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[1] Multiplicative random cascades (MRCs) can parsimoniously generate highly
intermittent patterns similar to those in rainfall. The elemental MRC model parameter is
the cascade weight, which determines how rainfall at one scale is partitioned at the next
smallest scale in the cascade. While it is known that the probability density of these
weights may vary with both time scale and rainfall intensity, nearly all previous studies
have considered either time scale or intensity separately. We examined the simultaneous
dependency of the weights on both factors and assessed the impacts of explicitly
including these dependencies in the MRC model. On the basis of the observed
relationships between cascade weights and time scale and intensity, four progressively
more ‘‘dependent’’ models were constructed to disaggregate a long time series of daily
rainfall to hourly intervals. We found that inclusion of the intensity dependency on the
model parameters that generate dry intervals greatly improved performance. For the
relatively small range of time scales over which the rainfall was disaggregated, varying
model parameters with time scale resulted in minor improvement.
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1. Introduction

[2] Hydrological processes that control surface and sub-
surface water distribution can depend on rainfall forcing at
subdaily time scales, therefore successful modeling of these
processes often requires rainfall information at such scales.
However, most long rainfall records are available at a daily
time step. Additionally, retrieving lengthy output from
physically based atmospheric models at hourly or subhourly
time scales is, for many applications, computationally and
cost prohibitive. Therefore, to generate fine-scale rainfall on
the basis of historical records or long-term forecasts, often
the best option is to stochastically disaggregate rainfall from
coarser to finer scales.
[3] Among various methods of rainfall disaggregation

(see, e.g., review by D. Koutsoyiannis, Rainfall disaggre-
gation methods: Theory and applications, paper presented at
Workshop on Statistical and Mathematical Methods for
Hydrological Analysis, Università degli Studi di Roma
‘‘La Sapienza,’’ Rome, 2003) is by means of a discrete
multiplicative random cascade (MRC) [e.g., Schertzer and

Lovejoy, 1987; Mandelbrot, 1989; Gupta and Waymire,
1993]. In this method, the rainfall R occurring over an
interval in time (or space) is divided among a number of
smaller intervals of equal size. The number of subintervals
is known as the branching number and for our purposes will
be 2, which is the most parsimonious case [Gupta and
Waymire, 1993]. This method assumes that the amount of
rain falling in one of two equal subintervals of a given
interval is determined by multiplying the interval rainfall R
by a dimensionless cascade weight W. This multiplication is
repeated again and again through successively finer cascade
levels. At the kth cascade level, the rainfall over a given
time interval at position j in the time series can be expressed
as

Rj;k ¼ R0

Yk
i¼1

Wf i;jð Þ;i ð1Þ

where j = 1, 2, . . ., 2k. At the ith level, the function f(i, j)
indexes the position of the time interval and is given by
rounding up j/2k�i to the nearest integer [e.g., Gaume et al.,
2007].
[4] The MRC model, first used in studies of turbulence

[Yaglom, 1966; Mandelbrot, 1974], can produce fields and
series that have statistically scale invariant properties. Over
the last two decades a substantial body of literature has been
created on the topic of generating simple fractal and multi-
fractal rainfall fields and time series using multiplicative
cascades. A small number of representative studies include,
for example, Schertzer and Lovejoy [1987], Gupta and
Waymire [1993], Over and Gupta [1996], Menabde et al.
[1997], Deidda et al. [1999], Deidda [2000], and Veneziano
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et al. [2006b]. While the link to multifractality has been the
motivation behind most of the research in MRC models
[Gaume et al., 2007], the MRC method is itself appealing in
that in can parsimoniously generate complex intermittent
and spiky patterns typical of rainfall time series, irrespective
of whether the patterns are multifractal or not.
[5] Multiplicative random cascades can be constructed so

that the weights of each branch of a cascade sum to 1 only on
the average (canonical cascade), or so that they sum to
exactly one in each split (microcanonical cascade) [Schertzer
and Lovejoy, 1987]. In the microcanonical case, the weights
are complementary so that where there are two branches,
W1 = W and W2 = 1 � W, where W is a random variable
between 0 and 1, inclusive. Examples of microcanonical
cascade models are given by Olsson [1998], Menabde and
Sivapalan [2000], Ahrens [2003], and Paulson and Baxter
[2007]. Two important attributes of the microcanonical
model are that it conserves mass exactly at each branch
and that the distribution of W can be extracted exactly
from the data [Cârsteanu and Foufoula-Georgiou, 1996].
This latter attribute is particularly attractive because it
permits a direct examination of the associations that the
weights may have with other properties of rainfall [Olsson,
1998].
[6] The simplest random cascade is one in which W is

