
Running Control Engineering Experiments Over the Internet

Carisa Bohus Bur�cin Aktan� Molly H. Shory Lawrence A. Crowl

Department of Computer Science

Oregon State University
Corvallis, Oregon 97331-3202

Technical Report 95-60-07

August 1995

Abstract

An important issue in engineering education is the availability of laboratory resources for student
use. Using a computer network to link geographically distant students with laboratory teaching
resources makes expensive and innovative equipment available to more students. At Oregon State
University, we provide a working environment where remotely-located students can develop and
run controllers on experiments in our control engineering laboratory. Remote users can watch the
experiment in real time from a remote workstation, hear the sounds in the laboratory, and interact
with other laboratory users. Remote power control, network reliability, and safety features are
integrated into our experimental hardware and software design.

Key Words: control engineering education, remote control, distance learning, Internet.

This work was supported in part by Oregon Joint Graduate Schools of Engineering under NASA Grant NAGW-

3965 and in part by the National Science Foundation under Grant DUE-9352734
�Department of Electrical and Computer Engineering
yDepartment of Electrical and Computer Engineering, Phone: 503-737-3168, Fax: 503-737-1300, E-mail:

shor@ece.orst.edu

1 Introduction

Practical experience is a very important part of control engineering education, but it is resource
intensive. Innovative control experiments can take time, money, and energy to design and to
construct, and are often not fully utilized throughout the academic year. Sharing experiments
remotely enables greater use of unique laboratory equipment, brings down the experiment cost
per student, and makes more experiments available. Our goal with the remote lab paradigm is to
provide remote access as e�ective as local access.

Control engineering instruction should combine theory and practice in each lesson. Students
must be able to model systems adequately in order to develop controllers that enforce certain
performance requirements. After a controller is designed and simulated on the model, observing
the dynamics of a physical implementation gives the student valuable insight. Data collection and
visual feedback are important aspects in control engineering instruction for the modeling, system
identi�cation, and testing stages. In the past, students had to be in the laboratory to gain practical
experience; now they can be anywhere.

Distance learning is an emerging new paradigm where students, teachers, and equipment may
be in geographically di�erent locations. Second Best to Being There (SBBT) is a network appli-
cation combining new and existing software and hardware to provide remote laboratory users the
opportunity to conduct live experiments o�-site. For SBBT, the Internet provides the communi-
cation infrastructure between students and the experiments (see Figure 1). This may be the �rst
time an undergraduate laboratory has been made fully accessible using computer networking tools.

In the next section we discuss related work. Section 3 details the remote lab paradigm, and
describes the trade-o�s we made in our implementation. Section 4 provides an overview of the
hardware. Finally, we conclude with the main lessons from taking our design to implementation.

SBBT Client SBBT Server Controller

SBBT Client

SBBT Client

The Internet Cloud Robot

The Experiment

OSU Campus

Figure 1: Internetworking Context for the SBBT Application. SBBT is a
client/server application that enables distantly located students to control experiments
on the Oregon State University campus.

2 Related Work

Three distinct areas of research stand in contrast to SBBT. They are telerobotic systems, virtual
reality or simulation systems, and large multi-location process control automations. SBBT does

1

Figure 2: The Remote Lab User Interface for SBBT. This is the display the
remote student will use to conduct experiments. Clockwise from the top left corner:
(1) video window of the control experiment, a 3-DoF robot arm, (2) collaboration tool
showing a block diagram and some discussion, (3) an Xterminal window representing
the local development environment, (4) the lab environment control window with the
panic stop button and (5) the audio con�guration window.

not duplicate these important application areas; it gives students exposure to equipment they lack
at their own site.

Telerobotics share some characteristics with SBBT; both operate over long distances, and both
work with moving systems. But, telerobotics, where remote movement is generated by intentional
force by the operator, is fundamentally di�erent since it has an human operator directing the
remote actions. For example, Lee and Lee [7], describe a real-time telerobotic system that was
designed for use in outer space repair missions. The teleoperator uses force on a sensory device
(e.g., a mouse or joystick) to direct the actions of a robot arm at the remote station. Another
example of telerobotic systems are available on the World-Wide Web. These applications enable
the distant user to move robot arms which tend a garden [11], or move blocks on a table [12, 10].
Again, the user clicks on a schematic, or still picture to move the robots, thus directing the action.
In contrast to telerobotic systems, our system provides an environment for experimentation with

2

control code, which is downloaded to the equipment and then run on the equipment itself. That is,
instead of transmitting control signals, the remote student transmits control programs which are
run, enabling the equipment to handle tasks autonomously.

