
Hindawi Publishing Corporation
Journal of Applied Mathematics
Volume 2012, Article ID 938727, 26 pages
doi:10.1155/2012/938727

Research Article
Adaptive Double-Diffusion Model and Comparison
to a Highly Heterogeneous Micro-Model

Viviane Klein1 and Malgorzata Peszynska2
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Double-diffusion model is used to simulate slightly compressible fluid flow in periodic porous
media as a macro-model in place of the original highly heterogeneous micro-model. In this paper,
we formulate an adaptive two-grid numerical finite element discretization of the double-diffusion
system and perform a comparison between the micro- and macro-model. Our numerical results
show that the micro-model solutions appear to converge to the macro-model linearly with the
parameter ε of periodic geometry. For the two-grid discretization, the a priori and a posteriori error
estimates are proved, and we show how to adapt the grid for each component independently.

1. Introduction

When modeling phenomena in highly heterogeneous media, one frequently finds that the
coefficients of differential equations describing these phenomena vary by several orders of
magnitude between close-by locations. Consequently, the solutions to the exact, that is, micro-
models, vary at multiple separate spatial and time scales, and it is convenient to work with
their spatial and temporal averages, that is, with the solutions to macro-models. Various
multiscale modeling techniques have been introduced with the aim to derive, analyze, and
approximate micro-models by the macro-models. In particular, the mathematical framework
for construction and analysis of the average, that is, homogenized, models for multiscale
media is well understood, see, for example, [1–3]. However, there are few results devoted
to the comparison between the micro- and macro-models for evolution equations and to their
adaptive numerical discretizations.
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Consider the following transient diffusion model which describes the density ρ of
single-phase slightly compressible flow in a porous domain Ω:

φ
∂ρ

∂t
− ∇ ·

(
k∇ρ
)
= f, in Ω, t > 0, (1.1)

where the coefficients φ, k denote, respectively, the porosity and conductivity.
In this paper, we propose a two-grid adaptive finite element approximation of the

following multiscale averaged model for (1.1) in highly heterogeneous media such as porous
media with fractures

φ̃1
∂ρ̃1
∂t

− ∇ ·
(
k̃1∇ρ̃1

)
+ c
(
ρ̃1 − ρ̃2

)
= f̃ , in Ω, t > 0, (1.2a)

φ̃2
∂ρ̃2
∂t

− ∇ ·
(
k̃2∇ρ̃2

)
+ c
(
ρ̃2 − ρ̃1

)
= 0, in Ω, t > 0, (1.2b)

proposed in [4, 5]. The system (1.2a) and (1.2b) describes the average behavior of fluids in
media with two or more subregions of distinct features, where the subregions may or may
not be connected globally at micro-scale. At macro-scale the interaction of fluids associated
with these subregions is modeled with the exchange term c(ρ̃2 − ρ̃1), and the coefficients k̃i,
φ̃i are computed from micro-scale geometry and coefficients. The system (1.2a) and (1.2b) is
useful in applications in porous media as well as in description of other multiscale evolution
phenomena in heterogeneous media, for example, heat conduction. In addition, its special,
degenerate, case of (1.2a) and (1.2b)with k̃2 = 0 known as the Warren-Root model [6]

φ̃1
∂ρ̃1
∂t

− ∇ ·
(
k̃1∇ρ̃1

)
+ c
(
ρ̃1 − ρ̃2

)
= f̃ , in Ω, t > 0, (1.3a)

φ̃2
∂ρ̃2
∂t

+ c
(
ρ̃2 − ρ̃1

)
= 0, in Ω, t > 0, (1.3b)

is a popular way of modeling of subscale diffusion accompanying advection and adsorption,
see [7–10].

The macro-model (1.2a) and (1.2b) of interest to this paper was introduced in [4]
based on heuristic arguments. The model, while intuitively clear and useful for practical
purposes, for a long time was lacking a rigorous multiscale analysis and interpretation via
an associated appropriate micro-model. Only recently in [11] it was shown rigorously by
two-scale convergence that (1.2a) and (1.2b) is indeed a homogenized limit of (1.1) in certain
highly heterogeneous media. Most interesting is that the original microstructure which leads
to (1.2a) and (1.2b) is composed of three rather than twomedia as in [12]. Also, the derivation
in [11] demonstrates clearly that in two-dimensional geometries and more generally for
quasistatic models in disconnected microscale subregions we have k̃2 = 0.

However, the analysis in [11] does not include a direct comparison of (1.1) and (1.2a)
and (1.2b), and this motivated our research. We compare the computational solutions to
(1.2a) and (1.2b) and (1.1) quantitatively in function of the microstructure parameters. In
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addition, since typically 0 ≤ k̃2 � k̃1, it is natural to suggest that in numerical simulation ρ̃1
and ρ̃2 should be approximated on separate grids, since they evolve differently and since this
can lead to more efficient numerical algorithms. In fact, the spatial grids should be chosen
adaptively guided by some a posteriori estimators and should be allowed to vary in time.
The idea of using two grids extends that in [13] where we considered a stationary analogue
of (1.2a) and (1.2b) and proved upper and lower bounds for residual type a posteriori
estimators. The estimators proposed in [13] were shown to be robust, that is, insensitive to
k̃2 ≈ 0 and to other parameters. In this paper we extend those to the evolution system (1.2a)
and (1.2b) and present an a posteriori error estimator of residual type based partly on the
work in [14–16] for scalar equations.

The aim of this paper is thus twofold, and the paper is organized as follows. In
Section 2 we introduce the notation and the generic flow model as well as its numerical
approximation. In Section 3 we develop the details of micro- andmacro- models and compare
their discrete solutions in function of a characteristic parameter of the microstructure ε. In
Section 4, we define the numerical approximations to these models and formulate the a-priori
and a-posteriori estimates for the approximation error. We then illustrate the use of a-posteriori
estimators with an adaptive example. The appendix provides the technical proofs of some of
the results derived in this paper.

2. Notation and Preliminaries on the Flow Model

Here we introduce the notation and preliminaries. We follow, for example, [17, 18]. Let the
domain of flow Ω ⊂ R

d, d = 2, 3, be a bounded polygonal region with piecewise smooth
boundary ∂Ω = ΓD ∪ ΓN , where ΓD, ΓN are disjoint regions of the boundary ∂Ω where
Dirichlet and Neumann boundary conditions are prescribed, respectively.

For any subset ω ⊆ Ω, we use the standard notation for Lebesgue L2(ω) and Sobolev
spaces Hk(ω), k ∈ N. These are equipped with the usual seminorms | · |k,ω, norms ‖ · ‖k,ω :=
‖ · ‖Hk(ω) and the usual scalar product (s) (f, g)ω := (f, g)L2(ω). We denote ‖f‖ω := (f, f)1/2ω . If
ω = Ω, the subscript ω will be omitted. We also let H1

D(Ω) := {v ∈ H1(Ω) : v|ΓD = 0} under

the standard norm inH1(Ω), ‖v‖1 := (‖v‖2 + ‖∇v‖2)1/2.
For any T > 0 and any vector space S, the space L2(0, T ;S) consists of all square-

integrable functions with values in S such that ‖v‖L2(0,T ;S) := (
∫T
0 ‖v‖2S)

1/2
is finite. The space

C([0, T];S) is defined similarly.

2.1. Variational Form of Micro-Model

Consider (1.1) as a model for single-phase slightly compressible flow in porous media in
which the gravity terms have been ignored; see [19] for derivation. Here φ = φ(x) and k =
k(x), x ∈ Ω denote the nonnegative coefficients of porosity and conductivities, respectively,
and f accounts for external sources. We assume for simplicity that k is a scalar quantity.

It is well known that (1.1) is well posed if appropriate boundary and initial data are
imposed. We will use

ρ = ρ0, in Ω × {0},

ρ = ρD, on ΓD,

k∇ρ · �n = 0, on ΓN.

(2.1)
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For simplicity we assume that ρD ≡ 0 and that the flow is driven by f . However, in simulation
examples we use f ≡ 0, ρD /≡ 0.

The variational formulation of problem (1.1) and (2.1) reads
Find ρ ∈ C([0, T];L2(Ω)) ∩ L2(0, T ;H1

D(Ω)) so that

(
φ
∂ρ

∂t
, ψ

)
+
(
k∇ρ, ψ

)
=
(
f, ψ
)
, ∀ψ ∈ H1

D(Ω). (2.2)

For any ρ0 ∈ L2(Ω), f ∈ C([0, T];L2(Ω)), there is a unique solution ρ ∈ C([0, T];L2(Ω)) ∩
L2(0, T ;H1

D(Ω)) to (2.7); see [20, Theorem 11.1.1, page 366]).

