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Abstract
An important challenge in machine learning is to find ways of learning quickly from very small
amounts of training data. The only way to learn from small data samples is to constrain the
learning process by exploiting background knowledge. In this report, we present a theoreti-
cal analysis on the use of constrained logistic regression for estimating conditional probability
distribution in Bayesian Networks (BN) by using background knowledge inthe form of qual-
itative monotonicity statements. Such background knowledge is treated as a set of constraints
on the parameters of a logistic function during training. Our goal of finding the appropriate BN
model is two-fold: (a) we want to exploit any monotonic relationship between random vari-
ables that may generally exist as domain knowledge and (b) we want to be able to address the
problem of estimating the conditional distribution of a random variable with a large number
of parents. We discuss variants of the logistic regression model and present an analysis on the
corresponding constraints required to implement monotonicity. More importantly, we outline
the problem in some of these variants in terms of the number of parameters and constraints
which, in some cases, can grow exponentially with the number of parent variables. To address
this problem, we present two variants of the constrained logistic regressionmodel,M2b

CLR and
M3

CLR, in which the number of constraints required to implement monotonicity does not grow
exponentially with the number of parents hence providing a practicable methodfor estimating
conditional probabilities with very sparse data.

1 Introduction

Learning quickly from very small amounts of observed data isan important challenge in machine
learning. Such need can be seen in many applications where the ratio of the number of obser-
vations to the number of variables is very low, for instance in modeling the transmission of new
diseases (e.g.,the West Nile Virus) and in understanding the propagation ofnew computer worms.
The only way to learn from small data samples is to constrain the learning process by exploiting
background knowledge. The key is to identify kinds of background knowledge that are easy for
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experts to specify and easy for algorithms to exploit. One example of such background knowledge
is the causal relationships in a domain, which can be encodedin the graph structure of a Bayesian
network. While causal relationships help constrain Bayesiannetwork learning, they do not always
provide enough constraint. The number of parameters that must be learned grows exponentially
with the number of parents, and this means that very large amounts of data are needed.

In this report we focus on one kind of background knowledge, qualitative monotonicities, that
is easy to specify and that can help address this problem. A qualitative monotonicity statement
says that one variable increases (or decreases) monotonically as a function of another variable.
Examples are ”warmer temperatures increase the size of the mosquito population” and ”the risk of
having elevated blood pressure increases with a person’s body mass index”. The use of qualita-
tive monotonicities in machine learning has been investigated in the past by several authors from
different vantage points and incorporating them into the learning algorithm have been found to
be useful [6, 7, 4, 5, 9, 10, 8, 14, 12]. The work that we describe here focuses on algorithms for
learning from very small amounts of samples constrained by qualitative monotonicity knowledge
formalized in terms of first-order stochastic dominance [16, 1].

Previous work by Altendorf, Restificar, and Dietterich [2] showed significant improvements in
classification accuracy with very small amounts of trainingdata (less than10 examples) by exploit-
ing qualitative monotonicities. However, when the number of parentsN increases (e.g.,N > 7)
the approach they reported suffers from two distinct disadvantages. The number of parameters
that need to be estimated and the number of constraints on theparameters required to implement
monotonicity both increase exponentially withN . The former could lead to underfitting hence
producing models that give oversimplified hypotheses, while the latter could indirectly impose
practical limits on the size of the problem that can be solvedby a computer due to huge memory
requirements. We propose to address these limitations by formulating the problem of exploiting
qualitative monotonicities in Bayesian network parameter learning as a constrained logistic regres-
sion problem. This novel formulation affords us two major advantages. Parameter estimation can
now be viewed as a regression problem over a set of parameterswhose size only grows linearly
with the number of parents. Moreover, the number of constraints required to exploit qualitative
monotonicity can be shown to only grow linearly with the number of parents as well.

Clearly, not all constrained logistic regression models address the problems outlined above.
This report provides an analysis on the kinds of practicablemodels that can be used. More specifi-
cally, we define and analyze variants of the constrained logistic regression model and demonstrate
how qualitative monotonicities can be implemented in thesemodels. We show that, in general,
some of these models suffer from the need to estimate and solve an exponential number of param-
eters and constraints. Finally, we show that there exists variants of the logistic regression model
in which the number of parameters needed to learn the conditional probability distributions in a
Bayesian network as well as the number of constraints required to exploit qualitative monotonici-
ties only grow linearly with the number of parents.
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Figure 1:F1 first-order stochastically dominates another cumulative disributionF2.

2 Preliminaries

Given two random variablesX andY , we shall use the notationX Q+ Y (resp.X Q− Y ) to
mean ‘there is a good chance that higher values ofX result in higher (resp. lower) values ofY ’.
From time to time, we refer toQ+ (resp.Q−) as the qualitative influence ofX on Y . It is also
convenient to express monotonicity in terms of first-order stochastic dominance. If we have two
cumulative distribution functionsF1 andF2, the distributionF1 first-order stochastically dominates
F2 wheneverF1(y) ≤ F2(y) for any valuey of a random variableY . If we plot F1 andF2, it is
the case thatF2 will be aboveF1 for all values ofy (see Figure 1). The reason whyF1 (the curve
below) ‘dominates’F2 (the curve above) is because for all values ofy, the probability of getting
at leasty is always greater underF1 than underF2. Note that in Figure 1,F1(y) < F2(y) and so
1−F1(y) ≥ 1−F2(y), thusF1 ‘dominates’F2.

Another way to characterize first-order stochastic dominance is through counts obtained from
training examples. Suppose that we are given two random variablesBP , which represents a per-
son’s risk of having elevated blood pressure, andBM , which represents a person’s body mass
index. Also, assume that from background knowledgeBP is affected byBM and that both are bi-
nary random variables that can take on one of either valueshigh or low. The statement ”the risk of
having elevated blood pressure increases with a person’s body mass index” translates to an expec-
tation in our observation where the number of people expected to havelow risk of elevated blood
pressure would begreaterthan those expected to havehigh risk just in the case whereBM= low.
Moreover, the number of people expected to havehigh risk of elevated blood pressure would be
greaterthan those expected to havelow risk in the other case whereBM=high. Figure 2 shows a
typical scenario. It shows the counts (left table) that are associated with the conditional probability
table or CPT of a Bayesian network (right table) with a target variableBP having a single parent
BM . Note that in the case whereBM = low the bulk of the observed counts is on the upper left
cell (100). However, whenBM =high the bulk of the observed counts shifts from the upper left
cell to the lower right cell (105). The corresponding CPT has two conditional probability distribu-
tions, one for each row:Phigh =P (BP |BM = high) andPlow =P (BP |BM = low). Recall that
the conditional cumulative distribution can be written asFi(y)=

∑y

y′=low Pi(BP =y′|BM= i), for
i = low, high. The idea of first-order stochastic dominance simply statesthat forFhigh to stochas-
tically dominateFlow, the conditions in Figure 2 needs to be true,i.e., Flow(y) ≥ Fhigh(y) ∀y.
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Counts BP = low BP = high

BM = low 100 10
BM = high 15 105

CPT BP = low BP = high

BM = low 0.91 0.09
BM = high 0.125 0.875

Figure 2: Example of a monotonic relationship between random variablesBM andBP .

