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Informative g-Priors for Logistic Regression

Timothy E. Hanson ∗, Adam J. Branscum † and Wesley O. Johnson ‡

Abstract. Eliciting information from experts for use in constructing prior distri-
butions for logistic regression coefficients can be challenging. The task is especially
difficult when the model contains many predictor variables, because the expert is
asked to provide summary information about the probability of “success” for many
subgroups of the population. Often, however, experts are confident only in their
assessment of the population as a whole. This paper is about incorporating such
overall information easily into a logistic regression data analysis using g-priors.
We present a version of the g-prior such that the prior distribution on the overall
population logistic regression probabilities of success can be set to match a beta
distribution. A simple data augmentation formulation allows implementation in
standard statistical software packages.

Keywords: Binomial regression, Generalized linear model, Prior elicitation

1 Introduction

Zellner (1983) introduced the g-prior as a reference or default prior for use with Gaus-
sian linear regression models. Recently, variants of the g-prior have been proposed for
use with generalized linear models; e.g. Rathbun and Fei (2006), Marin and Robert
(2007), and Bové and Held (2011). We provide a simple, Gaussian g-prior for logistic
regression coefficients that corresponds to a given beta distribution reflecting the proba-
bility of success across the covariate population. Gaussian priors are used on regression
coefficients, for better or worse, in many studies involving logistic regression analysis,
and in fact are available in SAS proc genmod, the DPpackage for R (Jara et al. 2011),
and elsewhere.

Consider the logistic regression model

yi|β ∼ binomial(mi, πi), πi =
ex
′
iβ

1 + ex
′
iβ
, i = 1, . . . , n,

where yi “successes” are observed from mi independent Bernoulli trials that each have
success probability πi, and xi is a covariate vector of length p. Assume data are in
Bernoulli format so that mi = 1, implying yi = 0 or yi = 1 for i = 1, . . . , n. We
complete the Bayesian model by considering the following g-prior for β:

β ∼ Np(b e1, gn(X′X)−1), (1)

where X = [x1 · · ·xn]′ is an n×p design matrix and the first element of the p-vector e1 is
equal to one and all of its other elements are equal to zero, yielding a prior mean of b for
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the intercept term. The scalar g can be modeled with an inverse-gamma distribution,
yielding a multivariate t prior for β. However, we propose setting g equal to a constant.
In this paper, we determine values of b and g that can be used by default when prior
information is lacking, or that reflect available prior information on the probabilities of
success in the population. In addition to being very simple to construct, a noteworthy
feature of the proposed prior is that it can be used in situations where quasi or complete
separation occur, i.e. where some maximum likelihood estimates are infinite and the
likelihood forms a ridge for the intercept β0. Moreover, an approximate version of our
proposed prior can be implemented in virtually any statistical software package that
fits logistic regression models via the method of maximum likelihood by using a data
augmentation trick described in Section 2.4.

The approach to prior specification in logistic regression presented here draws inspi-
ration from Gustafson (2007), Marin and Robert (2007), and Jara and Hanson (2011).
Gustafson (2007) examined posterior inference on parameters that are averaged over the
covariates and response; see also Liu and Gustafson (2008). Marin and Robert (2007)
used a default version of Zellner’s g-prior throughout their book, and Jara and Hanson
(2011) approximately matched a logistic-normal distribution (Aitchison and Shen 1980)
to a given beta distribution with mean one-half.

Gelman et al. (2008) suggest standardizing non-binary covariates and then placing
independent Cauchy priors on regression coefficients based on how covariates could
reasonably affect the odds of the response. However, their insightful approach does not
take into account correlation among the predictor variables. A prior that is location-
scale invariant and takes into account correlation among predictors is a suitably modified
version of Zellner’s g-prior, originally developed as a “reference informative prior” for
Gaussian linear models (Zellner 1983).

In Section 2 we derive the proposed g-prior for logistic and other binomial regression,
and derive some useful results associated with it. Specifically, we obtain formulas for g
and b that are functions of the hyperparameters of a beta(aπ, bπ) density that reflects
prior knowledge about the distribution of success probabilities in the population. Section
3 provides examples of the prior in action, and Section 4 concludes the paper.

