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Introduction

Polycyclic aromatic hydrocarbons (PAHs) are present in the environment as complex mixtures with compo-
nents that have diverse carcinogenic potencies and mostly unknown interactive effects. Non-additive PAH in-
teractions have been observed in regulation of cytochrome P450 (CYP) gene expression in the CYP1 family.
To better understand and predict biological effects of complex mixtures, such as environmental PAHs, an
11 gene input-1 gene output fuzzy neural network (FNN) was developed for predicting PAH-mediated per-
turbations of dermal Cyp1b1 transcription in mice. Input values were generalized using fuzzy logic into
low, medium, and high fuzzy subsets, and sorted using k-means clustering to create Mamdani logic functions
for predicting Cyp1b1 mRNA expression. Model testing was performed with data from microarray analysis of
skin samples from FVB/N mice treated with toluene (vehicle control), dibenzo[def,p]chrysene (DBC), benzol[a]
pyrene (BaP), or 1 of 3 combinations of diesel particulate extract (DPE), coal tar extract (CTE) and cigarette
smoke condensate (CSC) using leave-one-out cross-validation. Predictions were within 1 log, fold change unit
of microarray data, with the exception of the DBC treatment group, where the unexpected down-regulation of
Cyp1b1 expression was predicted but did not reach statistical significance on the microarrays. Adding CTE to
DPE was predicted to increase Cyp1b1 expression, whereas adding CSC to CTE and DPE was predicted to have
no effect, in agreement with microarray results. The aryl hydrocarbon receptor repressor (Ahrr) was determined
to be the most significant input variable for model predictions using back-propagation and normalization of FNN
weights.

© 2012 Elsevier Inc. All rights reserved.

anthropogenic processes such as coal burning and oil spills have led
to environmental PAH concentrations significantly larger than natu-

Polycyclic aromatic hydrocarbons (PAHs) are a class of persistent
chemicals prevalent in the environment as a result of geological pro-
cesses and incomplete combustion of biofuels. Although natural pro-
cesses such as petroleum seepage and forest fires produce PAHs,
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rally occurring levels (Zhang and Tao, 2009). Benzo[a|pyrene (BaP)
and dibenzo[def,p]chrysene (DBC) are classified by the International
Agency on Cancer Research (IARC) as known or probable human car-
cinogens, respectively, and induce carcinogenesis in lung, liver, thy-
mus, prostate and skin (IARC, 2010). To date, more than 100 PAHs
have been identified in the atmosphere (Schauer et al., 2003) with a
wide range of carcinogenic potencies.

The first study linking PAH exposure with cancer was performed
by Percival Pott in 1775, noting the prevalence of scrotal (skin) cancer
in chimney sweeps. Although environmental PAH mixtures such as
soot have long been considered carcinogenic, variability in PAH mix-
ture composition, depending on the organic source, combustion tem-
peratures, age, and surrounding environment (Moldoveanu, 2010),
have made understanding and regulating PAH exposures difficult.
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Today skin cancer remains prevalent throughout society, being the
highest diagnosed cancer in the United States.! Melanoma skin cancer
was responsible for an estimated 8800 deaths in the US in 2011
(Siegel et al., 2011), and melanoma as well as non-melanoma skin
cancer incidence is increasing both in the US and worldwide (Lomas
et al,, 2012; Siegel et al., 2011). A large percentage of these cancers
are due to UV exposures but PAHs may play a contributory role
(Burke and Wei, 2009; Toyooka et al., 2006).

Current methods for environmental PAH mixture risk assessment
involve the calculation/estimation of relative potency factors (RPFs). In-
dividual PAHs are assigned a potency value based on carcinogenic po-
tential relative to the most well studied PAH, BaP, and the RPFs of all
components (with a designated RPF) within a mixture are summed to
determine the potency of the mixture as a whole (Damon, 1997).
RPFs provide a clear, transparent method for risk assessment, at the
cost of assuming a common mechanism of action (MOA) and no inter-
actions between mixture components.

Recent studies in our laboratory utilizing a mouse two-stage skin
tumor model have shown that RPFs grossly underestimate the carci-
nogenicity of dermal exposure to DBC or mixtures containing CTE
(Siddens et al., 2012). These studies also raise questions regarding
possible alternative MOAs for DBC exposures in contrast to BaP, and
have demonstrated interactive effects occurring at the gene expres-
sion level for genes relevant to well-known BaP MOAs, including
Cyp1bl.

