

Abstract— High-speed, low-power design of Viterbi decoders

for trellis coded modulation (TCM) systems is presented in this
paper. It is well known that the Viterbi decoder (VD) is the
dominant module determining the overall power consumption of
TCM decoders. We propose a pre-computation architecture
incorporated with T-algorithm for VD, which can effectively
reduce the power consumption without degrading the decoding
speed much. A general solution to deriving the optimal
pre-computation steps is also given in the paper. Implementation
result of a VD for a rate-3/4 convolutional code used in a TCM
system shows that compared with the full trellis VD, the
pre-computation architecture reduces the power consumption by
as much as 70% without performance loss, while the degradation
in clock speed is negligible.

Index Terms— VLSI, Viterbi decoder, trellis coded modulation.

I. INTRODUCTION Trellis coded modulation (TCM) schemes are used in many
bandwidth-efficient systems. Typically, a TCM system employs a
high-rate convolutional code, which leads to a high complexity of the
Viterbi decoder (VD) for the TCM decoder, even if the constraint
length of the convolutional code is moderate. For example, the rate-3/4
convolutional code used in a 4-dimensional TCM system for deep
space communications [1] has a constraint length of 7; however, the
computational complexity of the corresponding VD is equivalent to
that of a VD for a rate-1/2 convolutional code with a constraint length
of 9 due to the large number of transitions in the trellis. Therefore, in
terms of power consumption, the Viterbi decoder is the dominant
module in a TCM decoder. In order to reduce the computational
complexity as well as the power consumption, low-power schemes
should be exploited for the VD in a TCM decoder.
 General solutions for low-power VD design have been well studied
by existing work. Power reduction in VDs could be achieved by
reducing the number of states (for example, reduced-state sequence
decoding (RSSD) [2], M-algorithm [3] and T-algorithm [4], [5]) or by
over-scaling the supply voltage [6]. Over-scaling of the supply
voltage usually needs to take into consideration the whole system that
includes the VD (whether the system allows such an over-scaling or
not), which is not the main focus of our research. RSSD is in general
not as efficient as the M-algorithm [2], and T-algorithm is more

Manuscript received Jul. 27, 2010, revised Oct. 30, 2010.
Jinjin He and Huaping Liu are with the School of Electrical Engineering and

Computer Science, Oregon State University, Corvallis, OR 97331 USA (e-mail:
{hejin, hliu}@eecs.oregonstate.edu).

Zhongfeng Wang is with Broadcom Corporation, 5300 California Ave.,
Irvine, CA, 92617 USA (e-mail: zfwang@broadcom.com).

Xinming Huang and Kai Zhang are with the Department of Electrical and
Computer Engineering, Worcester Polytechnic Institute, Worcester, MA 01609
USA (email: {xhuang, kzhang}@wpi.edu).

This paper was presented in part at the 43rd Asilomar Conference on Signal,
Systems and Computers 2009.

commonly used than M-algorithm in practical applications, because
the M-algorithm requires a sorting process in a feedback loop while
T-algorithm only searches for the optimal path metric (PM), that is, the
minimum value or the maximum value of all PMs.
 T-algorithm has been shown to be very efficient in reducing the
power consumption [7], [8]. However, searching for the optimal PM in
the feedback loop still reduces the decoding speed. To overcome this
drawback, two variations of the T-algorithm have been proposed: the
relaxed adaptive VD [7], which suggests using an estimated optimal
PM, instead of finding the real one each cycle; and the limited-search
parallel state VD based on scarce state transition (SST) [8]. In our
preliminary work [9], we have shown that when applied to high-rate
convolutional codes, the relaxed adaptive VD suffers a severe
degradation of bit-error-rate (BER) performance due to the inherent
drifting error between the estimated optimal PM and the accurate one.
On the other hand, the SST based scheme requires pre-decoding and
re-encoding processes, and is not suitable for TCM decoders. In TCM,
the encoded data are always associated with a complex multi-level
modulation scheme like 8-ary phase-shift keying (8PSK) or 16/64-ary
quadrature amplitude modulation (16/64QAM) through a constellation
point mapper. At the receiver, a soft-input VD should be employed to
guarantee a good coding gain. Therefore, the computational overhead
and decoding latency due to pre-decoding and re-encoding of the TCM
signal become high, because pre-demodulating, pre-demapping,
re-modulating and re-mapping are also required in the TCM decoder.
In our preliminary work [9], we proposed an add-compare-select unit
(ACSU) architecture based on pre-computation for VDs incorporating
T-algorithm, which efficiently improves the clock speed of a VD with
T-algorithm for a rate-3/4 code. In this work, we further analyze the
pre-computation algorithm. A systematic way to determine the
optimal pre-computation steps is presented, where the minimum
number of steps for the critical path to achieve the theoretical iteration
bound is calculated and the computational complexity overhead due to
pre-computation is evaluated. Then, we discuss a complete low-power
high-speed VD design for the rate-3/4 convolutional code [1], where
survivor-path memory unit (SMU) is also modified. Finally ASIC
implementation results of the VD are reported, which have not been
obtained in our previous work in [9].
 The remainder of this paper is organized as follows. Section II gives
the background information of VDs. Section III presents the
pre-computation architecture with T-algorithm and discusses the
choice of pre-computation steps. Details of a design example including
the modification of survivor-path memory unit (SMU) are discussed in
Section III. Synthesis and power estimation results are reported in
Section IV, and conclusions are given in Section V.