From Figure 2,Flow(low) = 0.91 andFhigh(low) = 0.125. In addition,Flow(high) = 1.0 and
Fhigh(high) = 1.0. Hence, it is clear that the conditional cumulative distributions satisfy first-
order stochastic dominance. Let us denote first-order stochastic dominance byFSD. Formally,

Definition 1 (First-Order Stochastic Dominance (FSD)) Given two cumulative distributionsF1

andF2,

F1 FSD F2 iff ∀y F1(y) ≤ F2(y) (1)

For a multi-valued parentX, we define monotonicity as satisfying a set of constraints onthe
cumulative distributions for any pair of configurationsxi, xj of X such thatxi ≥ xj.

Definition 2 (FSD Monotonicity) Let X and Y be random variables in a Bayesian network
whereY is the child (target) of a single parent variableX. Y is FSD monotonic inX if

Fxi
(Y | X = xi) FSD Fxj

(Y | X = xj) ∀ xi, xj , xi ≥ xj (2)

In the case where the number of parents is more than one we define FSD monotonicity in the
ceteris paribussense,i.e., all other variable assignments being equal. SupposeY has multiple
parentsX1, X2, . . . , Xq. Y is FSD monotonic inXi if and only if Eq. (2) holds when all the
variable assignments forX1, . . . , Xi−1, Xi+1, . . . , Xq are held fixed. The termisotonicrefers to a
positive monotonic relationship,i.e.,Y increases asX increases, and the termanti-tonic refers to
a negative monotonic relationship,i.e.,Y decreases asX increases. When no confusion will arise
we will use the term monotonic to refer to either relationship.

3 Constrained Logistic Regression Models

In this section, we present variants of constrained regression models with varying degrees of com-
plexity. Here we hope to show that not all variants and modelsof logistic regression are ideally
suited in addressing the problem of estimating conditionalprobabilities of nodes with a large num-
ber of parents especially in the context of very small training set sizes. Such remark is based on the
number of constraints that each model requires to exploit monotonicity between random variables.
Figure 3 shows a specific example of the set of constraints needed to implement monotonicity for
a Bayesian network with a ternary targetY and a ternary parentX. It is clear that as the number
of parentsN increases the number of configurations and the number of constraints required to
exploit monotonocity also increase exponentially. For instance, without finding a way to reduce
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P (Y | X) Y = 0 Y = 1 Y = 2
X = 0 θ0 θ3 1−θ0−θ3
X = 1 θ1 θ4 1−θ1−θ4
X = 2 θ2 θ5 1−θ2−θ5

Constraints :
θ0 ≥ θ1
θ1 ≥ θ2

θ0 + θ3 ≥ θ1 + θ4
θ1 + θ4 ≥ θ2 + θ5

Figure 3: CPT parameters (left table) for ternary variablesX (parent) andY (target). The set of
constraints (right table) that are required to implement monotonicity betweenX andY .

the number of parameters, the total number of parameters to be fitted is exponential inN , i.e.,
(|Y | − 1)

∏N

i=1 |Xi|. In the simplest case, if there aren binary parents of a binary target the set
of constraints can be depicted as a hypercube whose nodes areparent configurations and in which
any pair of configurations that differ only in one position isconnected by an edge. The number of
edges in the hypercubei.e., the number of constraints, isn2n−1. We now present a way to reduce
the number of parameters while at the same time respecting the required monotonicity constraints.
We propose to estimate the parameters using a more compact representation, a logistic function.

3.1 Constrained Logistic Regression Model 1 (M 1

CLR)

In the first model, the conditional probability distribution is estimated by using the parents (as
opposed to parent levels) of the target random variable. In this model,kY (equal to the number of
levels of the target variable) logistic functions are used and normalized exponentiation is applied
to calculate the conditional probability distribution given a parent configuration.

Definition 3 (M1
CLR) LetY be a child variable withkY levels1, kY > 2, in a Bayesian network BN

with parentsX1, . . . , Xn. Assume thatkY is indexed as0, . . . , kY −1. Given some configuration
c = 〈x1, . . . , xn〉, define

P (Y =j|c)=
exp{β0j + β1jX1 + · · ·+ βnjXn}

∑kY−1
j′=0 exp{β0j′ + β1j′X1 + · · ·+ βnj′Xn}

(3)

Also, let the following set of constraints hold:

1. For i = 1, . . . , n andj = 0, . . . , kY −1

βXi

ij ≥ 0 (4)

2. For each pair of configurationc1 = 〈x1, . . . , xq, . . . , xn〉 andc2 = 〈x1, . . . , x
′

q, . . . , xn〉 such

1The simpler binary cases can be handled with just one logistic function.

5



thatx′

q > xq, where1 ≤ q ≤ n and for∀j, j = 0, . . . , kY −1

∑j

j′=0 exp{β0j′ + β1j′x1 + · · ·+ βqj′xq + · · ·+ βnj′xn}
∑kY−1

j′′=0 exp{β0j′′ + β1j′′x1 + · · ·+ βqj′′xq + · · ·+ βnj′′xn}
≥

∑j

j′=0 exp{β0j′ + β1j′x1 + · · ·+ βqj′x
′

q + · · ·+ βnj′xn}
∑kY−1

j′′=0 exp{β0j′′ + β1j′′x1 + · · ·+ βqj′′x′

q + · · ·+ βnj′′xn}
(5)

Theorem 1 Let Y be a child variable withkY levels,kY > 2, in a Bayesian network BN with
parentsX1, . . . , Xn. If M1

CLR is the constrained logistic regression model,Q+ the qualitative
influence of eachXi onY , i = 1, . . . , n thenY is FSD monotonic inXi.

To prove the theorem, we need to show the following:

(a) Let θcmj denote a CPT parameter for configurationcm and for classj of Y , i.e.,Y = j in the
CPT table. Then

0 ≤ θcmj ≤ 1 (6)

(b) For any configurationcm,

kY −1
∑

j=0

θcmj = 1 (7)

(c) For any pair of configurationsc1, c2 such thatc2 > c1 ceteris paribus,

Fc2(j) ≤ Fc1(j) (8)

for j = 0, . . . , kY − 1.

The proof is trivial. Condition(a) above follows immediately from the definition of sigmoid logis-
tic functions and Condition(b) follows from the definition of normalized exponentiation. Condi-
tion (c) follows immediately from Eq. (5).

The number of constraintsN1
C for this model is exponential and is equal to(kY −1) times the

number of edges in a lattice formed by mapping a configurationto a node in the lattice where
nodes that differ only in one position are connected by an edge. In the simplest case, if there aren
parents and each parent is a binary random variable, the lattice is ann-hypercube where the number
of edges isn2n−1. The number of constraints therefore is(kY −1)n2n−1 and hence exponential in
the number of parents. However, the number ofβ parameters for modelM1

CLR, N1
β , is kY (1 + n).

Hence, the number of parameters we need to fit only grows linearly in the number of parents.
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3.2 Constrained Logistic Regression Model 2 (M 2

CLR)

Unlike the first model, the second model offers more representational flexibility by estimating the
conditional probability distribution using the levels of the parents of the target random variable
instead of associating only a single parameter for each parent. Here, we estimate the conditional
distribution by usingkY −1 logistic functions. The conditional probabilities of the child random
variableY are obtained by subtracting adjacent levels ofY .

