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Abstract The construction of the first genetic map in

autotetraploid blueberry has been made possible by

the development of new SNPmarkers developed using

genotyping by sequencing in a mapping population

created from a cross between two key highbush

blueberry cultivars, Draper 9 Jewel (Vaccinium

corymbosum). The novel SNP markers were supple-

mented with existing SSR markers to enable the

alignment of parental maps. In total, 1794 single

nucleotide polymorphic (SNP) markers and 233

simple sequence repeat (SSR) markers exhibited

segregation patterns consistent with a random

chromosomal segregation model for meiosis in an

autotetraploid. Of these, 700 SNPs and 85 SSRs were

utilized for construction of the ‘Draper’ genetic map,

and 450 SNPs and 86 SSRs for the ‘Jewel’ map. The

‘Draper’ map comprises 12 linkage groups (LG),

associated with the haploid chromosome number for

blueberry, and totals 1621 cM while the ‘Jewel’ map

comprises 20 linkage groups totalling 1610 cM.

Tentative alignments of the two parental maps have

been made on the basis of shared SSR alleles and

linkages to double-simplex markers segregating in

both parents. Tentative alignments of the two parental

maps have been made on the basis of shared SSR

alleles and linkages to double-simplex markers segre-

gating in both parents.Electronic supplementary material The online version of
this article (doi:10.1007/s11032-016-0443-5) contains supple-
mentary material, which is available to authorized users.
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Introduction

Consumer demand for blueberries is at an all-time high

due, in part, to their many recognized health benefits in

addition to increased worldwide production. Blueberry

fruit is rich in phenolic compounds, which have been

linked to improved night vision, prevention of macular

degeneration, anticancer activity, inhibition of pro-

inflammatory molecules and reduced risk of heart

disease (Johnson and Arjmandi 2013; Kalt et al. 2007).

Blueberry polyphenols have also been shown to increase

endothelium-dependent vasodilation as assessed by

flow-mediated dilation, leading to an improvement in

overall vascular function (Rodriguez-Mateos et al.

2013). Resveratrol content, has been linked to reduced

risk of heart disease and cancer, while pterostilbene, the

primary antioxidant component of blueberries, has been

shown to have both preventive and therapeutic effects on

neurological, cardiovascular, metabolic and hematolog-

ical disorders (McCormack and McFadden 2013; Han-

gun-Balkir and McKenney 2012; Rimando et al. 2004).

In the UK, the high consumer demand for blueberries,

combined with the lack of appropriate high-quality

cultivars suitable forUKclimatic conditions, has resulted

in a real need by the industry for the rapid development of

new blueberry cultivars with high fruit and nutritional

quality and expanded fruiting season tomeet the demand

for home grown soft fruit. UK blueberries supply only

5 %of demand, and projections have indicated that a rise

of 50–100 % in blueberry production up to 10 % of

demand is feasible, given appropriate cultivars and

management practices (Brazelton 2013).

Highbush blueberry cultivars (Vaccinium corym-

bosum L.) occur at three ploidy levels, 2n = 2x = 24,

4x = 48 and 6x = 72 (Camp 1945; Megalos and

Ballington 1988). Many of the major blueberry

varieties cultivated around the world are autote-

traploid (Qu et al. 1998; Boches et al. 2005).

Autopolyploids (polysomic polyploids) which also

include sugarcane (Saccharum spp.) and potato

(Solanum spp.) contain more than two genetically

similar (homologous) genomes, while allopolyploids

(disomic polyploids) consist of two or more distinct

(non-homologous) genomes such as wheat (Triticum

spp.), strawberry (Fragaria 9 ananassa) and rape-

seed (Brassica spp.). In allopolyploids, the association

of two differentiated genomes by means of interspeci-

fic hybridization results in the observed chromosome

doubling. Autopolyploids, on the other hand, are

thought to derive from chromosome doubling of the

same genome within a single parental species (Gallais

2003). Pairing during meiosis can occur in autopoly-

ploids between randomly chosen pairs of homologous

chromosomes (bivalents) or between more than two

homologous chromosomes (multivalents). Each chro-

mosome has the potential to pair randomly with any of

its homologues leading to tetrasomic inheritance

where all allelic combinations (A1A2A3A4) may be

produced in equal frequencies (Soltis and Soltis 1993).

A recent genetic map has been published for inter-

specific diploid blueberry comprising a total of 265

markers across 12 linkage groups and has led to the

identification of quantitative trait loci for cold hardi-

ness and chilling requirements (Rowland et al. 2012).

The number of markers has been recently increased to

318 (Reid et al. unpublished). However, the tetraploid

nature of commercial highbush blueberry makes

developing a genetic understanding of traits through

linkage mapping significantly more difficult than in

the disomic blueberry. One of the issues is the larger

number of markers required relative to a diploid map

and this has been addressed in our study by the use of

SNP markers derived from genotyping by sequencing

(GBS) of the mapping population.

While statistical methods for linkage analysis and

QTL mapping in diploid species are well developed,

polysomic analyses have advanced more slowly (Luo

et al. 2001; Hackett et al. 2001). A theoretical model of
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linkage analysis of dominant markers in an autote-

traploid species was developed by Hackett et al.

