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Abstract Estimation of cetacean abundance or density

using visual methods can be cost-ineffective under many

scenarios. Methods based on acoustic data have recently

been proposed as an alternative, and could potentially be

more effective for visually elusive species that produce

loud sounds. Motivated by a dataset of minke whale

(Balaenoptera acutorostrata) ‘‘boing’’ sounds detected at

multiple hydrophones at the U.S. Navy’s Pacific Missile

Range Facility (PMRF), we present an approach to esti-

mate density or abundance based on spatially explicit

capture–recapture (SECR) methods. We implement the

proposed methods in both a likelihood and a Bayesian

framework. The point estimates for abundance and detec-

tion parameters from both implementation methods are

very similar and agree well with current knowledge about

the species. The two implementation approaches are

compared in a small simulation study. While the Bayesian

approach might be easier to generalize, the likelihood

approach is faster to implement (at least in simple cases

like the one presented here) and more readily amenable to

model selection. SECR methods seem to be a strong can-

didate for estimating density from acoustic data where

recaptures of sound at multiple acoustic sensors are avail-

able, and we anticipate further development of related

methodologies.

Keywords Minke whale � Passive acoustic monitoring �
Proximity detector � Spatially explicit capture

recapture (SECR) � OpenBUGS

Introduction

The estimation of animal density and abundance is a

fundamental requirement for effective management and

conservation decisions. However, this is particularly chal-

lenging for many cetacean species, which typically occur

over very large areas, at low densities, and spend a large

proportion of their time submersed. All this makes them

especially challenging to survey using standard visual

methods. These include distance sampling methods,

namely shipboard and aerial surveys in which line transects

or cue counting approaches are used (see Buckland et al.

2001 for details), as well as capture–recapture methods

(e.g., Evans and Hammond 2004) based on photo-ID or

DNA. While working well under certain circumstances, all

these methods have several shortcomings. Low encounter

rates create problems in analysis and low precision in the

estimates, and surveys are restricted to good weather and

daylight conditions. This makes them cost-ineffective for

many scenarios.
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In recent years, acoustic data have been proposed as

having information about density (Mellinger et al. 2007).

Commonsense alone suggests that the amount of animal-

produced sound (however it is measured) might act as an

index of animal abundance. The challenge is to find ways

to convert that amount of sound to animal density. Using

sound to detect and localize animals from towed hydro-

phone arrays has been successfully implemented for sperm

whales (e.g., Barlow and Taylor 2005). However, this

approach does not really differ from an analysis perspec-

tive from conventional line transect distance sampling. On

the other hand, Marques et al. (2009) presented the first

example in which data from fixed hydrophones were used

to estimate cetacean density, using an approach akin to cue

counting. Unlike for conventional cue counting, the

detection function was estimated using a regression-based

approach using a sample of data for which the animal

locations and vocalizations were known from acoustic dive

tags.

If one has an array of fixed hydrophones, sounds

detected at multiple hydrophones can be seen as capture–

recapture data. Each sound can be assigned a capture his-

tory, for example a 1 for each hydrophone where it was

detected and a 0 on hydrophones where it was missed. This

assumes we can tell when the same sound is received at

multiple hydrophones, for example from timing and/or

frequency information, just as we assume we can tell when

the same individual is sighted in a photo ID study. Standard

capture–recapture analyses could be undertaken, but there

are several reasons to focus on the use of spatially explicit

capture–recapture (SECR; Borchers and Efford 2008;

Borchers, this volume) methods for estimating density.

Firstly, SECR methods explicitly model the dependence of

capture probability on distance, thereby reducing the

unmodeled heterogeneity that usually hinders capture–

recapture analysis. For acoustic data, we may expect dis-

tance of the sound source to be a major component of

capture probability. Secondly, SECR methods estimate

density and abundance over an explicitly defined area, as

opposed to traditional methods where the area sampled is

not clearly defined and hence converting abundance to

density is problematic. SECR has recently received con-

siderable attention, both from classical likelihood (e.g.,

Efford et al. 2008, 2009; Borchers and Efford 2008) and

Bayesian (e.g., Royle and Young 2008, 2009a; Royle 2009)

perspectives. In particular, Dawson and Efford (2009) have

applied likelihood-based methods to acoustic data, esti-

mating bird density from a set of four microphones.