2 Method and results

We assume that the covariate vectors vary according to the probability H(dx) over the
population covariate space (X ,B(X )), where X ⊆ Rp. One often has some knowledge
of how success probabilities are distributed in the population; suppose that this dis-
tribution, i.e. the density of π, is well-characterized by a beta(aπ, bπ) distribution. If
β is known, the probability of success is the random variable π = logit−1(x′β) where
x ∼ H(dx). However, β is not known, but rather modeled through the prior p(β).
Assuming β is independent of x, the probabilities of success are distributed according
to the random variable π = logit−1(x′β), where x ∼ H(dx) is independent of β ∼ p(β).
The goal is to model uncertainty about β according to a prior density p(β) so that the
induced distribution on π matches the elicited beta(aπ, bπ) density as a prior subjective
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approximation to the distribution of success probabilities. We construct a particular
g-prior for β, i.e. choose g and b in (1), that approximately achieves this goal.

2.1 Selecting g and b

Suppose predictors x1,x2, . . . arise independently from a population H(·) such that, for
all i,

E(xi) = µ and Cov(xi) = Σ.

The p×p covariance matrix Σ can be rank-deficient as long as [Σ+µµ′] is nonsingular.
If this latter matrix is singular (requiring side conditions), the following arguments can
be modified using pseudo-inverses, but we do not consider this here. Typically, Σ is of
rank p− 1 with µ1 = 1 and σ11 = 0, to include an intercept term in the first element of
β.

First consider the g-prior β|g,X ∼ Np(0, gn(X′X)−1). Marin and Robert (2007)
used this prior with generalized linear models and they further placed a gamma prior
on g−1. The induced prior on β is then a generalized multivariate t distribution.

Consider x drawn according to H(·) from the covariate population, independently
of β and X. Iterated expectation gives E(x′β) = 0, and iterated variance yields

Var(x′β) = Ex{Varβ(x′β|x)}+ Varx{Eβ(x′β|x)}
= Ex{gnx′(X′X)−1x}+ Varx(0)

= g tr
{
n(X′X)−1Σ + n(X′X)−1µµ′

}
.

Because n(X′X)−1 p→ [Σ + µµ′]−1, it follows that

Var(x′β)
p→ g tr

{
[Σ + µµ′]−1[Σ + µµ′]

}
= g tr(Ip) = g p.

That is, under this g-prior for β, a covariate x randomly drawn from its population
implies Var(x′β) ≈ gp. The approximate variance holds for continuous covariates,
categorical covariates, and mixtures of these.

When there is an intercept in the model, a generalization is

β|b, g,X ∼ Np(b e1, gn(X′X)−1),

where b is a constant and every element in the first column of X is one. Then, using
similar derivations, E(x′β) = b and Var(x′β) ≈ gp.

Assume u = x′β has an approximate Gaussian distribution. This is reasonable in
many settings; in Section 2.2 we show that for normally distributed x, u is unimodal
and symmetric about b, and is in fact a scale mixture of normals. Aitchison and Shen
(1980) developed properties of logistic normal distributions. Let u ∼ N(m, v) and take
r = exp(u)/{1 + exp(u)}. Then, r is said to have the logistic-normal distribution with
parameters m and v, denoted r ∼ logitN(m, v). The Kullback-Liebler directed diver-
gence between a beta(aπ, bπ) distribution and a logitN(m, v) distribution is minimized
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whenm = δ(aπ)−δ(bπ) and v = δ′(aπ)+δ′(bπ), where δ(x) = Γ′(x)/Γ(x) is the digamma
function and δ′(x) is the trigamma function (Aitchison and Shen 1980). In particular,
for the uniform(0, 1) distribution, we set aπ = bπ = 1 and obtain δ′(1) = π2/6. Hence,
the choice of g = π2/(3p) in the g-prior induces a distribution for π that is approxi-
mately uniform(0, 1). (In an abuse of notation, we have used π to denote a random
variable and as the usual constant.)

More generally, if available prior information about the probability of the event of
interest across the population can be represented by a beta(aπ, bπ) distribution, then
simply set b = δ(aπ) − δ(bπ) and g = {δ′(aπ) + δ′(bπ)}/p in (1). This approximation
to the beta(aπ, bπ) distribution can come very close depending on the distribution of
x. Values for aπ and bπ can be easily determined using methods outlined in Section
5.1 of Christensen et al. (2010). The free Windows-based program BetaBuster can
also be used to elicit a beta distribution, available at http://www.epi.ucdavis.edu/

diagnostictests/betabuster.html.