II. THE VITERBI DECODER
A typical functional block diagram of a Viterbi decoder is shown in

Fig. 1. First, branch metrics (BMs) are calculated in the BM unit
(BMU) from the received symbols. In a TCM decoder, this module is
replaced by transition metrics unit (TMU), which is more complex
than the BMU. Then, BMs are fed into the ACSU that recursively

 High-Speed Low-Power Viterbi Decoder Design for TCM
Decoders

Jinjin He, Huaping Liu, Zhongfeng Wang, Xinming Huang, and Kai Zhang

computes the PMs and outputs decision bits for each possible state
transition. After that, the decision bits are stored in and retrieved from
the SMU in order to decode the source bits along the final survivor
path. The PMs of the current iteration are stored in the PM unit (PMU).

ACSU SMU

PMU

Branch
Metrics

Decision
bits

Decoded
output

Path
Metrics

BMU

Channel
Symbol

Fig. 1: Functional diagram of a Viterbi Decoder.

T-algorithm requires extra computation in the ACSU loop for
calculating the optimal PM and puncturing states. Therefore, a
straightforward implementation of T-algorithm will dramatically
reduce the decoding speed. The key point of improving the clock
speed of T-algorithm is to quickly find the optimal PM.

III. THE PRE-COMPUTATION ARCHITECTURE

A. Pre-computation algorithm
The basic idea of the pre-computation algorithm was presented in

[9]. Consider a VD for a convolutional code with a constraint length k,
where each state receives p candidate paths. First, we expand PMs at
the current time slot n (PMs(n)) as a function of PMs(n-1) to form a
look-ahead computation of the optimal PM− PMopt(n). If the branch
metrics are calculated based on the Euclidean distance, PMopt(n) is the
minimum value of PMs(n) obtained as

PMopt(n) = min{ PM0(n), PM1(n), ………, PM2
k
-1(n) }

= min{
min [PM0,0(n-1) + BM0,0(n),

 PM0,1(n-1) + BM0,1(n), …...,
 PM0,p(n-1) + BM0,p(n)],

min [PM1,0(n-1) + BM1,0(n),
 PM1,1(n-1) + BM1,1(n), …..,
 PM1,p(n-1) + BM1,p(n)],
 ………………….,
 min [PM2

k-1
-1,0(n-1) + BM2

k-1
-1,0(n),

 PM2
k-1

-1,1(n-1) + BM2
k-1

-1,1(n), …..,
 PM2

k-1
-11,p(n-1) + BM2

k-1
-1,p(n)] }

= min{ PM0,0(n-1) + BM0,0(n),
 PM0,1(n-1) + BM0,1(n), …..,
 PM0,p(n-1) + BM0,p(n),
 PM1,0(n-1) + BM1,0(n),
 PM1,1(n-1) + BM1,1(n), …..,
 PM1,p(n-1) + BM1,p(n),
 ………………….,
 PM2

k-1
-1,0(n-1) + BM2

k-1
-1,0(n),

 PM2
k-1

-1,1(n-1) + BM2
k-1

-1,1(n), …..,
 PM2

k-1
-11,p(n-1) + BM2

k-1
-1,p(n)}. (1)

