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Abstract

Background: Neisseria gonorrhoeae (GC) is a Gram-negative pathogen that most commonly infects mucosal surfaces,
causing sexually transmitted urethritis in men and endocervicitis in women. Serious complications associated with these
infections are frequent and include pelvic inflammatory disease, ectopic pregnancy, and infertility. The incidence
of gonorrhea cases remains high globally while antibiotic treatment options, the sole counter measures against
gonorrhea, are declining due to the remarkable ability of GC to acquire resistance. Evaluating of potential drug
targets is essential to provide opportunities for developing antimicrobials with new mechanisms of action. We
propose the GC Obg protein, belonging to the Obg/CgtA GTPase subfamily, as a potential target for the development
of therapeutic interventions against gonorrhea, and in this study perform its initial functional and biochemical
characterization.

Results: We report that NGO1990 encodes Obg protein, which is an essential factor for GC viability, associates
predominantly with the large 50S ribosomal subunit, and is stably expressed under conditions relevant to infection of
the human host. The anti-Obg antisera cross-reacts with a panel of contemporary GC clinical isolates, demonstrating
the ubiquitous nature of Obg. The cellular levels of Obg reach a maximum in the early logarithmic phase and remain
constant throughout bacterial growth. The in vitro binding and hydrolysis of the fluorescent guanine nucleotide
analogs mant-GTP and mant-GDP by recombinant wild type and T192AT193A mutated variants of Obg are also
assessed.

Conclusions: Characterization of the GC Obg at the molecular and functional levels presented herein may facilitate
the future targeting of this protein with small molecule inhibitors and the evaluation of identified lead compounds for
bactericidal activity against GC and other drug-resistant bacteria.
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Background
Neisseria gonorrhoeae (GC) is a Gram-negative bacterium
and a human-specific pathogen that causes gonorrhea.
This sexually transmitted disease remains a global health
burden. The World Health Organization estimated 106.1
million new cases in adults in 2008, which was a 21 %
increase compared to 2005 [1]. The disease usually mani-
fests as cervicitis, urethritis, proctitis, conjunctivis, or pha-
ryngitis. A significant proportion of women (≥50 %) and
some men (≤10 %) undergo asymptomatic infections and
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therefore many cases remain undiagnosed [2]. Untreated
or inadequately treated gonorrhea often has serious long-
term health consequences including endometritis, pelvic
inflammatory disease, ectopic pregnancy, epididymitis, and
infertility [2–4]. The serious sequelae of gonorrhea are
exacerbated by a significant increase of the risk of HIV
acquisition [5]. Pharmaceutical interventions against GC
infections are limited to antibiotic regimens, as a pre-
ventive anti-gonorrhea vaccine does not exist. Anti-
biotic therapies, however, have been continually
challenged by the remarkable ability of the bacteria to
acquire and retain resistance [6]. Treatment failures
associated with the current emergence of GC with de-
creased susceptibility to the last effective treatment
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option, third-generation cephalosporins, are concerning
and emphasize the pressing need for the development
of alternative antimicrobial strategies to combat drug-
resistant gonorrhea [1, 6–14].
Here, we focus on biochemical and functional

characterization of the GC homolog of conserved bacterial
Obg GTPases, NGO1990 (henceforth ObgGC), as a target
for the discovery of anti-gonorrhea compounds. Obg pro-
teins (also recognized as YhbZ or CgtA) belong to the
OBG-HflX superfamily within the TRAFAC (translational
factors) class of P-loop (phosphate-binding loop) GTPases
(reviewed in [15, 16]). The OBG family is comprised of
four subfamilies: Obg, Nog1, DRG, and YchF. The family
exists in all three domains of life with bacteria possessing
Obg and YchF, archea having two Obg proteins and YchF,
and eukaryotes commonly encoding four Obg proteins
and YchF [15–18]. Structurally, the bacterial Obg
proteins contain highly conserved N-terminal- and
central-domains, and C-terminal domain that can vary
in length and sequence, or as in Chlamydia, may even
be absent [16, 19]. The N-terminal domain is glycine-
rich and has a unique fold, the Obg fold [20]. The sig-
nature GTP-binding domain shares overall topology
with the small Ras-like GTPases, but the biochemical
features of the Obg proteins are distinct from those of
eukaryotic Ras-like proteins [21–26].
The name Obg originates from spo0B-associated GTP-