2.2. Variational Form of Macro-Model

Now consider (1.2a) and (1.2b) and assume that φ̃1, φ̃2, k̃1, k̃2, and c ∈ L∞(Ω) are bounded
uniformly from above and below by positive constants and are independent of time. We
consider separately the particular case of (1.3a) and (1.3b)when k̃2 ≡ 0.

Our variational formulation for (1.2a) and (1.2b) uses the theory developed in [17, 18]
for evolution problems with m-accretive operators by the Hille-Yosida Theorem. For analysis
of classical solutions see [21, 22].

For the macro-model (1.2a) and (1.2b) and if k̃2 > 0, we assume the following initial
and boundary conditions defined for i = 1, 2:

ρ̃i = ρ̃i,0, in Ω × {0},

ρ̃i = ρD, on ΓD,

k̃i∇ρ̃i · �n = 0, on ΓN.

(2.3)

As before, we assume that ρD ≡ 0 for now.
Let ρ̃i(·, 0) = ρ̃i,0 ∈ L2(Ω), f ∈ C([0, T], L2(Ω)), uD ≡ 0. The variational form of (1.2a),

(1.2b), and (2.3) is as follows:
Find ρ̃i ∈ C([0, T];L2(Ω)) ∩ L2(0, T ;H1

D(Ω)), i = 1, 2, such that

(
φ̃1
∂ρ̃1
∂t

, ψ

)
+
(
k̃1∇ρ̃1,∇ψ

)
+
(
c
(
ρ̃1 − ρ̃2

)
, ψ
)
=
(
f, ψ
)
, ∀ψ ∈ H1

D(Ω),

(
φ̃2
∂ρ̃2
∂t

, ξ

)
+
(
k̃2∇ρ̃2,∇ξ

)
+
(
c
(
ρ̃2 − ρ̃1

)
, ξ
)
= 0, ∀ξ ∈ H1

D(Ω).

(2.4)

The well posedness of this system (2.4) follows immediately by showing that the operator
B : D ⊂ H1

D(Ω) ×H1
D(Ω) → L2(Ω) × L2(Ω)

B =

[
−∂k̃1∂ + cI −cI

−cI −∂k̃2∂ + cI

]

, where I is the identity operator, (2.5)
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ism-accretive. The accretiveness is straightforward by showing that (Bu, u) ≥ 0 in the product
space. The maximal property follows from that of the operators −∂k̃i∂, I.

Now, if k̃2 ≡ 0, we do not impose boundary conditions on ρ̃2. The variational
formulation of (3) and (2.3), reads

Find ρ̃1 ∈ C([0, T];L2(Ω)) ∩ L2(0, T ;H1
D(Ω)), ρ̃2 ∈ C([0, T];L2(Ω)) ∩ L2(0, T ;L2(Ω))

such that

(
φ̃1
∂ρ̃1
∂t

, ψ

)
+
(
k̃1∇ρ̃1,∇ψ

)
+
(
c
(
ρ̃1 − ρ̃2

)
, ψ
)
=
(
f, ψ
)
, ∀ψ ∈ H1

D(Ω),

(
φ̃2
∂ρ̃2
∂t

, ξ

)
+
(
c
(
ρ̃2 − ρ̃1

)
, ξ
)
= 0, ∀ξ ∈ L2(Ω).

(2.6)

The well posedness of (2.6) follows similarly from the Hille-Yosida theorem. Also, ρ̃2 has the
minimum of regularity of its initial data and of ρ̃1.

2.3. Notation on Numerical Discretization

For computations of solutions we use conforming (Galerkin) finite elements for spatial
discretization and implicit Euler time stepping. We partition the time interval [0, T] into
subintervals [tn−1, tn], 1 ≤ n ≤N, such that 0 = t0 < t1 < · · · < tN = T . We denoteΔtn = tn − tn−1
and z(tn) = zn for any function z.

For spatial discretization, we adopt standard finite element nomenclature that can be
found in textbooks such as [23–25]. At each time step n, we denote by Tn

h
, h > 0, a family

of admissible and shape-regular partitions of Ω into a finite number of elements. For any
element T ∈ Tn

h
, we let hT be the diameter of T and denote h = maxT∈ThhT . Also, En

h
is the set

of all edges of Tn
h
. For any edge E ∈ En

h
, we let hE denote the diameter of the edge E. Finally,

we denote by Pk(T) the space of polynomials of degree k in R
d.

Numerical Approximation of Micro-Model

At each time step n, we define

V n
h =
{
vh ∈ C

(
Ω
)
: ∀T ∈ Tn

h, vh|T ∈ Pk(T), v|ΓD = 0
}
, (2.7)

and seek an approximation ρn
h
∈ V n

h
such that for all ψh ∈ V n

h

(

φ
ρn
h
− ρn−1

h

Δtn
, ψh

)

+
(
k∇ρnh,∇ψh

)
=
(
f, ψh

)
, (2.8a)

ρ0h = Ihρ0 in Ω. (2.8b)

Here Ih denotes an interpolation or projection operator into V n
h
.

It is standard [20] that there is a unique solution ρnh ∈ V n
h for (2.8a) at each n, 1 ≤ n ≤N.

A priori estimates for the error between the solution to (2.2) and that of (2.8a) and (2.8b) can
be found in the literature, see, for example, [20, 25, 26]. For a posteriori error estimates for
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Figure 1: Periodic heterogeneous media. (a) Ω1: white, Ω2: grey, and Ω3: dark grey. (b) Zoom of one
cell Y : Y1: white, Y2: grey, and Y3: dark grey. (c) Y3 in grey with the internal and external boundaries
Γ2,3, Γ1,3, respectively. (d) Illustration of three regions as in Example 3.1, where Ω2 is delimited by the
white boundaries, and Ω3 is the region between by the black and the white boundaries.

parabolic problems see [15, 27–29]; the methods in the latter two papers are most relevant to
our paper.

Numerical Approximation of Macro-Model

Consider now a fully discrete approximation to the solutions to (2.4) or (2.6). The formulation
with a fixed grid immediately extends (2.8a) and (2.8b), and appropriate error estimates can
be proven. More generally, each of ρ̃i can be associated with its own grid Tn

hi
; see details in

Section 4.

3. Comparison of Micro- and Macro-Models

The difficulties associated with numerical approximation (2.8a) and (2.8b) to (1.1) arise when
φ, k are highly varying coefficients. In particular, consider a porous domain Ω composed of
three disjoint regions Ωi, i = 1, . . . , 3, see Figure 1, with positive constants (φi, ki)

3
i=1 so that

φ(x) = φ1χ1(x) + φ2χ2(x) + φ3χ3(x),

k(x) = k1χ1(x) + k2χ2(x) + k3χ3(x).
(3.1)

Here χi denotes the characteristic function of Ωi.
An accurate numerical approximation to (1.1) with (3.1) requires that the grid Th is

very fine so that it lines up with the interfaces ∂Ωi ∩ ∂Ωk. The computational complexity of
the associated numerical implementation is very large whenever the geometry of interfaces
is complex, but this can be overcome by a modeling approximation. In [11] it is shown that
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(1.2a) and (1.2b) provides solutions close to those of (1.1), with the coefficients φ̃i, k̃i which
do not vary locally. Thus a grid for (1.2a) and (1.2b) can be chosen depending on the global
macrodynamics rather than local microdynamics and, consequently, it can be much coarser
than Th.

3.1. Derivation of Macro-Model

One successful avenue to reduce the complexity of a highly heterogeneous model is to
consider a homogenized or upscaled problem, whose coefficients are derived from the original
coefficients [1, 2, 30], and which can be simulated on a coarse grid quite accurately. However,
for time-dependent problems, this leads to inaccurate representation of the global dynamics,
especially if k1 � k2 and/or k1 � k3.

The double-diffusionmodels proposed in [4], the relaxationmodel from [6], and double-
porosity models derived in [12] are families of successful modeling strategies for parabolic
PDEs with periodic highly heterogeneous media. The recent general derivation in [11] is
most general and includes those from [4, 6, 12] as special cases.

