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Abstract interest in understanding long-term coastal morphodynamics has recently increased as climate
change impacts become perceptible and accelerated. Multiscale, behavior-oriented and process-based
models, or hybrids of the two, are typically applied with deterministic approaches which require consider-
able computational effort. In order to reduce the computational cost of modeling large spatial and temporal
scales, input reduction and morphological acceleration techniques have been developed. Here we intro-
duce a general framework for reducing dimensionality of wave-driver inputs to morphodynamic models.
The proposed framework seeks to account for dependencies with global atmospheric circulation fields and
deals simultaneously with seasonality, interannual variability, long-term trends, and autocorrelation of wave
height, wave period, and wave direction. The model is also able to reproduce future wave climate time
series accounting for possible changes in the global climate system. An application of long-term shoreline
evolution is presented by comparing the performance of the real and the simulated wave climate using a
one-line model.

1 Introduction

Over millennia, Earths’ climate has been continuously oscillating. These changes are reflected in the ocean’s
extent (sea-level), contents (distribution of heat and salt), and behavior (wave climate and circulation pat-
terns); and consequently their impacts to the coast. Approximately 10% of the world population lives in the
coastal zone below 10 m elevation [Nicholls and Cazenave, 2010], and it is thought that climate cycles have
motivated humans to relocate throughout history [Griggs, 2013]. The latest IPCC [2013] report confirms that
climate change is unequivocal, as evidenced by unprecedented, over decades to millennia: warming of the
atmosphere and the ocean, diminishing ice sheets and rising sea levels. Motivated by anticipated changes
in sea level and wave climate, coastal researchers have increased their interest in understanding long-term
morphodynamic evolution [Elko et al., 2014]. Nevertheless, understanding and modeling long-term behavior
remains a significant challenge. Many modeling techniques exist to simulate long-term coastal change.
Process-based numerical models tend to induce discretization errors and typically require high computa-
tional efforts. In order to reduce computational cost, several acceleration techniques have been developed
including model reduction, input reduction, and behavior-oriented techniques [de Vriend et al,
1993a,1993b]. In this paper, we provide a novel input reduction technique for wave-driven, long-term mor-
phodynamic modeling. Many input reduction techniques exist, like the Multiple Representative Wave
(MRW) approach [Steijn, 1992], and the Simple Representative Wave (SRW) approach [Chesher and Miles,
1992], which seek to reconstruct the measured wave forcing. Southgate [1995] demonstrated the impor-
tance of accounting for the wave chronology. Chonwattana et al. [2005] proposed an improved method
that conserves wave energy flux. Recently, Walstra et al. [2013] show how to maintain the frequency of
occurrence and the chronology of the original wave time series. To simulate the long-term effects of tide,
Latteux [1995] introduced an approach to represent the whole tidal cycle using only a small number of tidal
constituents. Several input-reduction techniques are integral to the long-term morphology models pro-
posed by Roelvink [2006]. Examples of the application of these techniques include Lesser [2009] and the
hybrid model of [Zhang et al., 2004]. As an alternative to deterministic long-term predictions, Callaghan
et al. [2008, 2013] proposed use of probabilistic techniques.
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Figure 1. Diagram of the model fitting and simulation.

In order to incorporate climate change, large-scale and long-term morphodynamics studies require accurate
forcing definition in terms of wave-driver behavior and evolution [Kaergaard and Fredsoe, 2013]. In this
paper, we focus on methods to provide a reduced wave input time series, which is often considered the
main driver of coastal evolution. The method maintains the chronology of the wave conditions, a key com-
ponent in morphodynamics [de Vriend et al., 1993a; Walstra et al., 2013], but also in estimating the probabil-
ity of structural failure of offshore platforms [Salvadori et al., 2014] and vertical breakwaters [Goda, 2010].
Even for different drivers than waves, e.g., wind, methods that retain the temporal evolution of the forcing
can be crucial, like in the computation of fatigue loads in wind turbines [Thomsen and Sarensen, 1999]. Fur-
thermore, in a changing climate, we need to understand any climate-controlled driver dependencies. The
main goal of this research is to introduce a general framework for reducing dimensionality of wave input,
taking into account global atmospheric circulation fields and dealing simultaneously with seasonality, inter-
annual variability, long-term trends, and autocorrelation of wave height, wave period, and wave direction.
Evolution in these dependencies will result in changes in the wave climate driver behavior.

In this paper, the multiscale climate emulator for long-term morphodynamics (MUSCLE-morpho) is pre-
sented. The paper is organized as a sequence of successive steps to be performed (see Figure 1). Below, sec-
tion 2 describes the location where the model is applied and the data used in the model. Next, section 3
explains the initialization of the MUSCLE-morpho model and section 4 presents the validation of the model
and an example of application for long-term mophological evolution. Finally, the conclusions of this paper
are presented in section 5.

2. Data

The proposed methods are applied to the Northwest coast of Spain (lon = 9.25°W and lat = 43.5°N, WGS84
global reference coordinate system). The North Atlantic coast experiences significant wave heights ranging
from 1-8 m, mean periods of 6-12 s, and mean direction from the Northwest at approximately 280°-300°.
Although we focus here on the North Atlantic, the methods presented are applicable to a wide range of
geographic settings.

2.1. Predictor Characterization
Surface winds are the primary driver of ocean waves. However, in global circulation models, near-surface
wind fields are not as well reproduced as sea-level pressure fields [Caires et al., 2006]. Furthermore, wind
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fields can be diagnosed from sea-level pressure fields. Specifically, the geostrophic wind direction is well-
represented by isobars and geostrophic wind speed is proportional to pressure gradients. Therefore, sea-
level pressure fields and the square of sea-level pressure gradients define the wave predictor indices. This
approach is in line with the downscaling statistical predictor used by Wang et al. [2012], Casas-Prat et al.
[2014], and Camus et al. [2014a]. In this work, we use the Sea Level Pressure (SLP) fields of the NCEP/NCAR
reanalysis-l [Kalnay et al., 1996] from the National Center for Environmental Prediction-National Center for
Atmospheric Research. The SLP data from NCEP-NCAR reanalysis-I used in this work consist of 6 hourly fields
on a 2.5° by 2.5° grid.