(1998), and this approach was later adopted by Meyer

et al. (1998) in the development of a linkage map in

potato. Luo et al. (2000) developed a model for the

prediction of marker genotypes for autotetraploid

parents by analyzing marker phenotypes from segre-

gating data obtained from parents and progeny, and

this methodology is utilized in the software Tetra-

ploidMap (Hackett and Luo 2003; Hackett et al. 2007).

TetraploidMap has been used to develop linkage maps

in many autotetraploid crops including blackberry

(Castro et al. 2013), rose (Gar et al. 2011), alfalfa

(Julier et al. 2003) and potato (Bradshaw et al. 2008).

A full range of marker types including fully versus

partially informative as well as dominant versus

codominant markers often can be found segregating

simultaneously in an autotetraploid population (Wu

et al. 2001). The genotypes of diploid parents can be

predicted by the segregation pattern of the progeny,

but this is not always the case with autotetraploids due

to the possibility of multiple allele dosage and double

reduction (Wu et al. 2001) and they must therefore be

deduced by parental and offspring phenotypes com-

bined (Hackett and Luo 2003). Both the occurrence

and frequency of double reduction in autopolyploids

would be expected to affect the pattern of allelic

segregation. The frequency of double reduction will

itself be affected by the position of each locus on a

chromosome with greater values found toward the

distal–proterminal regions and almost null at loci

located near centromeres (Welch 1962; Butruille and

Boiteux 2000). The estimation of recombination

frequencies using microsatellite markers (SSRs) is

up to four times more informative than with dominant

markers (Luo et al. 2001). Genetic markers andmarker

pairs differ in their informativeness about recombina-

tion, measured by the Fisher information. This is

discussed in the context of autotetraploid analysis by

Hackett et al. (1998), and variances of different

configurations, equal to the inverse of the Fisher

information, are given there. For linkage map con-

struction in an autotetraploid species, the most infor-

mative types of dominant markers are simplex

(AOOO 9 OOOO), duplex (AAOO 9 OOOO) and

double-simplex (AOOO 9 AOOO) in the parents.

These markers segregate in the progeny in expected

presence/absence ratios of 1:1, 5:1 and 3:1, respec-

tively, assuming tetrasomic inheritance (random chro-

mosomal segregation). Other configurations, such as

AAOO 9 AOOO or AAOO 9 AAOO, are present in

higher proportions (11:1 and 35:1) and carry little

information about recombination. The precision with

which the recombination frequency between a pair of

marker can be estimated depends on the type and also

the phase (coupling or repulsion). For dominant

markers, recombination between simplex markers

linked in coupling phase has the highest precision,

while simplex markers linked in repulsion have a

lower precision. Double-simplex markers also have a

higher precision in coupling phase. Duplex-to-simplex

linkages, however, have equal precision in coupling

and repulsion phase, and so are particularly useful for

identifying sets of homologous chromosomes.

Single nucleotide polymorphisms (SNPs) are by far

the most abundant mutations identified between

related DNA molecules. As a result of the advent of

rapid and affordable second generation sequencing

technologies, SNPs have become increasingly impor-

tant as markers in plant research on both a fundamental

and applied basis (Ward et al. 2013). Genotyping by

sequencing (GBS) has enabled the discovery of large

numbers of SNPs and the subsequent creation of high

density linkagemaps in a range of diploid fruit species,

including raspberry, grape, blackcurrant, apple, sweet

cherry, and peach (Ward et al. 2013; Barba et al. 2014;

Russell et al. 2014; Gardner et al. 2014; Guajardo et al.

2015; Bielenberg et al. 2015). SNP markers can be

identified from short reads generated by next genera-

tion sequencing (NGS) either by aligning to a reference

genome or by de novo assembly (Nielsen et al. 2011).

Although there is a draft whole genome assembly for

blueberry under preparation (Reid et al. unpublished),

this was not available at the time of this study, making

de novo assembly necessary.

To date, there is no publically available genetic

linkage map for autotetraploid blueberry for QTL

mapping of economically important traits such as fruit

and nutritional quality. The generation of such a

genetic linkage map is a critical step toward providing

the framework for blueberry crop improvement

through marker-assisted breeding, and we describe

here the development of the first linkage map in the

autotetraploid blueberry V. Corymbosum.
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Methods

Plant material

The mapping population is an F1 population generated

from a cross between two tetraploid cultivars: the

northern highbush ‘Draper’ released by Michigan State

University in 2002 and the southern highbush ‘Jewel’

whichwas released by theUniversity of Florida in 1999.

The cross was made at Michigan Blueberry Grow-

ers Marketing and seedlings were propagated at

Michigan State University. ‘Draper’ is an early to

mid-season cultivar producing premium quality, firm

and sweet fruit with superior shelf life. ‘Jewel’ is an

early to mid-season cultivar from a high-yielding plant

producing very large, slightly tart fruit. The mapping

population segregates for a number of key phenotypic

traits and is comprised of 99 individuals.