Then, we group the states into several clusters to reduce the

computational overhead caused by look-ahead computation. The
trellis butterflies for a VD usually have a symmetric structure. In other
words, the states can be grouped into m clusters, where all the clusters
have the same number of states and all the states in the same cluster
will be extended by the same BMs. Thus, Eq. (1) can be re-written as

PMopt(n)= min{
min (PMs (n-1) in cluster 1) + min(BMs(n) for cluster 1),
min (PMs (n-1) in cluster 2) + min(BMs(n) for cluster 2),
………………………..,
min (PMs (n-1) in cluster m) + min(BMs(n) for cluster m)}. (2)

The min(BMs) for each cluster can be easily obtained from the

BMU or TMU, and the min(PMs) at time n-1 in each cluster can be

pre-calculated at the same time when the ACSU is updating the new
PMs for time n. Theoretically, when we continuously decompose
PMs(n-1), PMs(n-2),……, the pre-computation scheme can be
extended to q steps, where q is any positive integer that is less than n.
Hence, PMopt(n) can be calculated directly from PMs(n-q) in q cycles.

B. Choosing pre-computation steps
In [9], we have shown through a design example that, q-step

pre-computation can be pipelined into q stages, where the logic delay
of each stage is continuously reduced as q increases. As a result, the
decoding speed of the low-power VD is greatly improved. However,
after reaching a certain number of steps, qb, further pre-computation
would not result in additional benefits because of the inherent iteration
bound of the ACSU loop. Therefore, it is worth to discuss the optimal
number of pre-computation steps.

In a TCM system, the convolutional code usually has a coding rate
of R/(R+1), R = 2, 3, 4,…, so that in Eq. (1), p = 2R, and the logic delay
of the ACSU is compinpadderACSU TTT _−+= , where Tadder is the logic

delay of the adder to compute PMs of each candidate path that reaches
the same state and Tp-in_comp is the logic delay of a p-input comparator
to determine the survivor path (the path with the minimum metric) for
each state. If T-algorithm is employed in the VD, the iteration bound is
slightly longer than TACSU because there will be another 2-input
comparator in the loop to compare the new PMs with a threshold value
obtained from the optimal PM and a pre-set T as shown in Eq. (3):

compincompinpadderbound TTTT _2_ −− ++= (3)

To achieve the iteration bound expressed in Eq. (3), for the
pre-computation in each pipelining stage, we limit the comparison to
be among only p or 2p metrics. To simplify our evaluation, we assume
that each stage reduces the number of the metrics to 1/p (or 2-R) of its
input metrics as shown in Fig. 2. The smallest number of
pre-computation steps (qb) meeting the theoretical iteration bound
should satisfy 12)2(−≥ kqR b . Therefore, qb ≥ (k-1)/R and qb is

expressed as Eq. (4), where  . denotes the ceiling function.





 −

=
R

kqb
1 . (4)

 2k-1number of
metrics: 2k-R-1 1

pipeline pipeline pipeline

 2k-2R-1

Fig. 2: A topology of pre-computation pipelining.

In the design example shown in [9], with a coding rate of 3/4 and
constraint length of 7, the minimum pre-computation steps for the VD
to meet the iteration bound is 2 according to Eq. (4). It is the same
value as we obtained from direct architecture design [9]. In some cases,
the number of remaining metrics may slightly expand during a certain
pipeline stage after addition with BMs. Usually, the extra delay can be

absorbed by an optimized architecture or circuit design. Even if the
extra delay is hard to eliminate, the resultant clock speed is very close
to the theoretical bound. To fully achieve the iteration bound, we could
add another pipeline stage, though it is very costly as will be shown
next.

Computational overhead (compared with conventional T-algorithm)
is an important factor that should be carefully evaluated. Most of the
computational overhead comes from adding BMs to the metrics at
each stage as indicated in Eq. (2). In other words, if there are m
remaining metrics after comparison in a stage, the computational
overhead from this stage is at least m addition operations. The exact
overhead varies for different cases depending on the convolutional
code’s trellis diagram. Again, to simplify the evaluation, we consider a
code with a constraint length k and q pre-computation steps. Also, we
assume that each remaining metric would cause a computational
overhead of one addition operation. In this case, the number of metrics
will reduce at a ratio of 2(k-1)/q, and the overall computational overhead
is (measured with addition operation):

.
12

12
12
12

2...222

/)1(

1

/)1(

/)1(

/)1)(1(/)1(2/)1(0

−
−

=
−
−

=

+++=

−

−

−

−⋅

−−−−

qk

k

qk

qkq

qkqqkqk
overheadN

 (5)