Definition 4 (M2
CLR) LetY be a child variable withkY levels,kY ≥ 2, in a Bayesian network BN

with parentsX1, . . . , Xn where eachXi haskXi
levels,kXi

≥ 2 for i = 1, . . . , n. Assume thatkY
is indexed as0, . . . , kY −1. Given some configurationc = 〈x1, . . . , xn〉, define

log
P (Y > j|c)

P (Y ≤ j|c)
=β0j + βX1

1j I[X1 ≥ 1] + · · ·+ βX1

kX1
jI[X1 ≥ kX1

] + · · ·+

βXn

1j I[Xn ≥ 1] + · · ·+ βXn

kXnj
I[Xn ≥ kXn

] for j=0, . . . , kY −2 (9)

Also, let the following set of constraints hold

1. For i = 1, . . . , n, r = 1, . . . , kXi
, andj = 0, . . . , kY −2

βXi

rj ≥ 0 (10)

2. For each configuration〈x1, . . . , xn〉 andj, j = 1, . . . , kY −2

β0(j−1) + βX1

1(j−1)I[X1 ≥ 1] + · · ·+ βX1

kX1
(j−1)I[X1 ≥ kX1

] + . . .+

βXn

1(j−1)I[Xn ≥ 1] + · · ·+ βXn

kXn (j−1)I[Xn ≥ kXn
] ≥

β0j + βX1

1j I[X1 ≥ 1] + · · ·+ βX1

kXi
jI[X1 ≥ kX1

] + . . .+

βXn

1j I[Xn ≥ 1] + · · ·+ βXn

kXnj
I[Xn ≥ kXn

] (11)

Definition 4 expresses the log odds ratio between the cumulative conditional probabilities
P (Y > j|c) andP (Y ≤ j|c) as a linear function of the levels of the parent variablesX1, . . . , Xn.
Such formulation allows one to model the contribution of each level ofXi to the log odds ratio via
theβ parameters. As will be shown below, domain knowledge about monotonic qualitative influ-
ences can be exploited to speed up Bayesian network learning by imposing constraints on these
parameters and then solving the corresponding optimization problem. In addition, synergistic and
anti-synergistic influences between different parents canvery well be modeled by adding extra
terms. For instance, if we want to model a synergistic interaction in a Bayesian network with two
ternary-valued parentsX1 andX2 wheneverX1 ≥ 1 andX2 ≥ 2, then such can be expressed as

log
P (Y > j|c)

P (Y ≤ j|c)
= β0j + βX1

1j I[X1 ≥ 1] + βX1

2j I[X1 ≥ 2] + βX2

1j I[X2 ≥ 1] + βX2

2j I[X2 ≥ 2] +

βX1X2

1j I[X1 ≥ 1]I[X2 ≥ 2] (12)
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For a child variable withkY levels, we only need to fitkY − 1 logistic functions,i.e.,one less than
the number ofkY levels since the last CPT column can be obtained by subtracting the cumulative
probability atj = (kY − 2) from 1. The number of parameters needed to be fitted in this model
is linear in the total number of levels of the parents. In particular, if N2

β denote the number of
parameters thenN2

β = (kY−1)[1+
∑n

i=1(kXi
−1)]. However, as inM1

CLR the number of constraints
is still exponential in the number of parents. IfN2

C denote the number of constraints for model
M2

CLR thenN2
C = (kY −1)

∑n

i=1(kXi
− 1) + (kY − 2)

∏n

i=1 kXi
. The first term is the total number

of constraints from Eq. (10). The second term sums up all the constraints for all configurations as
stated in Eq. (11).

Theorem 2 Let Y be a child variable withkY levels,kY > 2, in a Bayesian network BN with
parentsX1, . . . , Xn where eachXi haskXi

levels,i = 1, . . . , n. If M2
CLR is the constrained logistic

regression model,Q+ the qualitative influence of eachXi onY , thenY isFSD monotonic inXi.

To prove the theorem, we need to show the following:

(a) Let θcmj denote a CPT parameter for configurationcm and for classj of Y , i.e.,Y = j in the
CPT table. Then

0 ≤ θcmj ≤ 1 (13)

(b) For any configurationcm,

kY −1
∑

j=0

θcmj = 1 (14)

(c) For any pair of configurationsc1, c2 such thatc2 > c1 ceteris paribus,

Fc2(j) ≤ Fc1(j) (15)

for j = 0, . . . , kY − 1.

Given a configurationcm = 〈xi1, . . . , xin〉, the log odds ratio as expressed in our model is

log
P (Y > j|cm)

P (Y ≤ j|cm)
=β0j + βX1

1j I[X1 ≥ 1] + · · ·+ βX1

kX1
jI[X1 ≥ kX1

] + · · ·+

βXn

1j I[Xn ≥ 1] + · · ·+ βXn

kXnj
I[Xn ≥ kXn

] for j=0, . . . , kY −2 (16)

Let c1 = 〈x11, . . . , x1q, . . . , x1n〉 andc2 = 〈x21, . . . , x2q, . . . , x2n〉 be a pair of configurations
such thatc1 < c2 ceteris paribus, i.e., they differ only at a single positionq so thatx1q < x2q. Let
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P (Y = j|cm) = θcmj. We want to show that for all valuesj, j = 0, . . . , kY −2, it is the case that
Fc2(j) ≤ Fc1(j). Assumingj = 0, from Eq. (16) we have fori = 1, 2

log
P (Y > 0|cm)

P (Y ≤ 0|cm)
=β00 + βX1

10 I[X1 ≥ 1] + · · ·+ βX1

kX1
0I[X1 ≥ kX1

] + · · ·+

βXn

10 I[Xn ≥ 1] + · · ·+ βXn

kXn0
I[Xn ≥ kXn

] (17)

1− θcm0

θcm0

=exp{β00 + βX1

10 I[X1 ≥ 1] + · · ·+ βX1

kX1
0I[X1 ≥ kX1

] + · · ·+

βXn

10 I[Xn ≥ 1] + · · ·+ βXn

kXn0
I[Xn ≥ kXn

]} (18)

Sincec2 > c1, Eq. (18) implies that

θc10=
1

1+exp{β00+βX1

10 +· · ·+βX1

k10
+· · ·+β

Xq

10 +· · ·+β
Xq

kq0
+· · ·+βXn

10 + · · ·+βXn

kn0
}

(19)

θc20=
1

1+exp{β00+βX1

10 +· · ·+βX1

k10
+· · ·+β

Xq

10 +· · ·+β
Xq

kq0
+β

Xq

(k+1)q0
+· · ·+βXn

10 +· · ·+βXn

kn0
}

(20)

for some(k1 ≤ kX1
), . . . , (kq ≤ kXq

), ((k + 1)q ≤ kXq
), . . . , (kn ≤ kXn

). Since Eq. (10) holds, it
is clear from Eqs. (19) and (20) thatθc10 ≥ θc20.