assumed independent and identically distributed (IID) both
in time and across all cascade levels (i.e., states). Over a
finite range of time scales, e.g., less than 2 orders of
magnitude, the assumption of time scale invariance of W
has been shown to be reasonable in rainfall time series
[Harris et al., 1998; Olsson, 1998; Cârsteanu et al., 1999;
Langousis and Veneziano, 2007]. This is not universal, how-
ever: the cascade weights sometimes decrease in variance with
decreasing time scale on and below the order of hours [Olsson,
1998; Menabde and Sivapalan, 2000; Paulson and Baxter,
2007]. Cascades in which the variance of the weights decrease
with each level are called ‘‘bounded’’ [Marshak et al., 1994;
Menabde et al., 1997; Harris et al., 1998].
[7] For most time series at any given time scale, the

weights are also neither independently nor identically dis-
tributed. For example, an analysis of high-resolution rainfall
data by Cârsteanu and Foufoula-Georgiou [1996] revealed
that the lag-one autocorrelation of W, or rW(1), in a micro-
canonical cascade was approximately �0.2 and not 0 as it
would be for IID W. Olsson [1998] and Güntner et al.
[2001] also found that the probability distribution of W
associated with a given rainy interval depended on the state
(wet or dry) of the intervals immediately preceding and
following it. They separated time intervals into four classes:
starting (preceded by dry and followed by wet), ending
(preceded by wet and followed by dry), enclosed (bounded
by wet), and isolated (bounded by dry). In their model they
applied a distinct distribution function for W to each interval
class.
[8] Last, a strong dependence of the weights on rainfall

intensity has been observed in rainfall time series [Olsson,
1998; Güntner et al., 2001; Veneziano et al., 2006a], spatial
rainfall fields [Over and Gupta, 1994] and in space-time
[Deidda, 2000; Deidda et al., 2004, 2006; Veneziano et al.,
2006a], though some have claimed intensity independence
in temporal rainfall [e.g., Venugopal et al., 1999, Figure 3].
Contributing to the dependency of the weights on rainfall

intensity is that more and longer dry periods at fine scales
are associated with lower rainfall intensities at the aggre-
gated coarser scale and also that threshold amounts for
measured rainfall amounts increase the sparseness of rain-
fall, particularly for low-intensity events [Veneziano et al.,
2006a].
[9] Olsson [1998] and Güntner et al. [2001] partially

accounted for the intensity dependence by modeling W
separately for rainfall intensities greater or less than the
mean. In the case of space and space-time, cascade weight
distribution parameters have been conditioned on the
mesoscale rainfall intensity of a given event [Over and
Gupta, 1994; Deidda, 2000; Deidda et al., 2004, 2006].
Veneziano et al. [2006a], however, argued that the ‘‘meso-
scale’’ as practically defined as the coverage of a radar frame
(e.g., 256 km� 256 km) has no special physical or statistical
significance and therefore chose to vary the cascade para-
meters with intensity at every level in the cascade.
[10] In addition to the evidence against IID weights, a

difficulty in developing MRC models has been the accurate
generation of dry intervals [e.g., Schmitt et al., 1998]. In
part, this issue arises because most probability density
functions have zero probability of W being exactly zero.
One simple technique to introduce dry intervals is to set a
threshold below which any rainfall intensity is rounded to
zero [e.g., Pathirana et al., 2003], but this technique
undesirably affects the statistics of the synthetic field.
Another technique is to use a mixed distribution, in which
a separate function is used to calculate the (nonzero)
probability of W exactly equal to 0 (or also 1 for micro-
canonical cascades) [e.g., Over and Gupta, 1996; Olsson,
1998; Langousis and Veneziano, 2007; Langousis et al.,
2009; Paulson and Baxter, 2007; Veneziano et al., 2007]. It
has been argued by Schmitt et al. [1998] that neither
approach is likely to generate the correct pattern of wet
and dry periods.
[11] An alternative is to employ a hybrid model in which

the durations of consecutive dry and wet states and the
mean wet period intensity are treated as random variables.
The rain in each wet period is then disaggregated to the
temporal resolution of interest as a MRC assuming no
small-scale dry periods occur with a wet period [Schmitt
et al., 1998; Menabde and Sivapalan, 2000]. This technique
is not well developed for disaggregation in which dry-wet
sequences are predetermined at a specific time scale (i.e.,
daily), though this issue was addressed in a non-MRC
framework by Koutsoyiannis and Onof [2001], who gen-
erated hourly scale dry intervals within existing daily scale
wet intervals by applying a Bartlett-Lewis rectangular
pulse model independently to periods of consecutive wet
days. Through a sequence of repetition and adjustment,
Koutsoyiannis and Onof [2001] assured that the synthetic
rainfall series matched the observed rainfall when aggre-
gated at the daily time interval.
[12] Given the dependencies between the cascade weight

