
 

 
Abstract— High-speed, low-power design of Viterbi decoders 

for trellis coded modulation (TCM) systems is presented in this 
paper. It is well known that the Viterbi decoder (VD) is the 
dominant module determining the overall power consumption of 
TCM decoders. We propose a pre-computation architecture 
incorporated with T-algorithm for VD, which can effectively 
reduce the power consumption without degrading the decoding 
speed much. A general solution to deriving the optimal 
pre-computation steps is also given in the paper. Implementation 
result of a VD for a rate-3/4 convolutional code used in a TCM 
system shows that compared with the full trellis VD, the 
pre-computation architecture reduces the power consumption by 
as much as 70% without performance loss, while the degradation 
in clock speed is negligible. 

 

 
Index Terms— VLSI, Viterbi decoder, trellis coded modulation.  

I. INTRODUCTION  Trellis coded modulation (TCM) schemes are used in many 
bandwidth-efficient systems. Typically, a TCM system employs a 
high-rate convolutional code, which leads to a high complexity of the 
Viterbi decoder (VD) for the TCM decoder, even if the constraint 
length of the convolutional code is moderate. For example, the rate-3/4 
convolutional code used in a 4-dimensional TCM system for deep 
space communications [1] has a constraint length of 7; however, the 
computational complexity of the corresponding VD is equivalent to 
that of a VD for a rate-1/2 convolutional code with a constraint length 
of 9 due to the large number of transitions in the trellis. Therefore, in 
terms of power consumption, the Viterbi decoder is the dominant 
module in a TCM decoder. In order to reduce the computational 
complexity as well as the power consumption, low-power schemes 
should be exploited for the VD in a TCM decoder. 
 General solutions for low-power VD design have been well studied 
by existing work. Power reduction in VDs could be achieved by 
reducing the number of states (for example, reduced-state sequence 
decoding (RSSD) [2], M-algorithm [3] and T-algorithm [4], [5]) or by 
over-scaling the supply voltage [6]. Over-scaling of the supply 
voltage usually needs to take into consideration the whole system that 
includes the VD (whether the system allows such an over-scaling or 
not), which is not the main focus of our research. RSSD is in general 
not as efficient as the M-algorithm [2], and T-algorithm is more 
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commonly used than M-algorithm in practical applications, because 
the M-algorithm requires a sorting process in a feedback loop while  
T-algorithm only searches for the optimal path metric (PM), that is, the 
minimum value or the maximum value of all PMs.   
 T-algorithm has been shown to be very efficient in reducing the 
power consumption [7], [8]. However, searching for the optimal PM in 
the feedback loop still reduces the decoding speed. To overcome this 
drawback, two variations of the T-algorithm have been proposed: the 
relaxed adaptive VD [7], which suggests using an estimated optimal 
PM, instead of finding the real one each cycle; and the limited-search 
parallel state VD based on scarce state transition (SST) [8]. In our 
preliminary work [9], we have shown that when applied to high-rate 
convolutional codes, the relaxed adaptive VD suffers a severe 
degradation of bit-error-rate (BER) performance due to the inherent 
drifting error between the estimated optimal PM and the accurate one. 
On the other hand, the SST based scheme requires pre-decoding and 
re-encoding processes, and is not suitable for TCM decoders. In TCM, 
the encoded data are always associated with a complex multi-level 
modulation scheme like 8-ary phase-shift keying (8PSK) or 16/64-ary 
quadrature amplitude modulation (16/64QAM) through a constellation 
point mapper. At the receiver, a soft-input VD should be employed to 
guarantee a good coding gain. Therefore, the computational overhead 
and decoding latency due to pre-decoding and re-encoding of the TCM 
signal become high, because pre-demodulating, pre-demapping, 
re-modulating and re-mapping are also required in the TCM decoder. 
In our preliminary work [9], we proposed an add-compare-select unit 
(ACSU) architecture based on pre-computation for VDs incorporating 
T-algorithm, which efficiently improves the clock speed of a VD with 
T-algorithm for a rate-3/4 code. In this work, we further analyze the 
pre-computation algorithm. A systematic way to determine the 
optimal pre-computation steps is presented, where the minimum 
number of steps for the critical path to achieve the theoretical iteration 
bound is calculated and the computational complexity overhead due to 
pre-computation is evaluated. Then, we discuss a complete low-power 
high-speed VD design for the rate-3/4 convolutional code [1], where 
survivor-path memory unit (SMU) is also modified. Finally ASIC 
implementation results of the VD are reported, which have not been 
obtained in our previous work in [9]. 
 The remainder of this paper is organized as follows. Section II gives 
the background information of VDs. Section III presents the 
pre-computation architecture with T-algorithm and discusses the 
choice of pre-computation steps. Details of a design example including 
the modification of survivor-path memory unit (SMU) are discussed in 
Section III. Synthesis and power estimation results are reported in 
Section IV, and conclusions are given in Section V. 