2.2. Predictand Characterization

Historical data on the local wave climate predictand are required in the MUSCLE-morpho model. The histori-
cal wave information used in this work is the ocean wave reanalysis database Global Ocean Waves (GOW)
[Reguero et al., 2012]. Here we use waves from a GOW regional simulation over the European Atlantic area,
which spans from 27.25°N to 57.25°N and 20°W to 37°E with a spatial resolution of 0.25°. The European
Atlantic domain is forced with wind fields from SeaWind |, a dynamic atmospheric downscaling from NCEP-
NCAR reanalysis-I [Menendez et al., 2013]. This model provides hourly sea-state parameters (significant wave
height, mean period, peak period, and mean wave direction) from 1948 to 2014. Because of inhomogene-
ities in NCEP/NCAR reanalysis prior to 1957 [Kistler et al., 2001], the time period covered by this research is
from 1960 to 2013. Data from 1960 to 1989 (30 years) is selected to perform the model fit, and data from
1990 to 2013 (24 years) covers the validation period.

3. Model Fit

Below we describe the procedure for establishing a reduced-dimensionality, multivariate sea-state time
series. The procedure attempts to take into account dependencies from global atmospheric circulation
fields and deals simultaneously with seasonality, interannual variability, long-term trends, and autocorrela-
tion of the trivariate sea state parameters (wave height, period, and direction). As shown in Figure 1, the
procedure is divided into two phases, one concerning the definition of the predictor, and the other con-
cerning the definition of the predictand and its relationship to the predictor.

3.1. Predictor Fit

In section 2.1, SLP fields and square SLP gradients have been defined as the predictor of the wave data for
the study site. The predictor data is processed in two steps, described below.

3.1.1. Step 1: ESTELA Method

To extract the recent and past atmospheric conditions with daily resolution (daily mean SLP fields and square
SLP gradients) over the North Atlantic basin, the ESTELA method of Pérez et al. [2014a, 2014b] is applied. The
ESTELA method evaluates the source and travel time of wave energy reaching a local area. Thus, following
the methodology proposed by Camus et al. [2014b], a dynamic predictor is defined by a local component
which represents short-wave-period seas and a regional one which represents long-period swell. A local area
(green rectangle in Figure 2) covering latitude from 40°N to 50°N and longitude from 20°W to 5°W with 1
day of temporal coverage (the same as the wave record) and a regional area covering latitude from 35°N to
70°N and longitude from 60°W to 5°W with 4 days of temporal coverage (the wave record day and three pre-
vious days) are defined to extract the recent and past atmospheric conditions with daily resolution (daily
mean SLP fields and square SLP gradients) in these areas over the North Atlantic basin.

3.1.2. Step 2: Principal Component Analysis

A Principal Component Analysis (PCA) is then applied to the SLP fields to obtain the dominant spatial vari-
ability patterns (EOFs) and their corresponding temporal coefficients (PCs). To reduce the dimensionality of
the temporal SLP fields while preserving the maximum variance of the sample data, the first 36 modes from
the PCA analysis (explaining 95% of the variance) are selected as the predictor of the wave data in the
Atlantic basin. As an example, the covariate associated to the first mode is mathematically expressed as
PC;(t), where t is time. The PCs are the covariates for both models fitted below.

Figure 2 shows the first four EOFs and the corresponding PCs (PC,(t), PC,(t), PC5(t) and PCy(t)) of the predic-
tor, the PCs are standarized and the EOFs multiplied by the corresponding standard deviation for easy com-
parison. The EOFs are defined by the anomalies of SLP and squared SLP gradients in the generation and
local areas. The SLP anomalies are represented by contour lines, with positive anomalies in red and negative
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Figure 2. The first four empirical orthogonal functions (EOFs) and principal components (PCs) of the predictor (SLP). The SLP anomalies are represented by contour lines, with positive
anomalies in red and the negative anomalies in blue. The anomalies of the squared SLP gradients are represented with blue-white-red scale. The green point represents the study site,
and the green polygon represents the local area for the predictor.

anomalies in blue. Note that in the case of the regional area, the land points are not considered in the pre-
dictor definition, but they are considered in the local area.

3.2. Predictand Fit

The homogeneous, continuous, and calibrated time series of multivariate wave climate described in section
2.2 representing the predictand in the MUSCLE-morpho model is transformed into a Continuous-time Mar-
kov chain [Norris, 1997a,1997b] in three steps.

3.2.1. Step 1: Sea State Classification

In the first step of the predictand fit, the multivariate continuous time series is categorized into discrete sea
states by classification techniques. Following Camus et al. [2011], the K-means algorithm technique (KMA) is
applied to multivariate time series of wave height, period, and direction. The maximum dissimilarity algo-
rithm (MDA) is applied as a centroid initialization technique to force the KMA technique to correctly
describe the diversity of the wave climate [Camus et al., 2011]. This method is applied to the GOW multivari-
ate data set from 1960 to 1989, to obtain N = 16 sea states clusters. We note that 16 clusters are selected
(i) for the sake of simplicity, (ii) to facilitate implementation, fit, and interpretation of the model results and
(iii) to reduce computational effort. The classification produced by the KMA algorithm applied to the predic-
tand data is shown in Figure 3. The black and colored points represent the centroids and classes of the pre-
dictand data, respectively.
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Figure 3. (a) Multivariate classification and time series of (b) wave height, (c) period, and (d) direction reduced in terms of cluster sequencing and duration. The different colored bins
represent the different clusters. The width of the bins represents the duration within each cluster, and the height of the bin represents the minimum and maximum value taken for each
variable of the multivariate wave climate.