Now, suppose that0 < j ≤ (kY −2). From Eq. (16),

1−
∑j

j′=0 θcmj′

∑j

j′=0 θcmj′

=exp{β0j + βX1

1j I[X1 ≥ 1] + · · ·+ βX1

kX1
jI[X1 ≥ kX1

] + · · ·+

βXn

1j I[Xn ≥ 1] + · · ·+ βXn

kXnj
I[Xn ≥ kXn

]} (21)

Sincec2 > c1,

j
∑

j′=0

θc1j′ =
1

1+exp{β0j+βX1

1j +· · ·+βX1

k1j
+· · ·+β

Xq

1j +· · ·+β
Xq

kqj
+· · ·+βXn

1j + · · ·+βXn

knj
}

(22)

and

j
∑

j′=0

θc2j′ =
1

1+exp{β0j+βX1

1j +· · ·+βX1

k1j
+· · ·+β

Xq

1j +· · ·+β
Xq

kqj
+β

Xq

(k+1)qj
+· · ·+βXn

1j +· · ·+βXn

knj
}

(23)

Again, from Eqs. (22) and (23)

j
∑

j′=0

θc1j′ ≥

j
∑

j′=0

θc2j′
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since Eq. (10) holds. By definition,

Fc2(j) ≤ Fc1(j)

holds forj = 0, . . . , kY − 2. Note, however, that once we have shown Eq. (14) to hold, we will
have shown that Eq. (15) also holds,i.e., for all levels ofY .

Observe that

j
∑

j′=0

θcmj′ =
1

1+exp{β0j+βX1

1j +· · ·+βX1

k1j
+· · ·+β

Xq

1j +· · ·+β
Xq

kqj
+· · ·+βXn

1j + · · ·+βXn

knj
}

(24)

and that

θcmj=

j+1
∑

j′=0

θcmj′ −

j
∑

j′′=0

θcmj′′ (25)

Hence,

kY −1
∑

j=0

θcmj = θcm0 + [(θcm0 + θcm1)− θcm0] + . . .+

[

j
∑

j′=0

θcmj′ −

j−1
∑

j′=0

θcmj′

]

+

[

j+1
∑

j′=0

θcmj′ −

j
∑

j′=0

θcmj′

]

+. . .+

[

kY−2
∑

j′=0

θcmj′ −

kY−3
∑

j′=0

θcmj′

]

+

[

1−

kY−2
∑

j′=0

θcmj′

]

(26)

= 1 (27)

Since every term in the RHS of Eq. (26) cancels out except the penultimate term1, Eq. (14) holds,
and therefore Eq. (15) follows.
Now, we need to show that eachθcmj ∈ [0, 1]. Supposej = 0 then

j
∑

j′=0

θcmj′ = θcm0 =
1

1+exp{β0j+βX1

1j +· · ·+βX1

k1j
+· · ·+βXn

1j + · · ·+βXn

knj
}

(28)

Since Eq. (28) is a logistic sigmoid function,θcm0 ∈ [0, 1]. Now, suppose that0 < j ≤ kY − 1,
then

θcmj =

j+1
∑

j′=0

θcmj′−

j
∑

j′=0

θcmj′ (29)

=
1

1+exp{β0(j+1)+βX1

1(j+1)+· · ·+βX1

k1(j+1)+· · ·+βXn

1(j+1) + · · ·+βXn

kn(j+1)}

−
1

1+exp{β0j+βX1

1j +· · ·+βX1

k1j
+· · ·+βXn

1j + · · ·+βXn

knj)
}

(30)
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However, from the constraint in Eq. (11),

exp{β0j+βX1

1j +· · ·+βX1

k1j
+· · ·+βXn

1j + · · ·+βXn

knj)
} ≥

exp{β0(j+1)+βX1

1(j+1)+· · ·+βX1

k1(j+1)+· · ·+βXn

1(j+1) + · · ·+βXn

kn(j+1)} (31)

Eqs. (30) and (31) together imply that

θcmj ≥ 0 (32)

Since the two terms in the RHS of Eq. (30) are logistic sigmoid functions their difference can not
exceed1. Hence0 ≤ θcmj ≤ 1. QED.

In the case of binary target variables the required constraint is simpler,i.e., the constraints on
theβXi

rj parameters suffice.

Corollary 3 (M2a
CLR) LetY be a child variable withkY levels,kY = 2, in a Bayesian network BN

with parentsX1, . . . , Xn where eachXi haskXi
levels, i = 1, . . . , n. Suppose thatQ+ is the

qualitative influence of eachXi onY and thatM2
CLR is the constrained logistic regression model

with the set of constraints replaced by

βXi

rj ≥ 0 (33)

ThenY is FSD isotonic inXi.

We need to show that

(a) For any configurationcm and for classj = 0, 1 of Y

0 ≤ θcmj ≤ 1 (34)

(b) For any configurationcm,

θcm0 + θcm1 = 1 (35)

(c) For any pair of configurationsc1, c2 such thatc2 > c1 ceteris paribus,

Fc2(j) ≤ Fc1(j) (36)

for j = 0, 1.

Since there are only two CPT cells in each row corresponding toa configurationcm, we need only
solve the value for one of the cells. Let us denote this asθcm0. Soθcm1=1− θcm0. Hence we only
need perform one logistic regression. From our definition, the log odds ratio is

log
P (Y > 0|cm)

P (Y ≤ 0|cm)
=β00 + βX1

10 I[X1 ≥ 1] + · · ·+ βX1

kXi
0I[X1 ≥ kX1

] + · · ·+

βXn

10 I[Xn ≥ 1] + · · ·+ βXn

kXn0
I[Xn ≥ kXn

] (37)
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1− θcm0

θcm0

=exp{β00 + βX1

10 I[X1 ≥ 1] + · · ·+ βX1

kX1
0I[X1 ≥ kX1

] + · · ·+

βXn

10 I[Xn ≥ 1] + · · ·+ βXn

kXn0
I[Xn ≥ kXn

]} (38)

Suppose we choose two configurationsc1 andc2 so thatc2 > c1 ceteris paribus, Eq. (38) implies
that

θc10=
1

1+exp{β00+βX1

10 +· · ·+βX1

k10
+· · ·+β

Xq

10 +· · ·+β
Xq

kq0
+· · ·+βXn

10 + · · ·+βXn

kn0
}

(39)

θc20=
1

1+exp{β00+βX1

10 +· · ·+βX1

k10
+· · ·+β

Xq

10 +· · ·+β
Xq

kq0
+β

Xq

(k+1)q0
+· · ·+βXn

10 +· · ·+βXn

kn0
}

(40)

for some(k1 ≤ kX1
), . . . , (kq ≤ kXq

), ((k + 1)q ≤ kXq
), . . . , (kn ≤ kXn

).

Since Eq. (33) holds, it is clear from Eqs. (39) and (40) thatθc10 ≥ θc20. The condition in Eq. (35) is
trivial since for anycm, θcm0+(1−θcm0) = 1. So, whenj = 0,Fc2(0) ≤ Fc1(0) becauseθc20 ≤ θc10
from Eqs. (39) and (40). In addition, whenj = 1, it is the case thatFc2(1) = Fc1(1) = 1. There-
fore, the condition for stochastic dominance in (36) is alsosatisfied. Now, we need to show that
θcm0 andθcm1 are points in the interval[0, 1]. This immediately follows sinceθcm0 is a logistic
sigmoid function and sinceθcm1 = 1− θcm0, it follows that0 ≤ θcmj ≤ 1, j = 0, 1. QED

Although the number of constraintsN2
C as shown in Theorem 2 is exponential in the number

of parents,N2
C = (kY −1)

∑n

i=1 kXi
+ (kY − 2)

∏n

i=1 kXi
, it is possible to impose constraints on

theβ parameters so that the resulting number of constraints do not depend on the number of parent
configurations. We can do this by replacing the constraints in Eq. 11 with a set of stronger but
simpler constraints.