In this paper, we compare Bayesian and likelihood-

based approaches to SECR, using as motivation the esti-

mation of density of sounds produced by common minke

whales (Balaenoptera acutorostrata) off the coast of

Kauai, Hawaii. Minke whales are one of the most abundant

baleen whale species worldwide, but they are also one of

the smallest and can be very difficult to detect using

standard visual survey methods. Although commonly

sighted in high latitude waters, they are rarely seen in

tropical and sub-tropical areas, despite being heard there

during winter and spring. This is particularly true around

the Hawaiian Islands, where extensive aerial and shipboard

surveys (e.g., Mobley Jr. et al. 1999; Rankin et al. 2007)

have produced only a handful of sightings, but the char-

acteristic ‘‘boing’’ sound attributed to minke whales

(Barlow and Taylor 2005) can be detected readily in the

right season (e.g., Rankin et al. 2007). Therefore, methods

based on acoustic rather than visual detections might prove

more effective at estimating their abundance.

The data used here come from a set of 16 bottom-

mounted hydrophones that are part of the U.S. Navy’s

Pacific Missile Range Facility (PMRF), an instrumented

testing range located along the western shore of Kauai. The

hydrophones are part of the Barking Sands Underwater

Range Expansion (BSURE), which extends northwest of

the island, covering approximately 2,300 km2 and having

water depths to 4,500 m throughout most of its area. While

the hydrophones were designed for tracking underwater

objects such as submarines and torpedos, they are capable

of detecting minke whale boing vocalizations, and are

therefore well suited to study this cryptic cetacean.

The paper is structured as follows. The next section

describes the Bayesian and likelihood based approaches to

SECR. These are then applied to the case study data in

‘‘Case study’’. ‘‘Simulation study’’ presents a simulation

study evaluating performance of the two approaches in a

simple scenario that mimics the case study. Lastly, a

‘‘Discussion’’ section gives the main conclusions and

suggests potential avenues for future investigation.

It is not our intention in this paper to provide a definitive

estimate of minke whale (sound) density in the study area;

instead, we focus on establishing the utility of the SECR

methodology and comparing approaches to analysis. This

is (to our knowledge) the first time that: (1) both a Bayesian

and likelihood SECR implementation have been directly

compared, (2) a Bayesian SECR model has been applied to

acoustic data, here using proximity detectors (see below for

details), and (3) SECR is proposed to estimate density of

cetaceans.

SECR models and inference

In this section, we outline the models and estimation

approaches. A non-technical introduction to SECR models

is given by Borchers (this volume); more details of the

likelihood-based methods are in Borchers and Efford

(2008) and Efford et al. (2009); details of a similar

S446 J Ornithol (2012) 152 (Suppl 2):S445–S455

123



Bayesian method (with different types of detectors) is in

Royle and Young (2008) and Royle et al. (2009a).

As initially conceived, SECR models consider that

animals’ home range centres are at unobserved locations

X = (X1, X2, …, XN), where Xi represents the position of

animal i (i.e., its cartesian coordinates in 2-dimensional

space). Inference is focused on estimating N, the number of

home range centres in a given area A (e.g., Borchers and

Efford 2008; Royle and Young 2008), as well as density,

D = N/A. In the current scenario, the equivalent to the

home range centres are the actual sound source locations.

Hence, the focus of our estimate using SECR is the number

and density of sound sources within a given area A and

time period T. The estimation of the actual animal abun-

dance requires dividing the estimated sound source abun-

dance N̂ by T and sound production rate, and we do not

deal with this here.

The Bayesian and likelihood approaches have several

differences (details below), so we deal with them sepa-

rately in the sections below. However, they both use the

same model for sound detection, as follows. Consider an

array of K hydrophones, each with known location. A

sound produced at location X is detected at hydrophone

kðk ¼ 1; . . .;KÞ with probability pkðX; hÞ where h is a

vector of detection parameters. Hydrophones operate

independently, so that the probability a sound is detected

on at least one hydrophone is p:ðX; hÞ ¼
1�

QK
k¼1 1� pkðX; hÞð Þ. Detection probability is assumed

to be a non-increasing function of horizontal distance dX,k

between sound source at X and hydrophone k: pkðX; hÞ ¼
gðdX;k; hÞ. There are many candidate models for the dis-

tance detection function g; here, we use three, all of which

have a long history in the classical distance sampling

literature:

1. half-normal gðd; hÞ ¼ g0 expð�d2=ð2r2ÞÞ with h ¼
ðg0; rÞ

2. hazard rate gðd; hÞ ¼ g0ð1� expð�ðd=rÞ�zÞÞ with h ¼
ðg0; r; zÞ

3. negative exponential gðd; hÞ ¼ g0 expð�d=rÞÞ with

h ¼ ðg0; rÞ

Detectors such as this, where an object (in this case a

sound) can be ‘‘captured’’ on more than one detector and

where the detector can capture many objects in one ‘‘trap-

ping session’’, are termed ‘‘proximity detectors’’ by Efford

et al. (2008). Other detectors (not relevant to passive

acoustics) are described in that paper. For simplicity in what

follows, we consider only one ‘‘trapping session’’, although

generalization to multiple sessions (with potentially varying

animal densities and/or detection parameters) is simple.