binding protein of Bacillus subtilis, in which the obg gene
was identified as a part of the spo0B operon [27]. Since its
identification in 1989, Obg homologs have been demon-
strated to be essential for viability not only in B. subtilis,
but also Streptomyces coelicolor, Staphylococcus pneumo-
niae, S. aureus, Haemophilus influenzae, Caulobacter cres-
centus, Escherichia coli, Vibrio harveyi and V. cholerae
[27–33]. These findings strongly suggest that Obg proteins
are crucial for the survival of both gram-positive and
gram-negative bacteria. The depletion of cellular Obg
levels results in species-specific pleiotropic effects on bac-
terial physiology, including alterations of ribosome matur-
ation and DNA synthesis; cell division and morphology;
and induction of general, as well as (p)ppGpp-mediated
stringent stress responses [15, 16, 34]. Growing lines of
evidence support the link between Obg and ribosome
function. Obg predominantly associates with the 50S ribo-
somal particles, and long-term Obg depletion results in re-
duced levels of 70S monosomes, ribosomal proteins S1,
S14, S21 and L10, as well as a perturbed polyribosome
profile [17, 22, 32, 35–37]. Recent studies suggest that in
E. coli cultured under standard laboratory growth condi-
tions, Obg acts as a checkpoint in the final steps of 50S
subunit assembly and, via an interplay with (p)ppGpp,
might modulate the production of large ribosomal particle
in response to environmental cues [34]. Introduction of
the temperature-sensitive variant of obg, G80E, in C.
crescentus caused a decline in both the growth rate and
the amount of 50S subunits, even under permissive condi-
tions [38]. Additional ribosome defects were not observed
in non-permissive temperatures; however, the bacteria
rapidly halted cell cycle progression and lost viability.
Thus, the essential nature of Obg likely does not result
directly from its function in the late stages of 50S subunit
assembly [15, 38]. Obg might provide a key molecular
nexus between different metabolic pathways to regulate
cellular processes in response to the energy status of the
cell [16]. All Obg proteins characterized to date bind GDP
and GTP, and display relatively slow GTP hydrolysis,
which can be moderately stimulated in the presence of
purified 50S ribosomal particles [22, 24–26, 34, 39]. The
mechanistic insights into how Obg participates in different
metabolic paths and stress responses remain to be eluci-
dated. Nevertheless, the Obg proteins appear to be prom-
ising molecular targets for the development of broad-
spectrum antibiotics against drug-resistant bacterial infec-
tions because of their essential nature, conservation, and
strong link with pivotal physiological processes.
Results and discussion
Local gene context and ObgGC domain architecture
In virtually all bacteria the obg gene has been reported
to be physically linked to rplU and rpmA, encoding 50S
ribosomal proteins L21 and L27, respectively [15]. The
inspection of the genetic organization of the obg region
in available completed genome sequences of Neisseria-
ceae, however, revealed that this arrangement is not
followed. In GC strain FA1090, the putative protein
NGO1990, annotated as Obg, is the last ORF in a cluster
comprised of NGO1989 and NGO1988. NGO1989 is a
hypothetical protein present also in GC DGI18 and
PID24-1, whereas NGO1988, encoding a homolog of the
rRNA small subunit methyltransferase I, is located up-
stream of obg in other Neisseriaceae.
Analysis of the predicted amino acid sequence of

NGO1990 from FA1090 revealed a typical structure of
Obg GTPases (Fig. 1) and significant similarities to other
Obg proteins (Table 1). The N-terminal domain of
ObgGC (amino acids 3–158) contains 26 glycine resi-
dues, similar to the B. subtilis Obg [20]. The central,
GTP-binding domain (residues 160–348), includes five
conserved G motifs (G1-G5) and two switch elements
(switch I and switch II) that determine the active or in-
active state of the G protein [15, 16]. As expected, the
C-terminal domain shows the lowest conservation when
compared to Obg homologs from different bacterial
species (Additional file 1: Figure S1). Nevertheless, this
region of ObgGC contains clusters of acidic residues, a fea-
ture characteristic of Obg proteins [17, 33]. This charged
C-terminus has been shown to be important for Obg
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Fig. 1 ObgGC domain architecture. The individual structural domains of ObgGC are shown in green. The N-terminal domain (amino acids 3–158) is
glycine-rich. The central, GTP-binding domain (residues 160–348) includes two switch elements (switch I and switch II) and five conserved G
motifs (G1-G5; indicated in blue boxes). The C-terminal domain contains clusters of acidic residues. The conserved T192 and T193 residues
within the G2 motifs and introduced substitutions are designated in red
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association with 50S ribosomal particles in C. crescentus
as well as GTP and GDP binding in V. harveyi [17, 26].

Purification of Obg variants and evaluation of anti-ObgGC
antisera
To begin the characterization of ObgGC, N- and C-
terminally His-tagged versions of the wild type NGO1990,
N-His-ObgGC and C-His-ObgGC (respectively), were over-
expressed in E. coli BL21(DE3), and purified. The purified
recombinant N-His-ObgGC was subsequently used to ob-
tain polyclonal rabbit anti-ObgGC antisera. The antisera
specifically recognized both the native and recombinant
versions of ObgGC (Fig. 2a). The purified proteins mi-
grated in SDS-PAGE more slowly than the native protein
and accordingly with the deduced molecular mass of
ObgGC (41.998 kDa) with the addition of the histidine
epitope. Further, the antibodies cross-reacted with Obg
homologs in the N. meningitidis serogroup B strains
MC58 and NZ98/254 but failed to recognize Obg from N.
weaveri and E. coli despite their 85 and 56 % identity to
Table 1 Comparison of the amino acid sequences of the N. gonorrh

Organism Accession number Pro

Neisseria gonorrhoeae NCCP11945 B4RQP4

Neisseria meningitidis MC58 Q9JXE5

Neisseria lactamica 020-06 E4ZAV0

Neisseria weaveri LMG 5135 G2DJV3

Escherichia coli K12 P42641

Caulobacter crescentus NA1000/CB15N B8GYI7

Bacillus subtilis 168 P20964

Chlamydia trachomatis D/UW-3/Cx O84423

Homo sapiens Q9H4K7*

Homo sapiens A4D1E9**

Saccharomyces cerevisiae 204508 P38860

*ObgH1 (GTP binding protein 5, GTBP5; mitochondrial ribosome-associated GTPase
**ObgH2 (GTP binding protein 10, GTPBP10)
ObgGC, respectively (Fig. 2b and Table 1). It is possible
that the anti-ObgGC antisera bind to the highly variable C-
terminal domain of ObgGC.

