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a b s t r a c t

The northern portion of the Pacific coastal temperate rainforest (PCTR) is one of the least anthropogeni-

cally modified regions on earth and remains in many respects a frontier area to science. Rivers crossing the

northern PCTR, which is also an international boundary region between British Columbia, Canada and Alaska,

USA, deliver large freshwater and biogeochemical fluxes to the Gulf of Alaska and establish linkages between

coastal and continental ecosystems. We evaluate interannual flow variability in three transboundary PCTR

watersheds in response to El Niño-Southern Oscillation (ENSO), Pacific Decadal Oscillation (PDO), Arctic Os-

cillation (AO), and North Pacific Gyre Oscillation (NPGO). Historical hydroclimatic datasets from both Canada

and the USA are analyzed using an up-to-date methodological suite accommodating both seasonally tran-

sient and highly nonlinear teleconnections. We find that streamflow teleconnections occur over particular

seasonal windows reflecting the intersection of specific atmospheric and terrestrial hydrologic processes.

The strongest signal is a snowmelt-driven flow timing shift resulting from ENSO- and PDO-associated tem-

perature anomalies. Autumn rainfall runoff is also modulated by these climate modes, and a glacier-mediated

teleconnection contributes to a late-summer ENSO-flow association. Teleconnections between AO and freshet

flows reflect corresponding temperature and precipitation anomalies. A coherent NPGO signal is not clearly

evident in streamflow. Linear and monotonically nonlinear teleconnections were widely identified, with less

evidence for the parabolic effects that can play an important role elsewhere. The streamflow teleconnections

did not vary greatly between hydrometric stations, presumably reflecting broad similarities in watershed

characteristics. These results establish a regional foundation for both transboundary water management and

studies of long-term hydroclimatic and environmental change.

Published by Elsevier Ltd.
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1. Introduction

Climate variability has important implications for water resource

management because temperature and precipitation variations al-

ter surface water availability at the basin scale. Broadly speaking,

changes in streamflow directly impact water resources and also have

a variety of indirect impacts on riverine ecosystem services, such

as recreation and fish habitat. In basins that experience large in-

terannual variations in hydroclimatic drivers, year-to-year variabil-

ity in streamflow can be pronounced (e.g., [14]). Such variability
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omplicates the precise management of water resources, particularly

n basins where demands on water resources are increasing [67].

Managing water resources in the face of hydroclimatic variabil-

ty has the potential to be especially challenging in transboundary

atersheds, which cover just under half of the global land surface

nd affect about 40% of the world’s population [80]. As discussed

n detail by Wolf [80], the runoff from these basins provides a crit-

cal, non-substitutable resource that flows and fluctuates across time

nd space, yet overall, this resource is becoming scarcer as both

opulations and standards of living grow, and the effective alloca-

ion of transboundary water resources requires international coop-

ration by management agencies operating within an often-vague

egal framework. In North America, the history of international wa-

er management provides clear examples of the advantages of under-

tanding and anticipating basin-scale hydroclimatic variability – and

lso the consequences of failing to do so. For example, climate-based

easonal water supply forecasting can increase yearly hydroelectric

http://dx.doi.org/10.1016/j.advwatres.2015.10.007
http://www.ScienceDirect.com
http://www.elsevier.com/locate/advwatres
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roduction revenue on the transboundary (Canada–US) Columbia

iver by hundreds of millions of dollars [27], and operational fore-

ast models in that region now use such climate-informed methods

outinely (e.g., [25]). Conversely, the Colorado River Compact, based

n a short record of early twentieth-century instrumental observa-

ions that was later discovered to represent a period of anomalously

igh flow in the US southwest, led to water supply over-allocations

o severe that the river now barely runs to its mouth across the inter-

ational border in Mexico (e.g., [11,52,74]).

While there is clearly potential for cross-border disagreements

ver water, the environmental policy and management literature sug-

ests that water conflicts are surprisingly rare, especially at the in-

ernational level (e.g., [6,80]). Transboundary rivers flowing between

ritish Columbia (BC), Canada and Alaska (AK), United States are cur-

ently at particularly low risk of any such disagreements. Canada and

he US are good neighbors with a long history of effective joint man-

gement of shared basins. The Boundary Waters Treaty of 1909 and

olumbia River Treaty of 1964 and their associated institutions, such

s the International Joint Commission, provide evidence of these suc-

essful relationships. Furthermore, the wet climate and low popula-

ion levels of the BC-AK border region currently result in negligible

ater stress. That said, human activities, such as tourism, mining,

nd commercial and recreational fisheries, including in particular the

conic salmon runs of the west coast, are all of central importance

ere and are closely related to the availability of abundant fresh wa-

er. Some of these activities may be expanding, as are the human pop-

lations of both British Columbia and Alaska. In this context, develop-

ng a better understanding of interannual variations in transboundary

iver flows in the BC-AK region will facilitate the early development of

positive water management framework, which is a tenet of success-

ul international water management (e.g., [80]). Such understanding

ould also aid the joint planning and management process of climate

daptation.