BaP and many other high molecular weight PAHs have three
well-known MOAs (Baird et al, 2005;Cavalieri and Rogan, 1995;
Penning et al,, 1999): 1) single electron oxidation by peroxidases, creat-
ing BaP radical cations capable of binding to and depurinating DNA, 2)
production of reactive oxygen species and electrophilic DNA-binding
quinones through aldoketo reductase (AKR)-mediated catechol for-
mation and subsequent electron redox cycling and 3) formation
of (£)-syn/anti-BaP-7,8-dihydrodiol-9,10-epoxide (BaPDE) isomers
that form covalent DNA adducts. CYPs in the 1 family (1A1, 1B1,
1A2) play a critical role in bioactivation of high molecular weight
PAHs such as BaP: redox cycling and BaPDE pathways are dependent
on CYPs for activation of the parent BaP compound through
epoxygenation at the 7,8 position and further BaPDE formation by
CYP epoxygenation across the 9,10-double bond.

mRNA expression of several CYP1 isoforms, including CYP1A1,
CYP1A2, and CYP1B1, are induced by high molecular weight PAHs
through aryl hydrocarbon receptor (AhR) activation (Fujii-Kuriyama
and Mimura, 2005; Lin et al,, 2003). The AhR pathway and corre-
sponding CYP1B1 up-regulation requires a number of co-activators
and co-repressors, including heat shock protein 90 (HSP90), aryl hy-
drocarbon receptor nuclear translocator (ARNT), and aryl hydrocar-
bon receptor repressor (AhRR), contributing to the regulation of
AhR-mediated CYP1 expression (Hahn et al., 2009; Hosoya et al.,
2008). Previous studies investigating exposures to environmental
PAH mixtures and binary PAH combinations have demonstrated syn-
ergistic cyp1b1 and cyplal induction in zebrafish (Billiard et al., 2006;
Timme-Laragy et al., 2007) and Cyp1b1l and Cyplal induction in
dermally PAH-treated mice (Courter et al., 2007a). Our laboratory
previously observed highly distinct gene signatures for several
Phase [ and Il metabolizing enzymes, including differential regulation
of Cyplal and Cyp1b1, in mouse skin after initiation with PAHs and
environmental PAH mixtures suggesting that these enzymes and as-
sociated pathways may be important for the carcinogenic potential
of PAHs (Siddens et al., 2012). Despite the importance of CYP1 in
PAH mixture carcinogenesis, currently accepted methods based on
RPFs cannot predict PAH-mediated perturbations of CYP1 gene ex-
pression. The ToxCast and Tox21 programs were created by the Envi-
ronmental Protection Agency, National Institutes of Health, and other

! Reports of skin cancer incidence do not distinguish between UV-induced and
chemical-induced carcinogenesis.

federal agencies in recognition of the limitations of current RPF
methods and the need to develop high throughput in vitro and in
silico methods to predict potential toxicity of chemicals and chemical
mixtures. ToxCast efforts have resulted in a number of first genera-
tion pathway-level predictive models for high-throughput screening
of single chemical exposures (Abdelaziz et al., 2012; Sipes et al.,
2011). Currently, however, there are still no known quantitative pre-
diction models which can account for non-interactive effects within
chemical mixtures (Altenburger et al., 2012).

We created a fuzzy neural network (a neural network model with
layers consisting of fuzzy logic mathematical operations) for utilizing
gene expression patterns and applied it in predicting quantitative
changes in CYP1B1 expression in murine skin as a function of PAH
mixture composition. The model was trained and evaluated using
microarrays of dermal RNA from mice treated with PAH mixtures, in
which the microarray data set was partitioned into training sets
consisting of n-1 treatment groups and testing data sets consisting
of the treatment groups excluded from the training process. Based
on the initial findings, we conclude that neural network modeling,
when coupled with fuzzy logic mathematics and constructed using
logic functions, may be useful in predicting interactive effects of
PAH, or other environmental, mixtures on gene expression.

Materials and methods

BaP and DBC were handled in accordance with National Cancer In-
stitute (NCI) guidelines. All pure PAHs and mixtures were prepared
under UV depleted light.

Chemicals.  Coal tar extract (CTE) SRM 1597a was purchased from
the National Institute of Standards and Technology (NIST) (Gaithers-
burg, MD), and was concentrated to 10 mg/ml by evaporation under
nitrogen. Diesel exhaust particulate matter (SRM 1650b) was also
purchased from the NIST. Two hundred milligrams of diesel particu-
late were extracted into 200 ml dichloromethane using a Soxhlet ap-
paratus at 40 °C for 24 h. Dichloromethane extract was concentrated,
exchanged into toluene, and evaporated under a stream of nitrogen
gas to a final volume of 10 ml. Cigarette smoke condensate (CSC)
(40 mg/ml in DMSO) was generously provided by Dr. Hollie Swanson
(University of Kentucky, Lexington, KY). The CSC was evaporated
using a speed vac centrifuge and diluted to 40 mg/ml and 5% DMSO
in toluene. BaP and DBC were purchased from Midwest Research In-
stitute, Kansas City, MO. Dichloromethane, toluene, acetone, and
DMSO were purchased from Fisher Scientific (Pittsburgh, PA). All
other reagents were purchased from Sigma-Aldrich (St. Louis, MO).
An aliquot of diesel particulate extract (DPE) was diluted into vehicle
(toluene containing 5% DMSO) to create a 5 mg/mL solution designat-
ed as PAH mixture 1 (Mix 1). PAH mixture 2 (Mix 2) consisted of
5 mg/ml DPE and 5 mg/ml CTE diluted in vehicle, while PAH mixture
3 (Mix 3) consisted of 5 mg/ml DPE, 5 mg/ml CTE, and 10 mg/ml CSC
in vehicle.

