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Abstract
An important challenge in machine learning is to find ways of learning quickinfrery small
amounts of training data. The only way to learn from small data samples is toaorthe
learning process by exploiting background knowledge. In this repatpresent a theoreti-
cal analysis on the use of constrained logistic regression for estimatiniiooal probability
distribution in Bayesian Networks (BN) by using background knowledggerform of qual-
itative monotonicity statements. Such background knowledge is treated tsfaeastraints
on the parameters of a logistic function during training. Our goal of findiagfipropriate BN
model is two-fold: (a) we want to exploit any monotonic relationship betwaedom vari-
ables that may generally exist as domain knowledge and (b) we want tdeb auldress the
problem of estimating the conditional distribution of a random variable with & latgnber
of parents. We discuss variants of the logistic regression model anehpaas analysis on the
corresponding constraints required to implement monotonicity. More importavelputline
the problem in some of these variants in terms of the number of parametersrstchmts
which, in some cases, can grow exponentially with the number of pareables. To address
this problem, we present two variants of the constrained logistic regressidal, M2, » and
MgLR, in which the number of constraints required to implement monotonicity doesowt g
exponentially with the number of parents hence providing a practicable migthestimating
conditional probabilities with very sparse data.

1 Introduction

Learning quickly from very small amounts of observed dat@nismportant challenge in machine
learning. Such need can be seen in many applications wheratio of the number of obser-
vations to the number of variables is very low, for instanteniodeling the transmission of new
diseasesq.g.,the West Nile Virus) and in understanding the propagatiomesé computer worms.

The only way to learn from small data samples is to constianearning process by exploiting
background knowledge. The key is to identify kinds of backmrd knowledge that are easy for



experts to specify and easy for algorithms to exploit. Oreagxe of such background knowledge
is the causal relationships in a domain, which can be enciodib@ graph structure of a Bayesian
network. While causal relationships help constrain Bayesework learning, they do not always
provide enough constraint. The number of parameters that bmilearned grows exponentially
with the number of parents, and this means that very largaiata@f data are needed.

In this report we focus on one kind of background knowledgmlitative monotonicities, that
is easy to specify and that can help address this problem. afitgtive monotonicity statement
says that one variable increases (or decreases) mondiprasaa function of another variable.
Examples are "warmer temperatures increase the size ofdsguito population” and "the risk of
having elevated blood pressure increases with a persodis tmass index”. The use of qualita-
tive monotonicities in machine learning has been investjan the past by several authors from
different vantage points and incorporating them into thereng algorithm have been found to
be useful [6, 7, 4, 5, 9, 10, 8, 14, 12]. The work that we deschibre focuses on algorithms for
learning from very small amounts of samples constraineduajitative monotonicity knowledge
formalized in terms of first-order stochastic dominance [6

Previous work by Altendorf, Restificar, and Dietterich [2psled significant improvements in
classification accuracy with very small amounts of trairdagga (less thah0 examples) by exploit-
ing qualitative monotonicities. However, when the numbigparentsV increases€.g.,N > 7)
the approach they reported suffers from two distinct disathges. The number of parameters
that need to be estimated and the number of constraints gratiaeneters required to implement
monotonicity both increase exponentially with. The former could lead to underfitting hence
producing models that give oversimplified hypotheses, evttie latter could indirectly impose
practical limits on the size of the problem that can be solwed computer due to huge memory
requirements. We propose to address these limitationsroyulating the problem of exploiting
gualitative monotonicities in Bayesian network paramegariing as a constrained logistic regres-
sion problem. This novel formulation affords us two majovaatages. Parameter estimation can
now be viewed as a regression problem over a set of paranveltbese size only grows linearly
with the number of parents. Moreover, the number of conglsaiequired to exploit qualitative
monotonicity can be shown to only grow linearly with the nienbf parents as well.

Clearly, not all constrained logistic regression modelsrestl the problems outlined above.
This report provides an analysis on the kinds of practicaimdels that can be used. More specifi-
cally, we define and analyze variants of the constrainedtimgiegression model and demonstrate
how qualitative monotonicities can be implemented in theselels. We show that, in general,
some of these models suffer from the need to estimate and anlexponential number of param-
eters and constraints. Finally, we show that there exigiama of the logistic regression model
in which the number of parameters needed to learn the conditprobability distributions in a
Bayesian network as well as the number of constraints redjtirexploit qualitative monotonici-
ties only grow linearly with the number of parents.



Figure 1. F; first-order stochastically dominates another cumulatigalzltion F5.

2 Preliminaries

Given two random variable&” andY’, we shall use the notatiokl Q4+ Y (resp. X Q— Y) to
mean ‘there is a good chance that higher valueX aésult in higher (resp. lower) values bf.
From time to time, we refer t@+ (resp. Q—) as the qualitative influence of onY'. Itis also
convenient to express monotonicity in terms of first-ordeclsastic dominance. If we have two
cumulative distribution functions; andF,, the distributiont; first-order stochastically dominates
F, wheneverF; (y) < F,(y) for any valuey of a random variablé”. If we plot F; and 5, it is
the case thai, will be aboveF; for all values ofy (see Figure 1). The reason wity (the curve
below) ‘dominates’F; (the curve above) is because for all valueg othe probability of getting
at leasty is always greater undéf; than underF;,. Note that in Figure 1F;(y) < Fy(y) and so
1—Fi(y) > 1—Fy(y), thusF; ‘dominates’F5.

