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[11 Liquid latex was used as a method to seal visible surface-connected preferential flow
pathways (PFPs) in the field in an effort to block large surface-connected preferential flow
and force water to move through the soil matrix. The proposed approach allows for the
quantification of the contribution of large surface-connected cracks and biological pores to
infiltration at various soil moisture states. Experiments were conducted in a silty clay loam

soil in a field under a no-till corn-soybean rotation planted to corn. Surface intake rates
under ponding were measured using a simplified falling head technique under two
scenarios: (1) natural soil conditions with unaltered PFPs and (2) similar soil conditions
with latex-sealed large macropores at the surface. Results indicated that the contribution of
flow from large surface-connected macropores to overall surface intake rates varied from
approximately 34% to 99% depending on the initial moisture content and macroporosity
present. However, evidence of preferential flow continued to appear in latex-sealed plots,
suggesting significant contributions to preferential flow from smaller structural macropores,
particularly in two out of four tests where no significant differences were observed between

control and latex-sealed plots.
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1. Introduction

[2] Traditional field methods to observe effects of prefer-
ential flow on solute transport have often combined tracer
studies with lysimeter and tile drainage systems to measure
breakthrough curves [Bogner et al., 2008; Jury, 1982;
Kung et al., 2000; Shipitalo and Edwards, 1996; Williams
et al., 2003]. The results of such studies indicate that PFPs,
particularly surface-connected ones [Allaire et al., 2002,
Kung et al., 2000; Noguchi et al., 1999], allow solutes to
bypass the soil matrix and reach deep into the soil profile
under various field management regimes. Preferential flow
has contributed to rapid and deep chemical leaching of
adsorbing and nonadsorbing (conservative) substances such
as pesticides and nitrogen [Germann and Beven, 1981;
Kladivko et al., 1999; Luxmoore, 1991]. In situ field methods
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have utilized staining and image analysis techniques to
reveal the flow path of surface applied dyes [Forrer et al.,
2000; Ghodrati and Jury, 1990]. Other field methods devel-
oped to capture preferential flow path effect, behavior and
morphology include color change spray techniques [Lu and
Wu, 2003; Tamm and Troedsson, 1957], ground penetrat-
ing radar [Freeland et al., 1998 ; Vellidis et al., 1990], time
domain reflectometry (TDR) [Germann et al., 2007 ; Nissen
et al., 1999; Vanclooster et al., 1995], and radio scanning
[Brown et al., 1999].

[3] Recently, application of liquid latex was evaluated as
a field scale method for visualizing surface-connected PFP
volume and geometry in fine textured soils [Abou Najm
et al., 2010]. The objective of this research is to examine
the use of liquid latex to hydraulically inactivate surface-
connected large PFPs during an infiltration event, in an
attempt to estimate their contribution to overall flow at dif-
ferent field conditions. This becomes significant given the
variation and dependency of this contribution (of surface-
connected PFPs to overall flow) on local field conditions
including rainfall intensity, water content, crack openings
and connectivity.

2. Materials and Methods
2.1. Field Site Information

[4] The experimental procedure was conducted on a
Drummer silty clay loam soil at the Purdue Agronomy
Center for Research and Education (ACRE), West Lafay-
ette, Indiana. The Drummer soil series is a poorly drained
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Table 1. Soil Properties
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Horizon Soil Texture® Textural Class Water Holding Capacity® Bulk Density® (g cm ™)
Surface (0-30 cm) 21% sand, 46% silt, 33% clay, clay loam field capacity, 1/3 bar: 31.3%; 1.60
wilting point, 15 bars: 10.9%
Subsurface (30-60 cm) 17% sand, 46% silt, 37% clay, silty clay loam field capacity, 1/3 bar: 36.9%; 1.56

wilting point, 15 bars: 14.9%

U.S. Department of Agriculture Classification.
°In gravimetric water content.

“Bulk density averages of dry soil clods for each horizon were measured using the clod method [Blake and Hartge, 1986]. Thus, those results exclude

the contribution of larger macropores.

soil with a silty clay loam topsoil, with evidence of swel-
ling, smectitic clays from clay mineralogy analysis. It is a
dark prairie soil formed in loess over loamy outwash [Soil
Survey Staff, 2008]. Table 1 provides a summary of the soil
properties at the surface horizon and the subsurface layer
immediately below it. A site location map including the
cracking pattern observed at the start of each field trial is
presented in Figure 1.