Mouse dermal treatment.  All procedures were conducted according
to National Institutes of Health guidelines and were approved by the
Oregon State University Animal Care and Use Committee. Six week
old female FVB/N inbred mice were obtained from NCI-Frederick,
Frederick, MD, and housed four mice per cage in micro ventilated
racks. Mice were on a 12 h light/dark cycle, 22 °C, 40-60% humidity
and fed AIN93-G pellets (Research Diets, Inc., New Brunswick, NJ)
for 10 days. At 7.5 weeks mice were shaved on the dorsal side from
the front shoulders to tail and observed for 48 h in order to confirm
that hair of mice were in the resting phase of growth. Treatments
were delivered by pipetting 200 pl of the designated treatment even-
ly over the shaved area according to the dosing scheme shown in
Supplemental Table 1. Mice were euthanized 12 h post-treatment
using CO, and cervical dislocation. Dermal and epidermal layers of
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the shaved area were excised and snap frozen in liquid nitrogen for
RNA extraction.

Dermal RNA extraction.  One cm? subsections of the frozen skin were
homogenized in 2 ml Trizol® Reagent (Life Technologies, Carlsbad, CA),
using 15 mL disposable conical homogenizers (VWR International, West
Chester, PA). RNA isolation was performed according to commercial
protocol. RNA was further purified using QIAGEN RNeasy mini prep kit
according to protocols provided by the manufacturer (RNeasy Miniprep
kit, Qiagen, Valencia, CA). Nucleic acid purity and concentrations were
determined using nanodrop spectrophotometry (Thermo Fisher Scien-
tific, Waltham, MA), and Agilent Bioanalyzer (Santa Clara, CA) analysis,
respectively. Samples with Axgo/280 ratios of 1.9-2.2 and RNA integrity
numbers 6.5 or greater were selected for microarray analysis.

Microarray analysis.  Individual mouse dermal samples were ana-
lyzed by Agilent microarray after initiation with PAHs (N =4 biological
replicates, Supplemental Table 1) or toluene control (N=15 biological
replicates) as previously described (Siddens et al, 2012). Briefly, the
RNA was labeled with Agilent's 2 color Quickamp kit for hybridization
to the Agilent 8 x60 K mouse array. Raw intensity data were quantile
normalized by RMA summarization (Bolstad et al., 2003) and subject
to pairwise analysis of variance (Kerr et al., 2000) with Tukey's post
hoc test and 5% false discovery rate calculation (Benjamini and
Hochberg, 1995). Raw and normalized Agilent data files are available on-
line at http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE39455.
Microarrays results were confirmed using RT-qPCR on a subset of
genes with decreased, increased, and no significant change in expression
levels relative to control (Supplemental Fig. 1).

Model inputs. To develop a model for quantitative prediction of
CYP1B1 expression in skin as a function of PAH mixture composition,
a list of candidate input genes were identified by searching Pubmed
and Google Scholar databases for genes involved in the epithelial per-
turbation of human/murine CYP1B1/Cyp1b1, and Cyplal/Cyplal. The
list of genes was filtered to a short list of candidate input genes from
the microarray analysis reported in Siddens et al. (2012) The 11 can-
didate genes from the microarray analysis selected for model inputs
are summarized in Table 1.

Model structure.  Traditional neural networks have unconstrained
connections between nodes in adjacent layers. Unconstrained network
structures allow for mathematical optimization during model training,
but are considered to be “black boxes” due to the inability to interpret
functionality of the network in a manner that provides insight into the
process that is being modeled. The connections between nodes in our
FNN were constrained so that each connection has a well-understood
statistical or biological meaning related to the Cyplbl pathway.
Model input genes and corresponding Cyp1b1 values (Table 1) for

samples in each training data set were used to construct the neural net-
work structure prior to model training and testing. The neural network
structure consisted of 5 layers (Fig. 1). The first layer consisted of the
model input gene values. The second layer consisted of gene expression
values that were transformed using fuzzy logic into low, medium, and
high fuzzy subsets with membership values defined by Gaussian mem-
bership functions:

Low subset membership value
X = exp(ln(o.S) *((input+5)/(5/2))2)
X =1

for input>—5 (1)
for input<—5

Medium subset membership value

X = exp(ln(O.S) * ((input)/(7.5/2))2) for all input (2)
High subset membership value
X = exp(ln(o.s) « ((input—5)/(5 /2))2) for input<5 3)