DNA isolation

Young actively growing blueberry leaves were col-

lected from the two parental cultivars, Draper and

Jewel, and the 99 available progeny. Between 30 and

50 mg of leaf tissue was placed in a cluster tube

(Corning Life Sciences, Tewksbury, MA, USA)

containing a 4-mm stainless steel bead (McGuire

Bearing Company, Salem, OR, USA) and samples

were frozen in liquid nitrogen prior to storage at

-80 �C until extraction. Frozen tissue was homoge-

nized using a Retsch� MM301 Mixer Mill (Retsch

Inc. Hann, Germany) at a frequency of 30 cycles/s and

three 30 s bursts. Two different DNA extraction

methods were used, depending on how the DNA was

to be utilized. For microsatellite analysis, the DNA

was isolated using commercially available cell lysis

and protein precipitation solutions (Qiagen, Hilden,

Germany) detailed in Gilmore et al. (2011) following

the Qiagen DNeasy mini plant kit protocol. DNA was

quantified based on absorbance at 260 nm with the

Wallac Victoc 3V, 1420 Multilabel Counter (Perkin

Elmer, Massachusetts, USA). For construction of the

GBS library, DNAwas isolated with the E-Z 96� Plant

DNA extraction kit (Omega Bio-Tek, Norcross, GA,

USA) as previously described (Gilmore et al. 2011)

and concentrations determined with a Quant-iTTM

Picogreen� dsDNA Assay kit (Invitrogen, Eugene,

OR, USA).

Genotyping by sequencing (GBS) library

construction and sequencing

GBS libraries from the two parents and progeny were

constructed as described by Ward et al. (2013) and

Elshire et al. (2011). Briefly, a set of 96 barcoded

adapters were generated from complementary

oligonucleotides with a ApeK1 overhang sequence

and unique barcodes terminate with 4–8 bp on the 30

end of its top strand and a 3-bp overhang on the 50 end
of its bottom strand complementary to the ‘sticky’ end

generated by ApeK1. The common adapter has only an

ApeK1 compatible sticky end. Oligonucleotides com-

prising the top and bottom strands of each barcode

adapter and a common adapter were diluted (sepa-

rately) in TE (50 mM each) and annealed in a

thermocycler (95 �C, 2 min; ramp down to 25 �C by

0.1 �C/s; 25 �C, 30 min; 4 �C hold). DNA samples

(100 ng in a volume of 10 ll) were added to individual
wells containing barcoded adaptors, dried and then

digested for 2 h at 75 �C with ApeKI (New England

Biolabs, Ipswitch, MA) in 20 ll volumes containing

16 NEB Buffer 3 and 3.6 U ApeKI. Adapters were

then ligated to sticky ends by adding 30 ll of a solution
containing 1.66 ligase buffer with ATP and T4 ligase

(640 cohesive end units) (New England Biolabs) with

incubation at 22 �C for 1 h followed by heating to

65 �C for 30min to inactivate the T4 ligase. Sets of 48

or 96 digested DNA samples, each with a different

barcode adapter, were combined (5 ll each) and

purified using a commercial kit (QIAquick PCR

Purification Kit; Qiagen, Valencia, CA) according to

the manufacturer’s instructions. DNA samples were

eluted in a final volume of 50 ll Restriction fragments

from each library were then amplified in 50 ll volumes

containing 2 ll pooled DNA fragments, 16Taq Master

Mix (New England Biolabs), and 25 pmol, each, of the

following primers: 5’-AATGATACG GCGACCACC

GAGATCTACACTCTTTCCCTACACGACGCTCT

TCCGATCT and 5’-CA AGCAGAAGACGGCATA

CGAGATCGGTCTCGGCATTCCTGCTGAACCGC

TCTTCCG ATCT. Temperature cycling consisted of

72 �C for 5 min, 98 �C for 30 s followed by 18 cycles

of 98 �C for 30 s, 65 �C for 30 s, 72 �C for 30 s with a

final Taq extension step at 72 �C for 5 min (Elshire

et al. 2011). These amplified sample pools constitute a

sequencing ‘library.’ Annealed and quantitated unique

barcode and common adapters were provided by the
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Buckler Lab forMaize Genetics and Diversity, Cornell

University (Ithaca, NY, USA). The GBS libraries were

submitted to the Oregon State University Center for

Genome Research and Biocomputing (CGRB) core

facilities (Corvallis, OR, USA) for quantitation using a

Qubit� fluorometer (Invitrogen, Carlsbad, CA, USA).

The size distribution of the libraries was confirmed to

range between 180 and 250 bp with the Bioanalyzer

2100 HS-DNA chip (Agilent Technologies, Santa

Clara, CA, USA). Libraries were diluted to 10 nM

based on Qubit� readings, and quantitative PCR

(qPCR) used to quantify the diluted libraries. From

each pooled library, 15.5 pM was loaded onto a single

lane for single-end Illumina� sequencing of 101 cycles

with the HiSeqTM 2000 and analyzed using the version

3 cluster generation and sequencing kits.

Putative SNP markers were identified using the

Universal Network Enabled Analysis Kit (UNEAK)

pipeline implemented in TASSEL, as a reference

genome sequence was not available to map reads for

SNP analysis (Lu et al. 2013). Sequence reads were

trimmed to 64 bp ‘‘tags’’ and SNPs were represented

by a minimum of five sequences, with SNP loci having

a minimum minor allele frequency C5 %. Stringent

filtering was applied to select markers with less than

10 % missing data.

Development of SSR markers

SSR markers were derived from a number of sources

including those previously reported from two

expressed sequence tag (EST) libraries developed

from cold-acclimated (CA) and non-acclimated (NA)

floral buds (Rowland et al. 2003; 2008; Dhanaraj et al.