 The estimated computational overhead according to Eq. (5) when
k=7 (64 states) is shown in Fig. 3, where a linear curve is also included
as a reference. Fig. 3 clearly shows that the computational overhead
increases exponentially. In a real design, the overhead increases even
faster than what is given by Eq. (5) when other factors (such as
comparisons or expansion of metrics as we mentioned above) are
taken into consideration. Therefore, a small number of
pre-computational steps are preferred even though the iteration bound
may not be fully satisfied. In most cases, one or two-step
pre-computation is a good choice.

Fig. 3: The estimated computational overhead of 64 states as a function of
pre-computation steps.

The above analysis also reveals that pre-computation is not a good
option for low-rate convolutional codes (rate of 1/Rc, Rc = 2, 3, …),
because it usually needs more than 2 steps to effectively reduce the
critical path (in that case, R = 1 in Eq. (4) and qb is k-1). However, for
TCM systems, where high-rate convolutional codes are always
employed, two steps of pre-computation could achieve the iteration
bound or make a big difference in terms of clock speed. In addition, the
computational overhead is small.

IV. A LOW-POWER HIGH-SPEED VITERBI DECODER DESIGN
We still use the 4-dimentional 8PSK TCM system described in [1] as

the example. The rate-3/4 convolutional code employed in the TCM
system is shown in Fig. 4. Preliminary BER performance and
architecture design for the ACSU unit have been discussed in [9]. In
this section, we further optimize the SMU design. Later in the next
section, we will report ASIC implementation results that have not been
obtained before.

T T T T

x1

x3x2

z1

z3z2

z0T T

Fig. 4: Rate ¾ convolutional encoder.

BER performance of the VD employing T-algorithm with different
values of T over an additive white Gaussian noise channel is shown in
Fig. 5. The simulation is based on a 4-dimentional 8
phase-shifting-key (8PSK) trellis-coded modulation (TCM) system
employing the rate-3/4 code [10]. The overall coding rate is 11/12
after taking other uncoded bits in TCM system into consideration.
Compared with the ideal Viterbi algorithm, the threshold “Tpm” can
be lowered to 0.3 with less than 0.1 dB of performance loss, while the
computational complexity could be reduced by up to 90% [9]. Since
the pre-computation algorithm always finds the accurate optimal PM,
its BER performance is the same as that of the conventional
T-algorithm.

Fig. 5: BER performance of T-algorithm.

A. ACSU design
We have concluded that 2-step pre-computation is the optimal

choice for the rate-3/4 code VD. For convenience of discussion, we
define the left-most register in Fig. 4 as the most-significant-bit (MSB)
and the right-most register as the least-significant-bit (LSB). The 64
states and PMs are labeled from 0 to 63. The 2-step pre-computation is
expressed as Eq. (6) [9].

PMopt(n) = min [
 min {min (cluster0 (n-2))+ min (BMG0(n-1)),
 min (cluster1 (n-2))+ min (BMG1(n-1)),
 min (cluster2 (n-2))+ min (BMG3(n-1)),
 min (cluster3 (n-2))+ min (BMG2(n-1))
 }+ min (even BMs(n)),
 min {min (cluster0 (n-2))+ min (BMG1(n-1)),
 min (cluster1 (n-2))+ min (BMG0(n-1)),
 min (cluster2 (n-2))+ min (BMG2(n-1)),
 min (cluster3 (n-2))+ min (BMG3(n-1))

1 2 3 4 5 6
0

10

20

30

40

50

60

70

number of pre-computation steps

co
m

pu
ta

tio
na

l o
ve

rh
ea

d

computational overhead
a linear reference curve

9 9.5 10 10.5 11 11.5 12 12.5 13 13.5 14
10

-5

10
-4

10
-3

10
-2

10
-1

10
0

SNR(Es/N0)

B
E

R

Ideal Viterbi

Tpm=0.5

Tpm=0.4

Tpm=0.3

Tpm=0.2

 }+ min (odd BMs(n))], (6)
where
cluster0 = {PMm |0 ≤ m ≤ 63, m mod 4 = 0};
cluster1 = {PMm |0 ≤ m ≤ 63, m mod 4 = 2};
cluster2 = {PMm |0 ≤ m ≤ 63, m mod 4 = 1};
cluster3 = {PMm |0 ≤ m ≤ 63, m mod 4 = 3};
BMG0 = {BMm | 0 ≤ m ≤ 15, m mod 4 = 0};
BMG1 = {BMm | 0 ≤ m ≤ 15, m mod 4 = 2};
BMG2 = {BMm | 0 ≤ m ≤ 15, m mod 4 = 1};
BMG3 = {BMm | 0 ≤ m ≤ 15, m mod 4 = 3}.