X=1 for input > 5

where X is the calculated fuzzy subset value and input is the corre-
sponding gene input value (Fig. 2). The low, medium, and high fuzzy
logic subsets are related to the likelihood that a gene expression level
is below, at, or above a control treatment group given the observed ex-
pression level observed in the microarrays. Transforming gene expres-
sion levels into fuzzy membership subsets helps prevent model
overtraining, reduces model sensitivity to inaccurate input expression
levels, and allows the user to account for uncertainty by altering the
scale parameter of the Gaussian distribution functions. A matrix
consisting of all combinations of low, medium, and high fuzzy subsets
with membership values greater than 0.1 for input genes and Cyp1b1
was constructed, and combinations were partitioned based upon the
Cyp1b1 subset (matrices which contained fuzzy subsets with member-
ship values less than 0.1 were not included to reduce processing time).
Combinations within each partition were then sorted using k-means
clustering (5 clusters per partition). Each cluster was then transformed
into a Mamdani logic function, or “If-Then” rule (Mamdani, 1977) for
predicting low, medium, or high Cyp1b1 expression levels. Rules were
created using the most common fuzzy subset within a cluster for each
input gene and Cyp1b1 gene The third layer of the FNN is comprised
of the Mamdani If-Then rules, with one node for each rule. The fourth
layer of the FNN consist of the low, medium, and high Cyp1b1 predicted
expression levels predicted by the If-Then rules in the third layer of the
network. The low, medium, and high Cyp1b1 predictions in the fourth
layer were combined or defuzzified into a single quantitative value of
Cyp1b1 expression by applying the inverse of the respective member-
ship functions. The predicted Cyp1b1 expression is the fifth and final
layer of the network. For a more thorough review of neural network
structure design, see the review by Lee (1990).

Table 1
Microarray expression levels of genes selected for FNN inputs® (mean log, fold change + SE).
Treatment
Gene name GenBank ID: BaP DBC Mix 1 Mix 2 Mix 3
Input gene Ahr NM_013464 —0.234+0.29 —0.014+0.22 —0.504+0.03 —0.8340.08 —0.764+0.10

Hsp90a1 NM_010480 —0.224+0.37 —0.58+0.11 0.32+0.23 0.18+0.15 0.07+0.14
Ahrr NM_009644 2.0040.44 0.2540.37 1.394+0.14 3.05+£0.04 2.624035
Nfe2i3 NM_010903 —0.134+0.27 —0.4740.90 —0.564+0.40 —1.154+0.30 —1.034+0.49
Tnfrsfl4 NM_178931 1.124+0.07 —0.53+0.93 —0.36+0.35 0.99 +0.46 1.30+0.24
Tnfrsfl9 NM_001164155 0.2440.54 0.57+1.10 —1.094+0.24 —1.474+0.53 —1.514+0.15
Arntl2 NM_172309 0.6140.17 0314048 —0.4640.34 —0.2240.09 —0.2440.25
E2f6 NM_033270 —0.154+0.21 —0.554+0.33 —0.05+0.03 0.24+0.21 0.4040.09
Rbbp4 NM_009030 0.07 +0.05 —0.01+0.14 —0.14+0.11 —0.32+0.12 —0.34+0.12
Rbbp8 NM_001081223 0.1540.19 0.24+041 0.15+0.07 —0.06+0.15 —0.4440.01
Nfe2i2 NM_010902 0.22+0.34 —0.204+0.25 0.38+0.14 0.68+0.15 0.77 +£0.07

2 Complete data set reported in Siddens et al. (2012).
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Fig. 1. Five layer fuzzy neural network structure for quantitative prediction of Cyp1b1
expression. Layer 1 consists of input gene expression values (input genes 1-11). Layer
2 fuzzifies input values into low, medium, and high fuzzy subsets. Layer 3 creates
Mamdani “If-Then” rules. Layer 4 predicts low, medium, and high Cyp1b1 expression,
and layer 5 (output) consists of a single quantitative prediction of Cyp1b1 mRNA ex-
pression (output gene 12).

Model training and evaluation. ~ Model training was performed using
MATLAB version 2011B with Neural Network Toolbox algorithms
(“train” command using Quasi-Newton formula for minimizing means-
squared error). Connections between the first and second and fourth
and fifth layers were fixed with weight values equal to corresponding
fuzzy subset membership values. Model training was performed using
leave-one-out cross-validation (LOOCV). A data set is partitioned into a
training data set consisting of n-1 treatment groups and a validation
data set consisting of the treatment group excluded from the training
data (Agrafiotis et al., 2002; Lek and Guégan, 1999). Percent relative con-
tribution of each input gene, also referred to in neural network literature
as relative importance or percent influence, towards prediction of low,
medium, and high dermal Cyp1b1 expression was determined through
back-calculation of the neural network connection weights followed
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Fig. 2. Graph of membership functions used to fuzzify input genes. Note that the scale
parameter of the medium Gaussian membership function is larger than low and high
membership functions (7.5, 5, and 5, respectively), increasing bias towards control
level predictions. Low, medium, and high membership values are related to the likeli-
hood that a treatment group is expressed below, at, or above the control treatment
group, respectively, given the observed expression level.

by unbiased multi-model averaging and percent normalization to aver-
age (mean) gene contribution (9.09%) (Garson, 1991; Vasilakos et al.,
2009).