Understanding the hydroclimatic controls on freshwater dis-

harge from transboundary rivers in this region also has important

mplications for a rich diversity of physical and ecological processes.

he Pacific coastal temperate rainforest (PCTR) ecosystem extends

000 km along the west coast of North America, from northern

alifornia to Kodiak Island, Alaska [37]. The northern portion, located

rincipally in central and southeast Alaska and northern British

olumbia, remains one of the least anthropogenically modified

cosystems on Earth, home to intact old-growth forests, exten-

ive alpine glaciers and icefields, robust wild fisheries, and many

esource- and tourism-based communities [64]. The BC-AK border

egion covers an approximate 1000-km long swath of the northern

CTR. River flow regimes here reflect autumn-winter precipitation

nd summertime temperature maxima, and a consequent mixture

f autumn rain-driven river flows, spring-summer snowmelt-driven

unoff, and late-summer glacier melt. Streamflow is also dependent

n individual basin properties including hypsometry, microclimate

nd land surface properties. River flow variability here influences the

trength of density-driven coastal currents (e.g., Alaska Coastal Cur-

ent [72]) and spawning migration survival of transboundary salmon

uns (e.g., [26]). Additionally, runoff from these basins into the Gulf

f Alaska (GOA), which typically exceeds 150 km3 year−1 [31,57,60],

as the potential to be substantially altered by changes in regional

lacier volume [10,42,43] and shifts in the rain/snow fraction of win-

er precipitation [61,73]. Such climate-driven hydrological variability

ropagates downstream into coastal marine ecosystems, and the

orresponding suite of terrestrial, aquatic, and marine environmental

ffects are likely to be profoundly seasonal [64].

Our goal is to develop a baseline understanding of how the sea-

onal flow patterns of transboundary British Columbia-Alaska rivers

ary interannually under the influence of climatic drivers. While

ong-term shifts in mean state are important, including those po-

entially associated with projected anthropogenic climate changes,
t is the year-to-year variation in water supply that often has the

argest impacts on ecosystems and for natural resource managers

e.g., [65,67]). This is evident, for example, in the 2013–2015 Califor-

ia drought, which primarily reflects precipitation variations that ap-

ear to fall within the envelope of historical variability and processes

49], yet which have caused tremendous water management chal-

enges. Near the BC-AK region, the interannual variability in freshwa-

er discharge into the GOA regularly exceeds 20% due mainly to shifts

n precipitation and glacier volume loss rates [31]. Understanding his-

orical flow variability is a crucial first step toward rigorously pre-

icting how watersheds may respond to longer-term climatic shifts,

s an accurate portrayal of variability is essential to resolving una-

iased trends in a region where hydrologic variability exceeds trend

63]. Characterizing the major modes of variation in the seasonal

ows of BC-AK rivers therefore represents a priority from the per-

pective of developing a sound scientific basis for international water

nd ecosystem management.

Doing so can be daunting. The coupled ocean-atmosphere sys-

em, which provides the primary input signal to watershed hydro-

ogic systems, is massively complex and varies on spatial scales rang-

ng from microscopic to global, and temporal scales ranging from sec-

nds to millennia. Fortunately, ocean-atmosphere dynamics tend to

elf-organize into coherent patterns. This feature of the climate sys-

em is widely capitalized upon in hydrology and many other disci-

lines as a convenient framework for assessing climate variability im-

acts (e.g. [18,24,50]). Teleconnections to such climate modes have,

ith the possible exception of the Pacific Decadal Oscillation, enjoyed

elatively little scrutiny in southeast Alaska and northwest British

olumbia in comparison to other areas of western North America and,

ndeed, even other areas of Alaska and British Columbia. Nonetheless,

rior teleconnection analyses within and near this border region (e.g.,

4,5,16,20,32,48,61]) provide encouraging signs that this should be a

ruitful approach to conceptualizing and characterizing the interan-

ual streamflow variability of transboundary rivers in the area.

In this study, we analyzed long-term observational streamflow

ata from four hydrometric stations on three international rivers

traddling the BC-AK border, as well as selected climate station data,

n the context of four ocean-atmosphere patterns that seem particu-

arly likely to influence streamflow in this region. The emphasis lies

ith identifying seasonal relationships of water resources to ocean-

tmosphere circulation indices. We then explore climate station data

o understand some of the regional hydroclimatic mechanisms for

hese streamflow teleconnections, and briefly consider some of the

mplications of the hydrological results to water supply forecast-

ng, regional ecology and salmon habitat, and longer-term climate

hanges. The suite of statistical methods employed, which include

oth nonparametric and information theoretic techniques, were cho-

en to facilitate assessment of both seasonally transient and highly

onlinear teleconnections, reflecting the strongly seasonal nature of

ydrometeorological processes in the region and the widespread con-

ensus that many such climatic associations are nonlinear, in some

ases strongly so. Our findings represent the first focused assessment

f streamflow teleconnections for international Canada–US rivers

long the BC-AK border.

. Data and methods

The BC-AK border generally follows the crest of the Coast Moun-

ains, which separate colder, drier interior areas from the much

ilder and wetter coast. This boundary also roughly corresponds to

surface water drainage divide. However, the mainland portion of

he Alaskan panhandle can be only a few tens of kilometers wide,

nd the larger rivers tend to penetrate the Coast Mountains into

he interior, spanning the international border. Most of the region

s highly remote, and as a consequence, relatively few transbound-

ry BC-AK rivers have enjoyed long-term hydrometric monitoring,
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Fig. 1. Location map, spanning the entirety of the Alaskan panhandle. Thick black line denotes international boundary. Orange and green symbols give locations of hydrometric

and climate stations, respectively. Orange outlines and gray shading denote corresponding watershed areas. Light blue outlines and stippling indicate ice-covered area from the

GLIMS Randolph Glacier Inventory [1].

Table 1

Summary of hydrologic and climate monitoring stations used. ID is the USGS or NOAA (US) or

WSC or MSC (Canada) station code, as appropriate. N is number of years of data employed in the

analysis (for Dease Lake, this differs slightly between AHCCD T and P records). TAP is the total

annual precipitation (mm) averaged over that period of record, MAT is mean annual temperature

(°C), and Qave is annual mean flow (m3/s). A is basin area upstream from the gauge (×103 km2),

and Ag is the proportion of that area having glacier cover (%), both taken from internal WSC and

USGS documentation.