Main Result: For β ∼ Np(be1, gn(X′X)−1) independent of x ∼ Np(µ,Σ), where
b = δ(aπ)− δ(bπ) and g = {δ′(aπ) + δ′(bπ)}/p, the distribution of
π = exp(x′β)/{1 + exp(x′β)} is approximately beta(aπ, bπ).

Fouskakis et al. (2009) recommend b = 0 and g = 4 for logistic regression based
on unit information considerations. Setting aπ = bπ = 0.5 in the result above gives
g = 9.87/p; this is similar to Fouskakis et al. (2009) for dimensions p = 2 and p = 3.

2.2 Density of inner product under normality

We now derive the density of u = x′β under the assumptions of the main result, and
show that it is symmetric and unimodal. Consider models with an intercept and let

x =

[
1
x∗

]
∼ Np(µ,Σ), where µ =

[
1
µ∗

]
and Σ =

[
0 0′

0 Σ∗

]
.

Note that this is degenerate normal (the density is supported on a hyperplane), but
the following results hold because the prior on β is non-degenerate. The Woodbury
inversion formula and some algebra reveal that

x′[Σ + µµ′]−1x = 1 + (x∗ − µ∗)′[Σ∗]−1(x∗ − µ∗) ∼ 1 + χ2
p−1.

Let β ∼ Np(b e1, g[Σ + µµ′]−1) independent of x ∼ Np(µ,Σ). Then the distribution
of u follows the hierarchical specification

u|w ∼ N(b, g(1 + w)), w ∼ χ2
p−1.

Hence, the density function of u is

f(u) =

∫ ∞
0

f(u|w)f(w)dw

=

∫ ∞
0

1√
2πg(1 + w)

exp

(
− (u− b)2

2g(1 + w)

)
w(p−1)/2−1 exp(−w/2)

2(p−1)/2Γ((p− 1)/2)
dw.

http://www.epi.ucdavis.edu/diagnostictests/betabuster.html
http://www.epi.ucdavis.edu/diagnostictests/betabuster.html
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This is a scale mixture of normals; the lower bound on the scale is one. Clearly, f(u)
has a mode at b and is symmetric about b. Note that this density can be used directly
to elicit a prior on β, instead of the approximations used for the Main Result, but
numerical integration is required.

Now consider a model that does not contain an intercept term, but where Σ is of
full rank. Let x ∼ Np(µ,Σ), β ∼ Np(0, g[Σ + µµ′]−1), and u = x′β, where, here, µ
and Σ are unconstrained. Then define

v = Σ1/2β and w = Σ−1/2x

so that u = w′v, w ∼ Np(δ, Ip) and v ∼ Np(0, gA), where δ = Σ−1/2µ and A =

Σ1/2(Σ + µµ′)−1Σ1/2. Note that

A = (Ip + δδ′)−1 = Ip − δδ′/(1 + δ′δ).

Thus, u|w ∼ N(0, gk), where k = w′Aw. Consequently, the marginal density for u is

f(u) =

∫ ∞
0

f(u|k)f(k)dk =

∫ ∞
0

1√
2πgk

e−0.5u2/[gk]f(k)dk,

with mean E(u) = 0 and variance

Var(u) = Varw{Eu(u|w)}+ Ew{Varu(u|w)} = E(gk) = gtr(A E(ww′)) = gp.

We now find the spectral decomposition for A. Clearly

Aδ =
1

1 + δ′δ
δ ≡ ∆1δ.

Let δ̃ = δ/
√
δ′δ so that Aδ̃ = ∆1δ̃. Then let the matrix of eigenvectors for A be Λ =

(δ̃, Λ̃) and the corresponding diagonal matrix of eigenvalues be ∆ = diag(∆1, . . . ,∆p).
Then

A = Λ∆Λ′, Λ′Λ = Ip.

Note that

AΛ̃ =

(
Ip −

1

1 + δ′δ
δδ′
)

Λ̃ = Λ̃

since Λ must be orthogonal and hence the columns of Λ̃ are orthogonal to δ. This
means that ∆i = 1 for all i ≥ 2. Finally,

k = w′Aw = w′Λ∆Λ′w ≡ w̃′∆w̃ =
w̃2

1

1 + δ′δ
+

p∑
i=2

w̃2
i ,

where w̃1 ∼ N(
√
δ′δ, 1) independent of w̃2, . . . , w̃p

iid∼ N(0, 1). Thus, f(k) is a scaled
non-central χ2

1 plus an independent χ2
p−1, and this distribution depends on δ′δ =

µ′Σ−1µ. Regardless, the density f(u) has a mode at zero and is symmetric, as in
the model with an intercept.
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2.3 G-priors are conditional means priors

A conditional means prior (CMP) in a generalized linear model involves specifying
independent prior distributions for the mean responses corresponding to a collection of
covariate combinations (Bedrick et al. 1996). This specification is then used to induce
a prior on the regression coefficients in the model. Here we consider a collection of
“canonical” covariate combinations to make a point.

