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Abstract

This paper shows the first autocorrelation of basketball shot results is a highly biased

and inconsistent estimator of the first autocorrelation of the ex ante probabilities the

shots are made. Shot result autocorrelation is close to zero even when shot probability

autocorrelation is close to one. The bias is caused by what is equivalent to a severe

measurement error problem. The results imply that the widespread belief among players

and fans in the hot hand is not necessarily a cognitive fallacy.
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1 Introduction

One of the most well known and counter-intuitive results from research on sports statistics

is (the claim) that–in contrast to the almost universally held popular belief–there is no “hot

hand” in basketball. Gilovich et al. (1985) is the seminal paper on this topic. The authors

wrote “[the term the hot hand implies] the probability of a hit should be greater following

a hit than following a miss (i.e., positive association),” and presented strong evidence that

both fans and players believe this is generally true. However, the authors found almost no

evidence of this positive association, or autocorrelation, of shot results occurring in NBA field

goal data. While this could be explained by players taking more difficult shots or being de-

fended more closely when “hot” (as discussed by, e.g., Dorsey-Palmateer and Smith (2004)),

Gilovich et al. also found free throws and shots taken in a controlled experiment at a constant

level of difficulty, exhibit the same lack of autocorrelation. Since then these results have been

corroborated (see, e.g., Koehler and Conley (2003) and Cao (2011)) and withstood numer-

ous criticisms (e.g., Wardrop (1995)). The recent best-selling book Nudge summarizes what

appears to be the new conventional wisdom on the topic, at least for those who know this

literature: “It turns out that the ‘hot hand’ [in basketball] is just a myth... To date, no one

has found it,” (Thaler and Sunstein (2008), p.30). Given this lack of statistical evidence for

the hot hand, belief in the hot hand is consequently often cited in both the academic literature

and popular press as a cognitive error.1 Very recently Arkes (2010) found evidence that NBA

free throws do exhibit positive serial correlation, but on average only around 3%.2

1In addition to the psychology literature, false belief in the hot hand is also regularly cited in the behavioral
economics literature (e.g., Rabin (1998)). See Lehrer (2009) for another example from the popular press, in
addition to Thaler and Sunstein (2008).

2Arkes’ results differed from those of previous literature primarily because, first, he used a relatively large
dataset (data on all free throws from the 2005-06 NBA season), and second, he pooled the analysis across play-
ers, using a fixed effects approach to account for heterogeneity in average ability. Dorsey-Palmateer and Smith
(2004) is one of numerous papers that finds evidence of a hot hand existing in a context other than basketball.
See Reifman (2011) for a general discussion of the hot hand in sports; other literature is discussed further
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In this paper I present an alternative view of the hot hand. I argue this view implies

the widespread belief in the hot hand is not necessarily a cognitive fallacy–that the results

of both Gilovich et al and Arkes are consistent with the hot hand not only existing, but

being of a large magnitude. The alternative definition of the hot hand is that it exists if

the probability of a shot being made is positively correlated with the probability for the next

shot. Similarly, the magnitude of the hot hand phenomenon can be defined based on the

magnitude of this correlation of shot probabilities, as opposed to shot results. Although

these probabilities are unobserved, they describe shooting ability more accurately than shot

results, since probabilities characterize the data-generating process, while shot results are just

realizations of data. Thus, this alternative definition is arguably preferable to the definition

of Gilovich et al. And whether or not it is preferable, it seems clear the alternative definition

is at least reasonable and of interest–that if the alternative definition is satisfied then the

hot hand, in a very real sense, does exist. For example, suppose a player who shoots 50%

on average has a 70% probability of making a particular shot (because, e.g., he feels extra

confident). And suppose this implied that the player’s expected probabilities of making his

next three shots were, say, 66%, 63%, 60%–all well above his overall average. It seems clear

then that this player would be, in expectation, experiencing the hot hand.3,4

below.
3If the probabilities were not serially correlated, but still stochastic, a player would have higher probabilities

for some shots than others and thus, in a sense, be hotter at some times than others. For example, the
probability could be 70% on one shot, and so the player would be hot for that shot, but still be expected to
be the player’s overall mean of 50% on the next shot. But this is not what people mean when they refer to
the hot hand: they are referring to above average ability that is at least somewhat persistent, i.e., that likely
lasts for at least two consecutive shots. Otherwise, it would be completely irrelevant for behavior: there would
be no point in passing to someone hot if the hot state immediately fully dissipates. The original definition of
Gilovich et al was based on persistence as well. I also note a hot player will not actually stay hot with certainty
if the probabilities are stochastic, but think it is clear that fans, players etc understand this.