Another way to characterize first-order stochastic dongeas through counts obtained from
training examples. Suppose that we are given two randorablesB P, which represents a per-
son’s risk of having elevated blood pressure, @htl/, which represents a person’s body mass
index. Also, assume that from background knowledgeis affected byB M and that both are bi-
nary random variables that can take on one of either valiigsor low. The statement "the risk of
having elevated blood pressure increases with a persodisibass index” translates to an expec-
tation in our observation where the number of people expect@davelow risk of elevated blood
pressure would bgreaterthan those expected to hakgyh risk just in the case wherBM = [ow.
Moreover, the number of people expected to haugh risk of elevated blood pressure would be
greaterthan those expected to halev risk in the other case whereM = high. Figure 2 shows a
typical scenario. It shows the counts (left table) that asmaiated with the conditional probability
table or CPT of a Bayesian network (right table) with a targeiadde B P having a single parent
BM. Note that in the case whereM = low the bulk of the observed counts is on the upper left
cell (100). However, whenBM = high the bulk of the observed counts shifts from the upper left
cell to the lower right cell 105). The corresponding CPT has two conditional probabilityrdia-
tions, one for each rowp,;,, = P(BP|BM = high) and P,,,, = P(BP|BM = low). Recall that
the conditional cumulative distribution can be written/a&)) =>"",_,,, P;(BP=y'| BM =1), for
i = low, high. The idea of first-order stochastic dominance simply stasfor F},,,, to stochas-
tically dominateF,,,,, the conditions in Figure 2 needs to be true,, Fj,,(y) > Frign(y) Yy.
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Counts BP =low BP = high CPT BP =low BP = high
BM =low | 100 10 BM =low |0.91 0.09
BM = high | 15 105 BM = high | 0.125 0.875

Figure 2: Example of a monotonic relationship between ramdariablesBM and B P.

From Figure 2,F,,(low) = 0.91 and Fj;z,(low) = 0.125. In addition, Fj,,,(high) = 1.0 and
Frign(high) = 1.0. Hence, it is clear that the conditional cumulative disttibns satisfy first-
order stochastic dominance. Let us denote first-order astchdominance b¥#SD. Formally,

Definition 1 (First-Order Stochastic Dominance F#SD)) Given two cumulative distributions,
and F,,

FiFSD F, iff Vy Fi(y) < Fy(y) (1)

For a multi-valued parenX, we define monotonicity as satisfying a set of constraintghen
cumulative distributions for any pair of configuratiansz; of X such thate; > ;.

Definition 2 (FSD Monotonicity) Let X and Y be random variables in a Bayesian network
whereY is the child (target) of a single parent variable. Y is FSD monotonic inX if

In the case where the number of parents is more than one wesd€&D monotonicity in the
ceteris paribussense|.e., all other variable assignments being equal. Suppodeas multiple
parentsX;, X,,...,X,. Y is FSD monotonic inX; if and only if Eq. (2) holds when all the
variable assignments fox,, ..., X, 1, X;11, ..., X, are held fixed. The ternsotonicrefers to a
positive monotonic relationshipg., Y increases aX increases, and the teramti-tonicrefers to

a negative monotonic relationshipe., Y decreases a¥ increases. When no confusion will arise
we will use the term monotonic to refer to either relatiopshi

3 Constrained Logistic Regression Models

In this section, we present variants of constrained regnessodels with varying degrees of com-
plexity. Here we hope to show that not all variants and modelsgistic regression are ideally
suited in addressing the problem of estimating conditipnababilities of nodes with a large num-
ber of parents especially in the context of very small tragrset sizes. Such remark is based on the
number of constraints that each model requires to exploftatanicity between random variables.
Figure 3 shows a specific example of the set of constraintdate® implement monotonicity for

a Bayesian network with a ternary targétand a ternary parenY. It is clear that as the number
of parentsN increases the number of configurations and the number oftraamis required to
exploit monotonocity also increase exponentially. Fotanse, without finding a way to reduce
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Constraints :

PY[X)| V=0 V=1 Y=2 0y > 0
X=0 90 93 1—90—(93 9(1) ; 8;

X =1 91 94 1—01—64 —
X=2 | 6, 6 1-0,-0; %0465 2 00 +0s

6+ 0, > 0,405

Figure 3: CPT parameters (left table) for ternary variabte§arent) and” (target). The set of
constraints (right table) that are required to implemenhatonicity betweenX andY'.

the number of parameters, the total number of parameters fited is exponential inv, i.e.,
(IV] = ) TIX, |Xi|. Inthe simplest case, if there anebinary parents of a binary target the set
of constraints can be depicted as a hypercube whose nodpararg configurations and in which
any pair of configurations that differ only in one positiorcanected by an edge. The number of
edges in the hypercube., the number of constraints, i2" 1. We now present a way to reduce
the number of parameters while at the same time respectngtiuired monotonicity constraints.
We propose to estimate the parameters using a more compagseatation, a logistic function.

3.1 Constrained Logistic Regression Model 1K/} ; ;)

In the first model, the conditional probability distributios estimated by using the parents (as
opposed to parent levels) of the target random variablehignnbodel ky (equal to the number of
levels of the target variable) logistic functions are used aormalized exponentiation is applied
to calculate the conditional probability distribution giva parent configuration.

Definition 3 (M}, z) LetY be a child variable wittky levels, ky > 2, in a Bayesian network BN
with parentsXy, ..., X,,. Assume thaty is indexed a9, ..., ky —1. Given some configuration
c={(xy,...,x,), define

exp{foj + B1; X1+ - - + B X0}

P(Y =jle)= == 3)
S0 exp{Boj + Buyp Xa + -+ + By X}
Also, let the following set of constraints hold:
1. Fori=1,...,nandj =0,...,ky—1
Byt = 0 (4)
2. For each pair of configuration, = (x1,...,2,...,z,) @andcy = (zy,...,2,...,2,) such

1The simpler binary cases can be handled with just one lodistiction.



thatx; > x4, Wherel < g <nandforvj,j=0,... ky—1

S g exp{Bojr + Bijws + -+ Loy + -+ Bojrn} N
Zf},:é exp{fojr + Bijrx1 + -+ Byrxg + -+ Ppjrnt
S o exp{Boy + Brjmr 4 -+ + Byl + -+ Bugrvn}

Z?ﬁ:é exp{ Bojr + Brjnay + -+ Byl + -+ Bujrn}

(5)

Theorem 1 Let Y be a child variable withky levels,ky > 2, in a Bayesian network BN with
parents X, ..., X,. If M}, is the constrained logistic regression modék- the qualitative
influence of eactX; onY,7 =1,...,n thenY is FSD monotonic inX;.

To prove the theorem, we need to show the following:

(a) Letéd,, ; denote a CPT parameter for configuratignand for clasg of Y, i.e.,Y = j in the
CPT table. Then

0 § ecmj <1 (6)

(b) For any configuration,,,,

ky —1

Z 90mj =1 (7)

(c) For any pair of configurations, ¢, such that, > ¢; ceteris paribus

Fe,(§) < Fe, (7) (8)

forj=0,....ky — 1.