W on both time scale and rainfall intensity, we asked the
following questions: What gains in performance could be
made by explicitly incorporating these dependencies into an
MRC model? Could we successfully recreate the probability
densities of wet and dry periods without resorting to a
hybrid model? Finally, were the gains worth the cost in
model complexity? In this paper we address these questions
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by first examining how the cascade weights derived from
measured hourly rainfall vary with time scale and intensity.
We then use the observed dependencies of W to build four
MRC models, each progressively more complex as they
explicitly incorporated first time scale dependence then
intensity dependence. The models were evaluated in their
ability to reproduce the autocorrelation structure, frequency
distribution of wet period duration, frequency distribution of
rainfall intensity at the hourly time step and the scaling of
the moments of intensity at time scales from 1 to 16 h. Last,
we explored the dependency of the weights on interval class
seen by Olsson [1998] and Güntner et al. [2001] and
discuss how these dependencies may relate to intensity
and the way in which rainfall data are sampled.

2. Analysis of Cascade Weights

2.1. Methods

[13] We analyzed hourly rainfall totals recorded at Christ-
church Airport, New Zealand (43�290S, 172�320E; 37 m
above mean sea level), from April 1960 through February
2006. Rainfall averaged 607 mm a�1 and had only a weak
seasonal pattern. The data were recorded to a precision of
0.1 mm until 1994, and 0.2 mm thereafter.
[14] Power law scaling of the statistical q moments of

observed rainfall R may indicate over which scales an MRC
model is suitable [e.g., Schertzer and Lovejoy, 1987; Gupta
and Waymire, 1993], though such an analysis should be
limited to the analysis of lower moments (q � 4) because
the higher empirical moments can be poor estimators of
the true moments [Ossiander and Waymire, 2000, 2002].
Arguable breaks in power law scaling in the Christchurch
data occur near 1 day and 1 month, where there is an
apparent change in slope in the relationship between the
moments, E[Rq], and the temporal resolution of the mea-
surement, or time scale, in log-log space (Figure 1). The
presence of multiple ranges of scaling has been detected by
others [Fraedrich and Larnder, 1993; Hubert et al., 1993;
Olsson et al., 1993; Lovejoy and Schertzer, 1995; Veneziano

et al., 1996]. The apparent power law scaling from 1 day to
1 h suggest that an MRC model may be appropriate for
disaggregating rainfall from 1 day to 1 h.
[15] The cascade weights W were calculated from non-

overlapping adjacent pairs of rainfall measurements as

Wj;t ¼
Rj;t

Rj;t þ Rjþ1;t
j ¼ 1; 3; 5; . . . ;Nt � 1 ð2Þ

where Rj,t is the rainfall depth recorded over the time
interval of length t at position j in the time series, and Nt is
the total number of records at time scale t. The weights
were calculated from the data at the originally recorded time
step trec = 1 h, and at aggregated intervals of length 2mtrec
and 2m�1(3trec), where m is an integer greater than zero.
When Rj + Rj+1 was zero, W was undefined and was
excluded from the analysis.
[16] The relative frequencies, or probabilities, that the

weights Wj equaled 0, 1, 0 or 1, or not 0 or 1, were
calculated. We denote those weights that are equal to 0, 1,
0 or 1, and not 0 or 1, by W0, W1, W01 and Wx, respectively.
The corresponding probabilities of each of these subsets of
W are denoted as P0, P1, P01, and Px.
[17] Histograms of the cascade weights Wx (those not

equal to zero or one) were generated at each time scale. We
used least squares to fit a symmetrical beta probability
density function (pdf) to each distribution of Wx:

p Wxð Þ ¼ W
r�1

x 1�Wxð Þr�1

B rð Þ ð3Þ

where r > 0 is a shape parameter and

B rð Þ ¼
Z1

0

ur�1 1� uð Þr�1
du ð4Þ

is the single-parameter beta function evaluated at r. Useful
properties of the one-parameter beta pdf are that it is
bounded by 0 and 1, and that it can be U shaped (r < 1),
uniform (r = 1), mounded (r > 1), or assume a Gaussian-like
shape for large r. Koutsoyiannis [1988] and Koutsoyiannis
and Xanthopoulos [1990] showed that W is beta distributed
when R is gamma distributed.
[18] At each time scale t, the weights were classified

according to the rainfall intensity I at scale 2t. The intensity
classes were bounded below and above by 2n�1Imin and
2nImin, respectively, for n = 1, 2, 3, . . .. The minimum
intensity Imin was chosen to be small enough so that no
weights were left unclassified. The representative intensity
for each class was assumed to be the exponent of the average
of the log-transformed values of the interval bounds. As
described above, a beta pdf was fitted to the empirical
distribution of W for each time scale and intensity class.