[s] Tile drains spaced approximately 20 m apart with ap-
proximate depth of 0.90 m had been installed throughout
the entire field and were avoided during the field trials
using tile drain maps developed by Naz and Bowling
[2008]. A corn crop was planted with 76 cm (30 inch) row
spacing on 22 May 2009. The experimental field trials were
conducted on the southeast corner of field 115 in ACRE at
latitude 40°29'38” north and longitude 86°59’35” west in
an area which has been managed under no-till corn-
soybean rotation for over 20 years. Field records (Figure 2)
indicate the following mechanical activity in 2009: (1)
planting on 22 May, (2) surface-applied pesticide/herbicide

Trial 2—-July
20, 2009

Figure 1.

on 23 May, and (3) side-dress application of 28% liquid
nitrogen on 10 June. The 28% liquid nitrogen fertilizer was
injected 5-8 cm into the soil profile via a metal shank. Fur-
ther details on the field conditions are given by Sanders
[2010].

2.2. Experimental Methods

[6] The general method of this research involved com-
paring natural untreated field plots with plots having their
surface-connected PFPs sealed with liquid latex. To
account for the inherent spatial variability, each trial was
composed of six frames (3 control and 3 latex) where the
surface-connected PFPs of three of those frames were
sealed with latex (latex frames). The stainless steel frames
had dimensions of 32 cm X 45 cm x 25 cm high [4bou
Najm et al., 2010], and served also as an infiltrometer for
the infiltration event. Each trial required 34 days of field
work in order to prepare soil surfaces in the treatment and
control frames, perform an infiltration event, and excavate
the frames in 10 cm layers. Soil moisture contents and

Trial 1 —July 6, 2009
—_— -
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Site location map illustrating the representative cracking pattern observed in each trial area.

2 of 8



'W04534 SANDERS ET AL.: METHOD FOR SEPARATING PREFERENTIAL FLOW PATHWAYS 'W04534
80.00 700.00
000 4 . r 600.00
60.00 = -
- 500.00
€
50.00 - E
T o | 5
E 40.00 = — P
c [«
_% I 300,00 s
K p
'§_ 30.00 * — t
Q >
g =]
. - 200.00 &
> 20.00 3
= ( £
© 4 =
o I O
10.00 | 1 1 1 . | 100.00
000 ¥l L&LMM?NM}UM ‘ M» 0.00
R B - EEEE ¥ Y Y YPBBR B RSB 8B BB
3 D & ; << < < Q9999
323935 %8833 5339222829333¢
| Trial1-7/6/09 Trial 2-7/20/09 Trial 3 - 8/29/09 "] Trial 4 - 9/11/09
Cumulative Precip — Daily Precip = Corn Planting 5/22/09 — Nitrogen Injection 6/10/09
Figure 2. Rainfall hydrograph and field activity summary. Precipitation data were obtained from the

Indiana State Climatologist Office and the National Climatic Data Center.

preferential flow pathway volumes were then examined to
60 cm depth for all trials at various moisture contents.

[7] A total of four trials (including 12 latex frames and
12 control frames) were completed during the 2009 grow-
ing season. Soil samples were taken from around each trial
area on the first (initial moisture conditions) and last (back-
ground for postinfiltration comparison) days of each field
trial at the following depth intervals: 0-5 cm, 5-10 cm,
10-20 cm, 20-30 cm, 3040 cm, 40-50 cm, 50-60 cm
using a one inch diameter soil probe.

[8] On day 1, initial soil moisture samples were collected
and frames were installed to 15 cm depth within close prox-
imity to each other to minimize spatial variability. The
frames had a beveled edge to cut through the soil surface
with minimal damage to the cracking pattern during instal-
lation. The soil surfaces in each frame were prepped in the
same manner by removing the top -3 cm to eliminate de-
bris and to create a level surface. In three frames, latex was
then carefully poured into obvious (i.e., large) surface mac-
ropores to seal them while leaving the soil matrix exposed.

[¢] On day 2, a short-term ponding technique was used
to compare the intake rates of the untreated and latex-
sealed plots. Four liters (28 mm) of water were applied
using the same technique on all frames. A point gauge was
attached to the same location on each frame to monitor
changes in water depth over time. Water levels were meas-
ured and recorded at time intervals appropriate for the
intake rate observed for that frame until approximately 10%
of the soil surface was exposed. Regardless of treatment, 2 h
or less were required for all water to infiltrate into the soil

profile (except for one replicate in trial 3 which took over
3 h). Water was allowed to redistribute down the soil profile
for 18-20 h or 38—40 h before excavating and sampling.

