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The importance of spatial pattern in ecosystems has long been recognized. However, 

incorporating patchiness into our understanding of forces regulating ecosystems has proven 

challenging. We used a combination of continuously sampling moored sensors complemented by 

shipboard sampling to measure the temporal variation, abundance, and vertical distribution of 

four trophic levels in Hawaii's nearshore pelagic ecosystem. Using an analysis approach from 

trophic dynamics, we found that the frequency and intensity of spatial aggregations, rather than 

total biomass, in each step of a food chain involving phytoplankton, copepods, mesopelagic 

micronekton, and spinner dolphins (Stenella longirostris) were the most significant predictors of 

variation in adjacent trophic levels. Patches of organisms had impacts disproportionate to the 

biomass of organisms within them, masking resource limitation in this ecosystem. Our results are 

in accordance with resource limitation - mediated by patchiness - regulating structure at each 

trophic step in this ecosystem, as well as the foraging behaviour of the top predator. Because of 

their high degree of heterogeneity, ecosystem-level effects of patchiness like this may be 

common in pelagic marine systems.  

  

1. Introduction 

Understanding the relative roles of the biological and physical factors that control populations 

and communities is a central challenge in ecology. Trophic interactions, which in many systems 

determine distributions and abundances of organisms, are regulated by a combination of factors 

[1] including resources [2] and predators [3]. While some researchers have argued that 

environmental heterogeneity must be considered in assessing the relative roles of ecological 

forces [1,4], a widespread and fundamental ecosystem characteristic, patchiness, or the spatial 

variability in biomass at relatively small scales, has been difficult to incorporate in studies of 
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these controls. We examined the relationships among four trophic levels that are found in 

distinct, extreme spatial aggregations [5,6] to examine the relative importance of biomass and 

patchiness in the regulation of a pelagic marine food web. 

 

2. Materials and Methods 

We measured the temporal variation, abundance, and vertical distribution of organisms in Hawaii's nearshore 

pelagic ecosystem from 20 April to 12 May 2009. Ship-based sampling with a downward looking acoustics package 

and a high-resolution profiler instrumented with optical, acoustical, and hydrographic sensors [5,7,8] was conducted 

close to continuously sampling instruments moored at the 25 m isobath off leeward Oahu over three, 24-hour 

periods, as well as during four other days and nights dispersed over the study period. A moored autonomous profiler 

collected hydrographic and chlorophyll fluorescence data every half hour between the bottom and the surface with 

<1 cm vertical resolution [7]. A calibrated, moored upward looking 200, 420, 740 kHz echosounder collected 

acoustic backscatter once per second with a vertical resolution of 1 cm.  

 

From the moored acoustic data, large scatterers with intense echoes at all frequencies were identified as spinner 

dolphins [9] and enumerated by echo counting to calculate their abundance. The degree of dolphin aggregation at 

night was quantified using short-term times-series autocorrelation analysis allowing lags of up to 5 minutes. The 

resulting coefficient ranges from zero, representing dolphins that are randomly distributed, and a coefficient of 1 

representing highly periodic detections and thus highly aggregated dolphins. The 200 kHz volume backscatter was 

used to measure the density and vertical distribution of micronekton [8] that S. longirostris specialize in foraging on 

[10]. Net tows with an opening/closing 0.5 m diameter, 200 m mesh net provided the identity of zooplankton in 

discrete aggregations. Differences in species composition in net tows were correlated with the frequency response in 

acoustic scattering: aggregations dominated by copepods had higher scattering at 740 kHz, while aggregations 

dominated by amphipods had higher scattering at 420 kHz. Acoustic scattering at 740 kHz was used to describe the 

vertical distribution of copepods, the preferred prey for the mesopelagic micronekton identified using the profiled 

camera system [8,11], and integrated to provide an estimate of copepod biomass.  
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Thin layers - intense, sheet-like aggregations - of plankton in the moored data sets were identified as features with 

vertical scales less than 2-m thick with intensities at least 50% higher than the surrounding water column [12] using 

half-hour resolution data and their frequency of occurrence calculated. For layers of plankton and micronekton, the 

peak intensity, layer thickness, and mean density were also calculated. The relationships between the biomass in 

each trophic level and individual layer characteristics were explored using correlation analysis. Each layer 

characteristic was also used as the dependent variable for multiple correlation analysis with the layer characteristics 

and biomass of the next lower trophic level as independent variables. Finally, all analyses were repeated to relate 

phytoplankton characteristics directly to spinner dolphins. 