ObgGC binds GTP and GDP
GTPases cycle between being turned “on” in the GTP-
bound state and turned “off” in the GDP-bound state
(Fig. 3a). In each state, G proteins undergo conformational
changes and downstream effectors sense the GTP-bound
protein complexes. Switch-off involves the exchange of
GTP for GDP or hydrolysis of the γ-phosphate of GTP.
The fluorescent N-methyl-3’-O-anthranoyl (mant) guanine
nucleotide analogs, mant-GTP and mant-GDP, have been
widely utilized for examining the nucleotide binding and
GTP hydrolysis of various G-proteins including Obg ho-
mologs. The highly environmentally sensitive fluorescence
of the mant group enables detection of nucleotide-protein
interaction [22, 24, 26, 38, 40–43]. The binding of GTP to
Obg requires the presence of physiological Mg2+ concen-
trations in C. crescentus, E. coli, and V. harveyi, whereas
oeae Obg protein with Obg homologs

tein length Region aligned % identity % similarity

384 1-384 100 100

384 1-384 98 98

384 1-384 97 97

384 1-384 85 91

390 1-344 56 71

354 1-320 52 67

428 2-328 49 68

335 2-335 43 62

406 72-364 40 58

308 77-293 35 52

518 295-488 40 61

2, MTG2)
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Fig. 2 Validation of polyclonal rabbit anti-ObgGC antisera. (a) The
polyclonal rabbit anti-ObgGC antibodies were used to probe the
whole-cell lysates derived from wild type FA1090 and isogenic Pla-
c::obgGC as well as purified variants of ObgGC. The bacteria were
harvested following 2 h of growth in GCBL with (+) and without
(−) 100 μM IPTG, and the samples were matched by equivalent
OD600 units. Purified recombinant proteins (40 ng) include wild
type ObgGC with N-terminal 6 × His tag, (N-His-ObgGC) and N-His-ObgGC
with T192AT193A substitutions. (b) Samples of whole-cell lysates derived
from various Neisseria species, as indicated, were harvested from GCB
and matched by equivalent OD600 units. All samples were separated in
4-20 % Mini-PROTEAN TGX precast gels, the proteins were transferred
onto the nitrocellulose membrane and probed with polyclonal rabbit
anti-ObgGC antisera raised against N-His-ObgGC
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Obg-GDP complexes form over a wide range of Mg2+

concentrations [22, 24, 26]. The total intracellular Mg2+

content is about 100 mM in E. coli and B. subtilis and in-
cludes bound and free Mg2+, with the latter ranging from
1–5 mM [44–46].
To determine whether ObgGC requires Mg2+ to opti-

mally bind mant-nucleotides, N-His-ObgGC was incubated
with increasing concentrations of Mg2+ and either mant-
GTP or mant-GDP. The ObgGC binding profiles obtained
for both nucleotides differed noticeably similarly to that
observed for other Obg family members [22, 24, 26]. The
optimal formation of mant-GTP-ObgGC complexes oc-
curred between 5 and 10 mM Mg2+, as indicated by
maximal fluorescence (Fig. 3b, red circles). The binding of
mant-GDP to ObgGC did not require Mg2+ and was inhib-
ited at above 1 mM concentrations (Fig. 3b, blue squares).
Subsequently, binding of mant-GTP and mant-GDP

was assessed for both N-and C-His-ObgGC, as addition
of a six-histidine epitope to the C-terminus of the V.
harveyi Obg completely abolished interaction with
GTP and resulted in a weak binding of GDP [26]. Like-
wise, the C. crescentus Obg containing influenza virus
hemagglutynin tag demonstrated a reduction in protein
function [17]. In contrast, the C-His-ObgGC showed
very similar properties to N-His-ObgGC (Fig. 3c). Bind-
ing of either variants of ObgGC to mant-GTP and
mant-GDP led to 1.9- and 1.3-fold enhancement in mant-
nucleotide fluorescence, respectively. These results suggest
that subtle perturbations to the C-terminus of ObgGC are
not detrimental to protein function. The C. abortus Obg
naturally lacks the C-terminal domain, yet the protein is a
functional GTPase, with similar activity to other Obg pro-
teins, and binds to the 50S large ribosomal particle [19].

mantGTP hydrolysis by ObgGC
We next examined the GTPase activity of purified N-His-
ObgGC and C-His-ObgGC by monitoring the decrease in
fluorescence that is associated with the single-turnover
conversion of bound mant-GTP to bound mant-GDP
(Fig. 3d). The peak of fluorescence was recorded for
3 h at 1 min intervals. The reduction in fluorescence
was fitted to a single exponential decay with a first-
order rate constant, kh, of 2.3 × 10−4 s−1and 2.1 × 10−4

s−1, or half life (T1/2) of 49.1 min and 53.2 min, for N-
His-ObgGC and C-His-ObgGC, respectively. Therefore,
the GTP hydrolysis rates of both ObgGC variants are
very similar and are approximately twenty times slower
than that of the V. harveyi Obg and two-fold slower than
C. crescentus and E. coli Obg proteins, respectively
[22, 24, 26]. These differences may reflect distinct Obg
control or function in distantly related bacterial species.

