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The question of how an internal tide interacts with the frontal
zone in a coastal upwelling region is examined theoretically and is
studied with field observations. A linear, self-adjoint governing equa-
tion is derived for inertial-internal waves propagating transverse to
a frontal region. The effects of horizontal density gradients and hori-
zontal and vertical shears of the mean alongshore flow are included,
as well as the customary effects of vertical density gradients and of
the Earth's rotation. The frontal interaction affects the lines of con-
stant phase and the passband for inertial-internal waves.

The temporal conservation of energy law, the variational prin-
ciple, and the spatial conservation law are derived for the case of
variable bottom topography, a free surface, and with frontal interac-
tion. These results are used to set the mixed initial-boundary value

problem for inertial-internal waves in a coastal region.



The method of characteristics is used to solve the mixed initial-
boundary value problem for the inertial-internal wave equation with
constant coefficients. The solution technique developed involves the
use of the boundary conditions to analytically extend the given Cauchy
data. Cases are considered with and without the frontal interaction
and for waves propagating in regions with parallel boundaries and
with a wedge-shape. The slope of the isopycnals affects the slope of
the characteristics. A significant asymmetry in the upgoing and down-
going characteristics is introduced when the slope of the isopycnals
is in the same order of magnitude as the slope that the character-
istics would have without the frontal interaction. An extension of the
method of characteristics is used to solve the mixed initial-boundary
value problem formally when the inertial-internal wave equation has
variable coefficients. Two frontal models are examined which pro-
duce analytical coefficients in the governing equation.

A technique is developed for the spectrum analysis of pairs of
complex-valued velocity series (hodographs) sampled at different
spatial points. It separates the spectra into clockwise and anticlock-
wise rotating components and allows the calculation of the coherence
squared and phase of each component. The coherence squared is in-
variant under coordinate rotation,

Through the use of a moored array of recording sensors, and

of hydrographic samples, field observations were conducted during



August-September 1966 over the Oregon continental shelf at 45° N,
The array had ten-kilometer horizontal spacings between three array
sites. The array sites extended seaward from 10 kilometers off-
shore. At each site, two sets of sensors were separated vertically
by 40 meters.

Evidence is presented to show that

i) The mean flow, computed for a two-week period, was
equatorward and onshore immediately above the permanent
frontal layer and poleward and onshore at the base of the
permanent frontal layer.

ii) The observed vertical shear in the mean alongshore flow
agreed with that given by the thermal wind equation; i. e.,
the baroclinic component of the mean alongshore flow in the
subsurface frontal region was in approximate geostrophic
equilibrium.

iii) The dynamic stability was lowest near the base of the perma-
nent frontal layer. The Richardson number attained critically
low values, which were associated with the semidiurnal inter-
nal tide.

On the basis of this and other evidence, a schematic model is pro-
posed for the mean cross-stream flow in the frontal zone.

The statistical evidence from the moored, recording sensors

indicates that:



i) The semidiurnal internal tide had a vertical amplitude of
about five meters and a horizontal speed of about 5 cm/sec.
This motion propagated onshore as a progressive wave and
had an onshore-offshore wavelength of about 30 kilometers
in the vicinity of the array; its coherency over a wavelength
was generally low, suggesting the occurrence of many wave
frequencies not in phase within a measurement bandwidth,
unsteadiness of the wave motion, phase modulation by the
time-varying flow regime, or unsteady wave generation.

ii) The largest inertial velocity component, with an amplitude of
about 3 cm/sec, was found at the boundary between the con-
tinental shelf and slope. A substantial fraction of the inertial
motion was temporally coherent for 36 days at that site.

iii) Spectral peaks were present at higher harmonics of the tidal
motions, especially at the three and four cycles per day fre-
quencies. Spatially coherent tidal harmonics existed, sug-

gesting the occurrence of nonlinear effects.
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FRONTISPIECE

"Three phenomena are basic factors in the hydrodynamics of
the geophysical fluids:

(1) their stratification,

(2) the curvature of the level surfaces,

(3) the rotation of the Earth (or planet).

It requires little observational material to establish the exist-
ence of these three factors, but their dynamic interaction in the fluid
is so complex that even large amounts of observational material are
of little help in understanding the situation. A theoretical analysis
appears to be the only way to clarify it" (Eckart, 1960, p. 94-95).

"Oceanography is an observational science" (Cox, 1968).

"I should like to make it clear, finally, that I am not belittling
the survey type of oceanography, nor even purely theoretical specu-
lation. I am pleading that more attention be given to a difficult mid-
dle ground: the testing of hypotheses. I have not explored this middle
ground very thoroughly, and the few examples given in this book may
not even be the important ones; but perhaps they are illustrative of
the point of view in which attention is directed not toward a purely de-
scriptive art, nor toward analytical refinements of idealized oceans,
but toward an understanding of the physical processes which control
the hydrodynamics of oceanic circulation, Too much of the theory of
oceanography has depended upon purely hypothetical physical pro-
cesses. Many of the hypotheses suggested have a peculiar dream-
like quality, and it behooves us to submit them to especial scrutiny
and to test them by observation" (Stommel, 1965, p. 178).



THE INTERACTION OF AN INTERNAL TIDE WITH THE
FRONTAL ZONE IN A COASTAL UPWELLING REGION

I. INTRODUCTION
A. General

The thesis of this dissertation is that the semidiurnal internal
tide interacts with the mean flow of the frontal zone in a coastal up-
welling region to produce critically low dynamic stability for the
mean flow and to modify the internal tide as well. ! The basis for
this thesis was the observation in September 1965 (Collins, Mooers,
Stevenson, Smith, and Pattullo, 1968) that the semidiurnal tide was
strongly baroclinic over Oregon's continental shelf in the presence of
coastal upwelling. The thesis is investigated by two paths of inquiry:
the development of a hydrodynamical theory for the interaction, and
the examination of observational evidence relevant to the interaction.
For these inquiries it is necessary to have an understanding of

i) The mean flow in the frontal zone of a coastal upwelling

region.

ii) The tidal and other long wave motions in a density stratified

ocean near a coastal barrier on a rotating sphere.

1The heuristic notion that an internal tide influences coastal
upwelling was originally advanced by Defant (1949) from observations
off northwest Africa.



iii) The physics of inertial-internal waves.

iv) The mathematics of the solution theory for inertial-internal
waves in a wedge-shaped region with variable density strati-
fication.

v) The spectral properties o.f the existent time-dependent

motions.

B. The Frontal Zone in a Coastal Upwelling Region

Off the west coast of North America, as off the west coast of
most continents, the predominant, mesoscale physical process at low
and mid-latitudes is that of coastal upwelling3 in the hemispheric
summer. Because of the Earth's rotation, equatorward winds pro-
duce both equatorward and offshore flow in the "surface layer." In
addition, there is at least occasionally observed a poleward flow in
the "lower layer" over the continental shelf and slope (Collins et al.,

1968 and Chapter X).

Figure 1 is a schematic portrayal of the mean flow field for the

2
The term inertial-internal wave refers to the class of body

waves that can exist in a fluid which is influenced by both the Earth's
rotation (inertial) and the Ocean's density stratification (internal).
The semidiurnal internal, or baroclinic, tide is one specific wave in
this class for Oregon's latitude and coastal density field; it is the
most significant inertial-internal wave in this study.

3Coastal upwelling is a process by which water from a depth of
up to several hundred meters offshore is introduced into the upper
few meters of the water column near shore; the process is thought to
be generally, but not exclusively, wind induced.
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Figure 1. The mean flow field of the frontal zone in the coastal upwelling region off Oregon.




frontal zone in the coastal upwelling region off Oregon; the figure is
the simple model upon which the theory is formulated and the obser-
vations of the mean flow are interpreted. A more intricate pattern
for the crOSs-stream4 flow is introduced in Chapter X. The coastal
region is strongly density stratified, and the permanent pycnoéline
rises inshore, forming an inclined frontal layer dufing the upwelling
season. The frontal layer tends to break the surface, forming a sur-
face front; the surface front occurs 5 to 25 kilometers offshore in a
quasi-steady fashion. The frontal layer descends from near the sur-
face to a depth of about 100 meters 50 kilometers offshore, roughly
paralleling the sloping bottom of the continental shelf. The sub-
region of the coastal upwelling region significantly influenced by the
phenomena associated with the inclined frontal layer is referred to as
the frontal zone. The alongshore flow described is similar to the
more familiar flows parallel to frontal surfaces in the atmosphere.
The wind stress acting on the sea surface plays a role for coastal up-
welling fronts analogous to that of fritctional drag at the Earth's sur-
face for atmospheric surface fronts.

The frontal zone has significant horizontal density gradients \

and is a region of relatively intense divergence and convergence in

The cross-stream flow is the flow component in the vertical
plane normal to the alongshore flow, thusitis also normal to the bot-
tom contours.



the cross-stream flow, and so also of relatively intense vorticity.
The inclined frontal layer is vulnerable to annihilation, a process
termed frontolysis. Yet the frontal layer is a quasi-steady phenome-g
non, hence it must be sustained by a transverse circulation (see the
small arrows in Figure 1), a process termed frontogenesis. Turbu_j
lent mixing is expected to occur in the frontal zone in order to form
the water mass of the frontal layer. The occurrence of turbulent
mixing suggests that hydrodynamic instability mechanisms may be
significant in the frontal zone.

Since the wind field is neither steady nor statistically station-
ary, coastal upwelling itself is neither steady nor statistically sta-
tionary. Coastal upwelling does have at least three generalized
phases: inception, steady-state, and decay. All phases may occur
several times in an upwelling season and may be overlapping, since
the wind field fluctuates on various time scales.

In addition to purely transient phenomsena, there may be very
long-period (time scale of a month), free or forced motions present
whose relation to coastal upwelling is unknown. Observations indi-
cate that there are also shorter period phenomena superimposed on
the "mean" coastal upwelling flow regime: several-day periodicities

. 5 . . .
(time scale of a week), inertial” and tidal motions (time scale of a

5A pure inertial motion is barotropic and has a period equal to
one-half pendulum day; the inertial period at the latitude of this study,
44°50' to 44°56'N, is about 16. 9 hours.



day), and Vaisala-Brunt oscillations (time scale of minutes). Semi-
diurnal baroclinic motions are striking: the semidiurnal horizontal
speeds are the same order of magnitude as those of the "mean' flow.
The interaction of the semidiurnal baroclinic motions (internal tides)
with the coastal upwelling frontal zone has been selected for examina-
tion, though the other wave motions present may also have significant
interactions,

A simple model of the propagation of a surface tide from south
to north along the west coast of North America is shown in Figure 2a.
In the presence of density stratification, as the semidiurnal surface
tide propagates alongshore, the internal tide is generated over the
continental slope, Figure 2b. The internal tide then propagates in the
onshore and offshore directions, Figure 2c. The reason that the in-
ternal tide is more strongly refracted in shallow water than the sur-
face tide is that the onshore-offshore wave number for the internal
tide is much greater than either the onshore-offshore or the along-
shore wave number for the surface tide, while the alongshore wave-
number of the internal tide is probably equal to that of the surface
tide. This subject is discussed fully in Appendix I. The coordinate
system is defined in the figure; x is positive onshore, y is posi-
tive poleward, and =z is positive upward. The origin is on the sea
surface at the seaward edge of the continental shelf off Depoe Bay,

Oregon.
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Figure 2, Simple model of the propagation of the surface (barotropic)
tide along a coastal boundary and of the generation of the
internal (baroclinic) tide in a coastal region.




C. Theoretical Analysis

A complete theoretical analysis of the interaction of an internal
tide with a frontal zone is beyond the limits of the present understand-
ing of the processes involved. Theoretical analysis is used to study
key features of this interaction problem and to lay the foundations for
more general studies. Observations are used to motivate the theo-
retical development. Both the mean flow of the coastal upwelling
frontal zone and the propagation of the internal tide in such a region
are governed by the hydrodynamics of rotating, continuously strati-
fied, weakly viscid, incompressible fluids with variable bottom
topography and a free surface. A mixture of observations, of approx-
imate hydrodynamical theory, and of exact mathematical theory is
used to develop the plausibility of the physical model of the interac-
tion.

A detailed derivation is given for the governing equation, GE,
of the interaction. The interaction is taken to be linear. The interac-
tion GE is similar to the customary GE for inertial-internal waves,
but it contains new terms. The new terms in the GE enter through
"Coriolis coupling® of the inertial-internal waves to the mean flow.
The GE governs inertial-internal waves propagating transverse to the
axis of a frontal zone. Thus, the GE may be valid for other frontal

zones in the Ocean and Atmosphere.
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N
A general solution theory is outlined for inertial-internal waves!,/

H
H

L —

propagating into a wedge-shaped region with variable stratification.
Several wave problems are examined, including two analytical models
of frontal regions. The theory is based on the method of character-
istics applied to a mixed initial-boundary value problem. Because
this method is based on the fundamental mathematical properties of
the hyperbolic GE, it is appropriate for the study of waves whose GE
has constant or variable coefficients and of waves propagating in
regions with uniform or variable depth. Solutions are constructed
for the continental shelf region assuming that the continental slope
region can be treated as the source region for the semidiurnal inter-
nal tide.

The physical model is based on the roles which the permanentj
pycnocline plays for coastal upwelling and for the propagation of 5
inertial-internal waves. Since a pycnocline is a waveguide for
inertial-internal waves, the vertical displacement amplitudes and the
vertical shears of the horizontal velocity of the wave motion are ex-
pected to be greatest in the pycnocline, or at its base. The hypothe- |
sis is made that the semidiurnal internal tide produces critically low
dynamic stability at the base of the inclined frontal layer, inducing
turbulent mixing. Thus, the interaction has the character of a nega-
tive feedback process. As coastal upwelling develops, the inclined

frontal layer steepens and intensifies, becoming a more effective
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waveguide for inertial-internal waves. But, as an effective wave-
guide, the dynamic stability of the frontal layer is reduced, causing f'{/

the turbulent breakdown of the pycnocline.

D. Field Observations

The data introduced are principally field observations taken
from 15 August to 24 September 1966 on the Oregon continental shelf
and slope. Other data from this region are included to corroborate
some of the general contentions. The principal observations are
from a set of two to six-week time series of direct horizontal veloc-
ity and temperature measurements and from a set of hydrographic
stations. The field observations were designed to define the principal
properties of both the mean and the time-dependent flows in the up-
welling season. The direct current and temperature measurements
were made with moored, recording meters installed in a linear,
three-point array, Figure 3. The array elements were implanted at
10kilometer increments normal to the bottom contours, The array
extended 30 kilometers offshore to the edge of the continental shelf.
The installations at 10, 20, and 30 kilometers offshore were installed
in water depths of 80, 140, and 200 meters, respectively, and they
are designated DB5, DB10, and DB15, respectively. At each site,
current meters were installed at depths of 20 and 60 meters, and

thermographs at a depth of 20 meters. Four current meters and two
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thermographs ran sufficiently long to be of use to this study.

The vertical locations of the current meters were chosen to
sample above and at the base of the permanent pycnocline; the thermo-
graphs were placed near the base of the seasonal thermocline, and
thus the seasonal pycnocline, 6 The horizontal locations were selected
with the expectations that:

i) The semidiurnal internal tide propagates essentially normal

to the bottom contours.

ii) The onshore-offshore horizontal wavelength of the semidi-
urnal internal tide is of the order of 20 to 40 kilometers over
the continental shelf.

Thus, as installed, the array should have one-half-wavelength-
spacing and should be aligned normal to the bottom contours. The
sampling procedure consisted of forming ten-minute, integrated
measurements. Least squares harmonic and auto and cross spectrum

analyses were made of four current velocity and two thermograph

The seasonal pycnocline is found at the base of the "surface
layer" and is not to be confused with the weaker, deeper, permanent
pycnocline, which forms the inclined frontal layer of prime interest
to the present study. The seasonal pycnocline is formed in the sum-
mer season by the seasonal halocline derived from the Columbia
River plume water and by the seasonal thermocline formed by summer
heating. The permanent pycnocline is formed by the permanent halo-
cline and is usually weakened by a temperature inversion; the perma-
nent pycnocline is inclined upwards in the shoreward direction during
the summer season.
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records. Least squares harmonic analysis was also made of a single
sea level record.

The observations along the hydrographic line off Depoe Bay,
Oregon, were taken at the array stations and seaward along the nor-
mal to the bottom contours, Figure 4. At an anchor station, current
velocity profiles were taken under sufficiently controlled conditions
to make calculations of the dynamic stability. The profiles provided
information about the vertical structure of the flow, while the moored,
recording sensors provided time series which were sufficiently long
to resolve the principal periodic structure in the diurnal and semidi-

urnal tidal bands of the spectrum.
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II. DERIVATION OF THE GOVERNING EQUATION FOR THE
INERTIAL-INTERNAL WAVE FRONTAL INTERACTION

A. Introduction

The interaction of an inertial-internal wave propagating trans-
verse to a frontal zone is formulated from first principles to make
the physics clear. A general statement of the complete problem is
made; the rationale is then given for each simplification necessary to
acﬁieve a reduction to a tractable and valid problem. The specific
interaction problem considered relates to a central problem of geo-
physical fluid dynamics, viz., the interactions of wave-type motions
with mean flows which lead to turbulent mixing and momentum trans-
fers, either up or down the mass and momentum gradients.

B. Reduction of the Equations of Hydrodynamics for a Rotating

and Continuously Stratified Fluid to a System
of Equations for the Frontal Interaction

The fluid is considered to be weakly viscid, to be density strat-
ified, to be under the influence of gravity, and to be on a rotating
sphere. The effects of stresses on the free surface and the solid
boundaries and of variable fluid depth are also of significance. Sev-
eral of these phenomena are selectively disregarded in the deriva-
tion of the GE for the interaction., The Boussinesq approximation

(Boussinesq, 1903, p. 172-176; Phillips, 1966) is adopted; i. e.,
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variations in density are neglected in the inertia terms of the vector
equation of motion but are included in the buoyancy term of the verti-
cal component of the equation. This approximation is generally ade-
quate except when finite amplitude effects are significant, e.g., in
internal solitary waves (Long, 1965).

The pointwise conservation of fluid mass requires that

or

dp —-»-—»_
at +pv-U=0,

where p 1is the mass per unit volume, t is the time variable,

- . . . . . 0 .

U 1is the three-dimensional particle velocity vector, a( ) 1is the
d 9 —_— -

() ()+U-v() is

partial derivative with respect to time,

dat' ' " at

the total derivative with respect to time, and v is the three-
dimensional grad operator. Assuming that the motions of interest
are essentially isentropic, and using the thermodynamic relationship

for the speed of sound, cs,

2 dp
€s T (dp )adiabatic’

where p 1is the pressure, then
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Assuming that the fluid is in hydrostatic balance,

(3) dp = -pgdz,

where 2z 1is the vertical coordinate, which is positive in the upward

direction. In terms of non-dimensionalized variables, (2)is

do _ (e ,2dp
dt ¢ dt’
S
1/2 . . .
where ¢ = (gzo) is the phase speed of a gravity wave, g is the

gravitational acceleration, and z is the scale depth. For inertial-
internal waves, the class of gravity waves of interest to this study,

z ~ 2P H, where AaAp is the total density variation in a water col-

o
o
umn and H is the mean height of the column. In the Ocean,
2 -
cs~ 1. 5 x 105 cm/sec and ¢~ 10Z cm/sec; thus, (—CC—) ~ 10 6,
s

thus (2) becomes:

dp
at 0.

Therefore, the Ocean can be treated as an incompressible fluid for
the study of inertial-internal waves. 7 The incompressibility condi-

tion analytically filters acoustic waves from hydrodynamical flows.

7The adiabatic density gradient, pog/csz, must be considered
when computing the static stability; the static stability is the key
parameter governing the propagation of inertial-internal waves and is
discussed in Sections III..B and X.D.
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It yields the equation of continuity, EOC:
(4) (EOC): v-U-=o,

which holds for the mean and fluctuating components of the flow sepa-
rately, and it also yields the reduced conservation of mass equation,

COM:

(5) (COM): de %% . §.5Fp =0

The COM is equivalent to the conservation of entropy relation because
surfaces of constant density are approximately surfaces of constant
entropy under the assumption of isentropic motions.

The three-dimensional Navier-Stokes equation of motion, EOM,
for a rotating, density stratified, incompressible fluid, is adapted

from Phillips (1966):

(6) (EOM): £ 4T x U= -vr - g

where f 1is the Coriolis parameter, Ak is the vertical unit vector,
and v is the kinematic molecular viscosity. The U, w, and p

variables are functions of space and time:

8The overbar denotes an ensemble average, i.e., the "mean
motion," (which may be space-and time-dependent). The prime de-
notes a fluctuating component, i.e., the turbulence, inertial-internal
waves, or both. Po is the space-and time-averaged density. (The
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—
u

i) U=u+ u'

ii) p = P, + E + p', where p' and E<< P,
jil) m=w+
-2 + gz, which incorporates the Boussinesq approxima-
Po

tion.

+p+ p', where p' and E).<< Py

Expanding %% for use in the next step,

dt_f_ 8(E+—\_1") = T -
T - ot + (u+u'): v(u+u')

k+®+vy u,

where, using the Einstein summation convention, the components of

® are
au{
d = -u! —
i uj ox.

zero-order state is assumed to be hydrostatic and barotropic so that
(Po)z = -Po8- ) Then, ()" = 0. Invoking the ergodic hypothesis, the
"mean motion," or ensemble average, depends on the choice of space
and time scales. The ensemble average serves as an analytical fil-
ter to separate flow components of commensurate time and space
scales for individual study.
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Using the EOC,

) :_——?—u.'u!,
1 ox. i)
J
:—1-59—71, Wi=1,2,3),
Ps Xj J

where Tij is the Reynolds stress tensor, which can be produced by
turbulence or irregular inertial-internal waves. It is customary to
introduce an eddy viscosity function in a form analogous to the mo-

lecular viscosity, viz., @&, = (;'X)Ei' where the components of
—_— 1

—_

operator A are

and N is the eddy viscosity function.
The momentum equation for the mean motion, (7), is subtracted

from (6) to obtain the equation for the fluctuating flow:

8-\; : —_ —_ : — — — — — 1 — —
(8) E—+u va +u-vu+u-vu +fxu = -vr £)—gi§+vv u - @,

which includes interaction terms. The term & is common to (7)

and (8) and provides for the momentum exchange between the mean

——

and the fluctuating flows. The sign of & indicates whether momen-

—

tum is delivered to or derived from the mean flow: if & is nega-

tive, it is a driving force for the mean flow; if it is positve, & 1is a
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driving force for the fluctuating flow. The eddy viscosity concept is
usually formulated only for positive values of _N>; i. e., the eddy
viscosity is arbitrarily constrained to act as a viscous drag force on
the mean flow. So-called "red shifts," due to negative eddy viscosity,
are observed in geophysical fluids, as well as commonsensical "blue
shifts," due to positive eddy viscosity (Starr, 1968). Therefore, there
is no substitute for computing empirically (cf. Webster, 1965) or cal-
culating theoretically (cf. Orlanski, 1968a, b), the Reynolds stresses.
Eventually, the present interaction problem may require an analysis
of ; by theory or observation.

Equation (5) is expanded for the analysis of the conservation of

mass for the mean and the fluctuating flows:

—

(9) 2 (ore!) + (W+T) - T (prp!) = 0.

Taking the ensemble average of (9), the equation for the mean density

field follows:

5
10 P
(10) ot +

where

is the mass flux vector and where the EOC has been used. The di-
vergence of the mass flux vector is often replaced by the eddy dif-

fusivity concept, viz.,
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where

and K is the eddy diffusivity function. The concept of eddy diffusiv-
ity suffers the same deficiencies that the eddy viscosity concept does.
Subtracting (10) from (9), the equation for the flucutating component

of the density field is:
9& —— — — : — —_— — —
(11) tu-vpt+tu-vp +u-vp =v - M

Two other dynamical aspects of the general problem are ex-

amined: the energy equation and the vorticity equation. Introducing

the relative vorticity, ;’x_ﬁ’ = :, (6) is rewritten as:
o 2 glp-p_)
(12) S+ Tx0)xT+v(m=>) = - S K+w'T
Po

5 U’ — ~y?
(13) (EE): E(T)'i'U'VTr-i-U-V? =g

where W 1is the vertical component of velocity.

Taking W = %f‘l , where ¢ 1is the vertical displacement,
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multiplying (13) by P and using the EOC, the EE is

9E =
— -F =D
Y + v s
where
E = KE + PE is the total energy per unit volume,
UZ
KE = Po 2 is the kinetic energy per unit volume,
PE = Z_,g(p-po) is the potential energy per unit volume,
— U2
F = U(po?‘F Z_,g(p-po)+p+pogz) is the energy flux vector per unit
volume,
and
D= p_ﬁ . VZ i is the frictional dissipation per unit vol-

ume and y is the molecular dynamic

viscosity (p = pov).

Taking the curl of (12), the vorticity equation, VE, is obtained:

B
— / d9p. 9p.\

d— — - g i j 2—
14 : _— = . e (= .=
(14) (VE) Tt CA - @A vu po(ay aX)+VVw,
where (_:A =f +_(; is the absolute vorticity, and since
T — —_— — — —
%:0, vef =0, and v.-@=v-.- U=0,

—

The buoyancy term, B, indicates that, even if WA =U=0
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initially and the fluid is inviscid, horizontal density gradients gener-
ate vorticity. Since a frontal zone is characterized by the existence
of strong horizontal density gradients, the VE states that vorticity
must be considered in the dynamics of a frontal zone. The EE and
VE can be separated into their mean and fluctuating components to
examine the interaction in terms of energy and vorticity exchange,
but that separation is not essential to the development of the present
problem.

The general formulation for the interaction of a mean flow with
a fluctuating flow has been stated in terms of the EOM, EOC, COM,
EE, and VE. The first simplifications necessary to derive the GE
are:
i) A "locally" valid solutionis sought, thus the Earth's sphericity
can be neglected. The restriction to a "local" solution per-
mits the use of Cartesian vice spherical coordinates and the

df

neglect of the beta effect, i.e., P = E% is set equal to

zero. The neglect of the beta effect analytically filters
planetary waves from the problem.
ii) The inviscid approximation is made, which is valid for

strictly laminar flow where viscous effects are restricted to

boundary layers. Viscous boundary layers have a thickness

2
of the order of 6 = (2)1/2. For seawater, v~ 0.0l =
o

secC

and for the semidiurnal tide o ~ 10'4, so &6~ 10cm. The
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4
depth scale under considerationis H~ 10" cm, so & < H

The neglect of viscous effects is invalid for large-amplitude
motions or in the presence of sufficiently intense turbulence.

iii) It is assumed that both the mean and the fluctuating flows
are of sufficiently small amplitude to permit linearization.
This assumption is reasonable for the alongshore component
of the mean motion in the frontal zone. The validity of the
assumption is less clear for the cross-stream flow, but the
cross-stream flow is neglected in the final analysis. The
fluctuating component occasionally appears to assume an
asymmetrical, finite amplitude form indicative of nonlinear
effects, hence future studies may have to consider non-
linear effects. The linearization does not entail neglect of
the first-order interaction terms with the mean flow in the
equations for the fluctuating component; it does analytically
filter turbulent motions from the fluctuating component of
the flow.

At this stage, for the mean flow, (7) becomes

(15) Y Fxu-vw. 2R L2
ot Po Po 8Xj kj

For the fluctuating flow, (8) becomes
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(16)

Q.
o+
°
(@]

where now

Similarly, (11) becomes

(17) '+l v p = v - M.

aP

The EOC, (4), continues to apply for each flow component.

Finally, the Reynolds stress and mass flux terms are neglected
in the analysis of inertial-internal waves, assuming that (i) these
terms in (15) are due to the effect of the turbulent flow and (ii) these
terms in (16) are not significant for the inertial-internal wave motion.
The Reynolds stress and mass flux terms due to the inertial-internal
waves vanish as a consequence of assuming simple harmonic motion,
SHM, for the time dependence. A restriction to SHM may eventually
be found undesirable in the present problem. If the turbulent field in
the frontal zone is sufficiently intense, the effect of Reynolds stress
and mass flux terms on inertial-internal waves must be reconsidered.
With the neglect of the Reynolds stress and mass flux terms, the
mean flow and the fluctuating flow are uncoupled as far as momentum
and mass transfers are concerned. The mean flow continues to mod-

ify the fluctuating flow, and the fluctuating flow can still affect the
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dynamic stability of the mean flow.

C. The Governing Equation for Inertial-Internal Waves
Propagating Transverse to a Frontal Zone

Since the flux terms are neglected, the system of equations

(16), (17), and (4) are reduced to:

— — — —_ — /\
(18) (EOM): %+fxu+u-vu:—v-rr-5&k,
o
dp , — -
(19) (COM): —t+u - vp =0,
and
(20) (EOC): v-u=0,

where the primes, but not the overbars, have been dropped. The
geometry of the problem is established and further simplifications
are applied to reduce the system of equations:
i) The coastline, the bottom contours, and the longitudinal axis
of the frontal zone are considered to be parallel to the y-
axis.
ii) The semidiurnal surface tide propagates northward, parallel
to the positive y-axis, as a very long wave.
iii) The surface tide generates an internal tide which propagates
shoreward, parallel to the positive x-axis, with a much
shorter wavelength than that of the surface tide. Hence the

partial derivatives in the x- and z-directions of the internal
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tide are appreciable while those in the y-direction are as-
sumed negligible. Due to the Coriolis effect, the vy-
component of the inertial-internal wave's particle velocity
is not negligible.

iv) The mean flow and the mean density fields are considered
homogeneous in the y-direction. Due to the Coriolis effect,
the y-component of the mean flow is not neglected.

To further reduce the system of equations, scale analysis is
used to justify the neglect of the cross-stream flow. The cross-
stream flow enters the system of equations in the advective accelera-
tion and shear-interaction terms. The scales are based on the ob-
servations reported in Chapter X. Henceforth, partial differentiation
is denoted by subscripts.

The observations indicate that

u = -3x 10"6 sec-1
X
u ®+1x 10_3 sec_1
z
v ®_1x 10-5 sec -1,
X
and
;z ® .5 x 10-3 sec_l,

where the shears are given in the poleward-onshore coordinate sys-

tem. Since
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then the ratio of the vertical to the horizontal scale of the mean mo-

tionis r ~2x 107>, The slope of the isopycnals, s, is of the

order of 3 x 10-3, so r~ s. This resultis consistent with the

isentropic hypothesis for the mean flow. From the EOC,

)=r~ s. Based on the observations,

cllg |

O(u )= O(QZ). Thus, Of
the scale of the x-component of the mean velocity is taken to be
u ~ 10 cm/sec.
o
The ratio of the vertical to the horizontal scale of the fluctuat-
ing flow is taken to be equal to the order of magnitude of the slope

of the characteristics, \, and \~s. From the EOC, 'O(uX') = O(WZ).
a v
Then, since 0(5—{) =\, O(‘uﬁ) =\~ s. The ratio of the horizontal
b7
to the time scale of the fluctuating flow is taken to be the horizontal

phase speed, Ch' For the semidiurnal internal tide off Oregon,

2 .
¢y~ 10" cm/sec. The time scale, T, of the fluctuating flow is

4
taken to be the period of the semidiurnal tide, so T = 5x10 sec.

With the above scale estimates,

—

uz s uux uo 1
)'—'K‘."l and Of ‘)ZE—~ 10 .

x ut h

€|

O

Tu

Analogous results follow for the other fluctuating components. Thus,

the advective acceleration terms can be neglected, i.e., henceforth,
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W
Also from the above, Of Ez) = % ~ 1; analogous results fol-
u
X
low for uw and ww . Since
X z

wwW uu _ 1
o(—=2)y=0(—2)=T|u | ~ 1077,

the terms involving the shears of the mean cross-stream flow can be
neglected.

Consequently, the mean cross-stream flow is completely neg-
lected in the system of equations for the interaction. The above argu-
ments are tenuous. There may be frontal zones elsewhere in the
Ocean, or occasions for the coastal frontal zone off Oregon, when the

neglect of the cross-stream flow can not be justified. Since

O(u) = O(v), then

z A
O == ~
(uV ) r L
Also
o _
o(—=)=T1|v |~ L
v, x

Thus, the terms involving the shears of the mean alongshore flow can
not be neglected. This statement is also based on a tenuous argu-
ment, but it is shown below that the retention of u;X + W;z in the

y-component momentum equation is necessary to be consistent with
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the inclusion of the mean horizontal density gradient in the equation
for p.

In component form, the reduced system of equations for the

fluctuating flow is:

21 - = -
(21) u fvv + fhw T
(22) v +futuv +wv = 0,
t v X z
23 - S -2 4
(23) W, fhu T o’
o
2 o 0 =
(24) Py + up_ + wp 0, and
(25) u +w =0,
x z
where fh and fV are the horizontal and vertical components of

the Coriolis force, ? respectively. To simplify the following steps,

two functions are introduced:

5 p P
N :-g—%- and Mzz-g—-}i,
Po

o

©

9Usually, the horizontal component of the Coriolis force is neg-
lected. Since fj =f£ at latitude 45°N, the latitude of the field ob-
servations, f; is not neglected at this stage. Whenever fj, is set
equal to zero in this dissertation, it is understood that the so-called
traditional approximation is made. Since (fh, fv) does not enter the
energy equation, setting f, = 0 does not affect the energetics, and
it does simplify the analysis especially in the three-dimensional case,
where complex-valued solutions arise. It is fair to say that it is not
known whether any feature in the Ocean has been undetected or mis-
interpreted as a consequence of neglecting fj,. Some of the conse-
quences of neglecting f}, are considered in Appendix II.
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where N is the familiar Vaisala-Brunt frequency and M is its
horizontal analogue. Eliminating v between (21) and (22), (26) fol-

lows:

(26) [C), + fvz+fv$x](u) + L1, ( )t+fV$Z](w) = .m

tt xt

similarly, eliminating p between (23) and (24), (27) follows:

2

(27) (), N2Jw) + [-£, () M7 (@) = .

The EOC permits the introduction of a stream function, {, such
that u = —LlJZ and w = LlJX. Cross-differentiating (26) and (27) and
subtracting to eliminate w, the GE expressed in terms of { is

obtained:

2] !

(28) [( )t fv(fVJrvX)]qJZZ + [( )t N0 - [fva+M s

t XX

+ [fV'GXZ-(MZ))qu;[(NZ) fv Ju =0

X V zZzZ X

The terms involving the horizontal component of the Coriolis force
have cancelled. With variable coefficients, the GE is simpler in
terms of  rather than w; with constant coefficients, there is no
preference.

The neglect of the cross-stream component of the mean flow in
the GE allows assuming the first-order equations for the frontal zone

to be simply the geostrophic equation for the alongshore flow:
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(29) fv=-m
and the hydrostatic relation:

(30) 0=.7 - g
p0

Eliminating T from (29) and (30) by cross-differentiation and sub-

traction, the thermal wind equation is obtained:

_ P
(31) f v = - _.Eg’
v Z po
or
£y =M

Upon substitution of (31) into (28), the GE reduces to:

2, . = 2 2
(32) [t i+ v 1o+ 1O+ Ny - 2M7y, =0,

or, equivalently,

2 - 2 2 2
([( )tt+fv+fvvx]¢z-M Lle)z + ([( )tt+N ]Lle-M LlJz)x =0

because (Nz) = (Mz) and (Mz) = (f v ) .  Therefore, the GE,
x z X v x'z

(32), has the important property of self-adjointness.

SHM can be assumed for the time dependence of {, i.e.,
igt . :
yoce . Then, the final form of the GE is

(33) (GE): (Nz-az)qux - 2M2¢XZ - (o f%5 5 W o= 0.
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Since
ion = (62-f (£ +v ))u - (M°+iof, Jw
om_ = (o £ (f +v ) - h
and
. B 2 . 2 2
igm = -(M -10'fh)u - (N -0 )w,
then
2 2 2 .
. [(N“-0 )'n'x-(M +1o'fh)'n'z]
u = io
A
and 2 L 2
ig [- (o -fv(fv+vx))'rr,z—(M —1o'fh)1rx]
w = A ’
where
2 2.,2 - 4 2.2
A =(N -0 )Mo -fv(fv+vx)) + M+ fh.

Applying the EOCto u and w in their above forms, the equation
for w 1is obtained:

((Nz_o—z)-n-x-(Mz.{-iO’fh)Tl‘z)) — ((o—z_fv(fv+—\;x)'n'z+(M2_io'fh)'n'X) L

A X A 4

In the case of constant coefficients, this equation for w is identical
to the GE for .

With use of the reduced system of equations, (21)to (25), for
the fluctuating flow, the EE can be formed. Multiplying (21), (22),
and (23) by fq andby u, v, and w, respectively, and adding the

three equations, the EE follows:



35

(34) (KE )t = -[(up)x+ (wp)z] - po[uv;x+ wv—\;z] - pwg,

where the EOC has been used and

2 2 2
u +v +w

2 ).

KE = po(

Takeuz&t and W:t’,t, where € and ¢ are the horizontal

particle displacements, respectively, then (24) yields:

(p+§E>—X+ ?;;z)t =0
or

p=-(Lp_+Lp,)

neglecting the constant of integration without loss of generality,

WLOG. It follows that

-pwg = Ewp_g + (57) p 8

where
2,2
N ¢
PE =p,73
Then (34) is written as
(35) Et = -[(up)x+(wp)z] + w§ P8 - po[uvvx+ wvvz],

where wggxg is a vertical flux of potential energy and
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_po[uV;X‘l'WV;Z] is the horizontal flux of kinetic energy. Assuming
that a volume of fluid is bounded by rigid boundaries so that no flow
work is performed at the boundaries, the spatial average of (35)

yields

(36) Et = g&,wpX - po[uvvx+wvvz],

where ( ) denotes the spatial average. Integrating (36) with re-

spect to time from t=0 to t =T,

= = == 5= —I-

E(T) - E(0) = géw P, - po[uv v_twv VZ]
where (__)-t denotes the time average. The righthand side, RHS,
vanishes for T equal to an integral multiple of the wave period be-
cause v 1is in time-quadrature with u and w and because £
and w are in time-quadrature. Therefore, the total energy is con-
served in a region bounded by rigid walls for the periodic motions
described by the equations of the interaction. If there is an interac-
tion of consequence to energy transfer, it must be due to dynamic
instability caused by the wave motion. As part of a more general
analysis in Chapter‘IV, with a re-definition of the energy, the con-
servation of energy is proved without restriction to SHM.

With the two-dimensional form of the problem, the principal

(y)

component of the vorticity is the y component, « °°, where
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€
i
e
i
€
I

- (LlJXX+LlJZZ )

2 2 -
N -2MTy +f (£ 4V ),
2

o

2y,

S

from the GE. The relation for w(Y) establishes that inertial-
internal waves are rotational. Since  is a function of time, as

noted by Eckart (1961), vorticity is not constant. The Ocean's den-

2
sity stratification contributes the term (%I) LlJXX, while the Earth's
f
rotation contributes the term (—V-)ZLIJ to w (Y). Together with

ZZ

the Ocean's density stratification, the frontal interaction contributes

M.2 . . .
the term -2(?) q;xz; together with the Earth's rotation, it contrib-
fVV
X
utes the term 0_2 LlJZZ.

In summary, the linear interaction equations can be derived on
the basis of the following hypotheses: (i) A linear inertial-internal
wave is assumed to interact with a frontal flow while propagating
transverse to the frontal flow. (ii) The frontal flow is characterized
by strong horizontal density gradients and geostrophic and hydrostatic
balance. (iii) The phase velocity of the inertial-internal wave is
large compared to the cross-stream velocity, allowing the neglect of
the latter. Scale considerations require the inclusion of the terms

uEX + W;Z in the basic system of equations. The terms up_ and

W;z have an equivalent effect on the GE; inclusion of W;z requires

inclusion of u;x by scale analysis. Finally, the inclusion of uv_,
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and the assumed hydrostatic and geostrophic equilibria of the mean

flow, assure the self-adjointness of the GE.

D. Classification of the Governing Equation

The GE can be written in the general form:

AF +BF +CF_ =0
XX XZ ZZ

The classification is based on the discriminant, A, of the GE,
2
where A =B - 4AC:
i) If A > 0, the GE is hyperbolic,
ii) If A < 0, the GE is elliptic, and
iii) If A =0, the GE is parabolic.

For the case of frontal interaction,

and

C = -(Uz_f £ +v )
v Vv X

A =4 r (NP oel)elt (£ Y ] .
v Vv X



The GE is hyperbolic if and only if

4 2 2., 2 -
- - >
M 4+ (N -¢ o fv(fv+vx)) 0,
or
a-b < 2 < atb
z <9 ST
where
2 —
a=N +£f (f +v )
vV X
and
— 1/2
b= (N2t (£ +7 )2eamh2,
v'v X

2 2
When the frontal interaction is neglected, a =N + fV and

2 2
b=N - fv’ so fV < ¢< N defines the domain of hyperbolicity.
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The frontal interaction can either expand or contract the domain

of hyperbolicity. For example, consistent with the observations re-

ported in Chapter X for the frontal zone, take

f = 10—4sec—1,
v
v = _10—55ec_1,
X
N = 3x 10 sec-z,
and 3
s® 3x10 7,
S0
M™= .9x 107",
Thus,

N2>>f (f +v ) and N2>> |2M2|,
Vv o x



40

so
2 —_
b N _-f(f+v )+ 2s N .
viv X
Then
a+b o N2%(148%) = N2
2
and
-b - 2
822 f (f+v ) -s°N
2 viv X

With the above values, a_;_‘i = 0.63x 10-8.

The domain of hyper-
bolicity is approximately 0.8 fV < o< N. Since o= 0.7 fV for
the dirunal tide at 45° N, the possibility exists that the dirunal tide,
as well as the semidiurnal tide, can exist as a baroclinic tide in the

frontal zone off Oregon. Since Nz, s, and ;x vary with space

and time, then so does the domain of hyperbolicity.

E. Boundary Conditions

There are several boundary conditions, BC's, which are used
in the following chapters. The BC's are formulated for the stream
function. At a rigid boundary, z = z(x), the stream function must

be a constant, i.e.,

(RBC): ¢| _ = constant,

which is a principal or kinematic BC.

If the sea surface is treated as a free boundary, the BC must
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satisfy the condition that the perturbation pressure be conserved at
the sea surface, z =n(x). The linearized statement of this condi-

tion is

o'z
—_— = =0
It [Tl’t+W o ] l ,
z=n o z=n
or
Tl't - ngJx
=gn, at z=n
Since
m,_ =gy at z =n

tx XX

and, with the frontal interaction and the neglect of fh’

2 — 2
T = (o -fv(fv+vx))u -Mw

1l

2 — 2
(e AV D, - MUY,

from the x-component EOM, then

]
A

2 - 2
(FBC): [(o -fv(fv+ v, MY+ quxx]lz:n

which is a natural or dynamic BC. In Chapter IV, the FBC is de-
rived in the process of developing the variational principle for the GE.

The significance of the FBC to inertial-internal waves is an is-

sue which is not thoroughly understood. Using L and D as the
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horizontal and vertical scales of the wave motion, and neglecting the

frontal interaction, the FBC is necessary when

O(W’z‘) } YLz .
qux D
where
O'Z-fvz
= ( .
Y p )
‘g . . -11 6
For the semidiurnal internal tide, vy~ 10 , L~ 10 cm, and

take D to be the water depth. Then, the FBC is necessary when
D~ 10 cm. Because the FBC appears significant only for shallow
water, the RBC is commonly applied at the sea surface. For most of
the cases in Chapters VI, the RBC is applied at the sea surface, but
there are situations when the FBC is essential

When variables are separable, the FBC presents no analytical
difficulties. Its chief effect is to modify the eigenvalues of the solu-
tion. However, when variables are not separable, the influence of
the FBC is more subtle. Mechanical analogues for the GE are given
in Appendix IV to illustrate the FBC's qualitative effects.

When the artifice of a vertical coastal barrier is adopted, the -
RBC is ordinarily applied. For purposes of illustration, a lossy
boundary condition, LBC, is employed in some cases. The LBC ad-
mits non-zero normal velocity but requires no net mass flux across

the coastline.,. Thus, the coastline is treated as a flexible barrier
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which can absorb energy but not mass or momentum. In other words,
the fluid can do flow work on the flexible coastal barrier when the

LBC is invoked.
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III. THE GENERAL PROPERTIES OF INERTIAL-INTERNAL
WAVES, WITH APPLICATION TO THE FRONTAL
INTERACTION PROBLEM OFF OREGON

A. Introduction

For over a century, inertial-internal waves have intrigued in-
vestigators for the following reasons:
i) The waves are ubiquitous in the Ocean and Atmosphere.
ii) The subtleties of the waves are challenging to detect, de-
scribe, and comprehend.
iii) The waves play essential roles in other dynamical processes.
iv) The waves affect the distribution of the physical, chemical,
biological, and geological propertieé of the Ocean.
Numerous studies of inertial-internal waves have been con-
ducted theoretically, experimentally, and observationally, yet these
waves are not fully understood. However, several properties of
these waves have been determined reasonably well. Since it is im-
possible to examine all of the properties in a single theoretical, ex-
perimental, or observational study, and since ignorance of a key as-
pect of the waves can cause misinterpretations, it is necessary to
have a basicunderstanding of the physics of inertial-internal waves.
This chapter contains a discussion of the properties of inertial-
internal waves rather than an annotated bibliography. Several bibli-

graphies on inertial-internal waves have been prepared in the recent
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past, e.g., Lee (1965).

Several of the basic studies of the theory of iynertial-inte‘rnal
waves are cited here. Fjeldstad (1933, 1964) applied normal mode
theory to cases of variable Nz(z) and compared his results to ob-
servations in a fjord; his success stimulated the modern investiga-
tions. Eckart (1960) applied the techniques of quantum mechanics to
the normal mode theory and initiated the study of inertial-internal
waves by ray theory and Poincare phase diagrams. Tolstoy (1963)
made a broad survey using a Lagrangian rather than an Eulerian
formulation. Phillips (1966) analyzed inertial-internal waves within
the theoretical framework of modern surface wave theory. Krauss
(1966a) published a comprehensive text on inertial-internal waves,
including material on the normal mode theory and the theory of char-
acteristics. Krauss (1966b) reviewed the contemporary knowledge of

inertial-internal waves.

B. General Properties of the Waves

Inertial-internal, internal, and inertial waves are distinguished
by their respective domains of hyperbolicity. Free waves can exist
at frequencies within the domain of hyperbolicity, thus the domain of
hyperbolicity can be interpreted as a passband. In the case of con-
stant coefficients, the three-dimensional GE, derived in Appendix II,

for inertial-internal waves is:
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2 2 2 2 2 2 2
- - - - -f =
(N -0 )rrXX + (N -0 +fh )'n'yy vafh-n'yz (o V)'n'zz 0,
where

2 2.2

(N -¢o )fv 5

———— < ¢ <N, if f <N (the usual case),
2 2 2 v

N -o +fh

defines the passband which is of most interest. With the neglect of

10 .
fh and coefficients assumed constant, the GE is:
2 2 2 2
N - - -f =
(N*- o) b ) - (@t = 0,
where, o =f and o =N are the low and high frequency limits,

respectively, for the passband.
Internal waves can occur only when the Earth's rotation can be ‘

neglected; they depend only on the effect of buoyancy. . The GE is:

2
(N -0'2)(1r 7 ) - o’zn = 0,
XX yy zz

where ¢ =0 and o =N are the low and high frequency limits,
respectively, for the passband.
Inertial waves can occur only when the Ocean's density strati-

fication can be neglected; they depend only on the effect of the Earth's

10
For the remainder of the dissertation, £, is neglected and

the symbol f is used instead of f,. In Appendix II, some of the con-
sequences of neglecting f, are considered.
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rotation. The GE is:

0‘2(11' +m ) - (fz-crz)-rr = 0,
XX yy zZZ

where o =0 and o =f are the low and high frequency limits, re-
spectively, for the passband. The similarity of buoyancy and inertial
effects allows the application of results from studies of either internal
waves or inertial waves to the other, or to inertial-internal waves,

by analogy.

The observations of Fofonoff (1968b) give graphic proof of the
passband relation for inertial-internal waves; his temperature and
velocity spectra fall off rapidly outside the limit frequencies of the
passband. For a fixed frequency, there exists a critical latitude
poleward of which an inertial-internal wave can not propagate as a
free wave. Oregon is poleward of the critical latitude (about 30°N)
for the diurnal tides but equatorward of the critical latitude (about
72°N) for the semidiurnal tides.

With the frontal interaction, the passband is

_ - ~ 2
f(f+vX) - szN2 < o‘2 < (1+sz)N .

Since v, can be either positive or negative, the frontal interaction
can narrow or broaden the passband. The order. of magnitude argu-

ment given in Section II. D. suggests that the frontal interaction off
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Oregon broadens the passband. The observations discussed in Chap-
ter X indicate that ;x and s vary as functions of time and space.
Thus, the passband in the frontal zone of coastal upwelling varies
with time and space.

Except for finite spectral peaks at tidal and inertial frequencies, ’
there is a general tendency for the spectral slope of velocity spectra f
to decrease with a minus 5/3-power dependence on frequency in the f
passband, Ozmidov and Yampolslgiii (1965) and Fofonoff (1968b). A ?
minus 5/3-power law is also the frequency dependence of the energy |
spectrum in the inertial sub-range of the equilibrium range for iso-
tropic turbulence. However, the physical conditions of the Ocean for
inertial-internal waves differ vastly from the ideal conditions for iso-
tropic turbulence. When dispersion relations for finite depth are in-
cluded in the analysis, power laws ranging from minus 1 to minus 2
are anticipated. Temperature spectra also tend to decrease with a
minus 5/3-power law. From the inspection of many spectra, Fofonoff
(1968b) advanced the idea that there is a tendency for the development
of a saturation spectrum in the passband, at least in the deep ocean.
He interpreted this to mean that there may be a universal equilibrium,%§
involving coherent internal waves and incoherent turbulence, estab-
lished by shear instabilities of internal waves.

The upper frequency limit of inertial-internal waves is N(z), \

the Vaisala-Brunt frequency, Vaisala (1925) and Brunt (1927). The
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Vaisala-Brunt frequency is the frequency of free oscillation of a water
parcel displaced from hydrostatic equilibrium in a stratified fluid.

It takes into account the adiabatic compressibility of sea water:

2 - 0 9T de, 9p 9s - 9 0
N L - R IR J.
o o in situ adiabatic
where 46 _-13% = £.  is the adiabatic lapse rate, E
dz P, 9% 'adiabatic Ci
is the static stability, and c_ is the speed of sound. Since, for the
. -5~ ~ -3 -3 .
coastal region off Oregon, 10 ~ < E(x,z)< 10 “sec ~, and since
2 -5 -2 sy
(g/cs) =4,4x%x 10 “sec , the effects of compressibility can not be

neglected in the computation of N2 without verification. In the
upper layers of the Ocean, and in the coastal region off Oregon, an
approximate formula can usually be used:

do

E-=8_t 1077
po dz

-do‘t

~

dz °’

where o, is sigma-t, the density anomaly without regard for adia-
batic effects, and 2z 1is in units of centimeters.

Pure Vaisala-Brunt oscillations represent a striétly differen-
tial, or local, viewpoint. A kindred class of motion is that of internal
cellular waves (Neumann, 1949), which admits finite depth and hori-

zontal wavelength,
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11
The characteristic relation, CR, is

2.2 2
0_2 N (k +£7)
o2 2 2
(k +£ 4m )
2 2
assuming o > fz. Replacing k2+22 by K™~ = (—=) , where
)\(h) is the horizontal wavelength and m2 by (EHT_")Z for the nth

vertical mode in finite depth, H, then

UZ B N2
n 1+ (n)\ (h))z
2H

Thus, when )\(h) ~ 2H, there can exist free motions at a discrete
set of frequencies less than N for a fixed )\(h). Waves at or near
such frequencies have been associated with the occurrence of surface
slicks in coastal regions and with temperature oscillations (LaFond,
1962 and Carsola, et al. 1965). Inthe shallow waters of Massa-
chusetts Bay, Halpern (1968) has detected high frequency stability
oscillations; the generation of the waves is correlated with the sur-

face tide.

In a theoretical analysis of internal tides, Vapnyar (1964) gave

11
The term characteristic relation, CR, is used repeatedly for

the equation which results from the GE when SHM is assumed for the

spatial dependence, i.e., Y < e1(kx+£y+mz), where k, £, and m

are the x, y, and z wave numbers, respectively.
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a physical theory linking the tides and V&isdld-Brunt oscillations. His
view is that the passage of a surface i;ide excites Vaisdla-Brunt oscil-
lations. In turn, the VaisZla-Brunt oscillations excite the internal
normal modes at the tidal frequency, each of which propagates at its
own phase speed. Internal cellular waves could be present in the
time series of the present study.

Layered models, with each layer homogeneous in density, have
been extensively studied byDefant (1961), Rattray (1960), Ichiye (1963),
and many others. There are analytical advantages to the study of
layered models, which yield interfacial waves rather than true inter-
nal (body) waves. The relevance of interfacial waves as idealizations
of inertial-internal waves remains uncertain. Some of the essential
physics of the inertial-internal waves are missed by the study of the

interfacial waves. For instance, interfacial waves concentrate all of

the vertical shear in horizontal velocity, or vorticity, at the density

discontinuity, while inertial-internal waves distribute the vorticity
throughout the fluid. Interfacial waves can be treated analytically as
irrotational, so a potential function can be defined in each layer.
Inertial-internal waves are rotational (shear) waves, as established
in Section II: C., so no potential function exists for them.

As an eigenvalue problem, the GE and its BC's admit an infinite
number of solutions, or normal modes, when SOV is possible.

Fjeldstad (1933) initiated such studies. Yanowitch (1962) proved that,
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in the limit of an infinite number of layers, the eigenvalues for a lay-
ered system converge to those for a continuously stratified system.
The eigenvalues lead to calculation of the modal phase speed if the
horizontal wavelength is known; the modal phase speed is approxi-
mately inversely proportional to the modal number. The important
deduction that the largest amplitude of the waves is expected to occur
at the base of a pycnocline follows from the normal mode analysis
made by Tareev (1963).

Gossard and Munk (1954) and Gossard (1962) developed the
basic waveguide theory for fluid layers with N constant in each
layer. This case is intermediate between interfacial waves with p
discontinuous and inertial-internal waves with N continuous. They
found it possible for leaky waves to transfer momentum across a
waveguide, i.e., a layer in which N is a maximum. Eckart (1961)
found that it was possible for momentum to be exchanged between
waves trapped on two or more pycnoclines, or waveguides. Thus,
momentum transfer may occur across and between the permanent and
seasonal pycnoclines in the coastal upwelling region. The observa-
tions of the present study do not allow the examination of this possi-
bility.

Eckart (1960) remarked the possibility of using the theory of

characteristics to analyze inertial-internal waves, but he chose to
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use the WKBJ12 approximation to develop a ray theory. Magaard
(1962) and Sandstrom (1966) were the first to use the theory of char-
acteristics to construct solutions. Fofonoff (1966) applied the theory
of characteristics to the design of field observations, plotting the
characteristics seaward of an assumed source at the edge of the con-
tinental shelf. Longuet-Higgins (1969) has developed a theory for the
scattering of internal waves by irregular surfaces using the theory of
characteristics. Jones (1969) has initiated the study of the propaga-
tion of internal waves through a temporally and spatially dependent
velocity field with the aid of ray theory. The theory of characteristics
is used extensively in this dissertation rather than the normal mode
or ray theories.

The technique for finding the equation of the chakracterkistics
from the GE is given in Section V. B. The characteristics have sev-
eral mathematical and physical interpretations:

a) They delimit the domains of influence and dependence for

initial value problems.

b) They define the trajectories along which discontinuities in

the solution, or shocks, propagate; i.e., they are colinear
with the group velocity and energy flux.

12 . .
The WKBJ approximation is the Wentzel, Kramers, Brillouin,

and Jeffreys approximation which assumes that the amplitude of a
wave varies slowly over a wavelength, allowing the development of a
ray theory from an approximate wave function in the case of variable
coefficients.
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c¢) They are lines of constant phase; i.e., they are perpendicu-
lar to the phase velocity and the vector wave number.

d) In the two-dimensional case, they are coplanar with particle
trajectories; i. e., they are the x-z plane projections of
streamlines.