The proof s trivial. Conditior{a) above follows immediately from the definition of sigmoid isg
tic functions and Conditiofb) follows from the definition of normalized exponentiation. rcio-
tion (c) follows immediately from Eq. (5).

The number of constraints/, for this model is exponential and is equal(fg- —1) times the
number of edges in a lattice formed by mapping a configuratoa node in the lattice where
nodes that differ only in one position are connected by amreltigthe simplest case, if there are
parents and each parent is a binary random variable, tieelgttan»-hypercube where the number
of edges i222"~!. The number of constraints thereforgks-—1)n2"~! and hence exponential in
the number of parents. However, the numbef glarameters for model/’; », N3, is ky (1 + n).
Hence, the number of parameters we need to fit only growsrlingethe number of parents.
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3.2 Constrained Logistic Regression Model 2X/Z; )

Unlike the first model, the second model offers more repitesiemal flexibility by estimating the
conditional probability distribution using the levels dfet parents of the target random variable
instead of associating only a single parameter for eacmpaktere, we estimate the conditional
distribution by usingty — 1 logistic functions. The conditional probabilities of thieild random
variableY” are obtained by subtracting adjacent level¥ of

Definition 4 (M2, ) LetY be a child variable withky levels,ky > 2, in a Bayesian network BN
with parentsXy, ..., X,, where eachX; hasky, levels,kx, > 2for i =1,...,n. Assume thaky

isindexed a9, . .., ky — 1. Given some configuratian= (x, ..., z,), define
P(Y > jlc) X X,
logm:BOJ +/61] I[Xl Z ].] + te +ﬁk’X1j][X1 Z le] + te +
By [ X 2 1) 4+ By I[X > kx| for j=0,... ky —2 (9)

Also, let the following set of constraints hold

1. Fori=1,....n,r=1,...kx,, andj =0,..., ky—2

B >0 (10)

rj
2. For each configuratiozy, ..., z,)andyj, j=1,... ky—2

Bogi—1) + Bf%,l)l[Xl >1) 4+ ﬁ,ﬁ;ll(j,l)[[Xl > kx| +...+
Xn n
ﬁl(j—l)[[Xn > 1] +oo-t 5kxn(j—1)I[Xn > an] >
Boj + B I[X0 2 1 - 4 Bl I[X > k] 4+
By 11X > 1)+ -+ By I[X > kx| (11)

Definition 4 expresses the log odds ratio between the cuiwellabnditional probabilities
P(Y > jle) and P(Y < j|c) as a linear function of the levels of the parent variablgs. . ., X,.
Such formulation allows one to model the contribution oftekewel of X; to the log odds ratio via
the 5 parameters. As will be shown below, domain knowledge abartatonic qualitative influ-
ences can be exploited to speed up Bayesian network leargingdnsing constraints on these
parameters and then solving the corresponding optimizgtioblem. In addition, synergistic and
anti-synergistic influences between different parentsweag well be modeled by adding extra
terms. For instance, if we want to model a synergistic irdigoa in a Bayesian network with two
ternary-valued parent’¥; and X, wheneverX; > 1 and X, > 2, then such can be expressed as

P > jle)

1 B S
P < jlo)

= Boj + Bt I[X1 > 1]+ Bt I[X1 > 2] + B2 I[Xa > 1] + Bt I[ X2 > 2] +
BERIXy > 1)I[Xy > 2] (12)
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For a child variable withky levels, we only need to fity — 1 logistic functionsj.e.,one less than
the number of:y levels since the last CPT column can be obtained by subtgatttencumulative
probability atj = (ky — 2) from 1. The number of parameters needed to be fitted in this model
is linear in the total number of levels of the parents. Inipatar, if Ng denote the number of
parameters theiV; = (ky—1)[1+>_7, (kx, —1)]. However, as inV/},;  the number of constraints

is still exponential in the number of parents. N denote the number of constraints for model
MZ, pthenNg = (ky—1) >0 (kx, — 1) + (ky — 2) [}, kx,. The first term is the total number

of constraints from Eq. (10). The second term sums up all dmstcaints for all configurations as
stated in Eq. (11).

Theorem 2 Let Y be a child variable withky levels,ky > 2, in a Bayesian network BN with
parentsXy, ..., X, where eachX; hasky, levels,; = 1, ..., n. If MZ,  is the constrained logistic
regression modet)+ the qualitative influence of eack; onY, thenY is FSD monotonic inX;.

To prove the theorem, we need to show the following:

(a) Letd.,; denote a CPT parameter for configuratignand for clasg of Y, i.e.,Y = j in the
CPT table. Then

0<6,,, <1 (13)

(b) For any configuration,),,

Ey —1

d b = 1 (14)
j=0

(c) For any pair of configurations, ¢, such that, > ¢; ceteris paribus

Fe,(j) < Fo, (7) (15)

forj=0,...,ky — 1.
Given a configuratiom,,, = (z;1, ..., z;,), the log odds ratio as expressed in our model is

P(Y > jlem)
P(Y < jlem)
5f§n[[Xn > 1) 4 - _|_5£i? j[[Xn > kx,|forj=0,... ky—2 (16)

log =fo; + By I[Xa 2 1+ + B 11X 2 kx4 +

Lete; = (z11,...,%1gs .-, T1p) @NA ey = (w21, ..., T, ..., Tay,) De a pair of configurations
such that; < ¢, ceteris paribusi.e., they differ only at a single positiopso thatz,, < xs,. Let



P(Y =jley) = 6,,,;. We want to show that for all valugs j = 0, ..., ky —2, it is the case that
F.,(j) < F. (j). Assuming; = 0, from Eq. (16) we have for= 1,2

P(Y > 0|cp,) ) )
10gmzﬁoo+5fg I[Xy > 1)+ + B! oK Z kx4
B I[Xn > 1+ -+ B oI [Xn > kx,] (17)
1—6.
; 0 — exp{Boo + B I[ Xy > 1]+ + Bra ol X1 > k] + -+
cm0
Bior I [Xn > 1+ -+ By oI [Xn > kx, ]} (18)
Sincecy, > ¢4, EQ. (18) implies that
1
9010 (19)
1+exp{Boo+ B0+ - +5k10+ B +ﬁ B+ +Bkn0
1
6020 (20)