The double-diffusion model developed in [4] was shown in [11] to be a limit of a
certain micro-model with three regions arranged periodically. The rigorous derivation in [11]
allows for each of the regions Ωi to be connected. Furthermore, it assumes that Ω3 separates
Ω1 and Ω2, that is, that ∂Ω1 ∩ ∂Ω2 = ∅. The model in [11] develops a general nonlocal
exchange term acting acrossΩ3. Its special case equivalent to the model in [4] assumes φ3 ≈ 0
thereby making a quasistatic assumption and allows to compute the coefficient c explicitly.

Double-porosity models proposed in [12] assume that only one of the regions Ω1 is
connected and so effectively one can set Ω2 = ∅. However, φ3 > 0. In the macro-model the
second equation (1.2b) is replaced by a local micro-model equation, the exchange follows
through macro-micro boundary conditions and is nonlocal in nature. We refer to [31–35] for
various analyses, models, approximations, and extensions of double-porosity models.

Of course, all three regions Ω1, Ω2, and Ω3 can be connected only in d = 3. In d = 2
only one of these regions, say Ω1, can be connected; see Figure 1(a). As we point out below,
this implies k̃2 = 0, and the macro-model (1.2a) and (1.2b) in d = 2 becomes the Warren-Root
relaxation model (3) as in [6].

In this paper we are interested in the double-diffusion models with a constant c from
[4, 6] and its corresponding quasistatic micro-model from [11]. The exchange region Ω3 is
assumed to be small and acts like a thick skin separatingΩ1 fromΩ2. In consequence, the fluid
flows effectively only in two regions Ω1 and Ω2; this is represented by the two sub-equations
in (1.2a) and (1.2b). Details, comparison, and simulations are shown in what follows.

3.1.1. Macro-Model Parameters

To compute parameters φ̃1, φ̃2, k̃1, k̃2, and c of the macro-model (1.2a) and (1.2b), one has
to calculate local averages and compute auxiliary solutions of differential equations. These
depend on φi, ki and on the geometry of Ωε. We follow closely [11].

First we formalize the notion of periodicity and heterogeneity in Ω. Without loss of
generality we assume that Ωε

1 is globally connected and φ3 = 0; all other coefficients in
(3.1) are positive constants. We follow the usual structure [1, 11, 12]. Let the unit cube Y =
(0, 1)d ⊂ R

d be divided into three distinct regions Y1, Y2, and Y3, such that ∂Y1 ∩ ∂Y2 = ∅ and
Y = ∪3

i=1Y i as illustrated by Figure 1(b). Denote by Ci the characteristic function of Yi,
i = 1, 2, 3, extended Y -periodically to all Rd. We assume that the domains {x ∈ R

d : Ci(x) = 1},
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i = 1, 2, 3, have a smooth boundary. Also, we define the ε-periodic characteristic functions
Cε
i (x) = Ci(x/ε), i = 1, 2, 3, x ∈ Ω. Thus, for a fixed ε, Ω is subdivided into three distinct

regions Ωε
i = {x ∈ Ω : Cε

i (x) = 1}, i = 1, 2, 3. Another subdivision of Ω is into O(ε−d)-periodic
cells.

Macroporosities φ̃i

From [11, equation 16, page 206] we have φ̃i =
∫
Yi
φi(y)dy.

Macroconductivities k̃i

From [11, equations 16, 14, page 205-206] we have

k̃p
(
i, j
)
=
∫

Yp

kp
(
y
)(
�ei +∇Wp

i

(
y
))

·
(
�ej +∇Wp

j

(
y
))
dy, p = 1, 2; i, j = 1, . . . d, (3.2)

whereWp

i , for p = 1, 2; i = 1, . . . , d, is the solution to an auxiliary PDE

∇ ·
[
kp
(
�ei +∇Wp

i

(
y
))]

= 0, in Yp, (3.3a)

kp
(
�ei +∇Wp

i

(
y
))

· �np = 0, on Γp,3, (3.3b)

W
p

i , kp∇W
p

i · �np are periodic. (3.3c)

One can prove [1, 3, 11] that k̃p is a symmetric matrix.
Now consider d = 2. Here the region Ωε

2 cannot be connected. Thus, the boundary
condition (3.3c) does not apply and (3.3a), (3.3b), and (3.3c) admit the trivial solution �ei +
∇W2

i (y) ≡ 0 for i = 1, 2. Consequently, k̃2 is the 2 × 2 null matrix, and the model (1.2a) and
(1.2b) becomes the Warren-Root model (3) proposed in [6].

Exchange Term Parameter c

In general, the flow between Ω1 and Ω2 across Ω3 has transient character, and an appropriate
term describing it must be nonlocal in nature.

However, for very small φ3, the flow is of quasistatic nature as discussed in [4]. The
exchange term then has the form c(ρ̃1 − ρ̃2). To compute c, we consider the solutionU of

−∇ · [k3∇U] = 0, in Y3, (3.4a)

U = 1, on Γ1,3, (3.4b)

U = 0, on Γ2,3, (3.4c)

U, k3∇U · �n3 are periodic on Γ3,3. (3.4d)
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The parameter c see [11, equation 19, page 209] is given by

c =
∫

Γ1,3
k3∇yU · �n3ds. (3.5)

We note that the general non-quasistatic case is when φ3(∂U/∂t) is included in (3.4d) thereby
changing the character of exchange term to nonlocal. Conversely, (3.4a), (3.4b), (3.4c), and
(3.4d) can be considered as its special case when φ3 ≈ 0.

3.1.2. Numerical Computation of Macro-Model Parameters

The solutions of the auxiliary PDEs (3.3a), (3.3b), and (3.3c) and (3.4a), (3.4b), (3.4c), and
(3.4d) are approximated using finite elements with h−1

k1
= 40 and h−1c = 20. See [36] for

treatment of periodic boundary conditions.
In what follows we ignore the distinction between the exact and numerical values of

macro-model parameters k̃i, c and provide examples of their calculations for various values
of k3 and choices of geometry of Y .

In all examples d = 2 hence k̃2 =
[
0 0
0 0

]
. Also, in all examples k1 ≡ const and the

geometry of Y is axisymmetric, and thus k̃1 is a scalar constant.

Example 3.1. Here Y2 = (0.3, 0.7)2, Y3 = (0.2, 0.8)2 \Y2, φ = 1χ1 +10−4χ2, and k = 1χ1 +10−4χ2 +
10−7χ3. We obtain

φ̃1 = 0.64, φ̃2 = 1.6 × 10−5, k̃1 = 0.4519, c = 1.8634 × 10−6. (3.6)

Example 3.2. Let Y2 = (0.3, 0.7)2, Y3 = (0.2, 0.8)2 \ Y2. φ = 1χ1 + 10−4χ2, and k = 1χ1 + 10−1χ2 +
10−4χ3. We obtain

φ̃1 = 0.64, φ̃2 = 1.6 × 10−5, k̃1 = 0.4519, c = 1.8634 × 10−3. (3.7)

Example 3.3. Here Y2 = (0.3, 0.7)2, Y3 = (0.2, 0.8)2 \Y2, φ = 1χ1 +10−4χ2, and k = 1χ1 +10−1χ2 +
10−2χ3. We obtain

φ̃1 = 0.64, φ̃2 = 1.6 × 10−5, k̃1 = 0.4519, c = 1.8634 × 10−1. (3.8)

Example 3.4. Let Y2 = (0.3, 0.7)2, Y3 = (0.1, 0.9)2 \ Y2, φ = 1χ1 + 10−4χ2, and k = 1χ1 + 10−1χ2 +
10−4χ3. We get

φ̃1 = 0.36, φ̃2 = 1.6 × 10−5, k̃1 = 0.2130, c = 1.0412 × 10−3. (3.9)

Example 3.5. Y2 = (0.25, 0.75)2, Y3 = (0.2, 0.8)2 \ Y2, φ = 1χ1 + 10−4χ2, and k = 1χ1 + 10−1χ2 +
10−4χ3. We get

φ̃1 = 0.64, φ̃2 = 2.5 × 10−5, k̃1 = 0.4519, c = 4.3000 × 10−3. (3.10)
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3.2. Comparison of the Models

Now we can compare the solutions of the micro-model (1.1) to those of the macro-model
(1.2a) and (1.2b). In [11] it was shown that the latter two-scale converge to the former as
ε → 0. In addition, the analysis in [11] suggests that it is appropriate to compare ρ̃i to χiρε.
However, this notion of convergence does not give information about the rate at which ρ̃i −
χiρε may converge, and it involves special periodic test functions.