Alteration of switch I element of ObgGC abolishes GTP but
not GDP binding abilities
The two adjacent threonine residues, T192 and T193,
which coordinate Mg2+, are ubiquitously present within
the G2 domain of Obg proteins (Fig. 1). However, their
function has been assessed only in C. crescentus [47]. To
address their importance for guanine nucleotide binding
in ObgGC, the double T192AT193A mutant protein with
N-terminal-His epitope was constructed and purified.
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Compared with the wild type ObgGC, the mutated pro-
tein exhibited completely impaired mant-GTP binding,
whereas a 1.3-fold increase in fluorescence was observed
in the presence of mant-GDP, indicating unaffected for-
mation of Obg-GDP complexes (Fig. 3c). A similar effect
was observed in the C. crescentus Obg, and T193 was
identified as the pivotal residue. The obg T193A allele
was not able to support C. crescentus growth, which
demonstrated that the Obg GTPase activity was a pre-
requisite for cell viability [47].
Depletion of ObgGC has deleterious effect on GC survival
To examine whether ObgGC plays a critical function in
GC physiology, we used an allelic exchange approach and
placed NGO1990 under the control of the isopropyl-β-D-
thiogalactoside (IPTG)-inducible promoter, Plac, in its na-
tive chromosomal locus in GC FA1090. The resulting con-
ditional knockout strain, FA1090 Plac::obgGC, failed to
grow when inoculated directly from the freezer stocks
onto the gonococcal base agar solid medium (GCB) lack-
ing IPTG, whereas robust bacterial growth was observed
in the presence of the inducer (Fig. 4a).
Subsequently, to examine the effect of ObgGC deple-
tion on GC viability over time, non-piliated and translu-
cent colonies of FA1090 Plac::obgGC, harvested from
GCB supplemented with 100 μM IPTG, were washed,
suspended to the same OD600 of 0.1, divided, and cul-
tured in gonococcal base liquid (GCBL) medium in the
presence or absence of IPTG. After 2 h under repressive
conditions, ObgGC was still detectable by immunoblot-
ting (Fig. 2a) and the bacterial proliferation rate was
indistinguishable from the permissive condition (Fig. 4b).
Similarly, depletion of C. crescentus Obg using the Pxyl
promoter and repressive growth conditions (glucose in-
stead of xylose) resulted in much lower but detectable
levels of Obg even 12 h after a carbon shift [17].
Prolonged culturing of GC is not feasible because the

bacteria undergo autolysis shortly after reaching station-
ary phase [48–52]. Therefore to ensure significant reduc-
tion in the amount of ObgGC, the conditional knockout
strain FA1090 Plac::obgGC was first treated as described
above, cultures were collected 3 h after initial inocula-
tion (indicated by an arrow in Fig. 4b), washed, and back
diluted into fresh GCBL with or without the inducer. Cul-
ture density and bacterial viability, measured as Optical
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Density at 600 nm (OD600, Fig. 4b) and Colony-Forming
Units (CFUs, Fig. 4c), respectively, were monitored
every hour. Growth kinetics of FA1090 Plac::obg

GC cul-
tured in the presence of IPTG (Fig. 4a) closely followed
the pattern observed in parental wild type strain
(Fig. 5a). In contrast, under non-permissive conditions,
the culture density and bacterial viability were decreased
significantly (Fig. 4b and c, respectively), concomitant with
the reduction in ObgGC level (Fig. 4d). At 6 h of the ex-
periment, the ObgGC-depleted culture contained on aver-
age 3.46 × 105 live bacterial cells, whereas 1.87 × 108 were
present in permissive conditions (Fig. 4c). Further, FA1090
Plac::obgGC grown in liquid media in the presence of IPTG
was unable to survive upon plating on GCB lacking the in-
ducer (Fig. 4e), confirming our prior observations
(Fig. 4a).
Together, these studies demonstrate that Obg plays a

pivotal function in GC physiology, as the depletion of
ObgGC caused loss of GC viability.

Expression of ObgGC
The expression of Obg protein varies in different exam-
ined bacterial species. For instance, in S. coelicolor Obg
is expressed in a growth-dependent manner with a sharp
decline right after the beginning of aerial mycelium de-
velopment and at the end of vegetative growth [28],
whereas constant levels of Obg are maintained through-
out the C. crescentus life cycle [30].
To examine the expression of ObgGC, wild type FA1090

was maintained under routine aerobic cultivation in
GCBL. Bacterial proliferation was monitored by measure-
ments of cell density at OD600 within 6 h of the experi-
ment (Fig. 5a). Every hour GC samples were collected and
the whole cell lysates were probed with anti-ObgGC
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antisera. The same samples were also examined using
antibodies against an unrelated protein, Ng-MIP (Fig. 5b)
and by SDS-PAGE coupled with colloidal coomassie stain-
ing (Additional file 2: Figure S2B) as loading controls.
Immunoblotting and densitometry analyses (Fig. 5b and c,
respectively) showed that ObgGC reached maximum ex-
pression in the early logarithmic phase of GC growth at
OD600 ~ 0.5 (2 h from the start of the experiment), and
remained constant until stationary phase.
We also asked whether the conditions that more

