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Abstract: In 2004-2005, 2007 and 2009, three major drought disasters occurred in Guangdong 

Province of southern China, which caused serious economic losses. Hence, it has recently become 

an important research subject in China to monitor surface soil moisture (SSM) and the drought 

disaster quickly and accurately. SSM is an effective indicator for characterizing the degree of 



  

drought. First, using the brightness temperatures (Tb) of the Advanced Microwave Scanning 

Radiometer on the EOS Aqua Satellite (AMSR-E), a modified surface roughness index was 

developed to map the land surface roughness. Then by combining microwave polarization 

difference indices (MPDI)-based vegetation cover classification and the modified surface 

roughness index, a simple semi-empirical model of SSM was derived from the passive microwave 

radiative transfer equation using AMSR-E C-band Tb and observed surface soil temperature (Ts). 

The model was inverted to calculate SSM. The results show the ability to discriminate over a 

broad range of SSM (7%~73%) with an accuracy of 2.11% in bare ground and flat areas (R2 

=0.87), 2.89% in sparse vegetation and flat surface areas (R2=0.85), about 6%~9% in dense 

vegetation areas and rough surface areas (0.80≤R2≤0.83). The simulation results were also 

validated using in-situ SSM data (R2=0.87, RMSE=6.36%). Time series mapping of SSM from 

AMSR-E imageries further demonstrated that the presented method was effective to detect the 

initiation, duration and recovery of the drought events.  

Keywords: surface soil moisture (SSM); Semi-Empirical model; brightness temperature (Tb); 

AMSR-E; passive microwave remote sensing; drought disaster; south China 

1. Introduction 

Surface soil moisture (SSM) is not only an important variable used to describe water and 

energy exchanges at the land surface and atmosphere interface (Wigneron et al., 2003); it is also 

an effective indicator for characterizing the degree of drought. In 2004, 2007 and 2009, three 

disastrous droughts occurred in Guangdong Province of southern China, causing serious economic 

losses (about 30 billion Yuan, http://www.chinadaily.com.cn/). Since the 1990s, the total economic 

losses caused by drought disasters have been equivalent to 1.1 percent of China's average annual 



  

gross domestic product (about 324 billion Yuan, http://www.chinadaily.com.cn/). As a result there 

is a requirement for the timely estimation of regional SSM information on a large scale for 

drought disaster emergency management. Passive microwave remotely sensed data has great 

potential for providing estimates of SSM with good temporal coverage on a daily basis and on a 

regional scale (Wigneron et al., 2003). Here we develop an improved SSM retrieval model and 

demonstrate its utility to monitor the drought condition using passive microwave remote sensing 

data. 

Passive microwave remote sensing data has been used to retrieve SSM for almost 35 years. 

Numerous studies indicated a strong relationship between the microwave brightness temperature 

(Tb) and SSM content (Eagleman and Lin, 1976; Schmugge et al., 1988; Wang et al., 1989; Wang 

et al., 1990; Jackson et al., 1995; Jackson et al., 1997; Schmugge, 1998; Jackson et al., 1999; 

Uitdewilligen et al., 2003). Ulaby et al. (1981) and Liebe (1989) recommended using absorption 

lines at 6.6GHz because of the high sensitivity to atmospheric water vapor at frequencies higher 

than 10.7 GHz. Building on this, Owe et al., (2008) used C band (6.6GHz) and L band (10.7 GHz) 

passive measurements to retrieve SSM from space. But microwave emissions are also strongly 

affected by land surface properties (such as soil physical properties, vegetation characters and 

surface soil temperature Ts), including C- and L-band emissions that were chosen because they are 

less sensitive to atmospheric and tenuous clouds emissions (Owe et al., 2001). So SSM retrieval 

algorithms from passive microwave data have to account for the effects of such land surface 

properties. Many studies have been conducted to develop a method for compensating for the 

errors caused by soil texture, soil roughness, soil temperature and land surface vegetation cover 

condition (Dobson et al., 1985; Hallikainen et al., 1985; Choudhury et al., 1982; Choudhury, 1987; 



  

Jackson and Schmugge, 1989; Schmugge and Jackson, 1992; Chanzy and Wigneron, 2000; 

Uitdewilligen et al., 2003). Lacava et al. (2005) first eliminated the surface roughness and 

vegetation water content affects which impact the SSM retrieval accuracy from AMSR-E and then 

simulated the global SSM condition using soil wetness variation index (SWVI). Mallick et al. 