Name ID N TAP MAT Qave A Ag

Taku 15041200 27 n/a n/a 387 17.2 8

Stikine (Wrangell) 15024800 38 n/a n/a 1606 51.8 10

Unuk 08DD001 30 n/a n/a 105 1.5 40

Stikine (Telegraph Creek) 08CE001 50 n/a n/a 825 29.0 2

Juneau PAJN 64 1480 5.2 n/a n/a n/a

Dease Lake 1192340 58–62 480 −0.8 n/a n/a n/a
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resulting in only sparse hydroclimatic datasets from this region

(e.g., [31,57,79]).

US Geological Survey (USGS) and Water Survey of Canada (WSC)

streamflow databases were screened for hydrometric stations on the

main stems of unregulated transboundary BC-AK rivers having about

25 years or more of year-round daily data collection. Four discharge

records were deemed suitable for teleconnection analysis (Fig. 1,

Table 1). The USGS stations on the Taku River and the Stikine River

at Wrangell are not far from tidewater and thus reflect the com-

bined Canadian–American freshwater delivery to the coastal ocean

from these two basins (Fig. 1). The WSC station on the Stikine River at

Telegraph Creek is located far upstream from the USGS station on the

same river, capturing headwater effects (Fig. 1). Unlike the archetypal

watershed which flows from wet mountain headwaters to drier low-

land plains, the Stikine originates in a high, cold, comparatively dry

and flat interior plateau region, then cuts through a tall, very wet,

and extensively glacierized coastal mountain range, before empty-

ing into a deep fjord. By flow volume, the Stikine is the largest river

along the southeast Alaska coast and among the top 50 globally [45].

The WSC station on the Unuk River approximately reflects Canadian

freshwater delivery to the American border (Fig. 1). To facilitate some

understanding of the regional hydroclimatic mechanisms whereby

large-scale atmosphere-ocean circulation patterns affect the flows of

these rivers, we additionally analyzed daily mean temperature and

daily total precipitation data from US National Oceanographic and

Atmospheric Administration (NOAA) and Meteorological Service of
anada (MSC) long-term surface climate stations at coastal (Juneau

nternational Airport, Alaska) and interior (Dease Lake, BC; adjusted

omogenized Canadian climate data, AHCCD) locations [51,75] (Fig. 1,

able 1). Fig. 2 illustrates all the streamflow and climate data used.

The data were organized into hydrologic years (HY), spanning

October of one calendar year to 30 September of the next and

ssigned to the second calendar year. Ideally, a hydroclimatalog-

cal analysis would capture interannual variation in sub-seasonal

ransient processes, without being biased or contaminated by high-

requency noise, and additionally would fully capture nonlinear hy-

roclimatic responses. Data assembly and processing were under-

aken accordingly. A (2m+1)-point binomial filter with m = 10 was

pplied to each daily time series (e.g., [55]). The filter was not run

cross hydrologic years, so that year-to-year serial correlation was

ot artificially induced, and the first and last m days for a given HY

ere left unfiltered. Data gaps were not interpolated, and all data

ithin any window position of the filter including a data gap were in

urn transformed to data gaps; this conservative approach favors us-

ng slightly less data in the analysis over making assumptions during

nterpolation. The filter gave a 50% response at a timescale of 3m1/2

9 days, roughly comparable to the 5-day sequent means used by

hitfield et al. [78] and Déry et al. [13], for example, in hydrocli-

atic modeling and analysis. This combination of fine sampling in-

erval and low-pass filter thus suppresses very high-frequency noise

hile maintaining a high seasonal resolution. This high seasonal

esolution, which is becoming widely used in hydroclimatological
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Fig. 2. Hydrometeorological datasets considered. Flow is given as its logarithm and precipitation as its square root for relative ease of visualization, but untransformed values were

used in the analyses.
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nalyses (e.g., [13,19,28,29,78]), facilitates the study of seasonally

ransient physical hydrologic processes (such as the onset of the

pring snowmelt freshet, or late-summer peak glacier meltwater pro-

uction following exhaustion of the seasonal snowpack), which may

ast only a few weeks and can be easily obscured in monthly or sea-
onal averages or totals. It also expedites the identification of non-

inear effects which can similarly be lost to such temporal aggrega-

ion [13,34,53,62,66]. Previous work has empirically demonstrated

hat the specific data processing and analysis methods used here en-

ble detection of statistically and physically significant hydrologic
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Table 2

Interpretation key for correlations, Rs , between streamflow, Q, versus a given climate index,

ν , and its square, ν2. A relationship is only taken to exist if the corresponding value of Rs is

statistically significant. By a concave-upward parabolic association, for example, we mean a

teleconnection such that Q is largest at extreme positive and negative values of the climate

index, such as during both extreme El Niño and extreme La Niña events.

Rs (Q,ν) Rs (Q,ν2) Outcome

Positive None Linear positive association

Negative None Linear negative association

None Positive Parabolic association, oriented concave upward

None Negative Parabolic association, oriented concave downward

Positive Positive or negative Nonlinear positive association

Negative Positive or negative Nonlinear negative association

None None No association
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teleconnections that cannot be identified using more tempo-

rally coarse-grained datasets [19]. Our moderate low-pass filtering

notwithstanding, the trade-off is in principle a lower signal-to-noise

ratio, as we do not enjoy the benefit of the random noise suppression

associated with “stacking” processes like seasonal or annual averag-

ing (e.g., [17]).

