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ABSTRACT 

A generalization of the harvesting functions and the stock updating functions in age-structured 

bioeconomic models is outlined. Using this generalization everything from completely uniformly 

distributed fish to extreme schooling is taken care of. The classical Beverton-Holt model comes 

out as a special case of the generalized model. Both the theoretical outline as well as practical 

numerical examples are provided, and the generalization can be applied both for simulation as 

well as optimization purposes given appropriate software.  

 

Here we apply advanced non-linear programming to maximize the net present value in a 

bioeconomic setting where the new updating and harvesting functions are used as constraints. 

This is possible thanks to new software, such as KNITRO, for solving highly nonlinear 

problems. Applications of this generalized model produce interesting new results. One such 

practical result is that pulse fishing seems to become less and less economically profitable as we 

move from uniformly distributed fish to schooling species. The main reason why pulse fishing 

cease to be optimal in schooling fisheries, is that the economies of scale present in search 

fisheries gradually disappear when we move from search fisheries to schooling fisheries. This 

may have important implications for how fish stocks ought to be managed in the future, 

especially with respect to total allowable catches based on bioeconomic criteria. 
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Outline

• I’m going to show:

– How age-structured models can be generalized.

– What this generalization can be used for.

– Results beased on the generalized model compared to classical 
age-structured modelling.
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• Number of fish at time t
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• Number of fish at time t

• When this reduces to

where
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• Total catch:
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• Total catch:

• Solving the integral and taking the limit        we get

where
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Basic equations: definitions

• Instantaneous change in number of fish:

• Instaneous harvest

6

)()(
)(

tNMF
dt

tdN


)(tNF
dt

dC




4

Et selskap i NHH miljøet

Basic equations

• In the Beverton-Holt model we have

q is defined as a constant catchability coefficient. But it is constant
only by hypothesis. Another way to write instantaneous catch is

where k is the selectivity and ρ is the density parameter. 
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The density parameter 

• With uniformly distributed fish (as in Beverton-Holt) the density is 
proportional to number of fish:

• V is the volume of water that is screened. In this case the 
catchability coefficient is constant. 
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The density parameter

• With perfectly schooling species, on the other hand, the density
parameter is constant:

but then the catchability coefficient becomes a function of number
of fish.
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General expression for the density

• Assume where .

• Then

and    
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Deriving the general expressions

• Substituting the general expression for F into the basic equations
yields
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Deriving the general expressions

• Substituting the general expression for F into the basic equations 
yields

• And solving this differential equation yields
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Deriving the general expressions

• Substituting the new expression for N(t) into               and taking 
the integral yields total catch:

• Unfortunately this integral is not solvable in general for all values 
of α.
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Numerical optimization model

• Optimization method: Non-linear programming

• Objective function:

– Maximize

– subject to 
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Results from stylized model

• Hypothetical fish stock

• 4 year-classes

• 10 periods

• No discounting

• Fixed recruitment

• Constant price of catch over time

• Constant cost of effort over time

• Sustainability constraint
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Why does pulse fishing cease to be optimal 
when we move from search fisheries to 
schooling fisheries?

• Economies of scale present in search fisheries disappear gradually.

• With uniformly distributed fish the instaneous catch rate is 
homogenous of degree 2.

• With schooling species the instaneous catch rate is independent of 
the stock, and hence there cannot be any economies of scale 
related to builing up the stock.
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Summary

• Have generalized the updating and harvesting functions in age 
structured models.

• Makes it possible to incorporate everything from completely
uniformly distributed fish to extreme schooling along a continuum.

• Pulse fishing typical for uniformly distributed fish cease to be 
optimal as we move along the continuum towards schooling
species.

• This has implications for how optimal TACs ought to be set.
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