closely resemble clinical infection, such as anoxia, iron
deprivation and, in the event of disseminated infection,
exposure to human serum [2, 53], influence expression
of ObgGC. As expected, immunoblotting analysis showed
increased levels of TbpB and AniA, which are well-
recognized protein markers for iron-limited [54] and
anaerobic [55] growth conditions, respectively (Fig. 5d). In
contrast, the cellular concentrations of ObgGC remained
unaltered during growth of wild type FA1090 on GCB
aerobically, in iron-limited conditions, in the presence of
7.5 % normal human sera, and anaerobically in the pres-
ence of nitrite as a terminal electron acceptor.
Subcellular localization of ObgGC
The subcellular fractionation experiments showed that
Obg was localized in the cytosol [35] and partially associ-
ated with the crude cell envelopes in E. coli [56], whereas
in S. coelicolor, immunoelectron microscopy indicated that
Obg was associated with the cytoplasmic membrane [28].
In addition, a growing number of reports show that differ-
ent members of the Obg family cofractionate primarily
with the 50S ribosomal subunit [17, 22, 32, 57]; however,
in Mycobacterium tuberculosis, Obg is present in the 30S,
50S, and 70S ribosomal fractions [37].
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To examine the cellular localization of ObgGC, wild
type FA1090 was cultured under standard laboratory
conditions in GCBL and harvested at the mid-
exponential phase of growth. The bacterial cells were
lysed and the cell envelope proteins were separated from
the cytosolic proteome by a sodium carbonate extraction
procedure [58]. The crude cell envelopes were treated
with sarkosyl to solubilize the inner membrane proteins,
and the outer membrane was recovered by ultracentrifu-
gation [59]. The same total amounts of purified subpro-
teomes (15 μg) were separated by SDS-PAGE and
probed with anti-ObgGC antisera (Fig. 6a). The outer
membrane protein, MtrE, which contains an extended
periplasmic tunnel [60], was used as the cell envelope
protein marker. As expected, MtrE was absent in the
cytosol and enriched in the sarkosyl-insoluble fraction,
whereas the vast majority of ObgGC was present in the
cytosolic protein fractions (Fig. 6a). A faint band of the
same molecular weight was also detected in the cyto-
plasmic membrane. Many cytoplasmic proteins are re-
peatedly identified in different cell envelope proteomics
studies and are often considered “contaminants” [61].
However, recent thorough sequential biochemical frac-
tionations of E. coli, combined with mass spectrometry,
demonstrated that many of these proteins, including
Obg, form an actual peripheral inner membrane prote-
ome linked via functional and/or structural oligomeric
complexes [62].
Next, we addressed whether ObgGC cofractionates with

the ribosomes by ultracentrifugation of GC cell lysates
through sucrose gradients and analysis of the polyribo-
somes profiles. Most of the cellular proteins accumulated
at the top of the gradient followed by the peaks for small
and large ribosomal subunits, the 70S monosomes, and
the polyribosomes (Fig. 6b). Immunoblotting analysis with
anti-ObgGC antisera showed that under these conditions,
the greatest amounts of ObgGC were in 50S fractions and
at the top of the gradient.
Based on these results, we conclude that ObgGC is

largely localized to the cytosol and primarily associates
with the 50S ribosomal particle and not with the 70S
monosomes or with translating ribosomes. Association of
a part of the ObgGC cellular pool with the cytoplasmic
membrane may have functional implications, as Obg has
been shown to be involved in key cellular processes such
as ribosome maturation, DNA synthesis, cell division and
morphology. Obg could be recruited to the membrane-
bound complexes on demand, depending on the metabolic
status of the bacterial cell.

ObgGC is expressed by contemporary clinical isolates of
GC
Finally, the conservation of the predicted amino acid se-
quence of ObgGC was assessed using the completed
genome sequences of strains FA1090 (Gen Bank acces-
sion number AE004969) and NCCP11945 (Gen Bank
accession number CP001050), as well as the draft gen-
ome sequences of 14 different GC strains (downloaded
from the Broad Institute website http://www.broadinsti-
tute.org/annotation/genome/neisseria_gonorrhoeae/Mul-
tiHome.html). These analyses demonstrated that ObgGC

is 100 % identical among 14 strains and has a single
amino acid change in the GC isolates designated as
DGI2 and PID18 (Additional file 3: Figure S3).

http://www.broadinstitute.org/annotation/genome/neisseria_gonorrhoeae/MultiHome.html
http://www.broadinstitute.org/annotation/genome/neisseria_gonorrhoeae/MultiHome.html
http://www.broadinstitute.org/annotation/genome/neisseria_gonorrhoeae/MultiHome.html
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Subsequently, to examine expression of ObgGC, a diver-
sified panel of GC isolates was utilized. This panel
included common laboratory strains MS11, F62, and 1291,
as well as 32 strains isolated from different gonorrhea pa-
tients from distinct geographical areas and at different
time points. The anti-ObgGC antibodies detected a band
of the same size in all examined GC isolates, albeit the
level of expression varied between some strains (Fig. 7).
Conclusions
Targeting essential proteins and critical cellular pro-
cesses that are widely conserved remains an attractive
avenue in antibacterial drug discovery programs. Com-
pounds interfering with ribosome function and biogen-
esis and thus inhibiting different aspects of protein
synthesis are among the most clinically useful antibiotics
in spite of evolutionary conservation of bacterial and
mitochondrial ribosomes [63].
Here, we show for the first time that ObgGC is a GTPase

essential for GC viability, mainly associated with the 50S
large ribosomal subunit, abundant during different growth
phases as well as under environmental conditions relevant
to infection, and conserved in GC isolates. Together, these
findings underscore the potential of ObgGC as a target for
the development of therapeutics against gonorrhea.
Methods
Bacterial strains, plasmids, and growth conditions
Strain of GC FA1090 [64] was primarily used in this study.
Additionally, we employed: MS11 [65], 1291 [66], F62
[67], FA19 [68], isolates LGB1, LG14, LG20, and LG26
collected from two public health clinics in Baltimore be-
tween the years 1991–1994 [58], 13 strains derived from
different patients seen at the Public Health–Seattle & King
County STD clinic in 2011–2013 (Wierzbicki, et al.,
manuscript in preparation), as well as 14 WHO reference
strains [69, 70]. Clinical isolates were kindly provided by
Olusegun O. Soge, and King K. Holmes (Departments of
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GC was maintained on GCB Medium Base agar plates