Standard practice for statistical detection of water resource

teleconnections, particularly in the numerous prior studies of

snowmelt-influenced rivers in western North America, is to consider

the wintertime mean state for the large-scale ocean-atmosphere

circulation pattern of interest, and then explore its relationships to

local hydrology and climate during the corresponding water year,

i.e., that winter and the following spring and summer. Accordingly,

we determined December–January–February (DJF) means of the

standard indices for several organized patterns of climatic variability.

El Niño-Southern Oscillation (ENSO) and the Arctic Oscillation (AO,

also known as the Northern Annular Mode) were chosen because

they are the dominant modes of interannual atmospheric variability

in the Northern Hemisphere [76]. The Pacific Decadal Oscillation

(PDO) and the North Pacific Gyre Oscillation (NPGO, closely related

to the Victoria Pattern) were selected because they are the lead-

ing modes of interannual oceanic variability in the North Pacific

[7,15,48]. Unlike the other three patterns, ENSO has several common

indices; we chose the Oceanic Niño Index (ONI), used by NOAA for

operational purposes (e.g., [41]). For a given climate mode and river,

the annual time series of DJF mean index values was correlated

against an annual time series of streamflow corresponding to a

given day of the water year (e.g., a N-year record of May 12 flow).

This was repeated for each day of the year, to form a seasonally

high-resolution picture of flow teleconnections across the hydrologic

year. The entire process was then completed for all climate modes

and hydrometric and climate stations. A two-sided hypothesis test

(pcrit = 0.10) on the Spearman rank correlation coefficient was

used, as this method does not require distributional assumptions

(e.g., [30]).

The foregoing assessment was additionally performed for the

squares of the climate indices. This was done to accommodate out-

comes from recent work demonstrating that northern-hemisphere

teleconnections can not only be moderately nonlinear, as previ-

ously well-recognized (e.g., [22,33,39]), but in fact quadratic, giving

a parabolic shape in which opposite extreme climate states (such

as El Niño and La Niña) both give a similar local climatic impact

[2,18,19,35,81]. These highly nonlinear teleconnection components,

which may be the result of quadratic terms in the governing equa-

tions for atmospheric circulation [35], can have important repercus-

sions to assessment of hydroclimatic dynamics. One of these impli-

cations is the emergence of teleconnections where none had clearly

been previously identified, such as strong ENSO effects in the Sacra-

mento Basin of northern California [18,35]. To date, such strongly

nonlinear teleconnections have only been identified for ENSO and the

AO, but we entertain the possibility that they may be present in the
DO and NPGO as well. Table 2 provides interpretive guidelines for

arious combinations of correlations against a climate index and its

quare.

We complemented this Spearman rank correlation analysis with

n Akaike Information Criterion (AIC)-based polynomial selection

ethod, as described in Fleming and Dahlke [18]. In summary,

he AIC-based approach accommodates no-effect, linear-effect, and

strongly) nonlinear-effect teleconnection models, and it estimates

he probability that the model is true given the data. This alterna-

ive statistical technique is based on fundamentally different prin-

iples than conventional null-hypothesis significance testing, and in

his study, it is used to provide a methodologically independent check

n the outcomes of the rank correlation analyses by generating esti-

ates of the probability that any plausible teleconnection (either lin-

ar or quadratic; see [18,35,81] for details) is present. That is, when a

iven relationship is supported by both a statistically significant cor-

elation coefficient between flow versus a climate index and/or its

quare, and also a high probability that a linear or quadratic poly-

omial relationship exists, greater confidence can be placed in the

xistence of that hydroclimatic association.

. Results

We begin by identifying the major streamflow teleconnections for

nternational British Columbia-Alaska rivers, which is the primary

im of this study. We then use climate station data to gain some

nderstanding of the regional meteorological mechanisms whereby

arge-scale atmosphere-ocean circulation patterns generate these

articular water resource teleconnections. The corresponding out-

omes are summarized in this section. Some generalizations, com-

arisons to other work in the BC-AK border region and neighboring

reas, and explorations of some of the broader implications of the re-

ults are provided in the next section (Section 4).

We focus first on results for ENSO, which showed the most pro-

ounced and coherent impacts on streamflow within the trans-

oundary watersheds examined. We concentrate on phenomena that

re consistent across multiple stream gages, readily physically inter-

retable in terms of associated regional meteorological anomalies,

nd marked by both statistically significant Spearman rank correla-

ions and AIC-based estimates of the probability of a teleconnection

anging from about 0.8 to 1.0. In the case of ENSO, there are three such

ydroclimatic effects, occurring at different times of year (see Fig. 3

nd interpretive key in Table 2).

The strongest streamflow teleconnection to ENSO in the three

ransboundary rivers is a positive ONI-discharge correlation dur-

ng the rising limb of the freshet, over approximately March–April

hrough May–June depending on the particular location (Fig. 3a–d).

he effect is temporally coincident with a positive association be-

ween ONI and spring temperature (Fig. 3e and f). That is, the El Niño

limate state appears to drive warmer springtime air temperatures

nd an associated increase in snowmelt in early spring, giving an



S.W. Fleming et al. / Advances in Water Resources 87 (2016) 42–55 47

Fig. 3. ENSO results for four stream gages ((a)–(d)) and temperature and precipitation at two meteorological stations ((e)–(h)). The left column loosely corresponds to more coastal

locations, whereas the right column corresponds to more inland locations. Each of the eight panels has three plots: the upper plot gives the mean annual regime; middle plot gives

the probability that any teleconnection (linear or nonlinear) exists, as determined from AIC-based polynomial modeling; bottom plot gives Spearman correlation coefficients, with

statistically significant relationships denoted by filled dots (see Table 2 for an interpretive key).
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earlier onset of the melt freshet; the opposite effect predominates

during La Niña years.