[10] The contribution of latex sealed pores to infiltration
was calculated by finding the percent difference in the
intake rates using

[(Control Intake — Latex Intake)/Control Intake] x 100 (1)

[11] By finding the percent difference in the treatments,
the contribution of surface-connected preferential flow
through the larger cracks and biological pathways can be
estimated for the given field conditions.

[12] On the third and fourth field days, two reference rods
were driven to 60 cm into the ground on two opposite cor-
ners of the frames. Frames were slowly excavated at 5 or
10 cm layer depths (0-5 ¢cm, 5-10 cm, 10-20 cm, 20-30 cm,
30-40 cm, 40-60 cm). The soil from each layer was placed
into a separate container and a composite sample was then
placed into a plastic bag for moisture content analysis.
Moreover, soil samples from outside the frame extent were
collected as the background moisture content, later to be
compared with the water contents from under the frames.

[13] The soil samples were oven dried for gravimetric
water content while the clod method [Blake and Hartge,
1986] was used for bulk density assessment using soil clods
collected from the field. Soil texture was estimated using
the hydrometer method [Bouyoucos, 1962] and water reten-
tion at field capacity and wilting point were determined in
the laboratory using method MSA Part 1 pp. 273-278
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[Klute, 1965]. The latex removed from each sublayer was
thoroughly cleaned with water and allowed to dry. Biologi-
cal and desiccation volumes retrieved from the latex frames
were separated by shape (cylindrical and planar, respec-
tively) and measured per trial.

3. Results and Discussion
3.1.

[14] Field observations indicated that predominant crack-
ing patterns in the corn field were large continuous cracks

Observed Influences on Soil Cracking Patterns
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formed in the center of corn rows with a few nearly perpen-
dicular cracks extending from the central crack to the corn
rows. Similar cracking patterns have been observed by
others in row crop systems [4bou Najm et al., 2010; Flow-
ers and Lal, 1999; Johnston, 1944 ; Yoshida and Adachi,
2004]. Figure 3 shows the average initial moisture contents
collected during the first day for each trial from each depth
(Figure 3a) compared to the surface-connected latex-filled
macroporosity for each trial (Figure 3b). The error bars in
Figures 3a and 3b represent the standard deviation from all
soil probe locations around each trial area or the standard

a Moisture content (g/g)
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(a) Average initial moisture conditions in all trials collected on field day 1 in each trial com-

pared to (b) average latex-filled macropores volumes from each trial. Those volumes can be transformed
to porosities through dividing the latex-filled pore volumes by the soil layer volume (32 cm x 45 cm X
layer depth). WP is wilting point (15 bars), and FC is field capacity (1/3 bar) for the upper (0-30 cm)
and lower (30—60 cm) soil horizons (WP and FC are provided in gravimetric water contents).
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deviation of the latex volumes in treatment frames,
respectively.

[15] Initial moisture conditions showed little variability
with depth down to 60 cm within trials, and a maximum
variation of 0.08 g g~ between trials (i.e., trial 1 compared
to trial 4). Surface-connected latex-sealed pore volumes
seemed only weakly correlated with soil moisture profiles.
Trial 1 had the highest initial moisture conditions, and yet
had the largest and deepest latex-sealed pore volumes
measured. On the other hand, trial 2 had the shallowest
cracking patterns (Figure 3b), most probably because of
heightened root activity and rapid corn growth in the period
between trials 1 and 2. Thus, it seems that the volume and
depth of surface-connected cracks and biopores is the result
of a complicated interaction between the soil, weather, fauna,
flora, and human interventions, where simple characteriza-
tion of soil coupled with monitoring the moisture profile
may not be sufficient to predict their volume and depth.