In this paper we estimate this rate by comparing their numerical approximations
directly without the use of any test functions but rather in a certain metric of interest. To the
best of our knowledge such comparison or convergence rate was not discussed elsewhere.

Strictly speaking, the two-scale convergence proof considered in [11], and a similar
proof for the double-porosity model in [12], includes scaling of k3 with ε2. This scaling is
a formal device necessary to preserve certain parts of the boundary value problem under
investigation in the limit as ε → 0. However, the homogenization limit is intended to serve
only as an approximation of the true model, which has a given fixed set of parameters. We
do not include this scaling in our computations. Rather, we treat each example, for a given ε,
as a data set in its own merit, rather than as an element of a sequence intended to two-scale
converge to the limit.

3.2.1. Setup of Computational Experiments

We set up simulations for comparison using compatible data for micro- and macro-models;
we set f ≡ 0 and choose initial and boundary data driving the flowwith interesting dynamics.
For porosities and conductivities, we use the values computed in Section 3.1.2.

Let Ω = (0, 1)2 and ΓD = {0} × [0, 1] ∪ {1} × [0, 1]. On ΓD we define ρD(0, y) =
1, ρD(1, y) = 0, y ∈ [0, 1]. On the lateral sides of Ω the Neumann no-flow condition is
imposed. Also, let ρ0 ≡ 1. Thus the flow in the micro-model goes from left to right, and
the solution evolves towards the stationary solution 〈1 − x, 1 − x〉. Due to the incompatibility
between initial and boundary data, we have high gradients of the solution close to x = 1 for
small t.

We fix the final time T = 0.05 and use uniform time stepping with Δt = 10−4. The
solution of the micro-model ρ depends on the number of cells in Ω ≡ Ωε, with ε ∈ (0, 1]. For
example, if ε = 1/2, the domain Ω is composed of 2 × 2 = 4 cells. We denote the numerical
solution of (2.8a) and (2.8b) at tn by ρn

ε,h
where h denotes the grid parameter for the micro-

model.
For the macro-model, we use ρ̃i,0 = ρ0 ≡ 1. Also, we use ρ̃D,i = ρD for i = 1, 2 when

k̃2 /≡ 0. If k̃2 ≡ 0, then the boundary condition for ρ̃2 is not prescribed.

3.2.2. Qualitative Comparison

In our first comparison we use parameters from Example 3.1. We solve the macro-model (4.2)
for {〈ρ̃n1,h1 , ρ̃

n
2,h2

〉}Nn=1 and the micro-model (2.8a) and (2.8b) for ρn
ε,h
. The plots of ρn

h
and ρ̃n

i,h

are in Figure 2, and a different view is shown in Figure 1(d).
The heterogeneous structure of Ωε is well visible from the behavior of the micro-

model solution ρn
h
. Large gradients of solution are visible on cell boundaries due to the large

difference between k1, k2, and k3.
However, the behavior in the fast region is well approximated by ρ̃n1,h1 which envelopes

ρn
h
χ1, while ρ̃n2,h2 envelopes ρ

n
h
χ2 well. This is very well seen in a side view in Figure 2(d).
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Figure 2: Numerical approximation at tn = 3 × 10−2 of (a)-(b) the solutions of the two components of the
macro-model (4.2), and (c) the solutions of the micro-model (2.8a) and (2.8b). Figure (d) shows the side
view of (a, b, c) at y = 0.4 and y = 0.5. Data from Example 3.1 with 1/ε = 5 and h = h1 = h2 = 1/50. Note
that (a) and (b) have different vertical scales.

Quite interesting is the behavior of ρ2|x=1. Since in our examples k̃2 ≡ 0, no boundary
condition at x = 1 is imposed on ρ2. Thus, for small t, ρ2(1, t) evolves from its initial constant
value of 1 according to (1.3b) with the input from ρ̃1. The latter satisfies, however, the
homogeneous boundary condition at x = 1. In particular, with constant φ̃2, c, we have

ρ̃2
(
x, y, t

)
= ρ̃2,0

(
x, y
)
e−(c/φ̃2)t +

∫ t

0
ρ̃1
(
x, y, s

)
e−(c/φ̃2)(t−s)ds. (3.11)

Thus, for small t and small c/φ̃2, ρ̃2(1, y, t) is away from 0, but, as time increases, its
magnitude decreases proportionally to e−(c/φ̃2)t.

Next, we use parameters from Example 3.2 and plot them in Figure 3. In this example
the conductivity k1 is much larger than that of previous case, the local gradients in the micro-
model are smaller, and the solutions to the macro-model achieve a smoother profile faster.
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Figure 3: Numerical approximation at tn = 3 × 10−2 of (a) and (b) the solutions of the two components
of the macro-model (4.2) and (c) the solutions of the micro-model (2.8a) and (2.8b). Figure (d) shows the
side view of (a, b, c) at y = 0.4 and y = 0.5. Data from Example 3.2 with 1/ε = 5 and h = h1 = h2 = 1/50.

3.2.3. Quantitative Comparison—Fine Grid in Macro-Model

Now we are ready to discuss a quantitative comparison between solutions to the micro- and
macro-models. For this, we set up a family of cases with ε = 1/(2l + 1), l ≥ 1. We use uniform
mesh with h = h1 = h2 = ε/20 for now. See Section 3.2.4 for hi � h and Section 4 for adaptive
gridding.

From [11, Theorem 18, page 208] and from our plots it follows that we can actually
compare the micro- and macrosolutions, as long as the characteristic functions χi are
involved. While the results in [11] use two-scale convergence with ε, that is, rely on special
periodic test functions, we compare ρn

ε,h
and ρ̃n

i,h
directly. We see that it is easy to do so only

in the connected region Ω1.
We define a quantity enε = (ρnε,h − ρ̃

n
1,h1

)χ1 to be used in comparison. We also define, for
a fixed t ∈ (0, T] and some function z,

∥∥z
(
x, y; t

)∥∥
∗,L1

:=
∫1

0
|z(x, 0.5; t)|dx,
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Table 1: Comparison of solutions to the macro-model with those to the micro-model for different values of
ε with data as in Example 3.2.

# cells ε ‖eNε ‖∗,L1 α1 ‖eNε ‖∗,L2 α2

3 × 3 1/3 1.1832 × 10−2 — 3.2071 × 10−2 —
5 × 5 1/5 7.0915 × 10−3 1.0188 1.9044 × 10−2 1.0390
7 × 7 1/7 5.0522 × 10−3 1.0077 1.3528 × 10−2 1.0164
9 × 9 1/9 3.9285 × 10−3 1.0011 1.0502 × 10−2 1.0075
11 × 11 1/11 3.2162 × 10−3 0.9969 8.5890 × 10−3 1.0021

Table 2: Comparison of the macro-model to the micro-model for different values of ε as in Example 3.3.

# cells ε ‖eNε ‖∗,L1 α1 ‖eNε ‖∗,L2 α2

3 × 3 1/3 1.1446 × 10−2 — 3.0715 × 10−2 —
5 × 5 1/5 7.0065 × 10−3 1.0408 1.8387 × 10−2 0.9956
7 × 7 1/7 5.1541 × 10−3 1.0958 1.3363 × 10−2 1.0543
9 × 9 1/9 4.1704 × 10−3 1.1867 1.0684 × 10−2 1.1232
11 × 11 1/11 3.5794 × 10−3 1.3131 9.0460 × 10−3 1.2058

∥∥z(x, y; t)
∥∥
∗,L2

:=

{∫1

0
|z(x, 0.5; t)|2dx

}1/2

,

(3.12)

which will be applied to enε . Clearly ‖ · ‖∗,W is not a norm but is a useful quantity of interest.
In Tables 1, 2, 3, and 4 we present ‖enε ‖∗,W for different ε andW = L2, L1. For each case

we consider convergence of ‖enε ‖∗,W with ε ↓ 0.
From homogenization theory it is not clear what order of convergence should be

expected. We observe that ‖enε ‖∗,W decreases linearly with ε for both ∗ = L1, L2 -like quantities
in all cases.

Next we discuss the dependence of the results on conductivity and other data.
Consider Example 3.2 as a reference example with its corresponding Table 1. Compare it
now with that from Table 2 where k3 is larger than that in the reference case to see how
this influences the errors. As expected, and as shown in Example 3.3, c changes by the same
factor, and this means that the coupling between ρ̃1 and ρ̃2 is stronger which corresponds to
faster flow across Y3 in the micro-model. However, the influence on the convergence of the
micro-macro difference, from Table 2 is rather weak.