Define A = n(X′X)−1 and let A = MΛM′ be the spectral decomposition of A,
i.e., the columns of M contain p orthonormal eigenvectors M = [m1m2 · · ·mp] and
the diagonal matrix Λ = diag{λi} contains the corresponding eigenvalues. Define p

“canonical covariates” as vi = mi/
√
λi, and set V = [v1v2 · · ·vp] = MΛ−1/2. Let

γi = v′iβ and γ = Λ−1/2M′β = V′β.

For the logistic regression model, the probability of success pi corresponding to canonical
covariate vi is given by logit(pi) = γi. We thus have, elementwise, logit(p) = V′β =
γ. If we place independent and identically distributed mean-zero normal priors on
the components of γ, we have specified the particular CMP prior γ|g ∼ Np(0, gIp).

Then, since β = MΛ1/2γ, the induced distribution for β is β ∼ Np(0, gMΛM′) =
Np(0, gn(X′X)−1). If instead we specify independent normal priors on the components

of γ with means given by γ|g, b ∼ Np(bΛ−1/2m̃1, gIp), where m̃′1 is the first row in M,
then β ∼ Np(b e1, gn(X′X)−1), as M′M = MM′ = Ip. We have thus established that
the standard g-prior is a particular conditional means prior.

2.4 Implementation in statistical software packages

Estimates of β and functions of it can be obtained from standard statistical software
packages by using a data augmentation prior (e.g., Bedrick et al. 1996) in conjunc-
tion with standard procedures to fit generalized linear models, for example the Fisher
scoring algorithm and accompanying estimated asymptotic covariance matrix. Data
augmentation proceeds by adding triples {(xi, ỹi, m̃i)}ni=1 to the data set, where xi is
the observed covariate vector for unit i and the n pairs of augmented data, (ỹi, m̃i), are
imaginary counts of observed successes and total sampled at xi. In this context, they
would be selected so that the induced prior from the data augmentation prior on β is
well approximated by Np(0, gn(X′X)−1).

We proceed to find a data augmentation prior that corresponds to a g-prior. The
data augmentation prior corresponds to a likelihood based on imaginary data. The
maximum likelihood logistic regression estimating equation based on the imaginary
data set is X′ỹ = X′M̃π̂, where ỹ = (ỹ1, . . . , ỹn)′, π̂ = (π̂1, . . . , π̂n)′, logit(π̂i) = x′iβ̂,

m̃ = (m̃1, . . . , m̃n)′, and M̃ = diag(m̃). For a mean-zero g-prior, setting β̂ = 0 implies
X′ỹ = X′m̃/2, and the corresponding weight matrix with variances along the diagonal

is W̃ = M̃/4. The estimated asymptotic covariance matrix is Cov(β̂) = [X′W̃X]−1 =
[X′M̃X/4]−1. There are two sets of equations, X′ỹ = X′m̃/2 and gn(X′X)−1 =

[X′M̃X/4]−1, in the unknown vectors m̃ and ỹ. When β̂ = 0, the logistic regression
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estimating equation is satisfied by any m̃ = 2ỹ. By taking gn = 4/m̃, where m̃i ≡ m̃,
the augmented data are then ỹi = 2/(gn) and m̃i = 4/(gn), for i = 1, . . . , n. Thus, by
simply adding 2/(gn) to yi and 4/(gn) to mi = 1 in the original data, an approximate
g-prior for β is obtained. That is, 2/(gn) successes and 2/(gn) failures are added to each
observation. This roughly corresponds to the normal prior of Gelman et al. (2008) when
gn = 4; i.e., one can implement their normal prior in any software package that allows
non-integer data when fitting the logistic regression model via maximum likelihood.