4It is also worth noting that, if this alternative definition were to be satisfied, players would sometimes
experience the cold hand as well: if their shot probability was, e.g., 30% for one shot, it would be expected to
be less than 50% on subsequent shots. This is not at all problematic; most fans and players seem to believe
in the cold hand’s existence as well, and this phenomenon would also occur if the definition of Gilovich et al.
was satisfied.
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The alternative hot hand definition implies analysis of shot result data is subject to what

is equivalent to a measurement error problem, as shot results are essentially noisy measures

of the ex ante probabilities with which each shot is made. To illustrate using the example

above, the player could easily miss two or more of the four shots–there is actually a 44%

chance of this occurring.5 Shot result data would then indicate he was not hot, cold or even

very cold, when in fact he was hot. That is, shot result data appear to often mismeasure a

player’s hot/cold state.

Section 2 develops a simple AR(1) model of shot probabilities to formally develop these

ideas. The model has just two parameters: the unconditional mean and the autocorrelation,

ρ. The shock is white noise with a variance equal to a function of these parameters. The

alternative hot hand definition proposed above implies ρ > 0 would mean the hot hand exists,

and is of a larger magnitude (which I call “stronger”) when ρ is larger (and of a smaller

magnitude, or “weaker,” when ρ is closer to zero). The especially interesting question is

how strong the hot hand is, since if it exists, but is very weak (say, ρ < 0.05), this would

arguably be practically very similar, with respect to the implications for both psychology and

optimal basketball behavior, to the case of the hot hand not existing at all.6 I then use the

model to formally show that the measurement error problem not only exists, but is inherently

severe in the basketball context, causing analysis of shot data to vastly under-estimate the

first autocorrelation of shot probabilities in unboundedly large samples. If the mean shot

probability is 0.5 and ρ = 0.4, the probability limit of estimated shot autocorrelation is 0.057;

when ρ is larger, estimated shot autocorrelation is actually even lower. Shot autocorrelation is

5This assumes the probabilities are equal to their expected values (70%, 66%, 63% and 60%).
6Another necessary condition for the hot hand phenomenon to be of a large magnitude–for a player to go

through periods in which his ability is substantially better than normal–is that the variance of the shock must
be sufficiently large. In the model of Section 2 this variance shrinks as ρ increases. But the variance is still
reasonably large so long as ρ is not too close to one. For example, the shock is distributed U [−0.1, 0.1] if
ρ = 0.8. Moreover, this relation between the shock’s variance and ρ is relaxed in Section 3.
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also even lower for other values of the mean shot probability. I also conduct a simple simulation

analysis, presented in Section 3, to analyze a version of the model with heteroscedastic shocks.

The results are not as extreme as those found in Section 2, but still extreme. For example,

average estimated shot autocorrelation from the simulations is less than 0.1 for all ρ up to

0.8, for all parameters considered. For some values of the parameters, average simulated shot

autocorrelation is less than 0.04, and is statistically insignificant over 80% of the time, even

when ρ = 0.9.

To be clear, I am not claiming this AR(1) model is literally the “true model” of shot

probabilities. I use this model, first, because it is simple and easily analyzed. Second, it is

at least a reasonable approximation to a plausible true model. Loosely speaking, the AR(1)

model might be true. Moreover, the paper’s results hold for similar models. Thus, although

the fit of the AR(1) model is admittedly not empirically tested, the model is sufficient for

making the paper’s main point–that standard analysis of shot result autocorrelation may

not tell us much about shot probability autocorrelation. Consequently, if one agrees that

probability autocorrelation is an important parameter for understanding the hot hand, then

a lack of shot result autocorrelation does not tell us the hot hand is merely a “myth,” or

even of a small magnitude. The paper’s results do not imply shot probability autocorrelation

cannot possibly be estimated with shot result data, just that the measurement error issue

should be addressed to do so and may make this estimation very difficult. This may open up

an interesting line of future research; implications are discussed further in Section 4.

There is a substantial body of work showing tests of serial correlation have low power

when shot probabilities follow a Markov process (see, e.g., Miyoshi (2000); see Bar-Eli et al.