II. THE VITERBI DECODER 
A typical functional block diagram of a Viterbi decoder is shown in 

Fig. 1. First, branch metrics (BMs) are calculated in the BM unit 
(BMU) from the received symbols. In a TCM decoder, this module is 
replaced by transition metrics unit (TMU), which is more complex 
than the BMU. Then, BMs are fed into the ACSU that recursively 
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computes the PMs and outputs decision bits for each possible state 
transition. After that, the decision bits are stored in and retrieved from 
the SMU in order to decode the source bits along the final survivor 
path. The PMs of the current iteration are stored in the PM unit (PMU).  
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Fig. 1: Functional diagram of a Viterbi Decoder. 
 

T-algorithm requires extra computation in the ACSU loop for 
calculating the optimal PM and puncturing states. Therefore, a 
straightforward implementation of T-algorithm will dramatically 
reduce the decoding speed. The key point of improving the clock 
speed of T-algorithm is to quickly find the optimal PM. 

III. THE PRE-COMPUTATION ARCHITECTURE 

A. Pre-computation algorithm 
The basic idea of the pre-computation algorithm was presented in 

[9]. Consider a VD for a convolutional code with a constraint length k, 
where each state receives p candidate paths. First, we expand PMs at 
the current time slot n (PMs(n)) as a function of PMs(n-1) to form a 
look-ahead computation of the optimal PM− PMopt(n). If the branch 
metrics are calculated based on the Euclidean distance, PMopt(n) is the 
minimum value of PMs(n) obtained as   

PMopt(n) = min{ PM0(n), PM1(n), ………, PM2
k
-1(n) } 

= min{ 
min [PM0,0(n-1) + BM0,0(n),   

                 PM0,1(n-1) + BM0,1(n), …...,  
                 PM0,p(n-1) + BM0,p(n)], 

min [PM1,0(n-1) + BM1,0(n),   
                  PM1,1(n-1) + BM1,1(n), …..,  
                  PM1,p(n-1) + BM1,p(n)], 
                  …………………., 
          min [PM2

k-1
-1,0(n-1) + BM2

k-1
-1,0(n),   

               PM2
k-1

-1,1(n-1) + BM2
k-1

-1,1(n), …..,  
               PM2

k-1
-11,p(n-1) + BM2

k-1
-1,p(n)] } 

= min{ PM0,0(n-1) + BM0,0(n),   
             PM0,1(n-1) + BM0,1(n), …..,  
             PM0,p(n-1) + BM0,p(n), 
           PM1,0(n-1) + BM1,0(n),   
            PM1,1(n-1) + BM1,1(n), …..,  
             PM1,p(n-1) + BM1,p(n), 
          …………………., 
           PM2

k-1
-1,0(n-1) + BM2

k-1
-1,0(n),   

            PM2
k-1

-1,1(n-1) + BM2
k-1

-1,1(n), …..,  
           PM2

k-1
-11,p(n-1) + BM2

k-1
-1,p(n)}.                                (1) 

 
Then, we group the states into several clusters to reduce the 

computational overhead caused by look-ahead computation. The 
trellis butterflies for a VD usually have a symmetric structure. In other 
words, the states can be grouped into m clusters, where all the clusters 
have the same number of states and all the states in the same cluster 
will be extended by the same BMs. Thus, Eq. (1) can be re-written as 

PMopt(n)= min{  
min (PMs (n-1) in cluster 1) + min(BMs(n) for cluster 1), 
min (PMs (n-1) in cluster 2) + min(BMs(n) for cluster 2), 
……………………….., 
min (PMs (n-1) in cluster m) + min(BMs(n) for cluster m)}.     (2) 
 
The min(BMs) for each cluster can be easily obtained from the 

BMU or TMU, and the min(PMs) at time n-1 in each cluster can be 

pre-calculated at the same time when the ACSU is updating the new 
PMs for time n. Theoretically, when we continuously decompose 
PMs(n-1), PMs(n-2),……, the pre-computation scheme can be 
extended to q steps, where q is any positive integer that is less than n. 
Hence, PMopt(n) can be calculated directly from PMs(n-q) in q cycles. 