If we use β̂ = e1b, then logit(π̂i) ≡ b, implying X′ỹ = X′m̃[eb/(1 + eb)], with
weight matrix W̃ = M̃[eb/(1 + eb)2]. Continuing as in the previous argument, set
m̃−1
i = gn[eb/(1 + eb)2] and ỹ−1

i = gn/(1 + eb).

3 Examples
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Figure 1: The left panel is the induced density f(u) where u = x′β, along with a
N(0, gp) density. The right panel is the distribution of the probability of success π and
a beta(0.5, 0.5) density.

3.1 K-group problem

Consider the goal of comparing probabilities across K groups. We can formulate the
g-prior in one of two equivalent ways. First, let level 1 be the baseline group (xi1 = 1 for
all subjects i = 1, . . . , n) and, for 2 ≤ k ≤ K, set xik = 1 if observation i is from group
k and otherwise set it equal to 0. Thus xi = (1, xi2, . . . , xiK)′ indicates the group to
which subject i belongs. For example, when K = 3, then xi = (1, 0, 0)′, xi = (1, 1, 0)′,
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or xi = (1, 0, 1)′ if observation i is from group 1, 2, or 3, respectively. In this case,

µ =

 1
q2

q3

 and Σ =

 0 0 0
0 q2(1− q2) −q2q3

0 −q2q3 q3(1− q3)

 ,
where q1 ≡ 1 and qk denotes the proportion of the source population that belongs to
group k, for k = 2, 3.

The second formulation is to set xik = 1 if observation i is from group k and set it
equal to zero otherwise; this is the cell means (no intercept) model. Then

µ =

 q1

q2

q3

 and Σ =

 q1(1− q1) −q1q2 −q1q3

−q1q2 q2(1− q2) −q2q3

−q1q3 −q2q3 q3(1− q3)

 ,
where here q1 is the population proportion in group 1.

In either case, x′[Σ + µµ′]−1x = 1/qk for the x corresponding to level k. A match
to the uniform(0, 1) distribution is achieved by setting g = π2/(3p).

3.2 Simulated data with one continuous predictor

We examine how well the Main Result works in terms of matching a default beta(0.5, 0.5)
distribution. A sample of n = 200 predictors was generated from H(dx) as xi = (1, x∗i )

′

where x∗i
iid∼ N(2, 0.52), yielding the design matrix X. The left panel in Figure 1 shows

the induced distribution (the histogram) of u = x′β from x ∼ H(dx) independent of β ∼
N2(0, gn(X′X)−1), where g = δ′(0.5) = 4.9348, along with a mean-zero normal density
that has variance gp; the density is remarkably bell-shaped. The right panel of Figure
1 shows a histogram approximation of the induced density along with a beta(0.5, 0.5)
density; they closely agree.

3.3 Comparison to Jeffreys’ and information matrix priors

Chen et al. (2008) studied the properties and implementation of Jeffreys’ prior for bi-
nomial regression models; Ibrahim and Laud (1991) note that Jeffreys’ prior is proper
for binomial regression. Firth (1993) suggested the use of Jeffreys’ prior as a solution
to the problem of bias in maximum likelihood estimators. Heinze and Ploner (2003)
recast this approach as a particular penalized likelihood that solves the quasi or com-
plete separation problem in logistic regression. Gupta and Ibrahim (2009) consider a
generalization of Jeffreys’ prior called information matrix (IM) priors.

Consider logistic regression with one predictor variable and no intercept. The log-
likelihood is

L(β) =

n∑
i=1

xiβyi − log{1 + exiβ},
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Figure 2: Jeffreys’ prior, a default g-prior, and the information matrix (IM) prior with
c0 = 10 for simulated covariates in a simple logistic regression model.

and the second derivative is

L′′(β) = −
n∑
i=1

x2
i e
βxi

(1 + eβxi)2
.

Therefore Jeffreys’ prior is

πJ(β) ∝

√√√√ n∑
i=1

x2
i e
βxi

(1 + eβxi)2
.

For the model considered here, one version of the IM prior reduces to

πIM (β) ∝

√√√√ n∑
i=1

x2
i e
βxi

(1 + eβxi)2
exp

{
− 1

2c0
β2

n∑
i=1

x2
i e
βxi

(1 + eβxi)2

}
.