(2009) established a soil wetness index from surface soil temperature (Ts) and normalized 

difference vegetation index (NDVI) to retrieve SSM using AMSR-E Tb. The SSM retrieval 

accuracy reaches 0.027m3/m3. Hong and Shin (2011) estimated the global SSM over land surface 

using a relation between the complex dielectric constant and SSM after retrieving the surface 

roughness and complex dielectric constant. SSM retrieval accuracy was about 0.06m3/m3. Li et al. 

(2011) used two-parameter retrieval approach (TWRA) and three-parameter retrieval approach 

(THRA) to retrieve global SSM. Both methods firstly simulated the surface roughness, vegetation 

and Ts condition and then retrieved SSM from AMSR-E Tb. The SSM retrieval accuracies were 

0.089 and 0.037 m3/m3, respectively. 

Former studies mainly focused on retrieving SSM information from simulated Ts, surface 

roughness and vegetation information (vegetation index, water content and optical depth). More 

recently, microwave polarization difference indices (MPDI) are proposed as a measure of 

differences in polarization signals and the soil dielectric properties (and therefore soil moisture). 

MPDI is also an effective indicator for characterizing the land surface vegetation cover condition 

(Paloscia et al. 1988; Wang et al. 2005). Based on land surface vegetation cover classification and 

land surface roughness classification, this paper presents a much simper semi-empirical relation 

among SSM, AMSR-E Tb, MPDI and Ts. With simple land surface roughness and vegetation 

classification only, SSM information can be retrieved from the semi-empirical model integrating 



  

AMSR-E C-band Tb, MPDI, and Ts data for each land classification type. This SSM retrieval 

model also achieves a much higher accuracy under dense vegetation cover and rough surface 

covered situations than most former studies, which find it difficult to retrieve SSM information 

accurately under dense vegetation or rough surface areas. 

2. Study Data and Area 

2.1. Study area 

Guangdong Province (gray region in Fig. 1a), a coastal province, located in southern China, 

with a population of 86,420,000 people and area of 177,900 km2, is chosen as the study area. 

Climate here is the typical subtropical monsoon maritime climate of southern Asia, with an 

average annual sunshine of 1688.9 hours, an average temperature of 22.8℃ (23.2℃ in urban 

region). Since 2004, three disastrous droughts have occurred in Guangdong Province of southern 

China, which caused serious economic losses. In 2004-2005, the drought spread in Guangdong’s 

84 cities and counties, affecting more than 2 million residents (Fig. 1c). More than 689,000 

hectares of farmlands were seriously affected. The economic losses from agriculture alone came to 

more than 1.4 billion Yuan (http://www.mwr.gov.cn/). In 2007, the amount of rainfall was about 60

％ of normal year. Most cities even received less than 2,000 mm of rainfall. About 400,000 

hectares of croplands were affected by drought, leading to total grain losses of 37.4 billion kg, 

causing 6.7 billion Yuan economic losses. In 2009, Guangdong Province had another 

unprecedented drought disaster. The average rainfall that year was 1,400 mm, 13 percent below 

normal years. This severe drought caused direct economic losses of 23.7 billion Yuan 

(http://www.chinadaily.com.cn). So, timely regional SSM information is useful for drought 

disaster monitoring, government decision-making and drought disaster prevention. To meet this 



  

requirement to provide timely SSM information we have developed an improved SSM retrieval 

model using passive remote sensing data. 