2.2. Results

[19] The probability Px varied strongly with time scale
(Figure 2), with a minimum near 1 day. For time scales from
1 day to 1 h, Px increased logarithmically with decreasing t.
The histograms of Wx also varied greatly with time scale
(Figure 3) from highly centered at the large time scales, to
slightly U shaped at t of a few days, and more centered

Figure 1. Log-log plots of the empirical q moments versus
time scale (i.e., aggregation interval length).
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again at small time scales. For timescales ranging between
1 day and 1 h, r varied approximately as a power law with t
(Figure 4).
[20] The dependence of Px on rainfall intensity was

pronounced across all time scales (Figure 5). Values of Px

ranged from 0 at the lowest intensity class to 1 at the largest
class. Px showed a distinct S-shaped relationship with the
logarithm of intensity, suggesting that a lognormal cumula-
tive distribution function is suitable for describing Px as a

Figure 2. Probability that the cascade weight W is greater
than 0 or less than 1 (Px) against time scale t. The solid circles
indicate the time scales over which the models disaggregate
rainfall, and the solid line is a fitted logarithmic function.

Figure 3. Histograms of the splitting weights Wx at various time scales. The shaded areas show fitted
beta distributions.

Figure 4. Beta distribution parameter r for the weights Wx

against time scale t. The solid circles indicate the time
scales over which the model disaggregates rainfall, and the
solid line is a fitted power law.
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function of intensity. The mean m and variance s2 of the
fitted lognormal CDFs varied approximately as a power law
with t for t � 0.5 day (Figure 6). There was also strong
dependency of the weights Wx on intensity across time
scales (Figure 7). A pattern in this dependency emerged
when the parameter r of the beta distribution was related to
intensity. Ignoring the smallest two rainfall intensity classes,
r smoothly decreased then increased with increasing inten-
sity, with a minimum (highest variance) near 	0.3 mm h�1.
This phenomenon was present at all time scales between 1 h
and about 1 day. At time scales between 1 day and 1 week,
r increased with decreasing t (Figure 8).
[21] Some of the dependency on intensity was the result

of instrument or recording precision. This precision artifact
was manifested as relatively high frequencies ofW = 1/2, 1/3,
2/3, and to a lesser extent of W = 1/4 and 3/4, at small time
scales (Figure 3) and low intensities (Figure 7). This occurs

because at low rainfall amounts there are only a small
number of discrete possible values of W that can occur. For
example, if an observed rainfall amount over two adjacent
time intervals (Rj + Rj+1) is 0.2 mm and the precision is
0.1 mm, then the value of W for that pair of intervals can
only be 0, 0.5, or 1. However, instrument precision does not
account for the variability in W with intensity at moderate
to high intensities.
[22] Because of the apparent similarity of the curves of

r versus I for time scales shorter than 1 day, we collapsed
the curves into one single curve through normalization.
The curves appeared to be offset from each along both the
r axis and t axis (Figure 8). Assuming that the offset in
r is dominant, r(I, t) scaled as

r* Ið Þ ¼ r I ; tð Þ=r tð Þ ð5Þ

Figure 5. Probability that the cascade weight W is greater than 0 and less than 1 (Px) against rainfall
intensity class for various time scales. The lines are fitted lognormal cumulative distribution functions.
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where r*(I) is the scaled beta distribution parameter
(Figure 9) and r(t) is the beta distribution parameter
dependent on time scale alone (Figure 4).