Robotic systems are being developed to accomplish increasingly complex tasks. Appropriate
training on complicated equipment is critical. Miner and Stans�eld [9], describe a method to
ful�ll these training requirements. They designed a virtual reality robotic control system to train
operators more e�ciently in real-time operation. Virtual reality can be thought of as an interactive
user interface to a simulation system. Simulation provides a cost-e�ective way to learn systems that
are expensive or potentially dangerous to sta� with inexperienced personnel. However, simulation
means working in a closed universe, which omits some physical realities. There will always be an
important place for simulation systems, but they cannot completely substitute for experience with
actual systems.

Researchers [3, 6], from �ve institutions have developed a factory automation testbed for dis-
tributed telerobotics research. The �ve sites, which are connected by the Internet, provide an
experimental environment for standardizing device interfaces, testing protocols, distributing tasks,
developing user interfaces, and supporting collaborations. SBBT, in contrast, is designed to provide
a more intimate setting, where one student can design and carry out an experiment entirely on his
or her own. The emphasis in our design is to focus the remote user's attention on the experiment,
not on the system that supports the experiment.

Several distance learning projects-in-process are noted in appendix A.

3 Paradigm and Application

Imagine a control engineering student, developing a controller for a 3-DoF (Degree of Freedom)
robot arm. Her school doesn't have a robot arm, but a university 85 miles away does. She sits in
front of a computer screen and downloads her code to the distant university robot arm experiment
over the network. As soon as the control code is compiled, linked and loaded, she can watch her
code run on the robot, in real-time. She observes that the controller performance does not meet
her design goals, modi�es her controller code and runs it again, repeating this until she is satis�ed.
She is working in a remote laboratory using a new paradigm.

The remote lab paradigm is based on a software user interface and a hardware con�guration.
In this section, we describe our approach and implementation of the user interface; the hardware
con�guration is discussed in Section 4. There are �ve main functional parts (components) to the
user interface: (1) the experiment, (2) lab environment control, (3) lab presence, (4) collabora-
tion, and (5) safety. We developed an open architecture for the overall system, with a variety of
implementation choices for each component, balancing costs and functionality needs.

3.1 The Control Engineering Experiment

This component is basically unchanged from what it would be conventionally. Common experiments
in our lab are x-y positioning tables, robot arms, DC motor control, and magnetic suspension
systems. Criteria to consider when selecting an experiment for remote use fall into three categories:
economics, logistics, and appearance.

3

If substantial time, human, or �nancial resources have been dedicated to design and build
an experiment, it is a worthy candidate to make available to remote students. The cost of simply
replicating an experiment should be compared to the e�ort and expense of installing SBBT, keeping
in mind that most SBBT costs occur only once, while replication costs scale. If replicas cost more
than SBBT, it makes sense to use SBBT.

The logistic considerations, which can be automatic or manual, are (1) remote power control,
(2) safety for people and property in the lab, (3) ability to run without human intervention, (4)
a stable start position, (5) at least one reset position,1 and (6) the ability to download control
code. The importance of �nding the proper solution to each of these concerns should not be
underestimated. Although time-consuming, representational views from students, professors, and
supporting technicians are critical to a successful experiment. At each stage, from design to imple-
mentation, all procedures and interfaces should be reviewed. These evaluations serve not only to
verify understanding, but also to provide informal training.

Regardless of the type of system the controller runs on (e.g., personal computer, real-time
operating system on a workstation, DSP board, or embedded controller), the ability to download
the experimental control code from the remote site is mandatory.

If video equipment is available, consider what visual information the experiment will o�er to
the remote user. From watching the experiment, will the student get a good grasp of the overall
behavior? For a robot experiment this is obvious, in the case of a DC motor, perhaps alterations
such as notches on the rotor, will give additional information. In general, any experiment that
has movement is a candidate. Other appearance criteria, mostly for demonstration purposes, is
whether the equipment is unique or interesting to watch.

We had three candidate experiments to test the feasibility of SBBT: an inverted pendulum, an x-
y table, and a robot arm. We ruled out the pendulum experiment because it required modi�cations
for the reset operation (a separate set of arms that would close and set the pendulum upright).
Because the pendulum and the x-y table were in active use by other students, we anticipated
contention for their use, which would have made development di�cult. We chose the 3-DoF robot
arm. It was a good �rst choice since it contained no loose pieces, was easily reset, and would
provide visually interesting demonstrations. In all cases, we could download control code to each
of the experiments, the mandatory logistic condition.