3.2.2, Step 2: Time Series Reduction

Once the classification is obtained, each hourly record of wave height, period, and direction belongs to one
of the 16 clusters namely, Sea States (SS). Subsequently, the hourly data are categorized in terms of event
sequence and duration. The event sequence time series represents the evolution (ordering) in time of the SSs.
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Figure 4. Reduction of the multivariate time series into a continuous-time Markov chain as proposed by Norris [1997a,1997b].

The duration time series represents the persistence of each SS. The projection of the multidimensional initial
data (regardless of the size) into event sequence and duration time series using classification techniques
seeks to preserve the (i) probability of being within a particular SS for a duration d and (i) the probability of
changing between one SS n; to another n;. In step 3, models for both duration and event sequence are
obtained including any global atmospheric pattern, seasonality, interannual variability, long-term trends,
and autocorrelation relationships in their definition. An integer value between n =1 and n = 16 is arbitrarily
assigned to each SS, as in Figure 3, resulting in (i) the sequence of SS, which is modeled with a time-
dependent logistic model, and (i) the sequence of persistence for each SS, which is modeled with a time-
dependent exponential distribution. This procedure reduces the multivariate time series to a bidimensional
data set in SS sequence and persistence space as shown in Figure 4.

3.2.3. Step 3a: Persistence Model

In this section, we describe the procedure to obtain the persistence model. We fit a regression model
for each SS cluster based on a time-dependent Exponential Distribution (ED). The lone scale parameter
ay, is obtained using pseudo-optimal selection techniques following Minguez et al. [2010]. SS persistence
records are assumed to be independent random variables. The persistence D, of each cluster n; at time t
follows an ED with a time-dependent scale parameter o, and a probability density function (PDF)
given by:

g(dr;Ur):;e ot (1

Note that D; is the random variable associated with the persistence of a particular cluster at time t and d, is
a particular value or data of the corresponding random variable. To introduce seasonality, long-term trends
and the influence of different covariates (predictor indices defined in section 3.1), the model proposed by
Menéndez et al. [2009] and Minguez et al. [2010] is formulated for the scale parameter as follows:

Ps Q,
log (at)=ao+2[a¢2,',1cos (iwt) +oisin (iwt)]+ocLTt+Z o PCi (1) )
=1 k=1
where t is given in years, log (a;) ensures positivity of the scale parameter (g, > 0), 0, is the mean value, o;
are the harmonic amplitudes, w=2x/T is the angular frequency, T is a period of one year, and P, is the num-
ber of sinusoidal harmonics to be considered within the year, o, r and «° are the coefficients of the long-
term trends and covariates, respectively, Q, is the number of covariates considered, and PC,(t) is the value
of covariate k at time t.

The parameters are estimated maximizing the likelihood function and the optimal combination of parame-
ters is obtained minimizing the Akaike Information Criteria (see details in Minguez et al. [2010]). (Supporting
information Table S1file shows the optimal coefficients obtained for each SS.)
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3.2.4. Step 3b: Sequence Model

Step 3b consist of modeling the SS sequence using an autoregressive logistic model (ALR) that allows the
simulation of synthetic sequences of SSs while taking into account different covariates such as seasonality,
predictor indices (PC(t) defined in section 3.1) and autoregressive terms. Appropriately modeling SS
sequence is important because it is known that sea conditions at any given point in time depend on the
previous conditions and may be affected by atmospheric behavior of both the present and previous days.
Moreover, the qualitative response of the ALR model is useful when working with classified data. Further
information related to the theoretical foundation and covariate implementation can be found in Guanche
et al. [2013]. Here, the fitting process is described briefly.

Let Yi;t=1;...; N be the observations of SS at time t, with the following possible outcomes Y; € {1,...,ns}
related to each SS. Considering X;; t=1;...; N to be a time-dependent row vector of covariates with dimen-
sions (1Xn,) (i.e., seasonal cycle, principal components PC,(t) of synoptic circulation, long-term trend, etc.),
the autoregressive logistic model is stated as follows:

Prob (Yt:i‘Yt_1 yeony Yt_e,Xr):
Npe e
exp(Bo;+ B icos wt+f, sin wt+z BECPG(t ﬁi”t—#ZYt,jyj’,)
=
_ (3)

Ngs Npc

Zexp Box T B1 x€os wt+ By sin wt+z PQ z‘+ZYr ~Vjk)

where t is given in years, f5,,; correspond to annual mean values, and f3;; and f3,; are the harmonic amplitudes.
PC{(t) are row vectors of the n, different covariates, and /)’f ,C is the corresponding parameter vector. ﬂfr repre-
sents the long-term trend effects. Y ,_ ; is the SS of the previous j-states, y;; is the parameter associated with
previous j-state, and the order e corresponds to the number of previous states that influence the actual SS.

Parameter estimation is performed using the maximum likelihood estimator, which requires the definition
of the likelihood function. The criteria to choose the final model, i.e., the order of the auto-regressive com-
ponents, seasonality, number of predictor indices, etc., are based on statistical significance, in particular, the
likelihood ratio (LR) statistic (see details in Guanche et al. [2013]).

The model includes terms representing harmonics, covariates, and a second-order Markov Chain. (The coef-
ficients for the different terms in (3) are presented for each SS in supporting information Table S2 file.)

4. Model Simulation/Validation

Once the fitting process is completed, the model allows for the simulation of categorical synthetic time series of
SSs (like a continuous-time Markov chain; Norris [1997a,1997b]). Note that the model can be performed as: (i) an
input reduction technique, allowing for the generation of synthetic series of SSs representative of past wave cli-
mate characteristics. (ii) A model of future SS time series including changes in global climate system, and thus
changes in magnitude, frequency, persistence, and event sequence of the wave climate. Figure 1 shows the
procedure to simulate nominal synthetic series of SSs in the two cases above. We describe these methods in
the following two sections, one for the predictor simulation and the other for the predictand simulation.