 

Insert Fig. 1 about here 

 

2.2. Study data 

The AMSR-E instrument on the NASA Earth Observing System (EOS) Aqua satellite is a 

modified version of the AMSR instrument launched on the Japanese Advanced Earth Observing 

Satellite-II (ADEOS-Ⅱ ) in 1999. AMSR-E is a successor in technology to the Scanning 

Multi-channel Microwave Radiometer (SMMR) and Special Sensor Microwave Imager (SSM/I) 

instruments. It can provide global passive microwave measurements of terrestrial, oceanic, and 

atmospheric variables for the investigations of global water and energy cycles. Each AMSR-E Tb 

file contains images of six frequencies (6.9 GHz, 10.7 GHz, 18.7 GHz, 23.8 GHz, 36.5 GHz, and 

89.0 GHz, Table 1). The instrument operated until October 4th, 2011, when AMSR-E reached its 

limit to maintain the rotation speed necessary for regular observations (40 rotations per minute), 

and the radiometer automatically halted its observations and rotations.  

For this study we selected 4 days (October 28th &31st, 2004 and December 7th &8th, 2007) 

during the two drought disasters in 2004-2005 and 2007 to develop the SSM retrieval model, and 

used another 2 days (January 28th &31st, 2009) during the 2009 drought disaster to validate the 

SSM retrieval model. AMSR-E Tb data (version: AMSR-E/Aqua Daily EASE-Grid Tb) were 

downloaded from National Snow and Ice Data Center (NSIDC). Corresponding in-situ SSM and 

Ts were acquired from 86 meteorological observation stations (Fig. 1b) of Guangdong Province 



  

(grey region in Fig. 1a). We also added the SSM mapping of another 5 days (April 1st, July 1st & 

December 31st, 2004 and April 1st & July 1st, 2005) in combination with October 31st 2004 to 

demonstrate the initiation, duration and recovery of the 2004-2005 severe drought disaster in 

Guangdong Province, southern China. A once-in-four-century heavy storm during June 18-25 

caused an abrupt end to the 2004-2005 severe drought event. 

 

Insert Table 1 about here 

 

3. Methods 

3.1 Developing the SSM retrieval model 

The upwelling radiation from the land surface as observed from above the canopy may be 

expressed in terms of the radioactive brightness temperature bpT , and can be given as a simple 

radioactive transfer equation (Owe et al., 2001): 

cccc eewTrewTerTT pcsppcspsbp
ττττ −−−− −−+−−+−= )1)(1()1)(1()1(*  (1) 

where p is the horizontal (H) or vertical (V) polarization mode; sT  represents the soil 

thermometric temperatures; spr  is the smooth-surface reflectivity; cτ  is the optical depth of 

land surface vegetation; ce τ− is the transmissivity; cT  is thermometric temperatures of the 

canopy; pw  is the single scattering albedo. AMSR-E C channel is the low-frequency band, so 

this paper ignored the effects of single scattering albedo and atmosphere. Then, bpT  can be 

simplified as expression 2. If the texture of land surface can be seen as homogeneous, spr  of the 

land surface can be seen as a constant, 1A . 

cerTT spsbp
τ2)1(* −−=  (2) 



  

 According to Wang et al. (2006), cτ  can be simulated using an empirical function from 

MPDI and soil dielectric constant ε  near land surface. The relative error of simulated cτ  is 

smaller than 5% compared with the simulation results of Owe et al. (2001): 
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What is more, according to Dobson et al. (1985), ε  can be expressed by body density of 

soil sρ , body density of solid materials rρ , SSM and the dielectric constant of pure water fwε . 
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where η =0.06. If the soil texture of the study area is homogeneous, sρ , rρ , rε  and fwε  can 

be seen as constants, too. Thus, ε  can be simplified as: 

SSMSSMAA A −+= 4
32ε  (5) 

where 2A , 3A , 4A  are constants. 