Assume n sounds in the period of interest were detected

on one or more hydrophones. Let xik represent the detec-

tion of the ith sound at the kth hydrophone, such that

xik = 1 if the sound was detected, otherwise 0. xi is the

capture history of the ith sound, and x is all the recorded

capture histories.

Likelihood-based methods

For simplicity, we assume that sound source locations are

distributed in space according to a homogeneous Poisson

process with intensity D. Extension to an inhomogeneous

process is conceptually straightforward, and is given by

Borchers and Efford (2008). The joint likelihood for D and

the detection parameters h given the capture histories x can

be written

LðD; hjn;xÞ ¼ PrðnjD; hÞPrðxjn; hÞ ð1Þ

where PrðnjD; hÞ is the marginal distribution of the number

of sound sources detected, n, and Prðxjn; hÞ is the condi-

tional distribution of the capture histories given n. (In the

inhomogeneous Poisson case, the latter distribution will

also depend on the spatial intensity parameters.)

Given the assumption that sound source locations follow

a Poisson process, then n is the outcome of a thinned

Poisson process, which has a Poisson distribution with

parameter DaðhÞ, where aðhÞ ¼
R

X2A p:ðX; hÞdX has an

intuitive interpretation as the ‘‘effective sample area’’ (see

Borchers, this volume, for details). The area A needs to be

large enough that no detections can occur from outside it;

in practice, Efford (2009) suggests it is sufficient to define

A as a rectangle with limits formed by buffering the hy-

drophones at a distance w such that g(w) \ 0.01. The first

term in (1) is thus

PrðnjD; hÞ ¼ n!�1DaðhÞnexp �DaðhÞð Þ: ð2Þ

Assuming independence between detections, the second

term in (1) can be written

Prðxjn; hÞ ¼ n
n1; . . .; nC

� �

aðhÞ�n

Z

X2A

Yn

i¼1

Pr xijX; hð ÞdX

ð3Þ

where the first part is the multinomial coefficient (with

n1, ..., nC representing the frequency of each of the C

unique capture histories), the second part (aðhÞ�n
) is there

because we condition on the number of observed capture

histories, and the remainder is the probability of obtaining

capture history xi given sound source location X,

integrated over all possible locations. Since hydrophones

operate independently,

Pr xijX; hð Þ ¼
YK

k¼1

pkðX; hÞxik 1� pkðX; hÞð Þ 1�xikð Þ: ð4Þ

Note that, because the sound source locations are not

known, they are integrated out of the likelihood. In
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practice, to reduce computational effort during maximi-

zation, the likelihood is evaluated over a discrete grid of

points, and the integrations become sums (Efford et al.

2009). The choice of the grid size is a compromise

between computational efficiency and no influence on the

results.

One approach to estimation of D, which we call the ‘‘full

likelihood’’ approach, is joint maximization of the param-

eters D and h in (1). Variances on parameters can be

estimated from the inverse of the information matrix and

profile likelihoods can be used to obtain confidence

intervals.

An alternative (e.g., Borchers and Efford 2008) when D

is homogeneous is to maximize the conditional likelihood

L hjn;xð Þ / aðhÞ�n

Z

X2A

Yn

i¼1

Pr xijX; hð ÞdX ð5Þ

to obtain estimates of h and hence â ¼ aðĥÞ. From this, D

can be estimated using the Horvitz–Thompson-like esti-

mator D̂ ¼ n=â. While the estimates derived from both full

and conditional likelihoods are equivalent, the Horvitz–

Thompson-like formulation permits different variance

estimators for D̂ than the full likelihood. Borchers and

Efford (2008) suggest two in their supplementary materi-

als, one assuming fixed N in the study area, and the other

random N. Both have design-based and model-based

components (see ‘‘Discussion’’), and can be expected to be

more robust than the full likelihood estimator to departures

from a Poisson animal distribution. [We note in passing

that these two estimators are sometimes referred to as

‘‘binomial’’ and ‘‘Poisson’’, e.g., in Efford (2009), but we

prefer to use the terms fixed-N and random-N as neither

assumes animals follow binomial or Poisson distributions.]

Confidence intervals can be obtained by assuming D

follows a normal or log-normal distribution.