2004; Boches et al. 2005) of ‘Bluecrop,’ GenBank

EST sequences (GVC for GenBank-derived V. corym-

bosum); 454 sequenced ESTs (VCB); Sanger-se-

quenced ESTs developed by the New Zealand

Institute for Plant & Food Research Ltd (Pr prefix);

and genomic sequences from the largest NGS scaf-

folds of the W85-20 genome assembly (KAN prefix

for Kannapolis where the genome is being assembled).

Sources and sequences of the majority of SSRmarkers

mapped are described in more detail in Rowland et al.

(2014) with any additional marker sequence informa-

tion and GenBank accession numbers detailed in the

supplementary Table (S1). SSR markers were first

screened over parents and a subset of progeny to

identify alleles that were either present in one parent

only and segregating 1:1 or 5:1, or present in both

parents and segregating 3:1, respectively. Multi-allelic

SSRs which were polymorphic between the parents

also were included for further analysis. The whole

population was then genotyped with these markers and

any SSRs with C25 % missing data excluded.

PCR conditions and SSR genotyping

PCRs and capillary electrophoresis platforms varied

slightly according to which of the three laboratories

(James Hutton Institute, USDA-ARS-NCGR and

University of Florida,) genotyped the population. At

the James Hutton Institute, a typical 25-ll reaction
contained 25 ng template DNA, 1.0 lM forward and

reverse primer, 0.2 mM dNTPs, 1 9 PCR buffer

(containing 10 mm Tris–HCl, 1.5 mm MgCl2,

50 mm KCl, pH 8.3) and 0.1 units Taq polymerase

(Roche, Basel, Switzerland). PCR was performed

using a Perkin Elmer 9700 Thermal Cycler as follows:

5 min at 95 �C, then 30 s at 95 �C, 30 s at 57 �C and

45 s at 72 �C for 40 cycles followed by 10 min at

72 �C. PCRproducts were resolved and visualized on a

1.5 % agarose gel to assess success of amplification,

then analyzed on anABI 3730DNA sequence analyzer

(Applied Biosystems, Foster City, USA) using Rox

500 (Applied Biosystems) as an internal size standard.

Allele sizes were visualized using GeneMapper soft-

ware version 3.7 (Applied Biosystems).

At the USDA-ARS-NCGR, PCRs contained 1 9 re-

action buffer, 2 mM MgCl2, 0.2 mM dNTPs, 0.50 lM
fluorescent M13 primer (Shuelke 2000), 0.12 lM
forward primer, 0.50 lM reverse primer, 0.075 units

of GoTaq� DNA Polymerase (Promega Corporation,

Madison, WI, USA), and 4.5 ng genomic DNA in a

total volume of 15 lL (Rowland et al. 2014). At the

University of Florida, a 10-ll PCR contained 20 ng

template DNA, 0.75 lM forward primer, 0.3 lM
reverse primer, 0.3 lM M13 fluorescent tag primer

(Shuelke 2000), 0.2 mM dNTPs, 2 mM MgCl2,

1 9 GoTaq PCR buffer and 0.025 units GoTaq DNA

polymerase (Promega Corp, Madison, WI). In all three

laboratories, band polymorphisms were scored in

individuals as present (1), absent (0) or missing data

(9), where markers failed to amplify in an individual.
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Linkage map construction

Our mapping strategy involved constructing maps for

the two parents separately using simplex and duplex

markers, and then aligning these approximately using

simplex to double-simplex coupling linkages. Details

of the theory for dominant markers can be found in

Hackett et al. (1998) and Meyer et al. (1998).

In an allotetraploid species, simplex and double-

simplex show the same expected segregation ratios as

above, however duplex markers either do not segre-

gate, or segregate in a 3:1 presence/absence ratio

depending on the chromosomal pairing. This could

form the basis of a test for the type of ploidy,

especially in a large population. However, an alterna-

tive is to compare the proportion of simplex coupling

and repulsion linkages: In an allopolyploid, these

should be detected in equal frequencies, while in an

autotetraploid few repulsion linkages will be detected

(Wu et al. 1992; Al-Janabi et al. 1992).

TetraploidMap was used to explore the joint allele

frequencies for each SSR separately, in order to assess

the most likely parental genotypes and the goodness of

fit between the observed and expected joint allele

frequencies. The SSRs were also tested to see whether

there was evidence of offspring genotypes that could

only be obtained from double reduction (e.g., if the

parental genotypes are inferred to be ABCC 9

DDDD, then an offspring with phenotype BD can only

arise from double reduction in the first parent), however

none were found. If no parental genotype model gave a

satisfactory fit to the observed joint frequencies, then

the alleles were analyzed separately, as dominant

markers, but labeled as a, b, etc., to show the origin.

Linkage maps were constructed separately for

markers segregating in ‘Draper’ followed by those

segregating in ‘Jewel.’ The marker sets in ‘Draper’

were assembled by combining SSR markers polymor-

phic in ‘Draper’ with GBS markers suggested by a

preliminary filter to be heterozygous in ‘Draper,’

homozygous in ‘Jewel’ and segregating in a 1:1 or 5:1

ratio in the progeny, based on a Chi-square test of

goodness of fit. Markers for which there was a

significant lack of fit (p\ 0.001) were excluded. This

was then repeated to identify markers heterozygous in

‘Jewel’ and homozygous in ‘Draper’ for ‘Jewel’ map

construction.