B. Choosing pre-computation steps 
In [9], we have shown through a design example that, q-step 

pre-computation can be pipelined into q stages, where the logic delay 
of each stage is continuously reduced as q increases. As a result, the 
decoding speed of the low-power VD is greatly improved. However, 
after reaching a certain number of steps, qb, further pre-computation 
would not result in additional benefits because of the inherent iteration 
bound of the ACSU loop. Therefore, it is worth to discuss the optimal 
number of pre-computation steps.  

In a TCM system, the convolutional code usually has a coding rate 
of R/(R+1), R = 2, 3, 4,…, so that in Eq. (1), p = 2R, and the logic delay 
of the ACSU is compinpadderACSU TTT _−+= , where Tadder is the logic 

delay of the adder to compute PMs of each candidate path that reaches 
the same state and Tp-in_comp is the logic delay of a p-input comparator 
to determine the survivor path (the path with the minimum metric) for 
each state. If T-algorithm is employed in the VD, the iteration bound is  
slightly longer than TACSU because there will be another 2-input 
comparator in the loop to compare the new PMs with a threshold value 
obtained from the optimal PM and a pre-set T as shown in Eq. (3):  

compincompinpadderbound TTTT _2_ −− ++=              (3) 

To achieve the iteration bound expressed in Eq. (3), for the 
pre-computation in each pipelining stage, we limit the comparison to 
be among only p or 2p metrics. To simplify our evaluation, we assume 
that each stage reduces the number of the metrics to 1/p (or 2-R) of its 
input metrics as shown in Fig. 2. The smallest number of 
pre-computation steps (qb) meeting the theoretical iteration bound 
should satisfy 12)2( −≥ kqR b . Therefore, qb ≥ (k-1)/R and qb is 

expressed as Eq. (4), where  .  denotes the ceiling function. 





 −

=
R

kqb
1 .                  (4) 
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Fig. 2: A topology of pre-computation pipelining. 

In the design example shown in [9], with a coding rate of 3/4 and 
constraint length of 7, the minimum pre-computation steps for the VD 
to meet the iteration bound is 2 according to Eq. (4). It is the same 
value as we obtained from direct architecture design [9]. In some cases, 
the number of remaining metrics may slightly expand during a certain 
pipeline stage after addition with BMs. Usually, the extra delay can be 



 

absorbed by an optimized architecture or circuit design. Even if the 
extra delay is hard to eliminate, the resultant clock speed is very close 
to the theoretical bound. To fully achieve the iteration bound, we could 
add another pipeline stage, though it is very costly as will be shown 
next.  

Computational overhead (compared with conventional T-algorithm) 
is an important factor that should be carefully evaluated. Most of the 
computational overhead comes from adding BMs to the metrics at 
each stage as indicated in Eq. (2). In other words, if there are m 
remaining metrics after comparison in a stage, the computational 
overhead from this stage is at least m addition operations. The exact 
overhead varies  for different cases depending  on the convolutional 
code’s trellis diagram. Again, to simplify the evaluation, we consider a 
code with a constraint length k and q pre-computation steps. Also, we 
assume that each remaining metric would cause a computational 
overhead of one addition operation. In this case, the number of metrics 
will reduce at a ratio of 2(k-1)/q, and the overall computational overhead 
is (measured with addition operation): 
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 The estimated computational overhead according to Eq. (5) when 
k=7 (64 states) is shown in Fig. 3, where a linear curve is also included 
as a reference. Fig. 3 clearly shows that the computational overhead 
increases exponentially. In a real design, the overhead increases even 
faster than what is given by Eq. (5) when other factors (such as 
comparisons or expansion of metrics as we mentioned above) are 
taken into consideration. Therefore, a small number of 
pre-computational steps are preferred even though the iteration bound 
may not be fully satisfied. In most cases, one or two-step 
pre-computation is a good choice. 