The FNN was evaluated by first comparing the qualitative and
quantitative predictive capabilities of the model to microarrays of
treatment groups excluded from the training process using LOOCV.
The structure of the model was then evaluated by comparing
If-Then rules to Cyp1b1 expression levels in treatment groups includ-
ed in the training data set: If-Then rules for predicting high and low
Cyp1b1 expression would be ideally based upon samples in the train-
ing data set with Cyp1b1 expression levels above and below control,
respectively. The model's ability to identify and emphasize which
input genes are most important for low, medium, and high Cyp1b1
expression was then evaluated by calculating the relative influence
of each input gene on model predictions for low, medium, and high
Cyp1b1 expression, and comparing the importance of the genes
most influential in model predictions to their relative importance in
the biological pathway of Cyp1b1 transcriptional regulation. Lastly,
the efficacy of the genes selected for input in capturing Cyp1b1 tran-
scriptional regulation was evaluated repeating the LOOCV studies
using three permutations of randomly selected genes as model inputs
for comparing predictive capabilities of models with an expert selec-
tion of inputs to models with randomly selected inputs.

Results and discussion

This study develops an FNN model that can be applied to quantita-
tive prediction of Cyplbl enzyme expression from environmental
PAH mixtures in support of Tox21 and ToxCast efforts to create in vivo
and in silico toxicological methods for the 21st century. Our lab previ-
ously observed complex effects of PAH mixture exposures in CYP activ-
ity and CYP1B1 expression (Courter et al., 2007b) in human cell cultures,
as well as Cyplal and Cyp1b1 protein and activity levels in dermally
treated mice (Courter et al., 2007a). Recent studies in our lab have
also demonstrated distinct differences in the carcinogenic potency of
PAHs and environmental PAH mixtures in mouse skin that are not pre-
dicted by RPF values alone (Siddens et al., 2012). To further investigate
the Cyp1b1 pathway, we applied a multi-layer fuzzy neural network
model to predict quantitative changes in Cyp1b1 expression as a func-
tion of PAH mixture composition.

The primary purpose of fuzzy logic or fuzzy expert systems is to eval-
uate measurements or other quantitative values in a manner similar to
the evaluation process performed by an individual with expert knowl-
edge of the system of interest (Leondes, 1998). A fuzzy logic program
evaluating the influence of co-activators or co-repressors on a transcrip-
tion factor of interest, for example, would use documented network
pathways, rules defined from observations of previous studies, and/or
high quality data sets to predict how changes in the co-activators or
co-repressors would change transcription factor activity (Pham and
Liu, 1995). Fuzzy logic systems categorize, or fuzzify, quantitative values,
similar to the categorization process performed by scientists when
interpreting experimental results. Gene expression levels after chemical
treatment, for example, are fuzzified into categories, called fuzzy sub-
sets, such as low, medium, or high tumor potency for chemical mixtures
relative to a control group.

Distribution functions such as the normal or Gaussian distribution
are used to determine the value assigned to a fuzzy subset based upon
the likelihood that a particular value for a given observation falls
within the fuzzy subset category. Assigning values to fuzzy subsets al-
lows the system to retain the quantitative information in a data set,
which can be used to defuzzify system outputs (using the mathemat-
ical inverse of the distribution function used for fuzzifying inputs) in
order to attain quantitative outputs. Incorporating fuzzy logic opera-
tions into neural networks allow network properties such as layer con-
nections and weights to be defined based on known or observed
correlations between selected variables rather than by mathematical
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optimization, which in turn facilitates comparisons between the behav-
iors of the neural network and the systems of interest (Halgamuge and
Glesner, 1994).

Cyp1b1 prediction in individual treatment groups

Overall, the FNN model accurately predicted Cyp1b1 expression for
each PAH treatment group, including the three environmental PAH mix-
tures. Model predictions, corresponding microarray observations, and
the root mean squared error (RMSE, the square root of the sum of the dif-
ference between predicted and observed expression levels for all sam-
ples in a treatment group divided by the number of samples in the
treatment group) are listed in Table 2. Average model predictions are
within one log,-fold change unit of microarrays for all treatment groups
except for DBC, where the model correctly predicted the unexpected re-
sult of DBC differing from the other treatment groups although to a great-
er extent (—1.34 fold-change (Log,) predicted compared to —0.28
fold-change (Log,) actual). RMSEs range from 0.36-1.16 log,-fold change
units. Treatment groups with the smallest standard deviations in micro-
array expression levels are associated with the smallest RMSEs (Mix1
and Mix2, respectively), whereas treatment groups with the largest mi-
croarray SDs also produced the largest RMSEs (Mix3 and DBC, respec-
tively). Model error appears to be associated with variances in
treatment effects, and treatment groups which have large variances in
dose-response may require larger training data sets.