On assumption that the land surface can be seen as a homogeneous texture, we can establish 

a relation (expression 6) between SSM, sT , MPDI and AMSR-E Tb from expression 2, 3 and 5. 
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In summary, SSM can be easily retrieved using AMSR-E Tb, AMSR-E 6.9GHz MPDI and Ts 

for homogeneous land surface. The next step is to classify the land surface into several types 

according to different land surface vegetation cover condition and degree of surface roughness. 

Then, we assume that each land surface type is a homogeneous texture. So, expression 6 can be 

used to derive SSM for each land type. 

3.2. Match AMSR-E Tb with in-situ data 

The in-situ SSM and Ts observed by 86 meteorological observation stations were point-based. 



  

In order to obtain the point-based AMSR-E Tb for each in-situ data, we averaged Tb of 

imagery-pixels around the 86 meteorological observation stations to match with the in-situ SSM 

and Ts. Firstly, AMSR-E Tb data was downloaded from ftp://n4ftl01u.ecs.nasa.gov. Then we 

extracted the latitude, longitude and Tb information and displayed the point-based Tb in ArcGIS 

software. About 2,223 pixels in total were extracted from each AMSR-E Tb file within Guangdong 

Province (black dots in Fig. 2). Then we drew 86 circles (radius: 9,000 m) centralized at each 

meteorological observation station (triangle points in Fig. 2) and averaged the pixels’ Tb values 

within the circles to match with the SSM and Ts data from the meteorological observation stations. 

 

Insert Fig. 2 about here 

 

3.3. Land surface vegetation cover classification method 

Chen et al. (2011) has established an empirical classification rule for land surface vegetation 

cover classification in Guangdong Province using AMSR-E MPDI values. Three land surface 

vegetation cover types were produced according to different AMSR-E MPDI values. For dense 

vegetation cover land surfaces, AMSR-E 6.9GHz MPDI is smaller than 0.06; For sparse 

vegetation cover regions, MPDI is between 0.06 and 0.09; For bare soil areas, MPDI value is 

generally larger than 0.09. The land surface vegetation cover classification method proved to be 

effective in Ts retrieval of Guangdong Province (R2 > 0.71, P < 0.05).  

3.4. Land surface roughness classification method 

Surface roughness is another factor influencing SSM estimation. According to the empirical 

surface roughness model of Jin et al. (1998), the reflectivity of rough surface can be defined as: 



  

h
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where Q  is a polarization mixing parameter, 0< Q <0.5; h is the vertical surface roughness 

parameter; svr  and shr represent the vertical polarization and horizontal polarization reflectivity 

of rough surface respectively; ovr  and ohr indicate the vertical polarization and horizontal 

polarization reflectivity of flat surface respectively. 

 Combining the radiative brightness temperature (expression 2) and the reflectivity of rough 

surface (expression 7), MPDI can be expressed as (Ma, 2007): 

h
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where ohov rr +  and ))(21( ohov rrQ −−  are only influenced by SSM. Using MPDI from the 

AMSR-E 6.9GHz, 10.7GHz and 18.7GHz bands, Ma (2007) finally came to the following 

equation: 
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 However, Γ  is not only influenced by surface roughness condition, but also by vegetation 

cover condition. Thus, Γ  can not be treated as a roughness index. This paper further assumes 

that cτ  of different AMSR-E bands has a linear relationship with each other ( ce τ
9.6 ≈ m ce τ

7.10 ≈ 

n ce τ
7.18 , where m and n are constants). Then, expression 9 can be simplified as: 
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Combing this result with the optical depth cτ  simulated by Owe et al. (2001), we construct 

a modified roughness index MPDIΓ  (unit: cm).  
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We can see that MPDIΓ  is only influenced by surface roughness parameter ( h ). It is an more 

reasonable index for characterizing the land surface roughness degree than Γ . In order to validate 

the accuracy of the improved surface roughness index MPDIΓ , three-day global land surface 

roughness mapping results (Fig.3) were produced from MPDIΓ  using AMSR-E/Aqua Daily 

Global Quarter-Degree Gridded Tb data on October 31st, 2004, December 8th, 2007 and January 

31st, 2009. 5535 samples were selected to compare with the global surface roughness results 

mapped by Hong (2010), who used a unique approach to estimate the small-scale roughness with 

the global AMSR-E Tb data on April 1st, 2009. There was a strong linear relationship (Fig.4) 

between the surface roughness calculated by MPDIΓ  and the surface roughness simulated by 

Hong (2010). We further extracted the surface roughness condition of Guangdong Province (Fig.5) 

and used MPDIΓ  to classify Guangdong’s land surface roughness condition. 