 
Fig. 3: The estimated computational overhead of 64 states as a function of 
pre-computation steps. 

The above analysis also reveals that pre-computation is not a good 
option for low-rate convolutional codes (rate of 1/Rc, Rc = 2, 3, …), 
because it usually needs more than 2 steps to effectively reduce the 
critical path (in that case, R = 1 in Eq. (4) and qb is k-1). However, for 
TCM systems, where high-rate convolutional codes are always 
employed, two steps of pre-computation could achieve the iteration 
bound or make a big difference in terms of clock speed. In addition, the 
computational overhead is small. 

IV. A LOW-POWER HIGH-SPEED VITERBI DECODER DESIGN 
We still use the 4-dimentional 8PSK TCM system described in [1] as 

the example. The rate-3/4 convolutional code employed in the TCM 
system is shown in Fig. 4. Preliminary BER performance and 
architecture design for the ACSU unit have been discussed in [9]. In 
this section, we further optimize the SMU design. Later in the next 
section, we will report ASIC implementation results that have not been 
obtained before.  
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Fig. 4: Rate ¾ convolutional encoder. 

BER performance of the VD employing T-algorithm with different 
values of T over an additive white Gaussian noise channel is shown in 
Fig. 5. The simulation is based on a 4-dimentional 8 
phase-shifting-key (8PSK) trellis-coded modulation (TCM) system 
employing the rate-3/4 code [10]. The overall coding rate is 11/12  
after taking other uncoded bits in TCM system into consideration. 
Compared with the ideal Viterbi algorithm, the threshold “Tpm” can 
be lowered to 0.3 with less than 0.1 dB of performance loss, while the 
computational complexity could be reduced by up to 90% [9]. Since 
the pre-computation algorithm always finds the accurate optimal PM, 
its BER performance is the same as that of the conventional 
T-algorithm.  

  

 
Fig. 5: BER performance of T-algorithm. 

A. ACSU design 
We have concluded that 2-step pre-computation is the optimal 

choice for the rate-3/4 code VD. For convenience of discussion, we 
define the left-most register in Fig. 4 as the most-significant-bit (MSB) 
and the right-most register as the least-significant-bit (LSB). The 64 
states and PMs are labeled from 0 to 63. The 2-step pre-computation is 
expressed as Eq. (6) [9]. 

 
PMopt(n) = min [ 
   min {min (cluster0 (n-2))+ min (BMG0(n-1)), 
            min (cluster1 (n-2))+ min (BMG1(n-1)), 
            min (cluster2 (n-2))+ min (BMG3(n-1)), 
            min (cluster3 (n-2))+ min (BMG2(n-1)) 
           }+ min (even BMs(n)), 
   min {min (cluster0 (n-2))+ min (BMG1(n-1)), 
            min (cluster1 (n-2))+ min (BMG0(n-1)), 
            min (cluster2 (n-2))+ min (BMG2(n-1)), 
            min (cluster3 (n-2))+ min (BMG3(n-1)) 
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           }+ min (odd BMs(n))],                            (6) 
where 
cluster0 = {PMm |0 ≤ m ≤ 63, m mod 4 = 0}; 
cluster1 = {PMm |0 ≤ m ≤ 63, m mod 4 = 2}; 
cluster2 = {PMm |0 ≤ m ≤ 63, m mod 4 = 1}; 
cluster3 = {PMm |0 ≤ m ≤ 63, m mod 4 = 3}; 
BMG0 = {BMm | 0 ≤ m ≤ 15, m mod 4 = 0}; 
BMG1 = {BMm | 0 ≤ m ≤ 15, m mod 4 = 2}; 
BMG2 = {BMm | 0 ≤ m ≤ 15, m mod 4 = 1}; 
BMG3 = {BMm | 0 ≤ m ≤ 15, m mod 4 = 3}. 
 
 The functional block diagram of the VD with 2-step 
pre-computation T-algorithm is shown in Fig. 6. The minimum value of 
each BM group (BMG) can be calculated in BMU or TMU and then 
passed to the “Threshold Generator” unit (TGU) to calculate (PMopt + 
T). (PMopt + T) and the new PMs are then compared in the “Purge Unit” 
(PU). The architecture of the TGU is shown in Fig. 7, which 
implements the key functions of the 2-step pre-computation scheme. 
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Fig.6: VD with 2-step pre-computation T-algorithm. 
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Fig.7: Architecture of TGU. 

