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 35 
ABSTRACT 36 

We examined the performance of several generalized linear fixed- and mixed-effects individual-37 

tree mortality models for Douglas-fir stands in the Pacific Northwest.  The mixed-effects models 38 

accounted for sampling and study design overdispersion.  Inclusion of a random intercept term 39 

reduced model bias by 88% relative to the fixed-effects model; however, model discrimination 40 

did not substantially differ.  An uninformed version of the mixed model that used only its fixed 41 

effects parameters produced predicted mortality values that exceeded the fixed-effects model 42 

bias by 31%.  Overall, we did not find compelling evidence to suggest that the mixed models fit 43 

our data better than the fixed-effects model.  In particular, the mixed models produced fixed-44 

effects parameter estimates that predicted unreasonably high mortality rates for trees 45 

approaching 1 m in diameter at breast height.   46 

 47 

 48 

 49 

50 
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 51 
INTRODUCTION 52 

Tree mortality is a critical component of stand growth and yield models.  It is also highly 53 

variable and difficult to predict (Lee, 1971; Dobbertin and Biging, 1998).  The nature of data 54 

collected to model and quantify mortality, however, may challenge the assumptions inherent in 55 

statistical tools used to estimate mortality.  In this study we examine a generalized linear mixed-56 

effects method to account for data structure and lack of independence.    57 

 58 

Lee (1971) and Staebler (1953) described tree mortality as either regular or irregular.  Irregular 59 

mortality includes death occurring from insects, disease, fire, snow damage, and wind.  This type 60 

of mortality typically is episodic, brief, and difficult to predict.  Regular mortality is more 61 

predictable, and includes influences such as competition for light, moisture, and nutrients.  As 62 

stands become more crowded, a degree of mortality usually occurs.  Trees may die for several 63 

possibly co-occurring reasons: suppression where stands are differentiating, weakening due to 64 

insects and disease, and buckling where stems become tall and thin (Oliver and Larson, 1996).  65 

Trees in stands characterized by regular mortality exhibit a preponderance of mortality amongst 66 

smaller-diameter individuals that are over-topped by neighbors (Peet and Christensen, 1987).  67 

Mortality rates become low for established trees until larger diameters are reached and the 68 

mortality rate increases again (Buchman et al., 1983; Harcombe, 1987; Monserud and Sterba, 69 

1999).  Although both classes of mortality may affect stands, only single-tree regular mortality 70 

models are routinely incorporated in most growth and yield simulators such as FVS (Dixon, 71 

2011) and ORGANON (Hann, 2011). 72 

 73 
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Single-tree mortality models have been developed using a variety of data and approaches.  74 

Logistic models are common for data sets where revisit frequency consists of equal-length time 75 

periods (Hamilton, 1986; Bigler and Bugmann, 2003; Jutras et al., 2003; Moore et al., 2004; 76 

Adame et al., 2010).  However, if the time periods differ, a common solution is to use the logistic 77 

model but insert time as a power upon survival probabilities or use a complimentary log-log link 78 

function (e.g., Monserud, 1976; Eid and Tuhus, 2001; Moore et al., 2004; Temesgen and 79 

Mitchell, 2005; Fortin et al., 2008).  For stands where remeasurement occurred multiple times, 80 

researchers either avoid pseudoreplication at the level of the tree by omitting all but the last 81 

remeasurement for each tree (Hamilton, 1986) or include the remeasurement information 82 

(Temesgen and Mitchell, 2005; Fortin et al., 2008).   83 

 84 

Data used in these analyses are from nested samples, with the highest level referred to as 85 

installations.   Each installation contains one or more plots; each plot contains many trees with 86 

repeated measurements.  Analyses performed on individual tree mortality data has recently 87 

begun to account for the structured nature and non-independence by using generalized linear 88 

mixed-effects models.  Logistic models by Adame et al. (2010) and Jutras et al. (2003) include 89 

random intercepts for study plots or stands. A complimentary log-log model by Fortin et al. 90 

(2008) included an adjusted intercept with random effects for study plot and specific time 91 

interval nested within plot.  92 

 93 

Prediction performance for nonlinear mixed-effects models may be improved (less bias and 94 

greater precision) when compared to corresponding fixed-effects models conditional on the 95 

availability of previous information on the subject; however, in absence of random-effects 96 