 

Insert Fig. 3 about here 

Insert Fig. 4 about here 

Insert Fig. 5 about here 

 

3.5. Data processing flow diagram 

Land surface vegetation cover condition and land surface degree of roughness are two major 

factors influencing the SSM retrieval accuracy. Hence this paper classified the land surface of 

Guangdong Province into several types according to different land surface vegetation cover 

condition and degree of surface roughness. Further, we assumed each land surface type as a 



  

homogeneous texture. Then, the algorithm containing SSM, Ts, MPDI and AMSR-E Tb 

(expression 6) can be used to derive SSM for each land type. The processing flow and methods are 

shown in Fig. 6. 

 

Insert Fig. 6 about here 

 

4. Results and Discussion 

4.1 Land surface classification 

On the basis of the land surface roughness mapping results (Fig. 7a), this paper further 

classified the land surface roughness of Guangdong Province into four types (Fig. 7b) using the 

land surface roughness classification rule in Table 2. Results showed that the surface roughness 

was lower in south and center of Guangdong Province, where most regions were river delta plain 

areas. It was much higher in north, east and northwest of Guangdong Province, where most 

regions were distributed by mountainous and hilly areas (Fig. 7b). 

Considering that SSM can be influenced strongly by dense vegetations, this paper developed 

an improved vegetation classification method (Table 3) on the basis of Chen’s empirical 

classification rule (Chen et al., 2011). Land surface vegetation cover classification results (Fig. 7c) 

showed that the land surface vegetation cover condition of Guangdong Province varied as latitude 

changed. Vegetation density at higher latitudes was much higher than vegetation density at lower 

latitudes (Fig. 7d). It was because that most regions at lower latitudes were close to sea and 

belonged to the built-up places, and most places at higher latitudes were mainly mountain areas or 

hilly grounds and were usually covered by dense broad-leaved forests, coniferous forests or 



  

bushes. 

 

Insert Table 2 about here 

Insert Table 3 about here 

Insert Fig. 7 about here 

 

In combination with the land surface vegetation cover classification and land surface 

roughness classification results, 86 meteorological observation stations in Guangdong Province 

were classified into 5 types (Table 4 and Fig. 8). Then, each land surface type can be seen with a 

similar vegetation cover condition and surface roughness degree. In other words, each land type 

can be seen as a homogeneous land surface texture. Therefore, the SSM retrieval model 

(expression 6) can be used to retrieve the SSM information for each land type. 

 

Insert Table 4 about here 

Insert Fig. 8 about here 

 

4.3. Surface soil moisture retrieval and validation 

Using the land surface classification results of Guangdong Province and the SSM retrieval 

model (formula 6), this paper derived the SSM information for each land type separately from 

AMSR-E C-band Tb, MPDI and Ts. Levenberg-marquardt optimization algorithm (LMA) was used 

to solve the fitted coefficients (A1, A2, A3, A4) of SSM retrieval algorithm for each land type. As 

estimated by authors, the threshold value of A1 was between 0 and 1; the threshold value of A2 



  

was larger than 10. Hence the original values of A1 and A2 were set as 0.5 and 11, respectively. 

The number of the optimization loops was set to 10. There were always single solutions for A1, 

A2, A3, A4 (Table 5) for each land type. 