As c0 →∞, Jeffreys’ prior is obtained.
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We compared a default version of our prior (aπ = bπ = 0.5) to Jeffreys’ prior and

the IM prior with c0 = 10. Setting n = 200 and generating xi
iid∼ N(2, 0.52) as in the

previous section, densities for the three priors are displayed in Figure 2. Notably, our
default Gaussian prior is akin to a “Gaussianized” version of Jeffreys’ prior. As for the
IM prior, the bumps disappear when c0 climbs to 30 and beyond.

We also compared Jeffreys’ prior to a default g-prior with aπ = bπ = 0.5 for the
predictors in Section 3.2. In general, Jeffreys’ prior is given by πJ(β) ∝ |I(β)|1/2 where
I(β) is the Fisher information matrix. Figure 3 shows filled contour plots comparing
the two priors. They have the same overall shape, but Jeffreys’ prior is considerably
more diffuse. Here, the density at the mode of the g-prior is about twice as high as at
the mode from Jeffreys’.

Figure 3: Default g-prior and Jeffreys’ prior densities for the covariates in Section 3.2.
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3.4 Simulated data with two predictors

Simulated data (n = 200) were generated with xi1 = 1 (to accommodate an inter-
cept term), xi2 ∼ Bernoulli(0.5) (e.g., a primary predictor variable), and xi3|xi2 ∼
N(xi2, 0.5). Suppose that, based on expert consultation, we wish to match the distri-
bution of success probabilities π to a beta(5, 3) density. This yields g = 0.2054 and
b = 0.5833. Figure 4 presents an estimate of the prior from 10,000 samples generated
from the source population for x independent of β ∼ N3(be1, ng(X′X)−1), where X was
computed from the initial sample of n = 200. The prior is superimposed on the target
beta density, and they closely agree. Note that with these non-normal covariates (here,
one of the covariates is discrete), the prior approximation works quite well.
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Figure 4: Target beta(5, 3) density (solid line) and an estimate of the induced density
on the distribution of success probabilities.

3.5 Comparison among approaches

A simulation study was conducted to compare the approach of Gelman et al. (2008) to
the g-prior. Covariates xi = (1, xi2, xi3)′ were generated as

xi
iid∼ N3

 1
0
0

 ,
 0 0 0

0 1 r
0 r 1


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r n Gelman prior Inform. g-prior Default g-prior Flat prior
β1 β2 β3 β1 β2 β3 β1 β2 β3 β1 β2 β3

0.9 100 0.26 0.35 0.38 0.17 0.35 0.37 0.26 0.51 0.53 0.28 0.53 0.55
500 0.11 0.22 0.23 0.10 0.22 0.23 0.11 0.24 0.25 0.11 0.24 0.25

0.5 100 0.23 0.28 0.27 0.14 0.21 0.21 0.23 0.30 0.29 0.25 0.31 0.30
500 0.11 0.12 0.11 0.09 0.11 0.11 0.11 0.12 0.12 0.11 0.12 0.12

0.0 100 0.24 0.24 0.22 0.12 0.18 0.18 0.24 0.25 0.23 0.25 0.26 0.24
500 0.10 0.10 0.11 0.09 0.09 0.10 0.10 0.10 0.11 0.10 0.10 0.11

−0.5 100 0.24 0.26 0.25 0.09 0.22 0.21 0.24 0.27 0.27 0.25 0.28 0.28
500 0.10 0.11 0.12 0.07 0.12 0.12 0.10 0.12 0.12 0.10 0.12 0.12

−0.9 100 0.23 0.41 0.41 0.02 0.28 0.27 0.23 0.56 0.57 0.24 0.58 0.58
500 0.10 0.22 0.22 0.04 0.21 0.21 0.11 0.23 0.23 0.11 0.24 0.24

Table 1: Posterior mode root-MSE from fitting the default prior of Gelman et al. (2008),
an informative g-prior, a default g-prior, and a flat prior (maximum likelihood); 500
replicated data sets were used for each row.