1+€Xp{ﬁoo+ﬁ10 “+-- +6k‘10+ +610 +-- +Bk 0+6(k+1 0 +-- +Bl . +5

for some(k; < kx,),...,(k, < kx,), (k+ 1)y < kx,), ..., (k. < kx,). Since Eq. (10) holds, it
is clear from Egs. (19) and (20) thét, > 6..o.
Now, suppose that < j < (ky —2). From Eq. (16),

1 - Zj/f ecm
i " exp{fo; + BEI[X, > 1] o B I [X > ]+ +
Zj’:o Hcmjl
By X > 1) - 4 By I[Xn > kx, ]} (21)
Sincecy > ¢y,
J 1
> Oey= o - — (2
§=0 1+exp{50]+5 + +ﬁk1]+ +/B ++5kq] ++51] ++/8kn]}
and
j
1
> o= (23)
§'=0 1+eXp{ﬁOJ+B +-- +6k‘1]+ +B1] +-- +ﬁk’ J+6(k;+1 +-- +Bljn+ +6k‘n]

Again, from Egs. (22) and (23)

J J
g eclj/ 2 E 902]'/
§'=0 /=0



since Eq. (10) holds. By definition,
Fo,(7) < Feu ()

holds forj = 0, ..., ky — 2. Note, however, that once we have shown Eq. (14) to hold, vile wi
have shown that Eq. (15) also holds,, for all levels ofY".

Observe that
4 1
D beny = % o (29
prart L+exp{Boj + 815+ Bt B Bk e B B
and that
j+1 j
Ocnj =D Hepjt = > Oy (25)
/=0 j§"=0
Hence,
ky—1 7j—1
Z ecmj - ecmO + [(gcmO + ecml) cmO lz ecm] Z ecmj/]
j=0 §'=0
J j+1 ky—2 ky—3 ky—2
Zec o= Zec P Z Ocpss = > et | +]1=D ew,] (26)
§'=0 §'=0
= 1 (27)

Since every term in the RHS of Eq. (26) cancels out except thaelpemate terml, Eq. (14) holds,
and therefore Eq. (15) follows.
Now, we need to show that eagl),; € [0, 1]. Supposg = 0 then

J
1
Z ecmj’ - ecmO = (28)
ot 1+exp{fBo;+ B+ -+ B4 4B + - -+Ban}

Since Eq. (28) is a logistic sigmoid functiofy, , € [0,1]. Now, suppose thdt < j < ky — 1,
then

Jj+1
Ocni = Z Oc.ns Z Oc,nj (29)
B 1
1+exp{ﬂ0 (j+1) +ﬁ1(3+1 +-- +ﬁk1(g+1 +-- +ﬁ1(3+1 + - ~—|—Bknn(j+1)}

1
1+exp{6o]+ﬂlj+ +6,m+ +51] + - +B,”}

(30)
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However, from the constraint in Eq. (11),

exp{ﬁoj+5 +- - +B,m+ By B 2

exp{ Bo ]+1)+ﬁ1(j+1 +-- —i—ﬁkm“ +-- +B1(]+1 4. .+ﬁ]§szj+1)} (31)
Egs. (30) and (31) together imply that
Qcmj Z 0 (32)

Since the two terms in the RHS of Eq. (30) are logistic sigmaitttions their difference can not
exceedl. Hence0 < 6., ; < 1. QED.

In the case of binary target variables the required comdtimisimpler,i.e., the constraints on
the 6,’,5 parameters suffice.

Corollary 3 (M2% ;) LetY be a child variable withky- levels,ky = 2, in a Bayesian network BN
with parentsXy, ..., X,, where eachX; hasky, levels, i = 1,... ,n. Suppose tha@)+ is the
qualitative influence of eacl; onY and thatMZ, ; is the constrained logistic regression model
with the set of constraints replaced by

Xi
B = 0 (33)
ThenY is FSD isotonic inX;.

We need to show that

(a) For any configuratiom,, and for clasg = 0,1 of Y

0<6,.,;<1 (34)

(b) For any configuration,,,

ecm0+90m1 =1 (35)

(c) For any pair of configurations, ¢, such that, > ¢, ceteris paribus
F,(j) < Fo (5) (36)

forj =0, 1.

Since there are only two CPT cells in each row correspondimgcanfiguratior:,,,, we need only
solve the value for one of the cells. Let us denote thi&.as Sof., 1=1— 0. . Hence we only
need perform one logistic regression. From our definitioa,lbg odds ratio is

P(Y > 0ley)

1
CPY < 0lcn)

=Foo + B0 I[Xa = 1+ 4 B I[X0 2 k) ]+ +
BEI[X, > 1]+ + @Xn oI[ X > kx| (37)
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1—-0..0

g = exp{foo +51)§)11[X1 > 1+ + 515210[[)(1 > kx,]+-+
cm0

o [ X > 1)+ 4 B o[ X > kx, ]} (38)

Suppose we choose two configuratien®ndc, so thatc, > ¢; ceteris paribusEq. (38) implies
that
1

- X X
L+exp{Boo+ 080+ -+ Bb+ - +Bi0 + -+ Bb + - +8i + -+ B

(39)

c10

1
_ 40)
X, X X, (
L+exp{ oo+ 10 ++ - -+ B+ -+ B0+ -+ Bi o+ Bukay,0 B0+ B

c20

forsome(k; < kx,),..., (kg <kx,), (k+ 1)y < kx,),..., (kn < kx,).

Since Eg. (33) holds, itis clear from Egs. (39) and (40) that> 6.,,. The condition in Eq. (35) is
trivial since for any,,,, 6..,.0+(1—0.,,0) = 1. So, wherj = 0, F,,(0) < F,,(0) becausé.,, < 0.,o
from Egs. (39) and (40). In addition, when= 1, it is the case that,,(1) = F,, (1) = 1. There-
fore, the condition for stochastic dominance in (36) is aabsfied. Now, we need to show that
d.,0 andd. , are points in the intervgD, 1]. This immediately follows sincé.  is a logistic
sigmoid function and sincé. , = 1 — 0,9, it follows that0 <. ; <1,;7 =0,1. QED

Although the number of constrainfé? as shown in Theorem 2 is exponential in the number
of parents N = (ky —1) > i, kx, + (ky — 2)[[;_, kx,, it is possible to impose constraints on
the 5 parameters so that the resulting number of constraints tidepend on the number of parent
configurations. We can do this by replacing the constramtsq. 11 with a set of stronger but
simpler constraints.