5 
 

information, predictions using just the fixed portions of the parameterization from the nonlinear 97 

mixed-effects model exhibit greater bias and less precision than even the original fixed-effects 98 

model (Monleon, 2003; Temesgen et al., 2008; Garber et al., 2009).  Setting the random effect to 99 

zero follows from prediction theory only for linear mixed models, but it has a different meaning 100 

for nonlinear models. Consider a linear mixed model where X is a design matrix where n 101 

is the number of observations and p is the number of fixed-effects parameters, ß is a vector of 102 

linear slope values, Z is a design matrix where r is the number of random effects 103 

parameters, γ represents G-sided random effects parameterization, and ε is the random error:  104 

y = Xß + Zγ + ε, where E(γ) = E(ε) = 0 105 

Then, conditional on the random effect, and because the expectation is a linear operator,  106 

E(y | γ) = Xß + Zγ 107 

Unconditionally,  108 

E(y) = E(Xß + Zγ + ε) = Xß + ZE(γ) = Xß 109 

Thus, in a linear model, the unconditional expectation can be calculated from the conditional 110 

expectation by setting the random effect to zero: 111 

E(y) = E(y | γ = 0) 112 

 113 

For a nonlinear model, this is not the case.  The nonlinear mixed model can be written as: 114 

y = f(X, ß, Z, γ) + ε, where E(γ) = E(ε) = 0. 115 

Conditional on installation: 116 

E(y | γ) = f(X, ß, Z, γ) 117 

Unconditionally: 118 

E(y) = E[E(y | γ)] = E[f(X, ß, Z, γ)] 119 
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Unlike linear models, for nonlinear models, the unconditional model is not the same as the 120 

conditional model with the random effects set to zero: 121 

E(y) ≠ E(y | γ =0) because E[f(X, ß, Z, γ)] = ∫ f(X, ß, Z, γ)dμ(γ) ≠ f(X, ß, Z, γ = 0), where μ(γ) is 122 

the distribution function of γ.   123 

 124 

The model for E(y) is known as the population-average model and the model for E(y | γ) is 125 

known as the subject-specific model.  For nonlinear mixed models, those versions are different. 126 

Choosing which type of model and inference is appropriate for each objective is fundamental 127 

when dealing with nonlinear mixed models.  For a tree from a completely new stand that does 128 

not have information to estimate the random effects and, therefore, condition on the stand effect, 129 

the proper model is a population average model.  When using the subject-specific model with γ = 130 

0 (i.e., the subject-specific model for the average stand), prediction performance is expected to 131 

decline.  Again, in linear mixed models this is not an issue, because setting γ = 0 yields the 132 

population-average model.   133 

 134 

Forest management requires models that are useful beyond their study areas.  Generalized or 135 

nonlinear mixed-effects models can increase bias when applied to novel data (e.g., Robinson and 136 

Wykoff, 2004).  Mixed models require estimated information about a hierarchical level that may 137 

be unknown for novel data sets.  One technique to extend generalized linear or nonlinear mixed-138 

effect model applicability is to utilize minimal data from new stands for estimating the random 139 

effects parameters.  This allows the application of nonlinear mixed effects models beyond their 140 

original data frames (Monleon, 2003; Temesgen et al., 2008; Garber et al., 2009).  However, this 141 

technique may be limited by the response variable type.  In those studies it worked for tree 142 
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height, a continuous static variable. Our study’s response variable, individual tree mortality, is 143 

rare, binomial, dynamic, and requires several years of data collection to observe.  Thus, 144 

incorporating subsample information from new plots to inform mixed-effects model predictions 145 

is generally unfeasible.   146 

 147 

The objectives of this study are to 1) determine whether a generalized linear mixed model fit to 148 

repeatedly remeasured Douglas-fir (Pseudotsuga menziesii [Mirb.]) trees can improve mortality 149 

estimation over a previous nonlinear estimation approach (Hann et al., 2003; Hann et al., 2006), 150 

and 2) compare the predictive abilities of mixed-effects models to nonlinear least squares 151 

estimation in the presence and absence of random effects information.  We expect biased 152 

predictions from the mixed model that lacks random effects information, but examine the degree 153 

by which those results are useful relative to the nonlinear least squares predictions.  Taken 154 

together, our goal is to examine how well models met our objectives and whether we produce a 155 

model that is useful for current Douglas-fir growth and yield simulators.   156 

   157 

METHODS 158 

Study Area and Data Acquisition 159 

Data used in this analysis were obtained from randomly located installations on nine land 160 

ownerships and represent a subset of data described in Hann et al. (2003; 2006).  One of the uses 161 

of the overall data collection effort was to calibrate the ORGANON stand development model 162 

(Hann, 2011) for intensively managed Douglas-fir in the Pacific Northwest region of the USA 163 

and Canada.  What follows is a description of the subsetted data.  The data were from 304 164 

permanent sample installations from Southwest British Columbia, Western Washington, and 165 
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Northwestern Oregon.  The 820 plots within those installations contained 195,795 revisit data 166 

collected from 70,720 Douglas-fir trees.  Trees were revisited one to 18 times over the course of 167 

data collection.  Time between revisits was not equal among trees or plots, and varied from 3 to 7 168 

years (median = 5 years).  The fixed-area plots varied in size from 0.041 to 0.486 ha 169 