3. Simulating Rainfall With Dependent
Cascade Weights

3.1. Model Description

[23] Four models, named I through IV, of progressively
increasing complexity were used to disaggregate the 46-year-
long daily Christchurch rainfall time series to hourly intervals
(Table 1). The more complex models (models III and IV) are
conceptually similar to the space-time model of Veneziano
et al. [2006a], though the temporal models presented here
are microcanonical and assume a different distribution
function for the cascade weights based on the observed
rainfall intensities
[24] This daily record was generated by aggregating the

observed hourly rainfall to a resolution of 1 day. The
disaggregation of the total rainfall depth of 1 day into 2k

intervals of interval length 2�k days was accomplished with
(1). In our case, k = 0 corresponded to the time scale of 1 day
and the cascade was generated down to level k = 5, or
1/32 day. Afterward, the time series was resampled with a
time step of 1/24 day so that the synthetic data had the same
temporal resolution as the observed data [Güntner et al.,
2001]. The following metrics were computed for the syn-
thetic and observed time series: the autocorrelation structure,
frequency distribution of wet period duration, and frequency
distribution of rainfall intensity at the hourly time step, and
the scaling of the moments of intensity at time scales from
1 to 16 h.
[25] In model I, the pdf of W was assumed to be IID. In

other words, the probability Px and the beta distribution
parameter r for Wx were constant across time scales and
intensities. The probability ofW01 was given as P01 = 1� Px,
and P0 and P1 were assumed equal to P01/2 (though not
shown here, this symmetry in P0 and P1 was observed in the
data and was also assumed for all the models hereafter).
Although it was expected that this IID model would perform
poorly given the findings in section 2, it served as a reference
for which to assess the gains made by explicitly incorporat-
ing cascade weight dependencies.
[26] In model II, Px varied with time scale as

Px tð Þ ¼ a0 ln tð Þ þ b0 ð6Þ

where a0 and b0 were constants. Because the time scale t
refers to the temporal resolution to which the disaggregation
is occurring at any level within the cascade, (6) and
subsequent equations, were fitted to data corresponding to
time scales ranging from 1 to 12 h, inclusive (see Figure 2).
To model time scale dependence of Wx (Figures 3 and 4),
the dependence of the beta distribution parameter r on t was
given by the power law

r tð Þ ¼ r0tH ð7Þ

where r0 and H were constants (Figure 4) [Menabde and
Sivapalan, 2000; Paulson and Baxter, 2007].
[27] In model III, Px was conditioned on both time scale

and the rainfall intensity I at the immediately previous time
scale as

Px I ; tð Þ ¼ 1

2
1þ erf

ln Ið Þ � mffiffiffiffiffiffiffiffi
2s2

p
� �� �

ð8Þ

where the parameters m and s2 are functions of t and erf is
the error function. Equation (8) is equivalent in form to the
cumulative distribution function for the lognormal prob-
ability distribution. Its selection was based on good visual
fit to the data over a wide range of time scales and
intensities (Figure 5). Note that m and s2 are simply fitting
parameters and do not represent the mean and variance of
ln(I). Following patterns in the Christchurch data (Figure 6),
the parameters m and s2 were varied logarithmically with
time scale:

m ¼ am ln tð Þ þ bm ð9Þ

s2 ¼ as ln tð Þ þ bs ð10Þ

Figure 6. Model parameters (a) m and (b) s2 for Px against
time scale t. The solid circles indicate the time scales over
which the model disaggregates rainfall. Solid lines are fitted
logarithmic functions, and the dashed line is a fitted linear
function.
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Figure 7. Histograms of Wx by rainfall intensity class for rainfall aggregated at (a) 16, (b) 4, and (c) 1 h
intervals. The shaded areas show fitted beta distributions.
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with constants am, bm, as, and bs. As in model II, (7) modeled
the time scale dependence of Wx from the relationship
between r and t, independent of rainfall intensity.
[28] Model IV used the same dependency of Px on time

scale and intensity as did model III ((8) through (10)), but
added intensity dependence of Wx. The dependency of r on
time scale and intensity was accounted for first by assuming
that r(I, t) scales by r(t) as r*(I) independent of time scale,
as in (5). The log transformation of r*(I) was modeled as a
quadratic function of ln I:

ln r* Ið Þ½ � ¼ c0 þ c1 ln Ið Þ þ c2 ln Ið Þ½ �2 ð11Þ

where c0, c1, and c2 are constants (Figure 9). Finally,
substituting (7) into (5) and rearranging gives r(I, t) as the
product of two functions, one of intensity and one of time
scale:

r I ; tð Þ ¼ r* Ið Þr0tH ð12Þ

3.2. Parameter Estimation

[29] We fitted all parameters in (6), (7), and (9)–(11)
using least square means and all of the observation data

(Table 2). The value of H = �0.478 for (7) is very close to
the value of �0.48 estimated by Menabde and Sivapalan
[2000] in Melbourne, Australia, for scales ranging from a
few hours to several minutes.
[30] When estimating the parameters in (11), we excluded

the two smallest intensity classes, therefore did not attempt
reproduce explicitly the artifact of instrument precision
(Figures 7 and 8). The scaled beta parameter r*(I) for model
IV is generally parabolic (Figure 9), however, the relation-
ship between r* and intensity is slightly dependent on time
scale. For example, the minimum r* for t = 1 h occurs at
about 0.7 mm h�1, while the minimum r* for t = 16 days
occurs at about 0.15 mm h�1. When applying (11), we set
the maximum allowable value for r* to 2.5, which was the
largest observed value.