These properties are developed in this section and in Chapter V.

With the neglect of fh’ the horizontal asymmetry of the

three_dimensional GE vanishes so it is sufficient to consider the two-

dimensional case. For simplicity, neglect the frontal interaction.

Then the equation for the characteristics, ¢, 1is

R R T ST R

Assuming constant coefficients, then the solutions for § are

§,+ =z - Rx
and
t” =z + Rx,
where
O'Z-fz 1/2
R = ( )
2 2
N -o

+ -

and § and § are the upgoing and downgoing characteristics
; AN . +

respectively. Let ‘C be a unit vector along § constant, then

A (1, R)

e
(1+r%)Y%
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A vector wave number, K = (k, m) is introduced; then the CR yields

k
so — = + R. The spatial phase of the solution corresponding to the

positive root of % is 6+ = kx - mz. Then the slope of a line of

k .
constant phase is —Z-) =—=R, or 9+ constant is parallel to
dx 6+ m
+ + .
£ . Let /é be a unit vector along 6+ constant, then

k

N (1,’ =)
- k2.1
(1+(=))
and, since T<’+ = (k, -m), then /6\+ . _l:+ = 0. Therefore, the plus

vector wavenumbers are orthogonal to the upgoing characteristics,

since z_,||e. Similarly, s = (k,m) and

The phase and group velocities are analyzed in this section
without regard for the influence of boundaries. By definition, the

phase velocity is

!
‘Wl
qQ
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and the group velocity is

cg = (trk, o)

Using the CR,
T = “2 (k, m)
P (14R“)m
Since
T = ! (k, _Rzm), where R!' = :—B R
& RR'm v

then

T -c =0

g |Y

Therefore, the phase and group velocities are orthogonal, which is
then a general property of wave motions whose GE's dependence on
o can be placed in the coefficient of one second-order term.

As a familiar counter-example, consider the case of the two-

dimensional Helmholtz equation whose spatial dependence is elliptic:

where the CR is

2 2
%+2%) - R%(e) = O
Then
b a
c =—(k, 1)
2
P r
and
- 1 R
¢y “®rR & OFTRT S
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Since

— —
cC X C

= 0,
p g

the group and phase velocities are colinear, as for surface gravity
waves.

For inertial-internal waves,

2 2 2
< :—%(Nz"’z)(k,m), thus |<_| = (———Nz“’2 )1/2;;1'-
P m“ Nt P N°-f
Since
2 2
RR' = %
N°-o%)
then
2
O P T i ~ ottt 1R (N
c = 2"2(k" > m), thus |c|=(22) p—
& omipl-£%) (N“_¢“) & N

Thus, the propagation of inertial-internal waves is dispersive and
anisotropic. Since ,{,\ is perpendicular to T;, then ’i ig parallel
to _gg and orthogonal to —C.p' Therefore, _é.g parallels the char-
acteristics while -gp is orthogonal to the characteristics. Because
discontinuities in the second and higher order derivatives do propa-
gate along characteristics, it is clear why _gg is parallel to the
characteristics. ¢ tends to the horizontal as N increases or
when ¢ tends to f; thus, a pycnocline serves as a waveguide,

especially as ¢ tends to f. As a corollary, lines of constant
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phase tend to parallel a pycnocline. The EOC implies that
uk + wm = 0, or

—
C

= 0,
P

—
u -
where

u = (u, w).

Thus, the particle velocity is orthogonal to ?p and & and co-
planar with ?g and /t_}

For the frontal interaction, the CR is

2 — 2
(N2 -2k - 2kmM? - (o’z-f(f+vx))rn - o.

Then

2 /2

s MPe it ef) el v )

- H

2 s
(o -f(f+vX))

m
k

which indicates the asymmetry of the upgoing and downgoing vertical

wave numbers, for a fixed horizontal wave number. Since

where
. [(Nz-oz)(Nz-f(f+$X))+2M4iZMZ(M4+(Nz_oz)(oz_f(f+$x)))1/2]
A = 2 2.2
(N -¢)
then
+ o +
(&) == o m)),
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thus
—- 1 172
) -
A m
Similarly,
*
(c ):h = lim .-k [(Nz-f(f+_\-/_ ))km:h + Mz(kz-mz)]-
g o 4 x2 b4
m (a)

Thus, there is also asymmetry in the phase and group velocities of

the upgoing and downgoing waves.

C. Further Properties of Inertial-Internal Waves, with
Application to the Coastal Region

The possible mechanisms for the generation of inertial-internal

waves include:

i) Inertial-internal waves may be generated by a surface wave
or an internal wave passing over a region of variable topog-
raphy (Zeilon, 1934; Rattray, 1960; Cox and Sandstrom, 1962;
Ichiye, 1963; and Sandstrom, 1966).

ii) Internal tides may be generated by gravitational forces
(Petterson, 1934; and Krauss, 1966c¢), especially at the cri-
tical latitudes where resonance occurs.

iii) Internal waves may be generated by wave-wave interactions,
or scattering (Ball, 1964; Thorpe, ‘1966; and Kenyon, 1968).
The interactions could involve surface as well as internal

waves and would involve the vertical modal numbers as well



60
as frequencies and horizontal wave numbers.
iv) Inertial-internal waves may be generated by perturbation of
a mean flow from an equilibrium state (Fjeldstad, 1958), or
by the winds (Pollard, 1968).
Mechanism i) is probably the most significant for the generation of
the semidiurnal internal tide in the coastal region off Oregon.

Theories for layered models, such as those of Rattray (1960),
Ichiye (1963), and Weigand (1964), show that barotropic and baro-
clinic waves are coupled by stepped bottom topography, thus
barotropic waves can generate baroclinic waves with appreciable
amplitudes. For continuous models, Sandstrom (1966) used the meth- :
od of characteristics, the RBC, and experimental evidence, to de-
velop the concept of a critical bottom slope: a wave sustains large
amplification when incident on a bottom whose slope approximates
that of the wave's upgoing characteristics.

The basic principle of inertial-internal wave reflection from a
sloping rigid boundary is demonstrated by the simple case of a plane
wave incident on a bottom surface with uniform slope at depth
z = ‘Ho - m X, where m > 0 is the bottom slope. Take

- - i -k~ -
Y =c el(o_t x+m”z) for the downgoing wave and

LP+ _ C+e'1(,0't-k+x-m+z)

for the upgoing wave; then { = LlJ+ + ¢ . The RBC requires that
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n 2=-H_-m x = constant for all x;

a necessary condition is that

k+-m+m =k +m m .
o o
Since
- +
k k
—_— =~ =R >
_ + 0,
m m
then
m+ ) m_(R+mo )
- R-m :
o

Therefore, if the slope is subcritical, i.e., if R > m , then
+ - + -
m >m and k' > k~. Thus the absolute value of the wave number '

is amplified upon reflection of a wave progressing up a slope. (This

relationship is investigated more generally in Chapter V.) Conse-

quently, since l—gpl and l—ggl are inversely proportional to m,
from Section B, then |—c>p| and |?g| — 0 as a wave sustains an

infinite number of reflections from a subcritical, sloping rigid bound-
ary. This property is analyzed further at the end of this section. It
is observed that the reflection rule is based on the fact that the
orientation of the characteristics and the wave numbers is fixed in
space, i.e., they are not oriented symmetrically with respect to the
normal to a sloping boundary as are wave number vectors for motions
governed by an elliptic GE.

The condition for a critical bottom slope, m is given for a

C’
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fixed frequency by

or, for a fixed bottom slope, m , the critical frequency, o ,
is given by
m02N2+,f2
c = (———)

c 2
m +1
o

1/2

The concept of subcritical, critical, and supercritical bottom
slopes is illustrated for a coastal region in Figure 5. The symbols

n and { represent upgoing and downgoing characteristics, re-
spectively, which is a convention maintained throughout the remainder
of this dissertation,

With the frontal interaction,

RY I VI CRpC Ty 7 v N2

m =
c (NZ_O_Z)

Since M2 < 0 in the case under consideration, and if -\;x< 0,

as it is near the coastal boundary, then m > R; 1i.e., the frontal

interaction exerts a stabilizing influence on bottom reflection.

Wunsch (1968, 1969) found partially separated no rmal

modes for a progressive wave in a wedge; he reproduced the qualita-

tive feature of marked amplification for near-critical bottom slopes.
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Thus, critical bottom slopes are thought to play a crucial role in the
generation of internal tides by surface tides.

In November 1966, Mesecar (1968) occupied a thermoprobe
station on the continental slope off Depoe Bay, Oregon for 115 hours.
The water depth was about 250 meters, and the distance offshore was
about 33 kilometers. The thermoprobe site was close to the seaward
sensor site of the present study, but it was occupied two months after
the observations on the continental shelf were completed. The ther-
moprobe sampled the lower three meters of the water column and
deeper than a meter into the sediments, once every hour.13 Though
there were no detectable temperature gradients in the lower three
meters of the water column, he found large amplitude temperature
oscillations, of the order of 0. 2°C° to -0.5°C% The oscillations oc-
curred primarily at the semidiurnal frequency and its harmonics,
and they extended at least 36 but less than 121 centimeters into the
sediments. This is indirect evidence for strong semidiurnal bottom%
currents on the continental slope. Recently, Korgen (1969) has ob-
tained direct evidence of semidiurnal tidal speeds close to the conti-
nental slope; they are an order of magnitude greater than those ob-

served over the continental shelf. For the location and season of

13,
The sensors had a 15-second time constant. Samples were
taken once every 10 seconds for the first twenty-four hours. No short
period fluctuations were detected, hence a reduction in sampling rate

was made.
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Mesecar's observations, the best estimate of static stability is
E=1 to 2x 10_55ec_2. At the semidiurnal frequency, the critical
bottom slope, m_, is then m = 2 to 3 x 10-2, while the bottom
slope, m, is m= 2 to 5x 10-2. Hence, the bottom slope is
probably critical or supercritical for the semidiurnal internal tide,
which is consistent with Mesecar's observations. Thorough time
series observations of both bottom currents and static stability over
the continental slope are necessary to verify this speculation. Since
the static stability field over the continental shelf and slope is affect-
ed by coastal upwelling, then the criticality of the bottom slope may
wax and wane with the state of coastal upwelling. If m does vary
in such a manner, the generation process of internal tides may vary,
and the internal tide over the continental shelf may have its character
modulated too.

Because large horizontal velocities associated with inertial-

internal waves can occur near the sea bottom, such motions can pro-

duce net sediment transports and sand ripples (LaFond, 196la).
These effects are expected to be most significant in shallow regions,
e.g., coastal regions. Associated with the observations of this dis-
sertation, there may be strong currents at the sea floor capable of
modifying the distribution of sediments. Neudeck (1969) has found
evidence for ripples in the sediments on the Oregon continental shelf

which appear to be consistent with generation by internal waves
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propagating onshore. Simultaneous measurements of both geological
and physical properties near the bottom on the continental shelf have
yet to be made and promise to be useful for the study of inertial-
internal waves as well as geological processes.

The earlier observations of inertial-internal waves were based
on temperature measurements. The observations of Haurwitz,
Stommel, and Munk (1959) raised questions about the behavior of
inertial-internal waves over sloping bottoms and the lack of coher-
ence of tidal motions over relatively small spatial separations. The
analysis of Radok et al. (1967) showed that, in mid-ocean, the lunar
semidiurnal internal tide (MZ) ‘was incoherent with respectto the lunar
tide-producing forces. They attributed the random phase of the inter-
nal tide to the Ocean's variable temperature or current structure.
They noted that the order of magnitude of the r. m. s. surface eleva-
tion associated with the M2 internal tide is consistent with the ob-
served r. m. s. incoherent MZ surface elevations at coastal sta-
tions. (This is an example of where the FBC may play an essential
role.) The measurements of Lee (1961), LaFond (1962), and Gaul
(1961) pioneered the study of internal waves in very shallow water,
the order of 20 meters deep; a fundamental lack of wave coherence
was found (Cox, '1962).

Dowling (1966) used a linear array on the continental shelf off

northwest Florida and found that high frequency internal waves obeyed

«,;»"’W
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the dispersion law derived for the ambient stratification and finite
depth; his measurements also suggested the existence of a continuum
of wave motions. He advanced the hypothesis that breaking internal
waves operate to establish a hyperbolic tangent density profile as an
equilibrium configuration. The tendency for the density structure
over the continental shelf off Oregon to have a hyperbolic tangent or
an exponential depth dependence has influenced the choice of the
frontal models employed in Chapter VII.

Summers and Emery (1963) found semidiurnal internal tides
propagating onshore from the continental slope with phase speeds of
350 cm/sec over the continental slope and of 50 cm/sec over the con-
tinental shelf off southern California; the wave crests were aligned
with the bottom contours and the wave amplitudes were of the order of
30 meters. (Their study served as early guidance for the design of
the observations and the theory of this dissertation. ) All but the
measurements of Gaul (1961) were concentrated near 30°N, where it
is difficult to resolve the inertial and diurnal motions.

Boston (1964) employed current meters in the geographic vicin-
ity of Dowling's studsr; he found that the tidal motion was baroclinic
and that it had a character suggestive of an internal edge wave.
Mortimer (1963), using temperature measurements, in Lake Michigan,
at a latitude similar to Oregon's, has detected a myriad of barotropic

and baroclinic long wave motions under the influence of finite depth
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and coastal boundaries, including baroclinic inertial motions. Using
current data, Malone (1968) confirmed the occurrence of baroclinic
inertial motions in Lake Michigan during the season of strong strati-
fication. The studies in Lake Michigan are of special interest be-
cause a coastal jet and coastal upwelling occur there, as well as off
Oregon. Recently, Warner (1968) made current measurements
off the coast of Nova Scotia, also at 45°N. The observational tech-
niques used were very similar to those reported in Chapters X and
XI. The spatial coherence of internal tides was found to be generally
lower than had been expected, a feature common to the observations
off Oregon.

Haurwitz (1954) discussed the spasmodic, inconclusive evidence
for the occurrence of internal tides in the deep ocean. Since the time ‘
of his study, the evidence has become more convincing for the exist-
ence of internal tides, though it indicates a general lack of spatial
coherence (Webster, 1968a and Munk and Phillips, 1968)..

Yasui (1961) advanced a theory for internal tides in the strong
front in western boundary current regions; his objective was to ex-
plain the observed lack of internal tides in such regions. His model
was based on a two-layered system with waves propagating along the
axis of the front. He found that the front would tend to block waves
attempting to cross it and would respond by tending to meander.

As this dissertation was in the final stages of revision, Healey
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and LaBlond (1969) published an analysis of inertial-internal waves
propagating transverse to a geostrophic current. They did not make
the Boussinesq approximation in their theoretical analysis, (The GE
without the Boussinesq approximation is derived in AppendixV.) As a
consequence, though the principal part of their GE is equivalent to
the GE of this dissertation, it includes terms with first-order partial
derivatives of small consequence. Two of their qualitative conclu-
sions are identical to deductions made in this dissertation, viz., an
asymmetry in a wave's phase as a function of depth, which is Ofs),
where s is the slope of an isopycnal, and an alteration of the pass-
band, which is O(sz), are induced by the geostrophic current.

Not having made the Boussinesq approximation, they were able to
analyze the energy exchange of the interaction, which they found
O(s”), 1i.e., very weak and negligible.

Most theoretical studies of internal waves in a shear flow, e.g.,
Phillips (1966) and Booker and Bretherton (1967), have been made at
high frequencies so that the Coriolis parameter could be neglected.
The concept of the critical level, i.e., the level at which the mean
horizontal velocity and wave phase speed are equal, so
o - u(z)k - v(z) = 0, has received recent attention. The signifi- g
cance of the critical level is that a transfer of momentum from a %
wave to a mean flow can occur there. Jones (1967) has included the

effects of rotation and has found two additional critical levels
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corresponding to o - u(z)k - v(z)f = xf, where { 1is the vertical
component of the Coriolis parameter. He also found that the solutions
to the wave equation differ markedly from the case without rotation in
the vicinity of the critical levels. In the two-dimensional case, the

relation for the most likely critical level reduces to

. ch(cr)
f ch(O')-ﬁ(z) ’
where c is the phase speed in the x-direction. Using the esti-

h

mates of ch(cr) from Figure 32 and 4~ 10 cm/sec from Chapter

X, then o = 1.1f could have a critical level. Thus, it is possible
that low frequency inertial-internal waves have critical levels in the
coastal region off Oregon. Advective accelerations are not generally
expected to be of significance for a wave propagating cross-stream in

the frontal zone of coastal upwelling because N > u. They could

be significant for a wave attempting to propagate inshore of the sur-
face front because c decreases as the depth decreases, or

h
alongshore because <y v. If the critical level existed for along-
shore propagation in the frontal zone, it would be expected to be found
near the surface front where the alongshore flow is the most intense,
or in the pycnoclinic jet at the base of the inclined frontal layer.

2
Phillips (1968) has shown that vertical variations of N and

of vertical shear in the steady flow in a layer of finite thickness can
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lead to nonlinear interactions with internal waves causing the inter-
nal waves to be trapped in the layer without a loss of energy or mo-
mentum from the steady fields.

Garrett (1968) has examined the theoretical formulation of the
interaction between internal waves (without rotation) and a quite gen-
eral shear flow. He derived and compared the radiation and inter-
action stress tensors, which were not identical.

Shen (1967) studied the propagation of long internal waves
oriented at an arbitrary angle with respect to a mean wind with verti-
cal shear. Neglecting the Coriolis force, he found that waves could
propagate at any angle and that the cross-wind modifies the perturba-
tion velocity to include a component of wave particle velocity perpen-
dicular to the direction of wave propagation. Sirﬁilarly, in the case
of frontal interaction, if the Coriolis force is neglected, the along-
shore component of wave particle velocity, v, is excited due to the
effects of ;x and _\;z on a wave propagating in the onshore-
offshore direction.

Bowden (1965) investigated horizontal mixing due to a shear cur
rent, including the tidal as well as the steady component. Using the-
oretical flow models and observational material, he demonstrated

that shear flows led to enhanced horizontal mixing, while density !

stratification suppressed vertical mixing. He attributed the tutrbx;xlenﬁg

mixing to tidal fluctuations, and he concluded that such effects are
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likely to be significant in coastal waters.

In laboratory experiments with layered models, Zeilon (1934),
Keulegan and Carpenter (1961), and Weigand (1962) have observed
mixing associated with interfacial waves and the subsequent genera-
tion of secondary currents along the interface. Weigand's results are
of particular interest because he included a stepped shelf; he found
that water was mixed along the interface in shallow water and flowed
into deep water. There is a possible analogy to be drawn here with
the cross-stream flow at the base of the inclined frontal layer off
Oregon. This seaward flow carries newly formed water, which is
usually marked by a temperature inversion, as discussed in Chapter
X.

The instability processes of internal waves are not fully under-
stood. Woods (1968) made in situ photographs of evidence for inter-
nal wave instability. His evidence indicates that the vertical and hori-
zontal scales of breaking internal waves are a few centimeters and
tens of meters, respectively, which are much smaller scales than
those of the observations in this dissertation.

A continental shelf is expected to manifest large amplitude
inertial-internal waves, especially near the coastline where linear
theory predicts the development of unbounded amplitudes. Griscom
(1965) constructed a nonlinear theoretical model for interfacial waves

which successfully reproduced observed waveforms in shallow water
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on the continental shelf off southern California. In shallow water off
southern California, LaFond (1961b) found that the character of the
nonlinear internal waveform, and associated surface slicks, was de-
pendent upon the position of the thermocline with respect to the sea
surface and sea bottom. Recent experimental (Davis and Acrivos,
1967a) and theoretical (Benjamin, 1966), studies have found the
existence of finite amplitude, solitary internal waves to be probable.
Thus, it is necessary to be cautious about the validity of the linear
theory and to be alert to the possible occurrence of finite amplitude
effects in the observations over the continental shelf.

The most thorough study of the damping of inertial-internal
waves is that of LeBlond (1966). He considered the case of continuous
density stratification and of damping by eddy viscosity. ILeBlond
found that a long wave can not endure more than a few cycles as a
free wave in depths commensurate with those of a continental shelf,
though it can propagate to very large distances from the coast in the
deep ocean. Thus, the internal tide is expected to be damped as it
propagates shoreward over the continental shelf and to be amplified
upon reflection from the sloping bottom. The process of dampling
may preverif the unbounded growth of inertial-internal waves by bot-
tom reflection.

The theory of characteristics is used to estimate the effective

horizontal wavelength, )\(h), and phase speed, Cy» taking into
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account the influence of finite depth. Neglecting the frontal interac-

tion, since the slope of a characteristic (a line of constant phase) is

51_5) - a( o'Z-f2 )1/2
dx '+ ~ ’
b4 N'Z-o'z
then
+ 2(x) N2 527
X -xX =% ( ) d
o (x ) 2 fZ
z(x -
Taking the mean depth to be H, then zZg = -H, thus
z (x.)=0 z,(x, )=-H
m (°! N%_o% 12 B2 N2 2 1/2
)\ = ( ) dZ - ( ) dZ,
(x )=-H 2 fZ Yy (x.)=0 2 fZ
zg(x )=- o - z (%)= o -

where z:ZO:O is the vertical coordinate of the sea surface and
X=X, is the horizontal coordinate of the intersectionofthe sea surface
with the characteristic originating on the bottom surface at X=X
and where X=X, is the horizontal coordinate of the intersection of

the bottom surface with the characteristic originating on the sea sur-

face at x=x If the x-dependence of N'2 is neglected, then

1

if the z-dependence of N2 is neglected, then
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2 2
h N - 1/2
L0 Nt e
2 2
o -f
where N is the average value of Nz. For a wave of period
T = %_E, the effective horizontal phase speed is

. 2H N _0'2)1/2
‘hT T 2 2
o -f

Thus, several qualitative remarks follow:

i) < >0, 1i.e., wavefronts do not propagate horizontally
o—N
at the Vaisala-Brunt frequency;
ii) c > o, 1i.e., wavefronts propagate horizontally at in-
oc—f
finite speed for inertial motions;
and
iii) ¢ > 0, i.e., wavefronts never reach the coastline.
H—0
<1 . . . 3 Y
For the semidiurnal internal tide, o * Ef and f =10 "rad/sec,

the following values are obtained for the continental shelf off Oregon:

H (meters) N2 ((rad)z) x(h>(m) c, (cm/sec)
sec h
DB15 to DB5 140 2 x 10'4 35 78
DB10 to DB5 110 2 x 10'4 28 62.

Then the estimated phase differences, AO, are:
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Ax (KM) A0 (degrees)
DB15 to DB5 20 205
DB10 to DB5 10 130 .

Consistent with the above analysis, the effects of finite depth

on ?p and —C>g are investigated. With finite depth, _gp and

?g have, overall, only a horizontal component due to reflection of
the waves from the free and bottom surfaces, or, equivalently, due
to the influence of the BC's. In other words, the effect of finite depth
is a waveguide effect; hence —C.p and _gg have no net vertical com-
ponent and are treated as scalars below. The vertical wave number
is approximated by m = T where H 1is the mean depth over a

2

horizontal wavelength. Then, the CR yields

K = %( o‘zz-fi )1/2 ’
N -¢
Thus
¢ oz H (N2
P k ™ O_Z_fZ

which is equivalent to the results obtained above for the analysis by

characteristics. From the CR,

then
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Cg = crk
1ot
Cp T (NZ_fZ)
_ (_Ii) (crz_fz)l/Z(NZ_ch)3/2
ot (NZ_fZ)

Thus, several qualitative remarks follow:

i) ¢ > 0, i.e., wave energy does not propagate at the
g o—N
Vaisala-Brunt frequency;
ii) ¢ > 0, i.e., wave energy does not propagate at the
€ o—t
inertial frequency;
and
iii) Cg > 0, i.e., wave energy never reaches the coast-
H—O0

line.

HN 2 HN 1/2
—) or — = (c c ) .

2 2
For f <o <<N2, cz—l—(
c ™ ™ P g

g
p
For the semidiurnal internal tide, and the previous estimates

of the parameters,

e (&  Hem, o (23

p sec T ' sec g sec
DB15 to DB5 78 63 51
DB10 to DB5 62 50 40 .

For a water depth of 140 meters, the phase speed of a surface tide

is about 38 meters/sec; thus, the surface tide propagates fifty times
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%

as rapidly as the internal tide. Then a surface tide of progressive
wave type traverses the Depoe Bay array in a period of about 10
minutes, while the internal tide requires about 7 hours to make the
traverse. Consequently, with a 10-minute sampling rate, the sur-
face tide is essentially in-phase across the array, while the internal
tide is essentially out-of-phase across the array.

The method of characteristics has been used to deduce the lines
of constant phase for a progressive wave, as shown in Figures 6, 7 and
8. InFigure 6, the case of parallel boundaries and frontal interaction
is illustrated. The figure demonstrates how the frontal interaction
causes the wave to alternately accelerate and decelerate within an
effective wavelength and as a function of depth. In Figure 7, the
case of a wedge with subcritical bottom slope and no frontal inter-
action is illustrated. The figure demonstrates how the bottom slope
retards a progressive wave within an effective wavelength as the wave
propagates into a wedge. In Figure 8 the case of a wedge with sub-
critical bottom slope and with the frontal interaction is illustrated.
Constant values for the parameters were chosen; they are consistent
with the semidiurnal internal tide and the coastal region off Depoe

Bay, Oregon, in August-September 1966:

-2

2

2. 7Tx 10_4sec

1 x 10-3

=
i

[4)]
I

2



<
i1
1
ot
b
—
o
1
n
(¢]
0O

and
f=1x 10-4sec_1.

Both the frontal interaction and the bottom slope have a significant

effect on the lines of constant phase.
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IV. THE PHYSICAL FORMULATION OF THE INERTIAL-
INTERNAL WAVE PROBLEM IN A COASTAL REGION

A. Introduction

The prkgblem of the propagation of inertial-internal waves into
the coastal region off Oregon is conceived to be set in the following
manner. As shown in Figure 2, the surface, or barotropic, tide
propagates northward along the west coast of North America as a
boundary wave something like a Kelvin wa,ve.14 A general discussion
of permissible motions along a coastal boundary is given in Appendix
I, where Figure 7 illustrates the Kelvin wave model of the semidi-
urnal surface tide. Under the proper conditions of density stratificaf-
tion and bottom slope, the semid;mrnal surface tide generates an in-:‘é

i

ternal, or baroclinic, tide. With the values of static stability ob- |
served in the vicinity of the continental slope, the most likely regior;
for the generation process is-over the continental slope since the bot-
tom slope there is approximately critical for the semidiurnal tide.

Thus, the continental slope is considered the source region for the

internal tide. Once generated, the internal tide propagates shoreward

14
Professor Walter H. Munk (1969) has noted that the lunar

semidiurnal tide propagates along the west coast of North America at
a phase speed which is about 15% less than that of an ordinary Kelvin
wave, He is also analyzing and interpreting recent observations of
the offshore dependence of the tide. He thinks that the offshore de-
pendence of the tide may have some of the trignometric character of
the leaky modes mentioned in Appendix L
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and seaward from the continental slope. With the internal tide propa-
gating essentially in the onshore-offshore-vertical plane, the prob-
lem is two-dimensionalized in the x-z-plane, but without neglectof
the y-component of velocity. If there is perfect reflection at the
coastline, a standing wave is established over the continental shelf.

If the source for the internal tide is stéady, and if any eﬁistent energy
sinks are steady, a steady state motion occurs. With the presence of
energy sinks, the motion over thg continental shelf has the character
of an incident and a partially reflected progressive wave.

Assuming a steady-state, ¢ and its normal derivative, LlJn,
can be determined by measurements of the velocity field (u, v, w).
The initial line, C, is taken as the boundary between the continen-

tal shelf and slope, C = [(Qz): (z_(0) <z i'q(O))]. Then

B

F(z) = $(0,z) and G'(z) = LlJn(O, z) serve as initial data, i.e.,. as
Cauchy data, CD, for constructing the solution to the inertial-internal
wave problem over the continental shelf. The measurement of v(0, z)
is not necessary for the determination of ¢, but v(0,z) does pro-
vide information on the alongshore wave number. (In Chapters V,

VI, and VII, the CD are assumed given.) The BC's are then applied
at the sea surface and sea bottom to construct solutions over the con-
tinental shelf. There are two linearly independent solutions, one cor-

responding to each element of the CD pair. The solutions are indi-

vidually of the form of standing waves. From the two standing wave
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solutions, a progressive wave can be formed. The distinction be-
tween progressive and standing waves is made on the basis of the
time-averaged horizontal energy flux across C. The energy flux
across C is expressed in terms of the CD and their relative time
phases. Other fundamental physical questions are examined viz.,
the reformulation of the energy conservation law, the variational
principle from which the GE is derived, and the conservational law
which the solution to the GE obeys as a function of the horizontal co-
ordinate.

Several integrations are made over the coastal region and
around its boundaries. As shown in Figure 9, the x-z plane cross
section of the coastal region is defined By D: [(x,z): (0K x< L and
zB(x) < z<n(x))], where zB(x) and mn(x) are the vertical co-
ordinates of the sea bottom and the sea surface, respectively, and

where 0 and L are the horizontal coordinates of the initial line

and the coastline, respectively. The boundary of R(C D is

I‘:I‘luf‘zul"3ur‘4,

where

il
N
—_—
»
e
e
e

I, =[(x,2):(0<x<X<L and =z

1 B
r,=C=[(0,2): (z5(0)<z<n(O)],
I‘3:[(x,z):(0ixiX§_L and z:n(x))], and

Ty=[X2): (2,(X) < z<nX)].

B
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when X =L, R=D and T vanishes, since zB(L) =n(L). The

outward unit normals, ﬁ, on I' are!

dz
. A (m-1) B ‘s th
i} For I‘l, n = > 172 where m = T is the bot-
(14m )
tom slope,

ii) For T, f=(-1,0),
iii) For T, £ =(0,1), and
iv) For T, f = (1, 0).

The line integrals around I' have the following limits of integration:

where s = zB(x) is the coordinate of the bottom surface;

I, = S ()dz = yn(o) ()dz,

FZ Z:ZB(O)

where 1 is the coordinate of the sea surface;

—
w
1]
L/‘)
a
»
i
L/‘)
Lo
=
kel

and

=
=
1
L/‘)
=
N
1
3
e
a
N
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The following symbols are used for certain integrals in this chapter;

Zl
l}
~—
3
)
a
N

and

—_
S
1

0 yy( Jdxdz.
D

Two integrals occur frequently in the following sections:

where

is the total potential energy of the free surface in

where

and

where F(X is the horizontal energy flux across

—_ t t t
Since n t = 0 for SHM, then F(X) = FI(X) + FZ(X), where

R and

C:I‘Z.
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is the time-averaged flow work across C and

(x) —t
FZ ® po umn x=0
Z:O
1’12t
=2 o2 x=0
z=0

is twice the time-averaged advection (flux) of potential energy of the

sea surface across C.

B. The Time-Averaged Horizontal Energy Flux
Across the Initial Line

For simplicity, the case of constant coefficients is considered,
though the same results would follow for cases with variable coeffi-
) 15
cients. From Section VI. C., the general solutions for { and =
in the case of frontal interaction and constant coefficients are:

x)-N.F(z-\_x)] + [G(z-M x)-G(z-\_ x)]}

1
){[KlF(Z'xz 2 1 2 1

V=550
(NN,

15 e .
The analysis would require evaluating w at the initial line

from  expressed in terms of an integral involving the CD and the
Riemann-Green function.
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and

.(NZ 2

where

and G'(Z) = LlJn'X:O = Lle'x:O

are the CD and where )\1 and )\2 are the slopes of the upgoing

and downgoing characteristics, respectively. Thus,

ulx:O - _LlJz |X:O = -F'(z)
and
2 2, (NENL)
1T|X:0:1(N0_-0_ )[ 12 2 F(Z)+G(Z)]

Since F and G linearly independent, and since the time
dependence of F and G is only an implicit argument, a time

phase may be arbitrarily assigned to F and G. Take

and

i(ot+(2)) g ),

The time dependence is considered understood when not explicitly dis-

played.
)"
The time-averaged horizontal energy flux, F , Aacross
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t e
(&) 29- ‘g [w#*u+ muk]dz,
PZ

where ( )* 1is complex conjugation

-p 5 1
=5 5 (N2 )F 1 (2)G(z)[-ie " Prie ?1dz
7o
2
_ EE (NZ gz)‘g F'(z)G(z) sin (¢(z))dz
T 20 B T
2

(x)

If F and G are in-phase, then ¢ =0 forall z and Fo=o.

Therefore, the standing waves formed independently by F and G

combine to form a single standing wave, or an internal seiche,

ey

shorewardof C. If ¢ #0 forall z, then F = 0 only if

F'(z) and G(z) are orthogonal on I‘2 with respect to weight

function sin ($(z)). Otherwise, a progressive wave exists. If

c=N, F = 0, as it must for the strictly vertical Vaisala-

Brunt oscillations.

C. The Energy Integral

The energy integral is formulated in a more general way than in
Chapter II. New definitions of energy components are necessary for
the analysis in the following sections. The analysis is valid for the
frontal interaction, variable coefficients, variable depth, and a free

surface,
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Rewrite the primitive equations: .

(1) u, - fv.: -
(2) v, + (f+vx)u + wy = 0,
PE _
(3) Wt1+ . L
(4) p,tup_twp =0,
and
(5) u +w =0.
X z

(1) and (3) are similar because there is a pressure term present,
while (2) and (4) are similar because of the absence of a pressure
term. This similarity of forms suggests treating u and w and
v and p in an analogous manner when forming energy integrals.

Take (u,w) = (§t, Qt), then (2) and (4) become

(2) (v+ (£ )E+v L) =0,
or

v+ (f+;X)§ +v t =0, WLOG
and

(4) (ptp& +p L), = 0,
or

pt+p E+p =0 WLOG.

Eliminate v from (1)and p from (3) with the use of (2) and (4);

then



(1) u, + [f(f+3x)g+M2g] =T
and
(3) W, + [MZ§+NZ§,] =T

Multiply (1) by u = §t and (3) by w = Qt, then

2 _ 2 ,
(y (—Z—)t + f(f+vX)( —Z—)t +M ggt = -um_
and
2 2
" w_ 2.5 2y e _
(3) ( Z)t+N(2)t+M th—-wnz.

Add (1)" and (3)" and multiply by Py’ then

(6) (2uPhwd), + (2 )e% + amPeg + N,

il

il
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-‘(upX + sz)

-(uP)X - (WP)Z’

by (5), the EOC. The LHS of (6) is taken to be the total energy per

unit volume, E. Integrate (6) over D, then

<
I
=

o(um-w)zds + 51 updz - § wpdx

I‘1 N 1+m I‘Z I‘3
_(x) 9
=F - 3t (PES),

since the RBC holds along I Thus,

1
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= _ n(x)
(E+PE ) =F .

—_—t _
Therefore, if F(X) =0, then E + PEs = constant, without as-

suming SHM as in Chapter II. Thus, from Section B, energy is con-
served for a standing wave and not for a progressive wave.

The components of E are defined below:

\12 W2
T.. = Po T. = Po
H™ 2 v 2
V.o = p—°[f(f+§ 162 + M2LE]
H 2 x ’
and 0
0,..2.2 2
thus

E=T+YV, T:TH+TV, and V:VH+VV,

where T and V represent kinetic and potential energy, respec-
tively, and the subscripts H and V represent horizontal and ver-
tical components, respectively. With the introduction of , and

with the assumption of SHM,1 6 then

16Having assumed SHM, then all of the energy terms implicitly
involve the products of first partials of  and of  conjugate, or
the cross products of the partials of ¢ and ¢ and their conjugates
in Section D. This point is essential in Section D where the sum
I, +I5 1is shown to include the time-averaged horizontal energy flux
across C.



po 2 po 2
TH:_E—(LlJz)’ TV:_E—(LPX)’

p  f(f+v ) 2

X 2 M
Vatz 2 W) T b
and

Po N‘2 2 M2

Vy =5 [.;_—Z(LPX) - ?2' VRS

Without the frontal interaction,

po 2

fZ
VH > ;E(LPZ) ,

thus VH is the rotational potential energy. With the frontal inter-
action, both VH and VV are modified and V 1is not positive
definite.

Similarly, the Lagrangian, A, is required in the following

sections:

where

Taking into account the potential energy of the free surface,

K :./_\-V,
(o] s

95
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where Ao is then the Lagrangian for a vertical column.

D. The Variational Principle

The variational principle is discussed for three reasons:
i) The GE and BC's are placed on solid analytical and physical
grounds once the variational principle is obtained,
ii) It is the analysis for the variational principle which has led
to the proper identification of the components of E in
Section C, and
iii) The variational principle also leads to the proper interpreta-
tion of the spatial conservation law in Section E.
The mechanical system analyzed is a continuous system in two inde-
pendent variables; consequently, the variational principle involves

double integrals (Gelfand and Fomin, 1963). The principle of least

action is invoked and the action integral, J, is sought. Since x
is constanton C, x 1is time-like, and then
L ana—
J = ‘S‘ Aodx
x=0
o f(f+v ) 2
o N,2 2 x 2 M
- 5[(1-(;) W)+ (1-—2),) +2—2<¢X¢Z)}dxdz
D o o :
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. ~ - 2 . .
Let  be variedto , where { =y +edp+ O(e’), e 1is anarbi-
trarily small parameter, and ¢ e &, the class of admissible func-
tions. & is defined to be the class of all functions which are twice
continuously differentiable in D and which vanish on I‘l, con-
sistent with the RBC along the bottom surface, and which equal F(z)
on T

X consistent with the CD givenon C. Vary J with re-

spect to ¢, then

f(f+v_) M
87 =cp_ {55' El_(§)2)¢x¢x+ (1- ZX Wt —2(¢Z¢X+¢X¢z)] dxdz
D

[0 [0

B % 5 G b dx} + o).
o I‘3

The condition for the first variation of J to vanish is that
2 2 2
- M
(et s M0,
D

2 —
+ [(o ,f(f+vx))¢z+M2pr]c|>z}dxdz - gS;‘ ¢ ¢ dx = 0.

Integrating by parts, this condition becomes

§21.1=IO+I1 +IZ+I3 = 0,
where
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—
il

§S¢[(N2-v2)¢m - ZMZLlJXZ - (crz-f(f+$x))¢zz]dxdz,

—
tl

2 .2 2 2 - ds
[ slm( NPy ey )- M4 05tV D ) —
r ; (1+m)

0, because ¢ vanisheson T

1’

—
oo
i
t
H ?

2 2 2
pl(c”-NT)y_ + My Jdz
2

= - S‘ ¢(io'1rz)dz, from the z-component EOM,
1_‘2

n(0)
= ic S‘ ¢Z'n'dz - '10'¢'n'|
r

z=z_(0)
and 2 B
. ) n (L)
e | ele?eaev ety eu Jax-gpu |
T z=n(0)
3
Then
=1 ! - .
I2 + I3 io S]‘_—‘ F'(z)rdz + o[ nt+g¢x]|z:n(o)
+ S‘ ol (o -ff+v ))LlJ +M LlJ +g¢ ]dx,
1"
since
= = 0.
¢|z:'q(L) ¢|Z:ZB(O)
Since I, must vanish for any ¢ ¢ & take ¢ =0 on I
i
for a particular case, then I; =0. But ¢ Iis otherwise arbitrary,
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thus

(NP ot - 2aMPy - (o0 ), = O,

which is the GE. Again, as a particular case, let ¢ =0 on 1"3,

then

Since

ic (x)
ic S' F'(z)ndz = ALY ,
Po

T2

then J an extremum only if there is no time-averaged horizontal

t
energy flux across C. Finally, with F(X) = 0, and for any non-

zero ¢ on T it is necessary that

3’
'n't = ngJX = gnt at z =n(0)

and

2 - 2
(o -f(f+vx))LlJz +M LlJX + ngJXX =0 on 1"3,

which are both forms of the FBC.
The GE and the FBC have been derived by a variational prin-
ciple, subject to the kinematic constraint along the bottom boundary

t
(x) = 0, or the conservation of energy in

and the constraint of F
D. The identification of the component T's and V's in the pre-

vious section has been shown to be consistent.
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For an alternative interpretationof J, A is examined in terms

of the pressure, p:

2 — 2
A:——{LP [(0'- LP"‘M LP]"‘LP [(c”-f(f+v_N_+M Y ]}
z X pA X
20’
P
= — b (o )-4, Gow )],
Zo’
then
L ——
J = S‘ Adx - PE
s
x=0
= S‘S‘ Wp + (up) ]dxdz - PE_
i
=—Z—E[S;_‘ wpdx -5; updz] - PE_
3 2
i 5 i Tt
-\ ypdx-—F* _PE
20_Z T xt 20 s
(o4 . ——t
:_2_5. nlax - — F¥) | PE
2 T 20 s
3
or,
t
4 o(x)
J = - ZO'F
G
Thus, if F X = 0, then
i) J =0,

iii) E 1is conserved.



101

With J =0, then

]
+
|
[]

9
&=
I
o

or

TH+TV=VH+VV+PES,

which proves the equipartition of the spatially averaged kinetic and

potential energy.

E. The Spatial Conservation Law for the Mixed
Initial-Boundary Value Problem

The GE is investigated to find the conservation law which the
solution obeys as a function of space (Courant and Hilbert, 1962), in
contradistinction to the conservation of energy as a function of time.
The role of the FBC and RBC in determining the spatial distribution
of the energy quantities for the mixed initial-boundary value problem,
MIBVP, is determined. The conditionof SHM intime continues to apply.

Since x is time-like for the MIBVP, the GE is multiplied by

Ps
;—Z‘Ll,‘x and rearranged:
Po b (n2s?) oM (2 (545 N 1= 0
0_2 Lle - Llex h Llez -\ x LlJzz -
or,
(7) Vv, q+h=0,

where
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and

[=p
il
—

- 2 —
MZ)Z(LPX)Z * fvxx(LlJz) - 2 sz(LleLlJz)]

S LEV,_4 £V g ) +(Ev b £V by ]

ZZ 'X XZ 'Z Xz 'X' 'z
20

The divergence form of ::f prompts integration of (7) over R.

The areal integral over R is reduced to line integrals along T

to find the conservation law.

S'S‘[V -.c_1.+ h]dxdz = 0,
R
or
(8) S' q-8ds = H,
r
where
H-=- &g hdxdz.
R
Then

—’A B
Sllq'nds—11+12+13+14,

where
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1 2_%§ (2o By )P (oPoaerv )’

ds

b M2 )P+ (oot D01} —
‘ (14m )

1727

-p 2 f(f+v )
I, = °§ (- )+ (1-—2 )] dz,

2 2 rz 0_2- 0_2
I, = _—p—°§ M2(g )% + (c2-£(E+7 (W w )]d
3 2 Lle v - Vx LleLlJz %
o I‘3
and _
_po NZ 2 f(f+VX) >
I, =5y L=Z-D)" + 1 —5—)(,) ] dz.
r o o
4
Take —
p ~nix) 2 f(f+v )
xe =2 1S i)+ - )" a
2 Z=Z (X) o o z
B
= LH - LV’

and

From the FBC,
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Po
I3 -T2 § LleLlede
(1 I
3
Po 5, n(X)
=—5g )|
20 z=n(0)
= VS(X) -V (0)
Since ¢X+m¢z =0 on I‘l, then
[ mu 2
 — § B {mZ(Nz-o‘z)-(o'z-f(H; N+ ZMzm}ds,
1 2 2.1/2 , X
20 I‘1 (1+ )
where
Ug © -Lllez:z (x)°

B

The integrand of I1 is reduced further by introducing the equations

for the slopes of the characteristics derived in Section V. B.:

N =S+R
and
)\2=S—R,
where
VG
S=—"5"3
(N"-¢")
and
L (GPE(E4))
2 O AWV ap
R =(S + > 2 )
(N -0 )

Thus,
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2
-p mu
I =2 S‘ —;;(Nz-o'z)()\ -m)(-\_+m)ds.

1 2
20 l"1 (14m )1/2 1 2
Take B = _Il, then the spatial conservation law, (8), is reduced
to:
(9) X(X)+VS(X)=X(0)+VS(0)+B+H.
Several deductions can be made from the spatial conservation
law:

i)

iii)

iv)

The law governs the balance between L_ - L_+V as
influenced by B and H.

H contains the contribution of the frontal interaction; it can
be considered to represent the effects of internal reflections.

¥x(0) can be written in terms of the CD:

| 2 f(f+v_)
x(0) = f [ @)+ (- —Z)E 1 (z)’] da.

2
I o o

Thus, x(0) is unrelated to the horizontal energy flux

across C

H

and its time-average is not zero. For f(f+;x)
2 2 ) .

< ¢ <N, which excludes the anomalous, high and low fre-

quency inertial-internal waves, then x(x)> 0 for all =x.

v contains the effect of the free surface; if the sea sur-

S

face is rigid, v,=0 for all =x.
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vi)
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B contains the contribution from the horizontal kinetic
energy at the bottom. B =0 forall x if m=0 for all
x or o= N, i.e., for uniform depth or Vdisala-Brunt
oscillations, B makes no contribution. For
f(f+3x) <o? <N A >0 and X, <0, thus (A -m) is
of arbitrary sign and (-)\2+m) > O If )\1 = m for all x,
then B is again zero; i.e., for critical bottom slopes, B
makes no contribution to x+ VS -H If )\1 >m for all
x, then B > 0; i.e., for subcritical bottom slopes,
X + Vs - H increases as x increases. Similarly, if
)\1 < m for all x, then B <0; i e., for supercritical
bottom slopes, ¥ + Vs - H decreases as x increases.
As X— L, then R— D and F4 vanishes, hence

x(X) = 6x(L), where &x(L)# 0 only if LH - LV be-

comes infinite in the limit. Thus,
oy (L) + VS(L) = x(0) + VS(O) + B(L) + H(L).

Neglecting the frontal interaction (H(L) = 0), and assuming
the sea surface rigid (VS(L) = VS(O) = 0), in the case

of subcritical bottom slope, &x(L) = x(0) + B(L) > 0.
Therefore, LH - LV and gqu become unbounded at the

coastline for the case of subcritical bottom slope, no frontal

interaction, and a rigid sea surface. If either the frontal
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interaction or the free surface is included in the analysis,
_;le need not become unbounded at the coastline. For the
critical and supercritical cases, ©&X(L) can vanish. For
instance, in the supercritical case with a rigid sea surface
and without the frontal interaction, there can be a balance
between ¥x(0) and B(L).

In particular, the analysis of the conservation law has proved
the singular nature of the first order partial derivatives of , and
thus the velocity field, at the coastline inthe caseof a subcritical bot-
tom slope, a rigid sea surface, and no frontal interaction. This fea-
ture of the solution is also demonstrated from an analysis of the
characteristics in Section VI.D. for constant coefficients and a uni-
form bottom slope. The analysis of this section is valid for a more
general bottom slope. The most important result is the demonstra-

tion that the free surface may play a crucial role in keeping the solu-

tion finite at the coastline.
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V. THE MATHEMATICAL FORMULATION OF THE
MIXED INITIAL-BOUNDARY VALUE PROBLEM
FOR INERTIAL-INTERNAL WAVES

A. Introduction

In this and the two succeeding chapters, solution theories for a
set of problems for inertial-internal waves in a coastal region are
developed and applied. In this chapter, the foundations of the theory
of the MIBVP for hyperbolic, second order partial differential equa-
tions in two indpendent variables are discussed. The GE derived in
Chapter II for inertial-internal waves with the frontal interaction is
used in the discussion. Chapter VI treats cases for which the GE has
constant coefficients, and Chapter VII treats cases with variable coef-

ficients.

B. Formulation in Terms of the Characteristic Coordinates

Since the GE is hyperbolic in the spatial variables for the fre-
quencies of the inertial-internal wave passband, there exist charac-
teristic surfaces in (x, z, |)-space associated with the solutions to
the GE. For problems involving variable density stratification and
variable bottom topography, a solution theory can be constructed
based upon the properties of the characteristic surfaces. When finite
amplitude effects become significant, the theory of characteristics

for the linear problem can be extended to analyze the quasi-linear
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equivalent to the GE. The two-dimensionalized problem can be ex-
amined in terms of its ordinary characteristics; for higher dimension-
al or higher order problems, bicharacteristics, and possibly higher
order characteristics, must be used, about which there is only lim-
ited knowledge and experience. Campbell and Robinson (1955) pre-
sent a discussion of the MIBVP, including a solution theory, for a
wedge-shaped region. The discussion which follows is largely based
on material to be found in Garabedian (1964), Courant and Hilbert
(1962), and Abbott (1966).

There are three types of initial value problems:

i) The Cauchy problem, which occurs when the function and its
normal derivative, i.e., the CD, are given along a non-
characteristic ground curve, i.e., the initial line, C,

ii) The Goursat problem, which occurs when the CD are given
along a characteristic ground curve, i.e., an ordinary char-
acteristic, and the function, or its normal derivative, is
specified along a non-characteristic ground curve which in-
tersects the characteristic ground curve, and

iii) The characteristic initial value problem, which occurs when
the function is given along each of two intersecting charac-
teristics.

For the MIBVP, the CD are given on a non-characteristic ini-

tial line, C, and BC's are given on non-characteristic curves, "B,
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except where noted. B C =T, the boundary of D, where D
is the region for which the solution is sought. Consequently, the
MIBVP is composed of problem types i) through iii). The solution is
uniquely determined in the sub-region, R, the domain of influence,
bounded by the intersecting characteristics drawn through the terminii
of C.

If a characteristic is tangential to B, B 1is termed critical.
If one of the two characteristics intersecting at any point on B has
a segment in D in the positive direction of the time-like variable,
and if the other characteristic has a segment in D in the negative
direction, then B 1is termed subcritical. Otherwise, B is
termed supercritical.. The three cases for B are illustrated in
Figure 6. If B is critical, the solution is over -determined in the
sense that the CD and BC can not be independently specified. If B
is supercritical, the solution is over-determined in the sense that
both elements of the CD can not be independently specified. If B
is subcritical, a BC can be used to extend each element of the CD
pair from C to CE independently. CE is the extensionof C
which is necessary to enlarge the domain of influence to cover all of
D. This construction is indicated in Figure 10f. CE has two com-
ponents: CE+, the extension of C above the sea surface, and CE’
the extension of C below the sea bottom.

The general linear GE is
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(1) (GE): L)=Ay_+By +Cp =0

zZz

where A, B, and C are functions of x and z.

Through a change of variables, from (x,z) to (n,{) such that the
Jacobian, J(m, ), of the transformation does not vanish, the GE

is reduced to the canonical GE, the CGE: =G, ¢, LlJn, Lng),

Lpné
where 7 and { are termed the characteristic coordinates. The
family of curves m and { constant constitutes the family of char-
acteristic ground curves of the problem. In the case of constant co-
efficients, the CGE becomes LlJng = 0, the one-dimensional wave
equation and the coordinate transformation is linear. When at least
one of A, B, and C are variable, the general canonical form is
usually the simplest reduction attainable since the coordinate trans-
formation is nonlinear. Because the solution theory of the one-
dimensional wave equation is well-known, it is relatively simple to
solve a problem with constant coefficients, accounting for the BC's
and boundary shapes. A significant difference is that the general
theory of second-order linear hyperbolic equations in two independent
variables is required to solve problems with variable coefficients.

The change of variables is performed in the usual manner,

yielding:

(2) L) = Q(n,n)tlJTm+ ZQ(n,é)tlJng + Q(§,§)¢gg+ L(T\)Llln+ L(é)tllg =0,
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where the operator Q(r,s) is defined to be, with r and s as

dummy variables:

Q(r,s) = A(r_s_) + —l-B(rst+rst) FC(r s )

2

r s
zZz z

To accomplish the coordinate transformation and reduction to

canonical form, it must be true that

QMm,n)=Q(,¢4)=0 and Qn, L) # 0.

For example,

QM,n) =0
implies that
- 2
4z, . Nx o h) = +Bx(B%-2a0)Y
dxn‘nz’ 1’720 T 2A ’
where the discriminant, BZ-4AC, is greater than zero in the do-

main of hyperbolicity of the GE. )\1 and )\Z are the slopes of the

characteristics. An identical relation follows for ¢, so the equa-

tion with the positive slope is assigned to n and the one with a

negative slope to . It is convenient to take
p o Braac)® o B
ST 2A an T 2A

then

N, =S+ R and X\, =S - R.
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When R and S are constants, the characteristics are given by
-q:z_)\lx and L:z_)\zx.
Again, in the domain of hyperbolicity of the GE, it follows that,

=3

This condition on Q(n, {) is equivalent to satisfying the require-
ment that J(n, L) #0, i.e.,
B2_4AC)1/2

Jeng, -m o, = [B=ACgr 4 s

z" X z

Since Qy,n) and Q(¢,¢) =0, andthough L(y) must be contin-
uous, LlJnn and Lngg may be discontinuous because they do not ap-
pear in the CGE. Thus { may have discontinuities in its second
and higher order derivatives with respect to n and ¢, but only
across characteristics n and { constant, respectively. Such
discontinuities correspond to "shocks; " they are constrained to propa-
gate along the characteristics. Finally, the CGE is:

L)y - L(EW

) _ n 4
(3) (CGE): TPV A B

If A, B, and C are constant, the RHS of (3) is zero. In

that case, the general solution of the CGE is that of D'Alembert:
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) :
Y = W{[xlm)- NLEm)] + [GR)-GmY,
which is derived in detail in Section VI. C. The arbitrary CD given

on C are

and

LPX(O, z) = G'(z), where G'(z)=—.

It is possible to apply the BC‘s to (4) to extend the CD over CE; this
technique of analytic extension is developed in the next chapter.
When the coefficients are not constant, a canonical form of the
solution does not necessarily exist. One approach is to solve the ad-
joint problem to find the corresponding Riemann-Green function.
Then Riemann's method is used to reduce the problem to quadratures
to be carried out along C and the bounding characteristics; this
subject is pursued in Section F. Alternatively, the problem can be
treated as a first-order hyperbolic system of two equations; this ap-

proach is discussed in the next section.

C. Reduction to Hyperbolic Systems

The GE,

Llex + O\IH\Z) Llez + >\1>\2¢z =0,

zZ

can be written as
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(5) (wx+)\2wz) - )\l(ux+)\2uz) =0
or
(6) (wx+)\ 1wz) - )\Z(ux+)\lwz) = 0.

Because (5) and (6) have the form of directional derivatives along the
characteristics, they are a pair of coupled, first-order ordinary dif-

ferential equations equivalent to the GE.

Since
() 4n () ==0()
) =
x zZ x"l n
and
1
(), + 2,00, =7 0)y
4
then (5) and (6) become
(7) wg -)\lug:O,

an integration to be carried out along n constant, and

(8) w -Au =0,

an integration to be carried out along § constant.

Because )\1 and )\2 are functions of n and ¢, the integra-
tions can not usually be accomplished in closed form. Formulas (7)
and (8) are readily adaptable to numerical solution, Section VIL E.

Though more formal procedures are generally necessary, in

this case, the Riemann invariants of the GE are found directly from
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(7) and (8). Integrating (7) along n constant and (8) along

{ constant, then

= - N
Jl w S 1du
and 1 constant

Jzzw- S)\zdu

{ constant
are the Riemann invariants along mn and { constant, respectively.

Since )\1 and )\2 generally depend on both 7 and €, Jl and

Jz can not always be explicitly evaluated, yet they can be used as

conservation laws to check the solution. If )\1 and )\2 are con-

stant,

g
1

W-)\lu on n,

and

Jzzw-)\zu on {.