3.2. Contribution of Surface-Connected Preferential
Flow to Surface Intake Rates

[16] Table 2 presents the intake rates based on the time
taken for 1 L (approximately 0.7 cm per frame area) and all
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4 L (approximately 2.7 cm per frame area) to infiltrate into
the soil profile. The 1 L intake rates capture the initial fast
intake of the soil, whereas the 4 L intake rates represent the
time necessary for all water to infiltrate. A total volume of
4 L was chosen for this field experiment on the basis of the
rough estimation of the infiltration depth using a target of
0.10 g g~ ' change in moisture content for a depth of approxi-
mately 3040 cm. Table 2 compares the intake rates for each
treatment to the total latex-sealed pore volume and average
background moisture conditions for all depths. The biopore
and desiccation crack volumes retrieved from the latex
frames are shown as the percentage of the total latex-sealed
pore volume in that trial.

[17] Figure 3a and Table 2 show that trials 2 and 4 had
the driest initial conditions with both showing similar con-
tributions of latex-sealed pores to infiltration. The latex
treated frames in trial 2 had the greatest average intake rate
and variability. This variability is partially due to observed
overnight biological activity (new earthworm burrows con-
necting to the surface) following the application of latex,
thus allowing for new and active surface-connected PFPs.
On the other hand, trial 3 had relatively wetter conditions
than trials 2 and 4, smaller volume of latex-sealed pores

Table 2. Intake Rates Based on the Time Required for 1 L and 4 L to Infiltrate

Aver. Avg.
1L 1L PFP 4L 4L PFP Latex Moisture
Rate” (cm 1L Avg? Contrib. to Rate® (cm 4L Avg’ Contrib. to  Vol. Biological Desiccation Content
Trial Frame Treatment min ') (cmmin~")  Flow (%) min~") (cmmin~")y  Flow (%) (mL)° PFPs(%) PFPs(%) (gg )¢
1 2 Control 33.36 31.5+321° 99.2 33.36 31.5 321 99.3 1241 14.5 85.5 21.2%
4 Control 27.8 27.80
6 Control 33.36 33.36
1 Latex 0.14 0.245 = 0.192 0.103  0.226 £ 0.206
3 Latex 0.1273 0.111
5 Latex 0.4667 0.463
2 2 Control 1.166 1.15 = 0.207 54.0 1.090 1.12 = 0.056 60.5 155 25.1 74.9 16.4%
3 Control 1.3461 1.183
5 Control 0.9333 1.082
6 Latex 0.8485  0.529 = 0.291 0.863  0.442 * 0.367
4 Latex 0.28 0.192
1 Latex 0.4575 0.271
3 2°¢ Control 0.0175  0.07 = 0.042 9.7 0.015  0.063 £ 0.023 34.1 89 36.1 63.9 18.4%
4 Control 0.1 0.079
6 Control 0.04 0.047
5 Latex 0.0875  0.063 = 0.034 0.056 0.042 +0.020
3 Latex 0.0389 0.028
1f Latex 0.1474 0.126
4 2 Control 0.175  0.292 = 0.101 43.6 0.111 0.237 = 0.119 67.6 428 19.3 80.7 16.2%
4 Control 0.35 0.253
6 Control 0.35 0.348
1 Latex 0.35 0.165 = 0.167 0.185  0.077 £ 0.094
3 Latex 0.1167 0.026
5 Latex 0.0269 0.019

Notes: Frame dimensions are 32 cm x 45 cm and 4 L was applied to each frame.

“Intake rates are based on the time required for 1 L to infiltrate the soil surface except in Trial 1 control frames, which are based on 4 L intake.

®Trial intake rates are based on the time required for all 4 L to infiltrate the soil surface.

°Avg. latex volumes (mL) were calculated using the water displacement method.

dAvg. moisture content (g g~') was determined for the entire depth from 0 to 60 cm from soil cores collected around each trial area.

Trial 3 Frame 2 was considered an outlier because of a low intake rate compared with the other control frames in all trials and thus its data were

removed from the rate calculation.

Trial 3 Frame 1 was considered an outlier and not included in the latex intake rate calculation because earthworm activity observed during the infiltra-

tion event created an unsealed PFP.
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Figure 4. Postinfiltration moisture profiles compared to the background moisture profile for each frame
in each trial. WP is wilting point (15 bars), and FC is field capacity (1/3 bar) for the upper (030 cm) and

lower (30—60 cm) soil horizons.

and thus a smaller contribution to infiltration. However,
trial 1 had the highest initial soil moisture conditions down
to 60 cm depth (Figure 3a), yet the greatest contribution of
latex-sealed pores to infiltration.