Each set of markers was clustered into linkage

groups using group average clustering with a distance

measure based on the significance level of a Chi-

square test for independent segregation as described

by Luo et al. (2001) in the context of a tetraploid potato

analysis. Any co-segregating markers were excluded.

The TetraploidMap software (Hackett et al. 2007) was

used to calculate recombination frequencies and LOD

scores between all pairs of markers, for each cluster

separately. As the resultant linkage groups, were too

large to be ordered within TetraploidMap the pairwise

recombination frequencies and LOD scores for inde-

pendence for each linkage group were analyzed with

JoinMap 4 (Van Ooijen 2006). The linkage groups

were checked one group at a time within JoinMap to

confirm linkage and eliminate any markers with LOD

scores less than four to any of the others in that linkage

group, and the remaining markers were ordered using

its regression mapping algorithm, with default param-

eters. The software MapChart (Voorrips 2002) was

then used to display the linkage maps which were

numbered randomly.

Double-simplex markers from the GBS analysis

were not used in the cluster analysis, as they have low

Fisher information unless they are in coupling phase

(Meyer et al. 1998). However, they were tested for

coupling associations with the simplex markers from

both ‘Draper’ and ‘Jewel’ using a Chi-square test for

independent segregation and inferring association if

the test for independent segregation was rejected with

significance p\ 0.001. Linkage groups from ‘Draper’

and ‘Jewel’ were then aligned on the basis of at least

one double-simplex marker showing an association

with simplex SNPs in both the ‘Draper’ and the

‘Jewel’ groups.

Results

Genotyping by sequencing libraries

The GBS library constructed from the ‘Draper’ 9

‘Jewel’ mapping population generated 153M single-

end reads. The number of reads ranged from a

minimum of 259,300 in progeny CF89 to 2.7 million

in CF9 and averaged 1.5 million reads per sample

(Fig. S1). Unique tag counts ranged from a low of

145,038 tags in CF89 to 596,130 tags per individual

sequenced in this lane and were 422,463 on average.

The proportion of unique tags per read was 30 % on

average across all the individuals sequenced and was
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highest in individuals with the lowest number of

reads: CF89, CF90 and CF95 (Fig. S1). Using the

UNEAK pipeline, 109,044 putative SNPs were

identified. CF89, CF90 and CF95 had the highest

percent of missing data at 49, 40 and 27 % of the

SNPs identified. Filtering to exclude any SNPs with

C10 % missing values resulted in 17,846 SNPs.

Heterozygous SNPs (5224 in ‘Draper’ and 6533 in

‘Jewel’) were further screened to select those which

exhibited only one allele segregating in a 1:1 or 5:1

ratio (1101 in ‘Draper’ and 673 in ‘Jewel’) based on

a chi-square goodness of fit test, excluding those with

significant distortion (p\ 0.001). SNP counts were

only considered missing where 0/0 read depths were

recorded.

SSR marker analysis

A total of 295 SSR primer pairs were tested for

polymorphism between the parents of the mapping

population. Nine primer pairs failed to amplify and

products of a further 53 primers were homozygous in

both parents. From the 233 primer pairs successfully

scored, a total of 402 markers were mapped. Of

these, 207 were codominant SSR markers, with two

or more alleles segregating, while the remaining 195

were individual bands for products from an SSR

primer pair that were scored as dominant markers.

With codominant markers, such as SSRs, it is easy to

detect the presence of double reduction (two sister

chromatids recovered from a single gamete). How-

ever, there were no offspring genotypes identified in

this dataset that could be obtained only through

double reduction.

Comparison of the frequency of simplex coupling

and repulsion linkages

In a cross between allopolyploids, an analysis of

simplex markers assuming disomic inheritance

should be equally likely to detect coupling and

repulsion linkages. However, for ‘Draper’ (1143

simplex markers), there were 2214 pairs with cou-

pling recombination frequency less than 0.1, however

none with a repulsion recombination frequency less

than 0.1. For ‘Jewel’ (681 simplex markers), there

were 810 pairs with coupling recombination fre-

quency less than 0.1, but again none with a repulsion

recombination frequency less than 0.1. Similar

comparisons at recombination frequencies of 0.2

and 0.25 showed very small number of repulsion

linkages in comparison with the coupling linkages.

We were therefore confident in our analysis of this

cross using an autotetraploid rather than an allopoly-

ploid model.

Linkage map construction

The initial clustering analysis of 1260 markers iden-

tified 12 linkage groups in ‘Draper.’ After calculation

of recombination frequencies and LOD scores with

TetraploidMap, these markers were used to construct

linkage maps at a minimum LOD score of 4 in

JoinMap. The resulting map had a total length of 1621

cM and comprised 785mappedmarkers, amongwhich

33 were co-dominant SSRs, 52 were dominant SSRs

and 700 were SNPs (Table 1). Linkage group coverage

ranged from 38 to 104 markers with the average

number of markers per LG being 65 and the number of

markers mapped across all 12 linkage groups totaling

785. The largest gap between markers was 10.9 cM

(LG 7). Clusters formed in JoinMap were separated

based on a minimum LOD score of 4, and this resulted

in an average loss of markers in ‘Draper’ of 15.5 per

linkage group; in ‘Jewel,’ an average of 3 markers per

group was discarded.

Fewer markers (856) were available for the initial

cluster analysis for ‘Jewel’ map, than for ‘Draper’.