Next consider Example 3.4 which uses a different geometry than that in the reference
case, with thicker region Y3. This produces a slightly smaller c since the gradient of
U is smaller. Also, φ̃1 and k̃1 are predictably different. The error quantity is influenced
insignificantly.

The opposite effect is seen in Table 4 when Y3 is selected as thinner than in the reference
Example 3.2.

3.2.4. Coarse Macrogrid and Parameter Grid

In the examples presented in Section 3.2.3 we used h = h1 = h2. This choice of compatible
grids is convenient for visualization purposes. However, for the idea of the macro-model to
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Table 3: Comparison of the macro-model to the micro-model for different values of ε Example 3.4.

# cells ε ‖eNε ‖∗,L1 α1 ‖eNε ‖∗,L2 α2

3 × 3 1/3 1.3758 × 10−2 — 3.5390 × 10−2 —
5 × 5 1/5 8.2810 × 10−3 1.0330 2.0998 × 10−2 0.9786
7 × 7 1/7 5.7341 × 10−3 0.9155 1.4741 × 10−2 0.9510
9 × 9 1/9 4.3987 × 10−3 0.9479 1.1336 × 10−2 0.9568

Table 4: Comparison of the macro-model to the micro-model for different values of ε Example 3.5.

# cells ε ‖eNε ‖∗,L1 α1 ‖eNε ‖∗,L2 α2

3 × 3 1/3 1.1826 × 10−2 — 3.2048 × 10−2 —
5 × 5 1/5 7.0877 × 10−3 0.9978 1.9029 × 10−2 0.9800
7 × 7 1/7 5.0497 × 10−3 0.9924 1.3518 × 10−2 0.9840
9 × 9 1/9 3.9281 × 10−3 1.0006 1.0502 × 10−2 0.9955

be useful, the computational complexity of the macro-model needs to be lower than that of
the micro-model. Since the macro-model is a system of two equations, its lower complexity
can be only achieved if the grid in the macro-model is significantly coarser than that of micro-
model. Below we show that one can use h� h1 in the macro-model.

Example 3.6. We use data from Example 3.2 with ε = 0.2. Consider a fixed microgrid with
h−1 = 100 and a few cases of macrogrid with h−11 = h−12 = 10, 50, 100. Now we compare the
micro- and macrosolutions ρnε,h and ρ1,h1 , see Table 5. We also compare the run time of the
macro-model to that of the reference micro-model which is 120 seconds.

We see that, as predicted above, the macro-model run time at hi = h is not competitive
with that of the micro-model; this is exacerbated by the overhead of various adaptive
procedures to be discussed below. However, when hi � h, the ability of the macro-model
solutions to approximate those of micro-model appears reasonable and is associated with a
much lower cost. This is true even when hi is by a factor of 10 coarser than h resulting in a
computational time decreased by two orders of magnitude.

Clearly, the macro-model can run much faster than the micro-model especially when
adaptive nonuniform grids with h1 /=h2 are implemented, see Section 4.

Influence of Parameter Grid

Last we address the effect of the computed parameters c, k̃1 on the closeness of the macro-
model solution to that of micro-model. These coefficients are precomputed as discussed in
Section 3.1.1.

Example 3.7. Let ε = 1/3, and let the micro-model grid be h−1 = 60. Use h−11 = h−12 = 60.
Compute numerical parameters chc , k̃1,hk1 by approximating solutions to (3.4a), (3.4b), (3.4c),
and (3.4d) and (3.3a), (3.3b), and (3.3c), respectively.

Example 3.7 and Table 6 show that the grid used for computing these parameters only
mildly affects the quality of the solution, thus one can use coarse grid with confidence.
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Table 5: Comparison of the micro-model to the macro-model as in Example 3.6.

h−11 ‖eNε ‖∗,L1 ‖eNε ‖∗,L2 run time(s)

100 7.0915 × 10−3 1.9044 × 10−2 511
50 7.0937 × 10−3 1.9048 × 10−2 56
10 7.2380 × 10−3 1.9173 × 10−2 3

Table 6: Sensitivity of the macro-model solution to the grid used to compute chc ≈ c and k̃1,hk1 ≈ k̃1 as
Example 3.7.

h−1c chc ‖eNε ‖∗,L1 ‖eNε ‖∗,L2

10 1.9000 × 10−3 3.6251 × 10−2 5.9026 × 10−2

50 1.8370 × 10−3 3.6251 × 10−2 5.9026 × 10−2

100 1.8292 × 10−3 3.6251 × 10−2 5.9026 × 10−2

200 1.8258 × 10−3 3.6251 × 10−2 5.9026 × 10−2

h−1
k

k̃1(1, 1) ‖eNε ‖∗,L1 ‖eNε ‖∗,L2

10 4.6306 × 10−1 3.5392 × 10−2 5.7835 × 10−2

50 4.5141 × 10−1 3.6222 × 10−2 5.8989 × 10−2

100 4.5046 × 10−1 3.6301 × 10−2 5.9093 × 10−2

200 4.5009 × 10−1 3.6332 × 10−2 5.9134 × 10−2

4. Error Estimates and Two-Grid Adaptivity

We present now the details of discrete formulation of (2.4) using independent grids for
each component and adaptive gridding. The adaptive two-grid algorithm further reduces
the computational cost of the macro-model. The formalism of the two-grid solution connects
loosely to [37, 38]where their benefit was considered for a nonlinear scalar equation.

In what follows we assume that k̃1 � k̃2, that is, that the first component varies in
space faster than the second. As a special case, this includes the case k̃2 = 0. We consider
two triangulations Thi , i = 1, 2, which will be used for ρ̃hi , respectively. In principle, these
can be chosen independently. In fact, we allow the triangulations to vary in time and thus
consider Tn

hi
and the associated spaces V n

hi
as in (2.7). To avoid the loss of accuracy due to

excessive interpolation and intergrid projections and because k̃1 � k̃2, we assume that Tn
h1

is
a refinement of the partition Tn

h2
.

We need intergrid operators to handle two components that live on separate grids. Let
Π : V n

h2
→ V n

h1
be the interpolation operator and Π′ : V n

h1
→ V n

h2
the L2 projection defined by

(
Π′

φh1 ,ψh2

)
:=
(
φh1 ,Πψh2

)
, ∀ψh2 ∈ Vh2 . (4.1)

Now we define the discrete solutions. At each time step 1 ≤ n ≤ N, we seek ρ̃n
i,hi

∈ V n
hi
,

i = 1, 2, which satisfy the discrete problem, that is, (2.4) restricted to the finite dimensional
subspaces V n

hi
so that, for all ψh1 ∈ V n

h1
, for all ξh2 ∈ V n

h2

(

φ̃1

ρ̃n1,h1 − ρ̃
n−1
1,h1

Δtn
, ψh1

)

+
(
k̃1∇ρ̃n1,h1 ,∇ψh1

)
+
(
c
(
ρ̃n1,h1 −Πρ̃n2,h2

)
, ψh1

)
=
(
f, ψh1

)
,
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(

φ̃2

ρ̃n2,h2 − ρ̃
n−1
2,h2

Δtn
, ξh2

)

+
(
k̃2∇ρ̃n2,h2 ,∇ξh2

)
+
(
c
(
ρ̃n2,h2 −Π′ρ̃n1,h1

)
, ξh2

)
= 0,

〈
ρ̃01,h1 , ρ̃

0
2,h2

〉
=
〈
Ih1 ρ̃1,0,Ih2 ρ̃2,0

〉
in Ω.

(4.2)

If k̃2 = 0, the system (4.2) is modified appropriately so that ρ̃2(·, t) ∈ L2(Ω) instead ofH1
D(Ω),

and we do not impose boundary conditions on this component. In fact, instead of (2.7) we
define

V n
h2

=
{
vh ∈ C

(
Ω
)
: ∀T ∈ Tn

h, vh |T ∈ Pk(T)
}
. (4.3)

(It holds that vh ∈ C(Ω) but it is not necessary). It is straightforward that (4.2) is uniquely
solvable.