with Kellogg’s supplements in 5 % CO2 atm at 37 °C or in
GCBL Medium Base Broth containing Kellogg’s supple-
ments and sodium bicarbonate (at a final concentration of
0.042 %) at 37 °C [48, 71, 72]. To achieve iron limited con-
ditions, GCB without ferric nitrate in Kellogg’s Supple-
ments and with deferoxamine mesylate salt (Desferal,
Sigma) at 5 μM final concentration was utilized [73]. In
addition, when stated in the text, GCB supplemented with
7.5 % normal human serum [74] was used to grow GC.
The E. coli strain NEB5α was used for genetic manipula-

tions. Bacteria were streaked from −80 °C on Luria-Bertani
(LB) agar supplemented with kanamycin (50 μg/mL) when
needed. E. coli strains were cultured in LB medium at 37 °
C. All media utilized in this study were purchased from
Difco.
Construction of recombinant wild type and mutated
versions of ObgGC
All oligonucleotide primers designed and used in this
study were synthesized by IDT DNA Technologies. Rele-
vant restriction sites within primers are underlined.
Recombinant N-His-ObgGC and C-His-ObgGC were gen-
erated by amplifying the obg gene from genomic DNA
using two pairs of primers, respectively: obg-f 5’GAATTC
CATATGAAATTCATCGACGAAGCAAAA3’ and obg-r
5’GAATTCAAGCTTTTACTCCGGCTTAAACACG3’; as
well as obg-c-f 5’GACTCCATGGAATTCATCGACGAA
GCAAAAATCG3’ and obg-c-r 5’GACTAAGCTTCTCC
GGCTTAAACACGCC3’. The corresponding PCR prod-
ucts were digested with NdeI-HindIII or NcoI-HindIII
(respectively) and cloned into similarly digested pET28a(+)
to create plasmids pET-N-His-ObgGC and pET-C-His-
ObgGC. Mutagenesis of T192 and T193 residues into
alanine were accomplished using the QuickChange II
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site directed mutagenesis kit (Agilent). Mutations were
introduced using oligonucleotides: T192AT193A-f 5’G
TTCGGATGCAGGGCGGCGAAGGGGTAGTTGG3’
and T192AT193A-r 5’CCAACTACCCCTTCGCCGCC
CTGCATCCGAAC3’, and pET-N-His-ObgGC as the
DNA template. The presence of the desired mutations
was confirmed by sequencing at the Center for Genome
Research and Biocomputing at Oregon State University.

Protein purification
The E. coli BL21(DE3) was used as a host for expression
of all ObgGC variants. Bacteria harboring N-His-ObgGC,
C-His-ObgGC, or T192AT193A were cultured in LB at
37 °C until the cultures reached OD600 of ~ 0.5, and the
expression of individual ObgGC variants was induced by
the addition of IPTG to a final concentration of 1 mM.
Cells were pelleted 3 h after induction and resuspended
in lysis buffer (20 mM Tris–HCl pH 8.0, 10 mM imid-
azole, 450 mM NaCl). The cell lysis was carried out by
passing the suspension five times through a French pres-
sure cell press at 12,000 psi. Bacterial debris was removed
by centrifugation and the clarified crude cell extracts were
loaded onto HisPur Cobalt Resin (Thermo) equilibrated
with lysis buffer. Columns were subsequently washed with
solution containing 20 mM Tris–HCl pH 8.0, 20 mM
imidazole, and 450 mM NaCl. Proteins were eluted with
the same buffer containing 250 mM imidazole. The eluate
was dialyzed two times for an hour and overnight against
20 mM Tris–HCl pH 8.0. The purified proteins were con-
centrated using Microsep Advance Centrifugal Devices
with 10 K molecular cutoff (PALL). Protein concentrations
were determined using the Bradford method with a Pro-
tein Assay Kit (BioRad). Glycerol was added to purified
proteins to a final concentration of 10 % and proteins were
stored at −80 ° C until further use.

Polyclonal rabbit anti-ObgGC antisera
The polyclonal anti-ObgGC antibodies were prepared by
Pacific Immunology (Ramona, CA, USA) using the puri-
fied N-His-ObgGC, two New Zealand White rabbits, and
a 13-week antibody production protocol approved by
IACUC Animal Protocol #1, in a certified animal facility
(USDA 93-R-283) and the NIH Animal Welfare Assur-
ance Program (#A4182-01).

Biochemical assays
The binding and hydrolysis of guanidine nucleotides were
executed as described [26]. All fluorescence measurements
were performed at 37 °C using a Synergy HT plate reader
(BioTek). To determine the concentration of Mg2+ re-
quired for binding of mant-GTP or mant-GDP (Life Tech-
nologies), N-His-ObgGC (2 μM) was incubated with either
mant nucleotide (0.3 μM) and increasing concentrations
of Mg2+ (from 0 to 10 mM) in binding buffer B containing
50 mM Tris–HCl pH 8.0, 50 mM KCl, 2 mM dithiothrei-
tol, 10 μM ATP, and 10 % (wt/vol) glycerol. The experi-
ments were repeated on three separate occasions and the
data is presented as the percentage of maximal measured
relative fluorescence units.
The ability to form GTP-and GDP-Obg complexes was

studied using 0.3 μM mant-GTP or mant-GDP analogs in
binding buffer B with or without 5 mM Mg2+, respectively,
and 2 μM purified ObgGC protein (N-His-ObgGC,
T192AT193A, or C-His-ObgGC). These studies were car-
ried out with at least eight biological replicates, and means
with corresponding standard error of the mean (SEM) are
reported.
To assess the GTP hydrolysis rate of ObgGC, N-His-

ObgGC or C-His-ObgGC (16 μM) was prebound to 0.3 μM
mant-GTP in binding buffer B supplemented with 5 mM
MgCl2. The decrease in fluorescence associated with
conversion of mant-GTP-Obg complexes into mant-GDP-
Obg was recorded in 1 min intervals for 3 h. Data were
fitted to a single exponential decay equation using Graph-
Pad Prism 6.0f (Graph Pad Software). The single turnover
rate constant and the half-life of hydrolysis were obtained
from at least four independent experiments.