Corollary 4 (M2, ) LetY be a child variable withky levels,ky > 2, in a Bayesian network
BN with parentsX, ..., X,, where eachX; hasky, levels, i = 1,...,n. Suppose tha)+ is
the qualitative influence of eack; onY, : = 1,...,n and thatMg,  is the constrained logistic
regression model with the set of constraints replaced by

1. Fori=1,...,n,r=1,...,kx,, andj =0,..., ky—1

gY > 0 (41)

7]
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2. For each pair(j — 1),j, wherej = 1,... ky—2

Boi—1) Boj
X
Biii—) it

(AVARAY

X1
B ey = Bk
X'VL X7L
/81(]‘_1) Z /61j

ﬁkxn(J 1) > kanj (42)

ThenY is FSD monotonic inX;.

It is obvious that if each component in the LHS of Eq. (11) ikeast as large as its corresponding
component in the RHS then the sum of the LHS is at least as lartfeeasum of the RHS. Hence,
Eq. (42) implies Eq. (11)QED.

Here, the number of parameters igky —1)[1 + > (kx, —1)]. The advantage of using
Corollary 4 is that the number of constraints no longer depmnthe number of configurations.
In fact, the number of constraints, like the numbepgdarameters, is also linear in the number of
parent levels. In particular, i¥2 denote the number of constraints th8a = (ky—1) 3", kx, +

(ky = 2)[1 + >0, kx,]-

3.3 Constrained Logistic Regression Model 3X/2; )

As in M2, r, the conditional distribution in the third model is estim@by using the parent levels
of the random variable. Here, we also estimate the conditidistribution by estimatingy — 1
logistic functions and then subtract the values of the egtghadjacent logistic functions to com-
pute the conditional distribution &f given a parent configuration. The main difference between
M2, , andM?, 5 is that the3 parameters in/2 , are constrained to increase as the parent level
is increased. In addition, the inequalityin the indicator functior! for a parent level is replaced
by the equality operator. We show that the constraints weosamn the3 parameters of\/2,; »

are sufficient for first-order stochastic dominance.

Definition 5 (M2, ;) LetY be a child variable wittky levels,ky > 2, in a Bayesian network BN
with parentsX, ..., X,, where eachX; hasky, levels,kx, > 2for ¢« = 1,...,n. Given some
configurationc = (x4, ..., x,), define

log%_ﬁoﬁﬂﬁqpﬁ—ﬂ o B TIXY = E ] et
B 11X, = 1]+ -+ + B0 I[X, = kx,] for j=0,... ky—2 (43)

Also, let the following set of constraints hold
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1. ForeachparenfX;,i=1,...,nandj =0,...,ky—1
Bin i = By == By = Biy >0 (44)

2. For each pair(j — 1),j, wherej = 1,... ky—2

Bog—1) = Boj
Bign = B
X X
B 2 Pry

XTL n
ﬁl(j—l) Z Blj

-y 2 Bl (45)

Definition 5 expresses the log odds ratio between the cuimellabnditional probabilities
P(Y > jle)and P(Y < j|c) as a linear function of the levels of the parent variabigs. . ., X,,.
Such formulation allows one to model the contribution ofreevel of X; to the log odds ratio
via the g parameters. The main difference between Definition 5 andnibiefn 4 is that in the
latter the contribution of the parent levels are arrangetthabthey become cumulative (similar to
a thermometer bar) where ¥ = k for somek then all termsX = £/, k¥’ < k also need to be true.
In the former case the contribution of each parent leveldependent of the contribution of the
other parent levels)/$, , also allows the expression of synergistic and anti-sys#eginfluences
where terms that interact are simply added to the lineartfomcsimilar to M2, ., (see Eq. (12)
for an example unde¥/Z; ;). In addition, the number of constraimé&’, for model M2, . is lin-
ear in the number of parent levels sindg = n + >."  (kx, —1) + (ky —1) > (kx,—1) =
n+ ky > ;(kx,—1). The number of3 parameters)N3, is also linear in the number of parent
levels, N = (ky —1)[1 + 3.1 (kx, —1)].

Theorem 5 Let Y be a child variable withky levels,ky > 2, in a Bayesian network BN with
parents Xy, ..., X,, where eachX; hasky, levels, i = 1,...,n. If M3, is the constrained
logistic regression moded)+ the qualitative influence of eack; onY’, thenY is FSD monotonic
in X;.

To prove the theorem, again we need to show the following:

(a) Letd,, ; denote a CPT parameter for configuratignand for clasg of Y, i.e.,Y = j in the
CPT table. Then

0<0,,;<1 (46)
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(b) For any configuration,,,

ky—1
> b = 1 (47)
j=0

(c) For any pair of configurations, ¢, such that, > c¢; ceteris paribus
Fe,(j) < Foy (5) (48)

forj=0,....ky — 1.

Given a configuratiom,, = (z;1, ..., z;,), the log odds ratio as expressed usidg;  is

P(Y > jlcm) X

——————=<=0; X, =1]+ 1[X_k

0g P(Y S]’Cm) 50] +Blg [ 1 ] +5k [ 1 Xl] + +
By I [Xn =1+ -+ By JI[ Xy = kx, ] for j=0,... ky =2 (49)
Letcy = (z11,...,%1g,- - -, T1n) @NAey = (221, ..., 29, ..., T2,) De a pair of configurations

such thatc; < ¢, ceteris paribusi.e., they differ only at a single position so thatz,, < za,.
Also, let P(Y = jl¢y,) = 6,,.;. As in previous sections, we want to show that for all values

J,j=0,...,ky—2,itis the case thak,(j) < F.,(j). Assumingj = 0, from Eq. (49) we have
fori =1,2

P(Y > 0|cy,) X )
1ogmzﬁoo+ﬁfg 11X = 1] +-~-+/3;;101[X1 =k, + o+
10 (X = 1 4 4 B o T[Xn = ki, ] (50)