(2006) and Oskarsson et al. (2009) for good reviews of the entire literature). However, there

does not appear to be any work showing tests of autocorrelation not only have low power,
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but are highly biased and inconsistent with respect to shot probability autocorrelation, when

shot probabilities are determined by an autoregressive process, due to the measurement error

problem. I would like to stress that I am not claiming that previous literature confuses

shot result and probability autocorrelations, only that the important difference between them

is neglected. A secondary contribution of this paper is thus methodological: the results

highlight that measurement error bias can arise even when all data are recorded with complete

accuracy. Although the focus of this paper is the hot hand in basketball, the results imply

serial correlation is likely underestimated in any context in which the true variable of interest

is essentially measured with error due to randomness. This could be relevant to analysis of

the hot hand in other sports and non-sports contexts, such as hitting streaks in baseball, or

the persistence of mutual fund manager performance (see, e.g., Hendricks et al. (1993)), both

of which are of course affected by luck in addition to skill.

2 A Model of Shot Probabilities

Suppose basketball shooting data are obtained from a controlled setting: a single player takes

T shots from the same location with no defense, distractions, etc. Let xt denote the result

of shot t, with xt = 1 if the shot is made and xt = 0 otherwise. A standard approach used

to analyze the hot hand for the player is to examine the sample first autocorrelation of shot

results:

ρ̂x,1 =
Ĉov(xt, xt−1)

(V̂ ar(xt)V̂ ar(xt−1))0.5
. (1)

Ĉov and V̂ ar denote sample covariance and variance, respectively. Another, almost equivalent

approach is to estimate a regression of xt on xt−1 using ordinary least squares (OLS). Both
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approaches yield consistent estimates of the first autocorrelation of shots made. Another

common approach is to use “runs” tests; these yield very similar results as shown by Wardrop

(1999).

Now suppose the data generating process (DGP) is as follows:

pt = ρpt−1 + (1− ρ)µp + ϵt, (2)

xt =


1 with probability pt

0 otherwise,

(3)

with ρ ∈ [0, 1) and µp ∈ (0, 1). That is, pt is the probability of making shot t, and is

determined by an AR(1) process. Assume for now that µp ≥ 0.5. Suppose that ϵt ∼ U [−(1−

ρ)(1 − µp), (1 − ρ)(1 − µp)] for all t, so V ar(ϵt) = (1/3)(1 − ρ)2(1 − µp)
2. This distribution

guarantees pt ∈ [0, 1] for all values of ρ, µp. In fact, of all the continuous, symmetric, weakly-

single peaked (with mean zero) and time-invariant distributions that satisfy this property,

this distribution has the highest variance, for any particular values of ρ, µp.
7 This fact will

be used further below. Suppose also that ϵt is independent of ϵt′ , pt′ for all t
′ < t (ϵt is white

noise). This assumption is admittedly questionable and will be relaxed in Section 3. It is

then straightforward to show that E(pt) = µp, V ar(pt) = V ar(ϵt)/(1 − ρ2) =
(1−µp)2(1−ρ)

3(1+ρ) ,

and pt’s first autocorrelation is ρ, for all t. Note that this setup can be interpreted as that of

state-space modeling, in which (2) is the state equation and (3) is the observation.

Given this DGP, ρ is naturally the key parameter for understanding the hot hand; if ρ > 0

7This can be seen by noting that, using recursive substitution, pt can be written as µp+
∑∞

k=0ρ
kϵt−k.

If ϵt−k equalled its upper bound, (1− ρ)(1−µp), for all k, then pt would equal one. Thus, if ϵt had an
upper bound greater than (1−ρ)(1−µp), then pt could be greater than one. Since it is assumed that the
distribution of ϵt is symmetric around zero, the lower bound for ϵt must be −(1−ρ)(1−µp), and it can
similarly be shown that pt ≥ 0. Thus, the support of ϵt is as large as possible such that pt ∈ [0, 1] with
certainty. And the uniform distribution has a greater variance than any other continuous, symmetric,
weakly single-peaked distribution with the same support.
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the hot hand exists (the player likely shoots better than average in shot t if he/she shot better

than average in t− 1), and the greater ρ is, the “streakier” outcomes will be.8 However, ρ̂x,1

is an inconsistent estimator of ρ. This will be shown formally below, but the basic intuition

can be seen immediately: although E(xt) = pt, it is (obviously) not the case that xt is in

general equal to pt. That is, xt can be thought of as a measure of pt that, while unbiased,

contains error. And it is well known that when a variable is measured with error, this can

cause estimation results to be biased and inconsistent.9

To formally demonstrate the inconsistency, let wt denote the error for observation t, i.e.