This resulted in the ‘Jewel’ groups being more

fragmented than for ‘Draper’ and the clustering

analysis in TetraploidMap produced 32 large group-

ings with a further 12 smaller groups of between 2 and

7 markers. The larger groups detected and groups

containing markers linking ‘Jewel’ to ‘Draper’ were

then ordered into linkage maps.

Associations between the ‘Draper’ and ‘Jewel’

maps were identified utilizing double-simplex SNP

markers (heterozygous in both parents). Where pos-

sible these associations were confirmed by SSRs

mapped to linkage groups in both parents. Twenty

linkage groups from ‘Jewel’ were aligned with

‘Draper’ maps by this approach. These 20 groups

consisted of 536 markers, comprising 59 codominant

SSR markers and 27 dominant markers and 450 SNP

markers from the GBS dataset. Linkage group cover-

age ranged from 7 to 62 markers with the average

number of markers per LG being 27. The total number
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Table 1 Marker segregation ratio of SSRs, dominant markers and genotyping by sequencing SNP markers mapped to each linkage

group in blueberry ‘Draper’

Linkage

group

No. of markers

assigned

No. of mapped

markers

Total length

(cM)

No. of codominant

SSRs

No. of dominant

SSRs

No. of

SNPs

1 51 43 123 3 7 33

2 74 42 83 5 5 32

3 109 65 138 3 4 58

4 91 56 117 5 6 45

5 135 85 145 3 4 78

6 93 66 142 0 1 65

7 53 38 165 2 0 36

8 86 58 149 3 4 51

9 93 56 107 1 1 54

10 145 104 166 4 8 92

11 180 88 153 2 7 79

12 150 84 133 2 5 77

Total 1260 785 1621 33 52 700

This table shows the number of markers assigned to each chromosome, the number placed on the map and the source of the mapped

markers as co-dominant SSRs, dominant individual SSR bands and SNPs from genotyping by sequencing

Table 2 Marker segregation ratio of SSRs, dominant markers and genotyping by sequencing SNP markers mapped to each linkage

group in blueberry ‘Jewel’

Linkage

group

No. of markers

assigned

No. of mapped

markers

Total length

(cM)

No. of codominant

SSRs

No. of dominant

SSRs

No. of

SNPs

1 55 51 122 8 3 40

2 48 38 87 3 1 34

3a 70 45 116 5 1 39

3b 28 23 62 1 0 22

4a 18 10 40 3 0 7

4b 21 18 64 2 1 15

5 40 37 114 3 5 29

6a 36 35 95 1 1 33

6b 9 7 61 3 1 3

7 27 15 67 2 1 12

8a 38 31 92 4 4 23

8b 23 18 86 2 1 15

9 15 8 19 0 0 8

10a 36 29 122 5 0 24

10b 18 16 103 3 0 13

11a 50 44 49 5 1 38

11b 27 22 107 2 2 18

11c 17 13 51 0 0 13

12a 70 62 94 3 3 56

12b 19 14 59 4 2 8

Total 665 536 1610 59 27 450

This table shows the number of markers assigned to each chromosome, the number placed on the map and the source of the mapped

markers as co-dominant SSRs, dominant individual SSR bands and SNPs from genotyping by sequencing
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Table 3 Marker linkages aligning ‘Draper’ and ‘Jewel’ maps

Linkage

group

Linked SSRs between ‘Draper’ and ‘Jewel’ Double-simplex

marker

Closest ‘Draper’

marker

Closest ‘Jewel’

marker

1 Pr031818824c/Pr031818824a, KAN-11151a/

KAN-11151b, Pr032475745b/Pr032475745a

TP108922 TP77102 TP20020

TP83559 TP59202 TP73709

TP29647 ATDGK TP59531

TP7071 TP54290 Pr032475737b

TP86460 TP55121 Pr032475737b

TP91693 TP111210 TP55569

2 GVC-SL247b/GVC-SL247a, Pr032605975b,

Pr031818828, CER6-2a/CER6-2b

TP52124 TP36095 TP112121

TP86849 TP105172 TP62542

TP7029 TP90423 TP3055

TP37864 TP109905 TP68096

TP66717 TP62382 TP45278

TP118110 TP103341 TP32755

TP13796 TP44158 TP49265

TP91050 TP105172 TP55896

TP110093 GVC-SL247b TP41833

3a No SSRs TP23056 TP27951 TP20232

3b No SSRs TP27957 TP112016 TP54867

TP103628 TP99861 TP92762

4a Pr032475739a/Pr032475739b KAN-286 TP49297 TP22373

TP97091 GVC-NA961b TP11546

4b No SSRs TP102286 TP96618 TP96642

TP86460 TP117626 TP69426

TP117648 TP20145 TP69527

5 AP1-2 TP47172 TP39778 TP106905

TP65717 TP79854 TP3551

TP81900 TP52344 TP106208

TP20057 TP16108 TP1394

TP48725 TP10972 TP52998

TP72318 TP61784 TP13525

TP86684 TP113820 TP35552

6a No SSRs TP4962 TP10142 TP18926

TP26674 TP36725 TP17580

TP33829 TP75554 TP37985

TP29801 TP105555 TP104871

6b No SSRs TP4962 TP60675 GVC-V64f07b

7 GVC-C52d01 TP41311 TP24505 TP91420

TP98745 TP64338 Kan-2133

8a KAN-11199c TP110283 TP40861 TP89358

TP104443 TP78565 TP81095

TP99925 TP65231 GVC-C652a

8b Pr031818819, KAN-656d/KAN-656a, TP104443 TP882 TP90876

TP99925 TP27733 TP8643

TP35521 TP23870 TP97411
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Table 3 continued