using five values of r, namely r = −0.9,−0.5, 0, 0.5, 0.9. Sample sizes of n = 100 and
n = 500 were used, and the logistic regression coefficients were set to β = (1, 0.3, 0.3)′.
We compared posterior modes obtained from (1) the Gelman et al. (2008) default
Cauchy prior with scale 2.5 fit using the bayesglm function (in the arm package for
R), (2) a ‘default’ g-prior where the success probability density follows beta(0.5, 0.5),
(3) an informative g-prior, and (4) a flat prior, yielding the maximum likelihood esti-
mate. The informative g-prior was obtained by simulating a very large sample of πi =

logit−1(x′iβ) from xi
iid∼ H(dx) and obtaining the beta(aπ, bπ) density from method-of-

moments estimates of aπ and bπ. The values of (aπ, bπ) are (10.74, 4.240), (13.65, 5.309),
(20.44, 7.820), (40.99, 15.39), (206.4, 76.25) for r = 0.9, 0.5, 0.0,−0.5,−0.9, respectively.
Table 1 displays the root mean squared errors (MSE) from 500 replicated data sets
for each setting of (r, n). The informative g-prior has the lowest root-MSE in every
case, sometimes 10 times smaller than the other three priors. This advantage dimin-
ishes somewhat as the sample size increases, but is still present. The default prior of
Gelman et al. (2008) does substantially better than the default g-prior or the flat prior;
the default g-prior slightly outperforms the flat prior, but their results are essentially
equivalent.

These results illustrate that injecting some real prior information can markedly im-
prove inference. It is well known that “objective” priors are often anything but (see,
e.g., Seaman et al. 2012); the informative g-prior allows easy incorporation of overall
prior information, which can make a big difference with smaller sample sizes. Note that
the default g-prior did not perform as well as the Gelman et al. (2008) prior for this
simulation, even though correlation was taken into account. This may be due to the
fact that a beta(0.5, 0.5) is actually quite different than the true population-averaged
densities, which have substantially smaller variance.

4 Conclusion

The g-prior (Zellner 1983) has received widespread use for model and variable selection
in the normal-errors linear model, but much less attention for generalized linear models.
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Recently, some authors have suggested use of the g-prior for generalized linear models
with either “large” g, in an attempt to be noninformative, or else placed a prior on g. In
this paper, we propose a simple, easy-to-use method for eliciting a prior density on the
distribution of success probabilities in logistic regression. The idea is immediately ap-
plicable to other generalized linear models. The log-normal distribution can be matched
to an elicited gamma distribution on rates in Poisson regression with a log link; normal-
errors linear regression is immediately obvious. Implementation in standard statistical
software packages is straightforward, and our approach also mitigates the problem of
quasi or complete separation in logistic regression.
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Appendix A: Basic R function to obtain logistic regression
inference using g-prior

This is sample R code (R Core Team 2013) to obtain g-prior based inference as described
in this paper. Output is the posterior modes and standard deviations; the standard
deviation is based on approximate normality of the posterior. The code is easily modified
to produce output more pleasing to the eye, give credible intervals for odds ratios, etc.

# basic function to fit the g-prior described in the paper
# x=design matrix without an intercept; intercept added automatically
# y=vector of Bernoulli responses, b and g as in paper

gprior=function(x,y,b,g){
start=4*lm(y~x)$coef # crude least-squares starting values
n=length(y); x=cbind(rep(1,n),x); p=length(x[1,]); xtx=t(x)%*%x
bm=rep(0,p); bm[1]=b
ll=function(beta){
p=exp(x%*%beta)/(1+exp(x%*%beta))
-sum(x%*%beta*y-log(1+exp(x%*%beta)))+0.5*(beta-bm)%*%xtx%*%(beta-bm)/(g*n)}

fit=optim(start,ll,hessian=T)
cov=solve(fit$hessian)
cat("Logistic Regression with informative g-prior \n")
cat("b =",b," g =",g,"\n")
cat("Parameter PostMode PostSD \n")
cat("------------------------- \n")
for(i in 1:p){cat("beta[",i-1,"]",fit$par[i]," ",sqrt(cov[i,i]),"\n")}
cat("\n")

}

Code and output from applying this function to the Challenger O-ring data in Agresti
(2013) appears below. The g-prior used assumes aπ = bπ = 1 as described in Section
2.1.

> # O-ring data from Agresti (2013), td=thermal distress & te=temperature
> td=c(0,1,0,0,0,0,0,0,1,1,1,0,0,1,0,0,0,0,0,0,1,0,1); p=2
> te=c(66,70,69,68,67,72,73,70,57,63,70,78,67,53,67,75,70,81,76,79,75,76,58)
> gprior(te,td,0,pi^2/(3*p)) # distress probabilities approximately uniform
Logistic Regression with informative g-prior
b = 0 g = 1.644934
Parameter PostMode PostSD
-------------------------
beta[ 0 ] 11.39018 5.469358
beta[ 1 ] -0.1763505 0.07958318
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