4.1. Predictor Simulation

While the purpose of this research is not to define a new methodology for simulating predictor variables, it is
important to mention the works in this field of Guanche et al. [2013] for inferring daily covariate indices from
monthly sea level pressure fields, Pérez et al. [2014, 2015] for computing future regional multimodel projections
of surface variables driven by the atmospheric circulation (from the different global climate models, GCMs) based
on weather types and statistical downscaling. For reducing uncertainty in temporal series of SS predictions, histor-
ical SLP fields, preprocessed as in section 3.1, are used as predictor covariates in the simulation model.

4.2. Predictand Simulation

Step 1 of the predictand simulation procedure involves selecting a SS cluster at time t;. This is computed, by
first obtaining occurrence probabilities of each cluster Y from the ALR model at time t; with n. covariates
(simulated PCs) considered and e previous SSs. Formally, the categorical distribution that is the generalization of

ANTOLINEZ ET AL.

MUSCLE-MORPHO 781



@AGU Journal of Geophysical Research: Oceans 10.1002/2015JC011107

Group 10 [JjGroup 11 [J§Group 12 [JGroup 13 [ Group 14 [Group 15 [JjGroup 16

Group 3 [lGroup 4 [lGroup 5 liGroup 6 [l|Group 7 = Group 8 [llGroup 9
HISTORICAL

B Group 1 [lGroup 2

Probability

0 .
1990 1993 1995 1998 2001 2004 2006 2009 2012

SIMULATED

Probability

1990 1993 1995 1998 2001 2004 2006 2009 2012

Figure 5. Monthly probability of occurrence of each SS for the validation period, for the (top) historical and (bottom) synthetic series. Interannual variations along years are also shown
in this plot, as those presented in the group 10. In the synthetic series, the variability is smoothed because it represents the mean value of the 100 simulations.
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Figure 6. Daily probability of occurrence of each SS for an average year over the validation period for the (top) historical and (bottom) synthetic series. The variability presented in the

simulated series differs from the historical one because it represents the mean value of the 100 simulations.
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4.3. Validation

the Bernoulli distribution for a qualitative
random variable is obtained at time t;
from the ALR model. The parameters
specifying the probabilities of each pos-
sible outcome are constrained only by
the fact that each probability must be
in the range 0 to 1, and all must sum
to 1. Thereby the corresponding SS at
time t; from the cumulative probabilities
of the categorical distribution is selected
applying a simple Monte Carlo (MC)
method. Step 2 models the persistence
in the current SS n;. The scale parameter
of the ED at time t; for cluster n; is
obtained accordingly to (2) with Q,
covariates. This allows the generation of
probabilities based on an Exponential
Distribution (ED), used in Step 3 for
obtaining the persistence d; of cluster n;
at time t. The persistence value d; is
again obtained by correlating cumula-
tive ED probability of persistence with a
random number in [0,1] from a simple
Monte Carlo (MC) method. In Step 4, the
synthetic time series of SSs is con-
structed from the cluster and persistence
values obtained in the previous steps,
and a new time instance tj.=t;+d; is
calculated. These steps (1-4) are
repeated until the synthetic time series
of intended length is completed.

Here, the procedure described above is
applied for the years 1990-2013 to vali-
date the methodology. The simulation
(see Figure 1) is repeated 100 times and
95% confidence intervals are given with
results. The initialization of each simula-
tion requires the assumption of a number
of previous SSs for the Autoregressive
term of the ALR model. In this case, the
previous e=2 SSs have been taken
because of the highest autoregressive
term in the best sequence model has
order 2.

In this section, results are discussed to validate the prediction capabilities of the model for the Northwest
coast of Spain. This validation is performed by comparing the results of the simulations with historical data.
In this validation, we compare: (i) probability of occurrence of each SS, (ii) probability of transfer between
SSs, (iii) mean wave energy flux, (iv) mean wave energy flux direction and (v) modeled shoreline evolution.
Additionally, several temporal scales (i) concerning the interannual, (ii) seasonal, and (iii) daily behavior are
analyzed. The agreement between the simulated and historical data is computed with the correlation coeffi-

cient (p), the root mean square error (RMS), and the bias.
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Figure 8. Comparison between (left) historical and (right) simulated total transition probabilities between clusters.

In long-term morphodynamic simulations, the characterization of the wave climate is critically important. Thus
any synthetic series must reproduce “events” similar to historical ones. In terms of categorical series, the probability
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Figure 9. Monthly transition probability between clusters. (top, left) Matrix corresponds with January, and (bottom right) with December. The month increases from left to right and top
to bottom (January, February, March; April, May, June; July, August, September; October, November, December). The historical matrices are plotted on the left side and the simulated
matrices are plotted on the right side. Each matrix is defined following the cluster grouping as in Figure 8.
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Figure 10. Comparison between historical (x axis) and simulated (y axis), total Wwave chronology allows consideration of

transition probabilities between clusters. Green dots represent mean values and beach memory. Thus, the transition
blue ones represents 95% confidence intervals. probability between SSs must be simu-
lated properly.

Figure 8 compares the transition probabilities between clusters in a matrix layout, the correlation
coefficient between observed and simulated transition probabilities p obtained exceeds 0.97 (Cl
<=*0.0015) and the RMS is lower than 3.0%. Figure 9 compares the observed and modeled monthly
transition matrices. Here, p exceeds 0.85 (C/ < *£0.015), the population is unbiased and the RMS is
lower than 9%. Note that the diagonals in the matrices are empty. The probability of transition
between the same SSs is zero and the persistence in the same group is obtained with the persistence
model, e.g., equation (1).