Formulas (7) and (8) constitute a non-symmetric system of
equations. For analytical purposes, it is desirable to have a sym-
metric system of equations. There are formal procedures for trans-
forming (5) and (6) to a symmetric system, but, in this case, it is

simpler to rewrite (7) and (8):

(7) (w.xlu)X + xz(w_xlu)z -[(xl)xu+x2(xl)zu]
and

(8) (w_xzu)X + xl(w-xzu)z = -[(xz)xu+xl(x2)zu].
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The form of (7) and (8) suggests defining canonical variables U1

and U2 as
U1 =W - )\lu
and
U2 =W - )\zu.
Then (7) and (8) reduce to
(9) (Ul)g = Rl(Ul'Uz)Xg
and
(10) (Uz)n = RZ(UI-UZ)XT\,
where
. [ )00, ]
1 ()\1-)\2)
and
L e 0]
2 ()\1_)\2)

The symmetric system of equations, (9) and (10), is awkward to
solve, but several deductions can be made:

i) If )\1 and )\2 are constant, R1 :R2 = 0. Thus,

U1 :Jl on m constant and U2 :J2 on { constant.

ii) If )\1 and )\2 are variables, then Xy and XTI may be
difficult to evaluate explicitly. In general, (9) and (10) must
be solved together with the equations for n and &.

iii) Since the system of equations.is Lipschitzian, the Cauchy-Picard
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Theorem can be applied to the first integrals of (9) and (10)
to prove formally the uniqueness and existence of the solu-
tion. The first integrals can be used as the basis of an
iterative procedure for the construction of a solution.
In principle, (9) and (10) are iﬁtegrated along m and §
constant, respectively. At the inter section of n and &,
u and w are obtained from U1 and UZ. This pro-
cedure continues until one of the characteristics strikes a
boundary, where the BC's are applied to switch from the
"incoming" characteristic to the "outgoing" one. The RBC

on a sloping boundary yields

‘ ()\Z_rn)
The FBC yields
A N
px | -px ,)\lUl -px | px ZUZ
e |e (x| ~° e (50— )
1 2 |x 1 2 |x
where
0N
p - Zg

This differential equation reduces to quadratures which must

be carried out along the sea surface from the initial line.
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D. The Mixed Initial- Boundary Value Problem

The structure of the MIBVP is examined to understand how
CGE's with variable coefficients can be solved in bounded domains.

The linear, inhomogeneous CGE is discussed:

L(Ll"):q"ng - f: O’

where

-L(n)tlJn - L(é)tllg
2QMm, L)

The first step is to reduce the full problem to a succession of
problems, each of which falls into one of three categories: a Cauchy
problem, CP; a Goursat problem, GP;' or a characteristic initial
value problem, CIVP. In Figure 10a, the domain of interest is shown,
together with the field of limiting characteristics dividing the domain
into sub-domains where the problem is indicated to be one of the
three categories listedabove. InFigure 10e, the domain of interest is
shown in the corresponding plane of characteristics.

A CP governs the solution in only one sub-domain, Do’ the
curvilinear triangle bounded by C and the two intersecting charac-
teristics emanating from the extremities of C. For any point

R « oDo C Do’ Figure 10b, the solution of the CP is

(o]
YR ) = gyfdndg.
ODO



120

e
z
L., f
Fe t = Downgoing Choracteristic
l\\ 1 =Upgoing Characteristic

Figure 10.

The mixed initial-boundary value problem. (A CP
occurs in D; GP's occur in F;'s and Gi's, and
CIVP's occur in E;'s.)
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The GP's govern the solution in the sub-domains F.1 and Gi’

which have a segment of either the sea surface, B or sea bot-

1,
tom, BZ’ respectively, as one side of their curvilinear, triangular
boundaries. For Fl and Gl’ with the CP solved in Do’ the

solution and its normal derivative are given along the characteristics

Z"l and ny- Boundary conditions are also specified along B1 and

BZ. For any point R1 € oFl C Fl, Figure 10c, the solution of the

GP is

WR ) = W(P) - b(S) + ¥(@Q) + S:gfdndt_,.
F
o1

The solution is found in an analogous fashion for R, oGl C Gl'
The CIVP's are located in the sub-domains E.l; which are in-
terior, curvilinear rectangles bounded by characteristics. After two
GP's contiguous to Ei have been solved, the solution is then known
along two of the bounding characteristics of Ei. For example, the
solution is given along n, separating Fl and E and Z"l

1

separating Gl and El. For any point R?)eo,E1 C E;, Figure

10d, the solution of the CIVP is

bR ;) = WP ;) - W(S,) + WR,) + ygfdndz_,.
| oEl
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Thus, GP's and CIVP's continue to be solved alternately until the
solution has been obtained for all of D. Each problem type involves
an integro-differential equation which could be solved by Picard's
method of successive approximation. The necessity to solve many
component problems and to use an iterative scheme is inefficient.

The next two sections are devoted to removing these deficiencies.

E. The Riemann-Green Function

The necessity to solve the above integro-differential equations
can be circumvented by employing the Riemann-Green function, W,
for the CGE. W is the solution to the adjoint GE, the AGE, and

certain auxiliary conditions:

i) (AGE): M(W)=W , -g=0,
ng
where
[Ln)W_+L(5)W, ]
B n 4 L(n) L(¢%)

&= om0 LG, oh " Qw0 ™

__ _LM) _
ii) Wg = QM 0) W, for n = Lpe
iii) Wn = - Ql(;:,g)) W, for {=¢, and

iv) W=1 at n=n_, {=§.

Thus, a CIVP must be solved for W. Together, the last three con-
ditions define a pair of ordinary differential equations and a boundary

condition common to each equation. This pair of equations can be
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solved at least implicitly. W has the property that L(W) =0 when
W is considered a function of u and go. When W can be
found, the solution for { can be written in terms of integrals along
C of products involving W and the CD.

Taking the CP in Figure 10b as an explicit example, then

1
(11) YR ) = S[WPOW(P ;R )+ WQ)IW(Q R )]
QO
. L(n)d{-L(6)dn
) \L W(P; R W(P)[ Q. 0] ]
O
Q
1 O
1 5; W(P; R ), (P)ag-y, (P)dn]
O
Q
1 O
-3 j; YPIW (P:R )dn-W, (P;R )dL],
O
where
P=(m,0).

Analogous formulae exist for the GP's and CIVP's. Since, if the
Riemann-Green functionis known, surface integro-differential equa-
tions are replaced by line integrals, there is motivation for seeking
Riemann-Green functions. Specific cases are discussed in Chapter
VII and in Appendix I. Even when W can not be found in explicit
form, it generally can be reduced to quadratures. With W ex-

pressed in integral form, it can be substituted into the above formulae.
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By use of an asymptotic expansion for the integrand of the integral
representation of W, a bound for the solution to b can be eval-

17
uated in the limit of large argument.

F. Solution of Mixed Initial- Boundary Value Problems
With the Use of the Riemann-Green Function

In a MIBVP, the BC's can be introduced into the formal solution
of a CP to find the rules for extension of the CD from C to all of
CE. In other words, by extending the CD from C to CE, the
MIBVP is converted into a "super"® CP; Figure 10f The termini of
C are PI and QI. The solution is sought in the triangle whose
domain of dependence is bounded by the characteristics emanating
from the termini, PE and QE, of CE.

For conveneience, both boundaries, B1 = Bl(r\, ¢) and
B2 = Bz(n, t), are assumed rigid so that qJ(B,l) =0, (i=1,2)

WLOG. Write the integrals of (11) in the following form:
(P ,Q ;R )=IP,S;R)+I(S,Q ;R )
o "o’ o o oo o’ "o’ o

where So is any point between the PO and QO on the CE.

Let R1 be the parameter of Bl’ then

17 This use of the Riemann-Green function was brought to the
attention of the author by Dr. R. B. Guenther, Department of Mathe-

matics, Oregon State University.
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LIJ(RI) =0= LlJ(P’l)W(P ;Rl) + LlJ(Ql)W(Ql;Rl) + I(Pl, Ql;Rl),

1
or
(12) [W(P W (P :R)) + L(P}, S 3R )] = -[UQIW(Q iR ) + 15, QR )],
where the characteristics which intersect at R1 emanate from P1

and Ql. Let Sl = PI, then the RHS of (12) is known while the
LHS contains the unknown functions (P) =F(P) and LlJn(P) = G'(P)
for P_< P« P1 and Ql ZQI. Since P1 and Ql are deter-
mined as functions of Rl’ then the problem of extendingthe CD
from I1 to IZ has been reduced to solving a pair of independent
Volterra integral equations of the third kind for F(P) and G(P).
Similarly, application of the boundary condition on BZ yields

another pair of independent Volterra integral equations ofthe third kind

for F(Q) and G(Q), QZ <0< QI and sz PI’ allowing the extension
of the CD from I1 to 13. Proceeding in a stepwise fashion, F and G
can be extended to all of CE by alternate use of the integral equations.
Thus, the MIBVP can be solved in general if the Riemann-

Green function can be found and if the resultant integral equations can
be solved. More general boundary conditions could also be intro-
duced. In the next chapter, the above stepwise or "leapfrog" exten-
sion technique is employed in cases of constant coefficients. Then

the GE reduces to the one-dimensional wave equation, for which

W =1, so
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Q

o

1
SluP +we )] - [y, (P)dL-y, (P)dn]

=
w
o}
!

[ L
Y 2

o

1}

o=

P
1 ° au
SLu@ )+ v@ )] + §Q 5o (P(S)ds,
(o]

which is D'Alembert's solution. In that case the integration can be

performed and there is no necessity to solve integral equations.
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VI. SOLUTIONS FOR FRONTAL MODELS WITH CONSTANT

COEFFICIENTS BY THE METHOD OF CHARACTERISTICS
AND THE EXTENSION OF THE CAUCHY DATA

“A. Introduction

The solution theory for frontal models with constant coefficients
is developed and applied. The cases of parallel and sloping bound-
aries and of symmetrical (without frontal interaction) and asymmetri-
cal (with frontal interaction) characteristics are considered. The
solution theory is based upon utilization of the BC's to derive reflec-
tion rules for the extension of the CD as outlined in Section V. F.

The equivalence of normal mode solutions to solutions given by char-
acteristic theory is first demonstrated to illustrate the technique.
The general reflection rules are then derived and applied in a series
of cases.

The problem with constant coefficients can be formulated and
solved in terms of the stream function, , orthe u and w
velocity components with equal facility. Use of the stream function
yields the most concise representation of the solution, while the use
of the velocity components yields the quantities actually sought. The
stream function has been chosen for the analysis.

In Sections B through F, a succession of cases with subcritical
bottom slopes (0<m< )\1) are considered. The basic solution

technique is extended to supercritical (0 < )\1 < m) and critical
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(m = )\1) bottom slopes in Sections G and H, respectively.

In all cases, itis considered that the solution is sought in a
coastal region, i.e., shoreward of the initial line, C, located at
x = 0. It is understood that the CD would in principle be matched to
the deep ocean normal modes at C once the issue of net horizontal

energy flux across C was settled. The matching problem is dis-

cussed in Appendix L

B. Equivalence of Normal Mode Solutions to Solutions

by the Method of Characteristics when the Boundaries are
Parallel and when there is no Frontal Interaction

The case studied is elementary because the upper and lower
boundaries are assumed parallel. A similar discussion has been

given by Sandstrom (1966) but with different objectives and logical

context.
The GE is:
2
Llex - N LlJzz =0
where

)\2 _ RZ B O'Z-fz
B -2 2
N -0

and ¢ 1is the stream function. N2 is assumed constant so that
2

N\ is constant. The domain of interest is D : {(x,z):(0 <x< L,

-H< z<n)} The bottom BC is

RBC: Y= CB : constant at z = -H.
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The surface BC is either

RBC: y = C, : constant at z = 0
or

FBC: U

The BC at the vertical coastal barrier is either

RBC: Y= CV : constant at x = L
or
LBC: g = S(z;t) at x = L.
The relations between CB’ CS’ and CV are left open for the

present; they are established successively to illustrate the imposition

of constraints on the solution, The CD are

CD: b = F(z)
and

y =G'(z) at x=0, i.e., on C.

Normal Mode Solution

Normal mode theory is based on SOV, so ¢ = X(\x)Z(z) and
the BC's in x and z are satisfied by the forms chosen for X

and Z. The solutions for X and Z are of the form:

X = A cos (K\x) + B sin (K\x)
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and

7 = C cos (K(z+6)) + D sin (K(z+8)),

which are then subjected to the BC's. A and B are proportional

iot . . .
to e put with an arbitrary relative phase at this stage.

Treating first the BC's in z, for CB = 0, the RBC is sat-

isfied if 6 =H, so Z =sin (K(z+H)). D has been absorbed by

A and B. If the condition of no net mass flux thru a vertical col-
umn is imposed, CS = CB. Then the RBC implies that KnH = nm,
n : integer. Alternatively, the FBC implies that

(N %)

tan (KnH) = Kng

, n:integer.

In either the FBC or RBC case, the eigenvalues, {Kn}, are deter-
mined, with little quantitative difference between the two sets of
eigenvalues. It suffices to treat each normal mode individually.

The BC's in x are next applied. First, the BC at x = L is

examined. The LBC implies that

S(z;t) = D[A cos (KAL) + B sin (KAL)] sin (K(z+H)).

Take

S(z, t) = S(z)eio—t
and
S(z) = So sin (K(z+H)),

where
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S, = D[A cos (KAL) + B sin (K\L)].

The RBC applied at x = L. corresponds to So =0, i.e.,
C =S =C_ =C_ =0 for continuity of ¢ along the boundary. If
So # 0, there is still no net mass or momentum flux through the
coastal boundary; as an artifice for this discussion, the coastal
boundary is conceived to be a soft barrier which can absorb energy,
but not mass or momentum.

In either the LBC or RBC case, the values for A and B
are made dependent by the coastal BC. Their relation depends upon

the parameters So’ K, \, and L. Take A :Aoem-t and
B:Boe(m-t+¢), where Ao and Bo are constants.

The CD are examined:

""x:o = F(z) = A sin (K(x+H))
and

prlx:o = G'(z) = KAB sin (K(z+H)).

Thus, once the coastal BC is fixed, there are no degrees of freedom

remaining in the problem, and the CD are constrained to obey the

t
above relations. The time-averaged horizontal energy flux, F(X) ,

is used to clarify the coastal BC. Since

u=-y_ =-Kcos (K(z+H))[A cos (KAx)+B sin (K\x)]

and
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i(NZ-o'Z)
z o W2
or
Ll 2
T = - 1(1\1—;_0—'& cos (K(z+H))[-A sin(K\x)+B cos(K\x)],
then
N p /

|
I

0
Re[—EO— S (aw Hydz]
z=-H

(NZ-U'Z))\K sin(¢)
-p A B :
o o o 40
"
where Re means the real part. Thus, if ¢ =0, F =0 for
(must) (must)
all x. If So =0, = 0, and Bo = -Ao cot(K\NL). Then,

re-examining the CD,

F(z) = A sin (K(z+H))
and

G'(z) = A\KB sin (K(z+H))

= _AKA cot (KAL) sin (K(z+H))

-

= -AK cot (K\L)F(z).

The solution for X 1is then

sin(K\(L-x))

X=A sin(KAL) ’

thus

sin(K\(L-x))
sin(K\L)

¢ = A sin (K(z+H))
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—t

If ¢ #0, F(X) is a uniform function of x. Given
t
F(X) # 0, then Ao and Bo are related, and So is determined
t
as a complex-valued function by F(X) = constant.

The demonstration of the lack of arbitrariness in the setting of
the CD in the case of a vertical coastal barrier illustrates a key fea-
ture of the MIBVP. The loss of arbitrariness in the CD is a general

property of regions with supercritical bottom slopes.

Mixed Initial -Boundary Value Problem Solution

The objectives are to recover the preceding solution by the
method of characteristics and to demonstrate the technique as a pro-
totype for subsequent sections. The GE is treated as a hyperbolic
equation in the spatial variables, and the BC's are investigated to de-
termine how they constrain the most general solutions so that the CD
can be extended to cover the CE in the region D.

The general solution to the GE has the form

Y(x, 2) = %[F(Z-{-)\X) + F(z-\x)] + %[G(Z'{')\X)-G(Z-)\X)] ,

where the CD are
CD: F(z) = ¥(0, )

and
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as before.

The lines N = z-Ax constant and { = z+\x constant are the up-
going and downgoing characteristics, respectively. The solution can

be expressed in terms of its Riemann jnvariants, I..(m) and ID(Q),

U
i. e.,
d(x, 2) = I5(M + I(0),
where
1 1
Iy =5 [F() - £ G©)]
and
1 1
I, =35 [F(O) +5 G(n)]

are invariant along the upgoing and downgoing characteristics, re-
spectively. If the CD can be extended over CE, the solution for
can be written for any point in D. After computing 0 and § at
(x,z) ¢ D and computing the corresponding values for IU and ID
fromthe CDat z=m and z={ on CE, respectively, y(x,2z) is
found from IU(T]) and ID(Q).

The CE is formed by determining the limiting characteristics;
Figure 11 represents the problem statement graphically. The
extreme-valued ¢ interseects D at (L,0), i.e., { =0+ AL,
which emanates from (0,\L). Likewise, the extreme-valued 0

intersects D at (L, -H), i.e., m= -H - AL, which emanates

from (0,-H-\L). Therefore, the CE has been determined to be:
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X=2H/X X=L

Graphical solution for a case with parallel boundaries
and without frontal interaction.

a. Extended CD ,
b. Domain D and limiting characteristics

Figure 11,



136

CE: {(0,z): (-H - N\L < z<\L)}

The BC's are used to extend the CD to cover CE. Analytically, this
problem is essentially that of finding a mapping of (D) onto Y(CE),
i.e., all the information about the solution in D can be found from
the CD on CE. The BC's are used to find reflection rules, RR1 and
RR2, for extending the CD with respect to the sea surface andthe sea
bottom, respectively. It is convenient to define LE to be the lower
segment of CE~ over which the CD are not influenced by RR1; simi-
larly, UE is the upper segment of CE+ over which the CD are not in-
fluenced by RR2.

The RBC is used to find the symmetry relation with respect to

1
P(x, 0) = 0 = E[F()\X)+F(-)\X)] + é%[G(xx)_G(-xx)], for all x e D.
Since F and G are assumed independent, RR1 follows

RR1: F(z) = -F(-2z)
and
G(z) = G(-z), for all ze CE~ LE,
where

LE = {(0,z): -H - X< z< -\L}

Thus, F and G are odd and even functions, respectively, with
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respect to the origin. The RBC is again used to find the symmetry

relation with respectto z = -H:
1 1
P(x, -H) = 0 = —Z-[F(-H+)\x)+F(-H-)\x)] + X[G(-HH\X)-G(_H-)\X)],
forall xeD. F and G are still assumed independent, therefore

RR2 follows

RR2: F(.H+z) = -F(-H-z)

and G(-H+z) = G(-H-2),

for all ze CE ~ UE, where UE ={(0,z):\L -H< z f_)\L}. Thus,
F and G are odd and even functions, respectively, with respect
to z = -H.

For RR1 and RR2 to be compatible, it is straightforward to
show that F and G must be periodic, with a period which is an
integer multiple of 2H. There is now enough information to extend
the CD to cover CE in a "leapfrog" fashion, yet there is another BC
to satisfy.

The RBC applied at x = L implies

(L, z) =0 = l[F(z+)\L)+F(z-)\L)] + E'l;\-[G(zH\L)-G(z-)\L)] ,

(3]

for all ze D. This relation must impose a further restriction on

the solution. There are now only two degrees of freedom remaining:
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the relation of L to H andthe independence of F and G.
Since the analysis must be valid for arbitrary L and H, the re-
striction imposed by the coastal BC must involve the coupling of F

and G. Then reflection rule three, RR3, follows
RR3: [F(z+\L)+F(z-\L)] + l)\[G(z+)\L)-G(z-)\L)] = 0.

The most direct way of demonstrating the necessity for this coupling

is to substitute forms for F(z) and G(z). The choice of

F(z) = A sin (Kz)

and
G(z) = B cos (Kz),
where
nw
EE

is compatible with the RR1 and RR2. Then

F(z+\L) + F(z-\L) = 2A sin (Kz) cos (K\L)
and

G(z+\L) - G(z-\L) = -2B sin (Kz) sin (K\L),

so that RR3 requires

B = \A cot (K\L).
Thus, the CD have been constrained to be:

¢X|X=O = F(z) = A sin (Kz)
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and

b | o= G'z) = -BK sin (Kz)

-AK cot (KAL)A sin (Kz)

-AK cot (K\L)F(z),

which are equivalent to the results determined by normal mode the-
ory. Therefore, the imposition of the coastal BC represents a condi-
tion for back reflection, which removes the last element of arbitrari-
ness in the CD. The coupling of the CD does not occur in the case of
subcritical bottom slope in a wedge, but it does occur in the case of
supercritical bottom  slope; the case of critical bottom slope is a de-
generate case in this regard.
A sample solution can now be constructed for any point

(x.,z.)e D. The first step is to evaluate the upgoing and downgoing

1" 1

characteristics which intersect there, i.e.,

n, =2 - X

and
L. =z, +Ax..

The second step is to evaluate the Riemann invariants at the points on
CE from which ny and Z"l emanate, i.e., at x =0,

z = 1'11 = Zl - )\Xl and z = Z"l = z1 + )\xl, respectively:
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1
Iy =3[F, )+ G(g,)]

w|:>

[sin (KQ )+ cot (KAL) cos Kg )]

and

[Fln))- 3Gyl

C:
NI'—'

| P>

[sin (Kn,)- cot (KAL) cos (Knl)].

The third step is to form ¢ from the Riemann invariants:

$=1,+1
= éz{[sin (Kn1)+ sin (Kgl)] - cot (K\L)[cos (Kﬂl)- cos (Kél)]}
- é {[ in (K IN i ]
== {lsin ( (zl- xl))+ sin (K(zl+)\X1))

- cot (K\L)[cos (K(z -)\xl))- cos (K(zl+)\x1))']} :

1

= A sin (Kzl)[cos (K)\xl)- cot (KAL) sin (K)\xl)]

A sin (Kz.)
= Sin (KL L) sin (K)\(L-xl)).
By inspection, ¢ =0 when 2, = 0, z) = -H, or x, = L. Also,
at X, = 0, Y =A sin (Kzl) and LlJX = AKA cot (KAL) sin (Kzl).

Therefore,  satisfies all of the BC's and the CD as well as the
GE; it is also equivalent to the solution by normal mode theory. Now
that the normal mode solution has been recovered by the method of

characteristics, the latter method, which is more fundamental, is
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extended to more general cases where normal modes do not apply.
Given the constraints on the CD, any suitable CD could be ex-
panded in an infinite series of normal modes. With the method of
characteristics, the solution can be given as a single composite wave-
form.

C. Derivation of the Reflection Rules for Extension of the
‘Cauchy Data in the General Case

The reflection rules for extension of the CD are established un-
der general conditions for the case of constant coefficients in the GE.
The CGE, q;n; = 0, 1is solved subject to the CD. The upgoing and

downgoing characteristics are given by

n==2- )\1x
and
L =z - )\zx,
respectively, where
)\1 =S +R,
)\2 =S - R,
S = -Mz/(NZ-O'z),
and
2 - 2 2 2
R = M (N -02)(02-f(f+vx)))l/ /(N2 6.

Since M2= -sNz, N2> 0, and s>0 in an average

sense for the Oregon coastal region, then S > 0. Then X1'> 0 .and
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A, <0

> , except for the anomalously high and low frequencies in the

inertial-internal wave passband.

Y|l __,=F(z)

x=0
and

b | _o=GC'(2),

X X=

where z e CE, anditis assumed that the CD have been extended.
The actual extension of the CD is developed at a later stage.
The alongshore flow and density fields implied by the assump-

tion of constant coefficients for the GE are, for (x,z)e D:

ax - bz

il

v
and

©
i

po(cX—dz),

where a,b,c, and d> 0. With the fields for v and p given

above, then

N‘2 = dg,
2
M = 'Cg,
_px
s = =—— = c¢/d,
Py
v = -b,
z
v =a,
bq
and
-v
r=—== a/b,
v

N
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where r is the slope of an isotach. With the assumption of geo-
strophic equilibrium, f;r_z = M2 or fb =cg. For the computation

of the slopes of the characteristics, the quantities S and R are

needed:
s=—f—,
(dg-o )
and
2 .2
2 -f - 1/2
R - (st o) 12
(dg-o)

In the low frequency limit, 0'2 << N2 =dg, S=s and

2
[52+t__Ei]V2

R =
dg !

where

tZ 3 (J'Z-f2

= g

Since

fa _,

dg o

if r=s, 1i.e., if the slope of the isotachs equals that of the iso-

pycnals, then R =t. Inthis case, the slopes of the characteristics

are
dz,
dx =\, =8+t
n 1
and
dz
az) FhpTe -t
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Since | _ =v4-B__, where V{-= (45 4)  and,

since n =¢{ at =x=0, then A= 1, +1) is the unit normal di-

N 2
rected out of D and q;nlx_oz(qz-q;n)/«/z]n_g. Because

o = 9 Y

and
Ll"g = LlJXXg + Ll"zzg ’
then
-1
LlJnlx—O = NI_Z[LPX(X'Q_XQHLPZ(Z'Q_ZQ ]|x:0'
Since
x = _(&-m) and 7 = ﬂ
TN, =N2) T -Ny)
( 1 2 1 2
then
XT] = _l/()\l—)\z)
xg = 1/()\1-)\2)
Z'ﬂ = -)\2/()\1-)\2),
and
ZQ = )\1/()\1-)\2).
Hence

boliso = m—)[ 2y -0, T

1

:W[ZG'(Z)‘F()\I‘F)\Z)F'(Z)] .

By D'Alembert's solution to the one-dimensional wave equation,
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e
P(x, z) ——[F(§)+F(n)] +§§ VRS2
where dt is the differential arc length along m =§{ and

dt = ((dn ) +(dt) )1/2 N2 dz. Consequently,

1

1_1
2 (v -\,)

SIPEHFm)] + 2lG()-GE)]+ O N )IFE)-F )]}

Y(x, z)

- 5o (MF@AF@)] + [GE)-Gm])
2

1

The solution for all the other field variables can be found from .

In particular,

2

i(N 0‘2)
L P {[xlF(g)+x2F(n)] + [G)+Gm)] Y

from ¢ andthe x- or z-EOM.

The solution can be recast in terms of its Riemann invariants:

Yix, 2) = Ly) + I(0),
where

IU(n) (—)\1—)\)[)\ F@m)+ GMH)]
and
1

I,() = ——()\1 )

D\ F(g) + G(L)].

Thus, as in the preceding section, the technique of triangulation in
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characteristic space can be used to find ¢ at any pointin D from
the Riemann invariants constructed on CE, once it is detei‘rnined how
to extend the CD to cover CE.

Again the CD are extended by successively applying the BC's.
Initially it is assumed that all the boundaries are rigid so that the
RBC applies; later, the sea surface is allowed to be a free surface

and the FBC is applied. First, the RBC is applied at z = 0:

1
‘Hz:o =0 = W{[KIF(_KZX)_)\ZF(-)\IX)]+[G(-)\Zx)_G(—)\lx)]}.

Since F and G are independent, it follows that RR1 is:

RR1: F(yr) = -yF(-r)
and
G(Yr) = G('r),
where
o2
)\1

The LHS of RR1 represents the extension of F and G onto CE+,
while the argument of the RHS sweeps out valuesof r ¢ CE ~ LE,
where r 1is the parameter of CE.

Second, the RBC is applied along =z = zb(x) = -H(x):

1
LlJ'Z:—H(X) =0 = (_)\1—_)\2—){[)\IF(-H(X)_)\ZX)_)\ZF(—H(X)_)\]_X)]

+ [G(-H(x)-M,x)-G(-H(x)-Ax)] }
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Since F and G are still independent, it follows that RR2 is

RR2: F(—H(x)_)\lx) = - lF(-H(x)-)\ x)
v 2

and

G(-H(x)-\, x)

1 G(-H(x)-\,x), for all xe D.

2

For no ambiguity in RR2, a necessary condition is that H(x) be a

monotonic function of x. For the physical case of interest, the bot-
dz
tom slope mi(x) = d)]: = - df;(x) > 0. For the present purpose, it
% =

is sufficient to take m equal to a constant, then
zb(x) = -H(x) = -[Ho-mx] = -Ho + mx, where m = HO/L. The RR2

becomes for =z e¢ CE ~ UE,

1
RR2:  F(-H -Tr)=-=F(-H +r)
o v o
and
G(-HO-Tr) = G(-Ho+r),
where
. ) -m) Rys.m
- (_)\2+m) " R-S+m °
2
For o « Nz,
L t+s-m
T =i em
For the physically interesting case of s= m, 1i.e., isopycnals
paralleling the bottom slope, T = 1. Since, as shown below, strong

wave amplification is produced as T — 0, then the inclined frontal
layer exerts a stabilizing influence on inertial-internal waves in this

regard. The LHS of RR2 represents the extensionof F and G
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onto CE~, while the argument of the RHS sweeps out values above

r = _Ho, where r is the parameter of CE. When there is no bot-
tom slope, m =0 and T = l When the slope of the upgoing char-
acteristic equals the bottom slope, )\1 =m and T =0, whichis

the degenerate, critical case for m > 0. When the slope of the

downgoing characteristic equals the bottom slope, )\2 =m and
T =, which is the degenerate, critical case for m< 0. In the
subcritical case, )\2 <m< )\1, there is no ambiguity in the ex-

tension of the CD. The degenerate supercritical (m >\ and

1)

critical (m =\.) cases are treated in Sections G and H, respec-

1
tively. In the subcritical case, and where ‘m>S, then T<1.

The general FBC requires:

(N1 )

gY, . - (Nz-crz)[xlxznpz+ —1—2—— pr] =0, at z = 0.
RR1 becomes
g (NZ—U'Z)
RR1: W[NZF(_xzx)+x1F"(-x1x)]+——Z—[F'(_xzx)+F'(.xlx)] =0
and > 2
g 2 " 2 " ___(N -o ) ! 1 =
0‘1‘)‘2)[)\2(} (A,%) NG N ) G %) Gy x)] = 0,

for all xeD andsince F and G are independent. It follows that

RR1 can be re-written in more compact form:

RR1: e (e TF %) = e (e TFrin %))
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and

)\ge_qx(equ'()\ZX))' = ‘Kleqx(d-qul(_)\lx))l ’

where
2 2

q = 2¢g

These expressions can be reduced to quadratures to be carried out
along the sea surface from x = 0. Thus, the more subtle reflection
rule involving the FBC is now known.
With the reflection rules known, the process of "leapfrog" ex-
tension can be used to extend the CD:
i) F(z) and G(z) are givenfor -H <z<0.
ii) F(z) and G(z) are exteﬂded from _Ho< z< 0 to
Oizino, by RR1.
iii) F(z) and G(z) are extended from -Ho< z< 0 to
-(1+T)Ho <z< -Ho, by RR2.
iv) F(z) and G(z) are extended from -(1+T)Ho§_zi _Ho
to yHof_zi(l+T)yHo, by RR1.
v) F(z) and G(z) are extended from 0<z< yHo to
_(1+T(1+Y))Ho <z< - (1+T)Ho, by RR2.
vi) This procedure is repeated until F and G are extended
to all of CE.
Hence, there exist systematic reflection rules by which the CD

can be extended for cases of asymmetrical characteristics, variable
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depth, and a free or rigid sea surface. Consequently, solutions
can be systematically constructed using the extended CD, the charac-
teristics, and the Riemann invariants. In the following sections, RR1
and RR2 are employed to construct solutions for a succession of
cases to illustrate the essential physics.

Having determined the extension of the CD to CE, the solutions
for u and w can be determined by operating on the Riemann in-

variants. Since

then
— —_ 1 1
v = -LlJz - _IUnz B IDZ"Z
— 1 '
= .[IU +ID]
and
— — 1 1
W= LlJX - IUnX+ IDZ"X
— 1 1
= -[)\ZIU + )\IID].
1 1
Clearly, once IU and ID are known, then IU and ID can be

determined, and, since they too are invariant, then the solutions for
u or w can be constructed directly.

The question of net horizontal energy flux has not been dis-
cussed in this section, nor shall it be in the subsequent sections.
From the analysis in Chapter IV, it is considered understood that the
individual contributions of F and G to  have the character of

standing waves. Whether the two portions of the solution combine to



151
form a single standing, a single progressive, or a mixed wave can
be settled on the basis of the relative time phase between F and

G, as before.

D. The Solution for Inertial-Internal Waves in a Wedge
‘Without Frontal Interaction

The problem of inertial-internal wave propagation in a wedge
is solved without the frontal interaction. The wedge is defined to be
the domain D, where D: {(x,z):(0<x<L, -H_ +mx<z< 0)},
m constant and positive. A normal mode approach is not pos sible
because the sloping bottom does not permit SOV. | Aspects of this
problem have been studied recently by Magaard (1962), Sandstrom
(1966), and Wunsch (1968a, 1969); similar qualitative results are
achieved in the present analysis.

This is a case with symmetric characteristics, i.e.,

A. = -\, = \X. The general form of the solution for { reduces to:

[F(z+\x)+ F (z-Ax)] + 31{ [G(z\x)-G(z-\x)],

o

Y(x, z) =
and the Riemann invariants are

I = —;—[F(z-)\x) - }):G(z-)\x)]
and

I = %[F.(Z"‘)\X) + %G(ZH\X)]-
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A-m

Here, y=1 and T =(——)< 1. The reflection rules become
' N+m
RR1: F(r)= -F(-r)
G(r) = G(-r)
and
RR2: F(-H -Tr) = -F(-H +r)
o o

G(-Ho-Tr) = G(-Ho+r),

where r is a dummy variable whose range is to be determined.
The geometry of the problem is given in Figure 12, where the case .
of m=2/5 X=1, and T =3/7 is illustrated. A few of
the characteristics are traced; the ones chosen are the limiting char-
acteristics for several intervals of extension on CE. The terminii of
CE are determined by the characteristics which intersect at (L, 0),
thus CE : {(0,2z): (-AL < z < AL)}:
The extension of the CD proceeds in the following fashion:
i) The CD are given on _Ho <z<0.
ii) They are extended from -Ho <z<0 to 0<z<H, by
RR1.
iii) They are extended from _Ho <z< H to
-(1+27T )Ho <z< _Ho, by RR2.
iv) They are extended from -(1+2T)Ho <z< -Ho to

H0 <z< (1+2T)Ho, by RR1.
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y Z=(|»2T)H°7\ \\ %
_ _ |

AN
\ NN 5

o “f N\ AN AN

Q
O

Figure 12. Graphical solution for a case in a wedge and without
frontal interaction.
a. Extended CD
b. Domain D and limiting characteristics
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v) They are extended from Ho <z< (1+2T)Ho to
_(1+2T(1+T))Ho <z< -(1+2T)HO, by RR2.
vi) They are extended from -(1+2(T+T2))HO <z< --(1+2T)Ho
to (1+2T)Ho <z< (1+2(T+T2))Ho, by RR1.
vii) They are extended from (1+2T)HO <z< (1+2(T+T2))HO
to -(1+2(T+T2+T3)) <z< -(1+2(T+T2))Ho, by RR2.
viii) They are extended to all of the CE in the same manner.
It is apparent that the extension of the CD is performed in a "leapfrog!
fashion onto intervals bounded by the points A(m), m : integer,

where

A%(2) = +H_(1+2T)

A% (3) = :I:Ho(1+2(T+T2))

AT (4) = :I:Ho(1+2(T+T2+T3))

m-1
+ i
A (m) = :I:Ho(1+2 z T).
i=1

+
The A (m)'s form a geometric progression and, since T < 1,

they have two limit points, A:
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o0
+
A% (m) >+H (142 ZTI)
m —*>oo © .
i=1
T
= =+ e
Ho(1+2(1;vT))
14T
= % —x=
Ho(l—T)
A
= =+ —_
Ho(m)
= +\L = £A,

thus #A are the termini of CE. Therefore, an infinite number of
extensions of the CD, or reflections of the wave from the boundaries,
are required to reach the vertex of D. This fact raises an impor-
tant physical-philosophical point, though it presents no mathematical
difficulties. The troublesome point is that the infinite number of
wave reflections required to reach the vertex of the wedge is not con-

. . ) iot . . pp
sistent with the steady-state assumption of §~ e . This difficulty
with the problem takes diminished significance when the singular na-
ture of the solution in the vertex is recognized in subsequent steps.
The singularity in the vertex indicates a breakdown of the linear, in-
viscid theory and admits the possibility of an energy sink.

i 3 . 3 .
The A (m)'s form a partition of CE. It is convenient to de-

fine

B(m) =B (m) v B (m),

where
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B+(m) {z (A+(m-l) <z SA+(m))}
and
B (m): {z:(A (m)< ziA_(m-l))}, m=1,2, , 00
Then
0 0
c-80) cE'= B (m), and CE = U B (m)
m=1 m=2
+

Thus, RR1 is used to extend CD from B (m) to B (m), and RRZ

- + - s
is used to extend CD from B (1) uB (1) to B (2) initially and

then from B+(m) to B {(m+l) for all m.

The iterative nature of the "leapfrog" extension, and the analy-
sis of the Ai(m)'s, suggests seeking the rule for directly finding
the CD on B(m), m arbitrary, after the CD are seton B (1).

. + + .
F and G are designated F (z;m) and G (z;m), respectively,

+

on B (m). The general rule is derived by induction.

The problem of extending F is considered. Let

Fo(z) - + T
F (z;1) = -F (-z;1), 0<z< Ho’ by RR1,
then

i) F (2:2) = -F (-H (14+=)-2), by RR2

T T e o T'"T” y

-1 - -1

= -F_(-H_ +T A™(1)-T 2),

A (2) = _Ho(1+2T)§ z < _Ho =A (1)
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ii) F'(z;2) = -F (z;2), by RR1
SF (CH (143 )+2)
T To0 o T T
-1 .+ -1
—F (LH -T A (1)+T  "z),
O O
+ +
A (1) = Ho <z §Ho(1+2T) = A (2)
fii) F(2:3) = -FT(H (1+=)-2;2), by RR2
p2) = - R Urg)-ge) BY
1 1 1 z
= _F (-H_(1+7)-H (= +—3)- =)
o o T o' T TZ TZ
2 1 zZ
- _F (-H (145 + =)- =)
o o T TZ TZ
H_ .
= -F_(-H_- = (142T)- =)
T T
. _F (-H +T 2A7(2)-T %2),
O O
AT(3) = -H0(1+2(T+T2))i 2 < -H_(1+2T) = A”(2)

iv) Fl(z;3) = Fo(-HO-T‘2A+(2)+T‘2z),

A%(2) = H (1+2T) < z < H_(142(T+T%) = A7 (3)

v) then by induction,

F+(z;m+l) = Fo(-Ho-T_mA+(m)+T_mz),A+(rn) <z< A+(m+1)

and
F (z;m+1) = -Fo(_HO+T‘mA‘(m)_T'mz),A'(m+1)§ z < A (m).

With
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then by analogy

G+(z;m+l) = GO(-HO-T—mA+(m)+T'mz),

A (m)< z< A (m+l)
and

G (z:m+1) = Go(_HO+T'mA‘(m)-T'mz),

A (m+l)< z iA'(m).

The extended CD can be evaluated at the A(m)'s:

FEATm), m+l) = +F _(-H_),

G (A" (m),m+1) = G_(-H ),

FEA T (m+1), m+1) = +F_(H ),

and

cEatfm+1), m+1) = G_(H_),

where the relation

H_ T ™AF(m) = + H_ T ™AF (m+1)

has been employed for the last two relations. Thus, the full range
of the CD extendedto -H0 <z< H0 is mapped onto each of the suc-
cessively smaller B(m)'s. As a consequence, F and G
"wiggle" at an ever increasing rate, thus the partial derivatives of
¢ in D grow without bound as T — 0 with )\1 — m. rI“he re-

sult is consistent with the concept of the bounded beam phenomenon
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(Sandstrom, 1966), i.e., large currents occur along a nearly critical
bottom slope. The increased rate of "wiggle” of F and G 1is an
intuitive way of expressing the fact that the effective wave number
increases after each reflection from the bottorn boundary. In essence,
the incident wave "beats with the bottom slope" upon each reflection,
causing a shift to ever;increasing wave numbers.

In sub-domain Dn, 0= {(x, z) :(zU e B (n) and 2 € B+(n))},
the downgoing and upgoing waves have the same wave numbers, which

allows a simple analysis of the phase and group speeds. Take the in-

cident wave number to be (ko, mo) at the initial line; then, in

D , the wave number is (k_,m ) = i(k ,m ) > 0, Thus,
n,n n’ n n o o __,
T n-—o
the phase speed, (c_) , for the wavein D is
pn n, n
o n, ¢ n
= - = —_—) = >
o n—o0

where (cp)o is the phase speed of the incident wave. Similarly,

the group speed, (cg)n, for the wave in Dn, L 8
2 2, 2
k (N -f )m n
(c) =SB AMD g ) —s o,
gn o (k2+m2)2 80 o

where (cg)o is the group speed of the incident wave. These re-
sults are consistent with the qualitative remarks of Section III. C. and

are rigorously correct. In sub-domains Dm n(m # n), the wave
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number, phase speed, and group speed of the dowﬁgoing and upgoing
waves are not equal.

For any point (xl,zl) in D, Zy; =M =2 - Ax and
Zp = £ =z +\x are computed; then z__e¢ B (m) and Zp € B (n)
for some m and n, where m #n except in regions contiguous
with the sea surface. Once m and n are determined, then F
and G can be computed, the Riemann invariants formed, { at
(xl, Z],) formed, and u(x and wi(x

, Z , Zl) computed from .

1 1) 1

Actually, the solution need not be computed point-by-point but rather
for sub-domains Dm’ NS {(x, z) :(zU ¢ B (m) and Z ¢ B (n))}-
Several remarks are made:
i) Because F(iA(n)) =0 and G(+A(n)) = G("A(n)) for all n,
then F(A)=F(-A) =0 and G(A) = G(-A), therefore
y(L, 0) = %[F(A)+F(-A)] + %[G(A)-G(_A)] = 0. Thus, the
solution in the vertex of the wedge is zero, though the ampli-

tudes of the u and w fields increase without bound as

the vertex is approached.
ii) The linear theory is a small amplitude theory. The small
amplitude criterion is typically W <« o, the wave fre-

quency, where w_ = ¢ . If the initial value for w is
x XX x

kA where k is the incident horizontal wave number and

A is the initial wave amplitude, then, after n reflections,

_ -2n . 1ln (kA/g)
w_ = T (kA). Thus w_~ o, when n= > " In (T) T) and
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lol

a finite amplitude theory becomes mandatory. For example,

- -1
for the semidiurnal internal tide, o #= 10 4sec , take

-1 and A= lo_lcm/sec, so

k= 1/3x IO“SCm
ka
o

= 1/4 x 10-2<< 1. Since T has been taken to be 3/7

in Figure 12, then

n-= 4.

Thus, after four reflections a finite amplitude theory may
be necessary.

The number of surface reflections which occur in a specified
percentage, P, of the distance from the initial line to the

vertex of the wedge can be determined:

A(n) A(n+l)
L =P <L
or
n-1 n
(=)(1+2 ) TH<P< (E)\)(Hz le)
i=1 i=1
8o n-1 n
m (1-T ") m (1-T7)
(SNL+2(T ) <P <A N1+2(T )]
or \
L+l _[(1+T)-(12-T)(-5)P] o
Since
2\
1+T = T
and
T =2
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then

For example, in the case chosen, In T = -0.85 and

N
Am

1n ( )= 0.34. Take Pn and Pn to be the values of P

+1

when the equalities on the left and on the right hold, respectively.

Then ln(l—P3)=-2.21 or P3=8/9, and ln(l-—P4)z-3.06

or P4 = 20/21., Therefore, on the basis of the above and the calcu-
lation in ii), small amplitude theory would breakdown for the hypoth-
esized wave at about (56 to 60/63's) of the distance from the seaward
edge of the continental shelf to the coastline.

E. The Solution for Inertial-Internal Waves with Frontal
Interaction when Boundaries are Parallel

A normal mode approach is not possible for cases with frontal
interaction, since the presence of the LlJXZ term in the GE does not
permit SOV in x and z. The GE does separate in M and g,
but, of course, the BC's do not. The asymmetry introduced by the
LlJXZ term induces the asymmetry of the characteristics m and &.

Naturally, this same asymmetry haunts the solution as well as the

problem. From Section C, the general solution for { has the form:
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1

U(x, z) = W{[)\IF(Z-)\ZX)-)\ZF(Z-)\1x)] +[G(z_)\2x)_G(z-)\l)] 1.

The reflection rules for extending the CD are

RR1: F(yr) = -yF(-r)
G(yr) = G(-r)
and, since m =0, then T :l and
Y
r 1
RR2Z: F(-H -—) = - —=F(-H +r)
o v Y (o]
G(-H -=) = G(-H _+r)
oty T T e Y
where, again, r is the parameter of CE.

The character of the solution can be discerned by extending the
CD a few steps:
i) The CD are given on _Ho <z<0.
ii) They are extended from ..Ho <z<0 to 0<z< yHo, by
RR1.
iii) They are extended from —Ho <z<0 to -Ho(l+%)izf—_Ho
and from 0<z< yHo to -H°(2+%) <z< _Ho(l+%)’ by
RR2.

1
iv) They are extended from -Ho(l+—y-) <z< -Ho to

YH <z< Ho(l+y) and from -Ho(2+—-) <z <-H (l+-) to
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Ho(1+y) <z< Ho(1+2y), by RR1.
v) They are extended to all of CE in the same manner.
Figure 13 illustrates the pattern of the extension of the CD on CE and
the consequent solution types in D. The pattern can be summarized
by saying that the given CD are continued over intervals alternating
1
in length (yH and H ) and (=H and H_ ) over z>0
o o Yy o o -
and z < -Ho, respectively. There are three basic source types:
i) A, from a segment of CE H0 in length,
ii) B, from a segment of CE yHo in length,
and Ho
iii) C, from a segment of CE T in length.
When the prefixes U or D are added to the source type, it is
indicated whether the source type is supplied by upgoing or downgoing
characteristics, respectively. Four solution types emerge; they are

categorized by the length of the segments of CE from which their char-

acteristics emerge:

Solution
type CE segment lengths Source type
I both segments H0 in length UA and DA
II: segments H0 and yHo in length UA and DB
H
III: segments I——}(-o- and Ho in length UC and DA
IvV: segments To and yHo in length UC and DB.

Types I and IV occur in the interior; types II and IIl occur contiguous

with the upper and lower boundaries, respectively.
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Figure 13. Graphical solution for a case with parallel boundaries
and with frontal interaction.
a. Extended CD
b. Domain D and limiting characteristics
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For a convenient example, take

F(z) = A sin (Kz)
and

G(z) = B cos (Kz), for _Ho <z<0,

where KHo = nt for some n : integer; this is a type A source.
Then the following extensions are made for n = I:
i) F(z) = -yA sin (K(_—i—))

= vA sin (K-Z—), and
Y Y

G(z) = B cos (K%), (0< z< yH )

this is a type B source.

ii) F(z) = - %A sin (K (-(L+y)H_-2Y))

= -B cos ('y(Ho+z)), (-H (1+-§-)§ z < -Ho);

this is a type C source.

iii) F(z) = - —(yA) sin (—YIS(-,(].-F‘Y)HO-Z‘Y))

1
Y
] 1
= A sin (K(=+1)H +2z)
Y o

HO
= -A sin (K(T-i-z), and

G(z) = B cos (%(-(l+y)Ho—zy))

H_ ] 1
= -B cos (K(T+z)), (_Ho(2+§)§z < -H0(1+-Y-));

this is a type A source.



iv) F(z) =

G(z) =

this is

v) F(z) =

this is

167

(-3 sin (Ky(H - 2)

-A sin (K(z_yHo)), and

-B cos (K(z-yHo)), (YH <z< (1+Y)Ho);

o

a type A source.
Ho
_y(-A) sin (K(=2-2))
YA sin (-IYE(H -z)), and
_B cos (%—(Ho-z)), (L+y)H_ < 7 < (142y)H);

a type A source.

The pattern of the extension of the CD continues to repeat itself

to cover all of CE. The Riemann invariants are formed for each

source type:

i) For source type A, both I and I are necessary:

I

and

gam) = ()\ x)

UA DA

[\ F i )+G@)]
1

1

T )

[)\ A sin (Kn) + B cos (Kn)]

1

I A(Q) =m[)\ F(g) + G(g)]

ii) For source type B, only

1

1

()\1)\)

[x A sin (Kt) + B cos (K{)].

IDB is necessary:
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1

)

IDB(L) [-x Asm(—y—g-’)+Bcos (—Ii—g)].

iii) For source type C, only IUC is necessary:

1

Iyc™) =X )

[-X|A sin (Y(H +n)) + B cos (y(H_+n))].
1

The four solution types are then computed:

i) Type I,
bp = Igam) + 15, (€)
()\11)\2 ){[)\ A sin (K(z-)\lx)) - B cos (K(z-)\lx))]

+ [xlA sin (K(z-\,x)) + B cos (K(z-)\zx))]}.
ii) Type II,
bip = Igam) + I5p(8)

= (

)‘1{)‘2 ){[xZA sin (K(z-)\lx)) - B cos (K(z_xlx))]

+ [—)\ZA sin (

<R

(z-)\zx)) + B cos (

<R

(22, %)}
iii) Type III,

bp = Lge )+ I a6)

= ()\ — ){[_)\IA sin(y(Ho+z-)\1x))+Bcos(y(Ho+z_)\lx))]

1 2

+ [)\IA sin (K(z_)\zx)) + B cos (K(z-)\zx))]}.
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1

(
VR

x))]

x))+ B cos (y(Ho+z-)\

1

W1 _)\lA sin(y(Ho+z _)\1

(z-\.x) + B cos (

) K
+[)\2A 51n(Y >

<R

(2% ,x)] .

The most important qualitative feature of the solution is that
the asymmetry of the characteristics, due to the existence of the
frontal zone, has induced alternating zones of increased, decreased,
normal, and anormal (i. e., mixed increased and decreased) wave
numbers. In other words, there are spatial zones where the wave
"wiggles" more or less than usual; therefore there are zones of rela-
tively high and low shear in the velocity of the wave. Another con-
sequence is that lines of constant phase are tilted with respect to the
vertical, i.e., the waves tend to be "tipped over, " within an effective

wavelength. After two reflections from each boundary, the wave is

restored to its original form. The wave is characterized by an ef-

fective horizontal wavelength, )\(h) = (—H— - E), which is different
h N X
than the horizontal wavelength, )\( ) = (%—\}—{), without the frontal

interaction.
The coastal BC is more difficult to apply in this case than in the
case of Section B. Because the geometry of the problem is con-

strained by the asymmetrical characteristics, A and B must
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satisfy two conditions to satisfy a coastal BC. Equivalently, the CD
can not be assumed to be Type I. The best procedure is to solve the
problem "backwards" from the coastline, where the solution must be
Type I, to the initial line and then discover what solution type the CD
are required to be. Because of these complications, the essential
properties of the solution are illustrated in Figure 13 with the coast
treated as an open boundary.

F. The Solution for Inertial-Internal Waves with
Frontal Interaction in a Wedge

A slight extension of the analyses in Sections D and E is re-
quired to obtain the solution for inertial-internal waves with frontal
interaction in a wedge. Because the solution in a wedge is sought, it
is known from Section D that an infinite number of extensions of the
CD are required. Because the solution sought involves the frontal
interaction, it is known from Section E that there are four basic solu-
tion types. Thus, the solution exhibits the properties of the solutions
of both Section D and E. In particular, the intervals of extension,
Bi(m), both tend to decrease in length as m increases, as in
Section D, and tend to alternate in length by factors of y and %

on CE+ and CE~, respectively, as in Section E.

From Section C, the general solution for  has the form:
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1
b(x, 2) :W{[KlF(z-)\Zx)_)\ZF(z-)\lx)] + [G(z-)\zx)-G(z-)\lx)]}

and the reflection rules for extending the CD are

RR1: F(yr) = -yF(-r)

G(yr) = G(-r)
and, assuming the bottom slope uniform,

RR2: F(-H -Tr) = - -l—F(-H +r)
o Y o

G(-H_-Tr) = G(-H_+1),

where, again, r is the parameter of CE. Since the general solu-
tion was examined in detail in Sections D and F, it suffices to write
the first Type IV solution and to examine it in detail. Figure 14 illus-
trates the pattern of extension of the CD on CE. The region, D(14),

where the first Type IV solution occurs is indicated.

Take the CD to be given as

F(z) = A sin (Kz)
and

G(z) = B cos (Kz), (-Ho < z<0),

where HoK =nm n: integer. The first Type IV solution has its

ID(Z_,)'S coming from 0< z < yHo on CE+ and its IU('q)'s
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-I- Z =a,L T~
| J\ \

Z=y(l+ T)H, \s\ \
PR o~
z=ruoﬂ\>?4e* \\\\\ \

g NN N

(d
2=0 ~ ~
~N

~:// / \N=4/3
: l/ // Ap=2/3
/ o

|
I
| :
L z=_“_J/ T=17/8

Q
(o

Figure 14. Graphical solution for a case in a wedge and with frontal
interaction.

a. Extended CD
b. Domain D and limiting characteristics
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coming from -H (14T)<z< -H ~ on CE~. The CD are extended

and the relevant Riemann invariants written in a single step:

p® =% X )[x F(t) + G()]

()\—)\)[ ‘y)\ A sin (K g)+ B cos (K—é]

1

(T_x_)[ -\ ,A sin (K—) + B cos (K—-)] (0<t< yHo)

and

1
IU(T\) (—)\_T_)[ -\ F(n) Gn)l
A

1 27 . 1 , _
[ Sm(K(-HO(1+T)—%))-Bcos,(K(-H6(1+—l,f)-%))]

T N-N)

1']+H ‘r]+H

1 =))+ B cos (K(~—=))I,

()\ -X5)

[)\ A sin (K(

(-Ho(l+T) <n< -Ho).

Then for any point (x,z) in D§4),
) (z-)\zx) (Z—)\Zx)
Y(x, z) = ()‘1—")‘2—) {[-)\ZA sin (K ——Y—-—) + B cos (K —_Y )]
(z+H -)\lx) (z+H -)\lx)
+[-\ A sin(K ———) + B cos(K—————)1}

(4)

1 has a vertex on the surface boundary at

The subregion D

§=-)\x:yHo or x =

2
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and one on the bottom boundary at

n=-H +mx-\x=-H (1+T)
o 1 o

or
HT
o

H
o
(-)\2+m)
and
5 = )\Z‘Ho
(-)\2+m)
Since
z—)\zx , z+Ho-)\1x
= = 0,
( " ) u H_ and ( T ) H
e 0 o©
)\1 )\1
z=0 z=0 .
Ho 1
llJ()\ ,0)= o ){[-)\ZA sin (KHO) + B cos (KHO)]
1 1 2
+ [-)\lA sin (K(0)) + B cos (K(0))]}= 0
Since
Z-\_X%X
2
( ) H =0
Y .- o
(_)\2+m)
X
ZHo
7 =
(_)\2+m)

and
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(z+H_-\ x)|
H = -H
N
- (-)\2+m)
. )\ZHO
(-)\2+m)
I_Io )\ZHo 1

) {[-sz sin (0) + B cos (0)]

YO o) T )

+[-\ A sin (-KH ) + B cos (-KH )]}

(4)

Thus, { in Dl satisfies the BC's where it must.

(4)

To verify that the ¢ in Dl satisfies the GE, the second

order partial derivatives of  are evaluated:

2 K. 2 2 K. 2
b = -0 M ILR) - M) T )
K,2 K.2
by = (D IH0) - (P I,
and
2 K.2
bp = (D Tp ) + 0 () Tyl

The GE is written as

kpXX + ()\l+)\2)¢xz + )\l)\kazz =0

K
Substituting into the GE, and considering the factors of -(;)ZID(Q),

then
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M2+ )AL ) F AN =0
2 1 2) 2 |
. . . K. 2
and, considering the factors of '(_'f) IU’ then
2
(SPRERY

PPN )+ AN = 0,

Thus, the solution in D(14) is valid in all respects.

G. The Solution for Supercritical Bottom Slope

To elucidate the essential physics of the solution for super-
critical bottom slopes, it is sufficient to consider the case of no
frontal interaction and a uniform bottom slope.