4.1. A Priori Error Estimate

We have the following convergence result proved for the error in energy norm. In what
follows 1 ≤ n ≤ N and i = 1, 2. We denote ei,hi(tn) = ρ̃n

i,hi
− ρ̃ni and define the energy norm for

the product space

|‖〈z,w〉‖|2(tn) := φ̃1‖z(tn)‖2 + φ̃2‖w(tn)‖2 +
n∑

m=1

Δtm
(
k̃1|z(tm)|21 + k̃2|w(tm)|21

)
. (4.4)

Assuming that 〈ρ̃1, ρ̃2〉 is sufficiently smooth we have the following a-priori estimate
proven in the appendix.

Theorem 4.1. Let 〈ρ̃1, ρ̃2〉, {〈ρ̃n1,h1 , ρ̃
n
2,h2

〉}Nn=1 be the smooth solutions of (2.4) and (4.2), respectively.
Then one has

|‖〈e1,h1 , e2,h2〉‖|(tn) ≤ k̃
1/2
1 C1h1 + k̃

1/2
2 C2h2 + C3max

m=1:n
Δtm + higher order terms (h.o.t.), (4.5)

where C1, C2, and C3 are independent of h.
Furthermore, if k̃2 = 0, then

|‖〈e1,h1 , e2,h2〉‖|(tn) ≤ k̃
1/2
1 C1h1 + C2h

2
2 + C3max

m=1:n
Δtm + higher order terms (h.o.t.). (4.6)

Now we notice that (4.5) suggests the following choice of grid parameters h1, h2. If
k̃1 � k̃2, then to balance the components of the error one can use h1 � h2. Similarly, if k̃2 = 0,
then (4.6) implies that h2 can be chosen to be of the order of h1/21 . The use of coarse grid
h2 � h1 for the second component reduces the size of the linear system to be solved and
decreases the computational time of the macro-model.
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Also, the a-priori estimates (4.5), (4.6) are global. One can further reduce the
computational cost while maintaining accuracy by using local grid adaptivity guided by a
posteriori estimators. This is pursued below.

4.2. A-Posteriori Error Estimates

Estimators for time-dependent problems can be defined in many ways including the now
classical space-time element and adjoint approaches [27, 28]. In this paper we follow the
residual estimator framework extending [15, 29] to the double-diffusion system using the
ideas in [13, 39, 40] originally formulated for an elliptic system.

The estimator ηn = (
∑n

m=1[ΔtmS
2
m + T2

m])
1/2 for (4.2) is composed of the temporal part

Tn which adapts the time stepping and the spatial part Sn which guides the spatial grid
adaptivity. We define

T2
n :=

Δtn
3

(∥∥∥k̃1/21

(
ρ̃n1,h1 − ρ̃

n−1
1,h1

)∥∥∥
2
+
∥∥∥k̃1/22

(
ρ̃n2,h2 − ρ̃

n−1
2,h2

)∥∥∥
2
)

+
Δtn
3

∥∥∥c1/2
(
ρ̃n1,h1 − ρ̃

n−1
1,h1

)
− c1/2

(
ρ̃n2,h2 − ρ̃

n−1
2,h2

)∥∥∥
2
,

(4.7)

and S2
n = S1,n + S2,n, where Si,n =

∑
Ti∈Thi

Sni,Ti , and where, as usual (see [23]), one defines

Sni,Ti := θ
2
i,Ti

∥∥∥Rn
i,Ti

∥∥∥
2
+
1
2

∑

E∈ETi

γ2i,E

∥∥∥Rn
i,E

∥∥∥
2
. (4.8)

The element and edge residuals in Sni,Ti , i = 1, 2, are given by

Rn
i,Ti

= fi − φ̃i
ρ̃ni,hi − ρ̃

n−1
i,hi

Δtn
+∇ ·

(
k̃i∇ρ̃ni,hi

)
+ (−1)ic

(
ρ̃n1,h1 − ρ̃

n
2,h2

)
, (4.9)

Rn
i,E =

⎧
⎪⎪⎨

⎪⎪⎩

[
k̃i∂νρ̃

n
i,hi

]

E
if E/⊂∂Ω,

−k̃i∂νρ̃ni,hi if E ⊂ ΓN,

0, otherwise.

(4.10)

Here [z]E denotes the jump of the flux z across the edge E of an element. Usually f1 ≡ f ,
f2 ≡ 0. Also, if k̃2 = 0, then Rn

2,E ≡ 0.
The scaling constants θi,T , γi,E take into account the contribution of the exchange term

c(ρ̃1 − ρ̃2) and are defined so that the estimators remain robust when the coefficients of the
problem change substantially:

θ1,T = min
{
hT1 k̃

−1/2
1 ,max

{
c−1/2, hT1 k̃

−1/2
2

}}
, T1 ∈ Tn

h1
∪ Enh1 , (4.11)

θ2,T = min
{
hT2 k̃

−1/2
2 ,max

{
c−1/2, hT2 k̃

−1/2
1

}}
, T2 ∈ Tn

h2
∪ Enh2 , (4.12)

γi,E = 2h−1/2E θi,E, i = 1, 2. (4.13)
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This a posteriori estimator works well with two-grid discretizations as shown in the examples
to follow. It is well formulated also for k̃2 ≡ 0 when ρ̃2 ∈ L2(Ω). We have the following result
on reliability of the estimator proven in the appendix.

Theorem 4.2. Let 〈ρ̃1, ρ̃2〉, {〈ρ̃n1,h1 , ρ̃
n
2,h2

〉}Nn=1 be the solution of (1.2a) and (1.2b), (2.3) and (4.2),
respectively. Then

|‖〈e1,h1 , e2,h2〉‖|(tn) ≤ ηn + h.o.t.; ∀n ≥ 1 (4.14)

4.3. Adaptive Two-Grid Discretization and Implementation

Consider a fixed time step n = no for which some triangulation is chosen, the solution
is found, and the spatial error indicators Si,n are computed. To apply the two-grid spatial
adaptivity we use the following refinement algorithm.

Adaptive Two-Grid AlgorithmA
(1) Select the triangulation(s) to be refined: If S1,no > 3S2,no , refine only Tno

h1
. If S2,no >

3S1,no , refine only Tno
h2
. Otherwise, refine both.

(2) InThi , i = 1, 2 selected in Step 1, refine any T ∈ Th,i for which Snoi,T ≥ 0.5maxT∈Thi
Snoi,T .

(3) Enforce the requirement that Tn
h1
is a refinement of Tn

h2
by adding extra elements as

needed.

The steps in A should be repeated a certain numberNA of times until an ideal grid is
found. See [41] for analysis of whether the iterative process of refinement and coarsening is,
in general, convergent.

Example of Two-Grid Adaptivity

Now we show an example on how this adaptive algorithm works for the double-diffusion
system. We use data and setup from Example 3.2, with T = 0.02 and uniform time stepping
with Δt = 10−4. Other data is as in Section 3.2.1.

Consider a fixed n0 = 200 with a uniform triangulation Tno
h1

= Tno
h2

with h1 = h2 = 0.1.
Then applyNA = 6 times the steps in A, see the solution and the refined meshes in Figure 4.
The process works as expected: since at the time tn0 the solution has a high gradient near
x = 1, the refinement occurs there. The refinement affects the grid for the first component
only, because the gradients of the second component are not included due to k̃2 = 0. This can
be compared to the a-priori estimate in Theorem 4.1 from which we know the convergence is
O(h1 + h22 + Δtn).

In Table 7 we provide the details on Tno
hi

and compare the effectiveness of the local
two-grid refinement by algorithmAwith uniform grid refinement. With adaptive refinement
we get Sno = 0.35834 with 435 + 121 = 556 unknowns, while the uniform refinement needs
441 + 441 = 882 unknowns to achieve comparable Sno = 0.39221.

Last, we describe the process with which Tn
hi
, i = 1, 2, may vary between time steps.

For a fixed n denote by Tn
hi
the final triangulation obtained by the adaptive algorithm A. For

the new time step n + 1, we use Tn
hi
as the initial triangulation. If the algorithm A suggests

that Tn+1
hi

is modified, we need to project ρ̃n
i,hi

to the new grid so it can be used as initial
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Figure 4: Sixth level refinement iteration at tno = 2×10−2. Figures (a) and (b): plots of ρ̃no1,h1 and Tno
h1
. Figures

(c), (e), and (d): plots of ρ̃no2,h2 and Tno
h2
.

Table 7: Adaptive versus uniform refinement.