In Fig. 7, the “MIN 16” unit for finding the minimum value in each 
cluster is constructed with 2 stages of 4-input comparators. This 
architecture has been optimized to meet the iteration bound [9]. 
Compared with the conventional T-algorithm, the computational 
overhead of this architecture is 12 addition operations and a 
comparison, which is slightly more than the number obtained from the 
evaluation in Eq. (5). 

B.  SMU Design 
In this section, we address an important issue regarding SMU 

design when T-algorithm is employed. There are two different types of 

SMU in the literature: register exchange (RE) and trace back (TB) 
schemes. In the regular VD without any low-power schemes, SMU 
always outputs the decoded data from a fixed state (arbitrarily selected 
in advance) if RE scheme is used, or traces back the survivor path from 
the fixed state if TB scheme is used, for low-complexity purpose.  For 
VD incorporated with T-algorithm, no state is guaranteed to be active 
at all clock cycles. Thus it is impossible to appoint a fixed state for 
either outputting the decoded bit (RE scheme) or starting the 
trace-back process (TB scheme). In the conventional implementation 
of T-algorithm, the decoder can use the optimal state (state with PMopt), 
which is always enabled, to output or trace back data. The process of 
searching for PMopt can find out the index of the optimal state as a 
byproduct. However, when the estimated PMopt is used [8], or in our 
case PMopt is calculated from PMs at the previous time slot, it is 
difficult to find the index of the optimal state. 

A practical method is to find the index of an enabled state through a 
2(k-1)-to-(k-1) priority encoder. Suppose that we have labeled the states 
from 0 to 63. The output of the priority encoder would be the unpurged 
state with the lowest index. Assuming the purged states have the flag 
‘0’ and other states are assigned the flag ‘1’, the truth table of such a 
priority encoder is shown in Table I, where ‘flag’ is the input and 
‘index’ is the output. 

TABLE I.  TRUTH TABLE OF 64-TO-6 PRIORITY ENCODER 

flag[63:0] index[5:0] 
x x ………………………x x x x x 1 
x x ………………………x x x x 1 0 
x x ………………………x x x 1 0 0 
x x ………………………x x 1 0 0 0 
x x ………………………x 1 0 0 0 0 

: 
: 
: 

x 1 0 .……………………0 0 0 0 0 0 
1 0 0 .……………………0 0 0 0 0 0 

0 0 0 0 0 0 
0 0 0 0 0 1 
0 0 0 0 1 0 
0 0 0 0 1 1 
0 0 0 1 0 0 

: 
: 
: 

1 1 1 1 1 0 
1 1 1 1 1 1 

 
 Implementation of such a table is not trivial.  In our design, we 
employ an efficient architecture for the 64-to-6 priority encoder based 
on three 4-to-2 priority encoders, as shown in Fig. 8. The 64 flags are 
first divided into 4 groups, each of which contains 16 flags. The 
priority encoder at level 1 detects which group contains at least one ‘1’ 
and determines ‘index[5:4]’. Then MUX2 selects one group of flags 
based on ‘index[5:4]’. The input of the priority encoder at level 2 can 
be computed from the output of MUX2 by ‘OR’ operations.  We can 
also reuse the intermediate results by introducing another MUX 
(MUX1). The output of the priority encoder at level 2 is ‘index[3:2]’.  
Again, ‘index[3:2]’ selects 4 flags (MUX3) as the input of the priority 
encoder at level 3. Finally, the last encoder will determine 
‘index[1:0]’. 
  Implementing the 4-to-2 priority encoder is much simpler than 
implementing the 64-to-6 priority encoder. Its truth table is shown in 
Table II, and the corresponding logics are shown in Eq. (7) and Eq. (8). 
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Fig.8: Architecture of 64-to-6 priority encoder 
 



 

(8) 