The general solution for | has the form

[F(z+ax) + F(z-\x)] + 2—1)\- [G(z+\x) - G(z-\x)].

N

llJ:

The reflection rules are given in their coupled forms until it becomes

clear where F and G are independent:

RR1: [F(r)+F(-r)] + %[G(r)-G(-r)] =0
and
[F(—'Ho+s)+F(-Ho-Ts)] +l)\[G(.-'Ho+s)-G(_HO-Ts)] = 0,

or

ZKHO+ (A-m)r ZKHO+ (A-m)r

RR2:  [F(r}HF(-( M+ 3 [G(r)-G( )] = o,

N+m N+m



177
where r and s are parameters of CE.
The geometry of the problem is shown in Figure 15a. It is
recognized that CE is (_Ho < -AL < r < ML) RR1 provides the rule
for the extension of the CD from -AL<r<0 to 0<r <AL It

can be employed in its uncoupled form; i.e., F and G can be

treated as independent over those intervals without ambiguity, thus

RR1: F(r) = -F(-r)

Examination of the arguments in RR2 indicates that RR2 provides the
rule for the extension of the CD from --Ho <r<AL to —Ho <r<-L,
hence there is an overlapping or ambiguity. Therefore, either F

or G can be arbitrarily specified on -H_ < r < -\L; the other is
determined on that interval by RR2. For example let F be speci-
fied on —Ho <r< -\L; then

ZXHO+ (A~-m)r
A+m

2XH0+()\-m)r

G(-( A4m

)]

)) = G(r) + AF(r)+F (- (

Thus, there is a subtle "overmapping" of G onto itself in the inter-
val -Ho <r< -\L.

In summary, there are two types of solutions in D:

i) Type I occurs in the sub-domain above 2z - Ax = -AL. This

solution type can be either a progressive or standing wave
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——— . ———— —

Z=-H, m=04 T=-1/7

X=0 X=L

Figure 15. Graphical solution for a case without frontal interaction
in a wedge.
a. Supercritical bottom slope
b. Critical bottom slope
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depending on the time phase between F and G.

ii) Type Il occurs in the sub-domain below z - A\x = -AL. The
nature of this solution type is controlled by the Type I solu-
tion. For example, if Type I is a standing wave, so is Type
II, and, if Type I is a progressive wave, Type II is a mix-
ture of standing and progressive waves.

A sample extension of the CD is given in Figure 15a; there are actually
more wiggles in G near r = -\L than the resolution of the figure
can convey.

The result follows that, since -AL — —Ho, as N — m,

then G in -H < r< -AL has increasingly large derivatives. This
result is consistent with the '"bounded beam'' concept, which has now
been derived from the perspective of a supercritical bottom slope

as well as from the perspective of a subcritical bottom slope.

H. The Solution for Critical Bottom Slopes (m = \)

The degeneracy induced by a critical bottom slope is established
for the case of a rigid sea surface, and then the solution is obtained
for the case of a free sea surface. It is sufficient to treat the case
without frontal interaction and with a uniform bottom slope.

Tﬁe form of the general solution is the same as in the previous
section. The reflection rules for the extension of the CD are written

in their coupled forms:
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RR1: NF(r)+F(-r)] + [G(r)-G(-r)] = 0, (-AL < r<\L),
where ML = H0 and
RR2: )\[F(—Ho+25)+F(-HO)]+[G(.HO+25)-G(_HO)] =0, (0<s<2\L),

where r and s are the parameters of CE. Several deductions
can be made:

i) RR1 requires that F(0) = 0

ii) RR2 requires that F(;HO) =0

iii) Take =H  +2s = -r, then RR2 requires that

AF(-r) + G(-1) = G(-H ).

Similarly, let -H + 2s =, then

AF(r) + G(r) = G(-H_),
thus '

MF (@)+F(-r)] + [G(r)+G(-1)] = 2G(-H ).

iv) Substituting the results of iii) into RR1, it follows that

i.e., G 1is a constant for all r. Then, from RR2, it
follows that F 1is zero for all r. Therefore, =20

throughout D. This result can be achieved from first

principles by applying the RBC and treating the resultant
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Goursat problem or by applying the RBC and treating the re-
sultant extended Cauchy problem.
Allow the sea surface to be a free surface. Apply the RBC at

the sea bottom to  in the following form:

[F((z+4mx)+F (z-mx)] + E%[G (z4mx)-G(z-mx)] .

of—

q}:

Then at z = -HO + mx, the RBC yields

-F(-H_) = F(-HO+me) + %\[G(-HO+me)_G(-HO)],

or,
F(-HO) =0
and
G(-HO+me) = G(-HO) - )\F(-HO+me), for all xe D.
Thus,
G(r) = G(-HO) - AF(r),
and

Y = F(z-mx).

The form for  1is consistent with the facts that the CD are
projected onto the sea surface along z - mx = constant and that the

downgoing wave must be perfectly reflected from the bottom surface.

Then the FBC requires that

O‘Z-fz

mZF"(-mX) + ( JF'(-mx) =0
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( 2 fZ
Taking -mx =r and K = 0'—-2_) , then
o gm
F-F e tF L F
o 1
or
_Alz- +AH
L‘JZF[e (Z mX)-e 0]’
o
AH
where Fl = Foe © so that ¢|Z_ = 0 along the bottom.

-H +mx
o

Thus, assuming - yo€ cos (ot), the velocity fields are

-A(z-mx)

u(x, z;t) = AFoe cos (ot),

and

-A(z-mx)

w(x, z;t) = mAFoe cos (ot)-

Then the vertical particle displacement is

mAF
o e_A(z-mx) sin (ot),

L(x, z;t) = -

and the displacement of the sea surface is

mAF

n(x;t) = L(x, 0;t) = 2 ™ sin (ot) .

For a numerical example, let the surface tide have an amplitude of

1 meter at the coastline, then

mAF A.H 2
n(L) = e 9 sin (ot) = 10 sin (ot) cm,
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thus

AH
u(0, -.HO) = AFOe O cos (ot)

2
10 cos (ot) cm/sec.

8 |a

For the semidiurnal tide, o= 3/2 x 10—4sec_ , and take
-2
m =2/3%x10 , so the bottom current at the at the seaward edge of
the shelf is
u(0, -H )= 2 cos (ot) cm/sec,
o 4
2 2
. . ) (o -f )L
which is a reasonable value. Since AHO = Tn— , then, for

L=30Km and f= 10'4sec‘1,

-8 6
. 5/4x10 x3x10 45 10~3z6x10-3.

-~ = e 3T
o 3

-2
10" x 2/3x 10 8

AH

0.006

Thus the surfacetide is amplified by a factor of e from the sea-

ward edge of the shelf to the coastline.

The role of the FBC is also investigated in the next section for

a case with non-uniform bottom slope.

I. An Exact Solution for an Asymptotically Critical
Bottom Slope

As observed in the previous section, the FBC admits exponen-

tial solutions in the case of uniform, critical bottom slopes. In this

section, exponential CD are assumed for a case with subcritical
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bottom slope, and the water depth is allowed to vary with x 1in a
manner consistent with the solution for . The permissible bottom
shape is analyzed to determine how it is characterized.
The case of no frontal interaction is considered. The CD are

assumed to be:

and

then the solution is

Since the bottom surface must be a streamline, set LIJlZ_Z = C,
b

thus

cosh (Kix).

)
I
Qly

KH
Alternatively, since zb(O) = -Ho and (0, -Ho) =Ae = C, then

1
zb(x) = _Ho + R In (cosh (KAx)).



185

The coastline is at x = L. where 2z (L)=0 or

1 -1 o
L = N cosh (e ).

The bottom slope, m, Iis

m(x) = b = \ tanh (K\x),
dx
thus
m(0) = 0
and
m(L) = X tanh (KAL)
2 1/2
=\ (1- sech (K\L)) /
-2KH
1/2
=\ (l-e o\l/2.
- . . . -2
For the semidiurnal tide in the coastal region, X = 1 x 10 and
-7 -1 5
K= 10 ecm . Take Ho =3x 107cm, then
-2KH
-0.06 172
(dee  OYW2 o (127006125 24
3 -3
and L=* 2.4x 10" km. Thus, m(L)= 0.24\X = 2.4x 10 ~, and

the bottom slope is characterized as montonically increasing from
zero at x = 0 to the critical value, m =\, as x — .

The streamlines parallel the bottom topography and the strength
of the flow increases exponentially downward along a vertical and

shoreward along a horizontal. Other solutions which are variations
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on the basic form can be constructed. The essential feature is that
this is an additional case where the FBC plays a role in producing a

flow which is strongest along the bottom.
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VII. APPLICATION OF THE THEORY TO FRONTAL
MODELS WITH VARIABLE COEFFICIENTS

A. Introduction

Two cases with coefficients varying in both independent vari-
ables are investigated as frontal models, The first step is to com-
pute the explicit forms for the characteristics, if an integrating fac-
tor can be found; otherwise, there is the necessity of solving a pair

of integral equations:

+ x +
z(x) - z = S‘ N (%, z)dx,

where, on the initial ine, x=x ,

Picard's method of successive approximations can be employed to
solve the integral equations. A sufficient condition for convergence
of the approximation scheme is that )\i by Lipschtzian with rexpect
to z, and a sufficient condition for that is for )\i to be continu-
ously differentiable with respect to 2z, which is the case under most
oceanographically realistic conditions.

The second step is to reduce the GE to its canonical form, CGE,

which is generally not a wave equation. The CGE may have a



188

"functionally invariant solutions," if the characteristics satisfy the
CGE, or the general solution may be found in terms of integrals of
arbitrary functions (Koshlyakov, Smirnov, and Gliner, 1964). Then
the general solution and the BC's can be used to extend the CD.
Barring such good fortune, if the Riemann-Green function is known,
then the solution can be found from the resultant integral involving the
Riemann-Green function and the CD. An alternative approach is to
convert the second—order CGE to the canonical form of a pair of first-
order equations in either a symmetric or non-symmetric hyperbolic
system and carry out the integration along characteristics, which
usually involves a Picard scheme of successive approximations for a
symmetric system or a finite difference scheme for a non-symmetric
system. Another approach is to seek a finite difference solution of
the GE itself, in either the original coordinates or in the character-
istic coordinates. Solving the CGE is most compatible with theory,
but it entails a mapping of the CD and the BC's from the (x,z) do-
main to the (1, %) domain and an inverse mapping of the solution.
The characteristic variables may separate in the CGE, and, if the
shape of the boundaries permits, which is unlikely, a pair of one-
dimensional eigenvalue problems must be solved.

To illustrate the solution theories, two cases are considered
which resemble actual frontal structures. In both cases, the exami-

2 2
nation is limited to low frequencies, such that ¢ <« N, and the
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corresponding GE is:

GE: N%(x, ) - (17 (% 2 M (2 - (o‘z-f(f+—\;x(x, 2y, = 0.

Xz

The two analytical models advanced for the frontal region are of pro-

gressive complexity.

B. Model Frontal Regimes

Instead of providing a table of numbers for the two-dimensional
fields of the variable coefficients and proceeding on a strictly numeri-
cal basis, an attempt is made to "probe the problem" with reasonable
analytical models. From the outset, it is anticipated that a numeri-
cal method will eventually be required. There are several criteria
which are sought in the models considered:

i) The self-adjoint nature of the GE should be preserved by the
chosen analytical coefficients, i.e., attention is restricted
to frontal regimes which are geostrophically balanced for
the mean flow component, ;, parallel to the axis of the
frontal regime.

ii) Model A should exhibit a monotonically increasing Nz(x, z)
as a function of both x and z. Such a model does not
exhibit a subsurface frontal layer yet it does have anintensi-
fication of the key parameters as both the surface and the

coastline are approached.
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iii) In addition to exhibiting a monotonically increasing N (x, z)
as a function of both x and =z, Model B should have an
inclined frontal layer rising in the direction of increasing x.
The frontal layer is characterized as coinciding with a maxi-
mum in Nz(x, z) as a function of both x and z.
The frontal models are sketched in Figure 16.
For the mean density field in Model A, one which is both expo-

nential in its x and 2z dependence is chosen:

;(X, z) = Po F Ap(l-eaz_bx), with a>0 and b>0,

thus
— az-bx - az-bx
p, = -alpe and P, = bape ;
then the slope of an isopycnal, s, 1is given by
-p
s = '-d—z = — X = ]—3- > 0.
dx '~ p a
P z
Defining
E =-28PB.
(o] (o ’
o
then
2 P8 b
NEs|E -2 . Eo az x’
o
_ g
£y = X _ g az-bx’
z p o
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Model A's Isopycnals
a x=0 z=0 x=L

Model B's Isopycnals
z=0 x=L

Figure 16. Sketch of the field of isopycnals for frontal models with

variable coefficients.
a. Model A
b. Model B
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h
<
H
!
I
=

without regard for functions of integration or boundary conditions,
i.e., only internal consistency has been imposed on the mean fields.
The more complex model, Model B, is based on a hyperbolic

tangent density dependence in both the x and =z variables:
F = Pg + Ap tanh (-a(z+d)+bx),

with a>0 and b> 0, again, and OidiHo, where Ho is

the water depth at x = 0. Since

Ez = -aAp sech‘2 (-a(z+d)+bx)

and
- 2
Py = bap sech  (-a(z+d)+bx),
then
-p
s = —d—z) = ___X = E> 0
dx p a
P z
again. Taking
E - 22p8
o p
o
again, then
2 'ng
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— _ggx 2
fv = = -sE sech (-a(z+d}Hbx),
X P o ,

o

sk
- o

tanh (-a(z+d)+bx),

and

2
fv = sZEO sech (-a(z+d)+bx).

This model has a frontal surface, or center of the frontal layer; the
intersection of the frontal surface with the (x,z) plane is given by

-a{z+d)+bx = 0. Thus, the frontal surface rises from a depth of

z=-d at x =0 to intersect the sea surface, forming a surface

d . d . o
front, at s = z 1f §< L; otherwise, it intersects the bottom. At
the frontal surface, v has a zero crossing and ;z has an ex-
tremum.

C. Frontal Interaction with Model A

The problem is examined systematically for Model A; in the
next section, it is studied in the same fashion for Model B. Using
the functions computed for the coefficients of the GE in the preceding
section, then:

GE:

az-bx az_-bx 2 .2 2 az-bx
L = - _f - = 0.
W) =E e Yo+ ZsEOe Y (o fv s Eoe W 0

Take
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5 o‘z_f
K™ = 5
s E
o
and change variables to
b a,
2" )
po=e and v =¢€ s
then
2 2, 2 22 2 2 2
: - - -1 + - (K -1 = 0.
GE " LlJML ZpVLlJpv v (Kpv )Llva }J.LlJp (K pv )vtlJv

The slopes of the characteristics are found to be

n
vy LB LY 4R
dp™m n, = B

and

4
dV M V[
LA A I
dp’s L p *

Rewriting the equation for 1,

dv 4By gogp = o
v P
. . . . 1
This equation has an integrating factor, F = p_\: . Then

K(_i_}i+pdv+vdp _ o,
2 2
(VIR
thus

1
n =" _Kln(p)

TRY
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and, similarly,

§:-1—+K1n(p).

VRV

n and ¢ can be expressed interms of x and Z;

2, 2y
277 b
n=e€ 2 - KEX
and a b
—-Z-'ZX
L =e + K EX;
then
_(&-7m)
T K
and
2 ntt, |, (L-1)
Z2=3 In ( 2 ) aK

Thus, the mapping from the (x,z) planeto the (n,%{) plane, and
its inverse, are determined in closed form.

The reduction of the GE to the CGE follows after Ln), L(0),
and Qfn,¢) have been evaluated from the set of first and second

order partial derivatives for 7n and L:

TRY
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2 1 2 1
Ny -3 K tw=3 "~ K3
b3, . b3, "
1
np.v - HZVZ ’ g’}.w :npv
2
My =7 3° g’vv LY
v
Thus,
2 2
L{n) = L) =-K pw and Qn,{) = -4K,
and
Ly __Lg) L
Qm, L) QM. L) 47
Then
1
C : = - =0,
GE L () ‘Pné+4*“[¢n+¢é] 0
but
1 (+t)
w2 7
thus
CGE: L{y) = Y P [v +y,] =o0.
ng 2 M+L) ™ L

Alternatively, let a =n-{ and P=n+1§, then

CGE: L) = Ll,taa— LlJﬁﬁ— %LlJﬁ: 0.

The CGE is one for which the Riemann-Green function is known

(Garabedian, p. 150, 1964). Formulating the adjoint problem, then
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| ) 11 1 -
i) AGE: M(W) = an -3 (n+g)[wn+w 1+ (n+§)2 W =0
or
1

MW) =W - Wt BV _?W -

1
DV e Y )
. s —_ 1 =
W) W =g W (=)

iv) W =1, (n=z, L{=y).

Together, ii) through iv) imply that

(m+¢)
w
1/2(x+§)

for m=x or {=y;
1/2
(n+y) /

to find W for all (n,{) it is necessary to change variables to

The details of the solution technique are not essential, and it is suf-

ficient to know that

m+8) F(

/2

W, §;x,y) =
(miy) Pt

where F(a,b;c;d) is a hypergeometric function with arguments a,b,
c, and d. W satisfies i) through iv) above and also L(x yr)(W) = 0.

The solution theory involving the Riemann-Green function, W, can

be used directly to evaluate 1, as outlined in Chapter V.
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If the solution, 5, can be separated in the (a,p) plane,

then
§ = Z C_A_(a)B_(B),
where n
2
" —
An + YnAn =0
and

1
B'+1B +y%B =0,
n a n n n

2 .
Y, is the separation constant and Cn is a constant coefficient.

Hence, the solution bases are:

An = (sin (yna), cos (yna))

and

B_ = (J_(y B) N (v 8))

where Jo and N are zero order Bessel and Neumann functions,
o

respectively. In terms of x and z,

An = (sin (ynKbx), cos (ynKbx))
and
az az

B_ = (3 (v2 exp (22- ), N (v] exp (-

The physical boundaries of the problem do not permit SOV, but these
functional forms do give insight into the character of the solution.

This set of separable solutions could be used in an approximation
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scheme for obtaining a solution with boundary data given on bound-
aries not parallel in the (a,p) plane. The BC's can be readily ap-
plied along lines az - bx = constant, which would be satisfactory
for a uniform bottom slope of m = b/a, but not for a surface bound-
ary.

In the limit of a weak front, i.e., s— 0 so b— 0, then

(O'Z-fz) Caz
GE: Yux " TE°© Ypy = O
o
2,
With v = eZ s
2
K 1

I A
where 0_2 fZ

KZ = ( A )a'Z > 0.

o

With SOV,

Y= z Xn(X)Zn(V),

n
then
Xn = (sin (ynKx), cos (ynKx))
and
a 2,
Z = (J (2 ezz) N (2y e )
n_ “o'“Yn » Note¥y ?

which are identical with the results obtained by taking the limit in the
separable solution for a strong front. The BC's can be satisfied for

parallel boundaries by solving the resultant eigenvalue problem,
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involving the eigenvalues {yn}.

D. Frontal Interaction with Model B

Using the functions computed for the coefficients of the GE for

Model B in Section B,
2 2
GE: E sech (-a(z+d)+bx)y + 2sE sech (-a(z+d)+bx )y
o XX o XZ

_ (c?-£2_s%E sech® (-a(z+d)+bx))y__ = 0.
o ZZ

Again, take

and change variables to p =bx and v = -a(z+d), then the GE is

reduced to

2 2
GE.: -2 - -1 = 0.
LlJNL LlJpv (K™ cosh (p+v) )LlJVV

The slopes of the characteristics are found to be

n
_%‘i) =+ -1+ K cosh (p+v)
B M T]V
and
51—V-) ——éﬂ =1 - K cosh (p+v)
dpt ¢ v

To find the equations of the characteristics, examine the equation for

n rewritten as



dv + [1+%<(e(p.+v) + e-(p'+v))]dp. = 0.

Change variables to r = M and s = ev, then

K

ds 1,;dr
— + [1+-2- (rs+;—s)]—r'- = 0.

Take v =rs so that

which integrates to

1n (r) + = tan_l(v) ="
or,
or,
bx + 2 tan-l[e-a(z+d)+bx] _
K
Similarly,
-ln (r) + I—Z< tan-l(v) =
or,
2 -1
b+ g ten HV) o ¢

or,

201
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-bx + 2 tan_l[e_a(z+d)+bx] ={.
K
Since
L. n-t)
2b
and

then the mapping from the (x,z) plane tothe (n,%) plane and its
inverse are known in closed form.

The reduction of the GE to the CGE follows after L), L({),
and Qn,{) have been evaluated from the set of first and second

order partial derivatives for n and &

np =1 +Il{ sech (p+v), Qp =-1+ Il{ sech (@+v)
=1 sech (u+v) t =
", K B¥vis v _nv
= - sech (u+v) tanh (w+v), & =
i ¢ : b
LY Sov " M
- , t = :
T ™ Mg T Y
Thus,
2
L(¢) = L) = K sinh (@p+v)
and

Q(T]s g) = -4,

Then
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L
Ln) _ L) _ K .
am, 0 - am, o) -~ & sink k),

thus
KZ
LlJng - —Zsinh (p.+v)(LlJn+Lng) = 0;
but
p+tv=1I1n [tan[i—i m+0)1 1,
thus
K% K+t)
CGE: Lpng + —4—[cot (—Z——)] (¢n+¢g) = 0.
Take
K
p = EZH- and q = --Z—g- ’
then

K
Ypq T3 Ot (p+q)[¢p+¢q] = 0;

alternatively, let a=p-q and P=p+gq, then

CGE: Yoo - Vgp - K cot (B = O.

PP

Formulating the adjoint problem

i) M(W) = qu - (I—Z{) cot (p+q)[,Wp+Wq] + K cch(p+q)W =0

or

2(BYW = 0

M(W) = Waa- W__+ K cot (B)W_, - K csc

PP P

ii) Wp = (I—;) cot (p+q)W, (q=y)

iii) W = (3) cot (p+a)W, (p=x)
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iv) W =1, (p=x,q=y).
Together, ii) through iv) imply that

. K
sin (p+q)

sinK/Z(p+y) sinK/Z(

W = for p=x or q-=y.

qtz)
If it is assumed that the solution  can be separated in the

(a, B) plane, then

§ = z D A_(a)B_(B),
n

where
2
A"+vyv A =0
n n - n
and

. 5
] ' -
Bn + K cot ([3)Brl v, Bn 0.

z . . . .
Yy, 18 the separation constant, and Dn is a constant coefficient.

The equation for Bn in normal form is, with

2
With Y, = an(an+K), then the solution bases for A are
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for B, they are

K-

H
| 7
o

=}
=}

where Cv(z) and D (z) are Gegenbauer, or ultraspherical func-
tions of degree p, of order v, and of argument 2z (Bateman,
1953). When a =n, the Gegenbauer functions become the Gegen-

bauer polynomials. Expressed in the original variables,

a = Kbx
and

B =2 1:a’n-l[e-a,(z+d)+bx] .

The forms for A and B could be used in an approximation
scheme.
If the solution to the adjoint problem is assumed separable in

the (a,p) plane, then

where

and

B; - K cot ([3)B;1 + [yf + Kcscz(ﬁ)]Bn = 0.
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2 . . . s
v, isa separation constant, and Erl is a constant coefficinet.

The solution for Brl is

where Fn satisfies the same equation as F for the GE. Thus,
Arl for W 1is the same as Arl for y and Brl for W s
equal to Brl for  multiplied by sin (f).

The author has experimented with a host of techniques to find
W. The most complete result entails the use of the solution bases
as outlined in Copson (1958). Even then W can only be reduced to
quadratures. Using the relations between the ultraspherical and as-

sociated Legendre functions, viz.

v
C¥ (cos (B)) = (-1) % (sin (B)"P (cos (B))
ptv
and
v
D (cos (8)) = (-1)° (sin (B)'Q_, (cos (B))
then, with p = 5-—1 )
) i . 1/2
' __sin(B)p . 2 P iAN+K) “(a-A)
W(a, B;A,B) = i“(s—in(B)) sin (B)—sin(pn) )

o0

[Pi+p(cos(B))P):ip(cos(ﬁ))-P;\i (cos(B))Pi+p(cos([3))]d)\.

p

This form is not readily solvable, but it could be used to obtain



asymptotic limits on the solution as mentioned in Section V. E.

In the limit of a weak front, s— 0 so b— 0, then

(0'Z fz) 2
GE: LlJXX - —E—o—— cosh (—a(Z+d))LlJZZ =0,
or, with
v = -a(z+d),
2 2
- K h v = O,
L. cos (V)Lllw
where
2 .2
k2= (ZE42%5 0
o

Change variables to
p=2 tan_l(ev)
and

Kx,

0
1

then the GE becomes

Vg = Yop - K 0t (BN, = 0.

Assuming SOV,

b= ) X 607 60
n

then
Xn = (sin (ynKx), cos (ynKx))

and

207
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K-1 K-1
2 2
z = (C (cos(p)), D (cos(p)))s
n n
where
p=2 tan_l( -a(z+d))
and
2 .
Y, © an(an+K).

The expressions for Xrl and Zrl are identical to those obtained
by taking the limit b — 0 in the separable solution for a strong

front. Groen (1948) considered a case similar to the weak front.

E. Numerical Solution Techniques

The background for this section is found in Forsythe and Wasow
(1960) and Garabedian (1964). In both Models A and B, the equations
of the characteristics were found explicitly and the GE was reduced

to a compact canonical form, viz.

(1) LlJng + —;—f(n+§)[¢n+¢g] =0
or
(2) LlJG,G, - LlJﬁﬁ - f(ﬁ)q"ﬁ = O: (a='q-§, a'nd 5:"1“'@)

where, for Model A,
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and for Model B,

f(B) = K cot (P).

These forms are appreciably simpler than the original GE expressed
in the (x,z) plane. It would be very tedious to attempt to solve the
GE on a non-uniformly spaced, curvilinear grid commensurate with
the field of characteristics in the (x,z) plane. Considerations of
convenience and stability suggest carrying out the calculations in the
(n, ) or (a,B) plane at the expense of a possible loss of accuracy
through the inverse mapping of the solution. Because the objectives
are only qualitative, accuracy is not of paramount importance. Since
the characteristics tend to converge in the inclined frontal layer, a
more detailed solution is achieved for computations in the character-
istic plane than in the (x,z) plane precisely where the solution is

expected to have the most structure and is of the most interest.
Method One

Form (2) is ideal for a finite difference scheme; it has the
additional advantage that the coordinate a is directly proportional
to the coordinate “x, so that the initial line, (x = 0), in the
physical plane transforms into the f axis, (a =0), in the char-
acteristic plane. Since x 1is time-like, then a is also time-like.

The central difference equivalents to the derivatives in (2) are:
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- 1
B = L5550 1Y 1)

1 .2
~ S + _2 ,
Yop = 2p) Wi gt M)
and
1 2
z (— -2
qu,o, (Aa) (¢i+l,j+¢i—1,j lbi, J)’
where the indices i and j correspondto a and P, respec-
tively. Then (2) becomes
= _ + C4g, .
(3) Yien, T Y A B e T S
where
2 2 2
A= 2[1-y7], B, = (v +>\fj], C, = (v —’\fj],

Aa Aa
y=(zg» and M=y

For stability and convergence, it is necessary that y<1. The CD
are (0,B)=F(B) and lJJa(O, B) = G(B). The initial values for the

nume rical calculations are

4y,;= FO
and
(aa)’
- . . "o s ()1 (1
"’z,j F(j) + 6aG(j) + > F'"(3), ( JB( ), ,JT( ),
where jB(l) and jT(l) are the coordinates of the sea bottom and
surface, respectively, at i= 1, the initialline in the (a, p) plane.

Both the upper and lower boundaries are assumed rigid so that the

boundary values for | are given as
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Llr‘.u .:0 and lJJ .::0, (i:]‘,Z’"',i):
1,JB(1) J,JT(l) c

where ic is the coordinate of the coastline in the (a, B) plane.
The calculation proceeds with the use of (3). The velocity compo-

nents are found from

P
Z
@ R L N B
and
0'X BX
(3) W= Za i, 7Y, Y, -1l

No term including a enters (4) since a . = 0.

Method Two

From Equations (7) and (8) of Section V. C.,

(6) WT] - )\Zun = 0, along ¢ constant

and

(7) w._ - ANu, =0, alon M constant
SR A &

The following difference scheme is sufficient to approximate (6)

and (7):

(8) [wl, _]—Wl—]., j] - I(J)[ui’ _]—ul-l, J] =0, along {
and

(9) [wl’ _]—Wi, j—l] - J(1)[u1, i J-l] = 0, along n,
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where
1G) =5 )+ ag)
and
J(i) = % [xfzJ) + xf;_l]

This pair of linear simultaneous equations can be solved for

the unknowns, wu., . and w, ., then
1} 1]

1 . . ..
(10) u = m[Ul(l-l, j)-DI(i, j-1)]

1 .
1 _ . C 1 T( L i-1)],
(11) w5 = Gagy HO)ULG-1, -3 0PI, - 1))
where

UI(i-1,j) = J(i)ui, 1" Wi, i-1

and

DI(i, j-1) = I(J)ui-l,j - Wi-l,j

are the discrete analogues of the Riemann invariants.
The expressions for )\l and )\2 are evaluated in terms of

n and ¢ from the analytical expressions for both Model A and

Model B. For Model A,

dz
M) o= s1r 2R
n n+&
and
dz 2K -,
x-2 —&) - S[l——-:l-__Z],
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and, for Model B,

)\l = —j—-}z;) = s[l+(£2<—)(tan(——K(1+g)) + cot(LK(‘:g)))]
n

and

B! _dzy s[l-(?—)(tan(K—(;rl—-—g))—l- cot(&yt"—)))].

The BC's for this technique are applied through (8)

and (9). Let characteristic n. intersect the sea surface, which is

assumed rigid, at (i, j), then w. j = 0, thus
w, .
u, . =u -1

i L1 I

Let the characteristic gj intersect a sloping bottom boundary at

(19 J): then Wl J = (m(J))ui,j. Thus

’

5 = T O,
where there is one value of the bottom slope, m(j), assigned for
each Qj. The denominator does not equal zero for subcritical
bottom slopes. It has been found most convenient to adapt the above
equations to the grid and indices in the (a,p) plane which is used
with Method One.

Methods One and Two have been computer programmed, as has

the mapping from the physical plane to the characteristic plane and
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the inverse mapping. Test calculations have been carried out by
both‘methods for Model B in a wedge. Because there are some doubts
about the results, though the phenomenon of bottom amplification of
the wave does appear, the solutions are not plotted or discussed in
this dissertation. The observations reported in Chapter X indicate
that the case of variable coefficients is important, thus it is planned

to continue this work in the future.
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VIII. HYDRODYNAMIC STABILITY
A, Introduction

For hydrodynamic instability to occur, perturbations on a
steady flow must overwhelm restoring forces. Then the perturba-
tions can grow or decay. The restoring forces for inertial-internal
waves are the Coriolis (rotational) force in the horizontal plane and
the buoyancy (gravitational) force in the vertical plane. The former
is related to geostrophic equilibrium while the latter is related to
hydrostatic equilibrium. For each restoring force, there is an as-
sociated frequency of free oscillation. Associated with the Coriolis
restoring force, there are free inertial oscillations at ¢ = £, while
free Viisala-Brunt oscillations at ¢ = N are associated with the
buoyancy restoring force. Without the frontal interaction, as o — f,
the characteristics (and the group velocity) are cast into the horizon-
tal plane; however, as ¢ — N, the characteristics (and the group
velocity) are cast into the vertical. Thus, inertial motions occur in
the horizontal plane while stability oscillations occur in the vertical

plane, as do their respective restoring forces.

+ 2.1/2

With the frontal interaction, when o¢— o ® N(l+s ) , then
the slope of both of the characteristics becomes approximately - § ;

i. e., both characteristics are deflected downwards very steeply, but

not vertically. Also, when o¢—o¢ = [f(f+_\;x)-szN2]1/2, then the
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slope of both of the characteristics becomes approximately s; i.e.,
both characteristics are deflected upwards nearly parallel to the iso-
pycnals. Further, when o — N, the upgoing characteristics be-
come vertical, while the downgoing characteristics have a slope of
/2

1 - .1
approximately - —=— . Similarly, when o¢— (f(f+ VX)) the

2s

downgoing characteristics become horizontal, while the upgoing char-
acteristics have a slope of about 2s. The anomalous behavior of
the characteristics, and of the group velocity as well, for o~ N
and o~ f raises the question of whether or not baroclinic instability
can occur for the frontal interaction.

The analytical properties of the GE are investigated to obtain
information about the stability of the motion. The main effects on
stability to be explored are those of finite depth and of the inclined

frontal layer. In the final section, the observable Richardson numbers

are introduced.

B. Baroclinic Stability

For an assumed mean flow, investigations of baroclinic stability
are generally made for the conditions of the growth of a perturbation
upon the mean flow. The GE for o< o, 1is elliptic, an analytical
property which has been exploited to derive theorems for stability
conditions (Stern, 1961 and Magaard, 1963). Fortheinertial-internal

wave problem, an approach appro;;riate to the hyperbolic GE must
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be employed.

If the perturbation motion paralleled the dominant mean flow,
the relevant stability problem would be some form of the inviscid
limit of the Orr-Sommerfeld equation (Lin, 1967), where the vertical
curvature of the mean flow plays a crucial role. In the limit of a
layered medium, such a problem reduces to the Kelvin-Helmholtz
instability problem (Lamb, 1945), where the instability criterion is
that the discrete analogue of the Richardson number be less than one.
Huppert (1968) examined the influence of rotation on Kelvin-
Helmholtz instability; he found that rotation plays a stabilizing role
for long waves.

The problem of perturbation motion transverse to the mean
flow apparently has not received a general treatment. A discussion
of the stability effects of horizontal density gradients on the propaga-
tion of inertial-internal waves has been given by Rhines (1963). The
GE derived in Chapter II for the frontal interaction is the two-
dimensional version of the one Rhines considered, except that the ef-
fects of ;x and ;z have been considered in the present analysis.
The question is: Can the effects of the horizontal density gradient
and of the horizontal and vertical shears in the mean flow upset the
stabilizing effects of the Coriolis force and of the vertical buoyancy
force?

First the integral, or global, viewpoint is adopted, and then the
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differential, or local, viewpoint is taken. Writing the GE in its
divergence form, multiplying by  conjugate,and integrating over
D: [(x,2):(0 <x<L,-H(x)< z S_n(x))], the resultant integral reduces

to

—t
as in Section IV. D. Thus, if F(X) # 0, then ¢ 1is imaginary;

i.e., E either grows or decays with time, unless there is a sink

or source, respectively, in D not accounted for in the analysis.

Since ??_ 0, when PES+7§ 0, then F(X)'#O and o is

imaginary. Since PE >0 then V < 0 is a necessary condition
g y s 2 Y < y

for baroclinic instability. Because

<l

i

p _ 2
~ S‘S‘[f(ﬂ v )P+ N ) - MY b Jaxds
20 D '

zZ

P —_
__Oz S‘S‘[NZ (qu-I-quZ)Z + (W )Z(f(f+ vx)-szNz)]dxdz,
20 D

a necessary condition for V < 0 is that

for at least one point (x,z)e D. Since the characteristics are lines
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of constant phase, then

And, since N\~ s for ¢ ~"f, then it is feasible that s can be
greater than 5. for o~ f. Thus, an inclined frontal layer may
induce baroclinic instability.

Adopt the differential, or local, viewpoint, neglect the BC's, and

take Yoc e1(kx+mz). Then the CR yields

or, rearranging terms,
— 2. 2
Nz(k+sm)2 + (£(£+ Vx)- szN )m

k2+m‘2

2

42 =

Let (;‘1;‘)1 and (;—1;—)2 correspond to the upgoing and downgoing

. . 2 .
waves, respectively. Since ¢ < 0, if

2 K f(f+vx)
$C> (Swe) v —5
N
then, if _
K 2 fE V) )
(;)1 _-S + (S - 2 ) ’
N
or if _
(..lf..) >_ 8§ - (sz_f(fdl-vx))ll2
m’'2 — 2 ’
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baroclinic instability may occur.

Thus, an inclined frontal layer may cancel the stabilizing ef-
fects of gravity and of the Earth's rotation. The implicit view taken
above is that a wave incident on a frontal zone has a fixed ratio of k
to m and that the interaction acts to alter the frequency.

If the view is taken that frequency is fixed, then, since
L A, or -\ A d X\ b lex if
— =N Xy , an > ecome complex i

2 2

— 2.2
o < f(f+vx) -8 N, orif o-Z> N7 (l1+s ), which means that the

(3]

GE is elliptic. )\1 and )\Z are equal if equality holds in the above
inequalities; then, a parabolic degeneracy exists for the GE.

A less degenerate situation occurs for

- 2..2 2 - ‘s
f(f+vx) -s N <o < f(f+vx); then both )\1 and )\Z are positive.
From the beam viewpoint, Figure 17, the downgoing beam is de-
flected upwards and the upgoing beam is inclined more steeply than
the frontal layer. The upgoing beam strikes the sea surface and
never crosses the frontal layer; instead, the wave is reflected from
the sea surface and propagates in the -x-direction in the beam bound-
ed by the dotted lines.
. . 2 2 2 2

Similarly, if N <o <N (l1+s ), then )\1 and )\2 are
both negative and the upgoing and downgoing beams are both deflected
downwards by the inclined frontal layer. Thus, from the viewpoint

of fixed frequency, the inclined frontal layer exerts a waveguide ef-

fect, or a wave-blocking effect, for both the anomalously low and
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e-blocking by a strong frontal zone.

of wav

17. Hypothetical case

Figure
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high frequencies of the inertial-internal wave passband.
The present analysis of baroclinic instability has been cursory.
An analysis of the time-dependent problem may prove to be more
satisfactory. Perhaps the ray method of Jones (1969) will prove

profitable.

C. Dynamic Stability

The details of destabilization require knowledge of the micro-
scale of turbulent processes; the discussion in Section B is only ade-
quate on a mesoscale. A compatible bridge between the microscales
and mesoscales is the concept of dynamic stability. The Richardson
number (Richardson, 1920), is the parameter most widely used in
oceanography and meteorology as an iﬁdicator of kdynamic stability.
The vertical shear in the horizontal flow of a stratified fluid repre-
sents a mechanism for extracting kinetic energy from the mean flow,
or from long waves, and increasing the potential energy of the fluid
through mixing. The flux Richardson number, Rf, 1is the ratio
between the buoyancy force and the destabilizing shear effect. Rf{
is equivalent to the ratio of the "time rate of increase of potential
energy, PEt’ due to turbulent mixing" to the "time rate of vertical
transfer of kinetic energy, KEt’ removed from the mean horizontal

flow:"
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e - (PE), g
" (KE), ——— du’
t pwu Py

where gp'w' =gK g—% is the vertical buoyancy flux,
v

' = ;Nvg—:— is the relevant component of Reynolds stress, K

v

is the vertical eddy diffusivity coefficient, N is the vertical eddy
viscosity coefficient, and Rf 1is the flux Richardson number. In an

alternative form,

dp
Rf = R _EY E _i{_VR
T - I_QEZ_N lEiEZ—N i’
PR dz v 1dz M
where E is the static stability and Ri = 5.2 is the gradient
Fr
Richardson number. Rf is determined by turbulence measurements,

while Ri is determined by the vertical gradients of the mean prop-

erties. Frequently, it is desired to know Rf while only Ri can

be computed; if N and K are known, Rf can be inferred.
v v
In the absence of accurate information, Nv is often assumed equal

to Kv' A critical Rf, or Ri, is employed as a stability cri-

terion. The critical value of Rf 1is unity, if the’kinetic energy of
the turbulence is constant. Then, if the eddy Prandtl number,
(NV/KV), is equal to one, the critical value of Ri 1is also unity.
For several cases of wave motion studied analytically (Miles, 1961;

Yih, 1965; and Proudman, 1952), the critical value for wave
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instability is Ri = 1/4.

The observations of this study do not permit calculation of Rf;
the observations do permit the calculation of certain Ri's. In Sec-
tions D and E, inertial-internal wave theory is examined to determine
what predictions can be made for Ri; then observable Ri's are
discussed in Sections F and G. In Section XI.H, observed Ri's
are reported for the field observations. The objective is to determine
whether or not the vertical shear of the horizontal velocity of the
semidiurnal internal tide is sufficiently large to make the frontal zone

occasionally dynamically unstable.

D. Inertial-Internal Wave Richardson Number

Munk (1966) derived the Richardson number for inertial-
internal waves, IGRN. His analysis is given a simple extension here
to include the effect of finite depth. Neglecting the frontal interac-

tion, since

2 -1
u = (o‘z-f ) (iomw +fmw )
X Yy
and
2 -
v = (o _fz) l(iO'-n' -fr ),
y X
then
u = (o‘z_fz)-l(io*n' +w )
z XZ yz
and
2 2. -1

v = (o -f) (io"n'yz-f'n' ).



225

i(ot-kx-Ly)

Assuming SOV, take w = Z(z)e and set ot - kx - Ly =0

2.2 2 2 2 2
after differentiation. The CR is (Nz_o' Jk“4+27) - (0 -f )m =0,

where m is the vertical wave number. L is expressed in terms
-
of the vertical displacement, §; since t’,t = w = ——ZZt—Z—
> 2 (N -0 )
then Z'= -{(N -0 ). Rotate coordinates to the major and minor

axes of the hodograph, i.e., from velocity coordinates (u, v) to

(Wl’ 2), where W1 and W2 are the velocity components along
0, = L and 0O, = —k— res tivel and © and © are
1T k& 2__21, espectively, 1 2

measured anticlockwise from east. Then

i
q
]
B
]
e

(e2-£%)

by the CR and the relation for w ; similarly,

N - o (ml)

and
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2 2 2

IGRNW, = ( Uz_fz)' zN >
N -¢ f{ (mY)

Since o > {, and since W1 and WZ are in-quadrature, then

IGRNW1 SIGRN < IGRNWZ as a function of time. The wave motion

is dynamically stable as o — N, and it is dynamically unstable as

o — f+, for fixed §.

Assuming 0'2 < NZ,

2 2
IGRNW | = (o éf ) _1 >
T (Em)
and
2 2
IGRNW , = (o z_f ) 1 >
£ ({m)
If the depth, H, is assumed uniform so that m = %, where n

is the vertical mode number; then

and

IGRNW _ = — 5

2
where r = (%) . For the semidiurnal tide at latitude 45°,

0. 56

IGRNW 1 = —_Z
(¢nw/H)
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and

1.25

IGRNW _ = 5.
(¢nm/H)

2
Let n=1 and assume representative values for ¢{ and H:
{ ~ 10 meters and H ~ 100 meters. Then ICrRNW1 = 5 and
ICrRNW2 % 11, which are sufficiently close to dynamic instability to
merit observational scrutiny. As (£ — 0, 61 — 0 and 92 -3
then W1 — u and W2 — _v; thus, there is a slight tendency for

the u component to be less stable than the v component,

Using the critical Ri criterion for waves of Ri = 1/4, for

the W1 component, when (¢{/H) > ——-lr'14 , the motion becomes un-
™
.. 2.2
stable; similarly, for the W2 component, when (t/H) > prpal the

motion becomes unstable. For ¢ and H fixed, there is a greater
tendency for the higher modes than for the lower modes to be unstable.
Considering the first mode only, when ¢ ~ H, the motion tends to
be dynamically unstable. The order. of magnitude estimate for {

is 10 meters, then the semidiurnal tide should tend to become un-
stable in a water depth of 10 meters on this basis.

Without density stratification, the phenomenon of shear instabil-
ity would not exist yet the stratification parameter, E = NZ, does
not explicitly enter the final form for the stability criterion. N
does enter implicitly through influencing the value for m(z); as

2 . . -
N increases, m(z) tends to increase, restricting ¢ to smaller
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values for dynamic stability. Thus, the motions tend to be least

2
stable in the pycnocline, where N and { tend to be the greatest.

E. Inertial-Internal Wave Richardson Number for
Frontal Interaction

The general problem of dynamic stability for the interaction is
not readily tractable. For simplicity, it is assumed that coefficients

are constant and simple waves are analyzed. Set

im(z-\,x)

+ 1 iot

and

where LlJ+ and {~ are the stream functions of the upgoing and

downgoing waves, respectively., Then,

+ + 2 +
uz - _LlJzz =m
and N
-mA\
ot Ve MMy
T ic o b
thus
+ -om _+
u_ = ¢
z ,>\1
similarly,
- -0m , -
u :,———g
z ,XZ

Therefore,
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e
IGRNU = )
(omt)
and
K;Nz
IGRNU = .
(cm¢)?

))1/2 then so does IGRNU .

’

Since A, — 0 when 0'—>(f(f+;r_
2 x

F. The Frontal Richardson Number

Consistent with the observations in the frontal zone off Oregon,
the vertical shear of the mean alongshore flow is given by the thermal

wind equation:

-sE

<1
1

Then the frontal Richarson number, FRN, takes the heuristic form:

FRN = =2;

i, e., the dynamic stability is inversely proportionai to the static
stability. The dynamic stability in a frontal zone assumes its small-
est value in the inclined frontal layer where the product of E
(frontal intensity) and s? (square of the frontal slope) takes its
maximum value. A conservative estimate for the minimum FRN in

~

the permanent pycnocline off Oregon, based on f=z 10 sec ,
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-4 -2 -3 .
E = 4x10 sec , and s = 3x 10 7, yields a value of
max max

minimum FRN = 3. . Though the minimum dynamic stability of the
frontal zone may be rather low, the frontal zone is stable "in the
large," as it must be to exist as a quasi-steady phenomenon. The es-
timate of minimum FRN, which is based on hydrographic data alone,

is compared with results for the mean vertical shear based on direct

measurements in Section X, C.

G. Observable Richardson Numbers

For each of the observable Ri's, the complex representation

of the horizontal velocity is employed: W =u + iv. Then the magni-

tude of the shear vector, |WZ|2 |u.Z|2 + |VZ| 2, is invariant un-

der coordinate rotation, and

E
RI = —> =

2 2 2
W12 TPl |

is also invariant. RI takes into account shear due to directional
twist with depth as well as vertical variation in the speed. Each RI

can be written in component form:

then

_RIU - RIV
~ RIU + RIV
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With time series measurements, a plethora of Ri's can be
computed, including those related to the instantaneous, mean, vari-
ance, and spectral components of the flow. The other Ri's wused
are designated as follows:

i) From the shear of the mean flow,

E
da 2 dv .2
(@) (&)

RIM =

ii) From the r.m. s. vertical shear of the flow,

E

RIVAR = Var(uz)+Var(vz) '

For peak values of shear, RIVAR is divided by 2 to ob-
tain the average minimum RIVAR,
iii) From the r.m. s. shear of the flow in a measurement band-

width, Ao, centered at o,

RIS(o) = [P @ +P () 2ae

zZz Z zZz Z

iv) Alternatively, for the coherent portion of the motion at o,
least squares analysis yields amplitudes for the shear vec-
tor:

W =A cos (ot) + iB sin (ot)
b7 z b7

and a time-dependent Ri is formed:
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RIC(o;t) = E

— -

|W_(o3t)]
z

v) A net Ri 1is formed from the mean shear Wz and the
coherent shear at a fixed frequency WZ(O',t):

RIN(o, t) = E

— ) 2
|[W +W (o, t)]
z z
In Section X.C., temporal minimum values of RIN are ex-
amined as a function of depth.

Within the limits of measurement error, all of the observable

are upper bounds on the minimum values for the actual dynamic

stability because the observed shears are lower bounds on the maxi-

mum shears due to the finite spacing of sensors and the discrete

sampling in time.
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IX. THE OBSERVATIONAL PLAN OF AUGUST -
SEPTEMBER 1966

A. Introduction

The objectives and design of the August-September 1966 field
observations are discussed. In Chapter X, the mean flow and hydro-
graphic fields established by the observations are examined, as well
as auxiliary properties of the oceanographic regime which are rele-
vant to the inertial-internal wave problem. In Chapter XI, the time
series of the velocity and temperature fields are analyzed to deter-
mine the evidence for and the properties of inertial-internal waves.
Thus, this chapter provides the planning background for the two

succeeding chapters.

B. The Observational Objectives

Because competing and variable phenomena occur simultaneous-
ly in the Ocean, especially in coastal regions, it is essential to have
a measure of the spectrum of motions. There is also a necessity for
an iterative approach to measurement. This philosophy is also es-
poused in Collins. et al. (1968) and Fofonoff (1968a); its corollary is
that it is unrealistic to expect to make definitive measurements on
one or a few "outings. " The most pessimistic view is that there are

no repeatable or intelligible measurements to be made because the
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flow regime is completely nonstationary and has no typical behavior.
The optimistic view is that sensible patterns will eventually emerge
from both the mean and fluctuating components of the flow. The iter-
ative viewpoint has been chosen; it is an operational one in that each
set of planned observations can adapt to prior results and because it
embraces the possibility of disappointment in the realization of opti-
mistic expectations. In other words, one learns what works and what
does not work and proceeds accordingly along the same basic theme.
It was considered poor procedure to attempt to study tidal and inertial
motions in the coastal region without due regard for the effective
mean flow of coastal upwelling, and V_if.e_leﬁ%’ On the basis of time
series measurements of currents and hydrography made in the coast-
al region in the summer of 1965 through the winter of 1966, analyzed
and discussed by Collins (1968) and Collins et al. (1968), it was ap-
parent that tidal and inertial motions were quite significant in the
coastal upwelling region. The two-headed question, which provided
the motivation for the thesis of this dissertation, presented itself:
how does the frontal zone of coastal upwelling modify the semidiurnal
internal tide and how does the semidiurnal internal tide, in turn,
modify the frontal zone of coastal upwelling? In August-September
1966, the second iterative step was taken. The observational effort
differed from that of 1965 to early 1966 primarily in the extension of

single vertical arrays of moored, recording sensors to a horizontal
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linear array, containing vertical array elements. In other words, an
oceanographic antenna was established. An intensive set of comple-
mentary hydrographic data was also included. Hydrographic data
have been sampled for the past century and moored, recording meters
have been employed in the past decade; yet there had been few, if any,
attempts to integrate the two measurement techniques to define a flow
regime until the observations of August-September 1966.

Prior to the installation of the August-September 1966 array, a
list of hypotheses was formulated. This list, given below with only
minor editorial revisions, is divided into two components: one re-
garding the semidiurnal internal tides and the other the frontal zone of
coastal upwelling.

The hypotheses regarding the semidiurnal internal tides off
Oregon are:

i) They exist in the coastal region off Depoe Bay, Oregon.

ii) They are generated in the coastal region.

iii) They are composed of standing and progressive waves.

iv) They are refracted by bottom topography and are consequent-
ly aligned parallel to bottom contours.

v) They are long-crested; i.e., they are essentially uniform

in the alongshore direction. )
vi) They have measurable parameters, e.g., amplitude, period,

wavelength, phase speed, and propagation direction.
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vii) They can be described effectively by the first one or two
vertical modes.

viii) They tend to become unstable as they approach shallow water
and in the region of the inclined frontal layer.

ix) They coexist with inertial motions and may relate to the gen-
eration of the inertial motions,

The hypotheses regarding the frontal zone of coastal upwelling

off Oregon are:

x) The inclined frontal layer is present 10 to 30 kilometers
offshore in a water depth of 80 to 200 meters during the sea-
son of observations, mid August to late September.

xi) It is feasible to measure the mean and fluctuating components
of the flow in the vicinity of the frontal layer.

xii) The seaward dissipation of the prevalent temperature inver-
sion occurring at the base of the frontal layer is indicative of
lowdynamic stability and, thus, of mixing in the frontal layer..

xiil) The occurrence of critically low dynamic stability is associ-
ated with the vertical shear of the semidiurnal internal tide.

xiv) Estimates of horizontal eddy coefficients can be made from
turbulent heat and momentum fluxes and mean flow calcula-
tions.

xv) The frontal flow field of coastal upwelling responds syste-

matically to the atmospheric forcing functions.
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Because of the sensor failures and inadequacies of the design of
the field observations, not all of the hypotheses were satisfactorily
tested. Hypothesis xiv) is tested in Mooers et al. (1969);
it is not discussed here because its relevance to the present study is
not sufficiently obvious. Hypothesis xv) is an entire topic in itself
and is not discussed here; Collins (1968) has taken several steps in

the investigation of this hypothesis.

C. The Design of the Observational Plan

The August-September 1966 observations were designed to test
the previously stated hypotheses with the available instrumentation,
the available data analysis techniques, the contemporary knowledge of
the coastal upwelling flow regime, and the contemporary theoretical
and observational understanding of inertial-internal waves. The
available instrumentation consisted of (i) six recording current me-
ters and four recording thermographs and (ii) standard shipboard
hydrographic equipment, viz., Nansen bottles with reversing ther-
mometers, bathythermographs, and a profiling current meter. The
moored, recording sensors provided data which have been examined
by standard statistical techniques for their gross features and by the
statistical techniques of time series analysis for their spectral con-
tent. The hydrographic data have been analyzed through preparation

of vertical profiles and sections to describe the oceanographic setting.
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The tide gauge record sampled at the Marine Science Center,
Newport, Oregon, had been intended to play a crucial role in testing
the phase relation between the surface tide and the internal tide; it
only functioned properly through a portion of the observations, but it
has been incorporated in the present study in a limited fashion.
Other data sets sampled include time series of atmospheric pressure
and winds, but they are not employed in the present study, except for
a summary of the wind field in Section X. C., see Mooers etal. (1968).

The successful experience of July 1965 to February 1966 dem-
onstrated that it was feasible to moor the recording meters in a depth
of water of 100 to 140 meters. With the shallowest sensor at a depth
of 20 meters, there was little fear of data contamination from sur-
face waves.18

To detect an inertial-internal wave, at least two sensors in the
vertical and two in the horizontal are necessary. To define the fron-
tal flow regime, at least one sensor near the top of the inclined fron-

tal layer, at a depth of about 20 meters, and one near the base of it,

1
8Because swell data were available, the 1965 current speed

data were inspected for episodes of weak winds and low swell which
were followed by episodes of high swell and no appreciable increase
in wind speed. The onset of high swell induced no apparent increase
in current speed. The question of data contamination by swell needs
further field verification. In the absence of full knowledge on this
issue, it is consistent with the information available to assume that
the sensor strings moved with the water column under the influence of
swell so that the sensors were blind to the particle velocities associ-
ated with swell.
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at a depth of about 60 meters, are necessary; similar measurements
are needed at two or more locations in the onshore-offshore direc-
tion,

The horizontal locations of the sensors were selected on the
basis of an estimate of the onshore-offshore location of the frontal
zone of coastal upwelling. It was estimated that the inclined frontal
layer tends to intersect the sea surface about 5 to 15 kilometers off-
shore and that the inclined frontal layer extends offshore to at least
” the seaward edge of the continental shelf.

The horizontal spacing of the sensors was selected on the basis
of an estimate of the onshore-offshore wavelength of the semidiurnal
internal tide. The order of magnitude estimate for the fundamental

h)

horizontal wavelength, )\(,

\B)

~ 20 to 40 kilometers, Section III. C. Since it was desirable to ob-

of the semidiurnal internal tide was

serve a wave over a sizable fraction of a wavelength, a horizontal
span of at least 20 kilometers for the sensor array was chosen.

The feasibility of extending the mooring scheme to depths
greater than 140 meters was uncertain. Thus, a compromise was
made by extending the array offshore only to a water depth of 200
meters, i.e., to the seaward edge of the continental shelf. The
capability of the mooring scheme for holding in shallow water, and
the ability of the sensors to recover data uncontaminated by surface

wave motions in shallow water, were uncertain. Thus, a compromise
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was made by extending the array inshore only to a water depth of 80
meters. With these decisions on the terminal depths of the array,
the array span was then 20 kilometers, extending from 10 kilometers
to 30 kilometers offshore, and from a water depth of 80 meters to
that of 200 meters. Thus, the array spanned an appreciable fraction
of both the frontal zone of coastal upwelling and a semidiurnal internal
tidal wavelength.