3.2 Lab Environment Control

Since the student is not in the room where the experiment is located, this component carries out
the functions students normally perform themselves in person, such as resetting the apparatus.
In e�ect, this piece replaces the student in the lab. The main functions required for permitting
remote operation and control of an experiment are (1) controlling the power to the experiment,
(2) resetting the experiment, (3) downloading control code, (4) collecting data during experimental
runs,(5) determining equipment status, and (6) interrupting normal operation. These tasks are so
general that every experiment requires them; additional functions are necessary only to speci�c
experiments. We present a table of the fundamental operations in Appendix B.

1The reset position may be the same as the start position.

4

During the design of this component we maintained a list of every possible feature a student
might �nd useful. We ranked the items to determine a minimal but complete environment. By
tracking every idea we were able to stay focused on the minimal set knowing all ideas were captured
and could be reevaluated and implemented in a future version.

We implemented this component as a client/server network application. The user interface was
implemented as an X11 window, with buttons to click on, rather than using command line directives
(see Figure 2, Part 4). This user-interface method keeps command details that may change or be
mistyped out of the user's way. We wanted to emphasize ease in conducting the control engineering
experiment and not burden students with learning a new system.

3.3 Lab Presence

Real systems with moving parts are exciting to work with. Being remotely connected, trust needs
to be established that student initiated actions are indeed being relayed to the distant site. Some
feeling of the lab environment must be communicated to the student. Of the �ve basic senses, sight
and sound can be transmitted over computer networks easily.

SBBT strives to give users a genuine sense of actually being in the lab. Real-time video over the
network was an early candidate for giving remote users live information as their experiment runs.
We also evaluated a network audio tool. Video and audio tools are often bandwidth-intensive, which
the existing network may not tolerate gracefully. Depending on the experiment, text feedback may
be a low-cost alternative to video. We chose the network tools for video and audio (vic [8], and vat

[4], respectively) developed at LBL (Lawrence Berkeley Laboratories), based on their con�gurability
to conserve bandwidth and their contribution as a window into the lab (see Figure 2, Parts 1 and
5).

3.4 Collaboration Support Tools

Anecdotal evidence shows that students working in the same space exchange a lot of information.
Distance learning nearly guarantees that students will not be sharing the same space. Without
explicit support for communication with others, the sense of isolation is real. Not only must the
communication tools exist, but there needs to be a reason to use them.

One solution to help remote students get acquainted with each other was to establish a social

protocol for scheduling the equipment, rather than relying on a computer program to arbitrate access
to the SBBT system and experiment. Turning over the use of a class experiment is a very natural
crossroad where two students must essentially meet and negotiate. From this exchange, ideally
students will linger and talk about their �ndings, help each other, and form collegial relationships.

To support collaboration, we used a tool called wb (whiteboard) [5], also developed at LBL.
This tool is a piece of the CRT screen shared among all the participants, which receives text and
drawings simultaneously at all locations connected to the SBBT session (see Figure 2, Part 2).
Other options for collaboration are additional video cameras, email, and the UNIX program talk.
Making as many collaboration tools available as possible allows the users to develop their own
interactive environment.

5

3.5 Safety

Overall, the system needs to be safe. Not only do people and property in the lab need to be
protected from unanticipated experiment movement, but in the case of any mishap the student will
not be there to supervise. On the other hand, people learn from the natural process of making
mistakes. An instructional laboratory must allow a range of errors and still be a safe environment.

We surveyed professors, technicians and students, both at our university and others, for their
experience with e�ective laboratory safety. Using this information, we identi�ed safety procedures
and mechanisms to ensure that students and equipment in the lab would be protected. Some
hazards are di�cult to communicate to a remote user. The smell of wires burning, for example,
is quite distinctive, and yet it is not the kind of information easily transmitted to a remote user
over the Internet. Other mechanisms should be installed and monitored for speci�c hazards. See
Appendix C for a compilation of hazard analysis for engineering teaching laboratories.

We established fail-safe mechanisms in three areas of operation: (1) automatic mechanical
controls, (2) SBBT system control, and (3) student control. These measures combine to create a
comprehensive safety barrier.

On an automatic mechanical level, we out�tted the lab with safety mats to protect those working
in it. If the motors are on, indicating the experiment is live, any pressure on the mats automatically
shuts o� the motors moving the robot arm. Alarms warn local users when the power to the motors
is being turned on.

Next, the SBBT system maintains a constant heartbeat signal. The SBBT session server sends
a signal to the client program running at the remote site. The client acknowledges this special
heartbeat signal by sending it back. If too many heartbeats are missed, indicating a loss of network
connectivity or an excessive delay in the network, the power to the experiment is automatically
turned o�.