[18] Figure 3b shows that all surface-connected latex
sealed pores have terminated at depths of 60 cm or less
except for trial 1 where they seemed to penetrate deeper
than 60 cm. This is also reflected in their volume which is
by far highest of all trials. Thus, the deep and connected
cracks in trial 1 control frames allowed water to bypass the
matrix and fill in the crack volume, which is reflected in the
99.3% contribution to surface-connected preferential flow.
This explains why the contribution of surface-connected
preferential flow is greatest in trial 1 compared to the other
trials where the water would have accumulated in the crack
volume and infiltrated laterally and vertically into the soil
profile. Given the rapid intake rate in trial 1, the 1 L intake
rate was not recorded and the 4 L rate was used. Results of
trial 1 indicated that field moisture conditions at the surface
are not enough to predict the contribution of the surface-
connected macropores to overall flow in the soil.

[19] The intake rate statistical assessment supported the ex-
pectation that the intake rate in the control frames would be

greater compared to the latex frames. A one-tailed independ-
ent ¢ test of unequal variance was performed comparing the
mean intake rate for the control frames to that of the latex
frames in all trials. This statistical tool is used to test for a
null hypothesis of equal means to determine whether the
difference in the intake rates between treatments is statisti-
cally significant. The p values calculated for the 1 and 4 L
data were less than 0.04 in both cases which indicates that the
mean intake rates of the treatments were statistically different.

[20] Finally, a close look into the average 4 L infiltration
rates in the latex-treated plots shows significantly higher
infiltration rates than typical infiltration rates of clay loam
soils. This is a clear indication that this method sealed only
visible shrinkage cracks and biopores. Structural macro-
pores remained active in latex and in control plots, as well
as their contribution to preferential flow.

3.3. Postinfiltration Moisture Profile

[21] Figure 4 shows, for each trial, the average postinfil-
tration moisture profiles for both treatments (control and la-
tex) compared to the average background moisture profile.
Background moisture profiles were collected on the same
day of the excavation (field day 3 or 4 in each trial) but
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outside the extent of water application to represent the
moisture condition if no water was applied in day 2. In all
frames, the surface layer (0—5 cm) experienced the greatest
increase in moisture content compared to the background
moisture profile.

[22] Sealing the surface-connected larger and more
obvious macropores with latex did not completely prevent
preferential flow from occurring. This can be clearly
observed by looking into the postinfiltration moisture pro-
files of the latex frames, where field capacity was not
reached at any depth. Thus, the difference between control
and latex frames is only due to large surface connected
pores that could be sealed by latex.

[23] Interestingly, the contribution of latex-sealed pores
to overall flow, obtained from the difference in the intake
rates between treatments, did not correspond well with the
postinfiltration moisture profiles. For example, sealing the
surface-connected desiccation cracks and biopores with la-
tex had no significant effect on the resulting moisture pro-
files in trials 2 and 4. The moisture profiles for the latex
treated frames only varied from the control frames by
approximately 2.5% or less although the contribution of
surface connected PFP was about 60% in trial 2 (Table 2).
This may be explained by the fact that trials 2 and 4 had
the driest initial moisture conditions (Figure 3a) thus the
highest sorptive capacity by the soil matrix. Even though
intake rates were significantly different between control
and latex frames (Table 2), the relatively shallow surface-
connected PFPs (Figure 3b) may have allowed for lateral
moisture redistribution and did not allow for deep water
infiltration, thus giving way for the soil matrix, particularly
its macropores to dominate the flow redistribution.

[24] On the other hand, the results of the latex frames of
trials 1 and 3 showed an increase in moisture content in the
surface horizons (top 20-30 cm), while the control frame
had greater moisture content in the subhorizon (below
30 cm) after 1-2 days of redistribution. In other words, with
surface-connected preferential flow contributing to the flow
regime (control frames), infiltrated water redistributed deeper
into the soil profile compared to latex frames.