1—46..0 x
e—o_eXp{ﬁoo + 610 IXy=1] 4+ ka ol[X1=kx,]+---+

Biot 11X =1+ -+ By oI [Xo = kx, ]} (51)

Eq. (51) implies that
Oc0= L (52)
14-exp{ Boo+- -+ 5 o0+ +5kp0

9020 L (53)

1+exp{foo+- - +5k,0+ +5,€po

Sincec, > ¢, there exists indices, and k; such thatt, < k(’] < kx, for some paren, of V'
whereq < p < n. By EQq. (44),522% > Bé‘g. Hence, Egs. (52) and (53) imply that, > 0..,0.
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Now, suppose thdt < j < (ky —2). From Eq. (49),

1 - Z 1'=0 ecmj/
Z;’:O cmj’

=exp{fo; + Bt I[X1 =1] + - + ﬁkl T[X) =kx, ]+ +

By X =1 4+ Gy J1[Xn = kx, ]} (54)
sincec, > c1, EQ. (54) implies

j
1
0,11 = -
j’;) 1 1+eXp{50j+...52‘;§ +”'+BZZ’}

and

J
1
ch/: (56)
EO Y Texp{Bo - Byt B

wherek; > k, andg < p < n. Again, from Egs. (55) and (56)

J J
E QCU" > E 962]"
J'=0 j'=0

since according to Eq. (44, > f, . By definition,
Fo,(4) < Fii(9)

holds forj =0, ..., ky — 2. Again, note that once we have shown Eq. (47) to hold, we \aNeh
shown that Eq. (48) also holdsg., for all levels ofY".

Observe that
j
1
Z Qcmj/ = (57)
= Lexp{foj+ -+ Bu5++B5}
and that
j+1 j
Ocj =D Oepjt — > Oy (58)
4'=0 §"=0
Hence,
ky—1

Z ecmj - ‘gcmO + [<gcm0 + ecml) cmo [Z QCm] Z QCmJ
=0
’ Jj+1 ky—2 ky—3 ky—2
[Z B, Z Ocr > O =D e -y ecmj,] (59)
§'=0 §'=0 §'=0

~ 1 (60)
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Since every term in the RHS of Eq. (59) cancels out except thelfsmate terml, Eq. (47) holds,
and therefore Eq. (48) follows.

Now, we need to show that eagl),; € [0, 1]. Supposg = 0 then

j
1

> i =00 = (61)

= 1+exp{Bo;+- - -—|—6 PR -l-ﬁkp]}

for g<p<n. Since Eq. (61) is a logistic sigmoid functidh, o € [0, 1]. Suppose thdt< j < ky—1,
then

j+1
ecmj = Zec 3’ Zec Y (62)
J'=0 J'=0
B 1
 Lrexp{Bogen B0 B )
P1PoG+1) kq(G+1) kp(5+1)

1

_ (63)
1+exp{5oj+---+6 - +5m>}

However, from the constraint in Eq. (45),

exp{Bo;+- -+ B+ Byt >
exp{Bog+1) B oy F B tian) ) (64)

Egs. (63) and (64) together imply that
0. > 0 (65)

cmJ =

Since the two terms in the RHS of Eq. (63) are logistic sigmaitttions their difference can not
exceedl. Hence) < 0., ; < 1. QED.

4 Enforcing margins

Given two parent configurations andc; wherec; < ¢, the idea of enforcing a non-negative
margine > 0 between the cumulative distributioR., and F., has appeared to help improve
classification accuracy as reported in previous work [2]this section, we discuss how margins
could be enforced in the constrained logistic regressidtingeusing M2, . as an example to
demonstrate the idea. The margins, which can also be elifrioen a domain expert, can help
strengthen monotonicity assumptions and could be coresideneficial in the design of classifiers
especially in cases where there are very small amountsipirigedata. Enforcing margins has the
effect of reducing the hypothesis search space (see Fiydigihg parameter fittirg After fitting

2Parameter fitting can be done via maximum likelihood esionatsee [11, 15, 2]) for more detailed discussion.
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no margin

\

with margin

6,
Figure 4. Effect of the margin on the parameter space in thistic regression setting

the 5 parameters one could easily get, if needed, the correspgpégiarameters by plugging in the
[ parameters to the corresponding logistic functions, fangxe by using Eq. (52) and (53). The
solid curve in Figure 4 divides the space of possible parametlues into two regionsl; > 6,
which is the region to the right of the solid curve ahd< 6, which is the region to the left of the
solid curve. When a margin is enforced, the region in wiiick- 6, becomes smaller (confined to
the shaded region under the dashed curve). This focuseesdhehdor parameter values toward a
much smaller region where correct parameter values arg li&de in, potentially aiding in faster
learning with sparse data sets. The idea simply means tstatid of the inequality in Eq. (48) we
now require that their difference be at least some margin

Fo,(5) +e < Fo (9) (66)

There are some issues involving how the margshould be chosen and how it should be enforced.
For example, it is possible thatcould be chosen based on some probability distribution and
as more evidence becomes available a posterior distribgtiolld be obtained from the initial
prior distribution. Also, the margins between cumulativstributions need not be equalge.,
for some cumulative distributions,,, (j), F.,.,,(j), Fe,..,(j) margins can be enforced such that
F..(§)—Fc,...(j) > epandF, . (j)—Fe,.,(J) > €mt1s €m # €ms1. Many issues still remain
unclear as to what the best approach for enforcing margmsldtive and we hope to address them
in future work. Meantime, we are interested in finding a wagdgust the margin without solving
an exponential number of constraints.