 

3. Results 

Thin layers of phytoplankton fluorescence (Fig. 1) were found in an average of 5% of vertical 

profiles each day (range 0-20%).Thin layers of zooplankton in the copepod size range were 

found in an average of 15% of profiles each day (range 7-33%). Plankton layer abundance was 

negatively correlated with integrated biomass for both trophic levels (phytoplankton R2=0.22, 

zooplankton R2=0.19). Mesopelagic micronekton, identified with the shipboard profiler cameras 

as primarily myctophid fishes, were found in a discrete, midwater sound-scattering layer [8]. The 

density of mesopelagic micronekton within this layer was negatively correlated with the total 

water-column abundance of mesopelagic micronekton (R2=0.41) because of concomitant 

changes in layer thickness.  

 

The strongest single correlations found between adjacent trophic levels were positive 

relationships between aggregation rates of consumers and their resources (Table 1, Fig. 2). These 

relationships were significantly stronger than the correlations of biomass between adjacent 

levels. Multiple correlation analysis showed that only patch characteristics contributed 

significantly to prediction of the next trophic level. While only the single most significant 



5 

multiple correlation for each trophic level is shown in Table 1, all possible dependent variables 

were examined and in no case was biomass a significant predictor variable, even when biomass 

was the dependent variable. 

 

4. Discussion 

In habitats where experimental manipulation of trophic levels is not possible, positive 

correlations in the standing biomasses of consumers and resources are used as evidence for 

regulation of the food web by food limitation [13]. Our results showing positive correlations 

between aggregations at adjacent levels in this pelagic food web support control of organisms at 

each step by their food, or a dominance of bottom-up forcing in this ecosystem, however, only if 

patchiness is considered. Similar analyses using the standing biomass of organisms, the typical 

approach to examining forcing of trophic relationships, showed that the biomasses of organisms 

at adjacent trophic levels were consistently more weakly correlated than aggregations of 

organisms, and in some cases were negatively correlated (Table 1). Multiple correlation analysis 

showed biomass never became a significant predictor variable when patch characteristics were 

included as predictive variables, even when standing biomass was the dependent variable. 

 

The abundance of spinner dolphins in the study site and their aggregation behaviour can be 

predicted based on the aggregation characteristics of phytoplankton to provide an estimate of the 

total strength of bottom-up effects because of the consistent positive correlations observed at 

each step of the food chain. While phytoplankton biomass was negatively correlated with 

dolphin abundance and aggregation intensity and predicted only 34% and 42% of variability, 

respectively, the abundance of thin phytoplankton layers was positively correlated with both the 
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abundance and aggregation intensity of spinner dolphins, explaining 54% and 57% of their 

variability, respectively. Using multiple, simply measured patch characteristics, predictive 

capacity was extremely high relative to studies examining only biomass (72% abundance; 83% 

aggregation) [14,15].  

 

We observed that bottom up effects explained increasingly more of the variability in consumer 

aggregations at increasingly higher trophic levels. This contrasts with previous efforts that 

suggest that resource limitation should have the greatest effects at the bottom of the food chain 

while control by predators should have a greater influence nearer the top of the food chain [13]. 