Figure 10 illustrates the observed versus simulated total transition probabilities between clusters in the vali-
dation period (1990-2013). The correlation coefficient (p) exceeds 0.95, with a low confidence interval
Cl < =0.005, an unbiased population and a RMS error lower than 2%.

4.3.3. Mean Energy Flux and Mean Energy Flux Direction

In this section, the wave energy flux (intensity and direction) are validated because of their importance in
sediment transport calculations, as shown by Mil-Homens et al. [2013] and van Rijn [2014]. Furthermore, the
transport of energy by ocean surface waves is crucial for the development of devices capturing wave power
and in the estimation of the cost-efficiency of wave energy farms [Reguero et al., 2015].

In our work, the Energy Flux (EF) is obtained from the wave spectral parameters using the expression:

pg* 2
EF="—"T_1oH 4
6an | —10Ms 4)
where T_, is the energy period that is related with the spectral mean period, Ty, using T_10= mm—*o’ =0oTo1.

Here, o is assumed to be 0.538 [Reguero et al., 2015] and To; ~ To,.

As shown in Figures 11 and 12, the MUSCLE-morpho model correctly reproduces the total wave EF and the
mean EF direction at seasonal scale and interannual scale, respectively. This result confirms that the
MUSCLE-morpho emulator is able to reproduce the time-varying evolution of wave energy flux.

4.3.4. Morphological Application

Finally, we apply wave climate time series developed by MUSCLE-morpho to simulations of long-term mor-
phodynamics. We perform comparisons of morphodynamic simulations using the nonlinear, implicit one-
line model of Vitousek and Barnard [2015] and compare results produced with the real wave climate to the
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Figure 11. Comparison between historical (bars) and simulated (lines) (top) monthly mean energy flux and (bottom) monthly mean
energy flux direction. Solid lines represent mean values, and dashed lines represent 95% confidence intervals.

simulated wave climate. Due to the implicit time-stepping procedure, the model is numerically stable for
arbitrarily large time steps and, thus, is ideally suited to long-term simulations of shoreline change. The per-
formance of the implicit model using input reduction is also compared against an explicit one-line model
that simulates the complete time series.

Conservation of sediment in the alongshore direction neglecting cross-shore transport is the basis for the
one-line shoreline model. The governing equation of the one-line model is given by
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Figure 12. Comparison between historical (bars) and simulated (lines) (top) monthly mean energy flux through years and (bottom)
monthly mean energy flux direction. Solid lines represent mean values, and dashed lines represent 95% confidence intervals.

oy 1.0Q

ﬁ = D7c(97X 5 (5)
where Y is the cross-shore coordinate of the shoreline position, X is the alongshore coordinate, D, is the
depth of closure, Q is the longshore sediment transport rate, and t is time [Larson and Kraus, 1997]. Many
one-line models are subject to a well-known physical instability in the presence of high angle waves [Ashton
and Murray, 2006]. To reduce this instability, we split the typical alongshore sediment transport formula into
nonlinear and linear transports according to

Pyl

Q=Qq | lgsin (2a)— (1—04) x|’
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Table 1. Run Times (Minutes: Seconds) for the Implicit and Explicit Models With the Simulated and Real Waves (SIMA, SIM, RIM, REX)

Runtimes (Each Run)

Time Series Model Time Step Runs Mean Max Min Speed Up
SIMA Simulated Implicit Variable 100 00:9.30 00:9.87 00:8.81 ~28
SIM Simulated Implicit 1h 100 01:42.85 01:48.06 01:38.70 ~2.5
RIM Real Implicit 1h 1 01:40.88 01:40.88 01:40.88 ~25
REX Real Explicit 50s 1 04:12.84 04:12.84 04:12.84 1

where Q, represents the magnitude of the longshore transport rate, «=oyave — %shoreiine represents the angle
between the incident waves and the shoreline and the 0, parameter weights the relative impact of the lin-
ear and nonlinear terms. Note that as waves become normally-incident, the linear and nonlinear transport
terms in equation (6) become identical. The longshore transport rate Qq, is given by the Shore Protection
Manual [SPM, 1984], Qo= % HyCgyp ﬁ where p is the density of water, H, is the breaking wave height,
Cy, is the group velocity of the wave at breaking, K is an empirical constant, p; is the sediment density, and
J. is the porosity of the sediment. Here we assume p=1025 kg/m? p,=2650 kg/m? /=04, and

K=10.0098.

We perform our numerical experiments along an idealized coastline of L = 2 km long with a shoreline orien-
tation of tshoreline=200° from the North (nautical convention), similar to the actual beaches in our study site
(section 2). Boundary conditions are no flux (Q = 0) at the lateral boundaries, consequently embayed beach
rotation driven by longshore sediment transport is essentially simulated. The model is run with 0, = 0.7 and
N = 80 shoreline transects with Ax=25 m grid spacing. The depth of closure is assumed to be D, = 15.5 m
following Birkemeier [1985].

The temporal discretization of the numerical method is varied for different model runs. We compare four
different models, two using historical hindcast waves (as described in section 2.2, hereinafter referred to as
Real) and two using the simulated waves obtained in section 4.2 for the period 1996-2006: (1) the first
experiment, REX, simulates the Real wave time series (hourly hindcast) using the EXplicit model with a fixed
time step of 50 s, (2) the second experiment, RIM, simulates the Real wave time series (hourly hindcast)
using the IMplicit model with a fixed time step of 1 h, (3) the third experiment, SIM, simulates the Synthetic
wave time series using the IMplicit model with a fixed time step of 1 h, (4) the fourth experiment, SIMA, sim-
ulates the Synthetic wave time series using the IMplicit model with a variable time step used to demon-
strate MUSCLE-morpho's ability to “Accelerate” the morphodynamic simulations. Acceleration of each time
step is related to the persistence of the wave climate given by the duration of the SS. Table 1 summarizes
the features and execution times of the different numerical experiments described above.