Corollary 4 (M2b
CLR) Let Y be a child variable withkY levels,kY > 2, in a Bayesian network

BN with parentsX1, . . . , Xn where eachXi haskXi
levels, i = 1, . . . , n. Suppose thatQ+ is

the qualitative influence of eachXi onY , i = 1, . . . , n and thatM2
CLR is the constrained logistic

regression model with the set of constraints replaced by

1. For i = 1, . . . , n, r = 1, . . . , kXi
, andj = 0, . . . , kY −1

βXi

rj ≥ 0 (41)
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2. For each pair(j − 1),j, wherej = 1, . . . , kY −2

β0(j−1) ≥ β0j

βX1

1(j−1) ≥ βX1

1j

...

βX1

kX1
(j−1) ≥ βX1

kX1
j

...

βXn

1(j−1) ≥ βXn

1j

...

βXn

kXn (j−1) ≥ βXn

kXnj
(42)

ThenY is FSD monotonic inXi.

It is obvious that if each component in the LHS of Eq. (11) is atleast as large as its corresponding
component in the RHS then the sum of the LHS is at least as large as the sum of the RHS. Hence,
Eq. (42) implies Eq. (11).QED.

Here, the number ofβ parameters is(kY −1)[1 +
∑n

i=1(kXi
−1)]. The advantage of using

Corollary 4 is that the number of constraints no longer dependon the number of configurations.
In fact, the number of constraints, like the number ofβ parameters, is also linear in the number of
parent levels. In particular, ifN2′

C denote the number of constraints thenN2′

C = (kY−1)
∑n

i=1 kXi
+

(kY − 2)[1 +
∑n

i=1 kXi
].

3.3 Constrained Logistic Regression Model 3 (M 3

CLR)

As in M2
CLR, the conditional distribution in the third model is estimated by using the parent levels

of the random variable. Here, we also estimate the conditional distribution by estimatingkY −1
logistic functions and then subtract the values of the estimated adjacent logistic functions to com-
pute the conditional distribution ofY given a parent configuration. The main difference between
M2

CLR andM3
CLR is that theβ parameters inM3

CLR are constrained to increase as the parent level
is increased. In addition, the inequality≥ in the indicator functionI for a parent level is replaced
by the equality operator. We show that the constraints we impose on theβ parameters ofM3

CLR

are sufficient for first-order stochastic dominance.

Definition 5 (M3
CLR) LetY be a child variable withkY levels,kY ≥ 2, in a Bayesian network BN

with parentsX1, . . . , Xn where eachXi haskXi
levels,kXi

≥ 2 for i = 1, . . . , n. Given some
configurationc = 〈x1, . . . , xn〉, define

log
P (Y > j|c)

P (Y ≤ j|c)
=β0j + βX1

1j I[X1 = 1] + · · ·+ βX1

kX1
jI[X1 = kX1

] + · · ·+

βXn

1j I[Xn = 1] + · · ·+ βXn

kXnj
I[Xn = kXn

] for j=0, . . . , kY −2 (43)

Also, let the following set of constraints hold

13



1. For each parentXi, i = 1, . . . , n andj = 0, . . . , kY −1

βXi

kXi
j ≥ βXi

(kXi
−1)j ≥ · · · ≥ βXi

2j ≥ βXi

1j ≥ 0 (44)

2. For each pair(j − 1),j, wherej = 1, . . . , kY −2

β0(j−1) ≥ β0j

βX1

1(j−1) ≥ βX1

1j

...

βX1

kX1
(j−1) ≥ βX1

kX1
j

...

βXn

1(j−1) ≥ βXn

1j

...

βXn

kXn (j−1) ≥ βXn

kXnj
(45)

Definition 5 expresses the log odds ratio between the cumulative conditional probabilities
P (Y > j|c) andP (Y ≤ j|c) as a linear function of the levels of the parent variablesX1, . . . , Xn.
Such formulation allows one to model the contribution of each level ofXi to the log odds ratio
via theβ parameters. The main difference between Definition 5 and Definition 4 is that in the
latter the contribution of the parent levels are arranged sothat they become cumulative (similar to
a thermometer bar) where ifX = k for somek then all termsX = k′, k′ < k also need to be true.
In the former case the contribution of each parent level is independent of the contribution of the
other parent levels.M3

CLR also allows the expression of synergistic and anti-synergistic influences
where terms that interact are simply added to the linear function, similar toM2

CLR (see Eq. (12)
for an example underM2

CLR). In addition, the number of constraintsN3
C for modelM3

CLR is lin-
ear in the number of parent levels sinceN3

C = n +
∑n

i=1(kXi
−1) + (kY −1)

∑n

i=1(kXi
−1) =

n + kY
∑n

i=1(kXi
−1). The number ofβ parameters,N3

β , is also linear in the number of parent
levels,N3

β = (kY −1)[1 +
∑n

i=1(kXi
−1)].

Theorem 5 Let Y be a child variable withkY levels,kY > 2, in a Bayesian network BN with
parentsX1, . . . , Xn where eachXi haskXi

levels, i = 1, . . . , n. If M3
CLR is the constrained

logistic regression model,Q+ the qualitative influence of eachXi onY , thenY isFSD monotonic
in Xi.

To prove the theorem, again we need to show the following:

(a) Let θcmj denote a CPT parameter for configurationcm and for classj of Y , i.e.,Y = j in the
CPT table. Then

0 ≤ θcmj ≤ 1 (46)
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(b) For any configurationcm,

kY −1
∑

j=0

θcmj = 1 (47)

(c) For any pair of configurationsc1, c2 such thatc2 > c1 ceteris paribus,

Fc2(j) ≤ Fc1(j) (48)

for j = 0, . . . , kY − 1.

Given a configurationcm = 〈xi1, . . . , xin〉, the log odds ratio as expressed usingM3
CLR is

log
P (Y > j|cm)

P (Y ≤ j|cm)
=β0j + βX1

1j I[X1 = 1] + · · ·+ βX1

kXi
jI[X1 = kX1

] + · · ·+

βXn

1j I[Xn = 1] + · · ·+ βXn

kXnj
I[Xn = kXn

] for j=0, . . . , kY −2 (49)

Let c1 = 〈x11, . . . , x1q, . . . , x1n〉 andc2 = 〈x21, . . . , x2q, . . . , x2n〉 be a pair of configurations
such thatc1 < c2 ceteris paribus, i.e., they differ only at a single positionq so thatx1q < x2q.
Also, let P (Y = j|cm) = θcmj. As in previous sections, we want to show that for all values
j, j = 0, . . . , kY −2, it is the case thatFc2(j) ≤ Fc1(j). Assumingj = 0, from Eq. (49) we have
for i = 1, 2

log
P (Y > 0|cm)

P (Y ≤ 0|cm)
=β00 + βX1

10 I[X1 = 1] + · · ·+ βX1

kX1
0I[X1 = kX1

] + · · ·+

βXn

10 I[Xn = 1] + · · ·+ βXn

kXn0
I[Xn = kXn

] (50)