The third safety measure is under user control. The remote student, seeing trouble, can stop
the experiment immediately by clicking on their screen's virtual panic stop button (see Figure 2,
Part 4). There is also a physical stop button in the laboratory on the experimental apparatus.

4 Hardware Con�guration

The basic control engineering experiment consists of the controller and the system being controlled.
To make the experiment accessible to a remote student, another level of equipment control was in-
troduced, consisting of a Motor Control Interface (MCI) and UNIX workstation. The MCI provides
remote power control and enables the implementation of safety features. The workstation supports
network video and audio and connects the controller and the MCI to the Internet (see Figure 3).
Our hardware con�guration enables overall connectivity and comprehensive safety features.

4.1 Motor Control Interface (MCI)

The custom-built MCI handles all of the safety features through basic power access. The MCI
receives orders from the workstation using its own serial line. The MCI relays on/o� directives
to the experiment's power supplies. The robot motor power on/o� functions are used by normal

6

386 PC

(vector)

Robot Arm
(eric)

MCI Safety Mat

ATM Ethernet

Sun SPARC 5

 (jedi)

Microphone

Camera

Figure 3: SBBT Hardware Con�guration. The inset box shows the conventional hardware
setup for a control engineering experiment. Outside this box, the workstation is used for remote
connectivity and the custom-made Motion Control Interface box for power control.

start and stop, by the local and remote panic stop button, by the safety mats, and by the system
heartbeat. The PC power on/o� is used to reboot the PC. The MCI makes it possible to have the
robot available 24 hours a day, since it provides the ability to turn the equipment on and o�.

4.2 Workstation to PC Communications

Dependable communications between the workstation and PC are mandatory. All the source code
and data communications occur via this link. The communication is implemented through a full
duplex, RS232 serial connection. Tasks are performed by shell scripts on the workstation and
corresponding batch �les on the PC. By implementing these directives at the operating system
level, we gained
exibility and portability. These communications are transparent to the user, who
can observe the e�ect of his or her controller by video and audio feedback and data returned from
the PC.

5 Conclusion

We learned several lessons developing the remote lab paradigm:

� Audio and video are valuable. They entice use, support collaboration, and give the remote
user the feeling of being in the laboratory.

� All software tools under consideration should be evaluated thoroughly for their operational
details. We spent some time making e�cient con�guration choices to accommodate the high-
bandwidth tools such as audio and video.

7

� Safety features are not only necessary but may also permit other remote functionality. For
example, the MCI supports remote power control and initialization of controller devices.

� An open architecture helps both in porting the system to new environments and new exper-
iments, and also allows rapid prototyping. For example, we used shell scripts to implement
the user directives. As a result, incorporating new commands became trivial.

� Collaboration can be encouraged. We made the controversial choice to rely on a social protocol
for experiment scheduling, giving students the opportunity to interact.

� Make as many communication tools available as possibile. More collaboration tool choices lets
students create e�ective environments to learn from each other. In a developing paradigm,
we felt it would be wiser to o�er more choices than to have a regimented approach.

� Working with a multi-disciplinary team provides many valuable perspectives during the archi-
tecture review, as well as promoting the development of a common vocabulary. Our system
was developed by computer scientists, electrical engineers, and control engineers, with input
from mechanical and industrial engineers. Representation of technical support, students, and
professors from complementary �elds provides a basis for a system that everyone will enjoy
using.

SBBT is an educational motivator to master all the necessary steps from application of ap-
propriate theory to design, since it is fun to use. We developed a paradigm for remote lab use
and demonstrated the feasibility through an implementation. Although we concentrated on one
experiment, the remote lab paradigm clearly applies to a wide range of experiments. The remote
lab paradigm provides access to equipment otherwise out of reach.

Acknowledgement

We wish to thank Juliet Hyams for her contributions.

8

References

[1] Announcement in Currents, a publication of the Electrical and Computer Engineering Depart-
ment, Carnegie Mellon University, Spring 1995.

[2] Mike Driscoll. From conversations, GPIB bus project, Spring 1995.

[3] Sean Graves, Larry Ciscon, and J.D. Wise. A modular software system for distributed teler-
obotics. In Proceedings of the 1992 IEEE International Conference on Robotics and Automa-

tion, pages 2783{2785, Nice, France, May 1992.

[4] Van Jacobson and Steve McCanne. vat (Beta release). Available by ftp from ftp.ee.lbl.gov
under conferencing/vat (e-mail contact van@ee.lbl.gov), 1994.