The difference might be explained by differing effects of consumers and resources in open 

pelagic systems that are fully connected to the surrounding environment from those that can 

approach steady-state equilibria, particularly when considering temporal scales shorter than the 

reproductive scales of consumers as in the short-term study described here [16]. At short time 

scales in open systems, changes in standing stocks of consumers are not primarily the result of 

changes in productivity, but are more likely the result of movement of organisms into and out of 

the study area. It is likely that the increasingly strong correlations we observed with movement 

up the food chain are associated with a parallel increase in the mobility of organisms [7,9,17], 

allowing tighter coupling between consumers and their prey through larger scale movements to 

find and utilize better food resources. Behavioural responses may also explain why the strength 

and frequency of aggregations of resources rather than their absolute biomass were observed to 

be strongly correlated with consumer as foraging success is often more strongly related to local 

prey density than total prey abundance [18,19]. 
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Our data show that aggregations of organisms can have effects disproportionate to the biomass of 

organisms in them, revealing the role patchiness can play in the regulation of processes in a 

trophic web. In this system, patchiness increased the relative importance of resource limitation at 

all trophic levels. Ecosystem-level effects of patchiness like this may be more common in 

pelagic marine systems, where both the habitat and the organisms that live in it show great 

spatial and temporal heterogeneity over a range of scales [20], and there is great potential for 

movement, both passive and active, by consumers in relation to resource distribution. Recent 

evidence shows that heterogeneity of food is critical to predator survival and recruitment in the 

marine environment when food availability is low [21] and thus particular attention should be 

paid to patchiness whenever resource limitation is being investigated. Quantification of the 

processes that control organism abundances in marine systems are necessary for assessing 

ecosystem resilience, understanding the ecological impacts of fishing, effective management of 

exploited species, and prediction and mitigation of the impacts of climate change [22]. The 

finding that characteristics of organism distributions can dramatically modify how 

trophodynamics structure marine ecosystems improves our ability to predict populations, 

communities, and the responses of ecosystems to short- and long-term environmental change. 
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Figure 1. An example of the vertical distribution of each step in the food chain in Hawaii’s 

nearshore pelagic ecosystem measured at 2300 on 4 May 2009 using instruments moored on the 

25 m isobath. 

 

Figure 2. The single strongest relationships between aggregation characteristics of adjacent steps 

in the food chain.  
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Table 1. Correlation coefficients (R) describing the relationships between adjacent trophic levels in single and multiple correlations. 

Beta values indicate how strongly each predictor variable in the multiple correlation influences the dependent variable shown with ns 

indicating no significant contribution at p<0.05 level; only the most strongly predicted dependent variable(highest R adjusted for the 

number of variables) is shown for each level.  

 

Phytoplankton Spinner dolphins

Traditional Independent R Dependent Independent R Dependent Independent R Dependent

approach Total biomass +0.68 Total biomass Total biomass +0.62 Total biomass Total biomass -0.73/-0.76 Abundance/Aggregation

Total biomass -0.58/-0.65 Abundance/Aggregation

Most significant Independent R Dependent Independent R Dependent Independent R Dependent

single correlation Layer frequency +0.78 Layer frequency Layer frequency +0.84 Mean density Mean density +0.91/+0.92 Abundance/Aggregation

Layer frequency +0.73/+0.75 Abundance/Aggregation

Most significant multiple 
correlation

Independent � Adj. R Dependent � Adj. R Dependent � Adj. R Dependent

Total biomass ns ns ns/ns

Layer frequency +0.61 +0.86 +0.79 +0.94 na +0.97/+0.98

Peak intensity -0.75 Mean density -0.41 Peak density +0.44/+0.86 Abundance/Aggregation

Mean density in layer +0.84 +0.67 +0.92/+0.56

Layer thickness -0.34 ns -0.65/-0.26

Total biomass ns/ns

Layer frequency +0.71/+0.51

Peak intensity    ns   /+0.37 +0.85/+0.91 Abundance/Aggregation

Mean density in layer +0.46/+0.86

Layer thickness -0.28/-0.19

Zooplankton (copepods) Mesopelagic micronekton
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