The discrepancy in magnitude between model predictions and mi-
croarray observations for DBC treatment can be partly attributed to dif-
ferences between induction, steady-state level, and repression of Cyp1b1
expression. Cyp1b1 transcriptional regulation is dynamic. The interac-
tions between regulatory proteins change when Cyp1b1 transcriptional
regulation shifts between repressed, steady-state, and induced expres-
sion. As a consequence regulation of Cyp1b1 gene expression should
be viewed as a function with non-identical parameters for up and
down-regulation. Using leave-one-out cross-validation, the FNN created
rules for predicting Cyp1b1 following DBC treatment using BaP, Mix 1,
Mix 2, and Mix 3 treatment groups, in which Cyp1bl was induced.
Therefore the FNN was unable to create If-Then rules for low Cyp1b1
prediction and rules for medium Cyp1b1 prediction were based exclu-
sively on induced Cyp1b1 samples. Without gene expression profiles of
treatment groups with steady-state or repressed Cyp1bl expression,
the FNN extrapolated based on induced Cyp1b1 samples, to predict the
effects of DBC treatment on Cyp1b1 expression, levels lower but not sig-
nificantly less than control (p=0.05). Successful quantitative prediction
of induced Cyp1b1 along with unsuccessful prediction of non-induced
Cyp1b1 expression suggests that Cyp1b1 induction and repression are
not mirror images of each other. For that reason, quantitatively
predicting the entire range of Cyp1b1 expression requires including
samples with down-regulated and steady-state as well as up-regulated
Cyp1b1 expression in the training set. The lack of If-Then rules for low
Cyp1b1 prediction when DBC is excluded from the training data set
and the abundance of If-Then rules for high Cyp1b1 prediction suggest
that the model correctly identifies which samples are appropriate for
developing rules to predict low, medium, or high Cyp1b1. Future models
which include down-regulated and steady-state Cyp1b1 samples in the
training data set are more likely to accurately predict Cyp1b1 expression
after DBC treatment.

Table 2
Cyp1b1 expression levels (mean log, fold change + SE) and RMSE.
BaP DBC Mix 1 Mix 2 Mix 3
Model 232+1.08 —134+0.16 092+0.69 3.19+0.08 3.02+0.40
prediction®

Microarrays  2.56+0.37 —0.28+0.62 0.95+0.28 3.85+0.13 3.78+0.51
RMSE 0.75 1.16 0.36 0.67 1.08

2 Model predications are based on 1000 replications for each treatment group.

Model predictions for up-regulated treatments are all closer to con-
trol than microarray observations (bias towards the null hypothesis).
Gaussian distribution functions with two or more parameters belong
to the location-scale family of distribution functions. The scale parame-
ter of the medium fuzzy logic membership function is larger than the
low and high membership functions (7.5, 5, and 5, respectively). The
larger scale parameter value adds bias towards greater influence from
the medium subset. Similarly, defuzzifying low, medium, and high
Cyp1b1 subsets is biased towards greater influence from the medium
subset. Bias was intentionally added in order to prevent over-fitting
during model training, as well as to structure model evaluation and
interpret results from a null hypothesis paradigm. Adopting a null
hypothesis viewpoint allows results to be better compared and inte-
grated with scientific studies, and to have greater confidence in pre-
dictions of adverse biological responses at the cost of diverting from
current risk assessment paradigms favoring the precautionary prin-
ciple, or bias towards overestimation of responses for the purposes
of protecting sensitive members of the population.

Cyp1b1 prediction in adding multiple PAH sources

Comparing the addition of PAH mixtures, in which Mix 2 contains
CTE added to Mix 1, and Mix 3 contains CSC added to Mix 2, model
predictions are in agreement with microarray results, in which
adding CTE increases and adding CSC does not increase Cyp1b1 ex-
pression (Table 2). The inverse also applies, in which model predic-
tions of subtracting CSC from Mix 3 and subtracting CTE from Mix 2
are in agreement with microarrays. Model predictions of adding or
subtracting PAH sources can supplement current statistical efforts of
capturing PAH effects by establishing PAH gene expression signatures
of complex mixtures, then using sufficient similarity to predict how
deviations in composition from the well-studied mixtures correlate
to differences in biological responses.

Comparison between expertly selected and randomly selected gene inputs

As mentioned above, expert systems are designed to evaluate mea-
surements in a manner similar to an individual with expert knowledge
on the subject. As described in the Materials and methods section, the
structure of our expert system is derived from the relationship be-
tween genes involved in epithelial Cyp1b1 transcriptional regulation
and Cyp1b1 gene expression. If the model is properly structured, con-
nections between network layers and network nodes will capture the
relationships between input genes and Cyp1b1 expression. A properly
structured expert model should therefore provide more accurate pre-
dictions of Cyp1b1 expression compared with models that are struc-
tured and trained with a random selection of genes. Fig. 3 shows
Cyp1b1 expression predicted from models with random gene inputs
(described in Supplemental Table 2) compared with those with expert-
ly selected gene inputs (from Table 1). For most of the PAH treatment
scenarios, the Cyp1b1 expression predicted by the expertly selected
gene inputs most closely followed the actual Cyp1b1 expression pat-
terns from the microarray analysis providing validation for the
expert-driven approach. Differences between prediction and microar-
ray expression levels were greater for models with random inputs for
all treatment groups with the exception of DBC, where two of the
three models with random inputs predicted mean Cyp1b1 levels closer
to microarrays than the expert selection model, albeit with large stan-
dard errors in model predictions. As discussed above, this is likely due
to the lack of data available for prediction of low Cyp1b1 expression (or
down-regulation) in the testing and training of the FNN model.