 The functional block diagram of the VD with 2-step
pre-computation T-algorithm is shown in Fig. 6. The minimum value of
each BM group (BMG) can be calculated in BMU or TMU and then
passed to the “Threshold Generator” unit (TGU) to calculate (PMopt +
T). (PMopt + T) and the new PMs are then compared in the “Purge Unit”
(PU). The architecture of the TGU is shown in Fig. 7, which
implements the key functions of the 2-step pre-computation scheme.

SMU

PMU

Branch
Metrics

Decision
bits

Decoded
output

PMs(n)

Channel
Symbols

states
enable flags

Threshold
Generator Purge Unit

PMs(n)
PMs(n-1)

BMU ACSU

states
enable flags

PMopt +T

min(BMG)

Fig.6: VD with 2-step pre-computation T-algorithm.

T

M
IN

4

M
IN

4

M
IN

2

min (BMG0(n-1))

min (BMG0(n-1))

min (BMG1(n-1))

min (BMG3(n-1))

min (BMG3(n-1))

min (BMG2(n-1))

min
(even BMs(n))

min
(odd BMs(n))

PMs(n-2) in
cluster0

MIN16

MIN16

MIN16

MIN16

PMs(n-2) in
cluster1

PMs(n-2) in
cluster2

PMs(n-2) in
cluster3

pipelining

T

Fig.7: Architecture of TGU.

In Fig. 7, the “MIN 16” unit for finding the minimum value in each
cluster is constructed with 2 stages of 4-input comparators. This
architecture has been optimized to meet the iteration bound [9].
Compared with the conventional T-algorithm, the computational
overhead of this architecture is 12 addition operations and a
comparison, which is slightly more than the number obtained from the
evaluation in Eq. (5).

B. SMU Design
In this section, we address an important issue regarding SMU

design when T-algorithm is employed. There are two different types of

SMU in the literature: register exchange (RE) and trace back (TB)
schemes. In the regular VD without any low-power schemes, SMU
always outputs the decoded data from a fixed state (arbitrarily selected
in advance) if RE scheme is used, or traces back the survivor path from
the fixed state if TB scheme is used, for low-complexity purpose. For
VD incorporated with T-algorithm, no state is guaranteed to be active
at all clock cycles. Thus it is impossible to appoint a fixed state for
either outputting the decoded bit (RE scheme) or starting the
trace-back process (TB scheme). In the conventional implementation
of T-algorithm, the decoder can use the optimal state (state with PMopt),
which is always enabled, to output or trace back data. The process of
searching for PMopt can find out the index of the optimal state as a
byproduct. However, when the estimated PMopt is used [8], or in our
case PMopt is calculated from PMs at the previous time slot, it is
difficult to find the index of the optimal state.

A practical method is to find the index of an enabled state through a
2(k-1)-to-(k-1) priority encoder. Suppose that we have labeled the states
from 0 to 63. The output of the priority encoder would be the unpurged
state with the lowest index. Assuming the purged states have the flag
‘0’ and other states are assigned the flag ‘1’, the truth table of such a
priority encoder is shown in Table I, where ‘flag’ is the input and
‘index’ is the output.

TABLE I. TRUTH TABLE OF 64-TO-6 PRIORITY ENCODER

flag[63:0] index[5:0]
x x ………………………x x x x x 1
x x ………………………x x x x 1 0
x x ………………………x x x 1 0 0
x x ………………………x x 1 0 0 0
x x ………………………x 1 0 0 0 0

:
:
:

x 1 0 .……………………0 0 0 0 0 0
1 0 0 .……………………0 0 0 0 0 0

0 0 0 0 0 0
0 0 0 0 0 1
0 0 0 0 1 0
0 0 0 0 1 1
0 0 0 1 0 0

:
:
:

1 1 1 1 1 0
1 1 1 1 1 1

 Implementation of such a table is not trivial. In our design, we
employ an efficient architecture for the 64-to-6 priority encoder based
on three 4-to-2 priority encoders, as shown in Fig. 8. The 64 flags are
first divided into 4 groups, each of which contains 16 flags. The
priority encoder at level 1 detects which group contains at least one ‘1’
and determines ‘index[5:4]’. Then MUX2 selects one group of flags
based on ‘index[5:4]’. The input of the priority encoder at level 2 can
be computed from the output of MUX2 by ‘OR’ operations. We can
also reuse the intermediate results by introducing another MUX
(MUX1). The output of the priority encoder at level 2 is ‘index[3:2]’.
Again, ‘index[3:2]’ selects 4 flags (MUX3) as the input of the priority
encoder at level 3. Finally, the last encoder will determine
‘index[1:0]’.
 Implementing the 4-to-2 priority encoder is much simpler than
implementing the 64-to-6 priority encoder. Its truth table is shown in
Table II, and the corresponding logics are shown in Eq. (7) and Eq. (8).

);]2[]3[]1[(]0[)]1[]2[]3[]1[(]0[]0[IIIIIIIIIO ⋅+⋅=⋅⋅+⋅= (7)

]).3[]2[(]1[]0[])3[]2[]2[(]1[]0[]1[IIIIIIIIIO +⋅+=+⋅⋅=

4-2
priority

encoder

4-2
priority

encoder

4-2
priority

encoder

M
U

X
2

M
U

X
1

M
U

X
3

flag[15:0]

flag[31:16]

flag[47:32]

flag[63:48]

flag[3:0]

flag[7:4]

flag[11:8]

flag[63:60]

level1

level2

level3

flag_g0

flag_g1

flag_g2

flag_g3

index[3]
index[2]
index[5]
index[4]

index[1]
index[0]

flag_g0

flag_g1

flag_g2

flag_g3

I [0]

I [1]
I [2]

I [3]

O[1]

O[0]

4-2 priority encoder

Fig.8: Architecture of 64-to-6 priority encoder

(8)

TABLE II. TRUTH TABLE OF 4-TO-2 PRIORITY ENCODER

input (I [3:0]) output (O [1:0])
x x x 1
x x 1 0
x 1 0 0
1 0 0 0

0 0
0 1
1 0
1 1

V. IMPLEMENTATION RESULTS
 The full-trellis VD, the VD with the 2-step pre-computation
architecture and one with the conventional T-algorithm are modeled
with Verilog HDL code. The soft inputs of all VDs are quantized with
7 bits. Each PM in all VDs is quantized as 12 bits. RE scheme with
survival length of 42 is used for SMU, and the register arrays
associated with the purged states are clock-gated to reduce the power
consumption in SMU. For ASIC synthesis, we use TSMC 90nm
CMOS standard cell. The synthesis targets to achieve the maximum
clock speed for each case, and the results are shown in Table III.

Table III shows that the VD with 2-step pre-computation
architecture only decreases the clock speed by 11% compared with the
full-trellis VD. Meanwhile, the increase of the hardware area is about
17%. The decrease of clock speed is inevitable since the iteration
bound for VD with T-algorithm is inherently longer than that of the
full-trellis VD. Also, any kinds of low-power scheme would introduce
extra hardware like the purge unit shown in Fig. 6 or the clock-gating
module in the SMU. Therefore, the hardware overhead of the proposed
VD is expected. On the other hand, the VD with conventional
T-algorithm cannot achieve half of the clock speed of the full trellis
VD. Therefore, for high-speed applications, it should not be
considered. It is worth to mention Note that the conventional
T-algorithm VD takes slightly more hardware than the proposed
architecture, which is counterintuitive. This is because the former
decoder has a much longer critical path and the synthesis tool took
extra measures to improve the clock speed (e.g., using many standard
cells with larger driving strength, duplicating logic and registers to
reduce fan-out and load capacitance, etc.). It is clear that the
conventional T-algorithm is not suitable for high-speed applications.
If the target throughput is moderately high, the proposed architecture
can operate at a lower supply voltage, which will lead to quadratic
power reduction compared to the conventional scheme (due to much
shorter critical path). Thus we next focus on the power comparison
between the full trellis VD and the proposed scheme.