Linkage

group

Linked SSRs between ‘Draper’ and ‘Jewel’ Double-simplex

marker

Closest ‘Draper’

marker

Closest ‘Jewel’

marker

TP79857 TP13658 TP58542

TP37911 TP83726 TP97198

9 No SSRs TP79321 TP21301 TP56333

TP16831 TP116768 TP25475

TP36317 TP4796 TP53798

TP23332 TP11103 TP13041

10a CA94b/CA94a, Pr032754266b, Pr032605974 KAN-1030b CA94a TP59352

TP96509 TP25793 TP76010

TP13175 TP9274 TP39388

TP18300 TP44089 TP67524

TP105022 TP92002 TP39404

TP71386 TP109340 TP92083

TP83735 TP49816 TP102378

TP66262 TP86367 TP60515

TP70042 TP58394 TP 38254

TP116162 TP111874 TP92083

10b CHI-2c/CHI-2a TP18300 TP91338 TP17427

TP71386 TP106097 TP28408

TP66262 TP112113 TP65878

11a VCC_j1a/VCC_j1b, GVC-NA619a, VCC-j9c/

VCC-j9a/VCC-j9b, Pr031818815a/Pr031818815b,

VCB-BH-1DV1YKa/VCB-BH-1DV1YKb

TP37508 TP20096 TP45143

TP84923 TP15023 TP10805

TP8875 Vcc-j9a TP14041

TP100828 TP61870 TP10482

TP35491 TP116232 TP29352

TP87859 TP4248 TP10321

11b GVC-C62h04 TP7206 TP118034 KAN-157a

TP8875 TP7397 TP74315

11c No SSRs TP96858 TP9985 TP107006

12a CA794a/CA794b TP67110 TP48691 TP11939

TP100598 TP95103 TP97478

TP90155 TP8345 TP10687

TP4893 TP103841 TP27068

TP48650 TP37238 TP102542

TP10868 TP18150 TP26100

12b VCC-k4a/VCC-k4b, GVC-C22g08a/GVC-C22g08b, VCC-i2b TP92430 TP26302 TP14075

This table shows the closest linked simplex marker on ‘Draper’ and ‘Jewel’ to each of the double-simplex (DS) markers (underlined

bold markers in Fig. 1) as well as the individual SSR markers which mapped to both parents (linked line between markers in Fig. 1)
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of markers mapped in ‘Jewel’ was 536 covering

1610 cM, with the largest gap between markers being

27.2 cM (LG 11b). Table 2 gives details of the

markers mapped to each linkage group, and Table 3

shows the double-simplex markers and SSRs on which

the alignments are based, and the closest simplex

marker from each of ‘Draper’ and ‘Jewel’ to the

double-simplex marker. The linkage maps are shown

in Fig. 1.

Discussion

We report the first application of GBS in blueberry.

We have generated thousands of SNPs located across

the V. corymbosum genome and utilized a proportion

of them to construct the first genetic map in tetraploid

blueberry, indeed in any polyploid woody perennial

fruit crop. Genotyping of an F1 population enabled the

genetic mapping of 785 SNP markers at LOD 4 or

above to the 12 linkage groups of ‘Draper,’ and 536 to

20 linkage groups in ‘Jewel.’ Mapping of homologous

chromosomes awaits future enlargement of the marker

dataset and we are confident that GBS will provide

such resources in a future study. However the GBS

data obtained was not sufficient in terms of read depth

coverage to call allele dosage and so was used to

determine presence or absence of alleles only.

We found that excluding SNP markers with[10 %

missing data led to a decrease in the number of SNPs

available for linkage map construction and this is

consistent with previous reports in grape (Barba et al.

2014), sweet cherry (Guajardo et al. 2015) and black

raspberry (Bushakra et al. 2015). In blueberry, the
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Fig. 1 continued
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Fig. 1 Genetic linkage map constructed in the tetraploid

blueberry population, ‘Draper’ 9 ‘Jewel.’ Underlined and bold

markers show the closest linked double-simplex markers for

each of the parents, while SSR markers linking parental maps

are shown with a line between the maps (Table 3)
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Jewel3bFig. 1 continued
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number of SNPs (109,044) identified by the non-

reference guided UNEAK pipeline was much larger

than that identified by a reference-guided pipeline in

black raspberry (57,238) constructed using the same

protocol and sequenced in the same Illumina� run.

Number of SNPs identified in the separate studies on

sweet cherry and grape were lower than those in

blueberry, at 11,854 and 42,172 respectively.