Relative percent weights of input genes

Relative percent weights of input genes are shown in Fig. 4 for low,
medium, and high Cyp1b1 prediction. Ahrr has the largest relative
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Fig. 3. Comparison of randomly selected versus expertly selected gene lists as input for the FNN model and prediction of Cyp1b1 expression. Differences between predicted and
observed Cyp1b1 expression levels were greater for models with randomly selected gene inputs (described in Supplemental Table 2) than for models with an expert selection

of gene inputs (Table 1) for all treatment groups with the exception of DBC.

percent weight across all three Cyp1b1 fuzzy subsets, suggesting that
Ahrr is a better indicator than Ahr of changes in Cyp1b1 expression at
the sample time point (12 h). Cyp1b1 levels are more strongly correlat-
ed with Ahrr than Ahr in the microarrays (0.92 and — 0.74, respective-
ly), supporting the model's decision to rely on Ahrr more than Ahr for
predicting Cyp1bl expression. Understanding the importance of
selecting Ahrr over Ahr from a biological context requires a closer look
at the AhR signaling pathway. As described in the introduction section,
Ahrr gene expression is induced by Ahr/Arnt binding to xenobiotic re-
sponse elements (XREs), and Ahrr heterodimerizes with Arnt, competi-
tively inhibiting Ahr/Arnt XRE activation (Kawajiri and Fujii-Kuriyama,
2007). By emphasizing Ahrr over Ahr, the ENN is hypothesizing that at
12 h post-initiation Cyp1b1 expression is more closely related to Ahrr
than Ahr, further hypothesizing that Cyp1b1 inhibition at 12 h is predom-
inant over Cyp1b1 induction, and Cyp1b1 levels are in general decreasing.
Studies investigating AhR induction in cultured cells have demonstrated
peak nuclear localization of Ahr 1-2 h after TCDD exposure (Pollenz,
2002) and peak expression levels of reporter genes (100-fold induction)
5 h post TCDD exposure (Fujii-Kuriyama and Mimura, 2005), supporting
the model-generated hypothesis of Cyp1b1 transcriptional regulatory

network status. Ahr microarray expression levels are lower than control
for all treatment groups with up-regulated Cyp1b1, again in agreement
with the model-generated hypothesis. The importance of Ahrr in regulat-
ing Ahr-mediated Cyp1 expression has been previously shown using
knockout mice as Ahrr-deficient mice exhibited higher levels of Cyplal
expression compared to wild type after exposure to BaP (Hosoya et al.,
2008).

Applications toward risk assessment

Risk assessment methods using RPFs assume that interactions be-
tween mixture components are strictly additive. The published RPFs
for the individual PAHs and mixtures used in this study are 100, 36,
0.004, 0.34 and 0.47 for BaP (100 pg dose), DBC, and mixtures 1, 2
and 3, respectively (Supplemental Table 1 and Siddens et al., 2012).
Comparing the effects of BaP, DBC, Mix 2 and Mix 3, it is apparent
that the RPF but does not correlate well with Cyp1b1 expression.
RPFs do not have a well-defined method for including effects of
non-PAH components present within a mixture, such as heavy
metals, non-PAH urban air particulate matter, or for the effects of

Nfe212
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Tnfrs19

Tnfrs14

Nfe213

Ahrr |
Hsp90a1
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Input Genes
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Fig. 4. Heatmap of percent gene input weights for low, medium, and high Cyp1b1 prediction in the 1st, 2nd and 3rd columns, respectively. Weights are normalized relative to the
average (mean) input weight (9.09%). Dark green indicates an above average (higher) relative input weight, whereas dark blue indicates a below average (lower) relative input.
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PAH components that are non-carcinogenic but may impact the po-
tency of carcinogenic PAHSs. Sufficient similarity is another potential
method that has been proposed for risk assessment. Sufficient similar-
ity involves evaluating the toxicity of mixtures with complex but
well-defined compositions, and using the well-defined mixtures to pre-
dict toxic effects of other mixtures with similar compositions. FNN
modeling can enhance both RPF and sufficient similarity risk assess-
ment methods by predicting the effects of mixture components
suspected to have non-additive interactions or predicting combinatory
effects with metals and other non-PAH components and PAH mixtures.
In the case of sufficient similarity, FNNs can consider a well-defined
mixture as a single mixture and evaluate how adding or subtracting
other components will change mixture effects, similar to comparing
the effects of adding/subtracting CSC to/from Mix 2/Mix 3 or adding/
subtracting CTE to/from Mix 1/Mix 2 from the microarray data men-
tioned above.

FNNs can be used to identify the best selection of genes to include in
Tox screens for quantitative MOA modeling approaches. Our FNN model
hypothesizes that Ahrr is a greater predictor than Ahr of PAH-mediated
Cyp1b1 induction in mouse skin at 12 h post-exposure. ToxCast refer-
ence databases include a number of assays which screen for human
AhR, but as of yet none of these high-throughput assays include AhRR.
If the role of human AhRR is similar to Ahrr in mice, then the inclusion
of AhRR in future ToxCast assays may be necessary for quantitatively
predicting the effects of chemical combinations that perturb pathways
associated with AhR activation.