 

Insert Table 5 about here 

 

In-situ measurements of SSM on January 28th & 31st, 2009 were used to validate the 

simulation accuracy of SSM (Fig.9a) from the corresponding ANSR-E data (N=86*2). Results 

showed that the average errors between in-situ and model-derived SSM values of the five 

algorithms were between 2.11% and 8.52%, with RMSE between 0.94% and 6.69% (Table 6, Fig. 

9b). The total average SSM error was 5.37% with average RMSE equaling to 6.36% (R2=0.87). 

The accuracy of the SSM retrieval result was higher than former studies (Wigneron et al., 2003; 

Uitdewilligen et al., 2003; Cashion et al., 2005; Bindlish et al. 2006; Loew et al., 2008; Panciera et 

al., 2009), of which the SSM retrieval accuracy was usually larger than 4%. Some former studies 

(Wigneron et al., 2003; Bindlish et al., 2006; Panciera et al., 2009) also found it difficult to 

retrieve SSM information accurately under dense vegetation or rough surface areas (SSM retrieval 

error in some studies even reached 32%). However, the SSM retrieval model developed in this 

paper achieved a much higher accuracy at 6.95% under dense vegetation cover (0.01<MPDI<0.06) 

and rough surface covered situations (roughness >0.3 cm). All the SSM retrieval errors were 

smaller than 20%. Results indicated that the semi-empirical SSM model can not only be applied to 

bare land areas and flat surface areas, but also to sparse vegetation covered areas, dense vegetation 

covered areas and rough surface areas. 



  

 

Insert Table 6 about here 

Insert Fig. 9 about here 

 

The eight model-derived SSM maps and corresponding spatial-interpolated in-situ SSM maps 

from 86 meteorological observation stations on April 1st, July 1st, October 31st, & December 31st, 

2004, April 1st & July 1st, 2005, December 8th, 2007 and January 31st, 2009 were presented in 

Fig.10. We can easily find that the initiation of the 2004-2005 drought disaster was on about July 

1st, 2004, which should have lasted some days. The drought degree became more serious on 

October 31st, 2004. The most severe drought degree was about on December 31st, 2004. Then, it 

recovered a little on April 1st, 2005. There was nearly no drought condition in Guangdong on July 

1st, 2005 because there was a synoptic process of heavy storm at once-in-four-century from June 

18 to June 25, 2005 (http://news.gd.sina.com.cn/local/2005-12-31/2050082.html). The drought 

disaster lasted for almost one year. Time series of SSM mapping results during the 2004-2005 

drought disaster indicated that the presented method was effective to detect the initiation, duration 

and recovery of a whole drought event.  

 

Insert Fig. 10 about here 

 

5. Conclusions 

Three severe droughts have occurred in Guangdong Province of southern China during the 

past 10 years with disastrous consequences for the people of Guangdong. It is of great 



  

importance to establish an effective SSM retrieval model using passive microwave remote 

sensing for monitoring the drought disasters. A simple SSM retrieval methodology derived from 

the passive microwave radiance transfer equation is presented in this study and proves to be 

effective in retrieving SSM information using AMSR-E C-band Tb, MPDI and Ts.  

Land surface vegetation cover condition and degree of roughness are two major factors 

influencing the SSM accuracy retrieval from AMSR-E Tb. This paper uses MPDI to characterize 

the vegetation cover condition of Guangdong Province, and develops a modified surface 

roughness index to map the surface roughness condition of Guangdong Province, which was 

validated at the global scale. Results show that land surface vegetation density of Guangdong is 

always higher at higher latitudes than at lower latitudes. Surface roughness is lower in south and 

central of Guangdong Province, while much rougher in north, east and southwest. Furthermore, 

this study classifies the land surface into five types according to different vegetation cover and 

surface roughness condition and then assumes each land surface type having a homogeneous land 

surface texture.  