Second, a clear negative association between ONI and stream-

flow appears in mid-to-late summer, primarily in August but span-

ning approximately July through September depending again on the

particular location (Fig. 3a–d). The correspondence of El Niño condi-

tions to lower-than-average discharges for this time of year likely re-

flects the combined impact of several processes. One is the aforemen-

tioned earlier freshet due to warmer air temperatures the previous

spring, and therefore earlier exhaustion of the seasonal snowpack and

lesser opportunity for mid-to-late summer snowmelt runoff genera-

tion. That is, the normal seasonal recession to summer-autumn base-

flow occurs earlier, giving lower-than-average late-summer flows.

The other is a modest negative association between ONI and late-

summer temperature (Fig. 3e and f). Glacial meltwater generation in

western North America generally peaks around July through Septem-

ber following seasonal snowpack depletion. Thus, during El Niño

years, cooler-than-normal late-summer air temperatures may reduce

glacial melt runoff relative to neutral or cool-phase ENSO (La Niña)

years.

In tandem, these two streamflow teleconnections – a positive as-

sociation in springtime, and a negative association in mid-to-late

summer – suggest that the signature of ENSO in these transboundary

watersheds consists mainly of a temperature-driven seasonal tim-

ing shift. El Niño (La Niña) conditions lead to warmer (cooler) spring

temperatures and an earlier (later) snowmelt freshet, moving some

proportion of the annual water balance forward (backward) in the

year. Interestingly, the intervening period between these two sea-

sonal teleconnections, during which the annual flow maximum typi-

cally occurs as a result of peak seasonal snowmelt rates, possibly with

superposed summer rainfall events, does not exhibit a clear ENSO

teleconnection. It is unclear whether this null result simply reflects

sampling variability, or instead some specific hydrometeorological

mechanism, such as a dependence of summertime peak-flow condi-

tions on erratic local-scale individual weather events or conditions

regionally uncorrelated with ENSO.

Third, there is some evidence, which is somewhat weak and spo-

radic yet consistent across all four streamflow records, for a posi-

tive streamflow teleconnection to ONI following the start of the wa-

ter year, around October–December (Fig. 3a–d). This anomaly occurs

around the same time as modest positive associations between ONI

and both temperature (Fig. 3e and f) and precipitation (Fig. 3g and h).

The outcome suggests higher rainfall contributions to runoff in au-

tumn and perhaps early winter during El Niño winters, due to both

heavier precipitation and higher rain-to-snow ratios. That interpre-

tation is consistent with the observation that the autumn–early win-

ter streamflow teleconnection is weaker for the Stikine headwater

basin (Fig. 3b) relative to the other locations (Fig. 3a, c, d). This WSC

gage is located in the substantially colder and drier continental inte-

rior, where average temperatures drop below freezing by November

(Fig. 3f), and autumn–early winter rainfall is generally a less impor-

tant contributor to contemporaneous streamflow relative to the three

other, more coastal basins.

Detailed interpretations were similarly performed for PDO, NPGO,

and AO teleconnections. In the interest of brevity, only the most no-

table effects are summarized below; the full set of statistical out-

comes can be found in Figs. 4–6. PDO responses (Fig. 4) are, broadly

speaking, very similar to those for ENSO: positive streamflow as-

sociations at the start of the freshet, and negative streamflow as-

sociations in late summer, which appear to be generated primarily

by a forward (backward) shift of the seasonal snowmelt freshet un-

der increased (decreased) temperatures related to warm-phase (cold-

phase) PDO conditions. In comparison to ENSO, the PDO temperature

anomalies (Fig. 4e and f) are more seasonally long-lived, extending

almost continuously from about October through May or even July,

and also demonstrate some evidence for monotonic nonlinearity,
lthough neither of these differences appears to be directly mani-

ested in the corresponding streamflow teleconnections (Fig. 4a–d).

here is also some statistical evidence for a parabolic (concave down-

ard) PDO-streamflow association around the peak of the freshet in

une. A similar, strongly nonlinear, teleconnection in temperature is

pparent for Dease Lake, suggesting a potential temperature-driven

echanism for the parabolic melt-season streamflow teleconnection.

owever, the effect cannot be clearly seen in the Juneau temperature

ata, and its identification and interpretation must therefore remain

entative.

The NPGO outcomes (Fig. 5) are the most enigmatic of the four

eleconnection patterns considered. Only one feature is uniformly

pparent across all the hydrometric stations: a negative linear asso-

iation during the onset and rising limb of the freshet, which is far

tronger and more consistent for the Taku and coastal Stikine gages

Fig. 5a and c) than for the Unuk and inland Stikine gages (Fig. 5b and

), suggesting it may predominantly be a coastal feature. There is lit-

le evidence for a systematic precipitation teleconnection (Fig. 5g and

), and the temperature teleconnections appear to consist of a linear

r perhaps monotonically nonlinear positive association during win-

er, followed by a possible parabolic (concave-upward) relationship in

pring (Fig. 5e and f). These meteorological teleconnections offer little

lear explanatory basis for the apparent streamflow teleconnection,

hich leads us to conservatively classify all the NPGO outcomes as a

ull result. That is, the statistical outcomes provide some intriguing

reliminary indications of NPGO teleconnections, and the topic thus

nvites closer investigation, but at present we feel that our findings do

ot robustly reveal regionally coherent streamflow effects alongside

ssociated meteorological driving mechanisms.