4. Results and Discussion

[31] Model I, with IID cascade weights, did poorly at
reproducing any of the metrics evaluated: scaling of the q
moments (Figure 10), autocorrelation of hourly rainfall
(Figure 11), frequency of the wet state duration (Figure 12),
and frequency of hourly rainfall intensity (Figure 13). The
underrepresentation of the longer periods of continuous rain
simulated by this model (Figure 12) was similar to results
Schmitt et al. [1998, Figure 4] obtained using the IID ‘‘b’’
model proposed by Over and Gupta [1994].

Figure 8. Beta distribution parameter r against rainfall
intensity class for various time scales t.

Figure 9. Scaled model parameter r* for p(Wx) against
rainfall intensity class. The solid line is a fitted second-
degree polynomial function.

Table 1. Dependencies of the Cascade Weights W for the Various

Disaggregation Models

Model Time Scale–Dependent

Intensity-Dependent

W = 0 or 1 0 < W < 1

1 no no no
2 yes no no
3 yes yes no
4 yes yes yes
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[32] There was only minor improvement in model per-
formance by introducing time scale dependence of the
model parameters. While the q moments from model II
did decrease more with decreasing time scale than did the
Model I q moments, they still deviated considerably from
the observed moments for time scales much shorter than
1 day (Figure 10). The autocorrelation and the distributions
of wet state duration and hourly intensity were about the
same for models I and II (Figures 11–13).
[33] Much more improvement was made when W01 was

conditioned on intensity than when conditioned on time
scale alone. For model III, the modeled q moments scaled
correctly (Figure 10). The modeled autocorrelation structure
was also consistent with the observed structure (Figure 11).
Model III also did much better at reproducing the duration
of wet state though it still did not generate the longest
periods of continuous rain present in the observed data
(Figure 12).
[34] Conditioning Wx on intensity actually degraded

model performance as compared to conditioning on time
scale alone (Figures 10–13). Why this was so is uncertain,
though it is clear that the simple method of rescaling the
beta distribution parameter used in model IV was ineffec-
tive. Normalizing intensity by time scale (i.e., plotting r
versus depth), offset the curves too far along the horizontal
axis (data not shown). An alternative would be to normalize
intensity by t to some power, however this, or some other,
method should be balanced by the need to define and
estimate more parameters.
[35] On the basis of the chosen performance metrics,

model III, which incorporated intensity dependency of the
cascade weights W01, was the superior model. For the
remainder of the model evaluation, we considered it solely.
[36] As did Olsson [1998] and Güntner et al. [2001], we

found that the empirical distributions of the cascade weights
varied by interval class (i.e., starting, enclosed, ending, and
isolated). It is important to note, however, that the distribu-
tions of intensities also varied by interval class. For example,
the means (and variances) of intensity in the classes were
0.61 mm h�1 (1.00), 1.21 mm h�1 (1.66), 0.48 mm h�1

(1.66), and 0.35 mm h�1 (0.41), respectively. This suggests

that, by conditioning the weights on intensity alone, we may
account for much of the dependency on interval class. For
example, it has been shown by Olsson [1998] that intervals
of higher intensity and enclosed intervals are both less likely
to form a 0–1 partition. Given that enclosed intervals are,
on average, the most intense, model III therefore also
effectively generates enclosed intervals with the smallest
P01 (Figure 14), but the exact pattern of the observed data is
not reproduced, illustrating that intensity is an incomplete
substitute for interval class.
[37] A conspicuous feature of the cascade weights (W) is

that they are asymmetric for the starting and ending interval
classes [Olsson, 1998; Güntner et al., 2001; Veneziano and
Iacobellis, 2002]. In other words, P0 > P1 for the starting
class, P1 > P0 for the ending class, and the histograms of Wx

are skewed. Furthermore, the pdfs of the starting and ending
classes are nearly mirror images of one another. This means,
for example, that P0 for the starting class can be considered
equal to P1 for the ending class. For the remaining analysis,
we took advantage of this mirror symmetry to combine the
starting and ending classes into a single starting/ending

Table 2. Parameters for Models I, II, III, and IVa

Parameter

Model

I II III IV

W = 0 or 1
a0 0b �0.072 NA NA
b0 0.444c 0.313 NA NA
am NA NA �0.166 �0.166
bm NA NA �1.929 �1.929
as NA NA 1.096 1.096
bs NA NA 4.145 4.145

0 < W < 1
r0 1.583d 0.615 0.615 0.615
H 0b �0.478 �0.478 �0.478
c0 0b 0b 0b �0.061
c1 0b 0b 0b 0.344
c2 0b 0b 0b 0.151

aNA means not applicable.
bAssumed value.
cEquivalent to Px.
dEquivalent to r.

