The information value of full-retention policies

Rolf A. Groeneveld Jan-Jaap Poos

Content

- Background
- Method
 - Model structure
 - Scenarios
- Results
- Conclusions, limitations, future steps

Discarding in world fisheries

- Some fisheries discard up to 62% of total catch
- Mortality rate estimates vary wildly but rates are probably mostly high
- Waste of resources, but also distortion of data
- EU landing obligation
 - Waste and data distortion cited as reasons
 - 'Right' mix of quota necessary

Research questions

- How will a discard ban affect a mixed fishery under different quota policies?
- To what extent can the effects be attributed to improved data quality in stock assessments?

Model structure

- Stocks
 - Gordon-Schaefer growth with lognormal disturbance
 - Spence harvest
- Fleet
 - Maximize short-term rents
 - Effort, discarding, landings
- Manager
 - Forms beliefs about escapement and biomass
 - Sets quota
 - Allows or bans discarding

Spence harvest function

Discrete-time version of continuous-time G-S harvest

$$H_{it} = B_{it}(1 - e^{-qE_t})$$

- What is the open-access effort and escapement?
- Resource rents dissipate
- Within-season rents?
 - If fishing is a sequential decision: maximize
 - If fishing is a simultaneous decision: dissipate

Open access and the Spence function (1)

Open access and the Spence function (2)

Open access escapement and effort in a single-species fishery:

$$S^{OA} = \frac{c}{pq} \qquad E^{OA} = \frac{1}{q} \ln \frac{B}{S^{OA}}$$

- Hence
 - Escapement is independent of pre-harvest biomass
 - Effort depends on pre-harvest biomass

Open access and the Spence function (3)

Open access escapement in a multi-species fishery is defined by:

$$\sum_{i} p_{i} q_{i} S_{i}^{OA} = c$$

$$\left(\frac{B_{i}}{S_{i}^{OA}}\right)^{\frac{1}{q_{i}}} = \left(\frac{B_{j}}{S_{i}^{OA}}\right)^{\frac{1}{q_{j}}}$$

■ To solve this we assume $q_i = q_j = q$

Scenarios

- Quota policy
 - Single-species: ignore catch composition
 - Multi-species: consider catch composition
- Discarding policy
 - Allow discards
 - Ban discards
- Quality of information
 - Manager can observe escapement perfectly
 - Manager induces escapement from landings and effort

Quota policy

- We assume a constant-escapement rule
- Single species:
 - $Q_{it} = \max\{0, B_{it} \bar{S}_i\}$
- Multi-species:
 - Set initial quota
 - Identify most likely choke species
 - Set all quota according to choke species

Discarding policy (1)

If discarding is banned:

Discarding policy (2)

If discarding is allowed:

Marginal benefits, costs **Fishing** effort

Quality of information

- Perfect information:
 - Managers knows escapement
 - E.g., fishers do discard but they inform manager
- Imperfect information:
 - Belief about escapement derived from effort and landings data

$$\hat{S}_i = \begin{cases} \frac{L_i}{1 - e^{-qE}} & \text{if } E > 0\\ \hat{B}_i & \text{if } E = 0 \end{cases}$$

Data and model runs

- So far some test runs with a numerical example
 - Two identical species
 - \bullet K=100, r=0.1, p=0.5, c=0.1, q=0.1, m=0.8
 - Target escapement 50 (MSY)
 - 40 years, 100,000 trials
- Focus on values in 40th year
 - Minimize effect of starting point
 - Discount rate not considered
- Eight scenarios
 - Three policies, two alternatives each

Preliminary results

Average annual short-term rents:

		Quality of information	
Quota policy	Discarding	Perfect	Imperfect
Single-species	Allowed	2.22	1.63
	Banned	3.24	3.23
Multi-species	Allowed	3.18	3.05
	Banned	3.24	3.24

Preliminary results

Average annual short-term rents:

		Quality of information	
Quota policy	Discarding	Perfect	Imperfect
Single- species	Allowed	2.22	1.63
	Banned	3.24	3.23
Multi-species	Allowed	3.18	3.05
	Banned	3.24	3.24

Single-species quota, discards allowed

Probability distribution of rents:

Single-species quota, discards allowed

Probability distribution of biomass:

Preliminary results: discard ban

Average annual short-term rents:

		Quality of information	
Quota policy	Discarding	Perfect	Imperfect
Single-species	Allowed	2.22	1.63
	Banned	3.24	3.23
Multi-species	Allowed	3.18	3.05
	Banned	3.24	3.24

- Under a discard ban:
 - Landings and effort perfect indicator of escapement
 - Single-species quota rule effectively equivalent to multi-species quota rule

With discard ban

Probability distribution of annual rents:

With discard ban

Probability distribution of biomass:

Effects of the discard ban

Preliminary results

Average short-term rents:

		Quality of information	
Quota policy	Discarding	Perfect	Imperfect
Single-species	Allowed	2.22	1.63
	Banned	3.24	3.23
Multi-species	Allowed	3.18	3.05
	Banned	3.24	3.24

 A sensible quota policy could come a long way towards the rents associated with eliminating discards

Conclusions

- At least in this numerical example, a discard ban seems to give the best outcome
- About a third of benefits due to improved information
- A more comprehensive quota policy might also come a long way towards improving annual rents

Limitations

- Numerical example
- Two species only
 - More species may lead to earlier 'choke moments'
- Simplistic quota-setting rules
 - Optimal escapement one species depends on biomass, prices of all species, and costs
- Simplistic belief function
 - What about stock surveys?

Future steps

- Parameterization for the Dutch cutter fishery
 - Two dominant species (plaice and sole)
 - But also many others (potential choke species)
- Other policies
 - Near-optimal quota policies
 - Landing over-quota harvest at lower prices

Thank you

Questions?