1− θcm0

θcm0

=exp{β00 + βX1

10 I[X1 = 1] + · · ·+ βX1

kX1
0I[X1 = kX1

] + · · ·+

βXn

10 I[Xn = 1] + · · ·+ βXn

kXn0
I[Xn = kXn

]} (51)

Eq. (51) implies that

θc10=
1

1+exp{β00+· · ·+ β
Xq

kq0
+· · ·+β

Xp

kp0
}

(52)

θc20=
1

1+exp{β00+· · ·+β
Xq

k′q0
+· · ·+β

Xp

kp0
}

(53)

Sincec2 > c1, there exists indiceskq andk′

q such thatkq ≤ k′

q ≤ kXq
for some parentXq of Y

whereq < p ≤ n. By Eq. (44),βXq

k′q0
≥ β

Xq

kq0
. Hence, Eqs. (52) and (53) imply thatθc10 ≥ θc20.
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Now, suppose that0 < j ≤ (kY −2). From Eq. (49),

1−
∑j

j′=0 θcmj′

∑j

j′=0 θcmj′

=exp{β0j + βX1

1j I[X1 = 1] + · · ·+ βX1

kX1
jI[X1 = kX1

] + · · ·+

βXn

1j I[Xn = 1] + · · ·+ βXn

kXnj
I[Xn = kXn

]} (54)

sincec2 > c1, Eq. (54) implies

j
∑

j′=0

θc1j′ =
1

1+exp{β0j+· · · β
Xq

kqj
+· · ·+β

Xp

kpj
}

(55)

and
j

∑

j′=0

θc2j′ =
1

1+exp{β0j+· · · β
Xq

k′qj
+· · ·+β

Xp

kpj
}

(56)

wherek′

q > kq andq < p ≤ n. Again, from Eqs. (55) and (56)

j
∑

j′=0

θc1j′ ≥

j
∑

j′=0

θc2j′

since according to Eq. (44),βXq

k′qj
≥ β

Xq

kqj
. By definition,

Fc2(j) ≤ Fc1(j)

holds forj = 0, . . . , kY − 2. Again, note that once we have shown Eq. (47) to hold, we will have
shown that Eq. (48) also holds,i.e., for all levels ofY .

Observe that
j

∑

j′=0

θcmj′ =
1

1+exp{β0j+ · · · β
Xq

kqj
+· · ·+β

Xp

kpj
}

(57)

and that

θcmj=

j+1
∑

j′=0

θcmj′ −

j
∑

j′′=0

θcmj′′ (58)

Hence,

kY −1
∑

j=0

θcmj = θcm0 + [(θcm0 + θcm1)− θcm0] + . . .+

[

j
∑

j′=0

θcmj′−

j−1
∑

j′=0

θcmj′

]

+

[

j+1
∑

j′=0

θcmj′−

j
∑

j′=0

θcmj′

]

+ . . .+

[

kY−2
∑

j′=0

θcmj′−

kY−3
∑

j′=0

θcmj′

]

+

[

1−

kY−2
∑

j′=0

θcmj′

]

(59)

= 1 (60)
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Since every term in the RHS of Eq. (59) cancels out except the penultimate term1, Eq. (47) holds,
and therefore Eq. (48) follows.

Now, we need to show that eachθcmj ∈ [0, 1]. Supposej = 0 then

j
∑

j′=0

θcmj′ = θcm0 =
1

1+exp{β0j+· · ·+β
Xq

kqj
+· · ·+β

Xp

kpj
}

(61)

for q<p≤n. Since Eq. (61) is a logistic sigmoid function,θcm0 ∈ [0, 1]. Suppose that0<j≤kY−1,
then

θcmj =

j+1
∑

j′=0

θcmj′−

j
∑

j′=0

θcmj′ (62)

=
1

1+exp{β0(j+1)+· · ·+β
Xq

kq(j+1)+· · ·+β
Xp

kp(j+1)}

−
1

1+exp{β0j+· · ·+β
Xq

kqj
+· · ·+β

Xp

kpj)
}

(63)

However, from the constraint in Eq. (45),

exp{β0j+· · ·+β
Xq

kqj
+· · ·+β

Xp

kpj)
} ≥

exp{β0(j+1)+· · ·+β
Xq

kq(j+1)+· · ·+β
Xp

kp(j+1)} (64)

Eqs. (63) and (64) together imply that

θcmj ≥ 0 (65)

Since the two terms in the RHS of Eq. (63) are logistic sigmoid functions their difference can not
exceed1. Hence0 ≤ θcmj ≤ 1. QED.

4 Enforcing margins

Given two parent configurationsc1 andc2 wherec1 < c2, the idea of enforcing a non-negative
margin ǫ > 0 between the cumulative distributionFc1 andFc2 has appeared to help improve
classification accuracy as reported in previous work [2]. Inthis section, we discuss how margins
could be enforced in the constrained logistic regression setting usingM3

CLR as an example to
demonstrate the idea. The margins, which can also be elicited from a domain expert, can help
strengthen monotonicity assumptions and could be considered beneficial in the design of classifiers
especially in cases where there are very small amounts of training data. Enforcing margins has the
effect of reducing the hypothesis search space (see Figure 4) during parameter fitting2. After fitting

2Parameter fitting can be done via maximum likelihood estimation (see [11, 15, 2]) for more detailed discussion.
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θ1

θ2

with margin

no margin

Figure 4: Effect of the margin on the parameter space in the logistic regression setting

theβ parameters one could easily get, if needed, the correspondingθ parameters by plugging in the
β parameters to the corresponding logistic functions, for example by using Eq. (52) and (53). The
solid curve in Figure 4 divides the space of possible parameter values into two regions:θ1 ≥ θ2
which is the region to the right of the solid curve andθ1 ≤ θ2 which is the region to the left of the
solid curve. When a margin is enforced, the region in whichθ1 ≥ θ2 becomes smaller (confined to
the shaded region under the dashed curve). This focuses the search for parameter values toward a
much smaller region where correct parameter values are likely to be in, potentially aiding in faster
learning with sparse data sets. The idea simply means that instead of the inequality in Eq. (48) we
now require that their difference be at least some marginǫ.

Fc2(j) + ǫ ≤ Fc1(j) (66)

There are some issues involving how the marginǫ should be chosen and how it should be enforced.
For example, it is possible thatǫ could be chosen based on some probability distribution and
as more evidence becomes available a posterior distribution could be obtained from the initial
prior distribution. Also, the margins between cumulative distributions need not be equal,i.e.,
for some cumulative distributionsFcm(j), Fcm+1

(j), Fcm+2
(j) margins can be enforced such that

Fcm(j)−Fcm+1
(j) ≥ ǫm andFcm+1

(j)−Fcm+2
(j) ≥ ǫm+1, ǫm 6= ǫm+1. Many issues still remain

unclear as to what the best approach for enforcing margins should be and we hope to address them
in future work. Meantime, we are interested in finding a way toadjust the margin without solving
an exponential number of constraints.