Note that the variable time step in SIMA is linked with the relative energetic of various wave conditions,
being higher with lower energy conditions and lower with higher energy conditions as determined by the
persistence of the different SS clusters. Table 2 shows the minimum, mean, and maximum values of the
Courant number in the different experiments. The implicit model allows significantly higher Courant num-
bers compared to the explicit model, and the synthetic time series enable the implicit model to develop its
full potential in terms of efficiency.

Figure 13 illustrates one decade of shoreline evolution for the idealized coastal stretch for the four experi-
ments, each reproducing the seasonal and interannual variability of the shoreline position. Results are

Table 2. Time Steps and Courant Numbers for the Implicit and Explicit Models With the Simulated and Real Waves
(SIMA, SIM, RIM, REX)

Courant Numbers

Time Series Model Time Steps Runs Min Mean Max
SIMA Simulated Implicit 4,544-5,068 100 0.37 55.13 2347.2
SIM Simulated Implicit 96,432 100 0.37 2.89 38.05
RIM Real Implicit 96,432 1 0.01 2.60 73.09
REX Real Explicit 6,943,033 1 0.00 0.04 1.00
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Figure 13. Shoreline evolution over a decade. For the simulated waves, the mean value of 100 simulations (solid line) and 95% confidence intervals (colored area) are represented.

shown at 250m spaced transects 1 to 7, from x = - 750 m to x = 750 m, with the domain ranging from x = -
1000 m to x = 1000 m.

The comparison between (1) REX and (2) RIM shows the performance of the explicit method against the
implicit method (Figure 13). The implicit method reduces the execution time by a factor of three while
maintaining the behavior of the shoreline evolution. Comparing (1) REX or (2) RIM against (3) SIM, validates
that the input-reduced time series given by MUSCLE-morpho produces consistent long-term morphological
behavior. Figure 13 demonstrates that the synthetic time series retains the seasonal and interannual
response of the shoreline over a decade. The comparison between (3) SIM and (4) SIMA in Table 1 demon-
strates that using the MUSCLE-morpho synthetic time series reduces the computational time by several
orders of magnitude, even in a relatively simple one-line modeling framework.

This numerical experiment demonstrates that the model is ready to reproduce the morphological evolution
over a range of different time scales (seasonal, interannual, and beyond). The methods presented here are
ideally suited to ensemble prediction, and thus provide a basis for a highly efficient probabilistic shoreline
change modeling framework. In this particular application, we have forced the model to follow the historical
evolution of the daily SLP fields. Further research will be needed to couple this model with a stochastic
model for time series of daily SLP fields [Guanche et al., 2013].

5. Conclusions

The MUSCLE-morpho model allows for the generation of synthetic time series of the multivariate wave cli-
mate accounting for past characteristics. The approach can generate long-term multivariate time series of
sea state parameters (wave height, period, and direction) taking into account many scales of variability (sea-
sonal, interannual) that affect long-term (decadal and beyond) morphodynamics. The MUSCLE-morpho
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model can also be used to generate future wave climate time series and account for possible changes in
the global climate system by means of changes in the covariates (e.g., SLP fields). This method can also cap-
ture long-term changes in persistence and event sequence of the wave climate. Efficient prediction of the
long-term wave climate is vital to modeling long-term morphodynamics. Furthermore, probabilistic,
ensemble-prediction methods will become increasingly important as we further develop the range of possi-
ble climate change scenarios. The MUSCLE-morpho modeling system, described here, represents an input
reduction tool to drive the next generation of morphodynamic models.

References

Ashton, A. D., and a. B. Murray (2006), High-angle wave instability and emergent shoreline shapes: 1. Modeling of sand waves, flying spits,
and capes, J. Geophys. Res., 111, F04011, doi:10.1029/2005JF000422.

Birkemeier, W. a. (1985), Field data on seaward limit of profile change, J. Waterw. Port Coastal Ocean Eng., 111(3), 598-602, d0i:10.1061/
(ASCE)0733-950X(1985)111:3(598).

Caires, S., V. R. Swail, and X. L. Wang (2006), Projection and analysis of extreme wave climate, J. Clim., 19(21), 5581-5605, doi:10.1175/
JCLI3918.1.

Callaghan, D. P, P. Nielsen, A. Short, and R. Ranasinghe (2008), Statistical simulation of wave climate and extreme beach erosion, Coastal
Eng., 55(5), 375-390, doi:10.1016/j.coastaleng.2007.12.003.

Callaghan, D. P., R. Ranasinghe, and D. Roelvink (2013), Probabilistic estimation of storm erosion using analytical, semi-empirical, and pro-
cess based storm erosion models, Coastal Eng., 82, 64-75, doi:10.1016/j.coastaleng.2013.08.007.

Camus, P., F. J. Mendez, R. Medina, and A. S. Cofino (2011), Analysis of clustering and selection algorithms for the study of multivariate
wave climate, Coastal Eng., 58(6), 453-462, doi:10.1016/j.coastaleng.2011.02.003.

Camus, P., M. Menéndez, F. J. Méndez, C. Izaguirre, A. Espejo, V. Canovas, J. Pérez, A. Rueda, I. J. Losada, and R. Medina (2014a), A weather-
type statistical downscaling framework for ocean wave climate, J. Geophys. Res. Oceans, 119, 7389-7405, doi:10.1002/2014JC010141.

Camus, P, F. J. Méndez, I. Losada, M. Menéndez, A. Espejo, J. Pérez, A. Rueda, and Y. Guanche (2014b), A method for finding the optimal
predictor indices for local wave climate conditions, Ocean Dyn., 64(7), 1025-1038, doi:10.1007/s10236-014-0737-2.

Casas-Prat, M,, X. L. Wang, and J. P. Sierra (2014), A physical-based statistical method for modeling ocean wave heights, Ocean Modell., 73,
59-75, doi:10.1016/j.ocemod.2013.10.008.