All of the above inference can be carried out using the

secr package (Efford 2009) in R (R Development Core

Team 2009).

Bayesian methods

There are several differences between the model described

in the previous section and that used here. Firstly, the

Bayesian model is parameterized in terms of abundance N

within an area A, rather than density D, and this N is

assumed to be a fixed quantity. This leads to a binomial

likelihood for n given N, rather than the Poisson likelihood

for n given D in the previous section.. Secondly, data

augmentation is used to deal with the unobserved capture

histories and sound source locations. Thirdly, being

Bayesian, prior distributions are used on all unknown

parameters, although since uniform priors with widely

spaced limits are used, the posterior and likelihood surfaces

will have the same shape within the truncation bounds.

Let ex be the capture histories of the N sound sources in

the study area A. n of these are observed, and therefore

have one or more non-zero elements; the remaining (N-n)

contain only zeros. The equivalent of (3), conditioning on

the sound source locations, is then

PrðexjN;X; hÞ ¼ N
n0; . . .; nC

� �YN

i¼1

Pr exijXi; hð Þ: ð6Þ

Inference is based on the joint posterior distribution

PrðN;X; hjxÞ / PrðN;X; hÞPrðexjx;NÞLðN;X; hjexÞ
¼ PrðNÞPrðXjNÞPrðhÞLðN;X; hjexÞ

ð7Þ

where a discrete uniform prior distribution is used for

Pr(N), with lower bound 0 and an (arbitrarily high) upper

bound M, and uniform prior distributions are used for

Pr(X|N) and PrðhÞ. Note that Prðexjx;NÞ ¼ 1, which is

why it disappears from the second line, and LðN;X; hjexÞ
has the same form as (6) except that ex is the fixed

variable.

In practice, the fact that the dimension of both ex and X

depend on N raises computational issues. These are side-

stepped by a further data augmentation, where (M-N)

additional all-zero capture histories and sound source

locations are added (see Royle et al. (2007) for the general

framework, and Royle et al. (2009b) and Royle and Young

(2008) for applications). Let M be the fixed size of a su-

perpopulation of sound sources, with capture histories ex�

and locations X*. n of the capture histories are observed;

the remaining (M-n) contain only zeros. Let

z = (z1, ..., zM) be a vector of indicator variables, such that

zi = 1 if sound source i is part of the population N, 0

otherwise. This means N is now a derived parameter in the

model: N ¼
PM

i¼1 zi. Let the zi for each sound source fol-

low a Bernoulli distribution with parameter w. Inference is

then based on the joint posterior

Prðz;X�; h;wjx;MÞ / Prðz;X�; h;wÞPrðex�jx;MÞ
� Lðz;X�; h;wjex�Þ ¼ PrðX�ÞPrðhÞPrðwÞPrðzjwÞ
� Lðz;X�; hjex�Þ ð8Þ

where uniform prior distributions are used for Pr(X*) and

PrðhÞ, a uniform (0,1) prior is used for

PrðwÞ;Prðex�jx;MÞ ¼ 1, and

Lðz;X�; hjex�Þ ¼ M
n0; . . .; nC

� �YM

i¼1

ziPr ex�i jX�i ; h
� �

: ð9Þ

The marginal posterior distributions of N, h and X from (8)

are then the same as (7), but implementation is greatly

simplified.
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The most convenient route to fitting the Bayesian

models to data is via short programs written in OpenBUGS

(Thomas et al. 2006). An example program is provided as

an ‘‘Appendix’’.

Case study

Case study methods

The data come from six 10-min sample periods, taken from

March and April 2006 and 2007 (Table 1). For this simple

analysis, we collapsed data over sampling occasions and

treated them as a single 1-h period. Sounds were recorded

at 16 bottom-mounted hydrophones in BSURE, spaced

from 8 to 18 km apart and arranged in two lines (Fig. 1). A

custom-developed detector and classifier (Mellinger et al.,

unpublished) was utilized to detect minke whale boing

vocalizations on the multiple hydrophones. The boing

detector outputs included detailed timing and frequency

content information. This information was utilized to make

initial manual associations (i.e., determine whether detec-

tions at different hydrophones were of the same sound).

The association outputs served as inputs to the SECR

analysis.

Likelihood-based models were fit using the secr package

(version 1.2.10) in R (version 2.9.2). As mentioned in

‘‘Likelihood-based methods’’, it is necessary to define a

buffer distance w for integration, and Efford (2009) advises

setting it such that g(w) \ 0.01. We took an iterative

approach: fitting detection function models with increasing

values for w and determining when values of log-likeli-

hood, r and D stabilized. We found that, for the half-nor-

mal, hazard rate, and negative exponential models,

g(w) = 0.01 corresponded to w & 80, 110, and 150 km,

respectively, and at these distances, the log-likelihood and

parameter estimates were stable to three significant figures.