A simple semi-empirical SSM retrieval model is developed for each land surface type with 

much higher retrieval accuracy. Validation results from three different drought cases prove that it 

is an effective way to derive SSM information and monitor the degree of drought condition from 

AMSR-E Tb data (average SSM error is 5.37%: R2=0.87, RMSE=6.36%). All the SSM retrieval 

errors are smaller than 20%. What is more, the average SSM retrieval error is under 6.95% for 

dense vegetation cover (0.01<MPDI<0.06) and rough surface cover condition (roughness>0.3cm), 

which is also smaller than most former studies (Wigneron et al., 2003; Bindlish et al. 2006; 

Panciera et al., 2009). The semi-empirical SSM retrieval model can not only be applied to bare 



  

ground and flat surface areas, but also to sparse vegetation covered areas, dense vegetation cover 

areas and rough surface areas. Time series of SSM retrievals from AMSR-E imageries indicate 

that the 2004-2005 drought event lasted more than one year from April 1st, 2004 to July 1st, 2005. 

Hence the method presented here was effective to detect the initiation, duration and recovery of 

drought disasters. 
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(a) 

 
(b) 

 

(c) 
Fig.1 The location of study area: (a) Location of Guangdong Province in China (shadow area); (b) 
Eighty-six meteorological observation stations (black circle points) in Guangdong; (c) The scene 
of drought disaster in Lemin Town of Zhanjiang city of Guangdong Province on June 5th, 2005 
during the severe drought of 2004-2005. 
 



  

 

 
Fig.2 The matching method of remote sensing pixel to ground observation of SSM: the Tb values 
of circle-included pixels (dots) from AMSR-E data were averaged to match with the in-situ SSM 
data from the 86 meteorological observation stations (triangles) in Guangdong Province (circle 
radius: 9,000m) . 



  

 

 
(a)                                     (b) 

 
 

(c) 
Fig.3 Mapping of global land surface roughness on (a) October 31st, 2004, (b) December 8th, 2007 
and (c) January 31st, 2009 using the modified surface roughness index MPDIΓ  (unit: cm). 
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Fig.4 Comparison between the surface roughness simulated using the modified roughness index 
( MPDIΓ ) in the study and the surface roughness calculated by Hong (2010), using AMSR-E/Aqua 
Daily Global Quarter-Degree Gridded Tb data on October 31st, 2004, December 8th, 2007 and 
January 31st, 2009. 
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Fig.5 Land surface roughness condition of Guangdong Province on October 31st, 2004 derived 
from the modified surface roughness index ( MPDIΓ ). 
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Fig. 6 Data processing flow diagram for mapping SSM from AMSR-E Tb data. 

 



  

 

 
(a)                                            (b) 

 
 (c)                                            (d) 

Fig. 7 (a) Land surface roughness classification results of Guangdong Province; (b) Elevation map 
of Guangdong Province in 2005; (c) MPDI-based Land surface vegetation cover classification 
results of Guangdong Province; (d) Vegetation coverage map of Guangdong Province in 2008. 
 



  

 

 
Fig. 8 Vegetation cover- and roughness-based land surface types of the 86 meteorological 
observation stations in Guangdong Province. Different numbers represent different land surface 
types (1: type 1, 2: type 2, 3: type 3, 4: type 4, 5: type 5). The positions of the numbers indicate 
the positions of the 86 meteorological observation stations. 
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(a) 

 
 

(b) 
Fig. 9 Validation of SSM inversion: (a) Scatter diagram between in-situ and model-derived SSM 
on January 28th &31st, 2009 (N=2*86); (b) Error boxplot between in-situ SSM and 
model-derived SSM for each land surface type. The maximum of the error bar represents the 
biggest error between in-situ and model-derived SSM; the minimum of the error bar represents the 
smallest error between in-situ and model-derived SSM; the center of the error bar represents the 
average error between in-situ and model-derived SSM. 
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(a1)Model-derived SSM on April 1st, 2004         (a2)In-situ SSM on April 1st, 2004 

 
(a3)Model-derived SSM on July 1st, 2004         (a4)In-situ SSM on July 1st, 2004 