Chesher, T., and G. Miles (1992), The Concept of a Single Representative Wave for Use in Numerical Models of Long Term Sediment Transport
Predictions, Ashgate Publ., Aldershot.

Chonwattana, S., S. Weesakul, and S. Vongvisessomjai (2005), 3D Modeling of morphological changes using representative waves, Coastal
Eng. J., 47(4), 205-229, doi:10.1142/50578563405001240.

de Vriend, H., M. Capobianco, T. Chesher, H. de Swart, B. Latteux, and M. Stive (1993a), Approaches to long-term modelling of coastal mor-
phology: A review, Coastal Eng., 21(1-3), 225-269, doi:10.1016/0378-3839(93)90051-9.

de Vriend, H., J. Zyserman, J. Nicholson, J. Roelvink, P. Péchon, and H. Southgate (1993b), Medium-term 2DH coastal area modelling,
Coastal Eng., 21(1-3), 193-224, doi:10.1016/0378-3839(93)90050-1.

Elko, N., et al. (2014), The future of nearshore processes research, Abstract 0S22A-08 presented at 2014 Fall Meeting, AGU, San Francisco,
Calif., December.

Goda, Y. (2010), Random seas and design of maritime structures, in Advanced Series on Ocean Engineering, edited by P. L. F. Liu, World Sci.,
Singapore.

Griggs, G. B. (2013), Lost neighborhoods of the California coast, J. Coastal Res., 299, 129-147, doi:10.2112/13A-00007.1.

Guanche, Y., R. Minguez, and F. J. Méndez (2013), Autoregressive logistic regression applied to atmospheric circulation patterns, Clim. Dyn.,
42(1-2), 537-552, doi:10.1007/500382-013-1690-3.

IPCC (2013), Climate Change 2013: The Physical Science Basis. Contribution of Working Group | to the Fifth Assessment Report of the Intergov-
ernmental Panel on Climate Change, p. 33115, Cambridge Univ. Press, Cambridge, doi:10.1017/CBO9781107415324.005.

Kaergaard, K., and J. r. Fredsoe (2013), Numerical modeling of shoreline undulations part 2: Varying wave climate and comparison with
observations, Coastal Eng., 75, 77-90, doi:10.1016/j.coastaleng.2012.11.003.

Kalnay, E., et al. (1996), The NCEP/NCAR 40-year reanalysis project, Bull. Am. Meteorol. Soc., 77(3), 437-471, doi:10.1175/1520-
0477(1996)077 <0437:TNYRP>2.0.CO;2.

Kistler, R., et al. (2001), The NCEPNCAR 50 year reanalysis: Monthly means CDROM and documentation, Bull. Am. Meteorol. Soc., 82(2), 247-
267, doi:10.1175/1520-0477(2001)082<0247:TNNYRM>2.3.CO;2.

Latteux, B. (1995), Techniques for long-term morphological simulation under tidal action, Mar. Geol., 126(1-4), 129-141, doi:10.1016/0025-
3227(95)00069-B.

Larson, H. H., M., and N. Kraus (1997), Analytical solutions of one-line model for shoreline change near coastal structures, J. Waterw., Port
Coastal Ocean Eng., 123(4), 180-191, doi:10.1061/(ASCE)0733-950X(1997)123:4(180).

Lesser, G. R. (2009), An approach to medium-term coastal morphological modelling, PhD thesis, Delft Univ. of Technol., Netherlands.

Menéndez, M., F. J. Méndez, C. Izaguirre, A. Luceno, and . J. Losada (2009), The influence of seasonality on estimating return values of sig-
nificant wave height, Coastal Eng., 56(3), 211-219, doi:10.1016/j.coastaleng.2008.07.004.

Menendez, M., M. Garcia-Diez, L. Fita, J. Fernandez, F. J. Méndez, and J. M. Gutiérrez (2013), High-resolution sea wind hindcasts over the
Mediterranean area, Clim. Dyn., 42(7-8), 1857-1872, doi:10.1007/s00382-013-1912-8.

Mil-Homens, J. a., R. Ranasinghe, J. van Thiel de Vries, and M. Stive (2013), Re-evaluation and improvement of three commonly used bulk
longshore sediment transport formulas, Coastal Eng., 75, 29-39, doi:10.1016/j.coastaleng.2013.01.004.

Minguez, R, F.J. Méndez, C. Izaguirre, M. Menéndez, and I. J. Losada (2010), Pseudo-optimal parameter selection of non-stationary general-
ized extreme value models for environmental variables, Environ. Modell. Software, 25(12), 1592-1607, doi:10.1016/j.envsoft.2010.05.008.

Nicholls, R. J., and A. Cazenave (2010), Sea level rise and its impact on coastal zones, Science, 328(2010), 1517-1520, doi:10.1126/
science.1185782.

Norris, J. R. (1997a), Continuous-time Markov chains |, in Markov Chains, edited by J. R. Norris, pp. 60-107, Cambridge Univ. Press, Cambridge.

Norris, J. R. (1997b), Continuous-time Markov chains Il, in Markov Chains, edited by J. R. Norris, pp. 108-127, Cambridge Univ. Press,
Cambridge.

ANTOLINEZ ET AL.