In our case, this was good enough for model selection,

because there were large differences among models;

however had the models been closer, more accuracy and

hence large buffer distances would have been required.

Given the above buffer distances, we fit the models by

maximizing the conditional likelihood (5) and selected the

best model on the basis of minimum Akaike information

criterion for small sample sizes (AICc). Minke whale

boings are readily detectable on the bottom-mounted

hydrophones, and it is highly plausible that all boings

produced at zero distance are detected with certainty.

Initial analyses, where g0 was estimated, gave values of

ĝ0 [ 0.99. We therefore fixed this parameter at 1.0. After

obtaining maximum likelihood estimates of the remaining

detection function parameters, density was estimated using

the Horvitz–Thompson-like formulation described in

‘‘Likelihood-based methods’’, with conditional (fixed-N)

variance estimate.

Bayesian models were fit in OpenBUGS version 3.0.3

using the Appendix code. Since model selection is not

straightforward in OpenBUGS (Deviance information

Table 1 Summary of case

study data
Date Start time

(GMT)

No. of

detections

No. of unique

boings (n)

Capture frequency

1 2 3 4 5–9 10–14

5 Mar 06 22:15:55 63 14 2 2 4 2 2 2

13 Mar 06 23:05:28 75 12 1 3 0 0 6 2

19 Apr 06 02:59:40 6 5 4 1 0 0 0 0

19 Apr 06 04:29:40 12 10 8 2 0 0 0 0

16 Apr 07 03:52:20 41 9 2 2 0 1 3 1

21 Apr 07 02:49:43 36 7 1 0 1 1 3 1

Total 233 57 18 10 5 4 14 6

Easting (km)

N
or

th
in

g 
(k

m
)

 0.01 

 0.2 

 0.4 

 0.6 

 0.8 

 0.99 

−50 0 50

−
10

0
−

50
0

50
10

0

Fig. 1 Layout of BSURE case study hydrophones (crosses), solid
contour lines showing probability of detecting a sound from that

location with one or more hydrophones (denoted p:ðX; hÞ in the text)

estimated from a likelihood-based analysis with the half-normal

detection function model, and the dashed rectangle showing the 80-

km buffer used in that analysis
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criterion is not available for discrete nodes) only the half-

normal detection function model was fit (the best-fitting

model using likelihood-based methods), using a buffer of

w = 80 km and fixing g0 = 1. The superpopulation size,

M was chosen in a similar manner to the buffer: increasing

values were tried until further changes had no affect on

inference. A useful shortcut diagnostic was to check that

the posterior upper 97.5th quantile for w was well away

from its upper bound of 1. We found that a value of M �
2N̂ worked well; this amounted to adding 350 artificial all-

zero capture histories to the dataset (to give M = 407). We

set a uniform prior on r with lower bound 0 and upper

bound again large enough that it did not affect posterior

estimates—for these data, a value of 50 km was used (this

value was obtained by trial and error, making sure the

posterior results were not constrained by this choice).

Starting values for the MCMC chain were set by choosing

values for all quantities at random from their priors. Con-

vergence was checked informally, by starting multiple

chains from random start points, examining trace plots, and

checking that resulting parameter estimates from different

chains were indistinguishable except for Monte-Carlo

error. Initial investigations showed that 3,000 samples was

a sufficient burn-in to ensure convergence to the target

posterior distribution and that keeping 100,000 samples

after that was sufficient for 3 significant figure accuracy in

parameter estimates.

Case study results

There were 233 detections of 57 individual boing sounds in

the test dataset (Table 1).

For the likelihood-based implementation, the half-nor-

mal detection function model was strongly favored, with

the next best model, the hazard rate, having a D AICc of

[13, and the negative exponential model trailing a distant

third (Table 2). Estimated probability of detecting a sound

for locations within A from the half-normal model is shown

in Fig. 1. The estimated detection functions (illustrated in

Fig. 2), and hence densities, were quite different among the

three models, with the hazard rate giving a density estimate

about 40% lower than the half-normal, with the negative

exponential being about 50% lower again. Estimated den-

sity from the half normal model was 47.88 sounds per hour

per 10,000 km2 (SE 10.60). This corresponds to 179

sounds per hour within the 80 km buffer area used for that

model (A = 37,283 km2).

