free surface on a

stratified medium, without regard for the effect of finite depth.
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APPENDIX V

Derivation of the Governing Equation for Inertial-Internal
Waves With the Frontal Interaction and Without

the Boussinesq Approximation

The Boussinesq approximation was made in deriving the GE for

inertial_internal waves with the frontal interaction in Chapter II, Since

horizontal density gradients are significant in the case of frontal in-

teraction, and since the basis of the Boussinesq approximation is the

neglect of horizontal variations of density in the momentum equations,

a rigorous derivation of the GE must not make the Boussinesq approx

imation (Healey and Le Blond, 1969).

The zero-order equations are those for geostrophic equilibrium

in the alongshore component of flow and hydrostatic equilibrium:

(1) -p1fv

and

(2) 0 - p1g,

where p1 = p + p and p and p are defined as in Chapter II.

The only first-order term neglected in the derivation of the GE

in Chapter II is one involving pfv, where p is the perturbation

density, in the x-component EOM. Hence, the system of equations

is
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(3) Pi(ufv) - pfv

(4) p (v +fu+uv +wv ) = 0,it x z

(5) p1w -p gp,

(6) u +w =0,x z

and

(7) Pt + u(p ) + w(p ) = 0.lx lz

The p, v, and p variables are eliminated from (3) through

(7) by cross-differentiation and subtraction and the stream function is

introduced into the resulting equation to yield:

(8) (N2-o-2)i - zM2qi - (o2-f(f+v))qi

+ (2-f2)+ = 0,

where the terms inside { ] are neglected in the GE used in this

dis sertation.

To assess the significance of the neglected terms, the following

nondimensionalization is used:
35 The nondimensionalization used here differs slightly from

that used by Healey and Le Blond (1969). Their horizontal scale for
the perturbation flow was the same as their vertical scale. They also
introduced the slope of the sea surface into the analysis for and
a separate horizontal scale for the mean flow. Their conclusions are
identical to those made in this appendix. They took z to be posi-
tive downwards which accounts for the sign differences between their
work and the author's work.



i) =-a,
p1

ii) =b,
p1

iii)

1
iv)

v)

vi) qi =

vii) fv v'gbH,

-7(a- 10 cg.s.)

(b- 1010c.g.s.)
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where H is the scale depth, L is the scale length, and qi is

a scale stream function.

Dropping the primes, (8) becomes

2 2)
+ ZE

(2
V E ExZ 3(9) E3(1 xx 2 3 xz N

+1[-v+(2- E2E321 = o,

where

= aH(=
N:H)

E2 = (=s) -

and



H -2
10

for the continental shelf region and low frequency inertial-internal

waves.

Because 2 - for the low frequency inertial-internal waves,

i. e., for r- f, then (9) is identical to the GE derived in Chapter II

to 0(e1). The neglect of the terms with the factor is identical

to making the Boussinesq approximation. Therefore, the GE derived

in this dissertation neglects effects which are only the order of 10

compared to those included.