xt = pt + wt. Thus Pr(wt = 1 − pt|pt) = pt, Pr(wt = −pt|pt) = 1 − pt, E(wt|pt) = 0 and

V ar(wt|pt) = pt(1− pt). Then

ρ̂x,1 =
Ĉov(pt + wt, pt−1 + wt−1)

(V̂ ar(xt)V̂ ar(xt−1))0.5
=

Ĉov(ρpt−1 + (1− ρ)µp + ϵt + wt, pt−1 + wt−1)

(V̂ ar(xt)V̂ ar(xt−1))0.5
, (4)

and thus, since Cov(ϵt, wt−1) = 0, Cov(wt, pt′) = 0 for all t, t′ and Cov(wt, wt′) = 0 for t ̸= t′,10

then ρ̂x,1 converges in probability to

plim ρ̂x,1 =
ρV ar(pt)

V ar(xt)
=

V ar(pt)

V ar(pt + wt)
ρ =

V ar(pt)

V ar(pt) + V ar(wt)
ρ < ρ. (5)

This result highlights how it is measurement error (V ar(wt) > 0) that causes the estimator

8It is an unfortunate feature of this DGP that the distribution of ϵt is also a function of ρ. The
DGP was constructed this way, as opposed to one with an error distribution independent of ρ (or a
more complicated model, e.g. one with a latent variable), so that the main analytical results could be
derived easily for all parameter values. The importance of this assumption is discussed later in this
section, and the assumption is dropped in Section 3.

9See, e.g., Stock and Watson (2007), p.319-321, for a discussion of how errors-in-variables (mea-
surement error affecting the independent variables) causes regression coefficients to be inconsistent.

10To show Cov(wt, pt′) = 0, note E(wtpt′) = E(E(wtpt′ |pt′)) = E(pt′E(wt|pt′)) =
E(pt′E(E(wt|pt, pt′))) by the law of iterated expectations. E(wt|pt, pt′) = 0, since the distribution of wt

conditional on pt is independent of pt′ , and as noted above E(wt|pt) = 0. Thus E(wtpt′) = 0 implying
Cov(wt, pt′) = 0. By similar arguments it can be shown that Cov(ϵt, wt−1) = 0 and Cov(wt, wt′) = 0
for t ̸= t′.

8



to be inconsistent. The precise expression for plim ρ̂x,1 can then be obtained using the fact

that V ar(xt) = µp(1− µp) and substituting for V ar(pt),

plim ρ̂x,1 =
(1− µp)(1− ρ)

3µp(1 + ρ)
ρ. (6)

If µp were less than 0.5, it could analogously be shown that plim ρ̂x,1 =
µp(1−ρ)

3(1−µp)(1+ρ)ρ.
11 These

results imply the upper bound over µp, occurring when µp = 0.5, for plim ρ̂x,1 is
(1−ρ)
3(1+ρ)ρ. This

expression has a maximum of approximately 0.057 that occurs when ρ = 0.4; when ρ = 0.8,

plim ρ̂x,1 is less than 0.03 and when ρ = 0.9, plim ρ̂x,1 is less than 0.02! As µp moves away

from 0.5 the bias only worsens as well.

These results indicate that ρ̂x,1 is not just a biased estimator of ρ, but that the bias is

extreme. The simplicity of the model allows it to parsimoniously convey the force driving the

bias: V ar(pt)
V ar(pt)+V ar(wt)

(inversely) determines the bias caused by measurement error, and due

to the nature of basketball shot data, it appears likely that V ar(pt) ≪ V ar(wt). When pt has

a mean of 0.5, measurement error is generally large compared to variation in pt; when pt’s

mean is higher, measurement error is smaller, but variation in pt is likely smaller as well.

Given the AR(1) model of shot probabilities, V ar(pt) is increasing in V ar(ϵt) and ρ. Given

the particular distribution of ϵt used above, V ar(ϵt) is decreasing in ρ. This seems reasonable,

since when ρ is larger, for fixed values of the other parameters, V ar(ϵt) must become smaller

for the pt’s to stay in [0, 1]. Thus, in this model an increase in ρ has competing effects on

V ar(pt), and the negative effect dominates at least for ρ > 0.4. However, it would also be

reasonable to assume V ar(ϵt) is independent of ρ. If that were the case, then V ar(pt) would

be unambiguously increasing in ρ, and hence plim ρ̂x,1 would also unambiguously increase in

11This result would follow from use of an analogous assumption for the distribution of ϵt, U [−(1 −
ρ)µp, (1− ρ)µp].