The Bayesian implementation of the half-normal model

gave very similar results to the likelihood-based imple-

mentation. The posterior mean estimate of w was 0.46 with

95% central posterior interval of 0.28–0.69. The upper

value was well away from 1.0, providing reassurance that a

large enough number of artificial zero capture histories had

been used.

Simulation study

Simulation study methods

To check the performance of the different approaches

under known conditions, we undertook a small simulation

study. We simulated 100 replicate populations of N = 175

Table 2 Results from analysis

of case study data

Values in parentheses after

estimates are standard errors

Density (D̂) units are sounds per

hour per 10,000 km2.

r represents the scale parameter

of the three models considered,

z represents the shape parameter

of the hazard rate model

Model D AICc Param. estimates D̂ CIðD̂Þ

Likelihood-based method

Half-normal 0 r = 21.37 (2.27) 47.88 (10.60) 40.23–72.10

Hazard rate 13.11 r = 27.36 (3.84), 28.45 (7.48) 13.80–43.10

z = 3.60 (0.41)

Negative exponential 46.71 r = 32.56 (11.87) 13.62 (8.13) 3.25–62.98

Bayesian method

Half-normal – r = 21.72 (2.50) 48.46 (10.26) 30.04–70.54

0 50 100 150

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Distance (km)

D
et

ec
tio

n 
pr

ob
ab

ili
ty

Fig. 2 Estimated half-normal (solid line), hazard rate (dashed line)

and negative exponential (dotted line) detection functions fit by

maximum likelihood to the case study data
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objects located at random within a rectangular study area

defined by an 80-km buffer around the hydrophones. This

corresponds to a true density of D = 46.94 per

10,000 km2. Hydrophones were located at the same posi-

tions as previously, and we simulated detection of each

object at each hydrophone according to a half-normal

detection function with r = 20. The simulated data were

analyzed in the same way as the real data, except for the

following. For the likelihood-based analysis, we fit only a

half-normal detection function. We were interested in

comparing variance estimates from both the unconditional

likelihood, and the conditional likelihood with assumed

random and fixed N, so we recorded all three. For

the Bayesian analysis, we used only 10,000 samples after

burn-in, to save computer time. No thinning was used.

Informal checks for convergence consisted in, for some of

the simulated datasets, starting the Monte Carlo chains at

different points and checking they converged on similar

values.

Simulation study results

The simulated data comprised a mean of 187.23 detections

(SD 30.57) of 49.78 detected objects (SD 6.23), slightly

lower than the numbers in the case study (because a

slightly lower D and r was used).

Both likelihood and Bayesian methods gave very

similar estimates on average, with negligible bias in

estimates of both r and D (Table 3). The standard

deviation of the estimates (i.e., the actual standard

deviation of the 100 replicate estimates of r and D for

each method) was also very similar between methods.

The Bayesian method also did a good job of estimating

the standard deviation: the mean of the estimated stan-

dard deviation on D̂ was 9.29, while the actual standard

deviation was 9.13. There was a suggestion that the full

likelihood method slightly over-estimated the standard

deviation: the mean estimate was 10.00 while the true

value was 8.87. This led to slightly high 95% confidence

interval coverage for the full likelihood method (0.99);

by contrast, the coverage of the 95% posterior credibility

interval was exactly at the expected 0.95. The standard

deviations of the derived estimates of D from the con-

ditional likelihood formulation were very similar, and

closer to truth (9.27 for the binomial and 9.29 for the

Poisson), and the corresponding confidence interval

coverage was better.

Discussion

Although there is no ground truth with which to compare

the case study estimates, the results appear reasonable

given what is known about minke whale acoustic behavior.

We expect certain detection at zero horizonal distance, and

that was backed up by preliminary SECR analyses. The

fitted half-normal detection function parameter estimate of

21.4 (likelihood-based) or 21.7 (Bayesian) is reasonable,

corresponding to a detection probability of about 0.95 at

10 km, 0.5 at 25 km, and 0.1 at 45 km (Fig. 2). Calls

produced at constant source level and homogeneous

propagation and background noise conditions will all be

detectable to a certain distance, beyond which the received

level falls below the threshold set for the detector and they

are no longer detectable. The resulting ‘‘step’’ detection

function would be best fit by the hazard rate model, with

large ([5) values of the z parameter. However, variation in

source levels, propagation, and noise all contribute to a

‘‘rounding off’’ of the detection shoulder, leading to an

average detection function that is closer to the half-normal

form (see, e.g., Burnham et al. 2004: fig. 11.2). It is pos-

sible that more flexible models, such as finite mixtures or

the semiparametric families used in conventional distance

sampling, may provide a better fit. Future work on the case

study will focus on applying more complex models of the

detection process (such as time-varying detection) to a

larger sample of data; parallel field work is also in progress

that, if successful, will provide an estimate of animal call

rate and potentially allow estimation of animal, rather than

call, density.