4. Conclusions and Recommendations

[25] A new field method is presented to quantify the con-
tribution of surface-connected macropores to overall water
flow, following -2 days of water redistribution. The pri-
mary results from this research indicated that the contribu-
tion of flow from surface-connected larger macropores
(biopores and cracks) to surface intake rates varied, for the
same soil and land use, from approximately 34%-99%
depending on the initial moisture content and macroporos-
ity present. Statistical analysis of the data showed that the
difference in intake rates between treatments was signifi-
cant (p value <0.04). A general increase in the contribution
of latex-sealed pores to flow was observed as moisture con-
tent decreased and/or their volume increased. However,
this trend was not observed in all trials (particularly trial 1
which had the wettest conditions down to 60 cm yet the
deepest cracks and highest contribution of latex-sealed
pores to infiltration) leading to the conclusion that preferen-
tial flow is a very complex phenomenon governed by
unknown factors other than initial water content.
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[26] Some challenges with this method include the lat-
eral flow of the latex beyond the frame extent, which made
total recovery and mass balance difficult and therefore was
not attempted. Also, changing field conditions such as over-
night biological activity which occurred after the latex was
poured, but before or while infiltration was performed
affected the intake rates. It seems that liquid latex only
seals the largest surface connected macropores and does
not completely eliminate nonequilibrium flow.

[27] Finally, a variety of limitations were discussed in sec-
tion 3, Results and Discussion. Though this could be viewed
as a limitation of the method, it is beneficial to have experi-
mental methods which allow the manipulation of boundary
conditions for modeling the soil water interaction.

[28] Acknowledgments. The authors would like to thank Ms. Laura
Page and Keegan Dunn whose assistance and hard work in the laboratory
and the field trials was invaluable. The authors would also like to acknowl-
edge Ms. Julie Jesiek for her reviews and valuable edits. The Editor, Asso-
ciate Editor, and three anonymous Reviewers provided very valuable
comments and edits that significantly improved the quality of this manu-
script. Support for the second author on this research was provided by the
National Science Foundation under grant 0943682.

References

Abou Najm, M. R., J. D. Jabro, W. M. Iversen, R. H. Mohtar, and R. G.
Evans (2010), New method for the characterization of three-dimensional
preferential flow paths in the field, Water Resour. Res., 46, W02503,
doi:10.1029/2009WR008594.

Allaire, S. E., S. C. Gupta, J. Nieber, and J. F. Moncrief (2002), Role of
macropore continuity and tortuosity on solute transport in soils: 1.
Effects of initial and boundary conditions, J. Contam. Hydrol., 58(3-4),
299-321.

Blake, G. R., and K. H. Hartge (1986), Bulk density, in Methods of Soil
Analysis, part 1, Physical and Mineralogical Methods, Agron. Monogr.,
vol. 9, 2nd ed., edited by A. Klute, pp. 363-375, Am. Soc. of Agron.,
Madison, Wis.

Bogner, C., B. Wolf, M. Schlather, and B. Huwe (2008), Analysing flow
patterns from dye tracer experiments in a forest soil using extreme value
statistics, Eur. J. Soil Sci., 59(1), 103-113.

Bouyoucos, G. J. (1962), Hydrometer method improved for making particle
size analyses of soils, Agron. J., 54(5), 464—465.

Brown, C. D., V. L. Marshall, A. Deas, A. D. Carter, D. Arnold, and R. L.
Jones (1999), Investigation into the effect of tillage on solute movement
to drains through a heavy clay soil, Soil Use Manage., 15(2), 94-100.

Flowers, M., and R. Lal (1999), Axle load and tillage effects on the shrink-
age characteristics of a Mollic Ochraqualf in northwest Ohio, Soil Tillage
Res., 50(3-4), 251-258.

Forrer, 1., A. Papritz, R. Kasteel, H. Fluhler, and D. Luca (2000), Quantify-
ing dye tracers in soil profiles by image processing, Eur. J. Soil Sci.,
51(2),313-322.

Freeland, R. S., R. E. Yoder, and J. T. Ammons (1998), Mapping shallow
underground features that influence site-specific agricultural production,
J. Appl. Geophys., 40(1-3), 19-27.

Germann, P., and K. Beven (1981), Water flow in soil macropores I. An
experimental approach, Eur. J. Soil Sci., 32(1), H3.

Germann, P., A. Helbling, and T. Vadilonga (2007), Rivulet approach to
rates of preferential infiltration, Vadose Zone J., 6(2), 207-220.

Ghodrati, M., and W. A. Jury (1990), A field-study using dyes to character-
ize preferential flow on water, Soil Sci. Soc. Am. J., 54(6), 1558-1563.

Johnston, J. R. (1944), A study of the shrinking and swelling properties of
Rendzina soils, Soil Sci. Soc. Am. J., 9,24-29.

Jury, W. A. (1982), Simulation of solute transport using a transfer-function
model, Water Resour. Res., 18(2), 363-368.