Figure 10. Log-log plots of the q moments versus time
scale. The empirical moments are given by the symbols, and
the modeled moments are given by the dashed (models I
and III) and solid lines (models II and IV). Model results are
of a single realization from the 46-year daily record.
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Figure 11. Autocorrelation coefficient r versus time lag for observed (solid circles) and simulated (open
squares) hourly rainfall. Model results are of a 552-year simulation, based on repeating the 46-year
observed daily record 12 times in series.

Figure 12. Complement of the cumulative probability
distribution of duration T of the wet state for the observed
and modeled hourly time series. Model results are of a
single 46-year realization.

Figure 13. Complement of the cumulative probability
distribution of observed and modeled hourly rainfall
intensity. Model results are of a 552-year simulation, based
on repeating the 46-year observed daily record 12 times in
series.
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class, where W for the ending class was first transformed as
1 � W.
[38] The Christchurch data also shows asymmetry in the

probability density of Wx for the starting/ending class
(Figure 15); Wx is on average less than 0.5 over the time
scales 1 h to 1 day. Güntner et al. [2001] made a similar
observation while grouping all time scales together (see
their Figures 3 and 4). Here we show that the degree of
asymmetry appears to decrease with decreasing time scale
(Figure 15).
[39] Model III does not generate this asymmetry (Figure 15)

and nor do any of the other MRC models tested. In fact,
without some modification, a discrete MRC model cannot
create such asymmetry at the same scales and interval
discretization at which the model is applied. The asymmetry
in the data could be explicitly reproduced by applying a
distinct asymmetric distribution ofW for starting and ending
intervals, as was done by Olsson [1998] and Güntner et al.
[2001], or by other similar binary disaggregation methods in
which the rainfall is conditional on rainfall preceding and
following it in time [Koutsoyiannis, 2002].
[40] We suspect however, that the asymmetry in the

starting and ending distributions is largely an artifact of

Figure 14. Relative frequency of W = 0 or 1 for observed
(Obs) and model III (Mod) rainfall depth against time scale
for the enclosed (E) and isolated (I) interval classes.

Figure 15. Histograms of the cascade weights Wx for the starting/ending interval class at various time
scales for the observed rainfall and the synthetic rainfall from model III.
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sampling a semicontinuous and irregularly timed process
(rainfall) at discrete, regularly spaced, intervals. It is worth
noting that the model of Veneziano and Iacobellis [2002],
for example, generates asymmetry in the starting and ending
classes (see their Figures 6 and 10) without any consider-
ation of distinct interval classes. Veneziano and Iacobellis
[2002] generated rainfall with a pulse-based model that did
not have inherent discrete and regular time steps. In other
words, their synthetic rain events could be of any length so
did not have to begin or end at some time interval of
discrete and regular length (e.g., precisely on the hour).
However, when they sampled their results at regular, dis-
crete intervals, the simulated data showed asymmetry in the
starting and ending classes (see their Figures 6 and 10).
[41] To test for this sampling artifact, we offset, by 1/p h (an

arbitrary amount), the time axis of the hourly rainfall time
series simulated by model III. This created a time series of
events that no longer began and ended at the beginning and
end of the time intervals imposed by the MRC model. We
then resampled the rainfall at 1-h intervals. A consequence
of this offset was to smooth the rainfall pattern at the hourly
time scale. For example, the rainfall amount in an isolated

rainfall interval in the original time series would be spread
across two adjacent time intervals in the new ‘‘offset’’ time
series.
[42] Overall, it appeared that there are artifacts of discrete

interval sampling in the structure of the data. The effect of
offsetting the time axis was to introduce asymmetry to the
probability density of Wx at all time scales for the starting/
ending class (Figure 16). The distributions of Wx for the
observed and modeled rainfall are similar the time scales of
1/12, 1/6, and 1/3 day though less alike for the time scales
of 1/8, 1/4, and 1/2 day. These latter time scales correspond
to the time scales of the cascade levels used in the MRC
model.
[43] Offsetting the time axis also affected P0 and P1 for the