The deployment of the six current meters involved a choice be-
tween placing two in the vertical at three horizontal points, placing
three in the vertical at two horizontal points, or incorporating some
redundancy in the array. The unwarranted assumption was made that
the current meters could be depended upon for a high percentage of
data recovery, and no significant redundancy was planned. With pre-
vious experience at placing two and three sensors in the vertical and
none with horizontal spacing, it was thought wise to explore the hori-
zontal structure at three positions and to be content with two samples
in the vertical. The third horizontal position was selected to be the
midpoint between the array termini. As shown in Figure3, the ar-
ray consisted of current meters at depths of 20 and 60 meters, and
at distances 10, 20, and 30 kilometers offshore; these stations are
termed DB5, DB10, and DB15, respectively.

The estimated positions and depths of the sensor strings were:
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Distance offshore
along array axis

(oriented 120° to Water
Sensor 300°T) depth
site Latitude Latitude (kilometers) (meters)
DB5 44° 50, 2'N 124°10. 7'W 10.5 80
DB10 44° 53, 0'N 124°17. 3'W 20. 5 140
DB15 44° 56. 0'N 124°24. 1'W 30.8 200 .

The ratio of the vertical to the horizontal scale of the array was

40m 3

=4x10 7,

o]
1
> D>
% |5
1t

10x1 O3m
while the slope of the semidiurnal tidal characteristic was

In] ~ (%)z 1 to 10x 1072,
and the frontal slope was s=% 1 to 4x 10 3. Since R~ N and
R ~ s, then the sensor spacing was reasonable for the study of both
the internal tide and the frontal flow. The current meters at DBI1O,
60 meters, and at DB15, 20 meters, failed to give long records. For
dynamic stability calculations, the presumably most important verti-
cal pair, at DB5, operated sufficiently long. With the types and lim-
ited number of sensors available, it was not possible to test hypothe-
ses ii) and vii); i.e., the generation and modal structure of internal
tides. could not be examined.

The deployment of the four thermographs was influenced by the
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same considerations as the deployment of the current meters plus the
fact that the thermocline off Oregon is quite shallow, extending to a
depth of only 25 to 30 meters. It was decided to use a thermograph
at a depth of 20 meters at each of the three horizontal array positions.
The remaining thermograph was deployed on a separate mooring 10
kilometers southward of the linear onshore-offshore array and along
the same depth contour as the DB10 meter string. With the fourth
thermograph, it was hoped to test hypotheses iv) and v), i.e., the re-
fraction and long-crestedness of the internal tide, but that thermo-
graph failed to operate as did the other one at 20 kilometers offshore.
The thermographs at DB5 and DB15 did operate successfully.

The sensor sampling rate was determined by two considera-
tions: the highest frequency inertial-internal waves expected and the
inherent limitations of the sensors. The highest frequencies antici-
pated were those associated with oscillations at the Viisila-Brunt’
frequency. Since the static stability, E = NZ, ranges from

1x107° to 1x 10_3sec-2, the period of Vaisala-Brunt oscillations,

TN, was expected to range from TN ~ 3 to 30 min, where
2 4%, e~ _se . . . .
T, = To define Vaisala-Brunt oscillations, and to avoid aliasing

N N
of spectra at lower frequencies, it was necessary to sample at a rate
of at least once per minute. Such a rapid sampling rate was not pos-

sible with the available sensors and the risk was taken of using a

sampling rate of once per 10 minutes. A sampling rate as high as
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once per 5 minutes was possible, but it was decided to double the
record duration which would have been possible with the 5-minute
sampling rate. Thus it is not possible to definitively discuss
Vaisila-Brunt oscillations in conjunction with internal tidal motions.
Since the tidal and inertial motions are of large amplitude, the risk
of serious contamination by aliasing from the V&is#148-Brunt oscilla-
tions was thought to be small. The question of aliasing is examined
by looking for anamalous peaks in the computed spectra of Chapter
XI. With the sampling rate of once per 10 minutes, the Nyquist sam-
pling frequency was 3 cph, and the total potential record duration was
about 40 days, which was achieved within 10% for four of the ten sen-
sors. Using the semidiurnal tide as a frame of reference, the sam-
pling procedure chosen meant that the observations were made at
about every 1/75 of a wave cycle for a total of about 75 wave cycles.

One of the subtle hazards in observations from a moored array
is that there is a commitment to a spatially pointwise, temporally
semicontinuous viewpoint, The most obvious way to acquire a com-
pensating, semicontinuous spatial view is to use the hydrographic
techniques in conjunction with a moored array. The hydrographic
techniques were used in several fashions:

a) To compute vertical profiles of the density anomaly, de-

tailed vertical profiles of temperature and salinity were

made alongside each sensor string at the beginning, in the



b)

d)
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middle, and at the end of the observation period.
To compute vertical sections of the density anomaly, de-
tailed vertical sections of temperature and salinity were
made along the axis of the array from 10 to about 100 kilo-
meters offshore in the middle and at the end of the installa-
tion period.
Anchor stations were occupied for a lunar day at distances
of 45 (twice), 75, and 100 k‘ilometers offshore in order to
detect tidal structure in the hydrographic fields; at one of the
stations 45 kilometers offshore, good quality vertical pro-
files of current meter observations were made from the
R/V Yaquina.
Several vertical profiles of current meter observations were

also taken close to the moored sensor strings (Mooers et al,,

1968)..
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X. THE OREGON COASTAL OCEANOGRAPHIC REGIME

A. Introduction

The oceanographic setting of the August-September 1966 obser-
vations and the properties of the Oregon coastal regime relevant to
the propagation of inertial-internal waves are described. First, the
general flow regime off Oregon and the specific flow regime of the
frontal zone of coastal upwelling in August-September 1966 are dis-
cussed. Then, the seasonal fields of static stability off Oregon and
the field of static stability in the coastal region in August-September
1966 are analyzed. Finally, the field of characteristics for the semi-
dirunal internal tide in the coastal region in August-September 1966

is examined.

B. General Description

The oceanographic regime off Oregon is typical of the mid-
latitude zone of the Ocean's eastern boundary regions (Wooster and
Reid, 1963). There is a coastal regime consisting of the waters over
the continental shelf and slope, which extend to about 100 kilometers
offshore; a transition region about 100 kilometers wide; and an off-
shore regime seaward of 200 kilometers offshore. The mid-latitude
zone of eastern boundary regions is characterized by a weak, broad,

and shallow equatorward flow offshore. Because of the seasonal
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reversal of the alongshore wind, and because the wind and pressure
fields are highly variable on the time scale of days to weeks, the flow
of the coastal regime is very time-dependent. In the offshore region
off Oregon, the California Current flows equatorward on the average.
In the coastal region, the prevailing northerly winds yield an equator-
ward and offshore flow in the surface layer in the summer, while pre-
vailing southerly winds yield a poleward surface flow, the Davidson
Inshore Current, in the winter. There are other, interrelated dis-
tinctions between summer and winter: in the summer, density strati-
fication is intense, coastal upwelling predominates, and a coastal,
poleward undercurrent occurs, while in the winter both the density
and flow fields are more nearly uniform as a function of depth. These
properties determine the seasonal state of the mean flow with which
an internal tide interacts.

Smith (1964) and Smith, Pattullo, and Lane (1966) have made
comprehensive studies of coastal upwelling off Oregon. In the former
study, using hydrographic and atmospheric data, Smith tested models
of coastal and open-ocean upwelling adapted for the Oregon coastal
and offshore regions; his study encompassed the annual cycle. In the
latter paper, hypothes.es were tested regarding the inception of up-
welling; the hydrographic and atmospheric data gave credence to the
applicability of the basic physical concepts of coastal upwelling to the

" coastal regime off Oregon. Collins (1964) examined the annual march
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of the permanent pycnocline and made deductions about the fldw re-
gime based on hydrographic data; he documented the onshore rise of
the permanent pycnocline in the spring and its descent in the autumn.
Collins (1968) analyzed time series of current velocity and tempera-
ture observations over the continental shelf off Oregon, representing
all but the spring season. These and other studies have established
the existence of coastal upwelling off Oregon and have contributed to
the understanding of coastal upwelling in general. The studies of
coastal upwelling off Oregon, and the more general studies of Yoshida
(1967) and Smith (1968), form the observational and deductive basis
for the mean flow upon which the present study is structured.

Pavlova (1966) has presented hydrographic evidence, based on
data spanning a 35-year interval, for the seasonal structure of the
California Current System south of the Oregon border. In particular,
her work shows the existence of a poleward undercurrent near the
coastal boundary during the upwelling season; the undercurrent be-
comes most intense late in the summer and early autumn. Munk
(1950) has attributed the coastal countercurrent off southern Califor-
nia to a balanée between the curl of the local wind stress and the ad-
vection of planetary vorticity. Yoshida (1967) has employed this
balance in layered, b;,roclinic models.

Yoshida and Tsuchiya (1957) linked the existence of a coastal,

poleward undercurrent to the occurrence of coastal upwelling. They
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chose a vertical section of density sampled about 100 kilometers from
the Depoe Bay hydrographic line to illustrate their contention. They
employed the thermal wind concept, which is illustrated in Figure 18.
A field of isopyénals is shown in Figure 18a which has upwarped iso-
pycnals overlying downwarped isopycnals. This field of isopycnals
is representative of the continental slope and shelf regions during
coastal upwelling, with the downwarped isopycnals occurring beneath
the permanent pycnocline. Vertical profiles of the thermal wind and
the resultant alongshore velocity are shown in Figures 18b and 18c,
respectively. Figure 18b is derived from Figure 18a and Figure 18c
from Figure 18b. The downwarping of isopycnals beneath the perma-
nent pycnocline during upwelling season and close to the continental
slope was taken by Yoshida and Tsuchiya (1957) as evidence for the
existence of a poleward undercurrent. Figures 18b and 18c illustrate
how a poleward undercurrent follows from such a density structure.
The direct current observations to be discussed shortly confirm their
deduction.

The concept of frictional cross-stream flow is introduced for an
aid to the interpretation of the observations in the next section. If the
balance in the y-component momentum equation for the mean flow is
fu = Nv;zz’ where Nv is the vertical coefficient of eddy viscosity,
then a frictional cross-stream flow exists. Introducing the thermal

wind relation into the frictional cross-stream flow relation,
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Figure 18. The thermal wind and frictional cross-stream flow
concepts.
a. Field of isopycnals
b. Vertical profile of alongshore thermal wind
c. Vertical profile of alongshore flow
d. Vertical profile of frictional cross-stream flow
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A qualitative plot of u (px)z is shown in Figure 18d; it is de-
rived from Figure 18c. The frictional cross-stream flow relation
predicts onshore flow above the center of the frontal layer and off-
shore flow beneath. Since the temperature inversion water was found
below the center of the frontal layer, and since it moved offshore
from its inshore source, the observed cross-stream flow of the tem-
perature inversion water was consistent with the hypothesized fric-
tional cross-stream flow.

A pictorial description of a simple model for the steady-state
coastal upwelling process was given in Figure 1; a more complete
schematic model is given in Figure 25, which is discussed in the next
section. A verbal description of the coastal upwelling flow regime
follows:

i) In the summer season, the mean north-northwesterly winds

cause a net offshore transport of water in the surface Ekman
1ayer,19 which is of the order of 10 meters thick. They also

cause a southward flow in the alongshore direction, which

can be thought of as the barotropic component of the

19

An Ekman layer is a boundary layer in which frictional effects
predominate over other effects in the equations of motion.
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iii)

iv)
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alongshore flow.

Mass compensation requires a net onshore transport of wa-
ter in the bottom Ekman layer, which is also of the order of
10 meters thick.

Since the water of the open ocean reservoir is density strati-
fied with a permanent pycnocline at a depth of about 100
meters, the net offshore transport of light water near the
surface and the net onshore transport of heavy water near
the bottom cause the permanent pycnocline to rise inshore,
forming an inclined frontal layer.

The inclined frontal layer induces a "thermal wind." Thus,
there is a baroclinic component to the alongshore flow such
that the flow in the inclined frontal layer is increasingly
poleward relative to the surface flow as the depth increases.
To the extent that the barotropic and baroclinic flow compo-
nents can be considered linearly superimposed, the baro-
tropic flow induced by the wind, or inclination of the sea sur-
face, either operates to reinforce or to cancel the baroclinic
flow in the frontal layer. For instance, with the permanent
pycnocline at a fixed intensity and inclination, if the baro-
tropic flow is sufficiently southerly, the lower layer can
come to a standstill or be reversed to equatorward flow,

while the surface layer continues to flow equatorward. On
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252
the other hand, if the barotropic component relaxes, or re-
verses, the upper layer can come to a standstill or be re-
versed to poleward flow, while the lower layer continues to
flow poleward. Reversals similarto those described are ob-
served to occur on a time scale of several days to weeks.
The seasonal pycnocline develops at the base of the surface
Ekman layer. Itis formed by the seasonal thermo cline,
which develops from summer heating, and by the seasonal
halocline, which is derived from the mixing of surface layer
water with the relatively fresh water of the Columbia River
plume. The seasonal pycnocline breaks the sea surface to
forma surface front, whichtends to block the offshore flow of
lower layer water that has been supplied to the surface Ekman
layer inshore. The seasonal and permanent pycnoclines
tend to merge beneath the surface front.

The above remarks present only a steady-state model. When
the winds accelerate sufficiently, the permanent pycnocline
becomes more steeply inclined and breaks the surface,
forming a surface front, while the surface front formed by
the seasonal pycnocline propagates offshore, causing a
strong surface divergence to develop. The acceleration pro-
cess may be largely advective. When the winds decelerate,

the response is less rapid because the process of developing
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an inclined frontal layer is essentially irreversible, requir-

ing mixing for cancellation.

In summary, the vertical structure to the horizontal flow in the

frontal zone of coastal upwelling is divided as follows:

i)

ii)

1ii)

An Ekman layer at the sea surface, with the seasonal pycno-
cline at its base except in the vicinity of the surface front,
where the seasonal pycnocline must penetrate the surface
Ekman layer.

An Ekman layer at the sloping bottom.

A quasi-geostrophic interior where the effects of the inclined
frontal layer predominate over frictional effects due to the
stresses applied at the boundaries. The quasi-geostrophic
interior can be viewed as subdivided into a thin layer above
the frontal layer, the frontal layer per se, and a thick layer
beneath. A cross-stream flow occurs in the quasi-
geostrophic interior; it may be a purely frictional, purely

inertial,zo or a combination frictional-inertial flow.

The inclined frontal layer is a region where the processes of

frontogenesis, necessary for the development and the sustenance of

the frontal layer, and of frontolysis, necessary for the destruction of

20

The term inertial is used here in connection with the advec-

tive acceleration terms in the equations of motion rather than as it
has been used elsewhere in this dissertation in connection with the
Coriolis terms.
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the frontal layer, are of significance. Secondary, cross-stream
flows in the vicinity of the frontal layer are anticipated. A dynamical
discussion of the cross-stream flow will be found in Mooers et al.
(1969) and a preliminary theoretical discussion of cross-stream flows
is found in Mooers (1968). Appreciable mixing occurs in the frontal
zone. If mixing is sufficiently intense, the isopycnals in the layer
beneath the inclined frontal layer become downwarped, intensifying
the tendency for northward flow there. Mixing warm, fresh waters
derived from the surface layer with cold, saline waters from the low-
er layer near the surface front replenishes the water mass of the
frontal layer. The freshly formed water mass of the frontal layer
sinks to the lower half of the inclined frontal layer and below and then
flows seaward, adding to the volume of the permanent pycnocline.
The temperature inversion in the lower half of frontal layer is a key
indicator of this flow pattern. The hydrological-optical investigation
of Pak‘_e_t al. (1969) supports the deduced cross-stream flow pattern.

C. The Frontal Zone of Coastal Upwelling in August-
September 1966

In Figure 19, vertical sections of the density anomaly, sigma-t,
are shown for August-September 1966; the positions of the moored,
recording sensors are indicated by solid symbols. The section shown

in Figure 19a was sampled two weeks after installation of the sensors,
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and the one shown in Figure 19b was sampled a month later, upon re-
covery of the sensors. The contoured fields of sigma-t are based on
single casts taken at each station; the sections were each sampled
during a two-day interval and the indicated vertical position of the
isopycnals could differ from their daily mean vertical position by as
much as 10 meters, due to inertial-internal waves or other causes.
The overall pattern was essentially the same in late August as it was
in late September, with exceptions noted below. The 24.0 and 24. 6
isopycnals delimit the seasonal pycnocline and the 25. 4 and 26. 0 iso-
pycnals delimit the permanent pycnocline. Collins (1964) found the
latter to be reliable indicators of the permanent pycnocline. The sea-
sonal pycnocline has yet to be treated in similar detail. Thus, the
moored, recording sensors bracketed the inclined frontal layer
formed by the permanent pycnocline during the period of observation.

At 50 kilometers offshore, the seasonal pycnocline was found in
the depth zone of 10 to 20 meters deep, while the permanent pycno-
cline was found inthe depth zone of about 50 to 90 meters deep there.
Both pycnoclines rose inshore; the seasonal pycnocline broke the sur-
face aboﬁt 10 to 20 kilometers offshore, while the permanent pycno-
cline rose to the depth zone of 20 to 40 meters deep about 10 kilo-
meters offshore. What occurred inshore of 10 kilometers is uncer-
tain, but the existent observations suggest that the region inshore of

10 kilometers offshore was quite variable, indicative of mixing. The
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vertical density gradient or, equivalently, the static stability, is tak-
en as the measure of frontal, or pycnocline, intensity. The seasonal
pycnocline was about four times as intense as the permanent pycno-
cline at 50 kilometers offshore, while inshore the permanent pycno-
cline intensified by a factor of two. The slope of a pycnocline, or
frontal layer, is given by the slope of its fiducial isopycnals. The

overall frontal slope of the seasonal pycnocline was about

15 meters
30 kilometers
40 meters

about 40 kilometers =1x10

=0.5x 10-3 and that of the permanent pycnocline was

3

The maximum frontal slope of the

10 meters
10 kilometers
30 meters -3

. - 1 .
the permanent pycnocline was about 10 Kilomeoters 3x10 The

=1x 10-3 and that of

seasonal pycnocline was about

largest values of the frontal slope for both the seasonal and permanent
pycnoclines were found at their inshore edges. The most significant
changes from August to September indicated by the sigma-t sections
were
i) The intensification of the seasonal pycnocline.
ii) The marked downwarping of the isopycnals beneath the in-
shore edge of the seasonal pycnocline.
iii) The reduction of the inclination of the isopycnals beneath the
inshore edge of the permanent pycnocline.
The three notable changes are consistent with increased mixing
occurring in the frontal zone as the decay phase of coastal upwelling

progresses. They are also consistent with the thermal wind concept
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and the observed increase of poleward flow in the lower layer 10 kilo-
meters offshore from late August to late September.

In Figure 20k, the vertical sections of temperature, salinity and
sigma-t for mid August, late August, and late September 1966 are
shown. Four points are noted:

i) The seasonal pycnocline was the result of both a seasonal

halocline and a seasonal thermocline.

ii) The permanent pycnocline was the result of a halocline; in
fact, the temperature inversion near its base weakened the
effect of the halocline on the formation of the pycnocline.

iii) The temperature inversion was most intense inshore and fol-
lowed the descent of the frontal layer offshore.

iv) The inclined frontal layer weakened and became less steep
while the temperature inversion became more intense from
mid August to late September.

Since the temperature inversion was formed near the surface front,
and since it was subsequently advected offshore, itis used as an in-
dicator of cross-stream flow. The existence and the frontal signifi-
cance of the temperature inversion were first noted by Pattullo and
McAlister (1962). Mooers et al. (1969) explore its dynamical
interpretation further. The salinity and temperature structure is
representative of the summer season off Oregon. For inertial-

internal wave measurements, a recording salinograph would be more
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useful than a recording thermograph because salinity is generally,
though not always, a monotonic function of depth and has appreciable,
nearly uniform, vertical gradients over a considerable range of
depths, while temperature is a multiple-valued function of depth and
has weak or non-uniform vertical gradients over much of the water
column.

The temperatue inversion was related to the flow field. Figure

21 shows a vertical section of temperature as a function of time sam-
pled at an anchor station 45 kilometers offshore. The instantaneous
depth of the secondary rna:scirm;n'n21 in the instantaneous current speed
is shown by solid circles superimposed on the temperature field. The
most significant feature are:

i} The 10 meter vertical displacements of the isotherms in the
temperature inversion at a depth of about 100 meters had a
semidiurnal character.

ii) The secondary maximum of instantaneous speed occurred in
the upper half of the temperature inversion; its depth also
had a semidiurnal character. Thus, appreciable vertical
shears and variability in the horizontal flow appear to have
occurred at the base of the pycnocline. These contentions

are examined more thoroughly in the following discussion.

The primary maximum in both the instantaneous and the mean
current speed is found near the sea surface.
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Figure 22 shows the vertical profiles of the mean of the scalar
speed and of the speed of the vector mean for the data from which
Figure 21 was derived. The ratio, I, of the two profiles, depth-
for-depth, is a measure of the steadiness of the flow at each depth.
The secondary maximum of the speed of the vector mean occurred at
a depth of 105 to 120 meters; since 1= 4/3 in that depth zone, the
flow was quite steady there. The secondary maximum in the mean of
the scalar speed occurred at a depth of 80 to 90 meters; since I=®= 5
in that depth zone, the flow was quite variable there.

Figure 23 displays vertical profiles of quantities computed from
the time series used in compiling Figures 21 and 22. The profiles extend
from the sea surface to a depthofonly 100 meters. Becauseobserva-
tions were made for only one-half the observation period below that
depth, and because calculations were made for the semidiurnal com-
ponent of the motion at each depth, it was safe to consider only the
results for the observations made over two semidiurnal cycles. The
vertical profiles of the lunar semidiurnal (MZ) velocity component
magnitude and phase are shown in Figures 23a and 23b, respectively.
The values for the tidal estimates were obtained by least squares
analysis. The vertical profiles of the mean of the velocity compo-
nents, also obtained in the least squares analysis, are shown in Figure
23c. The M magnitude and phase and the mean of both velocity

2

components vary smoothly with depth. The secondary maximum in
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the MZ velocity magnitude at the base of the permanent pycnocline
is the most striking feature in Figure 23a. Appreciable vertical
shears are associated with the secondary m?,ximum. The MZ phase
sustained a 100° and a 180° variation from the surface to 100 meters
deep in the onshore and poleward components, respectively. The
variations in depth of the magnitude and phase of the M2 tide are
baroclinic effects, thus a semidiurnal internal tide was present in the
observations.

The mean profiles of Figure 23c indicate that the flow in the per-
manent pycnocline was poleward and offshore, while it was poleward
and onshore beneath the permanent pycnocline. These features of the
mean flow are consistent with the previous discussion about the ther-
mal wind and frictional cross-stream flow concepts upon careful analysis.

Vertical profiles of Richardson numbers for the mean flow, RIM,
and for the temporal minimum of the combination of the mean flow and
the MZ amplitude, min (RIN(MZ)), are shown in Figure 23d.

RIM indicates that the mean flow was dynamically stable and that it
was most stable in the pycnoclines, while it was least stable at the
top and at the base of each pycnocline. The vertical shear of the MZ
velocity reduced the minimum Ri. The occurrence of critically

low values for min (RIN(MZ)) at the base and beneath the permanent

pycnocline is the most striking and convincing pattern. This result

is consistent with the thesis of this dissertation. (Instantaneous Ri's
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yield even smaller values, but, due to inevitable sampling errors,
the more conservative min (RIN(MZ)) has been displayed because
it is based on the least squares analysis for the full time series. )
Thus, there is evidence for the semidiurnal internal tide functioning
as a destabilizing, or mixing, agent in the frontal layer over the con-
tinental slope. In Section XI.H., Ri's computed for the time
series observed over the continental shelf at DB5, 10 kilometers off-
shore, are examined.

The directly measured and geostrop.hic winds (Mooers et al.,

1968), both indicate the following qualitative patterns:

i) Strong winds from the north-northwest occurred during the
first three weeks of August. This was a favorable condition
for coastal upwelling.

ii) Weak and variable winds, generally from the southwest, oc-
curred during the following week. This was an unfavorable
condition for coastal upwelling.

iii) Moderate winds from the north-northwest occurred during
the next week. This was a favorable condition for coastal
upwelling.

iv) Weak and variable winds, generally from the southwest, oc-
curred during the last three weeks of September. This was
an unfavorable condition for coastal upwelling.

The wind patterns suggest that the observations were made during the
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late stages of the coastal upwelling season and the initial stages of the
seasonal transition to southerly winds and the cessation of coastal up-
welling. The interval of common record durations, the last two
weeks of August, is characterized as favorable for coastal upwelling
in the first week and unfavorable in the second week. These com-
ments must temper the interpretations placed on the mean calcula-
tions of the velocity and temperature fields.

In Tables 1, 2, and 3 the means and standard deviations of the
observations from the moored, recording sensors of the August-
September 1966 field observations are given.ZZ Several of the mean
flow features are noted from Table la:

i) The alongshore flow was southerly at a depth of 20 meters;

it was more intense at 10 kilometers than at 20 kilometers
offshore.
ii) The alongshore flow was northerly at a depth of 60 meters;

it was more intense at 30 kilometers than at 10 kilometers

ZZFor most of the discussion, Tables la, 2a, and 3a are used,

In those tables, the velocity, temperature, and velocity differences
are given for common record lengths, each 339 hours long. The veloc-
ity and velocity differences resolved into alongshore (normal to the
array axis) and onshore (tangential to the array axis) components are
used. The axis of the array was aligned along 300 to 120° True,
while the bottom contours were aligned along 025 to 205° True, 030-
120° True, and 035-125° True at the 10, 20, and 30 kilometers off-
shore sites, respectively. In other words, the normal to the array
axis was oriented within +5° of the bottom contours. The primed co-
ordinates and velocities are in the alongshore-onshore coordinate
system. The change of coordinates required a 30° clockwise rotation.



Table 1, Statistics of the mean flow field.

Eastward Northward Speed Direction Onshore Poleward
Depoe Distance Water Sensor Record component(u) component(v) Scalar speed of vector ofvector component (u') component (v')
Bay offshore depth depth duration (cm/sec) (cm/sec) (cm/sec) mean mean (cm/sec) (cm/sec)
station (kilometers) (meters) (meters) (No. of hours) mean:std.dev. mean:std.dev. meanzstd.dev. (cm/sec) (deg. true) mean mean

la. Based on hourly averages for common record lengths

5 10 80 20 339 -2.2 =11 -17.9 =12 23.4 =7 18.0 187° +7.1 -16.6

5 10 80 60 339 +2.8z 6 + Q7+ 9 11.0+3 2.9 076° +2.0 + 2.0
10 20 140 20 339 +4.5 £ 10 -12.1= 9 18.1 =6 12.9 160° +9,9 - 8.3
15 30 200 60 339 +6.0z 6 + 7.9 +£13 13.3 =7 9.9 043° +1.2 + 9.8

1b. Based on integrated 10-minute samples for full record lengths

5 10 80 20 346 2.1 =11 -17.9 12 23.4 =7 18.0 187° +7.2 -16.5
5 10 60 872 +2.7 = 7 + 5.1 £13 14,3 + 6 5.8 028° -0.3 + 5.8
10 20 140 20 890 -0.8 £ 11 -13.6 = 9 18.4 6 13.6 183° +6.1 -12.2
15 30 200 60 956 +4.8 + 8 + 3.9z 8 12.5 £3 6.2 051° +2.2 + 5.8

Table 2. Statistics of the mean temperature field.

Depoe Distance Water Sensor Record Temperature
Bay offshore depth depth duration (°C)
station (kilometers) (meters) (meters) (hours) mean = std. dev.

2a. Based on hourly averages for common record lengths

5 10 80 20 339 8.44 £ 0.6
15 30 200 20 339 10.19 = 1,2

1

2b. Based on integrated 10-minute samples for full record lengths

5 10 80 20 938 8.86 =1.2
15 30 200 20 : 482 10.72 £1.6

89¢
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offshore.'23

iii) All sensors exhibited onshore flow. The flow was converging
and diverging onshore at the 20 and 60 meter levels, respec-
tively. The convergence at the 20 meter level was an order
of magnitude greater than the divergence at the 60 meter level.

iv) The speed of the vector mean flow had values between 2. 9
and 10 cm/sec, at a depth of 60 meters at 10 and 20 kilo-
meters offshore; the mean of the scalar speed had values
between 11 and 13 cm/sec at those stations, respectively.
The flow was most variable at a depth of 60 meters, 10 kilo-
meters offshore, where I was about 4. At the other
sites, I was about 1. 3.

While a much higher sensor density is necessary to make un-
equivocal statements about the pattern of the mean flow for the last
two weeks in August 1966, the present observations allow some de-
ductions.

Figure 24 aids in the interpretation of Table la, the flow field,
and Table 2a, the temperature field. All sensors were located in the

quasi-geostrophic interior. Further,

23
From Table 1b, the situation changed when the full six weeks

of data were used rather than the two weeks of common record length;
i. e., the mean poleward flow intensified at 10 kilometers offshore
and diminished at 30 kilometers to the same value. Thus, the pole-
ward flow was greater at 10 kilometers than at 30 kilometers offshore
in the latter portion of the observation period.
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The sensor at a depth of 20 meters, 10 kilometers offshore
was at the upper boundary of the inclined frontal layer. The
flow had an onshore-component consistent with frictional
cross-stream flow. The mean temperature, 8.4°C, indi-
cates that interior water was present at the sensor.
The sensor at a depth of 60 meters, 10 kilometers offshore
was below the inclined frontal layer. The flow had an on-
shore component, which may indicate that the site was gov-
erned by the bottom Ekman layer at that time.
The sensor at a depth of 20 metérs, 20 kilometers offshore
was at the upper boundary of the inclined frontal layer. The
flow had an onshore component, again consistent with fric-
tional cross-stream flow.
The mean temperature, 10. 2°C, indicates that surface layer
water was present at a depth of 20 meters, 30 kilometers
offshore.
The sensor at a depth of 60 meters, 30 kilometers offshore
was near the center of the inclined frontal layer. Again, thé
flow had an onshore component consistent with frictional
cross-stream flow.
Under the hypothesis of frictional cross-stream flow, if the
sensor at a depth of 60 meters, 20 kilometers offshore had

operated, it would have indicated offshore flow because it
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wat at the base of the inclined frontal layer and in the tem-
perature inversion. In other words, the offshore flow as-
sociated with the temperature inversion "leaked" through the
array. Also, the array was too deep to detect the offshore

flow of the surface Ekman layer,

Figure 25 is a schematic of the cross-stream flow; it is based on the

observations depicted in Figure 24 , the hydrographic sections of

Figures 19 and 20, and the verbal model presented in Section B.

In Table 3, the mean velocity differences,and consequent shears

are presented; they are based on the same data as Table 1, The

principal properties of the mean shears and the mean temperature

gradient are summarized below:

i)

The value of ;'z computed at 10 kilometers offshore be-

tween the depths of 20 and 60 meters indicates a thermal

- -1 .
wind of -4.6 x 10 “sec ~. The vertical section of sigma-t

-4 -2
of Figure 19 indicates that E = 2 x 10 sec and

s = 2x 10-3, thus, with f = 10_4sec-1, the thermal wind

relation, v o= sk ,
z f

-1

predicts v % -4 x 10-3sec

1
z
Thus, it is established that the alongshore flow was essentially
geostrophic in the interior. The value of E'z’

+1. 2 x 10_3sec-1, suggests that, in a complete theory for

inertial-internal waves in a frontal zone, it may also have

an appreciable effect for interactions. From the computed
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Table 3. Statistics of the mean shear field.

Depoe Bay Station/ Record - u-~differences Shear v-differences Shear Mean shear vector u'~differences Shear v'-differences Shear
sensor combination duration (cm/sec) term value _ {dm/sec) term value _, magnitude direction (cm/sec) term value (cm/sec) term value
in difference (No. of hours) meanistd, dev. mean(sec ) meandstd.dev. mean(sec ) (sec'l) (deg.true) mean mean(sec ) mean mean(sec )
3a. Based on hourly averages for common record lengths
- -3 -3 -3 - -3 - -3
DBS, 20-60 meters 339 -5.0 +13 w -1.2x10 -18.6 + 11 -4,6 x 10 4.8 x 10 194 +5.0 u‘z +1.2x10 -18.6 v; -4.6 x 10
L]
- -6 -6 -5 - -6 - -6
DBS~DB10, 20 meters 339 -6.7 =15 u -7.7x 10 -5.7+£11 -6.6x 10 " 10.0x.10 229 -3.0 u', -3.0x 10 - 8.3 v, -8.3x10
X x
- -6 -6 -5 - -6 - -6
DB5-DBL5, 60 meters 339 -3.4 £ 9 u -2.0x10 -7.4+6 -4,2x 10 4.6 x 10 206 +0.8 u' +0.4 x 10 - 8.1 vl -4.0x10
x : X! x
3b. Based on hourly averages for longest, common record lengths
- -3 -3 -3 - -3 - -3
DB5, 20-60 meters 345 -5.0£13 u -1.2x 10 -18.6 £ 11 -4,6 x 10 4.8 x 10 194 +5.0 u; +1.2x10 -18.6 v' -4,6 x 10
z z
. - -6 -6 -6 - -6 - -6
DB5-DB10, 20 meters 343 -6.8 £ 15 u -7.8 x 10 -5.7+11 -6.6x10  10.0x10 230 -3.1 u', -3.1x 10 - 8.3 ;c’ -8.3 x 10
x X
- -6 -6 -6 - -6 - -6
DB5~DBL5, 60 meters 860 2.2 £10 u -1.3 x 10 +1.5 +16 +0.9 x 10 1.6 x 10 305 -2.5 u;c' -1.2x 10 + 0.2 v;v +0.1 x 10
x

vLZ
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value of ;'z and the estimate of E, FRN = 8, which is
about three times the minimum value estimated in Section
VIII. C.

ii) The values of E}'{ at a depth of 20 and 60 meters between
10 and 20 kilometers and 10 and 30 kilometers offshore, re-
spectively, reflect the onshore convergences and divergences
noted earlier. The meantemperature gradient ata depthof20
meters indicates that warm water converged onshore, con-
sistent with frontogenesis. The corresponding values of

V}'{ are one order of magnitude less than the planetary vor-

ticity, f. (The term v' was not dropped from the GE

1
X
for the inertial-internal waves with frontal interaction in

order to maintain the self-adjointness of the GE and because
its maximum value may have been appreciably larger on
smaller spatial scales than those of the observations. )
. = = . -3

Since r = -V}'{,/V'Z, is about -1to -2x 10 7, then r ~ s,
i.e., the slopes of the mean alongshore isotachs and of the
isopycnals were about equal but of opposite sign. The dif-
ference in the sign of r and s suggests that there was
a significant tilt and curvature to the sea surface.

In summary, the geostrophy of the alongshore flow in the inter-

ior, the existence of the inclined frontal layer in conjunction with a

temperature inversion at its base, and the existence of a poleward
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undercurrent are well-established by direct observation in the fontal
zone of coastal upwelling over the continental shelf off Oregon. The
hypothesized frictional cross-stream flow is consistent with the ob-
servations but still must be considered tentative until more detailed
observations are examined. Thus, hypotheses x) through xiii) of
Section IX. B. have been substantiated by the observations reported

in this section.

D. The Field of Static Stability

The hydrographic fields off Oregon have been under routine sur-
veilance for the past decade. The most important property of the
hydrographic fields for inertial-internal waves is the vertical density
gradient, or, equivalently, the static stability. The mean vertical
profiles of sigma-t, o, static stability, E; and Vaisiali-Brunt
period, TN’ as a function of season and offshore position off New-
port, Oregon, are introduced in Figure 26, The Newport hydrograph-
ic line is located about 75 kilometers to the south of the measurement
site off Depoe Bay, Oregon. The calculations of E(z) have been
made with and without the adiabatic correction; due primarily to the
temperature inversion, the correction amounts to as much as alo%
difference between the two calculations. Since E(z) has a large

range, this is a small discrepancy for most purposes.

The offshore dependence is delineated by three categories:
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i) Offshore: depth greater than 1000 meters and distance
greater than 72 kilometers offshore.

ii) Continental slope: depth greater than 200 meters and less
than 1000 meters and distance greater than 27 kilometers
but less than 72 kilometers offshore.

iii) Continental shelf: depth less than 200 meters and distance
less than 27 kilometers offshore,

The seasonal dependence is delineated by four categories:
i) Winter: December through February.

ii) Spring: March through May.

iii) Summer: June through August.

iv) Autumn: September through November,

These categories were chosen on the basis of information about the
horizontal and seasonal structure of coastal upwelling; though the
categories could be subdivided profitably, they are sufficient for the
present purposes,

The profiles are based on six years of data, from 1961 through

1966. The range of the number of samples in individual depth categor-

ies are listed:

Season
Winter Spring Summer Autumn
Offshore category min max min max min max min max
Offshore 16 66 16 39 21 79 23 55
Continental slope 6 21 5 6 28 39 11 15

Continental shelf 7 20 5 7 7 27 6 28 .
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In Figures 26a to 26d vertical profiles of o, E, and TN in

the upper 200 meters are shown for each season and each offshore
category. The position of the frontal layer is denoted by the dashed
lines at the depths of the fiducial isopycnals for the permanent pycno-
cline. The frontal layer is essentially level in the winter season. It
rises and intensifies in the onshore direction in the summer season.
In the spring and autumn seasons, the frontal layer occupies inter-
mediate positions. In the upper 200 meters, E(z) varies from

3 -5

- -2
10"" to 10 “sec” . Figure 26e shows the vertical profiles of o E,

and TN to a depth of 1000 meters in the offshore region for the

summer and winter seasons. There is no difference in the summer
and winter profiles at depths greater than 125 meters. Most of the
variability is confined to the upper 60 meters, i.e., above the frontal
. -4 -2

layer. E(z) has a minimum of about 0.1 x 10 "sec at a depth
of 900 meters. In the winter, the minimum value also occurs near

. -4 -2
the surface, where E(z) has a maximum of about 10 x 10 "sec
in the summer.

In the winter season, E(z) generally has a maximum of

-4 -
2x10 sec 2 in the frontal layer at a depth of about 60 meters. In

the spring season, E(z) develops a maximum of 10 x 10_>45ec'Z
-4 -2 .
and 2.5x 10 sec at a depth of 10 meters over the continental

shelf and over the continental slope, respectively, corresponding to

the development of the seasonal pycnocline. In the summer season,
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the maximum of E(z) continues to be associated with the seasonal
pycnocline and extends to the offshore region. Over the continental
shelf, the secondary maximum of E(z), associated with the frontal
layer, merges with the primary maximum associated with the sea-
sonal pycnocline. In the autumn season, the primary maximum of
E(z) continues to be associated with the seasonal pycnocline, but it
is only about 4 x 10 sec_z and tends to occur deeper than during the
summer, at a depth of 20 to 40 meters, over the continental slope and
offshore.

In Figures 27 and 28, E(z) | is displayed for the August-
September 1966 observations. The conversion graph in the lower
lefthand corner of Figures 27 and 28 can be used for computing TN
from E.

Figure 27 shows the mean vertical profiles of E(z) for the
four anchor stations of August-September 1966. They show 1;he pri-
mary and secondary maxima in E(z) associated with the seasonal
and permanent pycnoclines, as noted in Figure 26. These curves dif-
fer from those of Figure 26 in the following ways:

i) They have about twice as much vertical detail.

ii) They are based on samples taken at a single spatial location.

iii) They are based on a dozen or more samples, as indicated,
taken over a period of a lunar day.

The profiles of Figures 27ato 27care from the continental slope region,
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while that of Figure 27d is from the offshore region. The essential
features of Figure 27 are:

i) The primary maximum of X(z) intensified and deepend
from late August to late September over the continental
slope.

ii) The primary maximum of E(z) is more intense at the sea-
ward edge of the continental slope and offshore than at the
inshore edge, which is consistent with the Columbia River
plume being more intense offshore than over the continental
shelf.

iii) The secondary maximum in E(z) 1is less distinct offshore
than over the continental slope; this point is verified by the
dashed curve of Figure 27c which shows E(z) evaluated at
the same depths as the less-densely sampled offshore profile
of Figure 27d.

Figures 28a and b show E(z) computed from single hydro-
graphic profiles for three different times during the observafion in-
terval at the offshore and inshore termini of the sensor array. These
profiles indicate some of the detailed variability of kE(z), in both
space and time. Overall, their general form is consistent with pre-
vious remarks for this season and the continental shelf. An anoma-
lous feature of importance was the minimum in E(z) found ata

depth of 40 to 60 meters in late September at the inshore terminus.
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-4 - .
This minimum was as small as 0.1 x 10 "sec , corresponding to

TN = 33 minutes at a depth of about 60 meters. At the same time,

the primary maximum in E(z) occurred at a depth of about 20

-4 -2
meters; it had a value of about 12 x 10 "sec , corresponding to

TN = 3 minutes. For the purpose of interpreting the possibility of
N(z) aliasing the spectra of Chapter XI, the following ranges of val-

ues are considered representative:

Depth E (sec_z) N (sec-l) TN (minutes)
-4 -2

20 meters 2to 12x10 1 to 4x10 3to 8
-4 -2

60 meters 0.1 to 3x10 0.3 to 2x10 6 to 33.

E. The Field of Characteristics for the Semidiurnal
Internal Tide

On the basis of the hydrographic data sampled over the conti-
nental shelf in late August 1966 and the theory of Section V. B., the
fields of characteristics for the semidiurnal tide are displayed in Fig-
ures 29to 31l. To determine the fields of E(x,z) and of s(x,z), the
slope of the isopycnals, it would have been ideal to have made simul-
taneous anchor stations at 5 kilometer increments over the continental
shelf for a lunar day once each week throughout the period of moored
array observations. In practice, a smoothed version of the sigma-t
field for late August was used to estimate the values of E(x,z) and

s(x, z). The slopes of the characteristics were computed with and
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without the frontal interaction. Without the frontal interaction,

dz 1.1 -4

Klzdx) "~‘+—1—\I—-—X10 =\
n
and
dz
A, =—) = -\
2 dx ’
4

where the relations o‘2 <« N2 and o= 1.5f have been used.

Similarly, with the frontal interaction,

dz
Kl—'d;) z s+ X\
n
and
dz
A, ==—) B s - \.
2  dx
4

In Figure 29 , the n and { characteristics are drawn sea-
ward and shoreward from an origin at DB5, 60 meters. The char-
acteristics for three representative values of E constant are il-
lustrated for the case without the frontal interaction. For the most
representative value of E, one beam, i.e., the domain of influ-
ence for an excitation between two characteristics, is indicated by
the hatched area; it illustrates the effect of beam contraction, equiva-
lent to a shift to higher wave numbers and to wave amplification, upon
reflection from the sloping bottom. The beam originates from the

depth zone of about 110 to 190 meters at the seaward edge of the
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continental shelf; it reaches DB5, 60 meters after one reflection from
the sea surface. After two reflections from the bottom, and two
further reflections from the surface, the beam has traversed 29 kilo-
meters of the continental shelf, i.e., to within 1 kilometer of the
coast. The vertical thickness of the beam is reduced from 80 meters
at the shelf edge to 4 meters at 1 kilometer from the coast. Such a
contraction corresponds to an amplification of the velocity field of the
wave by a factor of 20.

In Figure 30 , the characteristics are plotted for a case with
the frontal interaction. Both E and s are functions of x and
z. The downgoing and upgoing beams originating at the seaward edge
of the continental shelf between the depths of 22 and 45 meters are in-
dicated by the hatched areas. The fiducial isopycnals of the inclined
frontal layer are also portrayed. The beams exhibit the following
features:

i) Beam contraction occurs upon reflection from the sloping

bottom.

ii) When downgoing and upgoing, the beams experience expan-
sion and contraction, respectively, as they pass through the
inclined frontal layer. |

iii) From 30 kilometers to 10 kilometers offshore, the width of
the beam bounded by solid lines expands by 60%, while that

of the beam bounded by dashed lines contracts by 80%. The
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net effect is that the semidiurnal internal tide is expected to
exhibit nearly uniform energy density over the sensor array.

iv) The beams tend to be deflected by the frontal layer.
v} Inshore of 10 kilometers offshore, the bottom slope is near-
ly critical.
vi) Points of common phase are shown on the figure. There is
a 180 degree phase reversal between 30 and about 14 kilo-
meters offshore and between about 14 and about 4 kilometers
offshore. Hence, the effective wavelength between 30 and
10 kilometers offshore is about 26 kilometers.
A single characteristic for the case of no frontal interaction, but E
a fﬁnction of x and 1z, is shown by a dotted line tel;minating at
DB5, 60 meters. This characteristic illustrates the fact that the
frontal interaction does significantly modify the characteristics, con-
sistent with the thesis of this dissertation.
The same values of E(x,z) and s(x,z) as used for Figure
30 were used in computing the more complete field of characteristics
shown in Figure 3la. Figure 31b was determined from Figure 3la.
Positions of the sensors which operated usefully long are shown in
Figure 31. The realism of Figure 31 is limited by a lack of hydro-
graphic data from near the bottom and inshore of 10 kilometers off-
shore. From Figure 3la, it can be seen that there is a concentration

of characteristics, and thus energy associated with the seasonal



294

DISTANCE OFFSHORE (kilometers)

DEPTH (meters)
3

200 'w/I0
o

Figure 31, Characteristics for the semidiurnal internal tide over the continental shelf off Depoe

Bay, Oregon.
a. Field of characteristics
b. Lines of constant phase



295
pycnocline and the surface front near the sensor site 10 kilometers
offshore and at a depth of 20 meters. Again, the bottom slope is
nearly critical inshore of 10 kilometers within the limits of the ex-
trapolated hydrographic data. The lines of constant phase in Figure
31b are considerably distorted by the frontal zone. Figure 31b bears
a resemblance to Figure 9; the differences between the two figures
emphasizes the inadequacy of models with ,Nz constant. For a
progressive wave, phase differences between sensor sites can be ob-
tained from Figure 31b.

In Figure 32, the theoretical horizontal phase speed versus fre-
quency and the phase versus frequency functions are given for the
Depoe Bay array. The simplest possible model has been assumed,
i.e., a progressive wave onshore, uniform depth, constant N,
and no frontal interaction. The curves are given for two representa-
tive values of Nz. The cases of DB15 versus DB5 and of DB10
versus DB are displayed. These curves are useful for comparison
with the phase results obtained from cross spectrum analysis in the
next chapter. They indicate that inertial-internal waves are essen-
tailly non-dispersive over the measurement band except near the

inertial frequency, about 1.4 cpd.
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XI. THE TIME SERIES ANALYSES OF THE OBSERVATIONS

A. Introduction

Four horizontal velocity, two temperature, and a sea level time
series are analyzed. The resolvable, coherent tidal components
have been removed from the original24 series to produce residual
series. Both the original and residual series are examined by spec-
trum analysis. The autospectra of the velocity and temperature time
series are examined to determine the frequencies at which energy
peaks occur and to characterize the spectra in general. The coher-
ence squared, phase, and axis functions of velocity series observed
at a single point are examined to identify coherent motion, the rota-
tional sense of the hodograph, and the hodograph orientation, respec-
tively. The coherence squared and phase functions of series ob-
served at various spatial separations are examined to seek evidence
for spatially coherent motions and to determine their direction and
speed of propagation. The spectra of the difference series are used
to make deductions about the presence of inertial-internal waves and

the dynamic stability of the frontal zone.

24 .
In this chapter, the expression original series is used for the

hourly averages of the 10-minute samples.
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B. The Time Series Analyses

A myriad of practical considerations arise when treating sev-
eral time series with unequal record lengths. The most distressing
concern is the necessity, due to cost and time considerations, to se-
lect from a host of options without full experimentation. Most of the
options have been explored to a limited extent. The options available,
and the rationale for the selection of those employed, are discussed.
The practical limitations of the time series are also examined.

The data series were recorded continuously on photographic
films in an analog format. The films advanced once every 10 min-
utes; thus, several discrete sets of analog records were created.
Upon reduction, the films provided digital series, which determined
the mode of the subsequent analyses. Each frame of the thermograph
films was exposed throughout a 10-minute cycle, while those for the
current meters were exposed for 9 minutes during each 10-minute
cycle. The difference in recording intervals was due to the difference
in film advance mechanisms; the difference in recording intervals
was accounted for in data conversion. Additional details about the
moored, recording meters, and their performance, can be found in
Mooers et al. (1968).

The number of 10-minute samples per series range between
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about 2100 and 5700. The series were numerically tapered > to
separate them into low-passed (half-power point of about 40 hours),
intermediate-passed (half-power points of about 6 and 40 hours), and
high-passed (half-power point of about 6 hours) components (Mooers
et al., 1968). The low-passed and high-passed records were ex-
amined in an exploratory fashion. The low-passed records contain
large amplitude (~ 10 cm/sec) oscillations with periods of several
days, but the record durations were insufficient to define their spec-
tral structure. The high-passed records contain no large amplitude
oscillations and very little spectral structure of interest other than
at tidal harmonics and at what are probably frequencies of internal
celluar waves. The intermediate-passed records could have been
used for the analyses of the tidal frequencies; they have the advantage
over hourly averages of having had low frequency trends removed. It was
decided to use uniformly weighted hourly averages instead, which al-
lows a broader band study than that which the analysis of intermediate-
passed records permit. Because hourly averages were used, the
original records were decimated by a factor of six. Since it was
logistically impossible to install all of the sensors simultaneously,
and since the majority of the sensors failed before their recovery,

the time series have different start and stop times. For the

25
A numerical taper is a weighted average applied in the time

domain; its equivalent in the frequency domain is a digital filter.
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maximum utilization of a time series, the entire time series is used
in some analyses. For the comparison of records sampled at differ-
ent spatial points or from different sensors at the same spatial point,
it is necessary to use common record durations. In Table 4, the
start and stop times, the common record durations, and the number
of samples for the hourly averages are listed. Acceptable sea level
data commenced at 1200// 8/24/66; 900 hourly values of this data
were used only in the tidal analysis, which was referenced to the com-
mon start time of the other data series.

Timing errors are devastating for the calculation of spectra.
The worst estimate of frame count uncertaintyis four frames in 6000,
which is twice the greatest clock error observed (Mooers et al.,
1968). This error is equivalent to a one-half minute error during
each semidiurnal cycle. Thus, timing errors are not likely to be
significant in the time series of this study. An unequivocal statement
can not be made because there is present the spectre of erratic film
advance, which could give no apparent error in a long time series.

Excessive sensor string tilt would impair the performance of
the current meters. In the worst case, only 14% of the 10-minute
samples were recorded at a tilt in excess of 3°, corresponding to a
horizontal displacement in excess of 3 meters (Mooers et al., 1968).
Thus, sensor string tilt was well within the operating range of the

current meters.



Table 4. Record durations (hourly averages).

Sensor Initial Common Common Common Common Common Terminal Sensor Total
start No. of start No. of end No. of end No. of end No. of end No. of end No. of
Sensor time samples time samples time samples time samples time samples time samples time samples
Common 1900// 339 2100// 482 2000// 568 1000// 865 1900//
8/15 8/29 9/4 9/8 9/20
DBS5, 20 meters
Thermograph 1300// 1400/ /
8/15 6 + + + + 67 9/23 938
Current meter 1300// 2100//
8/15 6 + - - - - - 8/29 345
DB5, 60 meters
Current meter 1300// 1900//
8/15 6 + x + + - 9/20 871
DB10, 20 meters
Current meter 1500// B} 15007/
8/15 4 + X + + 20 9/21 889
DB15, 20 meters
Thermograph 1800// 0900//
8/15 1 + + - - - 9/8 S568#
DB15, 60 meters
Current meter 1900// 1200/
8/15 0 + x + + 89 9/24 954

# The final 85 samples were rejected because the onset of erratic film advance was suspected.
+ Sensor operating and analysis performed for this record length.

- Sensor not operating.

x Sensor operating but no analysis performed for this record length,

1o¢
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The accuracy in vertical positioning of the sensors is estimated
to be 1 meter referenced to mean sea level (Mooers et al., 1968).

It is possible for the moorings to drag along the bottom, and there
are limitations to the accuracy in determining the geographic position
of a mooring upon installation and recovery. The estimates of the
navigational uncertainty and of the stability of a mooring's position
yield a positional accuracy of £0. 5 Km (Mooers et al., 1968) or +5%
of the horizontal spacing of the array.

The standard concepts and techniques of variance and spectrum
analyses (Blackman and Tukey, 1958; Bendat and Pierson, 1966;
Granger, 1964; and Jenkins and Watts, 1968), have been the primary
statistical tools used for analyzing the time series. The covariance
function for time series u(t) and v(t) is Covaruv('i") :mt.

~

Their cross spectrumis P (¢) =P +1iQ = F.T.(Covar (1)),
uv uv uv uv

where F.T. represents Fourier transformation and Puv and
qu are the co and quadrature spectra, respectively. A few experi-
ments with fast Fourier transform (FFT) harmonic analysis (Cooley
and Tukey, 1965) were carried out. Because the time series anal-
yzed were of limited duration, no significant economic advantage
accrued from the use of the FFT, and the use of the present form of
FFT requires an undesirable shortening of already short records to

make the number of samples equal to a power of 2. Because the

spectra do not contain a few discrete lines widely separated in
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frequency, no obvious scientific advantage accrued from the use of
the FFT with high resolution. All series were not tested with the
FFT, thus the possibility exists that the FFT could be profitably em-
ployed on some of the residual series, in particular. The velocity
cross spectra sampled by a single sensor have been given a semi-
principal axis transformation, Appendix III. The time series ob-
served by different sensors have been treated as complex-valued ser-
ies and the cross spectra of the complex-valued series computed,
which maximizes the coherence squared for the clockwise and anti-
clockwise rotating components separately, Appendix III.

The two basic hypotheses on which the theory of spectrum
analysis is based are that

i) the time series are statistically stationary, and

ii) the time series are random variables.
Neither hypothesis is true in the case of this study; the first is false
due primarily to the low frequency variations associated with several-
day waves and modifications in the state of coastal upwelling, while
the second is false due primarily to the presence of coherent waves
in the series. The failure of these hypotheses is not crucial for the
validity of spectrum analysis; it only degrades the ability to interpret
the statistical significance of the results. The spectra are the accu-
rate frequency domain representations of the time series. Confidence

limits are based on the series being a finite representation of an
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infinitely long, stationary Gaussian process, which is probably not
true,thus confidence limits are used only as rules-of-thumb. (In the
future, ensemble averages of spectra will be possible and confidence
intervals can then be determined empirically. )

With the 10-minute samples, the Nyquist sampling frequency,

fN’ is 72 cycles per day, or 72 cpd. With the hourly averages,

fN = 12 cpd. In the analysis of digital recbrds, the danger of aliasing

the spectra at frequencies less than fN by spectral values from

frequencies greater than fN is always present. There are only

two safeguards against aliasing:
i) To sample sufficiently rapidly to define all the frequencies
whose amplitude of oscillation is either detectable by the
sensors resolution and time response, or is significant with

respect to the spectral levels at lower frequencies.

or
ii) To use a sensor whose time constant is sufficiently great to

effectively damp-out all the oscillations whose frequency is

greater than fN'

To be certain that method i) applies, it is necessary to have sampled

sufficiently often at a greater rate than the desired f to verify

N

that fN is sufficient. In the present case, the sensors did not per-

mit sampling significantly faster than fN and no rapid sampling

sensors were available, Examination of the spectra does indicate that

they decrease by several orders of mangitude as the frequency



305
increases from the band of tidal frequencies, about 1 to 2 cpd, to fN.
This argument does not rule out the possibility that aliasing is caused
by large, discrete energy peaks at frequencies greater than fN.

For all practical purposes, method ii) does not apply to the current
meters employed because they have a very rapid response, of the
order of seconds. It does apply to the thermographs because they
have an e-folding time response of 10 minutes, which leads to a half-
power point at a frequency of about 100 cpd. The use of hourly aver-
ages, rather than simply hourly sub-samples, effectively filters the
aliased spectrum in the frequency band between 24 cpd and 72 cpd for
both the current meters and the thermographs. The equivalent filter
has a zero at 24 cpd and its first side lobe occurs at about 36 cpd and
yields a 95% reduction of the energy. The spectrum from 0 to 12 cpd
is aliased by the spectrum from 12 to 24 cpd due to hourly averaging.
The spectra have not been recolored for the effect of hourly averag-
ing; thus, the spectra should be multiplied by a factor which ranges
from about 1 at 6 cpd to about 2 at 12 cpd.