Finally, with respect to the AO, there is evidence for a tempo-

ally intermittent, but spatially consistent, monotonically nonlinear

ositive streamflow association in late spring through early fall (Fig.

a–d). This discharge teleconnection is readily interpretable in terms

f roughly contemporaneous, monotonically nonlinear, positive rela-

ionships between the AO index and both temperature (Fig. 6e and

) and precipitation (Fig. 6g and h). Thus, a positive AO state appears

o be associated, albeit in a nonlinear fashion, with increases in both

ummer rainfall runoff and snow and glacier melt generation.

. Discussion

To the extent that the outcomes from this study can be compared

o prior literature for the region, the streamflow, temperature, and

recipitation findings are broadly consistent with earlier teleconnec-

ion analyses (e.g., [4,20,61]). Many of the specific hydroclimatic pro-

esses inferred, such as higher autumn–winter streamflows or earlier

nowmelt freshets under warmer air temperatures, have been widely

bserved either in this region, or alternatively in other areas of west-

rn North America (e.g., [3,22,25,68]). Our inference of higher-than-

ormal precipitation and streamflow in fall and early winter during

NSO and PDO warm phases is opposite to what is observed for the

acific Northwest (PNW; [54,58]), to the south of our study area. This

s consistent with a previously noted north-south see-saw in ENSO-

nd PDO-related precipitation variations along the northern Pacific

oast of North America [20,77], which is analogous to another, per-

aps better-known see-saw in ENSO precipitation teleconnections

etween the US PNW and the US Southwest (e.g., [69]). Also interest-

ng are the results for the Arctic Oscillation, as the prior body of work

n AO forcing of streamflow is far smaller than for ENSO and PDO,

articularly in the BC-AK border region. To the extent the two studies

an be compared given significant differences in methods and goals,

ur finding of higher temperature, precipitation, and streamflow dur-

ng positive-phase AO years shows both similarities and differences

ith results for southwest Yukon Territory [21], a nearby but hydro-

limatically distinct region to the northwest of our study area.
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Fig. 4. As in Fig. 3, but for PDO.

o

s

l

y

C

t

r

fi

n

A point of particular interest is the degree of nonlinearity in the

bserved responses. ENSO effects, for instance, exhibit some diver-

ity. On the one hand, the spring temperature association appears

inear, consistent with the neural network-based temperature anal-

ses of Wu et al. [81] over southeast Alaska and northwest British
olumbia. The corresponding springtime river discharge relationship

o the ONI also appears predominantly linear, presumably reflecting

elatively straightforward snowmelt rate responses. However, we also

nd that the subsequent, mid-to-late summer, streamflow telecon-

ection is monotonically nonlinear for most of the basins.
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Fig. 5. As in Fig. 3, but for NPGO.
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Recall that we attributed this mid-to-late summer ENSO-

streamflow teleconnection to two distinct hydroclimatic processes.

In turn, this suggests a minimum of two explanations, which are not

mutually exclusive, for the monotonic nonlinearity of the teleconnec-

tion. The first explanation reflects an intersection between catchment
haracteristics and nonlinearity in the driving climatic teleconnec-

ion. The mid-to-late summer flow anomaly appears partially related

o variations in glacier melt generation under a contemporaneous

eleconnection in temperature, and this meteorological teleconnec-

ion is monotonically nonlinear. Such an interpretation is supported
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Fig. 6. As in Fig. 3, but for AO.
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y the fact that the only hydrometric station for which this ONI-

treamflow relationship is linear is the Stikine headwater basin

t Telegraph Creek (cf. Fig. 3b vs. Fig. 3a, c, d), which is markedly

ess glacierized than the others (Table 1). The second explanation

elates largely to terrestrial hydrologic processes. As noted above,
he negative late-summer ENSO-flow association may additionally

eflect earlier (later) exhaustion of the seasonal snowpack due to

warmer (cooler) preceding spring under El Niño (La Niña) con-

itions. River discharge recession to baseflow following the spring

nowmelt peak reflects, in large part, catchment-scale water storage



52 S.W. Fleming et al. / Advances in Water Resources 87 (2016) 42–55

H

t

e

r

i

t

r

d

f

b

p

n

m

d

o

a

o

a

r

p

p

t

d

a

p

h

s

s

t

t

p

fl

p

w

m

a

c

i

u

s

t

e

f

w

a

t

c

b

i

p

i

p

w

i

a

s

g

c

a

(

a

t

c

and release mechanisms – and broadly speaking, these processes can

be profoundly nonlinear (e.g., [40,59]). Although the causal pathway

whereby such nonlinearities might in turn specifically generate the

nonlinear streamflow-climate relationship observed here is yet to be

determined, there is abundant general precedent for fundamental

modifications of streamflow teleconnections by various terrestrial

hydrologic characteristics and processes (e.g., [9,22,32,61]). Note,

however, that while both linear and monotonically nonlinear ENSO

teleconnections are apparent, our analysis does not support strongly

nonlinear (parabolic) ENSO teleconnections to meteorology or

hydrology in this particular region.

More broadly, the streamflow and meteorological teleconnec-

tions contain a mixture of linear, monotonically nonlinear, and

non-monotonically nonlinear relationships depending on the hy-

droclimatic variable, location, circulation pattern, and time of year.