starting/ending class (Figure 17). Prior to the offset, P0 and
P1 were nearly identical for those time scales corresponding
to the levels of the generated cascade (t = 0.5, 0.25, and
0.125 day), yet P0 was much greater than P1 for t = 1, 2, 4,
and 8 h. Following the offset, P0 was much greater than P1 at
all time scales.
[44] While we do not present definitive evidence that the

variability in the cascade weights among interval classes is

Figure 16. Histograms of the cascade weights Wx for the starting/ending interval class at various time
scales for the observed rainfall and the synthetic rainfall from model III. Prior to determining Wx, the
synthetic rainfall time series was resampled following an offset in time of 1/p h.
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completely an artifact of the sampling method, our prelim-
inary analysis raises interesting issues that warrant further
investigation. For one, if the dependence is largely an
artifact, is the approach of Olsson [1998] and Güntner et
al. [2001] to reproduce it explicitly warranted, particularly
because it substantially increases the number of model
parameters required? Also, if we sample our rainfall events
such that the sampling intervals begin and end exactly when
the rain actually begins and ends, will weights in the middle
of an event still differ from those near its onset or
termination?
[45] Last, the connection between cascade weights and

intensity may be reflective of physically distinct processes
in the atmosphere. If so, the mixing of these processes
occurs when analyzing a time series as a whole leads to an
undesirable averaging of model parameters [Lovejoy and
Schertzer, 1991, p. 138; Harris et al., 1997]. For example, a
rainfall time series may consist of rainfall driven by con-
vective cells, cyclones, and frontal passages, each of which
may be associated with a different parameterization for the
cascade process. Any one of these may also exhibit different
behavior throughout its lifetime, as is the case for prefrontal
and postfrontal rain [Harris et al., 1997]. For spatial
rainfall, correlation has been found between cascade param-
eters and properties of a storm system such as the mesoscale
rainfall rate [Over and Gupta, 1994] and the convective
available potential energy [Perica and Foufoula-Georgiou,
1996]. For temporal rainfall modeling, if the types or phases
of a storm are characterized by their intensity, then the
methods described here may partially account for these
distinct processes without explicitly defining them.

5. Conclusions

[46] Accounting for time scale and rainfall intensity
dependency in the cascade weights improved the ability

of the multiplicative random cascade model to reproduce
many characteristics of the rainfall time series, including the
scaling of the moments, the frequency distributions of wet
period duration and hourly rainfall depth, and the autocor-
relation structure.
[47] Conditioning the model parameters on time scale

alone resulted in minor improvements. The effect of time
scale–dependent parameters would likely be greater if the
rainfall was disaggregated over a large range of scales.
[48] By far the greatest gains occurred by conditioning on

intensity the probability that a cascade weight equaled 0 or
1, or, in other words, where a dry interval first appears in a
branch of the cascade. However, rainfall from this model
was still too intermittent, meaning long periods of contin-
uous rainfall were underrepresented. It may be that making
the MRC more complex in order to accurately model dry
intervals is ultimately a dead end and alternatives should be
considered. Some alternatives have already been presented
for creating complete times series [e.g., Schmitt et al., 1998;
Menabde and Sivapalan, 2000], but not for disaggregating
existing time series wherein the dry-wet pattern is already
given at certain time scale.
[49] Explicitly modeling the intensity dependence of

cascade weights between 0 and 1 (exclusive) did not
improve performance. This may be because our simple
approach to parameterize the probability density of Wx as
a function of both time scale and intensity was inappropri-
ate. The apparent relationship between the cascade weights
and intensity is complex and merits further investigation.
[50] Making the multiplicative random cascade a contin-

uous function of time scale and intensity is a substantial
departure from the simple model with independent and
identically distributed weights. However, the total number
of parameters for our most successful model was only six,
which is equal to, or fewer than, other rainfall models that
do not consider the dual dependency on time scale and
intensity [Olsson, 1998; Menabde and Sivapalan, 2000;
Güntner et al., 2001; Veneziano and Iacobellis, 2002]. Thus,
the model that incorporated intensity dependence of model
parameters into the generation of dry intervals proved to be
a useful, applied MRC model that is relatively easy to
parameterize.
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Cârsteanu, A., and E. Foufoula-Georgiou (1996), Assessing dependence
among weights in a multiplicative cascade model of temporal rainfall,
J. Geophys. Res., 101, 26,363–26,370, doi:10.1029/96JD01657.
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