Disregarding the possible effects of high frequency surface
waves, which were discounted in Section IX. C., the primary aliasing

villain is expected to be the oscillations at the Vaisala-Brunt fre-

quency, fB. The alias fA’ at any frequency, fn, is
- : +
= + s 1 M 1 = -
fA anN fn, n : integer; equivalently, either frl fA anN or
fr_1 =2nf - f,. Assuming that the alias is due to Vaisala-Brunt
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. . . . +
osciallations, i.e., fA = fB’ then either fn = fB - ,anN or
fr-1 = anN - fB. From Figure 28, for the sensors at a depth of 20

meters, 288< fB < 480 cpd, while for those at a depth of 60

meters, 48< fB < 240 cpd. For the original series, since

fN = 72 cpd, then, where (%) connotes no alias,
n fn (cpd) at 20 meters frl (cpd) at 60 meters
1 <o) £ > £ (%) ff<om; o< <t
1 17N 1 T ="1='N
2 0< £ < £ £ < 0(%) £ < 0(%); 48 < £2 < 240
—2='N 2= Y 2 = =22 e
etc.
Thus, aliasing of the entire spectrum by f must be considered a

B

possibility. For the present study, it is assumed that the aliasing is
of no practical consequence. In defense of this assumption, it is re-
marked that the Vaisala_-Brunt oscillations are vertical motions,

while the thermographs, which are the only sensors capable of detect-
ing vertical motions, effectively damp oscillations at frequencies
greater than or equal to the minimum value for f at the thermo-

B
graph sites. The question of aliasing by fB, internal celluar
waves, surface waves, or other high frequency motions is one which
has yet to be put to explicit field test.
In digitizing an analog record, it is necessary to quantize a

record which in Nature is presumably continuous. The quantizing

operation introduces an error termed quantization (round-off) error
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or noise. The quantization noise sets a lower bound, or threshold,

on spectral levels which can be detected. An estimate of the quanti-

zation noise, PN(f)’ is made by assuming that the underlying pro-

cess, x(t), is uniformly distributed over the quantization interval,
AX . . :

+ X where Ax 1is the resolution of the read-out device. Then

the mean quantization error, p , is zero, while the mean square
x

quantization error (rj, equals
Ax
2 15’2 2 (AX)Z
o= — x dx =
x Ax 12
ax
T2

If an average over R values is made, then the quantization noise is

2
2 _’x
R’x " R -

Assuming that the quantization error is uniformly distributed over

frequency, the estimate of the quantization noise level is then

RO'

2 TrfN

2
x

P (f) =

where fN is the Nyquist sampling frequency.

For the temperature and velocity data, the following values are ob-

tained with R = 6 and fN = 12 cpd:
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Temperature Velocity
AX 0.2 C° 4 cm/sec
0_)2{ 1/3 x 10—2(C° )2 4/3 (cm/sec)2
Ro_xz 1/18 x 10_2(C° )2 2/9 (cm/see)2
PR = 1x 10—5(C°)2/cpd T 3x 10-3(cm/sec)chd.

The spectra of the observations generally approach a level an order
of magnitude greater than the quantization noise level as the frequency
increases to fNJ” 12 cpd.

The frequency resolution of a spectrum and the statistical sta-

bility of a spectral estimate are competing phenomena. Because the

time series are of unequal length, it is impossible to hold both the

fundamental bandwidth, -Af, and the degrees of freedom, v, con-
stant. For convenience in the comparison of spectra, Af has been
held constant. Because the maximum number of lags, M, was

f

chosen to be 72, then Af = -—Ml\l = 1/6 cpd. Since the total number of

samples, N, used ranged from 339 to 865, and since

2(N-M/3)
V= ———

Vi , then v ranged from 9 to23. Experiments have

been performed to increase v for the short records and to decrease
Af for the long records but no noteworthy changes occurred in the
results. Ideally, it is desirable to center spectral estimates on fre-
gquencies with the largest enefgy peaks, e. g. the lunar semidiurnal

(MZ) and the inertial (I)' frequencies.; Since the M2 period and
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the I period are about 12.5 and 17 hours, respectively, the mini-
mum maximum lag time to center spectral estimates on both MZ
and I simultaneously, would have to be TM = 12.5 x 17 = 212 hours.
For vz 10, thena record duration of about 1060 hours would be
necessary. The majority of the time series were not nearly that long
so such a centering of spectral estimates was not possible. Much
longer records are necessary for further resolution of the semidiur-
nal and dirunal tides. Many of the interpretations in the following
sections are probably limited by the occurrence of many tidal lines
in a measurement bandwidth. All indications are that the choice of
M= T2 was as effective as any value for satisfying the conflicting
objectives.

The mean was removed from each time series prior to covari-
ance and spectrum calculations. The series were neither pre-whitened
nor detrended prior to covariance and spectrum calculations. (Since
the intermediate-passed series are essentially detrended, the objec-.
tives of the present study could have been accomplished by using the
intermediate-passed series and recoloring their spectra. For the
least squares tidal analysis, the detrended, intermediate-passed ser-
ies might be preferable to the hourly-averaged series.) The spec-
trum estimates have been smoothed by the use of the hamming spec-
trum window for side lobe suppression. Thus, the effective band-

width, (Af)e, of the spectra is (af), = 1.3 af= 0.2 cpd.
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For each spectrum displayed, the following items are indicated:

i)

ii)

iii)

iv)

vi)

vii)

viii)

N, M, and v.

90% confidence limits for autospectra and the 90% signifi-
cance level for the coherence squared. The confidence lim-
its for the phase function are not given because they are not
well-understood.

Physical units for spectral density, in either (cm/sec)z/cpd
or (C° )Z/de.

A -5/3-power law spectrum for comparison to the observed
spectral continuum, though the spectra must be recolored.
The inertial frequency is identified by a vertical dashed line
in the upper panel.

The clockwise and anticlockwise sense of rotation is noted
on each phase function by A for anticlockwise and C for
clockwise.

The spectra of the original series are shown by heavy, solid
lines. The spectra of the residual series are shown by
light lines at frequencies where there is a distinguishable
difference between the residual and original series.

The cohernece squared, phase, and axis functions are shown
by dots or dotted lines for the semi-principal axis calcula-
tions. They are only shown for the coherence squared and

phase functions when they can be distinguished from the
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values for the original and residual series in geographic co-
ordinates.

ix) In the complex spectra, the anticlockwise components are
indicated by solid lines, while the clockwise components are
indicated by dashed lines.

The frequency axis is in units of cycles per day (cpd), which facili-
tates comparison with the results of Collins (1968). The variance in
a measurement bandwidth is given by P(f)- 2maf. The sensor iden-

tification is given in each figure caption.

C. The Resolvable Coherent Tides

Least squares analysis has been used to determine the tidal
constants for the resolvable diurnal, semidiurnal, and quarterdiurnal
frequencies in each time series. The inertial frequency has also
been fit to the residual series. This analysis determines the ampli-
tude and temporal phase of the coherent26 motion for each frequency
fit to the time series. The resultant residual series are subsequently
used to study the unresolvable and the incoherent motions by spectrum
analysis. Inspection of the amplitude and phase relations permits de-

ducing which tidal components are most significant and how the tidal

6The term coherent motion is used in the sense of amplitude-
and-phase-stable motion, not in the sense of motion statistically cor-
related at different spatial positions. The amplitude and phase values
for series of finite length are the effective stable values.
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components compare at different spatial locations.

In Table 5, the resolvable tidal frequencies are tabulated and
identified for each of the three common record durations. Rayleigh's
criterion27 was used for determining the resolvability. An adequate
set of diurnal tides were resolvable, but only a limited number of
semidiurnal tides could be resolved. Additional quarterdiurnal and
higher frequency tides could have been resolved. The sequence of fit
was largely based on the tidal analysis of current observations re-
ported by Godin (1967). The choice of frequencies was also influenced
by the manual authored by Schuremann (1941) and some preliminary
tests. The amplitude and phase of the oscillations at the inertial fre-
quency are usually found to be so time-varying that least squares
analysis is ineffective (Webster, 1968a) for time series whose dura-
tion exceeds a few inertial cycles. For time series spanning only a
few inertial cycles on the continental shelf off Oregon, Collins. et al.
(1968) were able to perform a tidal analysis for the inertial amplitude
and phase. It was anticipated that it would be impossible to find co-
herent inertial oscillations in the present study, thus the inertial fre-
quency was not included in the original list. Subsequently, it was

found productive to fit the inertial frequency to the residual series,

27 . . . : .
Rayleigh's criterion states that to resolve two frequencies,

fl > fZ’ the record duration must exceed —1 __
(f1-£2)



Table 5. Resolvable tidal frequencies.

Record duration

Speed Frequency Period (hours)

Tide name Symbol (deg/hour) (rad/hour) (hours) 339 568 865
Principal lunar semidiurnal ‘M2 28.9841 . 505868 12.4206 1 1 1%
Principal solar semidiurnal S2 30. 0000 . 523599 12.0000 - 2
Smaller lunar eiliptic semidiurnal L2 29,5285 .515370 12.1916 - - 3
Larger lunar elliptic semidiurnal N2 28. 4397 . 496367 12.6583 - - 4
Variational Semidiurnal u2 27.9680 . 488134 12,8718 - - 5
Luni-solar diurnal K1 15.0411 . 262516 23.9345 2 3 6
Principal lunar diurnal o1 13.9430 . 243352 25.8193 3 4 7
Smaller lunar elliptic diurnal NO1 14. 4972 . 253024 24.8324 - - 8
Largerlunar elliptic diurnal Q1 13.3987 . 233851 26.8684 - - 9
Smaller lunar elliptic diurnal 001 16.1391 . 281681 22. 3061 4 5 10
Smaller lunar elliptic diurnal n 15.5854 . 272018 23.0985 - - 11
Lunar quarterdiurnal M4 57.9682 1.01174 6.2103 5 6 12
Luni-solar quarterdiurnal MS4 58, 9841 1. 02947 6.1033 6 7 13
Solar quarterdiurnal S4 60. 0000 1.04720 6. 0000 7 8 14
Inertial I 21. 3000 0.371755 16. 9000 Alk
Inertial minus principal

lunar semidiurnal IMM 76.9000 1.342159 4,6814 A2
Inertial plus principal lunar

semidiurnal IMP 50. 0000 0. 872665 7.2000 A3
Solar terdiurnal S3 45. 0000 0. 785399 8. 0000 A4
Lunar terdiurnal M3 41.8000 0. 729548 8.6124 AS

* Numerical entries indicate the sequence of fit for the three categories of record duration; the symbol (-) indicates that the
record duration is not sufficiently long to permit the resolution of the associated frequency.

*x Al through A5 were fit sequentially to the residual series after completion of the analysis for the tidal constants of the

frequencies above the dashed line.

€1¢e
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as well as two terdiurnal and the difference and summation frequencies
of the inertial motion and the principal lunar semidiurnal tide.

The results from the tidal analysis are presented in Table 6.
The tidal component at angular frequency, o of a time series, x(t)
is represented by xo_(t) = cx - cos (ot) + sx + sin (ot), where cx
and sx are amplit{lde factors, For the horizontal velocity series,
the constants of the hodograph are given as well as the cosine and
sine amplitudes of the velocity components of the motions. (A discus-
sion of the terminology of the hodograph is given in Appendix III. )
The tidal frequencies were fitted sequentially. At the Nth step,
the variance of the residual was computed. Then the N+1st fre-
quency was added to the least squares analysis of the original record,
not the residual. Thus, the entry for the Nth frequency in the col-
umn labelled "RESX" gives the percent of the original variance
remaining in the residual éeries after inclusion of the Nth
frequency in the analysis. It does not represent the percent of the
original variance accounted for by the Nth frequency in the final
step of the analysis, i.e., when all frequencies are accounted for
simultaneously. After the final step, the variance of the residual
series is termed the incoherent variance; the difference between the
original and the incoherent variance is termed the coherent variance.
The system of equations resulting from the least squares calculation

was solved by Gauss-Seidel iteration. The solution was iterated until
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Table 6, Estimates of tidal constants.

Explanatory Notes:

The quantities which are used in thistable are defined below:

U: x component of the velocity
V: y component of the velocity
T: temperature

Z: sea level

T: mean of U

V: mean of V

T: mean of T

Z: mean of Z

UVAR: variance of U

VVAR: variance of V
TVAR: variance of T
ZVAR: variance of Z

Cu: cosine amplitude of U

SU: sine amplitude of U

CV: cosine amplitude of V

SV: sine amplitude of V

CT: cosine amplitude of T

ST: sine amplitude of T

CZ: cosine amplitude of Z

SZ: sine amplitude of Z

Wi: amplitude of the semi-major axis of the hodograph

we: amplitude of the semi-minor axis of the hodograph

O1: orientation of the semi~major axis measured anticlockwise from east
62: orientation of the semi-minor axis measured anticlockwise from east

a: temporal phase of the semi-major axis referenced to the common start time
ROT: rotational sense of the hodograph; C is clockwise and A is anticlockwise
[H eccentricity

AT: amplitude of T

OT: phase of T

AZ: amplitude of Z

0Z: phase of Z

RESU: percentage of the original variance in the residual series of U
RESV: percentage of the original variance in the residual series of V
REST: percentage of the original variance in the residual series of T
RESZ: percentage of the original variance in the residual series of Z

When the five additional frequencies have been fit to the residual series, the quantities RESU,
etc. represent the percentage of the residual variance in the new residual series.

. ‘ . o
All units are in the c.g.s. system; i.e., U and V are given in cm/sec, T is givenin c,

and Z is given in cm, The standard errors, s.e.'s, are given for tidal amplituddes, where

Incoherent variance 1/2
s.e. =

No. of samples

The s. e. 's are not given for the angular quantities among the tidal quantities. They are determined
by dividing the s, e. for the amplitude by the amplitude itself; the result is in units of a fraction of 2
half-circle.
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Tide CU SU

cv

SV RESU RESV W 1

0
1

ROT

6a. (Site: DB5; Depth: 20 meters; Variable: Horizontal Velocity)

No._of Samples: 339; U= -2.2, UVAR =117.5; V=-17. 9, VVAR =132.5

M2 -0.7 4.9 0.5 2.7 89.8 97.1 5.6 28 0.7 298 94
K1 -0.7 -.05 3.2 -0.3 89.4 92.9 3.3 282 0.5 12 177
o1 -1.7 -1.3 1.7 2.4 87.5 89.7 3.6 126 0.5 36 48
o001 1,0 -0.3 .-0.3 0.1 87.0 89.6 1.1 161 0.0 251 163
M4 -1.0 -0.3 0.1 0.8 86.6 89.4 1.1 154. 0.7 64 33
MS4 0.1 -1.4 0.0 -0.3 85.7 89.4 1.5 193 0.0 283 95
S4 0.4 0.4 0.8 0.1 85.5 89.1 1.0 58 0.2 328 18
U v U v
Incoherent variance 100.5 118.1 s.e, 0.5 0.6
Coherent variance 17.0 14. 4
6b. (Site: DBS; Depth: 60 meters; Variable: Horizontal Velocity)
No. of Samples: 339; U = 2.8, UVAR = 31. 5; V=0.7. VVAR =86.2
M2 2.2 -1.1 -3.1 0.2 90.3 94.5 3.9 128 0.8 38 168
K1 0.5 0.1 2.2 -1.1 89.9 90.7 2.5 261 0.3 171 154
o1 0.3 -0.4 2.0 1.0 89.4 87.9 2.2 86 0.5 176 26
oot 0.2 -0,0 -0.,2 -0.2 89.4 87.9 0.3 296 0.1 206 27
M4 0.3 -0.1 0.1 -0.2 89.2 87.8 0.4 222 0.2 132 144
MS4 -0.4 0.3 -0.0 -0.1 88.8 87.8 0.5 349 0.1 79 135
S4 0.2 -0.1 -0.3 -0.1 88.7 87.8 0.4 313 0.2 223 3
U v U v
Incoherent variance 27.9 75.8 s.e. 0.3 0.5
Coherent variance 3.6 10.4

No. of Samples: 568; U = 2.4, UVAR =44.0; V =0.5, VVAR =126.7

M2 4.0 -0.9
S2 -0.9 1.8
K1 0.1 -~0.0
o1 0.4 -0.4
oor 0.1 -0.4
M4 0.1 -0.6
MS4 -0.1 0.2
S4 0.4 -0.0

Incoherent variance
Coherent variance

-3.4
-0.5
2.0
1.3
-0.5
0.2
-0.1
-0.4
U
31.8
12.2

-0.8
1.1
-0.4
0.3
0.2
0.1
-0.2
-0.1
A
117.8
8.9

77.9 95.9
73.5 95.2
73.5 93.8
73.1 93.1
72.9 93.0
72.5 93,0
72.4 93,0
72.2  92.9
S. e.

5.2
2.4
2.0
1.4
0.6
0.6
0.2
0.6
U

0.2

v

140

32
268

74
126
174
314
315

0.

. 4

1.2
0.0
0.0
0.5
0.4
0.2
0.1
0.1

50
302
358
164

36
264

44
225

178
115
167
6
139
99
91
5

0O>00>00 0O>0>05>0

O>>0>>00

0.77
0.74
0.74
0.94
0.23
0.99
0.58

0. 65
0. 80
0. 62
0. 42
0.44
0.67
0. 39

0.63
0. 96
0.97
0. 46
0.28
0.52
0. 47
0.74
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Tabel 6. (Continued)

Tide CU SU . CV SV RESU RESV W, 61 w, 62 a ROT ¢

No. of Samples: 865; U = 2.7, UVAR =39,8; V =5.1, VVAR = 157.3

M2 3.9 -1.8 -3.7 -0.2 79.7 95.7 5.5 140 1.4 50 167 C 0.60
S2 ~-0.6 2.0 -0.3 0.9 75.1 95.4 2.3 23 0.0 113 108 A 1.0
L2 -0.7 -1.2 -0.7 1.1 72.4 94.8 1.6 142 1.0 52 84 Cc 0,23
N2 ~-1.6 0.8 0.7 1.3 68.8 94.1 1.8 352 1.5 262 160 C 0.08
12 0.1 -0.3 -0,1 0.2 68.6 94.1 0.4 145 0.0 55 117 C 0.84
K1 -0,2 0.0 2.4 -0.2 68.6 92.7 2,4 274 0.0 184 175 Cc 1.0
o1 0.3 -0.4 1.4 0.8 68.4 91.7 1.6 85 0.5 175 .28 A 0.54
NO1LT 0.1 -0.2 -0.3 -0.2 68.3 91.7 0.4 121 0,0 31 133 C 0.75
Q1 0.2 0.3 0.5 -0.3 68.2 91.6 0.6 271 0.3 181 148 C 0.34
oot -0.0 -0.4 -~0.3 -0.2 68.0 91,5 0.5 229 0,2 139 54 C 0.35
1 0.2 0.1 0.2 -0.5 68.0 91.4 'O. 6 275 0.2 185 106 C 0.4
M4 0.2 -0.3 0.1 0.0 67.8 91.4 0.4 186 0.1 276 219 A 0.64
MS4 0.3 0.2 -0.1 -0.2 67.7 91.4 0.4 331 0.1 241 41 C 0.45
S4 0.4 -0.1 -0.3 0.0 67.5 91.4 0.5 147 0.0 57 167 C 0.82
U v U v
Incoherent variance 26.9 143,7 s,e. 0.2 0,4
Coherent variance 12,9 13.6
1 -0.6 -0.6 -0.6 0.7 98.7 99,7 0.9 107 0.8 17 115 C 0.07
IMM -0.1 0.2 0.1 0.2 98.6 99.7 0.3 35 0.1 305 93 C 0.59
IMP -0.1 -0.1 0.1 0.2 98.6 99.7 0.2 125 0.1 35 45 Cc 0.57
$3 -0.1 0.2 -0.2 0.3 985 99.6 0.4 62 .00 152 121 A 0.85
M3 -0.3 -0.2 -0.2 -0.3 98.3 99,6 0.5 227 0.0 317 4 A 0.88
6c. (Site: DB10; Depth; 20 meters; Variable: Horizontal Velocity)
No. of Samples: 339; U = 4.5, UVAR =109.3; V= -12.1, VVAR =74.1
M2 8.7 -1.2 -2,6 -2.7 65.0 90.7 9,0 164 3.0 74 177 C 0.51
K1 -2.0 1.0 2.3 0.0 62.8 86.9 3.1 314 0.8 224 167 C 0.61
o1 -1.1 1.1 1.5 0.6 61,8 85.0 1.9 312 1.3 222 170 Cc 0.20
oo1 1.8 1.0 1.3 -0,0 59.9 83.9 2.3 30 0.6 300 21 C 0.61
M4 0.8 1.0 0.9 -1.1 59,1 82.4 1.6 299 1.2 209 106 Cc 0,13
MS4 1.0 -0.6 -0.4 0.6 58.5 82,0 1.3 148 0,2 238 143 A 0.72
S4 -0.3 0.5 0.5 -0.8 58,4 81.5 1.1 302 0.0 32 124 A 0,97
U Vv U v
Incoherent variance 63.8 60,3 s,e. 0.4 0.4

Coherent variance 45,5 13.8
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Table 6. (Continued)

Tide CU SU CcV SV RESU RESV W1 91 W2 92 a ROT ¢

No. of Samples: 568; U= 1.3, UVAR =106, 3; V =-13.1, VVAR = 63.1

M2 7.5 -0.8 -3.0 -2.6 70.1 89.8 8.1 338 2.7 248 1 C 0.50
S2 -2.8 1.4 -0.5 2.7 65.5 84.0 3.7 38 1.8 308 132 C 0.35
Ki -1.1 1.0 1.8 -0.1 64.7 81.8 2.2 308 0.8 218 162 C 0.50
01 -0. 4 0.7 1.4 0.0 64.5 80.0 1.5 291 0.7 201 171 C 0.37
001 1.1 1.2 1.0 0.4 63.3 79.0 2.0 33 0.4 303 40 C 0.68
M4 -0.3 0.8 0.9 -0.6 62.9 78.0 1.3 307 0.5 217 133 C 0.48
MS4 0.7 -0.6 -0.3 0.3 62.6 77.8 1.0 154 0.0 244 137 A 0.92
S4 -0.7 -0.2 0.3 -0.2 62.4 77.8 0.8 160 0.2 250 7 A 0.54
U v U v
Incoherent variance 66.3 49,0 s,e. 0.3 0.3

Coherent variance 40.0 14.1

No. of Samples: 865; U=-0. 7, UVAR =108.7; V= -13. 5, VVAR =67.6

M2 7.7 -0.4 -3.6 -2.7 69.2 86.4 8.5 334 2.7 244 .6 C 0.52
S2 ~1.2 1.1 ~-1.0 1.8 68.1 83.4 2.6 52 0.4 322 127 C 0.73
L2 1.8 0.6 0.1 -0.6 66.4 83.2 1.9 356 0.6 266 20 C 0.51
N2 -0.2 -0.7 0.5 1.0 66.2 82.3 1.3 121 0.1 211 64 A 0.82
u2 -1.0 0.1 -0,2 -0.0 65.7 82.2 1.0 12 0.0 102 174 A 0,92
K1 -0.7 0.9 1.9 -0.5 65.3 79.7 2.2 295 0.6 205 157 C 0.56
01 -0.4 0.7 1.8 0.0 64.9 77.0 1.9 285 0.7 195 175 C 0.46
NO1 - -0.1 ~0.0 0.3 -0.5 64.9 76.9 0.6 271 0.1 1 120 A 0.73
Q1 -0.5 0.9 1.2 0.2 64.5 75.9 1.4 301 0.8 211 166 C 0.23
001 0.8 1.1 0.6 0.1 63.7 75.6 1.4 20 0.4 290 48 C 0.53
n -0.2 -0.7 -0.6 -0.4 63.5 75.3 0.9 224 0.3 134 53 C 0.45
M4 0.3 0.7 0.4 -0.8 63.3 74.8 1.1 309 0.4 219 96 C 0.42
MS4 0.7 -0.6 -0.5 0.3 62.9 74.5 1.1 148 0.1 58 145 C 0.86
S4 -0.6 -0.1 0.1 -0.0 62.8 74.5 0.6 172 0.0 262 9 A 0.85
Incoherent variance 68.2 50,3 s,e. 0.3 0.2

Coherent variance 40.5 17.3

I 0.0 0.4 0.1 -0.3 99.8 99.9 0.5 329 0.1 239 92 Cc 0.70
IMM -0.4 0.2 -0.0 0.1 99.7 99.9 0.4 7 0.1 277 153 Cc 0.67
IMP 0.4 0.0 0.1 -0.8 99.6 99.3 0.8 272 0.4 182 94 C 0.33
S3 0.5 -0.t -0.0 0.1 99.4 99.3 0.5 175 0.1 265 166 A 0.59
M3 -0.0 =<0.3 0.2 -0.1 99.4 99.2 0.3 195 0.2 285 95 A 0.20
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Table 6. (Continued)

Tide

CU

SU

cv

SV

RESU RESV W i

1

o, W, 6,

a ROT ¢

6d. ‘(Site: DB1S; Depth: 60 meters; Variable: Horizontal Velocity)

M2
K1
o1
001
M4
MS4
S4

Incoherent variance

0.9
-1,1
~0.6

0.4
-0.9

0.1
-0.0

No. of Samples: 339, U =5.9, UVAR =35.2; V=7.8 VVAR =440

-1.2
0.8
0.9

-0.6

-0.1

-0.0
0.5

Coherent variance

M2
s2
K1
o1
001
M4
MS4
S4

Incoherent variance

1.3
0.5
-0.8
-0.7
0.3
0.6
0.3
0.6

No. of Samples: 568, U

1.7
-1, 4
0.6
-0.6
-0.1
0.6
0.5
_u_
34,6
0.6

-0.3
0.7
L3
0.2
0.4
-0.3
0.1

99,1 97.7 2,1
97.2 96.0 2.0
95,9 93,6 1.6
95,6 93.4 0.9
97.5 93.8 0.9
97.5 94,7 0.7
98.2 95,4 0.5
U v
s,e. 0.3 0.4

230
49
59

139

184

263
68

_5.6, UVAR = 33.8; V

0.8
0.2
0.8
0.3
0.4
0.0
0.5

320
139
329
49
94

173

338

154
150
85
141
6
151
26

=4,8, VVAR =55.7

-0.0
0.3
0.1

-0.2

-0. 4

-0.6

-0.6

-0.2

Coherent variance

M2
s2
L2
N2
2
K1
o1
NO1
Q1
001
J1
M4
MS4

Incoherent variance

1.1
0.6
-0.3
0.3

-0

3
9
8
2
0.0
2
1
.1
0.2

No. of Samples: 865; U =4.

|
i e
N O R WWwU W

U

e

31.5
2,3

1.3
0.5
-0.1
0.5
0.7
-0,6
0.1
0.5
v
53. 4
2.3

97.4 97.8 1.7
9.9 97.5 0.6
95.9 97.3 0.9
95,0 97.0 0.8
94,6 96,5 0.9
93,7 96.1 0.9
93,6 06.1 0.3
93,1 95.8 0.6
U v
s.e. 0,2 0.3

54
348
209

33
124
218
179

52

8, UVAR = 45.5; V

coooppoor
= = 1 O O

144

78
299
303
214
128
269
322

36
20
0
167
118
104
170
144

=3,8 VVAR =63.2

0.1
0.0
0.0
-0.7
0.8
0.4
-0.3
0.8
0.9
-0, 3
0.2
-0.5
0.2

Coherent variance

1.0
0.2
1.0

-0.3
0.3
0.1

-0.2

-0.3
0.3

-0.1

-0.5

-0.4
0.0

U

42,1
3.4

0.6
0.8
1.0
0.2

-0.2

-0. 4

-0, 1
0.6
0.0

98.5 98.4 1.6
98.1 97.7 0.9
. 98,0 96.3 1.4
97.5 96.2 0.8
9%.8 9.1 0.8
95.5 96.0 1.0
94,8 96.0 0.8
94,1 956 1.0
93.2 955 1.0
93.0 951 0.9
93.0 95,0 0.5
92,7 94,8 0.5
92.6 94.8 0.4

v v

s.e. 0,2 0,3

45
62
99
155
352
340
195
40
0
111
253
214
35

coppoopoLPeLOP
“&NNWI—‘HWWNN@A

135
152
9
65
262
70
285
130
270
201
343
124
125

19
54
45
122
69
150
22
111
89
101
4
53
50

ele e Ne N dl's

a>0" 0> P

>POAOP>P>0P>>0002 2

0. 44
0. 86
0.31
0. 46
0.37
1,00
0.05

0. 28
0.01
0.72
0. 26
0.74
0.15
0.61
0. 10

0. 57
0. 22
0.70
0.65
0.4
0. 50
0.85
0.78
0. 54
0. 65
0.46
0.11
0. 46
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Table 6. (Continued)

Tide CU SuU cv SV RESU RESV w1 91 w ’ 92 a ROT ¢
1 1.2 .12 .20 -3,0 96.5 90.8 3.3 265 1,7 175 56 C 0.32
IMM -0,2 0.1 -0.0 0.1 96.5 90.8 0.2 20 0.1 290 150 C 0.34
IMP -0.1 -0.3 -0,6 0.6 96.3 90.2 0.9 102 0,3 12 128 C 0.49
$3 0,4 0.2 0.2 -0.6 96.1 89.8 0.6 269 0.4 179 114 C 0.16
M3 0.1 -0.3 -0,4 -0.4 96,0 89.6 0.6 245 0.3 155 58 C 0.38
6e. (Site: DBS ; Depth: 20-60 meters; Variable: Horizontal Velocity Difference)

No. of Samples: 339; AU = -5.0, AUVAR =171.5; AV =

-18.6, AVVAR =116.2

M2 -2.8 6.0 3.6 2.5 87.1 91.6 6.7 10 4,3 280
K1 ~1.2 -0.5 1.0 0.9 86.5 90.8 1.8 135 0.3 45
o1 =2.1 -0.9 -0.3 1.4 85.1 89.9 2.3 168 1.4 78
001 0.8 -0.2 -0.1 0.3 84.9 89.9 0.9 166 0.3 256
M4 -1.,3 -0.2 -0,1 1.0 84.4 89.4 1.3 171 1.0 81
MS4 0.5 -1.8 0.0 -0.2 83.4 89.4 1.8 186 0.0 96
sS4 0.2 0.5 1.1 0.2 83.3 88.9 1.1 75 0.4 345
AU AV AU AV
Incoherent variance 142.9 103.3 s.e., 0.6 0.6
Coherent variance 28.6 12.9
I 0.6 2.0 1.5 0.4 98.6 98,8 2.3 32 1.2 302
MM 0.7 -0.2 -0.1 0.2 98.3 98.8 0.7 164 0.1 254
IMP 1.2 -0.4 -1.1 ~-0.6 97.8 98.0 1.6 315 0.7 255
S3 -0, 9 0.3 -0.0 0.4 97.6 98.0 1.0 10 0.3 280
M3 0.9 -0.6 0.0 -0.9 97.1 97.5 1.2 218 0.6 128
Tide CT ST REST AT 0T
6f. (Site:DB5; Depth: 20 meters; Variable: Temperature)
No. of Samples: 339; T =8.44, TVAR =0, 32
M2 0.10 0. 20 91.9 0.23 63
K1 0.01 0.00 91.8 0.01 21
(o] 0.03 0.07 90.9 0. 08 71
o001 0.04 0. 05 90, 3 0. 06 53
M4 0.07 -0,10 88.1 0.12 306
MS4 0.02 -0, 07 87.4 0,07 284
S4 -0, 02 -0.02 87.3 0.03 217
T
Incoherent variance 0.28 s,e. 0.03
Coherent variance 0.04

109
32
30

159
16

105
18

55
159

158
123

Cc
Cc
Cc
A
Cc
Cc
Cc

Cc
A
Cc
Cc
Cc

0.22
0.74
0.25
0.53
0.12
0.99
0. 48

0.32
0. 68
0.37
0.50
0. 35



Table 6. (Continued)
Tide CT ST REST AT oT

No. of Samples: 482; T =8.34, TVAR = 0. 40
M2 0,03 0.23 95.3 0, 23 82
S2 0.19 -0, 04 90.8 0.19 347
K1 -0, 00 0.02 90. 8 0,02 96
o1 0,02 0.03 90.7 0.03 61
001 0. 02 0. 00 90, 6 9.02 3
M4 0. 08 -0, 06 89.5 0.10 323
Ms4 0.01 -0, 04 89.3 0.04 279
sS4 -0, 02 T -0.02 T 89. 2 0. 03 217
Incoherent variance 0.36 s.e. 0,03
Coherent variance 0.04

No. of Samples: 568; T = 8.24, TVAR =0, 41
M2 0.04 0. 20 96.5 0.20 77
S2 0.17 -0. 02 93,2 0.17 352
Ki 0.01 0.02 93,1 0.02 62
o1 0.01 0. 03 93.0 0.03 77
001 0, 02 -0.01 93.0 0.03 345
Jj4 0,07 -0, 04 92.3 0. 08 327
MS4 0.02 -0, 05 92.0 0. 06 286
S4 -0, 02 T -0,01 T 92.0 0.03 206
Incoherent variance 0.38 s.e, 0,03
Coherent variance 0.03

No. of Samples: 865; T =8.71, TVAR =1.10
M2 -0, 00 0. 25 96. 8 0.25 90
S2 0.08 0.07 96. 3 0.11 41
L2 -0.15 0.02 95.4 0.15 171
N2 0. 05 -0, 07 95.1 0. 09 306
n2 0.01 0. 08 94, 8 0. 08 84
K1 -0, 02 0.04 94,7 0.04 118
o1 -0.01 -0. 04 94,7 0. 04 260
NO1 -0. 04 0.02 94, 6 0.04 160
Q1 -0, 01 -0, 00 94. 6 0.01 214
001 0. 04 -0.01 94. 6 0.04 343
1 0.02 0.01 94,5 0.02 30
M4 0.02 -0, 05 94. 4 0.05 290
MS4 -0.03 -0.04 94.4 0.04 233
S4 0.00 T 0.03 T 94,3 0.03 20
Incoherent variance 1.04 s.e. 0,03
Coherent variance 0. 06
I -0, 05 -0, 04 99.8 0.06 216
IMM ~-0. 00 0,02 99. 8 0.02 100
IMP -0.03 -0.02 99,7 0.04 217
S3 -0.02 0.01 99,7 0.02 156
M3 -0, 01 0. 04 99.7 0.04 112
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Table 6. (Continued)
Tide CT ST REST AT eT
6g. (Site: DB15; Depth: 60 meters; Variable: Temperature)

No. of Samples: 339; T = 10,19, TVAR =1.38

M2 0. 42 -0.24 91.6 0. 49 330
Ki -0.24 0, 02 89.4 0. 24 176
o1 -0,04 -0.26 86.9 0.27 262
001 -0, 10 0.10 86.1 0.14 134
M4 -0,18 -0,04 85.0 0.18 193
MS4 -0, 05 0,15 84.0 0.16 109
S4 -0, 04 -0,03 83,9 0. 05 216

i e
Incoherent variance 1.15 s.e. 0.03
Coherent variance 0.23

No. of Samples: 482; T =10.73; TVAR = 2.36

M2 0. 61 -0, 25 90,3 0. 66 338
s2 -0.03 0.14 89.9 0,14 102
K1 -0.21 -0,02 89.6 0.21 186
o1 ~-0,10 -0, 20 88.6 0. 22 244
001 -0, 14 0. 20 87.5 0.24 124
M4 -0, 18 -0, 08 86.8 0.19 204
MS4 -0, 02 0. 08 86.7 0. 08 101
S4 0, 06 -0,02 86. 6 0. 06 346

_T_ T
Incoherent variance 2.05 s.e. 0.03
Coherent variance 0. 31
Tide Ccz SZ RESZ AZ 0Z
6h. (Site: Newport, Oregon; Variable: Sea Level)

No. of Samples: 900; Z = 270, ZVAR = 5080

M2 -69. 6 45,1 36. 4 82.9 147
s2 -28.7 - 2.6 27.9 28.9 185
L1 1.2 5.9 27. 4 6.0 78
N2 - 0.1 18.9 24,1 18.9 90
2 1.8 1.8 24,1 2.5 45
K1 32.2 -11.1 12.3 34.0 341
o1 22.1 20.5 4.0 30.1 43
NO1 0.2 -1.4 4,0 1.5 279
Q1 7.2 0.1 3,5 7.2 1
o01 1.5 1.2 3.5 1.9 38
1 3.4 -1.5 3.4 3.8 336
M4 0,1 0.2 3.4 0.2 53



Table 6. (Continued)

Tide cz Sz RESZ AZ 0z

MS4 0.9 0.6 3.3 1.1 34

S4 - 0.1 0.5 3.3 0.5 102
Z Z

Incoherent variance 170 s.e. 0.4

Coherent variance 4910

I - 0.3 - 0.5 99,9 0.6 240

IMM - 0.1 - 0.2 99.9 0.2 235

IMP - 0.3 - 0.4 99.8 0.5 226

s3 0.2 0.9 99,5 1.0 77

M3 0.0 0.3 99,5 0.3 87
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all cosine and sine amplitudes differed by no more than 0. 5% from the
preceding iterate. Three to six iterations were required. The num-
ber of significant figures tabulated for each tidal constant is consis-
tent with the standard error based on the residual variance. The
first frequency fit was the M2; the values for its constants varied
as much as 50% from the first to the last step in the sequential fit for
the sensor at a depth of 60 meters, 30 kilometers offshore.
The most significant features of Table 6 are summarized below:
i) The coherent variance ranged from 2 to 37% of the original
variance. In one case, DB15, 60 meters, 339 samples, the
incoherent variance increased in the last few steps, so the
estimates of tidal constants at the high frequencies are un-
stable in that case.

ii) Without exception, the M2 component accounted for more
of the variance than any other component, ranging from about
1 to 14% of the original variance.

iii) The inertial frequency was generally the second largest com-
ponent of the variance. In addition, K1, Ol, and S2
were generally large components.

iii) There was appreciable variability in the tidal constants esti-
mated for different spatial points and for different record
lengths at a single point. The variability was most marked

at DB15, 60 meters, even for the M2 component.
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Not all of the information in Table 6 is discussed in detail. For

the present study, the M2 tide and I, the inertial frequency, are

analyzed in detail. The M2 tide had the following properties:

i)

ii)

iii)

At DB5, the hodograph was oriented nearly parallel to the
bottom contours at a depth of 20 meters and nearly normal

to them at a depth of 60 meters. The two hodographs were
about equal in size but were nearly in-quadrature temporally.
The coherent vertical shear vector had a maximum ampli-
tude of 1.7 x 10_3 sec-l, which is a factor of 3 less than
the mean shear. The terﬁperature oscillation at 20 meters

was about 30° out-of-phase temporally with the adjacent

hodograph.

At DB10, 20 meters, the size of the hodograph was not

highly variable for the different record lengths, though its
orientation and phase changed. The hodograph was about
five times the size of those at DB5, and was oriented normal
to the bottom contours. For the common record length, it
led the hodograph at DB5, 20 meters by 83°, consistent with
onshore propagation and nearly a quarter-wavelength separa-
tion.

At DB15, the temperature at a depth of 20 meters led that at
DB5, 20 meters by 263°, which is consistent with onshore

propagation and about a 3/4 -wavelength separation.’ The
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size of the hodograph at a depth of 60 meters was about half
the size of that at DB5, 60 meters. It was the only hodo-
graph which rotated anticlockwise. Disregarding the short-
est common record, the two 60 meter hodographs were about
215° out-of-phase; the hodograph at DB15 assumed its larg-
est value first, consistent with onshore propagation and
about 7/12 -wavelength separation.

In summary, the M2 hodographs were not of uniform amplitude,
orientation, temporal phase, or rotational sense at the sensor sites.
The temporal phase differences between sensor sites were consistent
with the phase differences predicted in Figure 31 for an internal tide
propagating shoreward. The spatial and temporal non-uniformity of
the coherent M2 tide was consistent with the occurrence of a phase-
unstable internal tide.

The estimates of the I component of the motion were ob-
tained for all the long records, i. e., those in excess of five weeks
duration. I was statistically significant in all the records. All
hodographs rotated clockwise. The largest amplitude for I was
found at DB15, 60 meters, where the hodograph was oriented nearly
parallel with the bottom contours, the semi-major axis was
3. 3cm/sec, while at DB10, 20 meters I had an amplitude of
0.5 cm/sec. I was also significant in the sea level record and the

temperature record at DB5, 20 meters. The sea level oscillation
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had an amplitude of 0. 6 cm, and was virtually in-phase with the hodo-
graph at DB15, 60 meters. These results are consistent with the
theory for topographically trapped waves along a coastal barrier, see
Appendix I. I alsohad a significant,coherent shear at DB5; its val-
ue was about 0.6 x 10-3sec_1, i. e., about 1/3 of the value for the
M2 shear.

D. The Temperature Spectra and Their Correlation
Between Two Spatial Points

The autospectra and coherence squared phase functions for the
temperature series are shown in Figure 33. The principal features
of the autospectra are summarized:

i) The two spectra had similar shapes, but the spectrum sam-

pled at DB15had higher values than those of the one sam-
pled at DB5. From Table 2, the variance at DB15, 20
meters was twice that at DB5, 20 meters. This difference
is consistent with the fact that, though the vertical tempera-
ture gradients at both sensors were essentially equal at the
beginning and at the end of the sample period, the gradients
were observed to differ by a factor of three in the middle of
the period. A factor of two difference in the gradients would
account for a factor of four difference in the spectra, and the

variance too. Since the gradient measurements were based
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Figure 33. The temperature auto spectra and the coherence

squared and phase functions between DB15 and DB5
at a depth of 20 meters. (T] and T3 are the tem-
perature series at DB5 and DB15, respectively.)
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iii)

iv)
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on only three samples acquired in the observation period,
this explanation is only plausible. The vertical temperature
structure at DB15 was nearly linear while that at DB5 was
nonlinear, which could produce spurious harmonics. How-
ever, there is no evidence of the generation of spurious har-
monics in the spectrum at DBb5.

Both spectra had their maximum at the low frequency limit
and decreased sharply as the frequency increased to 1 cpd.
At the semidiurnal frequency, both spectra achieved their
secondary maximum, corresponding to a vertical amplitude
of about 5 meters. The spectrum at DB15 rose sharply in
the band fI <f< 2cpd, while that at DB5 rose sharply in
the band 1 <f <2 cpd, with a distinct peak at f= f. The

I

peak at £ = fI may be indicative of the frontal interaction,
since the frontal interaction may open the inertial-internal
wave passband to frequencies less than f = fI, thus motion
at f= fI would have had a vertical component. Alternative-
ly, horizontal displacements in the presence of strong hori-
zontal temperatufe gradients may have produced the peak at
f= fI. Longer records and additional temperature sensors
are required to investigate this feature in detail.

Both spectra decreased sharply for 2 <f <3 cpd; they then

rose to their tertiary peak at 4 cpd. The ratio of the
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secondary to the tertiary peak was about 10:1 at DBI15,
while it was only about 5:1 at DB5. This difference suggests
a factor of two growth for the second harmonic of the semi-
diurnal motion as the wave propagated shoreward, as de-
duced below:» -
At >4 cpd, the spectra continued to decrease and there
were peaks at higher harmonics of the semidiurnal motion.
The most significant peak was at about 6 cpd. which was the
third harmonic.
The sp;ectra of the residual series indicate a reduction in the
spectral peaks at 2 and 4 cpd, and the peak was es sen;tially

removed at 1 cpd for DB15, 20 meters.

The coherence squared (\(2) and phase (0) of the two tem-

perature series provide essential information about the semidiurnal

tide, but, as can be seen from Figure 33, the results are complicat-

ed. The principal features of yz and © are summarized:

i)

ii)

Overall, yz was statistically insignificant, but it had
numerous significant peaks, primarily at tidal harmonics.
The 4 cpd motion was the most strongly correlated, while
the motions at the low frequency limit and in the band of
1<f< fI were also significantly correlated. The motion at

2 cpd was virtually incoherent; clearly something was awry

with the semidiurnal tide. It is not clear what could have
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iv)
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have been wrong; among the possibilities are that the wave
was not phase stable due to time variable generation or that
the wave's interaction with the time-variable frontal regime
phase modulated the wave. It is difficult to explain the lack
of coherency of the 2 cpd wave when confronted with the high
coherency of the 4 cpd wave.

Overall, © was variable. Because <y Wwas generally
small, O generally had low statistical significance through
most of the band. Since 6 did show some piecewise con-
tinuity, it is discussed further.

The two series were out-of-phase at the low frequency limit.
Though © was not expected to be highly significant at £=0
due to the nature of the calculation, visual inspection of the
1ow—passed’series (Mooers et al., 1968) shows that the two
temperature series were out-of-phase. While the tempera-
ture decreased by about 1C° at DB5 during the observation
period, it increased by 2. 5C° at DB15, which is consistent
with a long period variation in coastal upwelling associated
with the observed wind shift.

The large variations in phase at 2 cpd é,re curious features.
The presence of the semidiurnal barotropic tides and of sev-
eral internal tides in a measurement bandwidth may have

2
complicated and degraded 06, as well as y, at 2 cpd.
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® had a surprising value at 1 cpd; it equaled 170° rather than
0°. A similar phase difference for diurnal components was .
determined in the tidal analysis recorded in Table 6. The
dirunal wave should bé essentially in-phase at both sites, if
it propagated as a barotropic wave. The only existing the-
oretical mechanism for this feature is the frontal interaction,
which may have allowed the diurnal tide to propagate as an
internal tide.

The unexpected behavior of YZ and 6 at 1l and 2 cpd ap-
pears in the spectra of the residual as well as that of the
original series.

If the motion was that of a standing wave in the onshore-
offshore direction, © should have equaled 0° or 180°. Since
8 was seldom 0° or 180°, the phase function is interpreted
with a progressive wave model. The slope of © versus

f indicates the direction of propagation of progressive
waves; positive values indicate onshore propagation. The

® versus f template of Figure 32 is used for interpret-
ing the observed © versus f. The theoretical ©6 wvs f
function for N2 =3x 10_4sec_ gives the best agreement.
The waves propagated onshore in the frequency bands of
about 1 to 2 cpd, 3 to 4 cpd, and 7 to 8 cpd. Consistent with

theoretical expectations, the semidiurnal tide was about
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100° to 150° out-of-phase between DB15 and DB5, with

DBI15 leading DB5. In the non-dispersive range of the phase
speed, the progressive waves traveled at a phase speed of

about 60 cm/sec.

E. The Horizontal Velocity Component Spectra and Their
Correlation at Individual Spatial Points

The horizontal velocity component spectra, and their coherence
squared and phase functions, are presented in Figure 34 for each of
the four current sensors. The spectra of the original series are
shown by heavy solid lines and by heavy dashed lines for the u and
v spectra, respectively. The residual spectra are shown by light
lines and by dots for the u and v spectra, respectively. The
coherence squared and phase functions for the original and residual
series are shown by the heavy and light solid lines, respectively;
Their values for the semi-principal axis transformation of the residual
series are shown by dots.

The principal properties of the autospectra are summarized:

i) All four pairs of spectra were similar to those generally ob-
served elsewhere in the Ocean (Webster, 1968b), and re-
sembled the spectra previously computed from observations
taken off Oregon (Collins, 1968). The maximum of each
spectrum tended to occur at the low frequency limit. For

f> 0, there was a sharp decrease in spectral level followed
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N = 865

FREQUENCY (cpd)

The horizontal velocity autospectra and their coher-
ence squared, phase, and axis functions at DBI10,
20 meters.
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ence squared, phase, and axis functions at DB15,
60 meters.
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by peaks in the région of the diurnal, inertia],and semidiur -
nal frequencies. There was a tendency for a decrease in
spectral level at higher frequencies.

With the exception of DB10, 20 meters, the v spectra
were greater than the u spectra at the low frequency lim-
it. This feature reflects the asymmetry imposed by the
coastal boundary and bottom contours, since it is natural to
expect the low frequency, large scale motions to be oriented
in the alongshore direction.

With the exception of DB15, 60 meters, the u spectra
tended to dominate the v spectra in the frequency band of
fI < f< 2 cpd; the notable exception was probably related to
the location of that sensor at the seaward edge of the conti-
nental shelf,

At the diurnal frequency, there was a definite peak in the v
spectra, but not the u spectra, at DB5, 20 and 60 meters
and DB10, 20 meters. There was no discernable diurnal
peak in the spectrum of either component at DB15, 60 meters,
though the value of the spectra at the diurnal frequency was
about the same as that found in the other spectra.

In all the spectra, there was a sharp rise in spéctral level
at the inertial frequency, or slightly below, which was con-

sistent with inertial-internal wave theory. Yet, only in the
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case of DB15, 60 meters was there a distinct peak at the
inertial frequency, which actually dominated the semidiurnal
peak. From the spectra, an estimate of the average peak

amplitude of the inertial motion is made:

Sensor Depth u v Ratio of
site (meters) (cm/sec) (cm/sec) utov
DB5 20 4,5 3.5 1.3
DB5 60 1.2 1.2 1.0
DB10 20 2.2 2.0 1.1
DB15 60 2.8 3.7 0. 8.

The amplitude of the inertial motion was a function of spatial
position. There was a tendency for the inertial motion to be
isotropic, with possible exceptions at the shelf edge and in
the steepest part of the frontal layer, where the component
amplitudes were also greatest. The former result is con-
sistent with the theoretical concept that the inertial motion
tended to be trapped along the shelf edge, see Appendix I.
The latter result is consistent with the inertial-ibnternal wave
bandpass concept of this dissertation, which can account for
motion present at the inertial and lower frequencies in an in-
clined frontal layer. Since all of the inertial motion did not
persist as a steady wave, the above values are lower bounds
on the largest inertial amplitudes. The above values are
greater than the amplitudes of the coherent inertial motion

given in Table 6.
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In all the spectra there was a significant peak at the semidi-
urnal frequency, though its qualitative shape and absolute
value were functions of spatial position. From the spectra,
an estimate of the average peak amplitude of the semidiur-

nal motion is made:

Sensor Depth u v Ratio of
site (meters) (cm/sec) (cm/sec) utowv
DB5 20 5.2 4.3 1.2
DB5 60 3.9 3.3 1. 2
DB10 20 6. 2 3.8 1. 6
DBI15 60 2.2 2. 6 0.8

The semidiurnal amplitudes tended to be greatest at 20 me-
ters and inshore. Their total range was only 2. 2 to 6. 2
cm/sec while the inertial amplitudes had a range of 1.2 to
4.5 cm/sec, or a spread of less than 1 to 3 compared to one
of nearly 1 to 4. Thus, the semidiurnal amplitude was
more uniform spatially than the inertial amplitude.

The velocity sepctra were excited in the frequency band

3 <f <4 cpd. The quarterdiurnal peak is attributed to the
second harmonic of the semidiurnal motion, which was also
noted as significant in the temperature spectra. The spec-.
tral peak near the terdiurnal frequency may have been the
third harmonic of the diurnal motion.

The residual series have had their diurnal components sub-
stantially removed, while the semidiurnal peak has 1 10t been

eliminated in most cases. The latter is especially true at
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DB15, 60 meters.

The coherence squared and phase functions for the component

spectra are discussed below:

i)

ii)

iii)

iv)

In the band 0< £< 1 cpd, yz was generally negligibly
small. The single exception is DB5, 60 meters, where the
two velocity components were nearly in-phase at the low
frequency limit. At f =1 cpd, yz . for the residual serie5
and its semi-principal axis transformation)were generally
significant.
For f= fI, y  was unequivocally éignificant, with the
components rotating in-quadrature in a clockwise sense,
thus the inertial motion was highly coherent at each spatial
point. |
There was a general tendency for the u and v series to
be in-quadrature and to rotate clockwise in the band
fI <f<6cpd. At f=6cpd, the Coriolis restoring

: fI 2
force's effectiveness is reduced in the ratio (g) = 0. 06,
thus it is not unexpected that the inertial effects on rotation
were small at frequencies greater than 6 cpd.
At f =2 cpd, yz was not significant in the original series
for DB5, 20 meters. Even the semi-principal axis trans-

formation resulted in only marginal significance for the

semidiurnal motion. Otherwise, there was a tendency for
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high values of yz in the band of fI < f< 2 cpd, whichis
consistent with the fact that a continuum of inertial-internal
waves may exist in this region of the spectrum. In this
band, there was a tendency for yz of the residual series,
and its semi-principal axis transformation, to be appreciably
greater than that of the original series, except at DB10, 20
meters. At the latter site, yz was large in the original
series,

v) yz was significant near f =3 and 4 cpd after semi-
principal axis transformation, indicating that the terdiurnal
and quarterdiurnal waves were also coherent motions.

vi) For f = 3.5 cpd, yz was significant at DB5, 60 meters
and DB10, 20 meters. The corresponding ‘avutospectra also
show excitation at this frequency. Within the lifnits of the
spectral resolution, this frequency corresponds to the sum-
mation frequency for the inertial and semidiurnal frequen-
cies, suggesting an interaction between the two.

The semi-principal axis transformation had its greatest effect
on yz for DB5, 20 meters; it generally smoothed the phase func-
tions. The orientation of the semi-principal axis is displayed in the
lowest panel of each figure, where AL denotes the orientation of
the bottom contours. The pattern of the semi-principal axes is rather

erratic in all cases, but, with the exception of DB5, 20 meters, the
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axis orientation was aligned with the bottom contours for the semidi-
urnal motion.

F. The Spectra of Complex-Valued Horizontal Velocity

Series and Their Correlation Between Different
Spatial Points

The spectrum calculations which result from treating pairs of
horizontal velocity series measured at different spatial positions as
pairs of complex~valued time series, W1 and WZ’ are presented in
Figure 35. The results for both the original and the residual series
are shown. The pairs chosen for analysis are DB15, 60 meters versus
DBS5, 60 meters; DB10, 20 meters versus DB5, 20 meters; and DB5, 20
meters versus DB5, 60 meters. The upper panel shows the auto-
spectra of anticlockwise (A) components, corresponding to positive
frequencies, for the two velocity series; similarly, the next panel
shows the autospectra of the clockwise (C) components, correspond-
ing to negative frequencies. For the original series, the values for
the A and C components are given by heavy solid lines and dashed
lines, respecti\}ely- For the residual series, the values for W1 and
W2 are given by light solid lines and dots, respectively. The co-
herence squared and phase functions of the original series are shown
in the lower panels by solid and dashed liﬂes for the A and C compo-

nents, respectively. The values for the residual series are shown by

light solid lines and dots for the A and C components, respectively.
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The autospectra of complex-valued horizontal velocity
series and their coherence squared and phase functions
for DB10, 20 meters versus DB5, 20 meters. (Wj and
W2 are the complex-valued horizontal velocities at a
depth of 20 meters for DB10 and DB5, respectively.
A and C are the anticlockwise and clockwise component
spectra, respectively.)
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Figure 35c. The autospectra of complex-valued horizontal velocity
series and their coherence squared and phase functions
for DB5, 20 meters versus DB5, 60 meters. (Wj and
W, are the complex-valued horizontal velocities at DB5
for 20 meters and 60 meters, respectively. A and C
are the anticlockwise and clockwise component spectra,
respectively.)
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From Appendix III, yz is automatically maximized in this type of

analysis.

The principal properties of the autospectra are summarized:

i)

ii)

iii)

iv)

The A and C component spectra were similar in shape and
value except thé.t the C component generally predominated in
the band fI < f< 4 cpd.

The A component spectra generally had a diurnal but no in-
ertial peak, while the opposite situation generally prevailed
for the C component spectra.

The semidiurnal frequency had an energy peak in both the

A and C component spectra, with the latter predominating.
The C component of the residual series was only slightly
less than that of the original series at DB15, 60 meters,
which was in contrast to the A component. This result is
consistent with finding the M2 motion rotating anticlock-
wise at this site from tidal analysis in Section C.