Construction of conditional obgGC mutant strain
The conditional obgGC mutant strain, FA1090 Plac::obgGC,
was constructed using a similar approach as we previously
described [58]. Briefly, a gene encoding the Obg homolog
in GC, ObgGC (NGO1990), including an upstream region
containing its indigenous ribosome-binding site (16 bp)
was amplified with primers 5’CAAACAAGAGCATTT
AATG3' and 5'AAGTTGGGCCGGCCTTACTCCGGCT
TAAAC3'. To place the obgGC under the control of the
Plac promoter, the resulting 1189 bp PCR product was
digested with FseI and sub-cloned into ScaI-FseI digested
pGGC4. This vector contains an IPTG-inducible pro-
moter, which enables the controlled expression of a cloned
gene [75]. The upstream region of obgGC was amplified
with primers 5'ACTAGTGAATTCGCCTTGCTGTCGC
TTTG3' and 5'ATCGATGGTACCTTGGTTTTAAATAG
GGTTTCAGGC3'. The obtained 531 bp product was
digested with EcoRI and KpnI, and cloned into pUC18K
[76], yielding the pUC18K-obgGC-up. Next, the DNA frag-
ment containing lacI repressor gene, Plac promoter and
obgGC gene carried on the pGCC4 was amplified with
primers 5'ACTCAATAGGATCCTCACTGCCCGCTTTC
CAG3' and 5'CATAAGCAGTCGACTTCAGACGGCG-
GAGACGGCGGTAATCAGG3'. The PCR product was
purified, digested with BamHI-SalI and cloned into
pUC18K [76], generating pUC18K-Plac::obgGC. This final
construct encompassing nonpolar kanamycin resistance
cassette apha-3 [76] flanked by homologous regions for re-
combination and allelic exchange was used to introduce
the mutation onto the FA1090 chromosome. The plasmid
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was linearized by digestion with NdeI and piliated bacteria
were transformed with 0.1 μg of plasmid DNA in liquid
media as described [77] with the exception that the growth
media were supplemented with 100 μM IPTG. The result-
ing GC transformants were selected on GCB agar contain-
ing 40 μg/mL kanamycin and 100 μM IPTG. The FA1090
Plac::obgGC clones were verified by PCR with primers
5’GCCTTGCTGTCGCTTTG3' and 5’ GGAGACGGCGG
TAATCAGG3' and immunoblotting analysis with anti-
ObgGC antibodies.

ObgGC depletion studies
To assess the consequence of ObgGC depletion on GC
viability, the GC FA1090 Plac::obgGC strain was plated
from freezer stocks onto GCB supplemented with
100 μM IPTG. The following day, single nonpiliated
colonies were passaged onto fresh GCB plates contain-
ing 100 μM IPTG and incubated approximately 18 h in
5 % CO2 atm at 37 °C. The bacteria were swabbed from
plates, suspended in GCBL to OD600 of 0.1, and washed
two times with GCBL that was pre-warmed to 37 °C to
ensure removal of IPTG. Equal amounts of bacterial
suspensions were divided into two flasks and cultured
aerobically with and without 100 μM IPTG for 3 h at
37 °C. Subsequently, the cultures were diluted to OD600

of 0.1 into fresh GCBL with and without 100 μM IPTG.
For measurements of OD600, bacterial viability (CFUs),
and immunoblotting analysis, samples were withdrawn
every hour and processed as described [58]. Experiments
were performed in biological triplicates and mean values
with corresponding SEM are presented.

Subcellular fractionation
Non-piliated and translucent GC colonies of wild type
FA1090 were swabbed from solid media, suspended in
500 mL of GCBL to OD600 of 0.1 and cultured at 37 °C
with aeration (220 rpm) to OD600 of 0.6 - 0.8. Cells were
harvested by centrifugation (20 min, 6000 × g) and the
crude cell envelope fraction was separated from the
cytosolic proteins using a sodium carbonate extraction
procedure and subsequent ultracentrifugation steps [58].
The inner membrane proteins were solubilized using 2 %
Sarkosyl in 20 mM Tris–HCl pH 7.5 according to the
method described by Leuzzi et al. [59]. The Sarkosyl-
insoluble outer membrane fractions were recovered by
ultracentrifugation for 1 h at 100,000 × g and 4 °C. The
pellet was suspended in PBS containing 1 % SDS. The
total protein amount in each isolated subproteome frac-
tion was assessed using a Protein Assay Kit (Bio Rad).

Preparation of GC cell lysates for ribosome profiles
Wild type FA1090 bacteria were incubated in GCBL
medium until the mid logarithmic phase of growth
(OD600 ~ 0.5 to 0.7). Chloramphenicol was added to a final
concentration of 100 μg/mL one minute before harvesting.
Cells were harvested at 4,000 × g for 10 min at 4 °C and
immediately frozen at −80 °C. After thawing on ice, bac-
teria were resuspended in 1 mL of lysis buffer comprised
of 10 mM Tris–HCl pH 7.5, 10 mM MgCl2, 30 mM
NH4Cl, 100 μg/mL chloramphenicol [78]. Subsequently,
an equal volume of glass beads (100 μm; Electron Micros-
copy Sciences) was added to the solution and bacterial
cells were lysed by vortexing every minute for 10 min with
a 1 min cooling interval on ice. Lysates were clarified by
centrifugation for 15 min at 21,000 × g and 4 °C.