Let us state what the problem is in the context ofM3
CLR. Given a pair of configurationc1 and

c2, wherec2 > c1 ceteris paribuswe want

Fc1(j)−Fc2(j) ≥ ǫ (67)

which implies
j

∑

j′=0

θc1j′ −

j
∑

j′=0

θc2j′ ≥ ǫ (68)

for j = 0, . . . , kY −2. From Eq. (43),
1

1+exp{β0j+· · · β
Xq

kqj
+· · ·+βXm

kmj}
−

1

1+exp{β0j+· · · β
Xq

k′qj
+· · ·+βXm

kmj}
≥ ǫ (69)
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wherek′

q = kq + 1. Note that by Eq. (44),βXq

k′qj
≥ β

Xq

kqj
. If we group theβ terms that are equal and

assign their sum as some constantκ then we can rearrange the above inequality into

1

1+exp{κ+ β
Xq

kqj
}
−

1

1+exp{κ+ β
Xq

k′qj
}
≥ ǫ (70)

It is not desirable to use Eq. (70) for each pair of configuration c1 andc2 since this will generate
an exponential number of constraints. Our goal then is to finda way to controlǫ by adjusting the
difference between the parametersβ

Xq

k′qj
andβXq

kqj
. From the LHS of Eq. (70) we have

1

1+exp{κ+ β
Xq

kqj
}
−

1

1+exp{κ+ β
Xq

k′qj
}

(71)

Given thatβXq

k′qj
≥ β

Xq

kqj
it can be shown from Eq. (71) that by adjusting(βXq

k′qj
−β

Xq

kqj
) the resulting

margin is bounded. Define

M
Xq

kqk′qj
= (β

Xq

k′qj
−β

Xq

kqj
) (72)

If we let βXq

k′qj
→ +∞ in Eq. (71) then[Fc1(j)−Fc2(j)] tends toward the limit

1

1+exp{κ+ β
Xq

kqj
}

(73)

and ifβXq

kqj
→ β

Xq

k′qj
, then[Fc1(j)−Fc2(j)] → 0. Hence the bounds are

0 ≤ [Fc1(j)−Fc2(j)] ≤
1

1+exp{κ+ β
Xq

kqj
}

(74)

The obvious implication here is that one can control the margin by adjusting the difference
betweenβXq

k′qj
andβXq

kqj
and one simple strategy which has been adopted by Altendorf et al. [2] is to

assign a uniform margin for each pair of conditional cumulative distributions. However, note that
equal difference between any pair ofβ

Xq

k′qj
andβXq

kqj
does not necessarily translate to equal margins

between
∑j

j′=0 θcmj in Eq. (68). In other words, given a specifiedǫ the difference betweenβXq

k′qj

andβXq

kqj
varies from one pair to another. As a simple example, consider a Bayesian network whose

ternary target random variableY is influenced by a single ternary parentX.

P (Y = 0|X) =
1

1 + exp{β00 + βX
10I[X = 1] + βX

20I[X = 2]}
(75)

Suppose thatβ00 = 0.2, βX
10 = 0.4, andβX

20 = 0.6. If theβ parameters have these values (note that
their consecutive differences is0.2) then the margins between the correspondingθcm0, cm = 0, 1, 2

19



are

θ00 − θ10 =
1

1 + exp{β00}
−

1

1 + exp{β00 + βX
10}

=
1

1 + exp{0.2}
−

1

1 + exp{0.2 + 0.4}

= 0.0958 (76)

θ10 − θ20 =
1

1 + exp{β00 + βX
10}

−
1

1 + exp{β00 + βX
20}

=
1

1 + exp{0.2 + 0.4}
−

1

1 + exp{0.2 + 0.6}

= 0.0443 (77)

From the above example, it is clear that unless we know the values of theβ parameters, it is not
possible to uniformly3 set the marginǫ over a set of constraints using the difference between two
consecutiveβ parameters. Moreover, since theβ parameters are not known at the time the margin
is specified the upper bound in Eq. (74) also can not be computed. In other words, given that we
want to enforce a margin ofǫ > 0 it is not possible to specify what the value ofM

Xq

kqk′qj
should be.

Another simple approach to adjusting the marginǫ is to choose a quantity whose range is in
[0, 1] . Define the ratio

R
Xq

kqk′qj
=

β
Xq

kqj

β
Xq

k′qj

(78)

Although this makes the specification of a margin by a domain expert more intuitive in the sense
that the expert need only think of a quantity between0 and1, note that solving the exact ratio for
a givenǫ is still untenable since theβ parameters are not known at the time whenǫ is specified.
Like Eq.(72), this disadvantage is simply the result of the tradeoff between expressing the margin
in terms of theβ parameters and expressing it as a constraint for every configurationscm andcm+1

ceteris paribusvia theθ parameters. As we have mentioned, our goal is to avoid the exponential
number of constraints implicit in the latter method so a feasible initial strategy is to specify the
margins in terms of theβ parameters, instead of the originalθ parameters.

If β
Xq

kqj
→ 0 thenRXq

kqk′qj
→ 0 while if βXq

kqj
→ β

Xq

k′qj
thenRXq

kqk′qj
→ 1. So the bound forRXq

kqk′qj

is,

0 ≤ R
Xq

kqk′qj
≤ 1 (79)

In addition, we can define a termαXq

kqk′qj
such that1 − α

Xq

kqk′qj
= R

Xq

kqk′qj
. If we want to increase

the difference betweenβXq

kqj
andβXq

k′qj
then we simply increaseαXq

kqk′qj
. SettingαXq

kqk′qj
= 0 reduces

3It is still an open question whether a uniform margin is desirable. Previous work by Altendorf, Restificar, and
Dietterich [2] using a uniform amount of margin for each constraint appears to be a good initial strategy.

20



 
00

10 01

20 11

21

ε1 

ε2 

ε3 

ε4

ε5

ε6 

ε7 

Figure 5: Constraint lattice

this difference to0. As α
Xq

kqk′qj
→ 1, the resulting difference in the cumulative distribution of

configurationsc1 andc2 can not exceed1. The argument is the same as that ofM
Xq

kqk′qj
since both

terms in Eq. (71) are logistic functions andαXq

kqk′qj
→ 0 can mean letting eitherβXq

kqj
→ 0 from the

right or βXq

k′qj
→ +∞. The result is exactly that in Eq. (73). From above, we can nowstate the

following formally,

Theorem 6 Suppose thatMXq

kqk′qj
= β

Xq

kq′j
− β

Xq

kqj
andαXq

kqk′qj
= 1−

β
Xq

kqj

β
Xq

k
q′

j

. Then

0 ≤ M
Xq

kqk′qj
< ∞ =⇒ 0 ≤ [Fc1(j)− Fc2(j)] ≤

1

1 + exp{κ+ β
Xq

kqj
}

(80)

0 ≤ α
Xq

kqk′qj
≤ 1 =⇒ 0 ≤ [Fc1(j)− Fc2(j)] ≤

1

1 + exp{κ+ β
Xq

kqj
}

(81)