Energy peaks corresponding to tidal harmonics abounded.

The separétion into A and C components g\ives a sharper

definition of the spectral peaks than observed in Figure 34.

The coherence squared and phase functions for the pairs of ser-

ies are discussed below:

i)

2
Y was generally significant for both the A and C components

at the low frequency limit, except for the A component at
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iii)

iv)

vi)
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DB10, 20 meters versus DB5, 20 meters.
‘yz was significant at f =1 cpd for the A component; it
was only significant for the C component at DB5, 20 meters
versus 60 meters.

2
Yy was not significant at f = f  except for the C compo-

I
nent between DB10, 20 meters and DB5, 20 meters. Thus,
the inertial motion was coherent over a horizontal separa-
tion of 10 kilometers, though it was incoherent over a verti-
cal separation of 40 meters and a horizontal separation of
20 kilometers.
yz was significant at f = 2 cpd for both components, ex-
cept for the C component between DBI15, 60 meters and DB5,
60 meters and between DB10, 20-meters and DB5, 20 meters.
For >4 cpd, there was little significance to yz for
DB15, 60 meters versus DBS5, 60 meters, while there were
numerous significant peaks, primarily at tidal harmonics,
for the other pairs.
For DB15, 60 meters versus DB5, 60 meters, the velocity
series were about 120° out-of-phase at low frequencies. The
C component was about 200° out-of-phase at f = 2 cpd. The
overall pattern of 6 vs f ~was consistent with the theoreti-

4 2

cal 06 vs f template of Figure 32a and NZ: 1x10 sec .

The slope of 6 vs f indicated onshore motion in the
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frequency bands 2 to 3 cpd, 4 to 6 cpd, and 7 to 9 cpd.

vii) For DB10, 20 meters versus DB5, 20 meters, the velocity
series were in-phase at low frequencies. The C component
was out-of-phase at f = 2 cpd. 0 sustained complex vari-
ations at higher frequencies. The overall pattern of 0 vs
f was consistent with the theoretical 6 vs f template of
Figure 32b and N2 =3 x 10—4sec_2. The slope of 0 vs
f indicated onshore motion in the frequency bands 2 to
3 cpd, 4 to 5 cpd, and 6 to 8 cpd.

viii) For DB5, 20 meters versus DB5, 60 meterjs, the velocity
series were in-phase at low frequencies. For f > fI, the
C component was essentially 180° out-of-phase. The A
component was roughly 180° out-of-phase for f >4 cpd.

G. Spectra of Complex-Valued Horizontal Velocity and
Temperature and Their Correlation at a Single Point

The spectral quantities for the complex-valued velocity and the
temperature at DB5, 20 meters are presented in Figure 36. The
complex-valued velocity autospecti'a have already been discussed in
Section F. Similar to the preceding figures, the values for the origi-
nal series are given by heavy lines and those for the residual series
by light solid lines and dots. The temperature autospectrum has been

computed for a record length about two-thirds of that used for the
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calculations in Section D. From the autospectra, it is observed that:

i) There were spectral peaks near the low frequency limit,

2 cpd, and 4 cpd in all of the spectra.

ii) There was a diurnal peak at 1 cpd in the A component spec-
trum but not in the C component spectrum or the tempera-
ture spectrum.

The coherence squared and phase functions are discussed below:

i) Except for the A component spectrum of the residual at
f=1 and 2 cpd, yz was statistically insignificant in the
band 0< f< 4 cpd, where most of the energy occurred.

ii) For f{> 4 cpd, yz had significant peaks which were gen-
erally associated with tidal harmonics.

iii) The peak in yz for 4 cpd 1is the peak of greatest inter-

est; for the residual series, it was significant in both the A

and the C components.
It is difficult to interpret these results. The difficulty may relate to
the fact that temperature oscillations are primarily manifestations of
vertical motiobns while velocity oscillations occur in the horizontal
plane. At the low frequencies, the hodographs of inertial-internal
waves are essentially confiqed to the horizontal plane. At the high
frequencies,v the hodographs have a significant vertical component.
The ratio of the vertical to the horizontal velocity component is given

by the slope of a characteristic:
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2 2
A
dx’ =" 2 (2 '
n B'
dz ) -2
The absolute value for —(—1-;{-) , increases from about 0.7 x 10  to

n
about 1.4 x 10_2 as the frequency increases from 2 to 4 cpd. Thus,the

2 . .
pattern for vy as the frequency increases may be associated with
the shift from the predominance of the Coriolis restoring force to
that of the buoyancy restoring force.

H. The Spectra of Horizontal Velocity Differences and
Their Correlation

Barotropic motions are uniform in the vertical, hence the baro-
tropic component has been removed from time series sampled at dif-
ferent depths on a common vertical by subtraction. Analogously, the
barotropic component could be extracted by averaging numerous ser-
ies sampled at points distributed uniformly from the surface to the
bottom on’ a common vertical. The barotropic component has been
removed from records sampled at the same depth and separated hori-
zontally by a small fraction of a barotropic wavelength but by a large
fraction of a baroclinic wavelength. Since the horizontal phase speed
of baroclinic motions is at least an order of magnitude less than that
of barotropic motions, the barotropic component has been removed
by subtraction. Analogously, the barotropic component could be ex-

tracted by averaging series sampled at numerous points distributed
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uniformly over at least one baroclinic wavelength. The difference
series are considered the baroclinic series.

Because only a limited number of sensors were employed, the baro-
tropic component could not be extracted, but three baroclinic series
were formed. The effectiveness of the effort to remove the barotropic
component can be judged by applying several criteria to the results:

i) In general, the spectra should be consistent with the-

oretical inertial-internal wave passband.

ii) The diurnal tide should be essentially barotropic, thus there
should be little evidence for diurnal motion in the spectra of
the difference series.

iii) The semidiurnal tide should have an appreciable baroclinic
component, hence there should be a significant spectral peak
for semidiurnal motion in the difference series.

One vertical and two horizontal difference series were formed
from the horizontal velocity series; their spectra are discussed be-
low. The residual and the semi-principal axis series are analyzed
only for the case shown in Figure 37a. The spectral quantities of the
vertical difference series for DB5, 20 meters minus DB5, 60 meters
are shown in Figure 37a. The autospectra had the following proper-
ties.

i) The spectra had the same form, with that of Au generally

greater than that of Av but by less than a factor of three.
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At low frequencies, the spectral levels rose and peaked.
There was a decided trough in the spectra at the diurnal
frequency, as predicted.

There was a rise in the spectra at the inertial, or slightly
lower, frequency, which is consistent with inertial-internal
wave theory for the frontal interaction, as predicted.
There was a maximum in both spectra at the semidiurnal
frequency, as predicted.

There was a sharp decrease in the level of both spectra for
2 <f<3cpd.

At frequencies greater than 3 cpd, the spectral levels con-
tinued to decrease but at a lesser rate.

The results for the residual series indicate a reduction in

the tidal peaks.

The coherence squared and phase functions are discussed below:

i)

ii)

In the low frequency limit, - yz had marginal statistical sig-
nificance, but it was significant at f = fI, or slightly lower.
At the low frequency limit, © corresponded to anticlockwise
rotation of the shear vector; it smoothly shifted to indicate
clockwise rotationofthe shear vector at f = fI, or slightly lower.
In the frequency band of fI _<_f__<_ 2 cpd, yz remained sig-
nificant, while © indicated that the shear vector rotated

. 2
clockwise. y  had its maximum at f = 2 cpd.
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iii) In the frequency band 2 cpd<{ < 6 cpd, yz had peaks at
3, 4, 5 and 6 cpd, while the phase slowly varied within £40°
of -90°.

iv) At frequencies greater than 6 cpd, \(2 continued to fluctu-
ate and 6 departed from —900, indicating the reduced
effect of the Coriolis force on the shear vector at high fre-
quencies,

The spectral quantitites of the horizontal difference series for
DB5, 20 meters minus DB10, 20 meters are shown in Figure 37b.
The principal properties of the autospectra are remarked:
i) The spectra were quite similar, with that of A v generally
greater than that of A u but by less than a factor of two.

ii) The Au and 24 v spectra were similar to those of the

preceding figure and a detailed discussion is not necessary.
yz and © had the following properties:
i) yz and © were similar to those of the preceding figure in

the frequency band 0< {f< f except for the decrease to

yz =0 near f =1 cpd, whichis consistent with predictions.

I’

ii) In the band fIf_ £< 12 cpd, yz and 6 were similar to

8The only other spectra of vertical difference series known to
the author are those computed by Dr. G. Seidler (1968). His calcula-
tions were based on observations in the deep ocean separated by only
3 meters, yet his spectra exhibit the same qualitative features that
these do.
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those of the preceding figure, except that a well-formed
peak in yz did not occur at f = 5 cpd.

The spectral quantities of the horizontal difference series for
DB5, 60 meters minus DB15, 60 meters are shown in Figure 37c.
From the autospectra, the following results are remarked:

i) Again, the Au and Av autospectra were quite similar;
the spectrum of Av was greater than that of Au by less
than a factor of three for 0<3<f<4cpd. At higher frequen-
cies, Au and Av were essentially equal.

ii) Au and Av were so similar to the two preceding cases
that only the exceptions are noted.

iii) The values for both Au and Av at the low frequency
limit appreciably exceeded those at the inertial and semidi-
urnal frequencies.

iv) The semidiurnal peak dominated the distinct inertial peak
for both Au and Awv. |

The following remarks derive from the plots of yz and ©:

i) yz and © were similar to the two preceding cases, ex-
cept there were no peaks in yz for f = 6 and 8 cpd; how-
ever, there were peaks at f = 7 and 9 cpd.

ii) At the low frequency limit, yz was significant and ©
was zero, thus Au and Av were correlated and in-

phase at low frequencies.
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iii) The peak at the inertial frequency was more significant than
the semidiurnal and quarterdiurnal peaks.

iv) In the frequency band fl <f< 6cpd, © tendedto be -90°.

The horizontal difference spectrum for the temperature series
at a depth of 20 meters at DB5 and DB15 has been computed but it is
not discussed for the following reasons:

i) The temperature autospectrum at DB15 dominated that at DB5
by uptoanorder of magnitude, hence their difference series
was essentially the same as that for the series at DB15, and

ii) The significant difference series to examine is that of verti-

cal displacement, which was not computed since the vertical
temperature gradient is not sufficiently well-known at either
site to justify converting the temperature series to vertical
displacement series.

From the spectra of the vertical difference series in Figure
37a, deductions about the spectral Richardson Number, RIS, can be
made. RIS(f) had its minimum value at the semidiurnal frequency.
For the shear amplitude at f = 2 cpd, | i—}zi = 1,5x 10"3sec-=1 and
|i—'\zl = 1,2 x 10_3sec“1. With E= 2 x 10_4, then RISU(2)= 90

and RISV{(2)= 133, There was appreciable shear in the band

1.3 < £< 2.2 cpd. Integrating over this band,

2% % 3,0x 10" %sec™’ and |2Y| = 2.5x 10 sec
AZ AZ
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then RISU= 20 and RISV = 30 represent minimum Richard Num-
bers when all the motions in the band are in-phase. From Section

X.C., for the mean flow

u - - v - -1
2% _1.2x 10 “sec ! and Y= -4.6x10 3sec ,
Az AZ
thus
RIU= 150 and RIV = 8,
When the conditions for the band-average of i—‘z apply, and consid-
ering the shear of the mean flow:
RIU . = 175;
min
when they apply for the band-average of %-EZ’-, and again considering
the mean shear:
RIV . = 4,
min

Thus, on the average, the low frequency inertial-internal shear
waves were insufficient to produce critically low dynamic stability.
Shear was also contributed by the low frequency motions with a time
scale of several days; it was of the same order of magnitude as that in
the band 1.5< f< 2.2 cpd, and, on the average, it was not sufficient
alone or in combination with the mean and low frequency inertial-

internal wave shears to produce critically low dynamic stability.
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Thus, if the regime becomes dynamically unstable, it must be
on an instantanecus basis rather than in an average sense. The maxi-
mum magnitude of the shear vector of the 10-minute samples was
1.4 x 10'2sec'1. Then, the minimum Ri was 1, which is the
critical value. Values very close to the minimum value occurred
frequently with a semidiurnal periodicity. The large values of the
shear vector were also associated with short period oscillations
superimposed on the tidal oscillation. The estimate of minimum Ri
is limited by the lack of knowledge of the instantaneous value for E,
as well as by the sampling rate and the sensor spacing.

In summary, the spectra were basically consistent with the the-
ory for inertial-internal waves, thus they supported hypothesis i) of
Section IX. B. There is some evidence, though not conclusive, for
the lowering of the low frequency end of the passband due to the ef-
fects of the frontal interaction. Increased spectral resolution is nec-
essary to settle this point. The use of residual series, and their
semi-principal axis transformations, generally improved the signifi-
cance of the spectrum calculations and their interpretation. The be-
havior of the A component spectra, particularly at the diurnal fre-
quency, was generally consistent with the model for barotropic mo-
tions along a coastal boundary in Appendix I. The spectra of complex-
valued horizontal velocity series are useful quantities and indicate a

general onshore propagation of waves within the inertial-internal wave
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passband, though some of the significant tidal harmonics appear to
have been propagating offshore, which is plausible if they were gen-
erated inshore. Thu:i;‘;, hypotheses iii) and vi) of Section IX. B. have
been substantiated. In particular, the vertical difference series of
horizontal velocity at DB5 was an effective measure of the baroclinic
motion. It can be speculated that, if additional vertical difference
series had been calculable from observations, that the technique of
spectrum analysis of complex-valued series would have been effective
for the analysis of inertial-internal waves. The possible analyses of
complex-valued horizontal velocity series were complicated by the
presence of the barotropic tides. The values of dynamic stability
computed, the general presence of tidal harmonics, and the complica-
tions in the coherence squared and phase functions at the semidiurnal
frequency were all consistent with hypothesis viii) in Section IX. B.
about the stability of the internal tide. The tidal and spectrum anal-
yses indicated the coexistence of the semidiurnal internal tide and
inertial motions in all the series, consistent with hypothesis ix) of
Section IX. B. More complete observational arrays are necessary to
gain insight into the generation and interaction of internal tides and

inertial motions.
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XII. CONCLUSIONS AND RECOMMENDATIONS

It is premature to expect a detailed, quantitative agreement be-
tween observations of inertial-internal waves and the linear theory
for inertial-internal waves in the frontal zone of a coastal upwelling
region. The principal difficulties are fundamental questions regard-
ing the phase stability, amplitude stability, the spatial coherence,
and the linearity of the waves, which can only be answered by further
observation. There are other questions involving the effects of the
low frequency variations of the frontal regime and the effects of the
mean cross-stream flow on inertial-internal waves. Nevertheless,
the existent observations and theory permit making several deduc-
tions.

The observations have been used to infer the key features of the
general, three-dimensional flow pattern in the frontal zone of the
coastal upwelling region off Oregon. The general flow pattern in the
coas‘tal region during upwelling season is summarized:

For the alongshore flow,
i) The flow is equatorward in the upper 40 meters of the water
column.
ii) The flow is poleward beneath a depth of about 40 meters; it
tends to be concentrated beneath the inclined, permanent

frontal layer as a pycnoclinic jet.
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For the cross-stream flow,

iii)

iv)

v)

vi)

vii)

viii)

The flow is offshore in the surface Ekman layer, which is
about 10 to 20 meters thick.

Upwelled water sinks beneath the seasonal pycnocline and
flows offshore in a layer at a depth of about 10 to 30 meters.
The flow is onshore in the upper portion of the permanent
pycnocline in a layer at a depth of about 20 to 60 meters.

The newly formed water mass, which is marked by a tem-
perature inversion, sinks beneath the inclined, permanent
frontal layer and flows offshore in a layer at a depth of about
40 to 80 meters.

Beneath the flow described in vi) and above the bottom Ekman
layer, the flow is onshore.

Within 10 to 20 meters of the bottom, the flow is also onshore

in the bottom Ekman layer.

Since this picaresque flow pattern is based on both deductive and in-

ductive reasoning, and since time-dependent effects may be substan-

tial, it is necessary to make time series observations with increased

vertical and horizontal detail to further verify and define the pattern.

The observations, and the inferences made from them, indicate that -

a quite general study of frontal flows is feasible with existent tech-

niques and in the frontal zone of the coastal upwelling region off Ore-

gon.
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In August-September 1966, the mean horizontal flow field had
appreciable vertical shear, yet it was dynamically stable on the aver-
age, though there was evidence for significant mixing, e.g., the for-
mation and sustenance of the temperature inversion. Appreciable
vertical shears were produced by low frequency inertial-internal
waves in the inclined frontal layer, especially by the semidiurnal
internal tide and by motions with a temporal scale of several days.
On the average, these motions were not sufficient to produce critically
low dynamic stability over a vertical scale of 40 meters. The time
series of ten-minute averages of vertical shear gave values for the
dynamic stability which approached critical values over a vertical
scale of 40 meters on a large fraction of the semidiurnal tidal cycles.
At the DB25 anchor station over the continental slope, and on a verti-
cal scale of five meters, the dynamic stability reached critical values
on a semidiurnal cycle in the center of the temperature inversion,
which was at the base of the inclined frontal layer. It is suggested,
if observations are made at a more rapid sampling rate (about once
per minute or faster) and over a smaller vertical scale (about five
meters or less), that direct evidence will be found for turbulent mix-
ing at the base of the inclined frontal layer and that it will be associ-
ated with the semidiurnal internal tide, inertial oscillations, and in-
ternal celluar waves.

The tidal and spectrum analyses of the horizontal velocity and
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temperature time series indicate:

i)

ii)

iii)

iv)

vi)

The several-day, the semidiurnal, and the inertial motions
predominated in the spectra.

The semidiurnal motion was less coherent than expected over
spatial separations less than a horizontal wavelength, while
the inertial motion was more temporally coherent than ex-
pected.

The semidiurnal internal tide propagated onshore, and the
array of sensors spanned about a half wavelength. Several
bands of the spectra indicated onshore propagation, while
others indicated offshore propagation.

The semidiurnal internal tide was not phase stable, either due to
unstéady generation and dissipation, ‘to modification by low fre-.
quency modulations of the frontal zone, or to a complex ver-
tical modal structure.

The tidal harmonics were richly excited, which is indicative
of nonlinearities and interactions. The quarterdiurnal mo-
tion was especially marked and suprisingly coherent. The
summation frequency for the inertial frequency and the semi-
diurnal tide had an energy peak in some of the spectra and
was temporally coherent, as indicated by tidal analysis.

The inertial motionhad anamplitude of 2to 4 cm/sec at the sea-

ward edge of the continental shelf, where it was temporally
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coherent. This may be evidence for a topographically
trapped wave motion at a frequency slightly less than the
inertial frequency. The inertial motion also had a baroclinic

component. 10 kilometers offshore.

The time series analyses suggest the following data analysis

recommendations:

i)

ii)

iii)

Since a significant collection of time series for the coastal
region has been analyzed, or is in the process of analysis,
it is timely to consider making ensemble averages of spec-
tral quantities and determining confidence limits for the
spectral quantities on an empirical basis.

Optimum methods for the analysis of the coherent and inco-
herent components of the spectra are in demand. Further
exploration for significant, coherent waves in the coastal
regime at frequencies other than the ordinary tidal frequen-
cies may be profitable. For instance, least squares tidal
analyses of time series observed in the coastal region should
routinely include the inertial frequency in the set of fre-
quencies fit to each time series.

Statistical experiments are necessary for the improvement
of the estimates of coherency, cf. Tick (1967) and Jenkins
and Watts (1968). The technique of alignment (Jenkins and

Watts, 1968) should be attem'pted in the cross spectrum
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analyses; i. e., the analyses should be tried with the Fourier
transform of the covariance offset an amount equal to the lag
value of the maximum covariance plus the ratio of the sensor
separation to the inertial-internal wave phase speed. Exper-
iments are also necessary to determine the practical limits
and benefits of narrow-band spectrum analysis.

iv) Consideration should be given to routinely presenting all of
the one-dimensional spectral quantities in the coordinate
system of the arravy.

v) Least squares tidal analyses should be done on intermediate-
passed series to attempt to improve the reliability of the re-
sults by suppressing the effects of‘ low frequency, large am-
plitude oscillations, especially in the horizontal velocity
series.

On the basis of the observations, several field observations are
suggested. Though the field observations are not mutually exclusive,
practical problems of logistics may make them so, and thus tbey are
listed separately: \.

i) A study of long waves (at tidal, inertial, and lower frequen-
cies) trapped, scattered, and generated over the continental
slope could be made with five stations at 20-kilometer spac-
ings from 20 to 100 kilometers offshore, each equipped

with recording current meters at 10-meter or 20-meter
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vertical increments in the upper 100 meters and at 25-meter
or 50-meter vertical increments below a depth of 100 meters.
Each station should also be equipped with three recording
thermographs at 5-meter increments (in order to define the
temperature gradients) in the upper 15 to 25 meters of the
water column. Since there is evidence for motions with per-
iods of two days to two weeks, the record durations should
be 100 to 200 days long. Bottom mounted pressure gauges at
each site would assist in mapping the waveforms of the baro-
tropic motions. Time series of atmospheric pressure and
of the winds would be necessary for the interpretation of the
results.

A study of low frequency inertial-internal waveforms over
the continental slope and shelf could be made with two paral-
lel arrays separated by 10 to 40 kilometers in the alongshore
direction, each with five stations at 18, 20, 24, 30, and 40
kilometers offshore, and each equipped with recording cur-
rent meters and salinographs at 5-meter or 10-meter verti-
cal increments in the upper 100 meters, and 10-meter or
20-meter vertical increments below. Within 20 meters of
the bottom, a sensor spacing of 5 meters would be useful for
detection of the "bounded beam" phenomenon predicted by

Sandstrom (1966). Record durations of 25 to 50 days should
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be adequate.
A detailed study throughout the spectral band of inertial-
internal waves in the coastal upwelling frontal zone and of the
fine structure of the mean flow could be made with five sta-
tions at 6, 8, 11, 15, and 20 kilometers offshore, each with
recording current meters and thermographs or salinographs
at 5-meter or 10-meter vertical increments. Of particular
interest is the study of the mean flow and of wave motions in
the bottom and surface Ekman layers, as well as in the in-
terior frontal layers, especially near the surface front. An
increase in sampling rate to once per minute is necessary
for defining the Vaisdla-Brunt oscillations. Record dura-
tions of 15 to 30 days should be adequate.
In conjunction with i) to iii), lunar-day anchor stations should
be conducted alongside sensor sites. The measurement
techniques employed on anchor stations should be extended to
include STD's and pairs of profiling current meters. Of par-
ticular interest is the use of simultaneous anchor stations to
study the temperature inversion and the dynamic stability in
the frontal layer both over the continental slope and in the
region of the most intense frontal slopes over the continental
shelf, i.e., near the surface front 5 to 15 kilometers off-

shore. Simultaneous anchor stations taken 10 to 40
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kilometers apart in the alongshore direction over the con-
tinental shelf and slope could answer, at least roughly, the
questions aboutlong-crestedness and directionality of the inter-
nal tides. More hydrographic casts to near the bottom over
the continental slope and shelf are necessary to compute
E(x,z) 1in detail and to determine for which frequencies the

bottom slopes are critical.

The above list suggests an abundance of sensors for three rea-

sons:

i)

ii)

iii)

To obtain a redundancy in sensors to guard against malfunc-
tions and loss.

To obtain spatial detail so the the modal structure and the
coherence squared and phase of the waves can be studied
carefully. With good vertical detail, the barotropic and
baroclinic components can be accurately separated.

With sufficient vertical detail, observations of horizontal
velocity and vertical displacement would enable the calcula-

tion of horizontal energy flux through a vertical column.

| Also, Cauchy data as a function of frequency could be empir-

ically determined at one site. Then, as a function of fre-
quency, solutions to the mixed initial-boundary value prob-
lem could be calculated and compared to the observations at

the other sensor sites.
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The observations could be profitably attempted throughout the
year because the seasonal effects are likely to be marked; the obser-
vations are also worth repeating in subsequent years. The recom-
mendations listed do not exhaust the possibilities of observational
objectives, of sensor types, or of observational design; the recom-
mendations are restricted to topics discussed and to the instrumenta-
tion, with the exception of the recording salinographs, employed in
this dissertation. For instance, the recommendations do not include
the objective of linking the long-period variations in the flow regime
to the atmospheric-forcing functions. They also do not include the
observational technique of deploying Lagrangian current meters,

e. g., parachute drogues or free-fall instruments, to map the off-
shore distribution of long-period horizontal displacements in the’
frontal zone and over the continental slope.

The linear theory for the interaction of an inertial-internal
wave with a frontal zone has been derived, explored analytically for
cases with variable coefficients, and solved for cases with constant
coefficients and for a continental shelf with a rigid surface boundary
and with parallel and sloping bottom boundaries. The technique of
analytical extension of the Cauchy data is an effective means for the

construction of solutions for cases of subcritical, critical, and

- supercriti ottom slopes, with either a rigid or a free sea sur-

face boundary condition.
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The principal properties of the inertial-internal wave solutions

in the frontal zone of a coastal upwelling region are:

i) The frontal interaction gives the characteristics an asym-

ii)

iii)

metry, which induces alternating zones of increased and de-
creased shear. The asymmetry also tilts the lines of con-
stant phase within an effective wavelength for a progressive
wave. The effective wavelength differs from the wavelength
without the frontal interaction.

A sloping bottom boundary, with subcritical slope, pro-
duces zones of ever-increasing shear in the waves upon suc-
cessive feflections of the waves from the bottom. If the iso-
pycnals are inclined in the same sense as the bottom bound-
ary, the value of the critical bottom slope is greater than if
s = 0. If they are inclined in the opposite sense, the value
of the critical bottom slope is less than if s = 0. Thus,
the upwarped isopycnals over the continental shelf during:
coastal upwelling season exert a stabilizing influence by
tending to make the bottom slope subcritical. Conversely,
when the isopycnals close to the bottom become downwarped,
they tend to make the bottom slope supercritical.

From i) and ii), temporal variations in the state of coastal
upwelling alter the positions of the lines of constant phase,

thus the phase stability of the waves is reduced. The

.
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temporal variations also alter the criticality of the bottom
slope, and, thus, probably the wave generation process.

An inclined frontal layer affects the inertial-internal waves.
The frontal layer serves as a waveguide. If the frontal layer
is inclined, it can either open the inertial-internal wave
passband to frequencies less than the inertial frequency or
close the passband to frequencies greater than the inertial
frequency, depending upon the sign of (f;X-szNZ). The in-
clined frontal layer also opens the passband to frequencies
greater than the Vaisala-Brunt frequency. Somewhat anal-
ogous to the concept of critical bottom slope, the concept of

critical frontal slope, s is introduced:

where sC2 >0 when (rz > N2 and when (rz < f(f+;}'§).

2 2 2 2
For s>sc, and for N <o <N (l+s') or

(f(f+3x)-s2N2') < °

< f(f+ ;x), both the upgoing and downgo-
ing characteristics are oriented either downwards or up-
wards, respectively. Waves for which s > s, are blocked
by the inclined frontal layer, i.e., back reflection occurs

from the sea surface or the sea bottom in the case of low

frequency or high frequency waves, respectively.
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v) The field of characteristics for the continental shelf off Depoe
Bay, Oregon in August-September 1966 indicates that the
semidiurnal internal tide had an effective wavelength of about
25 kilometers, measured onshore from the seaward edge of
the continental shelf. It also indicates that the array of sen-
sors spanned about a half wavelength of the semidiurnal in-
ternal tide and that very little bottom and frontal amplifica-
tion of the wave occurred over the half wavelength, except
near the surface front about 10 to 15 kilometers offshore.
Both deductions are consistent with the time series analyses
based on the observed time series. If observations had been
made between 2and 10kilometers offshore, appreciable ampli-
fication ofthe wave would habe been observed, especiallynear
the bottom and near the surface in the inclined frontal layer.

In a coastal upwelling region, an inertial-internal wave is am-
plified by bottom reflection and tends to be concentrated in the in-
clined frontal layer, thus the lowest values of dynamic stability are
anticipated in the steepest part of the frontal layer over the continen-
tal shelf, i.e., near the surface front. Therefore, when coastal up-
welling intensifies, which causes s and |;xl to become greater,
the conditions for low dynamic stability of the frontal layer caused by
an internal tide are enhanced.

In the general case of variable coefficients, a sloping bottom,
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a free surface, and the frontal interaction, the following general anal-
yses have been made for inertial-internal waves over a continental shelf:

i) The action integral has been found by which the governing
equation can be derived from the calculus of variations.

This analysis has led to the identification of the horizontal
and vertical components of the kinetic and potential energies
and to a spatially-averaged equipartition principle.

ii) The energy integral has been derived. The horizontal
energy flux is expressed in terms of the vertical integral of
the time-averaged product of the two linearly independent
elements of the Cauchy data. If the horizontal energy flux
is zero, energy is conserved and a standing wave occurs
over the shelf; if it is non-zero, energy is not conserved and
a progressive wave occurs, whose direction of propagation
is given by the sign of the horizontal energy flux. This anal-
ysis has led to the deductionthat observations must be made
which are equivalent to determining the vertical and tempor-
al structure of the Cauchy data at the seaward edge of the
shelf. Once the Cauchy data are determined, the solution
theory can be used to construct the solution over the shelf
with the temporal phase taken into account.

iii) The spatial conservation law has been derived; it determines

the growth of the solution inshore of the initial line. The
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interrelation between the Cauchy data, the bottom slope, the
potential energy of the free surface, and the inhomogeneities
of the mean velocity and density fields enter this analysis.
The criticality of the bottom slope determines if the solution
decays or grows spatially shoreward of the initial line. The
sea surface boundary condition can play a crucial role in de-
termining whether or not the energy of the wave becomes un-
bounded in the vertex of the coastal wedge for the case of
subcritical bottom slopes; i.e., ‘al'lowing the sea surface to
be free and to have potential energy can remove the singu-
larity in the velocity fields at the vertex.

iv) The analysis of barcclinic instability has been carried out
from both the integral and the differential viewpoints. Not
surprisingly, the conditions for instability coincide with
those for frontal blecking.

The theoretical and observational studies suggest the following

recommendations for future theoretical work:

i) An analytical assault on the inertial-internal wave generation
problem in a coastal region is neces sary. The problem
should be considered in its full three-dimensional form and
for a continuous density structure and a continuous bottom
topography. Cases with and without the frontal interaction

should be examined.
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iii)

iv)

vi)
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The free surface boundary condition's capacity for removing
the singularity in the velocity field at the vertex of a coastal
wedge should be exploited for constructing solutions.
The mean cross-stream flow should be introduced into the
analysis of the frontal interaction, especially in shallow
water where the advective acceleration terms may become
significant.
The frontal interaction problem should be considered for a
slowly-varying mean flow. The analysis may be best con-
ducted in wave number-frequency space, i.e., with the use
of the techniques of geometrical optics and ray tracing.
The interaction of barotropic and barcclinic motions at the in-
ertial and tidal frequencies should be examined.
More observables should be developed, and the hypotheses

used for the design of field observations should be refined.
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APPENDIX I

Long Wave Propagation Along a Meridional Boundary

The long wave of primary interest in this study is the semidi-
urnal tide, yet there are energy peaks in the spectra of Chapter XI
at the diurnal, inertial, quarterdiurnal, and other frequencies.
Though internal tides are the chief concern of this study, the surface
tides have contributed to the spectra of Chapter XI. Also, the sur-
face tides are the ultimate source of the internal tides. For these
reasons, the classes of barotropic and baroclinic motion along a
coastal boundary oriented parallel to a meridian of longtidue are ex-
amined. The objectives are primarily qualitative.

The alongshore wavenumber, £, is not neglécted in the fol-
lowing. The topics to be examined are:

i) For the interpretation of the spectra in Chapter XI, the per-

- missible classes of barotropic (in Section A) and baroclinic
(in Section B) waves along a meridional boundary with vari-
able depth.

ii) For the exploration of the theory for the three-dimensional
problem, the matching of solutions to the inertial-internal
wave problem over the continental shelf and slope to those
for deep water.

iii) Also for the interpretation of the spectra in Chapter XI, the
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spectral and hodograph observables for a simple coastal
model. (in Sections C and D).

The permissible motions are those basic solutions to the lin-
earized hydrodynamical equations which have no mass flux across the
coastal boundary and for which the sea surface and the normal com-
ponent of the mass flux are continuous at each variation in bottom
topography. The BC's place constraints on the solutions which lead
to eigenvalue problems and dispersion relations. The general prob-
lem types are those of partial reflection of a wave at a vertical bar-
rier and of wave trapping by the barrier. The coastline, depth vari-
ations, and pycnoclines all have waveguide effects. The first two
eff‘ects are analyzed to gain some insight into topographically leaky
and trapped modes; the waveguide effects of density variations have
been discussed in the text.

Waves with a functional form for the surface displacement, &,
of ¢ =F(x,2z) cos (ot-fy) are assumed. An infinitely long coastline

parallel to the y-axis is also assumed, with a monotonic depth,

Zg = -h(x), variation in the x-direction only, such that hx < 0.

d
B = af; and fh are neglected, and fv is represented by the sym-
bol f,

A. Barotropic Cases

In a barotropic, inviscid, rotating system the linearized



396

equations of motion are:
EOM's

(1) 0=-m -g thus m(z) = g(&-2),

i. e., hydrostatic equilibrium is assumed,

(2) ut - fv = -1Tx = "ggx’

and

(3 v, +fu=.m = _-gt .
) t y & y

With h equal to the time-averaged depth, the linearized, vertically

integrated EOC is:

(4) EOC: (hu), + (bv) _+8, =0, or V- (h0)=-L,

where u and v are the depth-averaged horizontal velocity com-
ponents and U = (u, v). Since F(x,z)=F(x) in barotropic cases,
and using (2) and (3), the equation for the horizontal velocity com-

ponents are

(5) u= —Zg—z[-anHzF] sin (ot-2y)
(0 -f")

and

(6) v = %[UﬂF-fo] cos (ot-Ly).
(o -f)

Substituting (5) and (6) into (4), the GE is obtained:
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GE: (hF ) + Q)F = 0,
x'x
where
2 .2
o -f ff 2
Q(x) = [ . -—h -4 h].

The GE is a Sturm-Liouville equation. With the BC's, i.e., [{]|< o
X —» - 00

and hu, or h(ff{-cl ), —0 and the fact that h— 0, the

* x—0 x—0
problem constitutes a singular Sturm-Liouville system. The solu-
tions depend upon the sign of Q(x); their x-dependence is

sinusoidal-like where Q > 0 and exponential-like where Q< 0.

Forming the energy equation from the primitive equations,

2 2

p A5 )= -p elut_+ve ]=-pg(hl) - vyt

and then integrating over a horizontal area, S:

2 2
u +tv : — —_ — .
b Lh( ) dxdy = -pog[SB(hU ) - ds - S;r, v, - (B0)dxdyl,

if hﬁi’, is continuous, and where B is the bounding curve of S

and ds is the incremental arc length along B. With use of the
EOC:
u2+v‘2 1;2
p SL[ + 821 dxdy =-p gf (b0 - d,
0 Jg 2 2 't °Vp

The total energy E is E = KE + PE, where
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2 2 2
u +v 4
—2 .

and PE =p g

KE:po 2 o

E is conserved if the normal component of the energy flux, pohﬁt; -1,
vanishes on boundariesand if pohﬁ?; ."  is continuous which is as-
sured if hU and { are separately continuous.

For uniform depth, and with the assumption of SHM, i.e.,

ik
F(x) e x, the CR is

2 2
gh[k%+0%] - (¢°£%) = 0
or,
2 o2 £ )2
= -

2
If o> £, plane waves occur for k > 0; they are called Poincare

waves and £ >0 or {< 0. The high cut-off wave number, ﬁco’

is obtained when k = 0, S0

2 2
' ::!:(U -f 1/2.

co gh )

Thus, ﬁco decreases to zeroas o¢—f andas h — . Expo_
, .

nentially damped waves occur for [ > ﬁco; they are called Kelvin

waves, for which k2< 0 and (>0 only. For o and ¢

fixed, k increases as h decreases; thus, a wave is refracted as

it propagates shoreward, i.e., the orientation of wavefronts is



399
aligned parallel to the coastline as shallow water is approached.

General Topography. As a consequence of requiring hu and

¢, or, equivalently, h[-o-Ferle] and F, to be continuous func-
tions of x, hv 1is discontinuous where h is discontinuous.
Therefore, a depth discontinuity produces a vortex sheet, and a vari-
ation in depth produces horizontal shears in the flow component tan-
gential to the depth variation.

Reid (1958) analyzed the GE for gently-sloping bottoms of
semi-infinite extent, i.e., in the case of h(x) = mx, - <x<0,
where m > 0 is the bottom slope. When o¢>f£f, £ hasa
positive and a negative roots. When o< f, £ has only positive
roots. When o =1, a singular case occurs which is discussed be-
low. For o >f, Reid termed the permissible north- and south-
going modes free edge waves; for o< f, Reid termed the north-
going wave a qﬁasi-geostrophic edge wave. Recently, Robinson
(1964), Mysak (1967, 1968), and Longuet-Higgins (1967, 1968) have
examined the case of o< {f in greater generality; they have consid-
ered the effect of a depth transition of finite width on wave traéping.
Robinson and Mysak have discovered continental shelf waves theo-
retically which are different from the quasi-geostrophic waves; they
are due to a resonance involving the finite shelf width, the Coriolis
force, andt the alongshore wavelength of the atmospheric excitation

function. Mysak (1968) discussed his results, and the results of Reid,
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in a unified fashion. The phase speed, c, of the two types of low-
frequency waves is greatly different: for quasi-geostrophic waves

5
gm/f~ 100 cm/sec, while for continental shelf waves

c =
q
cC = Lf~ 2x 102 cm/sec, For an ordinary Kelvin wave,
1 2
€ = (gh) /2 ~1,7x 104 cm/sec, thus < ® (cqcc)l/ . Mooers and

Smith (1968) have detected continental shelf waves off Oregon; since
the period of continental shelf waves is of the order of several days,
these waves are not in the spectral band of interest to the present
study. Longuet-Higgins' studies (1967, 1968) are general analyses of
double Kelvin waves, which can only propagate northwards along a
topographical barrier in the Northern Hemisphere. He has studied
these waves for an infinite domain, -0 < x< +®, with the geometry

h — h+, h™ <, and with the BC's { - 0, hence they are not
X — £00 |x| — 00
strictly applicable to waves trapped on a coastline. They exhibit
much the same qualitative behavior as that of the other low frequency,
topographically trapped waves mentioned, viz. the inertial frequency
is the upper frequency bound and the zero frequency is the lower fre-
quency bound for the first mode. Of special significance is the fact
that the double Kelvin waves are predicted to produce jet-like cur-
rents over a continental slope.

Sketches of the depth profile and Q(x) off Depoe Bay, Oregon,

are given in Figures 38a and b, respectively. The bottom profile is

based on Coast and Geodetic Survey Chart No. 1308N-22, 1968; it



DEPTH (meters)

DISTANCE OFFSHORE (kilometers)

1000

2000

($4849W) HIJIO

1000

BOTTOM PROFILE
O— —OBOTTOM PROFILE (5-segment model)
0--- 0OBOTTOM PROFILE (2-segment model)
3000(L/ Q; 1 L L 1 )
120 100 80 60

DISTANCE OFFSHORE (kilometers)

Figure 38a.

Depth profile off Depoe Bay, Cregon. -

Qrx) (108 meters™)

O e A
—— Q) ee324,
o o——o Qx) ort,
: : Aa Qx) o=3/4f
o — —5b ¥ Y
! |
' l
o | |
I |
4 Aceiiinn a
ke, A
Q— —
—_—_—— = —
o
A e A
e
[¢] —_——
1 1 | 1 1 1 J
120 100 80 60 40 20 0

Figure 38b.

DISTANCE OFFSHORE (kilometers)

The function Q(x) off Depoe Bay,
Oregon.

10%



402

corresponds to the Depoe Bay hydrographic line, which is oriented
normal to the bottom contours. The upper portion of the figure shows
the bottom profile from the coastline to 60 kilometers offshore, while
the lower portion of the figure shows the bottom profile from 60 to
120 kilometers offshore, which is effectively in deep water. The bot-
tom profile has been approximated by a 5-segment and by a 2-
segment model. The 5-segment model was used in the plot of Q(x).
The 2-segment model was used for the calculation of the dispersion
law for inertial Kelvin waves. A single-step model has also been
used for dispersion calculations for the semidiurnal tide and other
frequencies of interest. The parameters of the models are tabulated
below:

Bottom profile parameters

Distance offshore Depth Slope
(kilometers) (meters) (x 102)

5-Segment Model

0 0 0. 67
30 200 3
40 500 0
60 500 2.5
100 1500 7.5
>120 3000
2-Segment Model
0 0 0. 67
30 200 2
110 1800 0
>110 3000
Single-Step Model
0 200
30
0

> 30 3000
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There are an infinite number of discrete values of £ permissible
for a fixed o and a given h(x). The value of £ chosen,
L = 10-8cm_1, is an order of magnitude estimate for the lowest
mode of the semidiurnal tide, but there is no reason to believe that it
corresponds exactly to a permissible {. Q(x) is plotted for
o=3/4f, £, and 3/2f, where f = 10_4sec_1, to indicate its
form for the diurnal, inertial, and semidiurnal motions, respectively.
Where Q(x)> 0, the region has the nature of a potential well. It
is remarked that
i) Potential wells occur over the continental shelf, the upper
reach of the continental slope, and the lower reach of the
continental slope,
ii) The potential wells have their greatest and least values for
the diurnal and semidiurnal frequencies, respectively, and
iii) The potential wells have their greatest and least values over
the lower reaches of the continental slope and over the con-
tinental shelf, respectively.
On the basis of Q(x), waves at the three frequencies are expected
to be most strongly trapped over the lower reaches of the continental
slope; a secondary wave trap is expected over the upper reaches of

the continental slope.

Inertial Kelvin Waves. The degenerate case, o =1, serves

to introduce Kelvin waves. Take ¢ = AeﬂX cos (ft-£y); substitute



¢t and u =u(x) sin (ft-fy) into (2)to find v:

v = [g%éeﬁeru(x)] cos (ft-£y).

404

Substituting v into the EOC, and dropping the common sin (ft-2y)

factor, then

(hu)_ + hz[%’i Ael®u] - faet® - 0
or
Ix h£2 24x
(hue )X = (f-g—f-—-)Ae .
With the BC hu=0 at x =0, then
2 X
- f 2
hu = Ae (L e20% 1) - 8L g 2% (x)dx].
24 f
0
(must)
Since |hu| < © as x-— -0, then

=00
- 2g£3§ ¥ h(x)dx = 0,
0

which is the dispersion relation. At the coast,

V_ p &h(0)
= = 0.
(hv) o =8 7%
In the deep ocean, (hv)— 0 , by the dispersion relation.

X ™ -

Using

the parameters from the 2-segment model to represent the bottom
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profile off Depoe Bay, Oregon, the dispersion relation yields:

- -1
£ =61x10 9cm .

When the continental shelf and slope are neglected, the dispersion re-
lation for uniform depth,

f

1 3
(gh) /2

{ =

yields { = 5.8 x 10-9cm , hence there is only a 5% increase in
wave number when variable depth is considered in this case. Yet,
the solutions for variable depth have more interesting functional
forms than those for uniform depth, which require u(x) = 0 for all
X, as seen below. The functions wu(x) and v(x) are plotted in
Figure 39. The shear-inducing effect of variable depth is apparent.
u(x) has its greatest values over the continental shelf, while v(x)
has its greatest value at the boundary between the continental slope
and the deep ocean. Over the continental shelf, the wave's hodograph
has an eccentricity of about 0. 5 and rotates anticlockwise. This case
is rather unrealistic since it neglects the beta effect, thus it is only
valid at a single latitude. The model is not consistent with the obser-

vations reported in Chapter XI.

Uniform Depth. The case of uniform depth -admits Kelvin wave

and standing wave solutions, which are the basic building blocks for

the case of stepped topography, which is considered next. The Kelvin
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(must)
wave case is limited by the fact that u = 0 at x =0, which

implies, from (5), that -O'FX + f4F = 0. The form for F then
implies that u =0 for all x. In this case, v is determined

from (6):

4

-—X
v = %Ae 7 cos (ot-Ly).

The EOC yields the dispersion relation:

o

(gh)*/2

For standing waves, -O'FX + f4F = 0 implies that, for

F = A sin (kx) + B cos (kx), then

A _ 12
B ok’
From the CR,
2 2
2 (o -f)
- =0
k +1¢ oh )

there are Poincare wave solutions for ¢ > f; for Poincare waves,
. . ‘s 2 2.1/2

£ is not constrained to be positive. When o< (f +ght )", k

becomes imaginary and only Kelvin waves are permissible.

Thus, in the degenerate case of uniform depth, the topographic

waves have their recognizable counterparts:
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i) In a gross sense, the quasi-geostrophic waves become the
Kelvin waves but exist for all o.
ii) The edge waves become the Poincare waves.

Stepped Bottom. A single topographical step is considered,

though the analysis is readily extended to an arbitrary number of

steps (Munk, Snodgrass, and Gilbert, 1964). The depth is given by

hs, S:xe (0<x< L), where S is shallow water
h(x) =
hD’ D:xe (-0 <x<0), where D is deep water.

The CR's for regions S and D are

2 2 2 2
(7 -f7) = ghs(ks+/z )
and
2 2 2 2
(¢ -f) = ghD(kD+£ ).
Then
2 2 2 2
hs(ks+£ ) = hD(kDHz ),
thus
h h
2 D, 2 D 2 2 .
kS _ng + (h—s -1y > kD, since hD> hs.

As noted by Ichiye (1963), for o > f, the case divides into three
subcases:
2 2 . . . .
I: 0< kD < ks, yielding Poincare waves in D and §,

thus there are a total of four waves possible (two in D and
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two in S),

II: kDZ <0< kSZ, yielding Kelvin waves in D and Poincare
waves in S, thus there are a total of three waves possible

(one in D and two in S), and

III: kD2 < kS2 < 0, vyielding Kelvin-type waves in both D and
S, thus there are a total of three waves possible (one in
D and two in S).

It is recognized that
i) There can be waves from D incidenton S with complete

or partial reflection, subcase I.

ii) There can be waves in S which "leak™ to D, subcasel
above without an incident wave in  D.

iii) There can be waves.trapped on the continental shelf, sub-
cases II and III above.

The BC's are then:

i) No net mass flux across the coastline,

h = 0,

ug|
s's' o

ii) Continuity of the sea surface at the shelf edge,

and

iii) Continuity of mass flux at the shelf edge,
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There are three BC's to be satisfied and from three to four possible
waves. The following notation is used for the various wave types
So. and Do.’ where So. and Do. are amplitudes of waves in
regions S and D, respectively. a=1I R, or K, whichde-
note incident-plane, reflected-plane and Kelvin waves, respectively.
Incident waves propagate in the positive x-direction and reflected
waves in the negative x-direction.
Subcase I (Poincare waves only): The surface displacements in
S and D are
-ik_x ik _x
QS:[Se +S_e S ] cos (ot-£y)
and

-ik_x ik _x
= [D +D_e ] cos (ot-2y),

respectively. This case admits several possible subcases but, bar-
ring waves with complex wave numbers and waves confined to the

shelf, the leaky mode subcase is of most interest, i.e., where

L . = D0 cos (ka+9) cos (ot-Ly).

D
Application of the three BC's leads to:
1(¢'kSL) '1(¢'kSL) _

i) SIe + SRe =0,
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where ¢ = tan_1 (———§

ii) D0 cos O = SI + SR, and

id -id
e '+ SRe ]hs.

iii) DO[(rkD sin 6 + ff cos O]hD = [SI

The compatability condition for i) to iii) requires that

>y

[k tan 0 + %][kS cot (kgL) + f(f 1= K§ [(o-ks)2+(f£ 1,

V D

which is the dispersion relation. Since 6 is arbitrary, a continuum

Subcase II (Two Poincare waves in shallow water and a Kelvin

of waves can exist for |£| < |£
c.o.

wave in deep water): The surface displacements in S and D are

_iksx ik x :
e +S_e ] cos (ot-2Ly)

IS, R

ts

and
k. _x

D
éD DKe cos (ot-£y), respectively.

Application of the three BC's leads to a compatibility condition which

is the dispersion relation:

>y

S
bp

.2

£0 £9
(kSH(=)T) - (- =)(kgeot(kgL)-==) = 0.

2
S
Subcase III (Two Kelvin waves in shallow water and a Kelvin

wave in deep water): The surface displacements in S and D are
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¢.=1[S.. e +S. _e S | cos (at-2y)

and

S 2 (2 D % Sco‘ch (kSL)—%)—;O.

Larsen (1966) computed the M2 tidal constants along the west
coast of North America from observations. Figure 40 is an adaption
of a figure given by Larsen. The phase speed and the amplitude of
the M2 tide are fairly consistent with Kelvin wave-type behavior.

The dispersion relation for trapped waves has been evaluated

for the semidiurnal and diurnal tides at the latitude of the Depoe Bay

array, 45°N. For the semidiurnal tide, values of

- -1
£ =8.7x10 9cm ,

- -1
k,=2.2x10 8cm ,
S

and

- -1

kD:6.2x10 9cmrl

were obtained. For the diurnal tide, values of

- -1
1 =4,2x10 9cm ,
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1.7 x 10_8cm s

P
ti

S

- -1
and kD 6.0 x 10 9cm

1

were obtained. The waveforms for ¢, u, and v are shown in Fig-
ure 41 for both the semidiurnal and diurnal tides. The horizontal
velocity fields rotate anticlockwise for both the semidiurnal and diur-
nal tides, while the eccentricity of the diurnal tide is greater than that
of the semidiurnal tide over the continental shelf.‘ The model is not

unequivocally consistent with the observations reported in Chapter XI.

B. Baroclinic Cases

The baroclinic cases exhibit qualitative behavior similar to the
barotropic cases, but they have vertical structure, which admits -
vertical modes to the analysis. Because of the existence of vertical
modes, with modal number m, energy can be transferred between
vertical modes whenever a reflection process occurs at a discontin-
uity in depth. When a barotropic wave 1:.s treated as the zeroth order
baroclinic mode, then energy can also be transferred from a baro-
tropic tide, m = 0, to higher order, baroclinic modes.

Rattray (1960) considered a two-layered model with a baro-
tropic tide striking a continental shelf at normal incidence; he con-
sidered one case with a continental shelf of uniform depth and another
case with a shelf of uniform bottom slope. His model gives the con-

ditions under which the incident barotropic wave is partially converted
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to a baroclinic wave propagating seaward and to another wave propa-
gating shoreward, which reflects and then propagates seaward, too.
Weigand (1962) experimentally verified Rattray's model in the lab-
oratory. Ichiye (1963) extended Rattray's theory to include waves
incident at an arbitrary angle and to include Kelvin waves as well as
plane waves., He found that, as a function of frequency, resonance
conditions could favor the surface Kelvin wave solutions over the
plane wave solutions as the most effective generation mechanism for
int‘ernal waves propagating offshore. Weigand (1964) extended his
own and Rattray's theoretical and experimental work to include the
effects of non-normal angles of incidence and dissipation. The two-
layered models can be extended to an arbitrary number of layers, but
they are interfacial waves rather than the inertial-internal (body)
waves. Since the basic principles of wave propagation along acoast
have been illustrated in the barotropic case, and since it is the case
of continuous density stratification that is of interest, layered-models
are not discussed in detail.

Stepped Bottorh. The case of continuous density stratification

and of a stepped bottom is outlined. Since the depth is uniform but

differentin D and S, then SOV applies:
T = X(x)Z(z) cos (ot-Ly).

With the FBC, and with N2 constant, the CR is
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2 2 2 2
2 (n),2 (n) 2 ((rz_f ) (amw) (o -f)
£+ k) ="k > o n
(N“-0®) &
where g' 1is the reduced gravity, i.e.,
ot = 2RE | 1073,
Po
Thus, for fixed £ and o, there exists a set of k(n), n=n,
n_ +1,... +which are real. The cut-off wave number for the baro-
tropic wave is
2 2
IZ _ o -f
co  hg

while the cut-off wave number for the nth mode baroclinic wave is

£2 ( )2. (o'z-fz)

cn” T hg' ~’
thus

ch

- ~ 100 n

£

co

Thus, conditions for trapping baroclinic modes in shallow water deteri-
orate as the modal number increases. The effect of baroclinicit;; on
refraction can be seen from the relations for the orientation of the
wave number vector: with

o -f .1/2
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and

2 2
o -f 172
) - 100nR

R = nnu(
n

where R is the radius of the wave number locus. With

. 4
and sin (Gn) =R

n

. 4 1 .
sin (8,) = RO 100 o sin (90),

where 0 is the orientation of the wave number measured from east,

0
then 0~ ldgn .  Thus, for a barotropic mode whose wave number
is oriented at an angle, 90, with respect to the coastline, the wave

numbers of the corresponding baroclinic modes tend to orient nearly
perpendicular to the coastline. These qualitative remarks demon-
strate that Rattray's modeling of the generation of interfacial tides by
a surface wave of normal incidence was quite realistic. They also sup-
port the two-dimensionalization of the inertial-internal wave problem
over the continental shelf, which was postulated in Chapter II.

For brevity, only the case of Poincare wavesin S and D
is considered. Kelvin waves are also admissible, and a mixture of
Poincare and Kelvin waves can occur, depending upon the vertical

modal number. Solutions of the following form are sought:

(n)

00
-i 7'k itk x
T = Z (n)A e 6: + (%)ARe B 1 (ngZ (z) cos (ot-LvY),
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where
(£-z), n=0
(n)
P=5D TgZy = -,
cos ( Kﬁ(z+hﬁ))’ n>1,
and
2 2
(n) (N -07)
tan ( Kﬁhﬁ)« (n)K s
g

by the FBC. There are three BC's which must yet be satisfied:

i) QU = 0 forall =ze (-hs, 0), at x =1L, the coastline,
ii) w= _m forall ze (-h_ 0), at x = 0, the shelf edge, and
D S S
) e Qv for all xe¢ (-hs, 0)
o =

0 forall =ze (-hD, hs), at x = 0.

The first BC implies:

(n) () o (n)
SAR ) e-~21( skL_ S 0)
(n), ’
SAI
where
()
(n)g _ 1S .
SG = tan T );
this relation must hold for all n, then i) is satisfied exactly for all

z. The second and third BC's can be satisfied in only a vertically-
integrated sense, or mean-square sense, because the vertical modes

of D and S are different. Define & to be
mn
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0
5 == 5 (m)Z( )(n)Z(z)dz.

Then the second BC implies.

(n) (n) (m) (m)
SAI+ z ( A + DAR)Gmn
for all n. Similarly, the third BC implies:
(n) ((n)A (n)A ) - Z (me (), (mD)AR)Gmn

At this point, infinite-dimensional scattering, | reflection, and trans-
mission matrices can be written formally. If conditions such as per-
fect reflection are imposed, an infinite number of dispersion relations
result, one for each vertical mode. One solution procedure is to
solve interatively for an N-dimensional set of mbodes and to then in-
crease N until a satisfactory approximation is achieved. Ana-
logous to the approach made by Miles (1967b) for the problem of sur-
face wave diffraction at a continental shelf edge, the problem can be
attacked by defining excitations functions, El(z) and EZ(Z)’ at
the shelf edge. Then El(z) and EZ(Z) can be expanded in terms
)y

(n) .
and and S |x=0 or, egmvalently,

(n) (n)
of lx 0 and STr|x=0 x=0

(n) and (n)'rr |

D x|x -0 ST x=0" Such a procedure can be’generahzed to
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the case of variable depth where the deep water solution is treated as
above and the shallow water solution is found by treating El(z) and
EZ(Z) as Cauchy data on the initial line.

Baroclinic Inertial Kelvin Waves with Variable Topography.