Model limitations

Expert systems such as FNN, are dependent on accurate, previously
obtained knowledge of the system of interest, and are consequently lim-
ited in scope compared to other array approaches such as modern quan-
titative structure activity relationship (QSAR) models. The advantage to
using expert systems is the ability to predict outcomes at a quantitative
level, which is an essential component for a high-throughput in silico
based approach for predicting interactive effects of numerous chemical
mixture combinations, as desired by the ToxCast and Tox21 programs.
Expert systems are therefore not a replacement for transcriptome-wide
pathway approaches, but rather a complement which allow scientists
to quantitatively model known MOAs.

Current model predictions are based on microarray data from
whole dermal samples collected from mice. Mouse and human skin
tissues have several distinct morphological differences, including dif-
ferences in epidermal thickness, densities of follicular hairs cells as
well as melanocytes and inter-species differences in enzymatic activ-
ities. Nevertheless, the two-stage mouse skin tumor model has been
used extensively for a number of years as a model for human skin
cancer (reviewed in DiGiovanni, 1992; Yuspa and Poirier, 1988).
Mouse microarrays were used for model assessment because the ad-
ditive PAH dosing scheme provided the opportunity to compare
model predictions and microarray measurements of gene expression
for adding PAH mixtures. The model structure is not species-specific
and can be adapted to other model systems such as zebrafish,
human cell cultures, and human skin.

Our microarray data and model predictions evaluated Cyp1b1 expres-
sion at a single time point post treatment, 12 h. This time point was se-
lected based on previous studies suggesting DNA adducts in murine
epithelial tissue peaks at 12 h (Marston et al., 2001). Time intervals for
peak PAH metabolism and CYP1B1 expression in human keratinocytes
and other human skin cells are currently unknown and could vary
depending on exposure conditions, such as single vs. repeated dosing in-
teractions or non-PAH components during co-exposures (Courter et al.,
2007b). Previous work by our laboratory and others suggests, that
Cyp1b1 expression is important in PAH (including DBC) carcinogenesis
(Buters et al.,, 1999, 2002; Castro et al., 2008; Uno et al., 2006). The poten-
cy of DBC as a skin carcinogen in mouse seems to be inconsistent with

DBC down-regulation of Cyp1b1 mRNA. Tumorigenesis is a complex pro-
cess, and we agree that analysis of a single pathway or mechanism of ac-
tion is insufficient to predict all of the ways in which a chemical or
chemical mixture may contribute to tumor initiation, promotion, and
progression. FNN analysis is not limited solely to the Cyp1b1 pathway.
This model can be used to predict responses that may occur in numerous
pathways or mechanisms of interest. The reason for focusing on a single
transcriptional regulatory network in the paper is to provide a clear ex-
ample of FNN analysis in a pathway that is relevant to PAH-mediated car-
cinogenesis and is well-known to most readers. Future studies including
multiple time points would capture the temporal nature of gene regula-
tory processes and strengthen the predictions made by the algorithm.

The model has been tested only with mixtures that follow an
S-shaped dose response curve, in which increased PAH concentra-
tions produced non-linear increases in gene expression. The advan-
tage to using a FNN in contrast to a traditional regression model is
the ability to capture complex behavior such as feedback loops.
FNNs therefore have the potential to model complex dose responses
such as U-shaped dose response curves, but this ability has not yet
been tested. Predicting complex dose-responses such as U-shaped
curves would require larger training data sets than the data set used
in this paper for predicting S-shaped dose responses.

As with any computational or mathematical model, the accuracy
of model predictions are limited by the ability of a data set to capture
the relevant information about the population of interest: models
based on incomplete data, such as missing time points or concentra-
tions, or data which has lost relevant information during sample
and/or data processing are less likely to accurately simulate or predict
conditions in the system of interest.

Conclusions

A fuzzy neural network model was developed and evaluated for
predicting PAH mixture-mediated perturbations of the dermal
CYP1B1 transcriptional regulatory network. The model was evaluated
with microarrays of RNA from FVB/N mice dermally treated with en-
vironmental PAH mixtures using leave-one-out cross-validation.
Model predictions were within 1 log, fold change unit of the
microarrays for all treatment groups with the exception of DBC,
where the unexpected down-regulation was predicted but failed to
reach statistical significance on the microarray. Model predictions of
adding coal tar extract (increase in Cyp1b1) or cigarette smoke con-
densate (no increase in Cyp1b1) to existing PAH mixtures were in
agreement with microarray data. Ahrr greatly influenced model pre-
dictions. Further development of Fuzzy Neural Networks can supple-
ment sufficient similarity or component-based risk assessment
methods by integrating early, sensitive, and robust biological re-
sponses capable of capturing PAH interactive effects into the risk as-
sessment process.
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