9



ρ. Hence, it is not generally true that plim ρ̂x,1 decreases in ρ for large ρ. One might wonder

then if the bias is still extreme for large ρ for distributions of ϵt that do not depend on ρ.

But as noted above, V ar(ϵt) is greater using the assumed distribution, as compared to other

distributions of a similar type (continuous, symmetric, single-peaked, and time-invariant), for

given values of ρ, µp. This means that if V ar(ϵt) did not depend on ρ, and ϵt had the same

type of distribution, then V ar(pt) could only be lower, and hence bias would only be greater.

The assumptions that ϵt’s distribution is continuous, symmetric and single-peaked seem

very reasonable. But the assumption of time-invariance (conditional homoskedasticity) was

noted above to be highly questionable. This assumption is relaxed in the simulation analysis

presented in the next section.

3 Simulation

Suppose shot probabilities are still determined by (2), but now ϵt|pt−1 ∼ U [−αδt, αδt], with

δt ≡ min{ρpt−1+(1− ρ)µp, 1− (ρpt−1+(1− ρ)µp)} and α < 1. This distribution also ensures

pt ∈ [0, 1], while allowing the distribution of ϵt to depend on pt−1 in a simple but natural

way: ϵt varies more when it has “room” to, i.e., when pt−1 is closer to 0.5. Note V ar(ϵt) will

generally be larger when α is larger. Note also that it is still the case that Cov(ϵt, pt−1) = 0

and it can also be assumed that conditional on pt−1, ϵt and ϵt′ are independent for all t′ < t.

To see how estimation bias is affected by changing the distribution of ϵt this way I simulate

1,000 samples of shot probabilities determined by this process and corresponding shot results,

each with 1,000 observations, for various parameter values. For each sample,

xt = β0 + β1xt−1 + υt (7)
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is estimated using OLS for each sample. The sample sizes are conservatively large, as compared

to those used in experimental work (e.g., Gilovich et al. (1985)). Two values of µp are used,

0.5 and 0.75, two values of α, 0.25 and 0.5, and eight values of ρ, 0.1, 0.2, ..., 0.9, so there

are 2 × 2 × 8 = 32 simulations in total. To get a sense of the effects of the parameters,

note pt ranges (on average across simulations) from 0.37–0.63 and 0.20–0.80 when µp = 0.5,

α = 0.25 for ρ = 0.1 and ρ = 0.9, respectively (0.24–0.76 and 0.08–0.92 when α = 0.5).

When µp = 0.75, pt ranges from 0.68–0.82 and 0.38–0.90 if α = 0.25 (0.61–0.88 and 0.15–0.96

if α = 0.5). Note again that the OLS slope from a regression of pt on pt−1 is a consistent

estimate of ρ.

Results are presented in Figure 1. The average estimate of β1 ranges from 0.015–0.11

when ρ ≤ 0.8 and from 0.032–0.17 when ρ = 0.9 for all values of α and µ. These results

imply the results Section 2, while somewhat distorted, are in the ballpark of what occurs even

with heteroscedasticity. While it is probably not the case that shot autocorrelation actually

declines as ρ increases, it does seem that shot autocorrelation remains very small. The figure

also shows the likelihood of an estimate being negative can be greater than 40% for ρ > 0.6

and is greater than 10% for all values of µ and α for all ρ ≤ 0.5. Thus, researchers may find

negative autocorrelation even when the hot hand is relatively strong.12 Power is also very low

when ρ ≤ 0.2 (less than 10%) and is generally less than 50% for ρ up to 0.7.13

12Runs tests yield extremely similar results, consistent with the finding of Wardrop discussed above;
they are not reported but available upon request.

13This is determined using homoscedasticity-only standard errors to be consistent with some of the
work done in previous literature; power would likely be even lower if appropriate heteroscedasticity-
robust standard errors were used.
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4 Discussion

This paper has shown that standard analysis of the hot hand underestimates the first auto-

correlation of shot probabilities substantially. This raises the following important question: if

it seems we cannot learn about shot probabilities from shot results, why should we even care

about these probabilities? That is, is ρ at all relevant to observable phenomena, and if not,

is this paper anything more than an abstract probabilistic exercise?