Uniform refinement
Sno # elem Tno

h1
# elem Tno

h1
dim(V no

h1
) dim(V no

h2
)

Initial mesh 0.81803 200 200 121 121
1st refinement 0.39221 800 800 441 441

Adaptive refinement
Sno # elem Tno

h1
# elem Tno

h2
dim(V no

h1
) dim(V no

h1
)

Initial mesh 0.8180 200 200 121 121
1st level 0.8031 240 200 141 121
2nd level 0.7076 292 200 167 121
3rd level 0.6499 316 200 179 121
4th level 0.5525 462 200 254 121
5th level 0.4205 720 200 385 121
6th level 0.3583 820 200 435 121

data for the new step, but ρ̃n
i,hi

differs from their interpolation only in the elements where the
triangulation is coarsened. Another way to deal with different triangulations Tn+1

hi
, Tn

hi
is to

compute the a posteriori error estimator in a common refinement of the two triangulations
Tn+1
hi

, Tn
hi
[29, 42], but this will not be pursued further.
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Table 8: Cost of one-grid versus two-grid discretization in a simulation with 1,000 time steps.

One-grid with h1 = h2 = 1/80
Matrix Cost (seconds)
S1,h1 +M1,h1 3.6547
Bone-grid 0.0123
Solve Sone-grid 1,000 times 0.2761 × 1,000
Total 279.7670

Two-grid with h1 = 1/80, h2 = 1/20
Matrix Cost (seconds)
S1,h1 +M1,h1 3.6547
M2,h2 0.0438
Ih1 ,h2 0.2121
Btwo-grid 0.0063
Solve Stwo-grid 1,000 times 0.1030 × 1,000
Total 106.9169

Implementation

The decision to use two grids implies that we have to interpolate between the finite element
spaces V n

h1
and V n

h2
, see (4.1). Suppose that {ζi,j}j , i = 1, 2, is a basis for V n

hi
. Then the operator

Π in (4.1) is represented by the matrix Ih1,h2 whose components are given by Ih1,h2(j, k) =
(ζ1,j , ζ2,k).

Consider now and compare the computational cost associated with one-grid and two-
grid approaches. To solve (4.2) with one-grid V n

h1
we need to assemble the stiffness matrix

S1,h1(j, k) = (k̃1∇ζ1,j ,∇ζ1,k), the mass matrixM1,h1(j, k) = (ζ1,j , ζ1,k), and the block matrix

Bone-grid =

⎡

⎣
−ΔtS1,h1 +

(
φ̃1 + cΔt

)
M1,h1 −cΔtM1,h1

−cΔtM1,h1

(
φ̃2 + cΔt

)
M1,h1

⎤

⎦. (4.15)

At each time step we solve the linear system with Bone−grid; this is referred to as Sone-grid.
To solve (4.2)with two grids and two spaces V n

h1
, V n

h2
, we need to assemble the stiffness

matrix S1,h1(j, k) = (k̃1∇ζ1,j ,∇ζ1,k), the mass matrices M1,h1(j, k) = (ζ1,j , ζ1,k), M2,h2(j, k) =
(ζ2,j , ζ2,k), the interpolation matrix Ih1,h2(j, k) = (ζ1,j , ζ2,k), and the block matrix

Btwo-grid =

⎡

⎣
−ΔtS1,h1 +

(
φ̃1 + cΔt

)
M1,h1 −cΔtIT

h1,h2

−cΔtIh1,h2
(
φ̃2 + cΔt

)
M2,h2

⎤

⎦. (4.16)

To finish we solve the linear system which we refer to as Stwo-grid.
Suppose now we solve (4.2) and wish to maintain Sn ≤ δ for some tolerance δ over

1,000 time steps. With data as in Section 3.1.2 we run the simulations using one grid and find
that we need h1 = h2 = 1/80. Using the two-grid approach we only need h1 = 1/80, h2 = 1/20.

The computational time needed to assemble the matrices and solve the systems in our
MATLAB implementation is displayed in Table 8. Clearly the assembly process takes more
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time for two-grid case than for one-grid discretization. However, the economy in the cost of
solving the linear system makes up for that cost.

5. Conclusions

We compared the solutions to the micro-model to those of the macro-model and have shown
that the latter is a good approximation to the former. This remains true also when a very
coarse computational grid is used. Moreover, we established a linear convergence rate in
function of the periodicity parameter ε in a certain quantity of interest which further shows
that the double-diffusion model is an excellent approximation to the micro-model, at least for
the considered scenarios.

To make the double-diffusion model computationally efficient, we proposed an
algorithm for local grid adaptivity which allows each component to live on its own grid. The
grid refinement is guided by an a posteriori error estimator for which we proved theoretical
results.

Appendix

A. Proof of Theorem 4.1

Proof. The proof follows the techniques presented in [25, 26] for a scalar PDE. We present an
outline of the proof for the double-diffusion system. By (4.1), if Tn

h1
is a refinement of Tn

h2
, we

can rewrite (4.2) as

(

φ̃1

ρ̃n1,h1 − ρ̃
n−1
1,h1

Δtn
, ψh1

)

+
(
k̃1∇ρ̃n1,h1 ,∇ψh1

)
+
(
c
(
ρ̃n1,h1 − ρ̃

n
2,h2

)
, ψh1

)
=
(
f, ψh1

)
,

(

φ̃2

ρ̃n2,h2 − ρ̃
n−1
2,h2

Δtn
, ξh2

)

+
(
k̃2∇ρ̃n2,h2 ,∇ξh2

)
+
(
c
(
ρ̃n2,h2 − ρ̃

n
1,h1

)
, ξh2

)
= 0.

(A.1)

Next, for k̃2 /≡ 0, as in [26]we define the elliptic projection 〈Pρ̃1, P ρ̃2〉 of 〈ρ̃1, ρ̃2〉 into Vh1 × Vh2
via

(
∇
(
Pρ̃i − ρ̃i

)
,∇χ
)
= 0, ∀χ ∈ Vhi , i = 1, 2. (A.2)

Applying (A.2) for i = 1, 2 into the weak formulation (2.4), with arbitrary ψ, ξ ∈ H1
D(Ω) we

arrive at

(
φ̃1
∂Pρ̃1
∂t

, ψ

)
+
(
k̃1∇Pρ̃1,∇ψ

)
+
(
c
(
ρ̃1 − ρ̃2

)
, ψ
)
=
(
f, ψ
)
+

(

φ̃1
∂
(
Pρ̃1 − ρ̃1

)

∂t
, ψ

)

,

(
φ̃2
∂Pρ̃2
∂t

, ξ

)
+
(
k̃2∇Pρ̃2,∇ξ

)
+
(
c
(
ρ̃2 − ρ̃1

)
, ξ
)
=

(

φ̃2
∂
(
Pρ̃2 − ρ̃2

)

∂t
, ξ

)

.

(A.3)
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Next we define ∂nw = (w(tn) − w(tn−1))/Δtn, Δn(w) = ∂nw − (∂w/∂t)(tn), subtract
(A.3) from (A.1), add the resulting equations, and use as test functions ψ = ρ̃n1,h1 − Pρ̃

n
1 and

ξ = ρ̃n2,h2 − Pρ̃
n
2 to get

φ̃1

∥
∥
∥ρ̃n1,h1 − Pρ̃

n
1

∥
∥
∥
2
+ φ̃2

∥
∥
∥ρ̃n2,h2 − Pρ̃

n
2

∥
∥
∥
2
+ k̃1Δtn

∣
∣
∣ρ̃n1,h1 − Pρ̃

n
1

∣
∣
∣
2

1
+ k̃2Δtn

∣
∣
∣ρ̃n2,h2 − Pρ̃

n
2

∣
∣
∣
2

1

≤ φ̃1

(
ρ̃n−11,h1

− Pρ̃n−11 , ρ̃n1,h1 − Pρ̃
n
1

)
+ φ̃2

(
ρ̃n−12,h2

− Pρ̃n−12 , ρ̃n2,h2 − Pρ̃
n
2

)

+ Δtn

(

φ̃1
∂
(
Pρ̃1 − ρ̃1

)

∂t
, ρ̃n1,h1 − Pρ̃

n
1

)

+ Δtn

(

φ̃2
∂
(
Pρ̃2 − ρ̃2

)

∂t
, ρ̃n2,h2 − Pρ̃

n
2

)

−Δtn
(
φ̃1Δn

(
Pρ̃1
)
, ρ̃n1,h1 − Pρ̃

n
1

)
−Δtn

(
φ̃2Δn

(
Pρ̃2
)
, ρ̃n2,h2 − Pρ̃

n
2

)
.