Now that it is clear that the additional constraints imposedon theβ parameters to enforce
margins result in cumulative distributions that are bounded, let us consider all the cumulative
distributions that are part of a chain of inequality constraints whose cumulative difference along
the chain must not exceed1 lest the feasible region becomes empty. To illustrate the problem, let
us assume another Bayesian network with two parentsX1 andX2. X1 is a ternary random variable
andX2 is a binary random variable. The target,Y , is a ternary variable. Figure 5 shows as edges
the corresponding constraints between cumulative distributions for a specifiedY =j. For example,
the node00 and01 representsF00(j) andF01(j) if we denotec1 = 00 andc2 = 01. The constraint
F00(j)−F01(j) ≥ ǫ1 is represented by the edge labeledǫ1. Note that the longest chain in the lattice
has3 edges. One example is the chainǫ1 :ǫ2 :ǫ3. The corresponding label of the nodes of this chain
satisfycm > cm+1 ceteris paribus. It is also clear that the sumǫ1 + ǫ2 + ǫ3 can not exceed1 lest
the feasible region becomes empty. For example, it is not possible to satisfyǫ1 + ǫ2 > 1. Suppose
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thatǫ1 = kǫ1 wherekǫ1 ∈ [0, 1]. Suppose thatF00(j) = 1, the highest probability value possible,
thenF10(j) = 1 − kǫ1 . Since the smallest valueF20(j) can take is0, the maximum value thatǫ2
can have is also1− kǫ1 . Soǫ1 + ǫ2 = kǫ1 + (1− kǫ1) = 1. Clearly, the sum can not be greater than
1 unlessF00(j) > 1.

So, if we hold eitherMXq

kqk′qj
or αXq

kqk′qj
constant, how does[Fc1(j) − Fc2(j)] behave across

the chain of inequalities in the lattice? Do we have guarantees of monotonicity on the values of
the margins? Unfortunately, for bothMXq

kqk′qj
andαXq

kqk′qj
it is possible to find examples where for

a set ofβ parameters[Fc1(j) − Fc2(j)] is either decreasing, increasing or even nonmonotonic.
As an example, consider again our previous Bayesian network with one parent. Suppose that
this time the parent variable,X, has four levels ({0, 1, 2, 3}) and that we are only interested in
P (Y = 0|cm), cm = 0, 1, 2, 3. If we let β00, βX

10, β
X
20 andβX

30 have as values−1, 0.1, 2.1, and4.1,
respectively, whereMX

kqk′q0
= 2 andκ = 1 then[F0(0) − F1(0)] = 0.02, [F1(0) − F2(0)] = 0.20,

and[F2(0) − F3(0)] = 0.04. Note that[Fcm(j) − Fcm+1
(j)] is nonmonotonic. Hence, in general

there is no way to tell in advance4 how the variousǫm in the constraint lattice of a given problem
will behave given a fixedMXq

kqk′qj
or αXq

kqk′qj
.

5 Related Work

Ng and Jordan [13] analyzed and compared both Naive Bayes and logistic regression classifiers.
Their analyses show that asymptotically, the error of the generative Naive Bayes classifier is higher
than that of the discriminative logistic regression classifier. In addition, however, the parameters of
the Naive Bayes classifier, need only a number of samples that is logarithmic inn, the dimension of
the input space, to be uniformly close to their asymptotic values while that of the logistic regression
classifier need an order ofn examples. Their results indicate that even though the asymptotic error
for Naive Bayes is higher, it could converge more quickly thanthe logistic regression classifier.
This implies, that given a small number of training instances the use of Naive Bayes classifier is
advantageous and experimental results by the authors support their analysis.

Altendorf et al. [2] addressed the problem of learning from very sparse data,e.g.,with number
of training instances ranging only between1 and10, by exploiting qualitative monotonicities, a
specific form of background knowledge. Qualitative monotonicities which can be formalized as
stochastic dominance [16, 1] are statements that describe monotonic relationship between two ran-
dom variables such as ”warm temperature increases increases the size of the mosquito population”
or ”increase in body mass index leads to an increase risk of elevated blood pressure”. The general
idea behind Altendorf et al.’s work is to focus the search forparameters during parameter-fitting to
a smaller region of the hypothesis space that satisfies the constraints implied by the monotonocity
constraints. In addition to the use of margins that reflect the domain expert’s confidence of the
background knowledge the technique significantly outperformed all the other algorithms tested,
including Naive Bayes, in the case where the training data is sparse. This approach, however,
is prone to problems related to parameter estimation especially on Bayesian networks where the

4A possible method might be to perform interleaved optimization for β andMX

kqk
′

q
0

parameters until convergence
is achieved (seee.g.,Ando and Zhang [3]) but as of now we will leave this problem forfuture work.
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number of parents is large,e.g., those that exceed six. The difficulty is largely attributed to an
exponential number of parameters that need to be fitted.

Greiner et al. [11] provide formal analysis and experimental results on learning the parame-
ters of an arbitrary belief network using normalized exponentiation, i.e., using a simple logistic
regression formulation where the linear discriminant of each logistic function only consists of the
β constant. A simple gradient-descent algorithm is given that optimizes the log conditional likeli-
hood for a given set of training instances instead of the joint likelihood. The same approach using
normalized exponentiation is also employed independentlyby Altendorf et al. [2] to exploit mono-
tonicity constraints, although the focus of the latter is orthogonal to that of the former. Greiner et
al. work’s emphasis is on finding a method of improving classification accuracy given a sufficient
(but possibly incomplete) amount of training instances while Altendorf et al. focused on address-
ing the problem of learning with very sparse data. In the context of learning from very sparse data,
both approaches, however, could easily lead to an exponential number of parameters especially
with belief networks with large number of parents.

Roos et al. [15] present a study on the equivalence of conditional probability models that can be
represented by Bayesian networks and those that can be represented by logistic regression. Roos et
al. show that this equivalence holds whenever a given Bayesian networkB has a canonical version
B∗ that is perfect,i.e.,all nodes with a common child are connected. The canonical versionB∗ is
constructed by restrictingB to the Markov blanket of the target classY and adding arcs so that the
parents ofY are fully connected. The authors, however, formulate the logistic regression problem
in Bayesian networks differently from our model. While our model only associatesβ parameters
to parent levels which without parent level interaction is linear in the number of parents, Roos et
al. presented a model which associatesβ parameters to all parent configurations of a node. This
implies that the number ofβ parameters in their model is exponential in the number of parents.
In the context of learning from sparse data, especially whenthe traning set size is between1 and
10, choosing a model with an exponential number of parameters will likely lead to poor parameter
fitting. Evidence of this can be found in our experiments on Bayesian networks with large number
of parents. In addition, while our model exploits background knowledge from domain experts, the
inherent assumption for our approach to become effective inthe sparse data setting, is that there is
only a significantly small number of parent level interactions needed to be explicitly represented.
From the practical standpoint, it is important to note that while our model can scale to a full model
i.e.,with all the parent level interactions explicitly represented, there is no requirement imposed on
the modeler to represent any parent level interaction unless such interaction is deemed necessary.

6 Summary

In this report, we have presented and provided theoretical analyses on three logistic regression
models and their variants in terms of their suitability for Bayesian network learning with very
sparse data. We presented at least two logistic regression models,M2b

CLR andM3
CLR, and have

provided analyses on their suitability as models for Bayesian network learning with very sparse
data. In particular, the number of parameters to be estimated and the number of constraints needed
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to implement stochastic dominance for these models do not grow exponentially in the number of
parents of the target variable. In addition, we have also discussed how margins can be enforced
in the logistic regression setting and have pointed out someof the challenging issues related to its
use, after having demonstrated the advantage of using them to enhance monotonicity in previous
work.
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