[5] Van Jacobson and Steve McCanne. wb (LBL whiteboard) version 1.59, Beta release. Available
by ftp from ftp.ee.lbl.gov under conferencing/wb (e-mail contact van@ee.lbl.gov), 1994.

[6] George V. Kondraske, Richard A. Volz, Don H. Johnson, Delbert Tesar, Je�rey C. Trinkle, and
Charles R. Price. Network-based infrastructure for distributed remote operations and robotics
research. IEEE Transactions on Robotics and Automation, 9(5):702{704, October 1993.

[7] Sukhan Lee and Hahk Sung Lee. Modeling, design, and evaluation of advanced teleopera-
tor control systems with short time delay. IEEE Transactions on Robotics and Automation,
9(5):607{623, October 1993.

[8] Steve McCanne and Van Jacobson. vic (VIC 2.6 BETA). Available by ftp from ftp.ee.lbl.gov
under conferencing/vic (e-mail contact mccanne@ee.lbl.gov), 1994.

[9] Nadine E. Miner and Sharon A. Stans�eld. An interactive virtual reality simulation system
for robot control and operator training. In Proceedings of the IEEE International Conference

on Robotics and Automation, volume 2, pages 1428{1435, 1994.

[10] Ken Taylor and James Trevelyan. A telerobot on the world wide web. In Proceedings of the

1995 National Conference of the Australian Robot Association, 1995.

[11] The Tele-Garden: A tele-robotic installation on the WWW. On the Web at
http://www.usc.edu/dept/garden, 1995.

[12] Australia's telerobot on the web. On the Web at http://telerobot.mech.uwa.edu.au, 1995.

9

A Related Projects-in-Progress

The Internet provides an environment for many kinds of resource sharing. We would like to ac-
knowledge these works in progress:

Carnegie-Mellon University [1] and Portland State University [2] are developing network accessi-
ble electronics laboratory resources. These remote labs feature GPIB tools for electrical engineering
experiments with no moving parts.

The University of Essex, Department of Electrical Systems Engineering, is in the initial stages
of creating an interactive electronics hardware laboratory for use over the Internet, speci�cally over
over the WWW.

While this list is far from exhaustive, it shows there is con�dence in using the Internet to provide
students with more kinds of learning opportunities.

10

B Lab Environment Control

This table shows the main function names and actions for the SBBT control window.

Main Functions Explanation

sbbt Start up the application for a work session. If the experiment is already in
use, a communication session is set up between the parties so scheduling
can be negotiated.

quit Release all SBBT resources.

stop Immediate shutdown of motors.

reset Put the experiment in a prede�ned, stable state.

download Transfer control code or data to the target controller.

reboot Turn o� power for several seconds to force the PC through a reboot
sequence.

compile Compile and link the control code on the target machine.

run Execute the most recently compiled control code.

getdata Transfer experiment output data to the user.

11

C Hazards Analysis

Through surveys, we have compiled the following list of hazard categories and safety precautions.

Hazards Categories

Hazard Possible Causes

1. Hazard due to stu-
dents learning

The software or controller (hence robot) may not do what
students think has been programmed.

The hardware or software initialization or calibration may be
o�, resulting in unintended robot action.

The gains or controller may be inappropriate, resulting in
instability of the closed-loop system, hence undesirable robot
behavior.

2. Hardware setup in-
complete or incorrect

The hardware connection may be loose, missing, or improp-
erly prepared, resulting in incorrect or noisy signals from or
to robot, resulting in unintended controller or robot action.

The robot may not be left in operable condition by the on-
site users, causing problems in hazard category 1 or rendering
the robot inaccessible to distance users.

3. Observers in the way A person or object may obstruct the robot in the lab, result-
ing in an accident during normal robot action.

4. Environment hazards A person tripping over cables may pull down and damage the
attached equipment.

5. Unsafe experiment
start-up

Someone may turn on power before all switches and mechan-
ical parts are on the safe power-on positions, disrupting safe
power-on sequence.

12

Safety Precautions

Electrical

1. Check all switches for default positions before main power
is turned on.

2. Verify all electrical connections are intact, including cards.
3. Verify that no electrical conducting media (wires, people)

are touching any live wire.
4. Check power-on sequence.
5. Verify startup transients do not damage equipment.

Mechanical

1. Verify no person can obstruct any moving parts.
2. Verify no wires or cables are in the way of human or machine

movement.
3. Verify no piece of equipment can obstruct other equipment.

13