This is the degenerate case, o =f; it has more flexibility than when

o £ f, as in the barotropic case. Assume N is constant and take

=)
H

eZXZ(z) cos (ft-2y), u = u(x, z) sin (ft-Ly), and

v = v(x, z) cos (ft-£y). Then, from the primitive equations

vix, z) = ulx, z) + %—Zezx.

Substituting into the EOC, it follows that

2
2y 4 fz"
(F2Z+—55)=0

{(u +fu) + e
* (N“-£%)

or, neglecting the constant of integration and BC's for the moment:

2

f e Z" £x
u(x, z) = - '2—[[——2—2 +—_2_2]e .
£ (N _£%)

From the primitive equations,

w = w(x, z) sin (ft-£vy),
where
Z'f £x
—_—e .
(N -f)

w(x, z) =
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These forms are used to satisfy the BC's:

i) RBC: w=0, at z =0 forall x, or Z'(0)=0, and
2
ii) RBC: w =mu or, Z"+ —Z—I——Z' + L(Nz-fz)z =0, at
m(x) fZ

zZ = zb(x) for all x.
From ii), the equation for Z 1is then a function of one parameter,

viz. s= zb(x), since m(x)=s . The form for s can be quite
X

arbitrary but a simple example suffices for the present.

A simple case which imposes the constraint of finite depth in

ax

the deep ocean, h(x)— h , is given by zb(x) = -ho(l-e ), hence
X — &
h(0) = 0. Then
m(x) = ah e*™ = a(h_-h(x)).
o o

Take s = Zy s thus m(x) = a(h0+s) and the equation for Z is:
Z +—2£— Z + KZZ = 0,
sS a(h0+s) s
where
2
2 2 2
K® = & (N°o£5).

Changing variables to t = h0 +s, thus t—h, and t— 0, then
- ox = 0 X — .00

2/ 2
_—7 = 0.
Ztt+at t+Kz 0

In normal form, Z =F(t)G(t), where F(t)=1t and

o
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2 1 ,¢.,¢
Gtt + [K - t—z (;)(;—1)]G = 0.

G has solutions of the form

G = AJv(kt) + BNv(kt),
where
v = £(-!L_l)
a a
If the condition w— 0 is imposed, eEXZ — 0 or
X —> -00 t— 0
£.2 4 £.2
£x Ix (:1_) _2(;) _(E)
lim [e "Z] = lim [e (At + Bt ] — o,
X -0 X -0

t—0

which requires B =0 and %z 2, thus v=2. The SBC requires
that (£)
[(h +2) %7 (K +z))]'=0 at z =0
o v o
or
Ay n)+narkn ) =o,
a v o ov o
which is the dispersion relation. The solution is not sought here, but
the basic principle has been illustrated, i.e., baroclinic inertial
Kelvin waves can be trapped along a coastal barrier with variable
topography. As in the barotropic case, this case is rather unrealistic

since the beta effect is neglected.
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Variable Topography. The problem of general topographical

variation is approached formally and reduced to quadratures in the
three-dimensional case. The problem is posed with a deep water
region of uniform depth and a coastal region of non-uni‘form depth.
The coordinate of the intersection of the deep water and shallow.
water regions is again x = 0. A rational approach is to treat x =20
as an initial line, forming a MIBVP. The GE is written in terms of

2 2 2

GE: (NZ—O' (w 4w ) - (o -f )m =0.

XX Yy ZZ

The GE is a two-dimensional wave equation in the spatial variables
and could be treated in a general way as such, but the information

that the semidiurnal tide tends to propagate along the positive y-axis,

i.e., w=P(x,2z)cos (¢t-Ly), 1is used to reduce the GE:
2
GE: P -R P - ZZP = 0,
XX ZZ
where
2 o'z'-f2
R = (=)
N -0

Assuming constant coefficients, the GE is recognized as a telegraph
equation, The Riemann-Green's function for this equation is known,
Sneddon, (1957). Take F(z) = w(0,z) and G'(z) = 'n'X(O, z), then the

solution for the initial value problem is
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P(x, z) = —;—[F(Z-I-RX) + F(z-Rx)]

z+Rx

1 1
+ 3R G'(€)T (

z-Rx

(6-2)2-R %) M)ag

W=

! z+Rx J;(% ((g-z)Z-R?‘x?‘)l/z)dé
+ —IXS‘ F(§)

2_2.1/2
x )

2
z-Rx ((E-x) -R
The Riemann-Green function,

2 2 2.1/2

((z-€) -R (x-p)7) "),

el b

W(p, £5x,2) =7 (

and its first derivative have been evaluated on the initial line, p = O,
in the integrals. The complete solution to the MIBVP can be com-
puted using the solution theory in Section V.F. Several points are
noted:
i) For uniform depth in shallow water, the effect of the coastal
BC is to remove the independence of ¥ (z) and G(z),
ii) The issue of onshore-offshore energy flux is again settled on
the basis of the temporal phase relation between F(z) and
G(z),
iii) Since wu, v, and w can be expressed in terms of mw, the
RBC and FBC can be written in terms of 1w, giving the full
constraint to the arbitrariness of F(z) and G(z), i.e.,

the algorithms for analytic extension of the CD can be



iv)

426
derived.

Because the details of the analysis are lengthy, they are
not given here. The RBC applied at the sea surface requires
that F(z) and G(z) be even functions of z with respect
to the origin. The RBC applied at the sea bottom imposes a
subtle rule for extension of F(z) and G(z); it involves
Volterra integral equations of the third kind,

Once F(z) and G(z) have been completely specified,
they can be expanded in terms of the deep water normal

modes for the deep water solution, and

It is not yet clear how to treat the problem of converting
alongshore energy flux of the barotropic tide to onshore-

offshore energy flux of the baroclinic tide.

C. Spectral Observables

It is assumed that the depth and the density gradient are uni-

™

form and that a locally valid model of the internal tide consists of a
northward propagating Poincare wave over the continental shelf. At-

tention is focused on a discrete frequency and a single vertical mode.

is chosen to be of the form such that when it is substi-

tuted into the equation for U the CBC is satisfied:

m = A cos (ot-£y) cos (k(x-L)-0) + B cos (ot-Ly-k(x-L)+6),
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where

-1, 12

0 = tan (-O—'l_(-)

and A and B are the depth-dependent amplitudes of the standing

and progressive wave components, respectively.

f 2 2.1/2
Trxt+ Try [(ok)"+(f2)"] /
u(x, y,2) = —— = > 2
(e -£°) (o°-£%)
X {A sin(k(x-L)sin (ct-£y)+ B cos(ot-£y-k(x-L))},
and
2 2.1/2
u = [(ok) +(£2)"] / B cos (ot-LvV)
x=L 2 2 )
(0 -1)
B represents the coastal energy "sink," or "source." Similarly,

v's dependence on Tw is:

v(x,y,2) = —5——
(c2-£°)

[(o2)24(e1) 2]/

(e-£%)

x {A sin(k(x-L)-(6-¢))cos (et-Ly) - B sin(ot-Ly-k(x-L)
+ (6-9))},

where

-1,0f
¢ = tan (f_k-

Using the relations
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T‘-zt
n,=w=
t 2 2
(N -f)
and
dT
T=nlg)

where mn is the vertical displacement and T is the temperature,

Ty, 2) = - (5,

o
dz
2 2
(N -0 )

- (

X {A'cos(ot-fy)cos(k(x-L)-0)+B'cos(ot-fy-k(x-L)+0)},

where
dA dB
| vl e
A' = P and B 1o

For the computation of spectral quantieis, it is convenient to set
y = 0 and rewrite the expressions for wu, v, and T in orthogonal

components:

u(o)[(A+B)sin(k(x-L))sin(ot)+Bcos(k(x-L))cos(at)],

=]
1

v = v(o)[(A+B)sin(k(x-L)-(6-¢))cos(ot)-Bcos(k(x-L))-(0-4))sin(at)],

and

T = T(a)[(A'+B")cos(k(x-L)-0 cos(at)+B' sin(k(x-L)-0)sin(ot)],

where
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2,1/2
(o) = [(O'k) +2(sz) ] ,
(o -f7)

[o)>+ ()21 2

v(ic) = )
(o2 -£%)

and

The autospectra are then

u (o)

Puu(O',x) = [(A2+2.A.B) sinz(k(x-L))+B2]

v (o)

va(a,x) = [(SZ+2AB) ‘sinz(k(x-L)-(e-¢))+BZ]

and

2
PTT(O',x) = I—Z(L) [(A2+2AB) cosz(k(x-L)-6)+B2].

Thus, with a source or sink only (A = 0), the spectra of the cor-
responding progressive wave component are spatially uniform; with
perfect reflection, the resultant spectra have the spatial structure of
a standing wave. The presence of the phase terms © and ¢
means that the spectra for u, v, and T are not in-phase spatially.
Since

-1 [(0' -f )lk]

0 - ¢=-tan >
(k +1£ )crf
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P and P have the same spatial structure only if { =0,
uu vV

o=1f, or A =0.

If A =0, the ratio of the energy spectra of u and v is

2 2.2
P ()7 + ()
ua  f k _R
P o2, 0.2 T 7o
wo (D)
P u o .2
If the hypothesis that { << k 1is valid, then Piz (-f-—) .
vV

If B =0, the ratio of the energy spectraof u and v 1is

2
ue o sin (k(x-L) :

vV sinz(k(x-L)-(e-d)))

If the hypothesis that £ «k is valid, this ratio becomes

If the hypothesis is not valid, the ratio assumes all possible positive
values as a function of x; one consequence is that the nodal points
for u and v do not coincide.

Similarly, the cospectrum and quadrature spectrum are

P (0%, z) :M(

. > A+B)B sin (6-4)

and
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Q_ (5x,2) = _‘_‘%M ([(A%+2AB)sin”(k(x-L))}+B%] cos(6-9)

s-(A2+2AB)sin(k(x-L)cos(k(xk-L))Sin(e-q))}.

The coherence squared is unity; the phase function has épatial struc-

ture:

euv(O‘; X, z) = tan (TD_-)

tan” 1 {[(A2+2AB)sin2k(x-L)+B2] cot($-0)

H

(A% 2AB)sin(k(x-L)) cos (k(x-L))}.

The cross spectral quantities can be used to test the hypothesis that

£ K k; if the hypothesis is valid, 6 = ¢, then

P =0,
uv

==V [(a%548) sin®(kix-L1)+B%),

and

@
il
H

ST E

uv
When there is no source or sink at the coastal boundary (B = 0),

_ -jru(o-)v(o-) 2

qu = > A" sin(k(x-L)) sin(k(x-L)-(06-9)),

and the signs of Q and O , oscillate spatially unless 6 = b,
uv uv

i.e., when © # ¢, the direction of rotation will reverse whenever
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k(x-L) = (6-¢), (mod 2w) and whenever k(x-L) =0, (mod 2mw).
The cross spectrum for u measured at two different spatial
points, (Xl’zl) and (xz,zz) is examined: where A(z) = Z(z)A
and B(z) = Z(z)B,

P a (cr;(xl, zl), (Xzs ZZ))

= -Z(zl)Z(ZZ)[(A+B)Zsin(k(xlﬂL)sin(k(xz—L)

+B2acos(k(x1 -L)cos(k(x_-L))]

2

and

Q

u (o)
2

u.u,(o;(x ,zl), (Xz’zz) =

1% 1 Z(zl)Z(zz)(A+B)B sin(k(xz-xl))o

Again, the coherence squared is unity and

(A+B)B sin (k(xz—xl)) ?

uu, = tan” > .
A(A+ZB)sin(k(xl_L))sin(k(xz-L)+B cos(k(xz_xl))_S

If B=0, then

P (o) 2
uu, = 20 Z(2 )Z(z,)A" sin (k(x,-L)) sin (k,(x,-L)),

depending on k(xz-xl), (mod 2m).
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If either (xl, Zl) or (XZ’ ZZ) is a nodal point, all cross spectral

quantities are null. If A =0, then

2
Puluz = uz(o-)Z(zl)Z(zz)B‘2 cos (k(xz-xl)),
% w22 5 1700182 sin (k(x,ox. )
bt e R R 2 sin 27 %1
and
euluz = k(x -xl)

Within the limitation of this simple model, the spectral quan-
tities calculated from observations potentially provide the means of
testing several basic hypotheses, viz.,

i) £ < k, 1i.e., the motion is essentially homogeneous in the

alongshore direction,

ii) A # 0, there is a standing wave componenttothe motion, and

iii) B # 0, there is a progressive wave component to the mo-
tion.
Analogous results would follow for an analysis of the solution to the

complete problem with variable depth and the frontal interaction.

D. Hodograph Observables

A hodograph, the spatial locus of a velocity vector as a function
of time, is a useful device for the analysis of wave fields. Since the

velocity vector at tidal frequencies is principally horizontal, the
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hodograph determined by the horizontal velocity vector is considered.
This, the projection of the hodograph on to the horizontal plane, is
most familiar from its common usage as the tidal ellipse. A con-
tinuum of hodographs exists, though custom has focused on discrete
frequencies for which a statistically stationary wave component is
anticipated; otherwise, the hodograph is more difficult to interpret.
The principal properties of the hodograph are:

i) The orientation of the major axis with respect to a fixed
reference axis, such as geographic east,

ii) The length of the semi-major and semi-minor axes, R

1
and RZ’ respectively.
Rl.R2
iii) The ratio € = =————, where e is termed the eccentric-
R1+R2

ity.
iv) The sense of rotation of the velocity vector, and
v) The time phase of the radial vector with respect to a time
base.
The hodograph is generally a function of spatial position and its ori-
entation relates to the direction of wave propagation. The formulae
of Doodson and Warburg, (1941, p. 180-181), are used for calcula-
tions based on the velocity functions introduced in the previous sec-
tion. Since the algebraic and trignometric manipulations are tedious,
the standing wave and progressive wave components are treated

separately. Once the hodograph for each of these has been found they
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can be combined to form the effective hodograph.
First, a standing wave only is assumed to exist (B = 0); the

formulae lead to

R. = u(o)A sin (k(x-L))

1
and
R2 = v(o)A sin (k(x-L)-(6-9)).
R, is in-phase with the pressure field. R1 and R2 can inter-

change their relative size and sign as a function of offshore position,
and thus the orientation of the ellipse. The sense of rotation
also varies as a function of offshore position. The eccentricity is

_ v(o)sin(k(x-L)-(0-9))-u(c)sin(k(x-L))
~ v(o)sin(k(x-L)-(0-d))+u(c)sin(k(x-L))

At the coastal boundary, (x = L), R2 tends to zero and the motion

becomes rectilinear with amplitude

R1 = -vA sin (6-9),

which also tends to zero for small {. When { <« k, all hodo-

graphs rotate clockwise, and, for o > f,
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and
_a-f
€ T o+
For a progressive wave only, A =0 and B # 0, the for-

mulae yield:

B 2 2 2 2 1/2.1/2
R, = {u"+v +[u4+v4_2u v cos(2(6-d))] / } /
1 172
(2)
and
B 2 2 2 2 1/2.1/2
R, =———{u +v -[u4+v4-2u v cos(2(0-9))] /2} / .
2 1/2
(2)
When { « Kk,
okB
R. =
1 2
(c°£)
f
R, =58
and
_o-f
€= a+f
The phase relation of Rl with respect to the pressure field is given
by the angle a, where
1 o1, vZsin(2(6-6))
a:;Z-tan_ [ > : L ]
u -v cos(2(0-9¢))
The orientation of the major axis, ww, with respect to eastis given
by the formula
o = -tan_l [v(cr) sin(a+(6-9)) 1,

u(o) cos(a)
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thus when <k, o =0° or 180°. In other words, when f < k
the hodograph is oriented east or west depending upon whether
there is a coastal sink or source.  can be computed from observa-
tions, thus the ratio £/k can be estimated.
When ¢ <k, and o ~ f, then, if there is both a progres-

sive and a standing wave component to the motion:

u = ( oz'k 2)[(A+B)sin(k(x-L))sin(O't)+B cos(k(x-L))cos (ot)]
o -f
and
fk
v = (2—‘2‘)[(A+B)sin(k(x-L))cos((rt)-B cos(k(x-L))sin(at)] ,
o -
or
u = gc cos (ot-y), thus R1 = ogc and
v = -fc sin (ot-y), thus RZ = fc,
where
c = ( 5 2)[(A+B)Z'si_nz»(k(x-L))+Bzcosz'(k(x-L))]l/2
o -f
Y = ‘ca,m_1 [(1+% Ytan (k(x-L))], .
and
_of
R

Therefore the horizontal velocity rotates clockwise, which is consis-
tent with the observations reported in Chapter XI. The observations
have yet to be examined thoroughly enough to test the other relation-

ships found in this and the preceding section.
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APPENDIX II

The Consequences of the Assumptions of Alongshore
Uniformity and of the Traditional Approximation

Since fh = fv at 45° latitude, the latitude of the observations,
and since the alongshore wavelengths of inertial-internal waves are
uncertain, the consequences of neglecting these two quantities for both
the GE and the hodograph are examined. For simplicity, the frontal
interaction terms are neglected but fh is assumed not zero and all
variables are assumed to have a y- as well as an x- and z-dependence;
SHM is assumed for the time dependence. The system of equations is

then:

. . Cf v -
i) iocu Vv fhw T

iil) iov+fu=-7
v y

. - _ _L
iii) 10'w+fhu ™ 5 g,

iv) u +v +w =0, and
x y z
v) iop + W;Z =0

Eliminating p between iii) and v), then

. 2 2 . .
vi) (N -0 )w + 10'fhu = -iow .

Eliminating v and u successively between i) and ii), then
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2 .2
vii) (¢ -f Ju +icf w =iow_+f w
v x v

h

and

viii) (O'Z—fZ)V - ffw=-fnw +iowm.
v v h vV X y

Eliminating u and w successively between vi) and vii), the equa-

tions for u and w intermsof w are:

2
[-i(c™-f Z)O'TT +f (O'Z’IT -if ow)]
v'ox x V Y

ix) = h
W= D
and
2 2 2
[(N"-c " )icw +f w )-0 f @ ]
x) u-= X VY h 'z
D 3
where
2 2.2
D= (Gz-fz)(N -orz) + o f, .
v h

Then w is eliminated from viii):

. 2 2 . 2 2 2
[_1fvfhcr°rrx-fv(N - )TTX+10'((N -0 )+fh )'rry]

xi) v = D

To avoid unnecessary detail, the coefficients are assumed constant;
then the expressions for u, v, and w are substituted into iv), the

EOC. The GE in terms of w is then:

2 2 2 .2 2 .2
GE: (N -0 )Jw _ + (NZ-O' +f ) - (o -f )
h' vy v

XX

-2f fw =0.
ZZ v

h'yz

Hence, the neglect of ( )Y in the GE removes all the terms
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containing f but not conversely; with the neglect of fh, the term

h
™ remains. Unless either f or () is neglected, the vari-
vy h y
ables will not separate in y and =z, inducing asymmetry in the

solution and in the characteristics of the GE.

With the traditional approximation, f = 0, the hodograph is:

h
iO'TrX+fVTr —fVTrX+iO'Tr -iO'TrZ
(w, v, w) = 2_ zy’ 2 zy’ 2 2
(o ) (c -f7) (N -c7)
v v

The singularities in the hodograph are at o =N and o = fv; they
correspond to the singularities of the GE.

With the alongshore uniformity hypothesis, ( )Y = 0, the hodo-
graph is:

[((NZ-O'Z)iO‘TTX-O'thTI'Z) N‘2 o )f ™ -iof thr ), ( 0' f )10"n' +fh0'27r ]
D

(u,v,w) =

While the neglect of )Y removes the influence of fh in the GE,

it does not remove fh from the hodograph. In this case, the singu-

larities of the GE are at o = fv and o = N, while the singularities

of the hodograph, are at

+ 1,2 .2 2..2.1/2
o :(-?:[f+N :l:((f2+N2) -4fN)/])/,
where
2 2 2
7 =g+,
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Since o >N and o < fv, the singularities of the hodograph lie
outside the inertial-internal wave passband, causing no difficulty for
the velocity fields which are solutions to the GE.
The principle effect of fh on the velocity fields is to couple
the vertical pressure gradient to the horizontal velocity and the hori-

zontal pressure gradient to the vertical velocity. This effect may be

significant for the interpretation of observations.
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APPENDIX III

The Spectrum Analysis of Singletons and Pairs of
Two-Dimensional Velocity Vectors

The study of two-dimensional velocity vectors considers prop-
erties of the components of the motion such as their cospectrum (for
a measure of the Reynolds stress spectrum) and coherence squared
(for a measure of the coherence of wave motion). The results for
one-dimensional spectrum analysisare dependent upon the coordinate
system in which the calculations are made. The analysis of this ap-
pendix allows removing the ambiguity in spe ctral quantities caused
by their dependence on the coordinate system of their measurement.29
In Section A, the techniques for maximizing the Reynolds stress and
coherence squared are derived for a single two-dimensional veloc-
ity vector. In Section B, the geography of the hodograph is discussed
and the concept of negative frequency is introduced to current meas-

urements. In Section C, the technique for analyzing a pair of two-

dimensional velocity vectors as complex-valued functions is

29On his visit to Oregon State University in December, 1967,
Dr. N.P. Fofonoff, Woods Hole Oceanographic Institution, stated that
he had derived these results recently, but they are not published. He
has applied the results to flow models based on the linearized equa-
tions of geophysical fluid dynamics.
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30,31
derived.” ’

A. The Semi-Principal Axis Transformation

Velocity measurements are usually made in an arbitrary co-
ordinate system, e.g., geographic coordinates. To study such quan-
tities as the Reynolds stress and the spectral coherence squared, it
is of interest to perform a rotation of axes. The rotation of axes is a
real orthogonal transformation. Rotation to the semi-principal a.xis3
of the covariance maximizes the Reynolds stress. Rotation to the
semi-principal axis of the cospectrum (or Reynolds stress spectrum)
for each frequency maximizes the Reynolds stress and coherence
squared at that frequency. The basic results are derived by using
trigonometric identities and differential calculus; they have also been

derived using Hermitian operator and matrix theory. The former

30
Many of the concepts contained in this appendix have ana-

logues in optics, cf. Born and Wolf, 1965, with the study of polarized
and partially coherent light, as brought to my attention by Professor
M.S. Longuet-Higgins, Department of Oceanography, Oregon State
University. In optics, right-handed and left-handed elliptical polari-
zations correspond to the two-dimensional clockwise and anticlock- .
wise motions of marine hydrodynamics. In Born and Wolf (1965), the
concept of negative frequencies is not exploited for optics as it is in
Sections B and C.

31
The author is indebted to Mr. Michael Ho, Graduate Student,
Department of Oceanography, Oregon State University for his meticu-

lous proofreading of this appendix.

3 D
2The term semi-principal axis is used because the transfor-

mation is real and involves the eigenvalues of the corresponding two-
dimensional matrix, while the term principal axis is its analogue for
complex transformation.
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approach is used here because it is more familiar, while the latter
has the advantages of being more efficient and of leading to analogues
with operators and variables of classical and quantum mechanics.

Maximum Reynolds Stress. The time-averaged horizontal com-

ponent of the Reynolds stress is _u(t—)v(-t—)t.- Changing variables by
rotation through an arbitrary angle, 6, from the unprimed to the
primed coordinates, then

x'=x cos 6 + y sin 6
and

y' = -x sin 6 + y cos 6,

where 0> 0 for anticlockwise rotation.

The Reynolds stress in the primed coordinates is

u'v! () = uv cos (20) + %—(v -uz) sin (20),

where the time argument, t, has been dropped for convenience.

Maximizing u'v' with respect to © and solving for the corres-

ponding 6, say 0, it follows that

5-Lian! [i‘ﬁ]
-2 2uv :

There ia an ambiguity of *m in 26, but 20 is chosen to be the

root which occurs in either the first or fourth quadrant. Since
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_ N
sin (28) = Lot
-2 2 2.2, 4172
2[ (uv) + (v -u’) /4]/
and L
cos (2_5) = iv__ )
—_— 2 22,4172
[(uv) +(v7-u")" /4]
then
— 2 22,41
max u'v'! = [(uv)2 + (VZ-uZ) /4] 2
2_ 2 = “ o . :
If v =u, then © =0, i.e., no rotation is required for maxi-
mization, and u'v' = uv cos (20).

The preceding discussion serves as a model for the subsequent
development of its covariance and spectral analogues.

Autovariance and Covariance Functions. The autovariance

functions in the primed coordinates are given by

Ru,u,(‘r) = u'(t)hu'(t+71)
= Ruu(T) COSZ(G) + RVV(T) sin29 + [RuV(T)+Rvu(T)]sinecos 0
and
RV'V'(T) = v'(t)v'(t+T)
=R (1) Sinz(e) +R_(7) COSZ(O) -[R ()+R (7)) sin @ cos 6.
uu vV uv vu :
Since

Ru'u'(T) + RV'V'(T) = Ruu(‘r) + RVV(T),

for all T, then

R (0) + R (0)=Ruu(0)+va(0);

ulul V'V'
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therefore, the total variance and kinetic energy are conserved.under
coordinate rotation. Similarly, the covariance functions in the primed

coordinates are given by

R, (1) =u'(t)v'(t+T)
u'v
= [RVV(T )—Ruu(‘r)] sin O cos 0 + RuV(T) cos’0 - Rvu(T) sin%@
and
R_, (1) = v(t)hu'(t+T)
v'ua

I

[R (1)-R (7)]sin ® cos 8 + R (7) cosze -R (7) sinzeo
vV uu vu uv

The symmetry relation of the covariance function, viz.

Ruv('r) =R (-1), 1is used to break the covariance functions into
vu

their even and odd parts, which are denoted EuV(T) and OuV(T),

respectively:

1 .
E_ M =5[R (R (1] =S[R_(1)-R(7)] sin (26)
+E (T)cos (20)
uv
and
1
O 1M =3[R, (1)-R_, (1] =0 (7).

Thus, the odd part of the covariance is conserved but not the even
part. (The covariance could be maximized as a function of 6 for

each T by maximizing Euv('r).) Since
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(7)) = Ruu(T) c/’osz(e) + RVV(T) sinz(

ata! 0) + EuV(T) sin (20)

and

R (1Y =R_(7) sinz(e) + R (7) cosz(e) - E (7) sin (296),
uu vv uv

then, with reduction, it follows that

21 =R (TR (1) = B2 (1) - R (TR (7).

u'v! u'u! viv

In summary, the three covariance invariants of real orthogonal
transformations are:
I =R + R ,
(1) =R_ (1) +R__(7)

RU.V(T)-RVU.(T)

I(T):O (T):

b

2 ~ uv 2
and 5
= -E ,
L) =R_ (R (7) - E ()
which are true for all 7v. These invariants are used below to note

their similarity in form to equivalent spectral quantities. The invari-

ants can also be found from the covariance matrix:

Since

i) trace (CMuV):Il,
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and
ii) det (CM ) = -12 +1I,
uv 2 3
then trace (CMuV(-r)) and det (CMuV(-r)) are conserved under
real orthogonal transformation. The reason for three invariants un-
der coordinate rotation rather than merely two is that: (i) the odd
part of the correlation matrix is skew symmetric, so the odd part is
invariant (IZ), and (ii) the even part is symmetric, so the even

part's trace (Il) and determinant (I are also invariant.

3)

Autospectrum and Crossspectrum. The spectral functions are
defined in the usual way. Take
F.T. to be the Fourier transform,
C.F.T. to be the Fourier cosine transform, and
S.F.T. to be the Fourier sine transform,
i) The u-autospectrum is P (o) =C.F.T. [R (t)], since
uu uu
R (1) 1is an even function,
uu ‘
ii) Similarly, the v-autospectrum is PW(U) =C.F.T. [RVV(T)],
and
iii) The uv-crossspectrum is

(o) + iQuV(O') = C.F.T.( () + iS.F.T.(OuV('r)),

P E
uv uv uv
where P (¢) is the uv-cospectrum, and Q (o) is the uv-

uv uv

quadrature spectrum. The basic forms for the covariance functions

in the primed coordinates are Fourier transformed directly to obtain
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P,,=P cosZ(G) +P sinz(e) + P sin (20),

u'u uu vv uv
. 2 2 .

P, ,=P sin(8)+P__cos (0) -P sin (20),
viv uu vV uv

Q 1 I:Q ’
u'v uv

and )

P = - - i

aryt = Py 08 (20) + 5 [PVV Puu] sin (20),

where the frequency argument, o, has been suppressed for con-

venience. The above relations provide three spectral invariants ana-

logous to those for the covariance functions of the preceding section:
i) Jl =P +P , whichis proportional to the total horizontal

uu vV . : . .
kinetic energy, whose time average 1s con-
served,

n
O

which is proportional to frequency times
the angular momentum, and which is con-
stant for a particle undergoing elliptical
motion,

i) JZ uv’

and

2 .
iii) J - Puv’ which is related to the eccentricity of the

3 puupvv
hodograph.

A spectral matrix can be formed:

P P P P +iQ
uu uv uu uv uv

wn
S
n
1)

vu vV uv uv vV
where

i) trace (SM ) =17 and
uv 1

.. B B 2
ii) Auv = det (SMuV = —JZ + J3.
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Since SMuV is Hermitian, the alternative analysis by Hermitian
operator and matrix theory is convenient.

Maximization of the Coherence Squared and Cospectrum. The

spectral coherence squared is:

p? 4+0?

2  uv uv
Yuv -

uu vv

2
The spectral invariants are used to re-render the form for Yuv:
since
2 2
-P -Q +y P =0
uv uv uv uu Vv
and
P 4 0% . = -n
uv uv uu vv uv
then
2 1 AuV
Yuv B P P
uu vv
The objective is to find the angle of rotation, 9.0, which maximizes
2 (5:0). Si >0, b P . |°<P , P by the
Yu'v' o;0). ince A >0, ecause alv! S P Ty vy
C-B-S inequa,lity,33 and since A v is invariant under coordinate
u
rotation, 0 also corresponds to [P P ] maximum. Define
o] u'ut viv!
H to be

33 .
The C-B-S inequality is the Cauchy-Bounakowski-Schwarz

2
inequality, viz. ( Svuvds) < (S.uzds) . (szds) in integral form.
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—

H@e)=P , P = {—[Puu+PVV]2

2 2 2
- i P 2
aha vy ) Puv} sin"(20) + uquv cos (26)

+P [P

-P i 2 20).
uv- vv uu] sin (20) cos (28)

Maximizing H(0) with respectto 6 while o is held fixed, then

-P
0 —ltan_l[ vV uu )
o 2 2P
uv
Again, 290 is chosen to be the root which occurs in either the first
or fourth quadrant., It follows that
2
p? +—1-[P -P ]2+Q
2 2 uv 4° vv uu uv
Max (y_ ) =vy_, (6 )=
uv u'v!' o l[P +p ]2
4° uu Vv
It is noted that:
i) If P =P , no rotation is required for maximization
vV uu
and P =P cos (20),
u'v uv

ii) The C-B-S inequality can be used to verify that

2 2
v <*yu,v'(eo) and P <P (),

uv -~ uv — u'v' o

iii) The maximum cospectrum is an invariant

_ B 2 l 2172
Max (Puv) - Pu'v'(eo) - [Puv+4 (va_Puu) ]
= [Pz -P P +l(P +P )2]1/2
uv  uu vv 4 uu vv
1 _2,1/2
=[-J_+=7"] /,

Y3471
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The component energy spectra in the semi-principal axis
coordinates are

uu+ v J1
v

P - P - YYo=
u'u!' viv! 2 2’

From iii) and iv), Max(‘yiv) can be expressed in terms of

the invariants

2, .2
[-J3+(J1/2) 1+J

Max(yuv): > 2 , or
(3, /2)
Reynolds stress)Z N (0'x angular momentum)Z
Max (Yiv) _ spectrum spectrum )

(kinetic energy spectrum)
and

The phase, ¢, of the cross spectrum in the primed co-

ordinates is:

1
(e
o
=3

¢||(9)

u'v! o P

-1

lar t ectr
tan [o-xangua momentum spec um]

Reynolds stress spectrum

1]

Reynolds Stress. Using the form established for the maximum

Reynolds stress, u'v' , it follows that:
max
— 2 —2 1,2 22
v = — -
(uvmax) uv +4(V ua ),
or
2 2 — —2 1,62 22
uv + (u'v' )Z:uv + —=(v +u ) ,
max 4
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but

uv < u v

by the C-B-S inequality; therefore

i.e., the maximum Reynolds stress is less than or equal to the total
kinetic energy.

Cospectrum. In a similar manner, for the cospectrum, or

Reynolds stress as a function of frequency, it follows that

P +P
0<max P, < uu Vv
-_ v — 2
0
Since
00 —_— 00 —_—
S.P do = u and yP do = v ,
0 uu 0 v
then

Also, since

then

Finally,
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Thus, the integral of the maximum value of the cospectrum is bounded
below by the value of the maximum Reynolds stress and above by the
value of the kinetic energy. This result suggests that the proper
technique for integrating the Reynolds stress spectrum should be
sought.

Vector Reynolds Stress Spectrum. Since P is the magni-

uIVI
tude of the Reynolds stress as a function of frequency oriented along

20', then it is useful to define the Reynolds stress spectrum to be

the vector 34 (P ,» 20"), in polar coordinates. The integral of the

u'v

cospectrum is used in momentum flux calculations when the frequency-
dependent contribution of spectral bands to the Reynolds stress is
sought. To perform the integration, the concept of the vector Rey-
nolds stress spectrum is essential.

Since Pu'v' = Puv cos (26') + %[va-Puu] sin (20'), the fol-

lowing geometric relationis recognized:

2 Vv uu

34 :
Dr. Stephen G. Pond, Department of Oceanography,-Oregon

State University, suggested treating the cospectrum as the vector
Reynolds stress spectrum.
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Then ; = (P ,-l—[P -P ]) in Cartesian coordinates. The
u'v! uv 2 vv  uu
vector sum of Eu'v‘ over all frequencies is
- % * [PVV-Puu]dU
51 P'V'dO':(S.P d0',§ > )
o Y 0 0
2 2
= (uv [Vz-u ] )
- E 2 ’

in Cartesian coordinates. In polar coordinates,
© —_—
S. P  do = (max u'v', 20)

When band-averaging a Reynolds stress spectrum over the interval

cg.<oc<o the correct formula is then

1= =2
o o
: ; : (PVV-PU.U.)
(Puv)av‘e = z Puv’ z 2. )
o =0, o =0,
The contribution, AE, to the maximum Reynolds stress pro-

duced by the Reynolds stress spectrum in the frequency interval

oy <o<co is calculated by projecting Pu'v' onto 26 and inte-

2

grating over the interval:
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o2

2
Auv = § P , , cos (2(6'-8))do
u'v
71
_ T, _ o,
= cos (ZO)S‘ P, , cos (20')do + sin (ZO)S‘ P , , sin (20')de
u'v u'v!
“1 !
a2 _ 2P -P_ldo
= cos (20) S. P do + sin (26) S.
. uv . 2
71 1
o — — o
2 2 2 > [P -P_ ldo
uvi P dcr+[v éu] S. VVZ
- 1 1
2 22
2 v -u 1/2

B. The Geography of the Hodograph and Negative Frequencies

To clarify the discussion of Section A, and to prepare for the
discussion of Section C, an examination of the geography of the hodo-
graph is made with simple models.

The hodographs considered here involve the total energy of the
motion, i.e., both the coherent and incoherent components, based on
the energy spectra. In tidal analysis, the usual procedure is to ex-
amine hodographs (tidal ellipses) constructed from only the coherent
component of the motion through least squares calculations.

At this stage, formulae are available to find the transformation
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of velocity components from the measurement coordinate frame to
the semi-principal axis coordinate frame.
There is another coordinate frame of special interest; it is the
set of axes coincident with the major and minor axes of the hodograph.

In this coordinate frame,

u' = (A+C) cos (ot).

and

v" = (A-C) sin (ot),
where A and C are amplitude factors. A and C can as-
sume any non-negative, finite value. The eccentricity, ¢, is

¢ = A/C or C/A, whichever is less than one. Since, in the semi-

principal axis coordinate system,

P _ P B Pullull V"V"
utu' ~ T v'v' 2
1 .2 .2
==(A+C"),

2

the radius, Ro’ of the hodograph along the semi-principal axes is
2 1

R = (A +C2) /2. By inspection,

A = C gives rectilinear motion along the x"-axis,

>
|

= -C gives rectilinear motion along the y"-axis,
C = 0 gives anticlockwise circular motion,
A = 0 gives clackwise circular motion,

and
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A >C gives anticlockwise elliptical motion,
while

C > A gives clockwise elliptical motion.

Thus, A is the amplitude of thé anticlockwise component of the

motion, while C is the amplitude of the clockwise component. The
characterizing property of the ellipse-axes coordinate system is that
Qi s 0. The rotation from the (u,v) to the (u",v") velocity

components through the angle 61 is then given by

-1 -1 uv
___],

D
1
I

&
B

or

The component energy spectra in the ellipse-axes coordinate system

are of special significance:

Puu+va [va_Puu]
N 2 - cos (291) — S ‘+ Puv sin (201)
Puu+va [va-Puu]
=———>5 - sin (20 ) ———— - P cos (26_)
P 4P
uu | vv
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and, similarly,

vity! - 2

which demonstrates that the Reynolds stress spectrum is related to
the eccentricity of the hodograph. It is recognized that Pu"u" and
" are the eigenvalues of the real (or, even) part of the spectral
matrix, thus they represent the squares of the lengths of the ellipse
semi-axes, as they must.

There is an efficient means for solving for the amplitude and

eccentricity of the hodograph from the spectral values:

since
2
B (A+C)
Punun - 2
and
_(a-c)
viy! - 2 ’
then
AzxC=nNP +P +2maxP_ =G
uu vV uv
and
AFC=NP +P -2maxP_ _ =H,
uu Vv uv
thus
_G-H
€T Gt+H

Several properties of the hodograph can be deduced from the

preceding formulae and model:
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i) I.=P +P =A%+cC?
1 uu vv
.. 1 2 2
11) JZ - qu - 2( "C ):
(qu =0 for e=1, i.e., for rectilinear motion)

. 2 1 2 2
111 = P = - - - = i
iii) J3 uquv( (Puv) 4:(A+C) (A-C) (JZ) , in the case
of a single sinusoid), and
. 2 1 2,172
iv) max Puv = [Puv 3 (va-Puu) ]
= AC , thus
P =0 for e€=0, 1i.e., for circular motion.

uv

An Example Hodograph. The geography of the hodograph is

illustrated in Figure 42a for the following model. In the measure-

ment coordinates, take

u=Ccosocot+ Dsinct
and
v =FE cos ot + F sin ot;
then
1 2 .2
Puu = E(C +D")
1 2 2
va = E'(E +F )
1
P = —(CE+DF)
uv 2
and 1
Q = —(CF-DE).
uv 2
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For a quantitative example, take

C =nN73, D=1/2, E =-1, F =nN3/2;

then
P =3/2+1/8=13/8,
uu
P =1/2+3/8=17/8,
vV
P :-£+£:-3'\I3/8,
uv 2 8
Q =3/4+1/4=1,
uv
Puu+va
Pu‘u' - Pv'v‘ - __2__._ =5/4,
® P
2 vv  uu’ 172 27 9 .1/2
- = — m—— :3 4’
Pu'v' [Puv * 4 ] [ 64 64] /
P -P
1 -1 vv uu 1 -1 .1
= — = = ——— 2150,
90 Zta,n ( b ) 2ta,n ('\r.g)
uv
and 0 30°
=
Since
1
G=(s/2+3/2)"% =2
and
1
H-(5/2-3/2)7% =1,
then
1 G+H 3 G-H 1
= - = = = <% —_—) =% =.
c=3 AT > © (=) 2

Choose C:+%, then

u" = (A+C) cos (at) = 2 cos (at)
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and

v" = (A-C) sin (ot)

]

1 sin (ot).

The Concept of Negative Frequencies. In the coordinates of the

ellipse-axes, since

u = (A+C) cos (ot)
and
v = (A-C) sin (ot),
then
+ -
u=u +u =A cos (+ot) + C cos (-ot)
and

v=v +v = A sin (+ot) + C sin (-ot).

Thus, the hodograph can be conceived to consist of two counter-
rotating velocity vectors:
i) An anticlockwise motion with amplitude A and frequency
+0, and

ii) A clockwise motion with amplitude C and frequency -o.

The complex-valued velocity vector, w, is defined to be
. . + . + 2
w =u+ iv. It is clear that the autospectrum for w is wa = A
and that for w itis P = CZ. Thus, there is physical mean-
wWwW

ing for spectra with negative as well as positive frequencies. The

total autospectrum for w is
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p =p" 4+p =a’+c’:=pP +P
WW WW WW uu vV
It also follows that
- 2
pt _p- -@a’chH-20
WW WW uv
Thus, P+ and P~ are invariant under coordinate rotation.
WW WW

The two counter-rotating vectors corresponding to the hodo-

graph of Figure 42a are shown in Figure 42b.

C. Spectral Quantities for Pairs of Complex-Valued Time Series

For the study of the coherency of a pair of two-difmensional
velocity vectors, in addition to the component-wise coherence and
phase matrices, there is a quantity which measures the overall co-
herency of two velocity vectors. In essence, the coherency of a pair
of horizontal hodographs is considered. Each horizontal velocity vec-
tor series is written as a complex-valued series with real argument,
t, i.e., wi(t) =ut) +iv(t). The material of this section was de-
rived in a search for a technique which would provide quantitative re-
sults which were invariant under coordinate rotation.

Autovariance and Autospectrum Functions. The autovariance

function for w 1is defined as, Jenkins and Watt (1968)

R__(7) = wiOWHET)
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Figure 42. The geography of the hodograph.
a. The hodograph ( (u, v): geographic coordinates;
(u',v'): semi-principal axes coordinates;
(u", v"): ellipse-axes coordinates)
b. Decomposition of the hodograph into clockwise and
anticlockwise components



465

where ( )* 1is the conjugate operator; in coordinate form,

R (1) = [Ruu(T)+RVV(T)] + i[Rvu(T)—RuV(T)],

= [R_ (MR _ (1] - i20__(7),

which is invariant under coordinate rotation by Section A. Then the

autospectrum is

P (o)=F.T.(R__ (7))

WwW WW

=[P (e)+P_ (o)l +2Q (o),
uu vvVv uv

which is also invariant. PWW(O') is not an energy spectrum in the
usual physical sense because it is two-sided; i.e., it is neither odd

nor even as a function of frequency. The variance of w does equal

)
S‘ P (o)do .
WW

- 00

Covariance and Cross Spectrum Functions. The covariance

function for W, and w2 is defined as
%
R (7) = w, (t)w_(t+7)
W, W 1 2
1 2
= [R (T)+R ()] + i[R (T)-R (m].
ulu2 V1V2 Vlu2 ulv2
When w and w undergo a coordinate transformation to w!

1 2 1
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and vv'2 by a rotation through an angle of © and 02, respec-

tively, it follows that

Thus, the absolute value of the covariance function is invariant. The

cross spectrum is

P (c) = F. T. (R (1)) = P (¢) + iQ (o),
¥i%v2 W1i%2 1% W1i%2

where the cospectrum is

Q () = [Q (0)+Q ()] + [P (0)-P (e)].
1V2 1% V1V2 vi%2 Y1V2

The absolute value of the cross spectrum is invariant under coordi-

nate rotation from the above. The forms of P (o) and
W, W
172
w. W (¢} contain terms accounting for the component-wise coupling
172

of the two velocity vectors; these terms are the elements of the
component-wise cross spectral matrix.

Coherence Squared and Phase Functions. The coherence
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squared, yz, and phase, ¢, are defined in the usual way,

dropping the frequency argument, o, for convenience:
P, I°
2 172
‘Y =
W W P
12 W W, WLW,
2 2
[Pu u +Pv R v “Qv ] +[Qu u +Qv V+PV u _Pu v ]
B 172 12 12 172 172 12 12 12
- [P, 4 Py o t29, , P, o tF +2Q ]
11 1Y M %22 eMe 272
and
Qw w
-1 12
¢W1W2 = tan [P ]
12
[,  +Q +Pu-Puv]
BT MY 1Y Vit Mie
i [Pu+va+qu_vu]/
172 2 172 i
By the preceding remarks, yz is invariant under coordinate rota-
tion and ¢', |, =¢ +(6,-6,).
wiw, W, W, 2 1
It remains to prove that 'yz w is bounded above by 1.0.
172

The most instructive way to do this is to use a model for W, and

w composed of a sum of sinusoids in each hypothetical measure-

2

ment bandwidth. Form vv1 and vv2 from a set of sinusoids:

u, = A_ cos (ot) + B, sin (ot),

1 1 1

v, = C1 cos (ot) + D, sin (ot),

1
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u, = A2 cos (ot) + B2 sin (ot),
and '
v, = C2 cos (ot) + D2 sin (ot),
thus
W, F i[(A(lk)cos (o‘kt)+B(lk)sin (o*kt))+i(C(1k)cos (O'kt)+D(1k)sin (o‘kt))],

and similarly for w where k is summed over the number of

29
frequencies in a measurement bandwidth. Dropping the superscript

k for convenience, it is straightforward to show that

1
P = - - -G,
ww "3 Z[(A.1+Di)(Aj+Dj) + (B.1 C.l)(Bj cJ)]
i k
and
1
Qw.w. =3 Z‘,[(Ai+Di)(Bj_Cj) - (AJ.+DJ.)(Bi-C_1)]a
i ] k
Now take
I(k) = [(A1+Di)5 (Bl‘“‘cl)]
and
T(x) = [(A.+D.), (B.-C.)],
) = [ i J) ; J)]
thus
P :-;—[ZT-_’] :%z |T]|7] cos &
i k k
and
Q=2 [2TxT1=5%|T||7] sins
w.w., 2 2 ’
1] k k

where ¢ is the angle between T(k) and T(k).
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With use of the C-B-S inequality in summation form, it follows that

P .2 7|17 2 U i 412
|PW.W,| :Z{[Z | T1{3] cos ¢]" + [= |1]]7] sin ¢]7}
i k N
i"i‘ {[= lTIZ(Z |.—T’|2 cos2¢ + Zl?lzsinzq;)}
k k k
-3 =IT1%207)°
k k
=P ()P (o)
W, W W .W
1.1 ] ]
Therefore,
2
YW.W.(O')<1 0;
1]

the equality holds only when T =7 forall k or when there is only
one sinusoid in a measurement band. yz and ¢ for complex-
valued series obey the same statistics as they do for real series.
The equations for the cospectrum and quadrature spectrum are in the

proper form for use in band-averaging a set of Fourier coefficients.

Since P = l— z [(A-I-D)2 + (B=C)2], then P =0 if and
ww 2 K wWW
only if A(k) = -D(k) and B(k) = C(k) for all k. Thus, when the

. 2 . .
denominator of vy vanishes, the numerator also vanishes.

Degenerate Cases. If one series is complex, e.g., velocity,

and a second real, e. g., temperature, set w, =w=u +iv and

wW., = S. Then
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P =P =P -0
W, W w8 us vs
172
and
Q =0 =Q + P
W, W WS us vs
12
thus
P -0 %0 +p J°
2 us Vs us Vvs
Yws =P [P +P_ +2Q ]
sst uu VvV uv
and

Q 4P
o _ tanﬂl us Vs
ws P -Q )
us v

s

If both series are real, i.e., V1 and v2 = 0, then the
above formulae reduce to the ordinary forms in the cross spectrum

analysis of real-valued series.

The Complex Spectrum of a Pair of Hodographs. As seenin

Section B, the hodograph can be reduced to components with positive
and negative frequencies. The spectrum of the hodograph, Section

B, for positive and negative frequencies is recognized as the spec-
trum of a complex-valuedseries asdiscussed above. The detailed steps
are illustrated for a pair of hodographs. Takeu, = (A1+C1)cos(0't+61)

1
and v, = (Al—Cl)sin(crt+Ol), then

i(ot+0, ) -i(ot+0, )
w, =u_ +iv., = [A e +Cje ]

and an analogous form is used for WZ' Thus,



R (7) :AZe-mr-r+ C2e+wT9
W, W 1 1
11
R 2 -ioT 2 ioT ,
WZWZ(T) = Aze + Cze
and
-i(O'T-(Ol-GZ)) i(oT-
R () = A A e + C_.C_e
W, W 1 2 1 2
12
Then
2 2
P (0 )=A "8(c-0c )+ C.8(c+o ),
vvlvv1 o 1 o 1 o)
2 2
P (0)=A_6(c-0c )+ C_&(c+o ),
W W_ O 2 o 2 o
2 2
and
- i(eluez)
Pwlwz((fo) = A1A26(0-cro)e + C1C26(0'+cro)e
thus
~ 2 2.2 2.2
P ()" =A A 8(c-0c )+ C, C s(oc+c ),
vvlvv2 o) 1 2 o 1 2 o

where &() 1is a Dirac delta function,

(8,-6,))

-1(91—92)

For a sum of sinusoids in a measurement band, the coherence

squared is then

(ZA1A2)2
2 2 720
Z(A)YZ(A)
1 2
'YZ =
W W
1 2 2
(= CICZ)
2 7 °<0
z(c ) s(C,)
Thus, there is a value of \/2 defined for the anticlockwise
w

V2

3

471
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(¢ > 0) portion of Wy and w, and a value for the clockwise,

(0 < 0) portion. Several special cases exist for the spectrum of the

hodograph:
i) A = C, P (-0)=P (o), rectilinear motion,
WwW WW
ii) C = 0, Pw (-0) = 0, pure anticlockwise motion,
W
iii) A =0, P (¢) =0, pure clockwise motion.
wWwW

In general, P (-o)< P () for net anticlockwise motion and
WW WW

vice versa for net clockwise motion.



473

APPENDIX IV

Two Analogues of the Free Surface Boundary
Value Problem for Inertial-Internal Waves

Since the free surface boundary value problem, viz.

2 .2
_f
i) GE: ¢ - qu;zz -0, where R%=( "2 5

N -o
ii) RBC: s = constant =0 at =z = -H, and

),

o‘z-f2

g

iii) FBC: ¢ __+ vy, = 0 at =z =0, where vy=( ).

is rather unfamiliar, it is useful to examine a mechanical analogue.
As noted by Tikhonov and Samarskii (1963, p. 44), the boundary value
problem for the angular rotation of a rod undergoing small amplitude

torsional vibrations, 0, with a fixed end (x =1{) and a pulley on

the other end (x = 0), is formulated as:
iv) © _aze = 0, where azzg_{, [0<x<4; 0<t<oo],
tt XX k - -

k is Young's modulus,
G is the shear modulus, and

J is the moment of inertia,

2
vi) 6, +b 6 =0 at x=0,
tt b4

and
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b2~y

in the inertial-internal wave problem.
The behavior of & in x is similar to that of © in time, t.
The effect of motion of a free surface on inertial-internal waves is
similar to that of a torque applied by a pulley, situated at the end of
a rod, on torsional vibrations of a rod. (If SOV applies, the FBC be-

comes:

where k is the horizontal wave number. Then an analogy can be
made to a vibrating spring with an elastic attachment at x =0~ 2 =0
in the inertial-internal wave problem.) To model the variable density
structure of the ocean, a rod of variable az, i. e., density, diame-
ter, etc. would be appropriate. To model propagation of inertial-
internal waves into shallow water, shortening the rod from the fixed
end as a function of time would be appropriate.

A close analogy can be made to the problem of the motion of an
infinite string with a mass in the center which has been given an ini-
tial velocity, Tikhonov and Samarskii (1963, p. 81). For the inertial-
internal wave problem, consider a periodic point source perturbing
the free surface at x = 0. The domain is an infinite half-plane

(-0 < x <o, -0< z<0), since the only conditions that can be



applied in this case are at the free surface and the origin.
The formulation of the problem is:
i) and iii) as before, plus

vii) y =0 at x=0, z =0,

viii =w at =0, z=0, and
) pr o x ’
ix) ¢ — constant along z = 0.
[x]|=e
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Since the GE has general solutions of the form f(z+ax) and g(z-ax),

the FBC is used to find the permissible forms of f and g.

example, since

o)+ ) =0, (L=ztax)

then

b.2
-3¢
£(¢) = Cle + C2
and g has the same form. The condition vii) implies that
C,=-C.; th diti iii) implies that C (E)Za— or
5 = -Cys e condition viii) implies that - 103 =W
C.=-—2w . If g is written as
1 2 o
b
b .2
-3
ghn) = C3e + C4, (n=z-ax),
then C_ = w and C, = -C Thus,

For
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D1 = {(z+ax)> 0; (x> 0, z< 0)},

D2 = {(z-ax) > 0;(x < 0, z< 0)},

D3 = {otherwise},

where condition ix) is satisfied by inspection.

The streamlines are characteristics. The free surface and body mo-
tion decay exponentially away from the origin and away from the char-
acteristics through the origin, respectively. Since this is a linear
theory, a general, harmonic surface perturbation can be decomposed
into such motions. Of course this problem is idealized, but it illus-
trates the influence of a harmonically perturbed free surface on a

stratified medium, without regard for the effect of finite depth.
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APPENDIX V

Derivation of the Governing Equation for Inertial-Internal
Waves With the Frontal Interaction and Without
the Boussinesq Approximation

The Boussinesq approximation was made in deriving the GE for
inertial-internal waves with the frontal interaction in Chapter II. Since
horizontal density gradients are significant in the case of frontal in-
teraction, and since the basis of the Boussinesq approximation is the
neglect of horizontal variations of density in the momentum equations,
a rigorous derivation of the GE must not make the Boussinesq approx-
imation (Healey and Le Blond, 1969).

The zero-order equations are those for geostrophic equilibrium

in the alongshore component of flow and hydrostatic equilibrium:

(1) -PlfV = 'px
and
(2) O = =pz = p1g7

where Py =P, tp and Py and E are defined as in Chapter IIL.

The only first-order term neglected in the derivation of the GE
in Chapter II is one involving pf_\;, where p is the perturbation
density, in the x-component EOM. Hence, the system of equations

is
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(3) pl(ut—fv) - pfv = P
(4) pl(vt+fu+ u;X+w-\;z) = 0,
(5) PW, = -P, - 8P,

(6) u_ + w_ = 0,

and

(7) p, +ulp;) +wlpy), =0

The p, v, and p variables are eliminated from (3) through
(7) by cross-differentiation and subtraction and the stream function is

introduced into the resulting equation to yield:

(8) (N"-0%)p - 2MTy - (07-f(Ev Dy
2 2 2
NT 2 M” 2
+ [fv — L]JZZ+ —g— (o -f W + —g—O‘ L]JX] = 0,

where the terms inside [ ] are neglected in the GE used in this
dissertation.
To assess the significance of the neglected terms, the following

. . .. . 35
nondimensionalization is used:

The nondimensionalization used here differs slightly from
that used by Healey and Le Blond (1969). Their horizontal scale for
the perturbation flow was the same as their vertical scale. They also
introduced the slope of the sea surface into the analysis for v and
a separate horizontal scale for the mean flow. Their conclusions are
identical to those made in this appendix. They took =z to be posi-
tive downwards which accounts for the sign differences between their
work and the author's work,



(py)

i) 1z . -a, (a ~ 10_7 c.g.s.)
P1
(py)

i) —% -b, (b~ 1071%¢. g.s.)
P1

1ii) Q:%,

vi) ¢ =y ¢!

vii) fv = v'gbH,

where H is the scale depth, L is the scale length, and q;o

a scale stream function.

Dropping the primes, (8) becomes

2
2 2 2 f
(9) 63(1-Q NJxx + 2€2€3¢xz - (- NZ— Vxe?.€3)quz
2 f‘2
+e1[-ve2¢ F(Q7- S -ee QY ]=o0,
where
2
N -3
€ -aH(=—?)~ 10 -,
b -3
ezz—a"(——s)~ 10 -,

and
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is
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H -2
€3 =T~ 10

for the continental shelf region and low frequency inertial-internal

waves.

Because €~ €3 for the low frequency inertial-internal waves,

i.e., for o~f, then (9)is identical to the GE derived in Chapter II

to O(el). The neglect of the terms with the factor el is identical

to making the Boussinesq approximation. Therefore, the GE derived

. . . . . -3
in this dissertation neglects effects which are only the order of 10

compared to those included.