Excluding SNP markers with[10 % missing data in

blueberry led to a 6-fold reduction in the number of

SNPs (17,846 SNPs) and 7.2-fold reduction in black

raspberry (7911 SNPs). Using this same arbitrary

filtering parameter of excluding SNP markers with

[10 % missing data, 1.4-fold and 2.5-fold reductions

in the number of SNPs were observed in the diploid

grape (16,833 SNPs) and sweet cherry (8476 SNPs)
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AOMT-30
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respectively, though other differences between the

studies may have come into play here. The relatively

large number of SNPs identified in blueberry

compared with black raspberry, constructed and

sequenced simultaneously, along with the higher rate

of SNP reduction in SNPmarkers with[10 %missing
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data is noteworthy and might have resulted from the

autopolyploidy of the blueberry, sub-optimal DNA

quality, and/or use of a non-reference-guided SNP

detection pipeline necessitated by the absence of a

reference genome. The average proportion of unique

tags to reads per sample in blueberry (30 %) was

almost twofold higher than that observed in black

raspberry (17 %) (Bushakra et al. unpublished). We

believe this is due to the presence of two genomes per

locus in blueberry when compared to the single diploid

genome of black raspberry. Since autopolyploidy

caused higher amount of variation compared with

the diploid, a corresponding higher coverage is needed

to obtain well-supported SNP calls with[5 supporting

reads.

Of the 17,846 blueberry SNPs evaluated for

mapping in this study, 785 (4.4 %) were mapped in

‘Draper’ and 450 SNPs (2.5 %) were mapped in

‘Jewel.’ Although a large number of markers have

been excluded in this study, such loses are in line with

previous studies and we decided that priority should be

given to the quality of markers used over the

quantity. In sweet cherry, of 8476 SNPs selected for

mapping, 443 SNPs (5 %) were mapped in the

maternal parent ‘Rainier,’ and 474 SNPs (5.6 %) in

the paternal parent, ‘Riverdel’ (Guajardo et al. 2015).

In grape, of 16,833 SNPs, linkage maps were

constructed with 1146 SNPs (6.8 %) in V. rupestris

B38 and 1215 SNPs (7.2 %) in ‘Chardonnay,’ while in

black raspberry 399 (5 %) of the 7911 SNPs were

mapped in the parents (Bushakra et al. 2015).

All four parental homologues were identified across

four linkage groups in ‘Draper’ while a further five

linkage groups recovered three homologues

(Table S2). In ‘Jewel’ however, only three homo-

logues could be resolved in four linkage groups with

eight more recovering only two (Table S2). We are not

aware of any group calling allele dosage in a tetraploid

crop using genotyping by sequencing. A recent study

by Rocher et al. (2015) in tetraploid alfalfa (Medicago

sativa) found only 23 % of SNP loci were deemed as

having reliable genotype calls in 50 % of plant

samples but sequencing depth was not sufficient for

tetraploid allele dosage. A sequencing depth of

between 60 and 809 has been estimated as appropriate

in heterogeneous cultivars of tetraploid potato in order

to establish reliable allele dosage (Uitdewilligen et al.

2013).

Due to the small population size, only tentative

linkages were assigned in this study and best align-

ments reported between parents were based on this. It

will be necessary to repeat this study in a larger

population of at least 275 seedlings to obtain greater

confidence in identifying markers which are truly

duplex, which would give an increased power to detect

linkages. Another area for improvement is the number

of markers required to cover all 96 chromosomes in

blueberry. With one simplex marker per 5 cM and

assuming an average chromosome length of

*100 cM, would require a total of 1920 simplex

markers. Then, in order to align homologous chromo-

somes together, a further 2 9 12 sets of duplex
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markers (480 in total) would give an overall require-

ment of *2500 markers. Only next generation

sequencing technologies could supply these and we

have demonstrated their potential in this study.

The linkage map developed for ‘Draper’ and

‘Jewel’ required the power of both TetraploidMap

and JoinMap 4 to order markers correctly. There

were too many markers in this dataset to analyze

using TetraploidMap in isolation as in its current

format TetraploidMap cannot handle large enough

datasets for all analyses required (Hackett et al.

2007).
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Traditional blueberry breeding has been compli-

cated by a relatively long juvenile period (approxi-

mately 3 years) and polyploid nature of the plant as

well as by severe inbreeding depression preventing the

development of inbred lines (Die and Rowland 2013).

Phenotypic selection of blueberry is often complicated

by incomplete expression of traits through a combi-

nation of environmental factors including: climate,

soil type and abiotic and biotic pressures (Collard et al.

2005; Winter and Kahl 1995). Blueberry breeding

programmes would benefit from the further develop-

ment of genomic and genetic resources such as the

map developed in this study, to enable identification of

genetic markers for key breeding traits. Such markers

will then be available for implementation of marker-

assisted breeding (MAB), as is currently being applied

by breeders of other woody perennial fruit crops.

MAB is particularly important to improve the effec-

tiveness of selection of parental plants for crosses and

for early generational seedling selection, to eliminate

offspring with undesirable traits before they are field

planted. A key advantage of MAB is that selection

based on molecular markers is not affected by the

environment or by the developmental stage of plants.

Generation of a genetic linkage map is a critical

step toward providing the framework for knowledge-

based crop improvement. Traits that are difficult to

phenotype, such as the chilling requirement and cold

tolerance of individual progeny could be more accu-

rately predicted with the allocation of appropriate

markers. Marker-assisted breeding is a powerful aid to

in genetic improvement particularly when combining

traits like such as adaptation and season extension with

other significant traits including fruit quality and pest

and disease resistance. Woody perennials, like blue-

berry, are especially suitable for improvement via

marker-assisted breeding because of their long gener-

ation times, high heterozygosity, self-incompatibility,

inbreeding depression, and polyploidy of commercial

types (Russell et al. 2014; Barba et al. 2014; Guajardo

et al. 2015) and this study is a step towards achieving

this goal in blueberry.
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