 
(a5)Model-derived SSM on Oct 31st, 2004      (a6)In-situ SSM on Oct 31st, 2004 

 
(a7)Model-derived SSM on Dec 31st, 2004       (a8)In-situ SSM on Dec 31st, 2004 



  

 
(a9)Model-derived SSM on April 1st, 2005          (a10)In-situ SSM on April 1st, 2005 

 
(a11)Model-derived SSM on July 1st, 2005        (a12)In-situ SSM on July 1st, 2005 

 
(a13)Model-derived SSM on Dec 8th, 2007      (a14)In-situ SSM on Dec 8th, 2007 

  
(a15)Model-derived SSM on Jan 31st, 2009  (a16)In-situ SSM on Jan31st, 2009 



  

Fig. 10 Mapping of the model-derived SSM and in-situ SSM in Guangdong Province including 

the initiation, duration and recovery for the disastrous drought event of 2004-2005 (a1-a12). The 

severe droughts of years 2007 and 2009 in Guangdong Province were spatially mapped in 

a13-a16. 

 
      
 

 
 
 



  

Table 1 Spatial characteristic of AMSR-E brightness temperature products. 
Channels (GHz) Footprint Size Mean spatial resolution 

89.0 36.5 23.8 18.7 10.7 6.9 
75km * 43km 56 km 

△ △ △ △ △ △ 

51km * 29km 38 km 
△ △ △ △ △ 

 

27km * 16km 21 km 
△ △ △ 

   

14km * 8km 12 km 
△ 

     

△ means including the corresponding AMSR-E channel. 

 



  

Table 2 Land surface roughness classification rule. 

MPDIΓ  value Land surface roughness types 
0.0 - 0.1 flat 
0.1 - 0.2 less flat 
0.2 – 0.3 less rough 

>0.30 rough 
 
 



  

Table 3 Land surface vegetation cover classification rule. 
AMSR-E 6.9GHz MPDI value Land surface vegetation cover types 

0.00-0.01 
dense vegetationⅠ 

0.01-0.02 
dense vegetationⅡ 

0.02-0.03 
dense vegetation Ⅲ 

0.02-0.04 
dense vegetation Ⅳ 

0.04-0.06 
dense vegetation Ⅴ 

0.06-0.09 sparse vegetation 
>0.09 bare soil area 

 
 
 
 
 
 
 
 



  

Table 4 Land surface types of the 86 meteorological observation stations. 
Number Land surface types 

1 bare ground & flat 
2 sparse vegetation & flat 
3 sparse vegetation & rough  
4 

dense vegetation & less flat 

5 dense vegetation & rough 
 
 



  

Table 5 Regression coefficients of the SSM retrieval algorithm for each land surface type. 
Land surface type A1 A2 A3 A4 R2 

1 0.2109 17.9657 0.0407 1.8675 0.87 
2 0.1944 18.0755 0.0410 2.1593 0.85 
3 0.1375 16.8792 2.3566 1.2871 0.83 
4 0.1511 13.1687 0.0204 2.4673 0.80 
5 0.0915 28.4136 1.4641 4.1881 0.81 

 
 
 



  

Table 6 Errors between in-situ and model-derived SSM for each land surface type. 1 
Land surface type Average errors between in-situ SSM and 

derived SSM (%) 
RMSE (%) 

1 2.11 0.94 
2 2.89 1.91 
3 6.24 6.69 
4 6.95 2.56 
5 8.52 5.16 

 2 



  

 40

Research Highlights 3 
1. The land surface was classified into five types based on different vegetation and 4 

roughness condition. 5 
2. Improving a roughness index using three channels of AMSR-E Tb.  6 
3. Developing a SSM model integrating Tb, MPDI and observed temperature data.  7 
4. Inversed results discriminated over a broad range of SSM (7%~73%, RMSE: 6.36%). 8 
5. The errors for dense vegetation and rough surfaces were smaller than former studies. 9 
6. The method was effective to detect the initiation, duration and recovery of drought events. 10 

 11 