(mean=0.069). The average breast height age was 27.8 years and ranged from 3 to 108 years.  170 

Plots included in this study were not subject to thinning or fertilization experimental treatments.   171 

 172 

We further reduced the data set according to two criteria.  The first criterion only permitted data 173 

from installations that had two or more plots.  This criterion was necessary for creating mixed-174 

effects mortality predictions (described below), and it removed 12,616 trees, 38,314 175 

observations, and 67 single-plot installations from the data set.  The second criterion was that we 176 

retained only trees with DBH < 101.6 cm.  We removed larger-DBH trees to allay model 177 

convergence issues likely arising from a paucity of mortality information leading to a lack of fit 178 

at that extreme.  This removed eight observations and five trees (<0.01% of data) and permitted 179 

model convergence.  The resulting data set included 157,473 revisits of 58,099 trees in 753 plots 180 

located within 201 installations. 181 

 182 

Mortality estimation 183 

We based this analysis on a general equation of mortality given differing plot revisit schedules as 184 

described by Hann et al. (2006): 185 

 186 

[1]      187 

 188 
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Where PLEN is the length of the growth period in 5-year increments (i.e., length of a growth 189 

period in years divided by 5), PM is the 5-year mortality rate, and  is the random error on 190 

PM.  The response variable distribution is  where the observed response was  191 

and  is the corresponding response probability. Several different parameterizations have been 192 

examined for   .  Hann et al. (2006) modeled  as: 193 

 194 

 [2]     195 

 196 

The variable DBH is diameter at breast height (cm) at 1.3 m, CR is tree crown ratio, BAL(m
2
/ha) 197 

is basal area per ha in trees with diameters larger than that of the subject tree on the plot, and 198 

DFSI is the Douglas-fir site index (Hann and Scrivani, 1987) in meters.  We examined the 199 

predictive ability of this model in three ways.  We wished to investigate whether the mixed-200 

effects approach would provide a reasonable mortality prediction for older trees, so we included 201 

the square of DBH (DBH
2
) as a predictor variable (e.g., Monserud and Sterba, 1999; Hann and 202 

Hanus, 2001).  CR was subsampled on many of the plots in the modeling data set and would 203 

require the imputation of the missing values if used in a mortality equation. This would introduce 204 

prediction error issues which we decided to avoid by removing CR from the analysis.  We 205 

retained BAL to represent competition experienced by an individual tree (Wykoff et al., 1982; 206 

Wykoff, 1986; Temesgen and Mitchell, 2005).  The parameterization we used in this analysis 207 

was: 208 

 209 

[3]    210 

 211 
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We present a generalized linear fit of this model, fit via a maximum likelihood estimator (PROC 212 

GLIMMIX, SAS Inc. 2008).  This model produced results identical to those from the nonlinear 213 

approach employed by Hann et al. (2006) to estimate tree mortality.  We refer to this model as 214 

NLS given its equality to the original procedure.  We also examined two generalized linear 215 

models with the same parameterization as [3].  One corrected for model overdispersion by 216 

altering the model variance. The other corrected for overdispersion and included a random effect 217 

term for the model intercept grouped by installation.  We selected installation as a grouping level 218 

instead of plot due to our desire to validate models using a leave-one-out approach (described 219 

below).  We refer to these models as GXR and GXME respectively.   220 

 221 

We constructed GXR and GXME using the generalized linear mixed-model procedure Proc 222 

GLIMMIX (SAS Institute Inc. 2008).  The procedure made use of a pseudo-likelihood estimator 223 

instead of a maximum likelihood estimator due to the presence of R-sided mixed effects 224 

(Schabenberger, 2007).  The advantages of GLIMMIX over other SAS procedures (e.g., Proc 225 

NLMIXED) included the ability to incorporate more than one random effect into the model (G-226 

sided random effect) and to include a multiplicative overdispersion parameter (R-sided random 227 

effects).  A disadvantage of GLIMMIX is that its pseudo-likelihood estimator may produce 228 

biased estimates in certain contexts (Breslow and Lin, 1995).  The main structural difference 229 

between the marginal (fixed-effects or population-averaged; i.e., NLS, GXR) and the mixed-230 

effects model GXME is the incorporation of the G-sided random effects terms  into the 231 

mixed-effects model structure: 232 

 233 

[4]     234 
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 235 

The  term alters the model linear predictors.  We created a model with an installation grouped 236 

random intercept by structuring the linear predictors of our model as:  237 

 238 

[5]      239 

 240 

The linear predictors included a population-level intercept , a deviation from that intercept of 241 

amount  for installation i, and the remaining parameter estimates for observations j in 242 

installations i.  The modified logit function is: 243 

 244 

 245 

[6]        246 

In GLIMMIX, the variance of observations, conditional on the random effects, is: 247 