Monotonically nonlinear associations indicate that the water re-

source responses to the positive and negative phases of a given

climate mode are not simple mirror images of each other. These

have been widely observed for some ocean-atmosphere circulation

patterns, including ENSO and PDO teleconnections in southeast

Alaska and northwest BC (e.g., [20,25]). Generally speaking, strongly

nonlinear (parabolic) streamflow teleconnections appear substan-

tially less prevalent here than in some other areas of the northern

hemisphere (cf. [18,19]). Compared to the meteorological analyses of

Wu et al. [81], this outcome is loosely consistent for precipitation and

strongly consistent for temperature, though they only considered the

wintertime effects of ENSO.

Considering these outcomes alongside the large-scale water sup-

ply study of Fleming and Dahlke [18], we can also begin to resolve

progressive shifts in the nonlinearity of hydrological responses to

ENSO moving southward along the Pacific margin of North America.

Starting with the northern part of the PCTR, there appear to be mainly

linear and monotonically nonlinear responses in the BC-AK border re-

gion; moving southward into the PNW, the responses grow increas-

ingly nonlinear; and fully parabolic relationships appear in northern

California. South of the PCTR, in southern California, there appears to

be a shift back to more linear ENSO effects.

In combination, the results confirm and extend the notion that

while many of the hydroclimatic processes observed here are recog-

nizable from studies in this or other areas of western North America,

the BC-AK border is distinguished by a unique hydroclimatology dis-

tinct from that of neighboring regions. Mechanistically, the outcome

appears to reflect the intersection of specific regional-scale meteo-

rological teleconnections with particular terrestrial characteristics,

such as extensive glacierization. This spatial heterogeneity has impor-

tant implications for regionalization studies, for example. Given the

limited hydrometric data availability for international BC-AK rivers, it

also implies a need for increased hydrologic and climatic monitoring

in this region going forward.

For climate modes and seasons demonstrating either monotonic

or non-monotonic nonlinearity in this region – such as the telecon-

nections of streamflow to ENSO in mid-to-late summer, or to AO over

much of the freshet – there are methodological ramifications. As wa-

ter resource pressures mount, the requirement for accurate seasonal

forecasting of water supply fluctuations will grow more intense [67].

This can be particularly important for international rivers, where in-

stitutions for transboundary water management benefit from and

may specifically require operational forecasts; various water supply

forecasting activities undertaken individually and collectively by both

Canadian and US authorities for the transboundary Columbia River

provide a nearby example. The most common and arguably still the

most effective approach to seasonal-scale water supply forecasting in

western North America remains statistical regressions upon various

predictor variables, which increasingly include climate indices, such

as those for ENSO or PDO (e.g., [25,38,67]). Conventionally, climate-

water supply relationships are taken to be linear in such applications.
owever, simple steps can be taken to fully incorporate nonlinear

eleconnections into this regression framework [18], and it is appar-

nt that this may be necessary in some cases for the BC-AK border

egion.

Overall, the climate mode signatures are not strongly variable

n space, but they are highly variable in time. On the one hand,

he results show little systematic difference between hydromet-

ic stations. Several studies have revealed the watershed regime-

ependence of streamflow teleconnections, such as profound dif-

erences in the hydroclimatology of glacierized and non-glacierized

asins (e.g., [12,22,61]). However, our present outcome is not sur-

rising, as all three rivers have broadly similar flow regimes, domi-

ated by spring-summer snow and ice melt. On the other hand, the

ain streamflow influences of ENSO, PDO, and AO are not evenly

istributed across the year. Rather, most of these teleconnections

ccur over narrow seasonal windows corresponding specifically to

utumn-fall rainfall runoff or the onset, the peak, or the falling limb

f the seasonal snowmelt and/or glacier melt freshet. That is, across

ll of the ocean-atmospheric circulation patterns we examined in this

egion, the streamflow teleconnections are highly transient seasonal

henomena reflecting season-specific hydrological processes.

Such seasonally variant climate impacts may be relevant to any

rocess or activity having a season-specific flow dependence. Given

he strongly seasonal nature of many ecological processes, the atten-

ant variations in fluvial aquatic habitat and delivery of freshwater

nd dissolved and suspended material to the coastal ocean may have

articularly broad importance (e.g., [64,71]). Although an analysis of

ydroecological linkages in this region is beyond the scope of this

tudy, such linkages have been highlighted for marine and freshwater

pecies at multiple tropic levels ([8,23,64]; see also [47]). These rela-

ionships are established by the transport and influence (variations in

iming and magnitude) of freshwater runoff. In this ecosystem, water

rovides a strong bond between landscape change, habitat, stream-

ow and physical and chemical oceanographic conditions that sup-

ort high primary productivity and a robust upper trophic level food-

eb (e.g., [64,70]). The detailed mechanisms by which the various

odes of interannual climate variability impact such relationships

re an emergent topic of research (e.g. [46]). Implications of hydro-

limatic forcing of the freshwater phase of the salmon life cycle for

nternational BC-AK rivers are of special interest in the PCTR, partic-

larly in light of joint Canada–US management of migratory salmon

tocks under the 1985 Pacific Salmon Treaty, for instance. Assessing

he implications of our hydrologic teleconnection analyses to salmon

cology in the BC-AK border region may therefore be a priority for

uture research.