Let us state what the problem is in the contexf\ff,; .. Given a pair of configuration, and
c2, Wherecy > ¢; ceteris paribusve want

FC1<j)_FC2(j)Z€ (67)
which implies

J J
Z chj’ - Z eczj’ Z € (68)
§'=0 §'=0

forj =0,..., ky—2. From Eq. (43),

1 1
> € (69)

X B X =
1+exp{5oj—|—~ . .qu? 4. _|_@]fnw;} 1+6Xp{50j+' . 'ﬁk,’;ﬁ_' . +Bl§$}
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wherek; = k, + 1. Note that by Eq. (44)8,52‘; > B, If we group thes terms that are equal and
assign their sum as some constanhen we can rearrange the above inequality into

1 1
X,y ¥ =€
1+exp{r + qu[;} 1+exp{r + Bk{;;}

(70)

It is not desirable to use Eq. (70) for each pair of configorati andc, since this will generate
an exponential number of constraints. Our goal then is todim@y to controk by adjusting the
difference between the parametéﬁ% and, *. From the LHS of Eq. (70) we have

1 1

- (71)
1+exp{r + Béj} 1+exp{r + ﬁéi}

Given thatﬁ,ii‘;. > ﬁé;. it can be shown from Eg. (71) that by adjusti(‘@é;—ﬁ,ji;) the resulting
margin is bounded. Define
Mgy = (Bih=5e)) (72)

If we let 522; — +o0 in Eq. (71) thenF,, (j)— F.,(j)] tends toward the limit

1
X (73)
I+exp{r + B 5}
and if 3% — 51523’ then[F,, (j)—F.,(j)] — 0. Hence the bounds are
. ) 1
OS [Fc1(])_Fcz(])] < (74)

~ l4exp{k+ 5,5?;

The obvious implication here is that one can control the inabg adjusting the difference
betweenﬁ’,if‘; andﬁé‘; and one simple strategy which has been adopted by Altentalf ] is to
assign a uniform margin for each pair of conditional cumwéatlistributions. However, note that
equal difference between any pair@ff‘} andﬁ,‘i‘; does not necessarily translate to equal margins

. q
betweean,:O f.,.; in Eq. (68). In other words, given a specifiedhe difference betweeﬁ,if]‘;

andﬁ,ii‘; varies from one pair to another. As a simple example, consiayesian network whose
ternary target random variabléis influenced by a single ternary parent

1
I+ exp{ oo + BIIX = 1] + ARI[X = 2]}

Suppose thaty, = 0.2, 5% = 0.4, andB;, = 0.6. If the 3 parameters have these values (note that
their consecutive differences(s2) then the margins between the corresponding, ¢, = 0, 1,2

P(Y =0|X) = (75)
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are

0 tho = . :
00 10 1+exp{foo} 1+ exp{Boo+ 5}
1 1
T 1+exp{02} 1+exp{0.2+0.4}
= 0.0958 (7o)
010 — 020 = : :
10 — V20 1+ exp{Boo+ Bi5} 14 exp{foo + P}
1 1
14+ exp{0.2 4+ 0.4} 1+ exp{0.2 + 0.6}
= 0.0443 7o

From the above example, it is clear that unless we know theegalf the3 parameters, it is not
possible to uniformly set the marginr over a set of constraints using the difference between two
consecutives parameters. Moreover, since thgarameters are not known at the time the margin
is specified the upper bound in Eqg. (74) also can not be compineother words, given that we
want to enforce a margin ef> 0 it is not possible to specify what the valueM,ij‘;g,j should be.

Another simple approach to adjusting the margis to choose a quantity whose range is in
[0,1] . Define the ratio

Xq
RY, = Pr;
kqkyj Xq
k.

(78)

Although this makes the specification of a margin by a domaped more intuitive in the sense
that the expert need only think of a quantity betw@eand 1, note that solving the exact ratio for
a givene is still untenable since theé parameters are not known at the time whas specified.
Like Eq.(72), this disadvantage is simply the result of tlagl¢off between expressing the margin
in terms of the3 parameters and expressing it as a constraint for every ewafignsc,, andc,,, 1
ceteris paribusvia thef parameters. As we have mentioned, our goal is to avoid therexgial
number of constraints implicit in the latter method so a ifdasinitial strategy is to specify the
margins in terms of thg parameters, instead of the origiigbarameters.

If 8,5 — 0 thenRy%,; — 0 while if 5% — B then R, — 1. So the bound for? s,
is,
0< Ry, <1 (79)
= Ykl =
iti i q Xq _ pXy .
In addition, we can define a teraﬁkéj such thatl — Aerj = Bt o If we want to increase
X, X,

the difference betwee/ﬁ,fq. andﬂ,i? then we simply increase, %, .. Settinge, 9, . = 0 reduces
qJ] qJ qRq) qaRq)

31t is still an open question whether a uniform margin is deslie. Previous work by Altendorf, Restificar, and
Dietterich [2] using a uniform amount of margin for each doaisit appears to be a good initial strategy.
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Figure 5: Constraint lattice

this difference ta0. As ak Wi L the resulting difference in the cumulative distributioh o
configurations:; andc, can not exceed. The argument is the same as thatl\di,fiiéj since both
terms in Eq. (71) are logistic functions angl’, ; — 0 can mean letting eithet,.* — 0 from the
right or ﬁ,izj. — +4o00. The result is exactly that in Eqg. (73). From above, we can state the
following formally,

5kq,

Theorem6SupposethaM,f;, —Bk i ﬁ,fz andak k= L= . Then
k/]
1
0< MM, <00 = 0<[F,(j) — Fay())] < 80
kqkyi [ 1(]) 2(])} 1+eXp{li+B£§§} ( )
1
0<akk’ <l — OS[F01(j)_Fcz(j)}< (81)

14 exp{r+ ﬁ,f;;}

Now that it is clear that the additional constraints imposadthe 5 parameters to enforce
margins result in cumulative distributions that are bowhdet us consider all the cumulative
distributions that are part of a chain of inequality constisawhose cumulative difference along
the chain must not exceddest the feasible region becomes empty. To illustrate tbblpm, let
us assume another Bayesian network with two par&ntand.X,. X; is a ternary random variable
and X, is a binary random variable. The targkt, is a ternary variable. Figure 5 shows as edges
the corresponding constraints between cumulative digtabs for a specified” = ;. For example,
the node)0 and01 represents,(j) and Fo, (7) if we denotec; = 00 andc, = 01. The constraint
Foo(7) — Fo1(j) > € is represented by the edge labetedNote that the longest chain in the lattice
has3 edges. One example is the chajne; : e3. The corresponding label of the nodes of this chain
satisfyc,, > ¢,,,1 ceteris paribus It is also clear that the sum + ¢; + €3 can not exceed lest
the feasible region becomes empty. For example, it is ndiplesto satisfye; + ¢; > 1. Suppose
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thate, = k., wherek,, € [0,1]. Suppose thaky,(j) = 1, the highest probability value possible,
thenFio(j) = 1 — k,. Since the smallest valuB,(j) can take ig), the maximum value that,
can have is alsb — k., . So0¢; + €3 = ke, + (1 — ke, ) = 1. Clearly, the sum can not be greater than
1 unlessFy(j) > 1.