TABLE III. SYNTHESIS RESULTS FOR MAXIMUM CLOCK SPEED

 Max speed (MHz) cell area (mm2)
Full-trellis VD

505 0.58

VD with 2-step
pre-computation

446.4 (-11.6%) 0.68 (+17.2%)

Conventional
T-algorithm

232 (-54.1%) 0.685 (+18%)

We estimate the power consumption of these two designs with

Synopsys Prime Power under the clock speed of 200Mbps (power
supply of 1.0 V, temperature of 300 K). A total of 1133 received
symbols (12,000 bits) are simulated. The results are shown in Table
IV.

With the finite word-length implementation, the threshold can only
be changed by a step of 0.125. Therefore, to maintain a good BER
performance, the minimum threshold we chose is 0.375. Table IV
shows that, as the threshold decreases, the power consumption of the

proposed VD is reduced accordingly. In order to achieve the same
BER performance, the proposed VD only consumes 30.8% the power
of the full-trellis VD.

TABLE IV. POWER ESTIMATION RESULTS

 Power (mw)
Full-trellis VD 21.473 (100%)
VD with 2-step
pre-computation
architecture

Tpm = 0.75 20.069 (93.5%)
Tpm = 0.625 17.186 (80.0%)
Tpm = 0.5 11.754 (54.7%)
Tpm = 0.375 6.6127 (30.8%)

VI. CONCLUSION
We have proposed a high-speed low-power VD design for TCM

systems. The pre-computation architecture that incorporates
T-algorithm efficiently reduces the power consumption of VDs
without reducing the decoding speed appreciably. We have also
analyzed the pre-computation algorithm, where the optimal
pre-computation steps are calculated and discussed. This algorithm is
suitable for TCM systems which always employ high-rate
convolutional codes. Finally, we presented a design case. Both the
ACSU and SMU are modified to correctly decode the signal. ASIC
synthesis and power estimation results show that, compared with the
full-trellis VD without a low-power scheme, the pre-computation VD
could reduce the power consumption by 70% with only 11% reduction
of the maximum decoding speed.

REFERENCES
[1] “Bandwidth-Efficient Modulations”, CCSDS 401(3.3.6) Green Book,

April 2003.
[2] J. B. Anderson and E. Offer, “Reduced-state sequence detection with

convolutional codes,” IEEE Trans. Inf. Theory, vol. 40, no. 3, pp. 965-972,
May 1994.

[3] C. F. Lin and J. B. Anderson, “M-algorithm decoding of channel
convolutional codes,” in Proc. Princetion Conf. Info. Sci. Syst.,
(Princeton, NJ), Mar. 1986

[4] S. J. Simmons, “Breadth-first trellis decoding with adaptive Effort,” IEEE
Trans.Commun., vol. 38, no. 1, pp. 3-12, Jan. 1990.

[5] Francois Chan and David Haccoun, “Adaptive Viterbi decoding of
convolutional codes over memoryless channels,” IEEE Trans. Commun.,
vol. 45, no. 11, pp. 1389-1400, Nov. 1997.

[6] R. A. Abdallah, and N. R. Shanbhag, “Error-resilient low-power Viterbi
decoder architectures,” IEEE Trans. Sig. Proc., vol. 57, No. 12, pp.
4906-4917, Dec. 2009.

[7] J. Jin, and C.-Y. Tsui, “Low-power limited-search parallel state Viterbi
decoder implementation based on scarece state transition,” IEEE Trans.
VLSI Syst., vol. 15, no. 10, pp.1172-1176, Oct. 2007.

[8] F. Sun and T. Zhang, “Low power state-parallel relaxed adaptive Viterbi
decoder design and implementation,” in Proc. IEEE ISCAS, pp.
4811-4814, May, 2006.

[9] J. He, H. Liu, Z. Wang, "A fast ACSU architecture for Viterbi decoder
using T-algorithm," in Proc. 43rd IEEE Asilomar Conf. on Signals,
Systems and Computers, pp. 231-235, Nov. 2009.

[10] J. He, Z. Wang and H. Liu, “An efficient 4-D 8PSK TCM decoder
architecture”, IEEE Trans. VLSI Syst., vol. 18, no. 5, pp. 808-817, May
2010.

	I. Introduction
	II. The Viterbi Decoder
	III. The Pre-computation Architecture
	A. Pre-computation algorithm
	B. Choosing pre-computation steps

	IV. A Low-Power High-Speed Viterbi Decoder Design
	A. ACSU design
	B. SMU Design

	V. Implementation results
	VI. Conclusion
	References