Streamflow teleconnections may also interact in various ways

ith the hydrological impacts of longer-term climatic shifts, such

s the ongoing amelioration of climate following the late 19th cen-

ury end of the Little Ice Age or global-scale anthropogenic climate

hanges due to net atmospheric greenhouse gas emissions projected

y the climate modeling community. Though fundamental changes

n climate modes and teleconnections may occur, such changes have

roven challenging to predict numerically (e.g., [44]). Also interest-

ng, however, is the superposition of teleconnections upon antici-

ated long-term hydroclimatic regime changes. Under progressive

arming, as rain-to-snow ratios rise, seasonal streamflow patterns

n this region are likely to become increasingly characterized by

n autumn-winter rainfall freshet and to exhibit a less pronounced

pring-summer snowmelt freshet (e.g., [73]). Further, late-summer

lacier melt contributions to flow will similarly change as glaciers

ontinue to recede [43,64], which could initially take the form of

n increased melt pulse but may eventually result in a flow decline

see also reviews by Jansson et al. [36] and Moore et al. [56]). As

utumn-winter flows grow more prominent, their variations (such as

he teleconnections to ENSO and PDO at this time of year) will grow

ommensurately more prominent as well. By the same token, as the
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nowmelt freshet as a whole becomes less pronounced over time,

eleconnections involving spring-summer melt (such as various as-

ociations to ENSO, PDO, and AO over approximately March through

uly) may become a less notable feature of the overall hydroclimatic

egime. Similarly, the prominence of the apparent glacier-mediated,

emperature-related teleconnection to ENSO in late summer might

e expected to first increase and then eventually decline, and in the

imit of complete upstream ice mass loss ultimately disappear alto-

ether, as glacier melt runoff first demonstrates a warming-generated

ulse but then eventually declines and disappears. This late-summer

treamflow teleconnection appears to be monotonically nonlinear, so

t is conceivable that such changes in its overall prominence might

e accompanied by a shift first toward greater teleconnection non-

inearity followed a shift toward more linear responses before, per-

aps, disappearing altogether. Another interesting conclusion is that

ome aspects of the hydrological impacts of ENSO and PDO warm

hases approximately mirror those that may be associated with pos-

ible longer-term climatic shifts. Thus, historically observed El Niño

nd PDO warm-phase conditions may serve as an analog for study-

ng the potential impacts of other climatic effects in transboundary

C-AK rivers.

. Conclusions

Several previously known features of the international bor-

er region between British Columbia, Canada and Alaska, USA

raw attention to its hydroclimatology. These include the intrinsic

anagement concerns for international rivers in general, and the

cosystem linkages provided by transboundary BC-AK rivers in

articular, as they penetrate the Coast Mountains drainage divide

etween the coastal rainforest ecosystems of the northern PCTR

nd the cold, drier plateau of the continental interior. Additionally,

hese mountains are heavily glacierized, modifying river flows and

otic ecosystems. Runoff from the Alaskan coast, and in particular

arge international rivers like the Stikine, deliver massive freshwater

uxes and geochemical loads to the GOA, providing key controls on

oastal ocean circulation and marine ecosystems. Landscapes here

re shifting quickly under variations in climate and glacier recession.

tudies of the hydroclimatology of the area in general, and of its

order-spanning rivers in particular, have been valuable but sparse

o date. To the extent that research has been conducted, it suggests

eep complexities.

In response to this challenge, a collection of up-to-date time

eries analysis techniques was deployed to establish a fundamental

ramework for how several organized modes of climate variation

ffect the seasonal flows of transboundary BC-AK rivers. The meth-

ds avoid assumptions about statistical distributions and the nature

f hydroclimatic nonlinearities; bring to bear both nonparametric

ull-hypothesis significance testing, and an information theoretic

pproach for model probability estimation; and focus on achieving

igh seasonal resolution. The analysis was performed using eight

elatively long-term historical hydrometeorological datasets from six

easurement locations. Although station coverage in this remote

rontier region is thin, streamgage data are spatially integrated

easurements of upstream catchment processes, and in this sense

substantial portion of the BC-AK border region is directly sampled

ere, including its largest river.

The outcomes refine and expand existing understanding of the re-

ion’s water resource responses to climatic variability. The leading

ydrological effect of large-scale ocean-atmosphere circulation pat-

erns here is to influence seasonal flow timing through temperature-

riven melt rate variations. This is most clearly seen for ENSO and

DO, which affect river regimes in the region by shifting snowmelt

orward or backward in time, expressed as changes in the magni-

udes of the rising and falling limbs of the spring-summer freshet. A

umber of intriguing secondary effects are additionally observed. A
lacier-specific pathway for ENSO teleconnectivity to river discharge

as identified, adding to the growing literature on modulation of hy-

roclimatic dynamics by mountain glaciers. These icemelt-mediated

unoff variations reinforce the late-summer flow decrease (increase)

nder El Niño (La Niña) conditions mentioned above. Warm-phase

NSO or PDO conditions also appear associated with a modest flow

ncrease in autumn through early winter, interpreted to reflect higher

ain-to-snow ratios and a slight precipitation increase. No clear NPGO

ignature in seasonal streamflow can be claimed on the basis of these

nalyses, although it cannot be conclusively ruled out. The AO, how-

ver, has interesting impacts. While most of the teleconnections were

rimarily related to temperature in this area, positive-phase AO con-

itions appear to generate increases in both temperature and precip-

tation over mid- to late-summer, yielding increased flows through

uch of the freshet. Finally, the parabolic teleconnections observed

or several locations globally, and perhaps most notably in the south-

rn PCTR of northern California, are not widely seen here; however,

here is evidence for monotonically nonlinear ENSO, PDO, and AO ef-

ects in both surface climate and streamflow. In combination with

rior work, these outcomes allow us to begin confidently tracing out

atterns in the nonlinearity of water resources responses to ENSO

long the entire Pacific margin of North America. The results have im-

lications for international water resource management, freshwater

nd coastal ecology studies, and assessments of possible longer-term

limate and glacier change impacts in the British Columbia-Alaska

order region.
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