Table 3 Summary of results

from simulation study

For the mean estimated SD of

the density estimate (D̂) and

corresponding confidence

interval (CI) coverage, the three

values represent respectively the

full likelihood, binomial and

Poisson-based estimates.

r represents the scale parameter

of the half-normal model

Statistic Likelihood-based method Bayesian method

Mean r̂ (true value 20) 20.11 20.34

SD r̂ 1.84 1.89

Mean estimated SD r̂ 1.95 2.00

95% CI coverage r̂ 0.96 0.96

Mean D̂ (true value 46.94) 47.28 48.00

SD D̂ 8.87 9.13

Mean estimated SD D̂ 10.00; 9.27; 9.29 9.29

95% CI coverage D̂ 0.99; 0.95; 0.94 0.95
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We assume in this work that the manual association of

sounds was done without error, i.e., that no detected sounds

were incorrectly associated as having the same sound

source, and that all detected sounds from a given source

were identified and associated. This seems a reasonable

assumption given the amount of human effort put into this

task. We envisage that applications of these methods in the

future might be based on an automated association proce-

dure. If one can characterize the association phase and an

eventual association error process, it should be possible to

include this directly in the estimation procedure. Therefore,

the precision in the estimates would include a component

due to mis-association.

We also considered sound and hydrophone locations to

exist in two-dimensional (horizontal) space, which is

clearly a simplification for hydrophones located at around

4.5 km depth and whales diving in the top few hundred

meters of water. If the main determinant of detection

probability is direct distance, rather than horizontal dis-

tance, then variation in whale and hydrophone depth rep-

resent unmodeled sources of heterogeneity. However, in

our case, compared with other sources of variation (such as

in source level and propagation conditions) this seems

quite minor. In other cases (with deeper diving whales and

shallower hydrophones, or smaller r), it may be more

important, in which case the methods could be extended to

three dimensions, with additional assumptions about the

depth distribution of sound sources being required.

Another simplification was that our analysis assumed a

homogeneous density, even failing to account for the

islands of Kauai and Niihau, both of which occur within the

study area. This is acceptable given the preliminary nature

of the test case analysis; however, in future work, we hope

to explore the relationship between biologically relevant

covariates such as depth and density. We will also need to

account for the masking effect of islands on sound

propagation.

Our simple simulation study showed that both likelihood

and Bayesian methods yield unbiased estimates and stan-

dard deviations when their assumptions are met (or nearly

met in the case of the likelihood method, which assumes

random N when it was fixed in the simulations). Our esti-

mates were based on likelihood modes in the former

method and posterior means in the latter, but as with many

analyses, this did not seem to generate a significant dif-

ference in estimates. Under small sample sizes, where

likelihoods might be severely skewed, the posterior mode

might be a better candidate than posterior mean in the

Bayesian method.

Mean estimated standard deviation of D in the full

likelihood method was high compared with the actual

value (the standard deviation of the estimated D’s), but

this is understandable given that the method assumes

population size in the study area is a Poisson random

variable when it was actually fixed in the simulation.

The two conditional likelihood variance estimators pro-

duced estimates of standard deviation that were smaller

on average than the full likelihood estimates, and closer

both to the actual standard deviation of the likelihood

estimator and to the estimate from the Bayesian method.

To understand these differences requires some discussion

of the form of the conditional likelihood variance esti-

mators. The fixed-N estimator has two components: the

first is design-derived and reflects the uncertainty in D

arising from sampling only a proportion a of the study

area A, assuming each animal is sampled independently;

the second is model-derived and reflects the additional

uncertainty due to estimating the parameters of a. The

random-N estimator also has two components, with the

first arising from an assumption that the variance of n is

equal to its mean (i.e., that animal locations are inde-

pendent of one another), and the second component

being the same as the second component of the fixed-N

estimator. It turns out that the first component of the

fixed-N estimator is just ð1� â=AÞ times the first com-

ponent of the random-N estimator—this term can be

thought of as a finite population correction factor that

will cause the first component of the fixed-N estimator to

go to zero when all of A is sampled. Hence, it is

inevitable that the fixed-N estimator produces smaller

estimates of variance than the random-N estimator, as we

found. Because our simulations used a fixed N, all

assumptions of the fixed-N estimator were met, and

hence it was not surprising that it produced estimates of

standard deviation in D that were close, on average, to

the actual value. It was more surprising that the random-

N estimator also performed well, and this estimator

deserves further investigation.