Kladivko, E. J., J. Grochulska, R. F. Turco, G. E. Van Scoyoc, and J. D.
Eigel (1999), Pesticide and nitrate transport into subsurface tile drains of
different spacings, J. Environ. Qual., 28(3), 997-1004.

Klute, A. (1965), Water capacity, in Methods of Soil Analysis, part 1,
Agronomy Monogr., vol. 9, edited by C. A. Black, pp. 273-278, Am. Soc.
of Agron., Madison, Wis.

7 of 8



W04534

Kung, K. J. S., E. J. Kladivko, T. J. Gish, T. S. Steenhuis, G. Bubenzer, and
C. S. Helling (2000), Quantifying preferential flow by breakthrough of
sequentially applied tracers: Silt loam soil, Soil Sci. Soc. Am. J., 64(4),
1296-1304.

Lu,J. H., and L. S. Wu (2003), Visualizing bromide and iodide water tracer
in soil profiles by spray methods, J. Environ. Qual., 32(1), 363-367.

Luxmoore, R. J. (1991), On preferential flow and its measurement, paper
presented at Symposium on National Preferential Flow, Am. Soc. of
Agric. Eng., Chicago, IlI.

Naz, B. S., and L. C. Bowling (2008), Automated identification of tile lines
from remotely sensed data, Trans. ASABE, 51(6), 1937-1950.

Nissen, H. H., P. Moldrup, L. W. de Jonge, and O. H. Jacobsen (1999),
Time domain reflectometry coil probe measurements of water content
during fingered flow, Soil Sci. Soc. Am. J., 63(3), 493-500.

Noguchi, S., Y. Tsuboyama, R. C. Sidle, and I. Hosoda (1999), Morpholog-
ical characteristics of macropores and the distribution of preferential
flow pathways in a forested slope segment, Soil Sci. Soc. Am. J., 63(5),
1413-1423.

Sanders, E. (2010), Characterizing flow through the soil matrix and prefer-
ential flow pathways (PFPs), MS thesis, Agric. and Biol. Eng., Purdue
Univ., West Lafayette, Indiana.

Shipitalo, M. J., and W. M. Edwards (1996), Effects of initial water content
on macropore/matrix flow and transport of surface-applied chemicals, J.
Environ. Qual., 25(4), 662—670.

Soil Survey Staff (2008), Official soil series descriptions: Drummer series,
report, Nat. Resour. Conserv. Serv., [Available at https://soilseries.sc.

SANDERS ET AL.: METHOD FOR SEPARATING PREFERENTIAL FLOW PATHWAYS

W04534

egov.usda.gov/OSD_Docs/D/DRUMMER .html], U.S. Dep. of Agric.,
Washington, D. C.

Tamm, C. O., and T. Troedsson (1957), A new method for the study of water
movement in soil, Geol. Foeren. Stockholm Foerh., 79(3), 58 1-587.

Vanclooster, M., D. Mallants, J. Vanderborght, J. Diels, J. Vanorshoven,
and J. Feyen (1995), Monitoring solute transport in a multilayered sandy
lysimeter using time-domain reflectometry, Soil Sci. Soc. Am. J., 59(2),
337-344.

Vellidis, G., M. C. Smith, D. L. Thomas, and L. E. Asmussen (1990),
Detecting wetting front movement in a sandy soil with ground-penetrat-
ing radar, Trans. ASAE, 33(6), 1867-1874.

Williams, A. G., J. F. Dowd, D. Scholefield, N. M. Holden, and L. K. Deeks
(2003), Preferential flow variability in a well-structured soil, Soil Sci.
Soc. Am. J., 67(4), 1272-1281.

Yoshida, S., and K. Adachi (2004), Numerical analysis of crack generation
in saturated deformable soil under row-planted vegetation, Geoderma,
120(1-2), 63-74.

M. R. Abou Najm, Department of Civil and Environmental Engineer-
ing, American University of Beirut, PO Box 11-0236, Beirut 1107 2020,
Lebanon.

E. Kladivko and D. Schulze, Department of Agronomy, Purdue Univer-
sity, 915 W. State St., West Lafayette, IN 47907, USA.

R. H. Mohtar and E. C. Sanders, Department of Agricultural and Bio-
logical Engineering, Purdue University, 225 South University St., West
Lafayette, IN 47907, USA. (mohtar@purdue.edu)

8 of 8