So, if we hold eitherMé;’%j or aiff%j constant, how doef, (j) — F.,(j)] behave across
the chain of inequalities in the lattice? Do we have guaesitd monotonicity on the values of
the margins? Unfortunately, for bofwé‘,g&j andaé"k&j it is possible to find examples where for

a set of g parametersF,, (j) — F.,(j)] is either decreasing, increasing or even nonmonotonic.
As an example, consider again our previous Bayesian netwdhkome parent. Suppose that
this time the parent variableY, has four levels{0, 1,2, 3}) and that we are only interested in
P(Y = 0lcn), cm = 0,1,2,3. If we let Bug, Bi%, Ba, and 35 have as values 1, 0.1, 2.1, and4.1,
respectively, wherM,ﬁg%o = 2 andx = 1 then[F,(0) — F1(0)] = 0.02, [F1(0) — F5(0)] = 0.20,
and[F,(0) — F3(0)] = 0.04. Note thatF., (j) — Ft,.,,(j)] is nonmonotonic. Hence, in general

there is no way to tell in advant@ow the various,, in the constraint lattice of a given problem
. . . Xq Xq
will behave given a flxe(qu%j or oy -

5 Related Work

Ng and Jordan [13] analyzed and compared both Naive Bayesogisglit regression classifiers.
Their analyses show that asymptotically, the error of theegative Naive Bayes classifier is higher
than that of the discriminative logistic regression classiln addition, however, the parameters of
the Naive Bayes classifier, need only a number of samplessttagarithmic inn, the dimension of
the input space, to be uniformly close to their asymptotian@swhile that of the logistic regression
classifier need an order afexamples. Their results indicate that even though the atiogrror
for Naive Bayes is higher, it could converge more quickly thiaa logistic regression classifier.
This implies, that given a small number of training instantiee use of Naive Bayes classifier is
advantageous and experimental results by the authors gupen analysis.

Altendorf et al. [2] addressed the problem of learning fraemwsparse dat&,g.,with number
of training instances ranging only betweemnd 10, by exploiting qualitative monotonicities, a
specific form of background knowledge. Qualitative monatities which can be formalized as
stochastic dominance [16, 1] are statements that descobetonic relationship between two ran-
dom variables such as "warm temperature increases ina#assize of the mosquito population”
or "increase in body mass index leads to an increase riskegtdd blood pressure”. The general
idea behind Altendorf et al.'s work is to focus the searchpl@rameters during parameter-fitting to
a smaller region of the hypothesis space that satisfies th&reints implied by the monotonocity
constraints. In addition to the use of margins that refleetdbmain expert’s confidence of the
background knowledge the technique significantly outperéa all the other algorithms tested,
including Naive Bayes, in the case where the training datpasse. This approach, however,
is prone to problems related to parameter estimation eglpeon Bayesian networks where the

4A possible method might be to perform interleaved optinigafor 5 andM,gg o parameters until convergence
q
is achieved (see.g.,Ando and Zhang [3]) but as of now we will leave this problemfigdure work.
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number of parents is large,g.,those that exceed six. The difficulty is largely attributedah
exponential number of parameters that need to be fitted.

Greiner et al. [11] provide formal analysis and experimergaults on learning the parame-
ters of an arbitrary belief network using normalized expuiation, i.e., using a simple logistic
regression formulation where the linear discriminant aftelagistic function only consists of the
B constant. A simple gradient-descent algorithm is giveh dipiimizes the log conditional likeli-
hood for a given set of training instances instead of the jdalihood. The same approach using
normalized exponentiation is also employed independéytiltendorf et al. [2] to exploit mono-
tonicity constraints, although the focus of the latter ihogonal to that of the former. Greiner et
al. work's emphasis is on finding a method of improving classiion accuracy given a sufficient
(but possibly incomplete) amount of training instanceslevAitendorf et al. focused on address-
ing the problem of learning with very sparse data. In the &xrif learning from very sparse data,
both approaches, however, could easily lead to an exp@hentmber of parameters especially
with belief networks with large number of parents.

Roos et al. [15] present a study on the equivalence of conditjarobability models that can be
represented by Bayesian networks and those that can beeefeédy logistic regression. Roos et
al. show that this equivalence holds whenever a given Bayesiavork3 has a canonical version
B* that is perfectj.e., all nodes with a common child are connected. The canonicaloreB* is
constructed by restricting to the Markov blanket of the target classand adding arcs so that the
parents ofY” are fully connected. The authors, however, formulate thyesta regression problem
in Bayesian networks differently from our model. While our rebdnly associates parameters
to parent levels which without parent level interactioninmear in the number of parents, Roos et
al. presented a model which associatgsarameters to all parent configurations of a node. This
implies that the number gf parameters in their model is exponential in the number oémiar
In the context of learning from sparse data, especially wherraning set size is betweérand
10, choosing a model with an exponential number of paramet#irBlkly lead to poor parameter
fitting. Evidence of this can be found in our experiments ondd&én networks with large number
of parents. In addition, while our model exploits backgrdknowledge from domain experts, the
inherent assumption for our approach to become effectitledrsparse data setting, is that there is
only a significantly small number of parent level interasiaeeded to be explicitly represented.
From the practical standpoint, it is important to note thatlevour model can scale to a full model
i.e.,with all the parent level interactions explicitly repretah there is no requirement imposed on
the modeler to represent any parent level interaction argash interaction is deemed necessary.

6 Summary

In this report, we have presented and provided theoretitallyaes on three logistic regression
models and their variants in terms of their suitability foryBaian network learning with very
sparse data. We presented at least two logistic regressioiels) V2, , and M2, ., and have
provided analyses on their suitability as models for Bayesitwork learning with very sparse
data. In particular, the number of parameters to be estaraatd the number of constraints needed
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to implement stochastic dominance for these models do et gkponentially in the number of
parents of the target variable. In addition, we have alsoudised how margins can be enforced
in the logistic regression setting and have pointed out soitfee challenging issues related to its

use,

after having demonstrated the advantage of using ih@mhiance monotonicity in previous

work.
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