Given this initial investigation, there appears to be little

difference between likelihood and Bayesian approaches.

One major drawback of the Bayesian implementation in

OpenBUGS is that there is no ready method of selecting

among different candidate detection function models (or

alternative models for spatial density distribution if a non-

homogeneous distribution is assumed). In addition, the

model formulation used here, with augmentation of the

observed capture histories with a large number of artificial

all-zero histories, results in rather long computation times

(although still short when compared with the time required

to collect and process the acoustic data). It is important to

check that enough augmentation is used, that wide enough

priors are set on detection parameters, and that the burn-in
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time and number of samples are sufficient to yield reliable

estimates. By contrast, the likelihood-based methods are

rather easier to implement, thanks to the secr R package.

Model selection via AICc (or other criteria) is straightfor-

ward, convergence appeared reliable in the examples we

used, and fitting was much faster than in OpenBUGS. For

both methods, one must check that an appropriately large

buffer is used around the sample locations, and for the

likelihood-based method, one can also vary the number of

grid points used in numerical integration. Our suspicion is

that the Bayesian approach will make it easier to handle

complex scenarios such as random effects in the detection

process or mis-association of sounds—both are examples

where data augmentation can potentially provide an elegant

solution, enabling inference to proceed by integrating out

the complicating factors with relative ease. However, for

simpler applications, it appears at present that the likeli-

hood-based approach is more convenient.

We checked the performance of the methods under ideal

conditions, where the model assumptions were met and

sample sizes were reasonably large. It would be useful to

determine how well they perform under more challenging

situations, such as alternative detection models, mis-asso-

ciation of calls, inhomogeneity in spatial density, and small

sample sizes. Previous simulation studies of other varieties

of SECR methods have shown them to be reasonably

robust to various challenges (e.g., Efford et al. 2008).

For these methods to work, the optimal spacing

between the acoustic sensors is a function of the scale of

the detection process because the information about the

detection process lies essentially in the ‘‘recaptures’’.

Provided the acoustic data from multiple hydrophones

can be seen as capture histories, the SECR approach

becomes a natural one to estimate density. We predict in

the future that statistical methods, sound processing,

survey design, and even hydrophone hardware might be

developed and optimized with this goal in mind. The

sound-processing algorithms used here should be easily

adapted to other scenarios. The hardware technology

required to implement similar approaches still needs

some development, and therefore the application of these

methods outside a setting like a navy range is still not

straightforward. The development of cheap and easily

deployable sensors is desirable.

When a sound is detected at three or more hydrophones

with appropriate geometry, then given precise information

about arrival time and assumptions about sound propaga-

tion, it becomes possible to estimate the sound source

location (in 2 dimensions; more detections are required for

3D localization). Detection of echoes at a single hydro-

phone can also potentially be used to provide additional

information about location. In the current study, we make

no use of this information, but the SECR methods could be

extended to utilize such information when available,

potentially yielding more precise inferences. Dawson and

Efford (2009) have shown how information about sound

source distance that is contained in the relative received

amplitude can be used to improve inference. Information

on bearing from vector-sensing hydrophones could also

potentially be used.

Passive acoustic methods have enormous potential to

provide estimates of density and abundance in situations

not readily amenable to surveys by other modalities. In

many cases, however, we are limited by our knowledge of

the vocal behavior of the animals, e.g., call rates. Never-

theless, there is a great deal of research interest in the area

and many ongoing studies aimed at increasing our

knowledge. We anticipate that passive acoustic density

estimation will be increasingly applied in future years.
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Appendix: example openBUGS code

This is the code used to run the application example in the

Bayesian framework, a passive acoustic SECR with half-

normal (HN) detection function. The user must input as

data the following objects (object names in the code given

inside parentheses): (1) the number of detected animals (n),

(2) the boundaries of the region over which integration

takes place (Xl, Xu and Yl, Yu), (3) the upper bound on the

prior for sigma (maxSigma), (4) the number of added all 0’s

capture histories required for data augmentation (nzeroes),

(5) the traps locations (traps, the trap x and y coordinates

need to be respectively in columns 1 and 2), (6) the area

over which abundance is estimated (Area), and (7) the

capture histories (Y, a matrix in which position i, k is 1 if

animal i was detected on trap k, and 0 otherwise). The

random variables involved for which priors are required are

(1) the inclusion probability (psi), (2) the HN detection

function parameter (sigma), (3) a vector of latent indicator

variables associated with each of M (= n ? nzeroes) ani-

mals (z), and (4) the M animals location (respectively x and

y coordinates (x1 and x2).

The model specification is:
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