TABLE II.  TRUTH TABLE OF 4-TO-2 PRIORITY ENCODER 

input (I [3:0]) output (O [1:0]) 
x x x 1  
x x 1 0 
x 1 0 0 
1 0 0 0 

0 0 
0 1 
1 0 
1 1 

V. IMPLEMENTATION RESULTS 
       The full-trellis VD, the VD with the 2-step pre-computation 
architecture and one with the conventional T-algorithm are modeled 
with Verilog HDL code. The soft inputs of all VDs are quantized with 
7 bits. Each PM in all VDs is quantized as  12 bits. RE scheme with 
survival length of 42 is used for SMU, and the register arrays 
associated with the purged states are clock-gated to reduce the power 
consumption in SMU. For ASIC synthesis, we use TSMC 90nm 
CMOS standard cell. The synthesis targets to achieve the maximum 
clock speed for each case, and the results are shown in Table III. 

Table III shows that the VD with 2-step pre-computation 
architecture only decreases the clock speed by 11% compared with the 
full-trellis VD.  Meanwhile, the increase of the hardware area is about 
17%. The decrease of clock speed is inevitable since the iteration 
bound for VD with T-algorithm is inherently longer than that of the 
full-trellis VD. Also, any kinds of low-power scheme would introduce 
extra hardware like the purge unit shown in Fig. 6 or the clock-gating 
module in the SMU. Therefore, the hardware overhead of the proposed 
VD is expected. On the other hand, the VD with conventional 
T-algorithm cannot achieve half of the clock speed  of the full trellis 
VD. Therefore, for high-speed applications, it should not be 
considered. It is worth to mention Note that the conventional 
T-algorithm VD takes slightly more hardware than the proposed 
architecture, which  is counterintuitive. This is because the former 
decoder has a much longer critical path and the synthesis tool took 
extra measures to improve the clock speed (e.g., using many standard 
cells with larger driving strength, duplicating logic and registers to 
reduce fan-out and load capacitance, etc.). It is clear that the 
conventional T-algorithm is not suitable for  high-speed applications. 
If the target throughput is moderately high, the proposed architecture 
can operate at a lower supply voltage, which will lead to quadratic 
power reduction compared to the conventional scheme  (due to much 
shorter critical path). Thus we next focus on the power comparison 
between the full trellis VD and the proposed  scheme.  

TABLE III.   SYNTHESIS RESULTS FOR MAXIMUM CLOCK SPEED  

 Max speed (MHz)  cell area (mm2) 
Full-trellis VD 
 

505  0.58 

VD with 2-step 
pre-computation  

446.4 (-11.6%)  0.68 (+17.2%) 

Conventional 
T-algorithm 

232 (-54.1%) 0.685 (+18%) 

 
We estimate the power consumption of these two designs with 

Synopsys Prime Power under the clock speed of 200Mbps (power 
supply of 1.0 V, temperature of 300 K). A total of 1133 received 
symbols (12,000 bits) are simulated. The results are shown in Table 
IV. 

With the finite word-length implementation, the threshold can only 
be changed by a step of 0.125. Therefore, to maintain a good BER 
performance, the minimum threshold we chose is 0.375. Table IV 
shows that, as the threshold decreases, the power consumption of the 

proposed VD is reduced accordingly. In order to achieve the same 
BER performance, the proposed VD only consumes 30.8% the power 
of the full-trellis VD. 

TABLE IV.  POWER ESTIMATION RESULTS 

 Power (mw) 
Full-trellis VD 21.473 (100%) 
VD with 2-step 
pre-computation 
architecture 

Tpm = 0.75 20.069 (93.5%) 
Tpm = 0.625 17.186 (80.0%) 
Tpm = 0.5 11.754 (54.7%) 
Tpm = 0.375 6.6127 (30.8%) 

VI. CONCLUSION 
We have proposed a high-speed low-power VD design for TCM 

systems. The pre-computation architecture that incorporates 
T-algorithm efficiently reduces the power consumption of VDs 
without reducing the decoding speed appreciably. We have also 
analyzed the pre-computation algorithm, where the optimal 
pre-computation steps are calculated and discussed. This algorithm is 
suitable for TCM systems which always employ high-rate 
convolutional codes. Finally, we presented a design case. Both the 
ACSU and SMU are modified to correctly decode the signal. ASIC 
synthesis and power estimation results show that, compared with the 
full-trellis VD without a low-power scheme, the pre-computation VD 
could reduce the power consumption by 70% with only 11% reduction 
of the maximum decoding speed.  
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