Polyribosome fractionation
The isolated GC cell lysates in amounts corresponding
to 15 OD260 units were overlaid on top of a 10 to 47 %
step sucrose gradient as described previously [79]. Ribo-
somal subunits were separated by centrifugation in a
Beckman SW41 rotor at 174,000 × g for 4 h and 4 ° C.
Separated ribosomal subunits were fractionated using an
Econo Pump and Econo UV Monitor (Bio-Rad). UV
traces were recordered using a Model 1325 Econo
Recorder (Bio-Rad) and 500 μL fractions were collected.
Protein samples were precipitated with 15 % trichloroacetic
acid. The resulting precipitates were solubilized in SDS
loading buffer, and after separation in 10-20 % Criterion
Tris-Tricine TGX (BioRad) acrylamide gel, all collected
fractions were subjected to immunoblotting with anti-
ObgGC antisera as described below.

SDS-PAGE and immunoblotting
Whole cell lysates were obtained from GC grown in
GCBL with aeration and on GCB plates maintained under
growth conditions as stated in the text. When bacterial
colonies reached approximately the same size, all strains
were harvested, suspended in pre-warmed GCBL, and the
cell density was examined by OD600 measurement. Frac-
tions containing either cytoplasmic, inner- or outer- mem-
brane proteins (15 μg of proteins loaded per lane),
ribosomal particles, or whole cell lysates matched by
equivalent OD600 units, were prepared in SDS sample buf-
fer in the presence of 50 mM dithiotreitol and separated
in either 10-20 % Criterion Tris-Tricine TGX (BioRad) or
4-20 % Mini-PROTEAN TGX precast gels (Bio-Rad). The
proteins were transferred onto 0.2 μm nitrocellulose mem-
brane (Bio-Rad) using a Trans-blot Turbo (Bio-Rad). A
solution of 5 % milk in phosphate buffered saline pH 7.0
(PBS, Li-Core) supplemented with 0.1 % Tween 20 (PBST)
was used for blocking. Following 1 h of incubation, poly-
clonal rabbit antisera against ObgGC (1:5,000), polyclonal
anti-AniA antibodies (1:10,000; [58]),monoclonal mouse
anti-MtrE antisera (1:10,000; a gift of Ann Jerse, Uni-
formed Services University, Bethesda), monoclonal mouse
anti-Ng-MIP antibodies (1:10,000; a gift of Mariagrazia
Pizza, Novartis Vaccines, Italy), or polyclonal rabbit anti-
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TbpB antisera (1:1,000; a gift of Cynthia Cornelissen,
Virginia Commonwealth University, Richmond) diluted in
PBST as indicated in parenthesis were added to the
membranes. The horseradish peroxidase conjugate of
goat anti-rabbit IgG antisera (BioRad) or goat anti-
mouse IgG antibody (ThermoFisher Scientific), corres-
pondingly, were utilized as secondary antibodies at
1:10,000 dilution. The reactions were developed using
Clarity Western ECL-Substrate (BioRad) and a Chemi-
DocTM MP System (BioRad) was used for western blot
imaging.

Densitometry
The immunoblot probed with anti-ObgGC antisera was
scanned using the ChemiDocTM system (BioRad) and sub-
jected to densitometric analysis using Image LabTM 5.0
software (BioRad). To quantify the intensity of the ObgGC
protein bands, the volume tool (rectangle), local back-
ground subtraction, and linear regression were used.

Statistical analyses
Statistical analyses were conducted using GraphPad
Prism 6.0f (Graph Pad Software) and an unpaired Stu-
dent’s t-test was used to analyze the data.

Availability of supporting data
The data supporting the results of this article are included
within its Additional files 1, 2 and 3: Figures S1-S3.

Additional files

Additional file 1: Figure S1. Sequence alignment of Obg from N.
gonorrhoeae and N. meningitidis with characterized members of Obg
subfamily from various bacterial species. Identical residues are indicated by
a star (*); G motifs (from G1 to G5) are underlined. Accession numbers of
compared Obg homologs are as follows: M. tuberculosis (Mt) (CCE37910), S.
coelicolor (Sc) (BAA13498), D. radiodurans (Dr) (NP_293810), T. thermophilus
(Tt) (YP_145047), B. subtilis (Bs) (AAA22505), C. crescentus (Cc) (NP_419134), N.
gonorrhoeae (Ng) (YP_209010), N. meningitidis (Nm) (NP_275074), E. coli (Ec)
(NP_417650), V. cholerae (Vc) (NP_230091).

Additional file 2: Figure S2. Loading controls for immunoblotting
experiments. Samples of whole-cell lysates were prepared for SDS-PAGE
as described in the text, separated in precast gradient gels and the protein
profiles were visualized using colloidal coomassie. Loaded OD600 units in
individual experiments matched the corresponding samples used in
immunoblotting analyses and are indicated below each gel. (A) Loading
controls for immunoblotting experiment presented in Figure 2 A. (B)
Loading controls for immunoblotting analysis shown in Figure 2 B.
(C) Loading controls for experiment shown in Figure 5 B. (D) Loading
controls for experiment in Figure 5 D for whole-cell lysates probed with
anti-Obg and anti-TbpB antisera. (D) Loading controls for immunoblotting
experiment with anti-AniA antisera presented in Figure 5 D.

Additional file 3: Figure S3. Comparison of predicted amino acid
sequences of ObgGC between different GC isolates.
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