MUSCLE-MORPHO 790


http://dx.doi.org/10.1029/2005JF000422
http://dx.doi.org/10.1061/(ASCE)0733-950X(1985)111:3(598)
http://dx.doi.org/10.1061/(ASCE)0733-950X(1985)111:3(598)
http://dx.doi.org/10.1175/JCLI3918.1
http://dx.doi.org/10.1175/JCLI3918.1
http://dx.doi.org/10.1016/j.coastaleng.2007.12.003
http://dx.doi.org/10.1016/j.coastaleng.2013.08.007
http://dx.doi.org/10.1016/j.coastaleng.2011.02.003
http://dx.doi.org/10.1002/2014JC010141
http://dx.doi.org/10.1007/s10236-014-0737-2
http://dx.doi.org/10.1016/j.ocemod.2013.10.008
http://dx.doi.org/10.1142/S0578563405001240
http://dx.doi.org/10.1016/0378-3839(93)90051-9
http://dx.doi.org/10.1016/0378-3839(93)90050-I
http://dx.doi.org/10.2112/13A-00007.1
http://dx.doi.org/10.1007/s00382-013-1690-3
http://dx.doi.org/10.1017/CBO9781107415324.005
http://dx.doi.org/10.1016/j.coastaleng.2012.11.003
http://dx.doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2
http://dx.doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2
http://dx.doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2
http://dx.doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2
http://dx.doi.org/10.1175/1520-0477(2001)082<0247:TNNYRM>2.3.CO;2
http://dx.doi.org/10.1175/1520-0477(2001)082<0247:TNNYRM>2.3.CO;2
http://dx.doi.org/10.1175/1520-0477(2001)082<0247:TNNYRM>2.3.CO;2
http://dx.doi.org/10.1016/0025-3227(95)00069-B
http://dx.doi.org/10.1016/0025-3227(95)00069-B
http://dx.doi.org/10.1061/(ASCE)0733-950X(1997)123:4(180)
http://dx.doi.org/10.1016/j.coastaleng.2008.07.004
http://dx.doi.org/10.1007/s00382-013-1912-8
http://dx.doi.org/10.1016/j.coastaleng.2013.01.004
http://dx.doi.org/10.1016/j.envsoft.2010.05.008
http://dx.doi.org/10.1126/science.1185782
http://dx.doi.org/10.1126/science.1185782
http://www.esrl.noaa.gov/psd/
http://www.esrl.noaa.gov/psd/

@AGU Journal of Geophysical Research: Oceans 10.1002/2015JC011107

Pérez, J., F. J. Méndez, M. Menéndez, and I. J. Losada (2014a), Estela: A method for evaluating the source and travel time of the wave
energy reaching a local area, Ocean Dyn., 64(8), 1181-1191, doi:10.1007/510236-014-0740-7.

Pérez, J., M. Menendez, F. J. Mendez, and I. J. Losada (2014b), Evaluating the performance of CMIP3 and CMIP5 global climate models over
the north-east Atlantic region, Clim. Dyn., 43(9-10), 2663-2680, doi:10.1007/500382-014-2078-8.

Pérez, J., M. Menendez, P. Camus, F. J. Mendez, and I. J. Losada (2015), Statistical multi-model climate projections of surface ocean waves in
Europe, waves and coastal, regional and global processes, Ocean Modell., 96, Part 1, 161-170, doi:10.1016/j.0cemod.2015.06.001.

Reguero, B, M. Menéndez, F. Méndez, R. Minguez, and I. Losada (2012), A Global Ocean Wave (GOW) calibrated reanalysis from 1948
onwards, Coastal Eng., 65, 38-55, doi:10.1016/j.coastaleng.2012.03.003.

Reguero, B. G, I. J. Losada, and F. J. Méndez (2015), A global wave power resource and its seasonal, interannual and long-term variability,
Appl. Energy, 148, 366-380, doi:10.1016/j.apenergy.2015.03.114.

Roelvink, J. (2006), Coastal morphodynamic evolution techniques, Coastal Eng., 53(2-3), 277-287, doi:10.1016/j.coastaleng.2005.10.015.

Salvadori, G., G. Tomasicchio, and F. D'Alessandro (2014), Practical guidelines for multivariate analysis and design in coastal and off-shore
engineering, Coastal Eng., 88, 1-14, doi:10.1016/j.coastaleng.2014.01.011.

Southgate, H. N. (1995), The effects of wave chronology on medium and long term coastal morphology, Coastal Eng., 26(3-4), 251-270, doi:
10.1016/0378-3839(95)00028-3.

SPM (1984), U S. Army Corps of Engineers, Shore Protection Manual, vol. 2, 37-53 pp., Army Eng. Waterw. Exp. Stn., Vicksburg, Miss.

Steijn, R. (1992), Input filtering techniques for complex morphological models, in H: Waterloopkundig Laboratorium, vol. 824, edited by
R. Steijn, Delft Hydraul. Lab., Netherlands.

Thomsen, K., and P. Sgrensen (1999), Fatigue loads for wind turbines operating in wakes, J. Wind Eng. Ind. Aerodyn., 80(1-2), 121-136, doi:
10.1016/50167-6105(98)00194-9.

van Rijn, L. C. (2014), A simple general expression for longshore transport of sand, gravel and shingle, Coastal Eng., 90, 23-39, doi:10.1016/
j.coastaleng.2014.04.008.

Vitousek, S., and P. L. Barnard (2015), A nonlinear, implicit one-line model to predict long-term shoreline change, in Coastal Sediments
2015, edited by P. Wang, J. D. Rosati, and J. Cheng, chap. 215, World Sci., Singapore.

Walstra, D. J. R, R. Hoekstra, P. K. Tonnon, and B. G. Ruessink (2013), Input reduction for long-term morphodynamic simulations in wave-
dominated coastal settings, Coastal Eng., 77(0), 57-70, doi:10.1016/j.coastaleng.2013.02.001.

Wang, X. L., Y. Feng, and V. R. Swail (2012), North Atlantic wave height trends as reconstructed from the 20th century reanalysis, Geophys.
Res. Lett., 39, L18705, doi:10.1029/2012GL053381.

Zhang, K., B. C. Douglas, and S. P. Leatherman (2004), Global warming and coastal erosion, Clim. Change, 64, 41-58.

Erratum

In the originally published version of this article, the first author’'s name was presented incorrectly as Jose Antonio A. Alvarez. This has
been corrected to read José Antonio A. Antolinez, and this version may be considered the authoritative version of record.
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