First and foremost, even if ρ could never be detected in the data, this paper would help

to clarify the interpretation of shot result correlation, and the distinction from probability

correlation. This distinction is important unto itself, but especially since, as discussed above,

the lack of shot correlation is often cited as evidence of flaws in human intuition. People may

indeed be very poor pattern detectors, but referring to the myth of the hot hand in basketball

seems to not be a good way to support this claim, since myth implies non-existence, and

non-existence seems to not have been proven. Even statements about the lack of evidence in

the data for the hot hand could be misleading, if it is not clarified that measurement error

bias prevents potential evidence from being observed.

One might argue next that practitioners–fans, players etc–think mainly about shot results,

and not probabilities, when thinking about hot hands, and so this analysis of probabilities does

not actually have implications for psychology. For example, according to the probability hot

hand definition a player could be hot–shoot at a probability above his average–for 10 straight

shots, but miss them all, and if practitioners observed this they would surely say the player was

cold. But ability (shot probability) is still what is relevant to practitioners’ decision problem

of who should take the next shot, so ability must be considered by practitioners at some

level. In other words, when a player says, “Give me the ball, I’m hot,” the player is implicitly

13



saying he thinks he is shooting at a higher probability than normal, not that he will definitely

make his next shot. A related argument would be that if practitioners think they can draw

inferences about the hot hand from shot results, they must still be making mistakes. However,

it is not clear that statistical analysis of shot result data indicates practitioners’ inferences are

necessarily incorrect. Practitioners have much more information than the average statistician,

at least for particular situations. For example, they can see whether a made shot was lucky

(perhaps due to an inadvertent bank off the backboard) or was of high or low difficulty. They

can also observe changes in offensive and defensive sets, and individual player match-ups.

Players know how they felt when they took their last shot. This information is, to some

extent, unquantifiable and therefore cannot be used for statistical analysis. But it still could

be sufficient to justify relatively precise beliefs about whether players are in hot/cold states–

the information would effectively reduce measurement error (the degree to which an observed

shot result was affected by unobserved factors). Thus, although statisticians may not be able

to see the hot hand, practitioners may still be able to. Furthermore, even if practitioners do

not have sufficient information to justify their beliefs about hotness in most situations, it is

still very possible they have enough information (from their extensive personal experience and

observation) to know that players’ abilities at least sometimes get hot. Much of the previous

literature seems to have concluded from shot result analysis that this basic, broad belief is

wrong; this paper shows this is not at all necessarily the case.

I should also clarify that I am not claiming ρ cannot possibly be estimated precisely with

shot result data, just that the measurement error issue should be addressed when this estima-

tion is attempted. There are almost certainly better estimators out there than those discussed

above (the sample autocorrelation and OLS coefficient). In fact, for the very simple model

of shot probabilities analyzed in this paper, an instrumental variable regression estimation
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strategy, using the second lagged shot made as an instrument, yields a consistent estimate of

ρ. However, the practical value of this particular approach is likely limited, as simulations

suggest it requires an extremely large amount of data to be reasonably precise. This is due to

the instrument being very weak; moreover, this may not be a robust approach as the instru-

ment may not even be valid for other DGPs. Developing more useful estimators that account

for measurement error would be an interesting line of future work (see Albert and Williamson

(2001) for detailed discussion of related issues). The most appropriate estimator very well

may depend on the context; e.g., the baseball and mutual fund examples mentioned above

may warrant different methods. I do suspect that developing a useful estimator for basketball

may be very difficult to the severity of the measurement error bias in the particular context.

Another approach would be to try to “back out” probability correlations from shot corre-

lations by making stronger assumptions on the probability model and its parameters. For

example, if it was assumed the model of this paper was correct, µ = 0.75 and α = 0.5, then

the results of Arkes (who found free throw shot autocorrelation is approximately 0.03) would

correspond to a ρ of around 0.65. A range of parameter values/models could be examined to

determine a range of ρ’s implied by Arkes’ results. Regardless, the measurement error issue

only strengthens the conclusion from Arkes’ results on the hot hand’s existence.

Finally, I again note that the results of this paper likely have implications for hot hand

analysis in other contexts (sports and other). As discussed in the review papers cited above,

the evidence for/against the hot hand varies substantially across sports. This variation may

be partly explained by the finding (see equation (4)) that measurement error is likely to be a

bigger problem in contexts where the variance of pt (true ability) is smaller and the variance

of wt (measurement error) is larger.14

14Oskarsson et al. (2009) discusses how evidence of the hot hand has been found more often in sports that
are more “controllable,” such as bowling and archery, as opposed to more “chaotic” sports like basketball.
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