(A.4)

With the help of standard inequalities, summing the equations from n = 1 . . . ,N, and
applying the discrete Gronwall’s lemma with β = 2max{φ̃1, φ̃2}, we get

∣∣∣
∥∥∥
〈
ρ̃n1,h1 − Pρ̃

n
1 , ρ̃

n
2,h2

− Pρ̃n2
〉∥∥∥
∣∣∣
2
≤ eβtN

⎧
⎨

⎩
φ̃1

∥∥∥ρ̃01,h1 − Pρ̃
0
1

∥∥∥
2
+ φ̃2

∥∥∥ρ̃02,h2 − Pρ̃
0
2

∥∥∥
2

+
N∑

n=1

Δtnφ̃1

⎛

⎝

∥∥∥∥∥
∂
(
Pρ̃1 − ρ̃1

)

∂t

∥∥∥∥∥

2

+
∥∥Δn

(
Pρ̃1
)∥∥2
⎞

⎠

+
N∑

n=1

Δtnφ̃2

(∥∥∥∥
∂(Pρ̃2 − ρ̃2)

∂t

∥∥∥∥

2

+
∥∥Δn(Pρ̃2)

∥∥2
)}

.

(A.5)

Next step is to estimate the quantities ‖∂(Pρ̃i − ρ̃i)/∂t‖, ‖Δn(Pρ̃i)‖, i = 1, 2. This is done using
standard properties of elliptic projections as in [25, Lemmas 13.2 and 13.4, pages 233 and 241]
assuming ρ̃i, ∂ρ̃i/∂t are smooth enough. Combining these we arrive at the desired inequality
(4.5).

For the case k̃2 ≡ 0, we define P ∗ρ̃2 as the L2-projection of ρ̃2 over V n
h2

via

(
P ∗ρ̃2 − ρ̃2, χ

)
= 0 ∀χ ∈ V n

h2
. (A.6)

The proof follows along the same lines as for k̃2 /≡ 0 except that we do not (and cannot) use
any terms with ∇ρ̃2.

B. Proof of Theorem 4.2

Proof. The proof is a combination of techniques in [13–15] which we extend to a coupled
system and propose an estimator robust with respect to the five parameters of the problem.
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First we define the semidiscrete problem: find {〈ρ̃n1 , ρ̃
n
2〉}

N
n=1 ∈ (H1

D(Ω))2 so that for all

〈ψ, ξ〉 ∈ (H1
D(Ω))2

(
φ̃1ρ̃

n
1 , ψ
)
+
(
k̃1∇ρ̃n1 ,∇ψ

)
+
(
c
(
ρ̃n1 − ρ̃

n
2

)
, ψ
)
=
(
f, ψ
)
+
(
φ̃1ρ̃

n−1
1 , ψ

)
,

(
φ̃2ρ̃

n
2 , ξ
)
+
(
k̃2∇ρ̃n2 ,∇ξ

)
+
(
c
(
ρ̃n2 − ρ̃

n
1

)
, ξ
)
=
(
φ̃2ρ̃

n−1
2 , ξ

)
.

(B.1)

We estimate the error between the solution of (2.4) and (B.1) and this is how the time
estimator Tn (4.7) arises; see [15] for details.

Now the semidiscrete system (B.1) is a stationary coupled reaction-diffusion model of
a type we considered in [13] and for which we proposed a spatial a posteriori error estimator
accounting for the coupling terms in the system. That estimator is robust, that is, the efficiency
ratio remains essentially constant when the coefficients change by orders of magnitude; this
is relevant for our problem since we may have small k̃2. The robustness in [13] is achieved
by an appropriate scaling of constants in the estimator; the scaling in (4.11)–(4.13) serves the
same purpose.

Recall the standard set-up first. Fix i = 1, 2, and for any T ∈ Tn
hi
denote by ω̃T the set of

all elements in Tn
hi
that share at least one vertex with T . For the quasi-interpolatorQh defined

in [14, Lemma 3.1, page 482], we have that for any v ∈ Hk(w̃T ), 0 ≤ k ≤ 1,

∥∥∥∇l(v −Qhv)
∥∥∥
T
≤ Chk−lT

∥∥∥∇kv
∥∥∥
ω̃T

0 ≤ l ≤ k ≤ 1, (B.2)

where the constant C is independent of h, v, and where ∇0v = v. The plan is to extend (B.2)
for l = 0 to an inequality involving the form

BT =

(∫

ω̃T

c
(
ξ − ψ

)2 + k̃2
(
∇ψ
)2 + k̃1(∇ξ)2

)1/2

, (B.3)

which involves the coupling term as well as other coefficients of the problem and thus leads
to robustness.

If k̃2 > 0, let ξ, ψ ∈ H1(Ω) and recall that V n
h2

⊆ V n
h1
. If k̃2 ≡ 0, we consider ξ ∈ H1

D(Ω),

ψ ∈ L2(Ω), and away from the boundary on some
◦
Ω � Ω we have V n

h2
(
◦
Ω) ⊆ V n

h1
(
◦
Ω). For

a fixed n, i, let ξhi , ψhi be the quasi-interpolators of φ, ψ in V n
hi
, respectively. Note that ψh2 is

defined correctly when k2 = 0 and ψ ∈ L2(Ω). To get the desired estimate, we apply (B.2)
with T ∈ Tn

h1
, and l = 0, k = 1, to get ‖ξ − ξh1‖T ≤ hT‖∇ξ‖ω̃T ξ‖ω̃T ≤ (hT/k̃

1/2
1 )BT . To extend, we

add and subtract ψ − ψh1 and use the triangle inequality followed by (B.2) with k = l = 0 and
k = 1, l = 0 to get

‖ξ − ξh1‖T ≤
∥∥(ξ − ξh1) −

(
ψ − ψh1

)∥∥
T +
∥∥ψ − ψh1

∥∥
T

≤
∥∥ξ − ψ

∥∥
ω̃T

+ hT
∥∥∇ψ

∥∥
ω̃T

≤
√
2max

{
1
c1/2

,
hT

k̃1/22

}

BT .
(B.4)
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Thus we have by (4.11)

‖ξ − ξh1‖T ≤ θ1,TBT , (B.5)

which is the desired element estimate.
To prove the edge interpolation estimate for an edge E of the element T , we use the

following trace inequality [43, Lemma 3.1, page 645] for v ∈ H1(T):

‖v‖E ≤ C
(
h−1/2T ‖v‖T + ‖v‖1/2T ‖∇v‖1/2T

)
, (B.6)

where C is a constant independent of v, hT . Let v = ξ − ξh1 . By (B.2)

‖∇(ξ − ξh1)‖T ≤ ‖∇ξ‖ω̃T
≤ h−1T θ1,TBT . (B.7)

Applying (B.6) followed by (B.5) and (B.7) we get

‖ξ − ξh1‖E ≤ h−1/2T ‖ξ − ξh1‖T + ‖ξ − ξh1‖
1/2
T ‖∇ξ − ξh1‖

1/2

≤ h−1/2T θ1,TBT + θ
1/2
1,T B

1/2
T h−1/2T θ1/21,T B

1/2
T .

(B.8)

Thus we obtain ‖ξ − ξh1‖E ≤ γ1,EBT , and the estimate for the second component follows
similarly if k̃2 /≡ 0.

When k̃2 ≡ 0, we have ξ ∈ H1
D(Ω), ψ ∈ L2(Ω), and (4.12) is reduced to θ2,T =

max{1/c1/2, hT/k̃1/21 }. Also, γ2,T does not need to be defined since Rn
2,E ≡ 0. Now we add

and subtract ψ − ψh1 and use the triangle inequality followed by (B.2) with k = l = 0 and
k = 1, l = 0 to get

∥∥ψ − ψh2
∥∥
T ≤
∥∥(ξ − ξh1) −

(
ψ − ψh1

)∥∥
T + ‖ξ − ξh1‖T

≤
∥∥ξ − ψ

∥∥
ω̃T

+ hT‖∇ξ‖ω̃T
≤
√
2max

{
1
c1/2

,
hT

k̃1/21

}

BT .
(B.9)

Thus, by (4.12) we have ‖ψ − ψh1‖T ≤ θ2,TBT , which is the desired edge estimate.
Combining these interpolation estimates with the usual technique of upper bounds

for residual a posteriori error estimators extended to systems in [13] completes the proof the
theorem.
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