 248 

The diagonal matrix A contains the variance functions of the model (i.e., equation [6]) and 249 

expresses the variance function for the i
th

 observation (Littell et al., 2006, p. 535).  G-sided 250 

random effects will therefore affect the values for A.  The random effects matrix R  where I 251 

is an identity matrix and  is a dispersion scale parameter.  In binomial models where there is no 252 

overdispersion,  = 1.  However, if data are overdispersed, the variances can be accordingly 253 

increased by changing this parameter. We tested for model overdispersion using the Pearson’s 254 

statistic (Littell et al., 2006).  We additionally weighted our tree remeasurement data by their 255 
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respective plot sizes (Flewelling and Monserud, 2002). Model weighting is accomplished by 256 

calculating  where w is the weight associated with observation i.    To summarize, GXME 257 

was constructed in PROC GLIMMIX with linear mixed- and fixed-effects predictors from [5] 258 

used in the nonlinear equation [4]. A random intercept was estimated by installation and we 259 

included an R-sided random effect to account for overdispersion. Observations for the model 260 

were weighted by plot size.    261 

 262 

A difficulty with using the estimates for GXME to predict mortality for trees that are not part of 263 

a current installation is that no hierarchical parameter values for that installation would be 264 

available.  The random effects parameters remain uninformed.  We explored the utility of 265 

applying the uninformed mixed model by examining the predictive ability of an additional 266 

model, GXFE.  This model incorporates the fixed-effects parameter estimates from GXME but 267 

discards its random effects parameterization.   268 

 269 

We validated models NLS, GXME, and GXFE using a leave-one-out approach.  GXR was 270 

excluded as model validation relies on parameter point estimates and its parameter point 271 

estimates (not error) should be identical to those for NLS.  In this instance we repeatedly fit 272 

models to subsets of the data.  Each subset included all but one of the plots (model set). The 273 

resulting model was used to predict the response of each of the excluded sites’ observations 274 

(prediction set). In order to facilitate inclusion of models that relied on random effects at the 275 

level of installations, we reduced the data set to include only installations with two or more plots.  276 

With one plot excluded, the model was still able to estimate a random effect for that installation.   277 

 278 
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We used model estimates from the model data set to produce residual values for the validation 279 

set.  We used the Hosmer-Lemeshow test to determine model goodness-of-fit (Hosmer and 280 

Lemeshow, 2000) and compared model discrimination by using receiver operating characteristic 281 

(ROC) curve analysis and examining the area under the ROC curves. We examined model and 282 

bias for the overall validation data set and for different values of BAL, DFSI, and DBH.  We 283 

calculated mean bias using the following equation: 284 

[8]      285 

The symbol  is a single mortality observation (1 or 0),  is the fitted value, and  is the 286 

number of observations.   287 

 288 

RESULTS 289 

The data set included the mortality of 9982 trees (6.3% of total).  Deaths appeared to be skewed 290 

towards smaller DBH categories while mortality appeared to increase at higher BAL volumes, 291 

indicating that trees may have been more likely to perish if the stand typically had more trees 292 

with basal area greater than the tree in question (Figure 1).   293 

 294 

Model coefficients for the three models were estimated from the full sample data set (Table 1).  295 

The inclusion of R-sided random effects variables reduced overdispersion.  The Pearson’s 296 

statistic for the condition distribution for the NLS model was 10.88, substantially different from 297 

a value of 1.  The Pearson’s statistics for GXR and GXME were 1.00 indicating that the 298 

inclusion of the R-sided or R- and G-sided random effects corrected for the overdispersion.  As a 299 

consequence, GXR fixed-effects parameter standard errors were greater than NLS standard 300 
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errors.  A difference among models was the parameter values for DBH
2
, which increased by 60% 301 

when comparing NLS to GXME.     302 

 303 

Predicted values generated from the mixed-effects model with random variables improved bias 304 

compared to the nonlinear model.  However, the mixed model’s bias suffered when only its fixed 305 

effects were considered (Table 2).  On average, GXME, with random effects and overdispersion 306 

terms, exhibited a bias that was 22% the values of model NLS.  Model GXFE’s bias was 4 times 307 

greater than the value of NLS.   308 

 309 

The area under the ROC curve was 2.3% higher for GXME than for NLS or GXFE, indicating 310 

that the mixed model exhibited a slightly greater degree of model discrimination.  The values for 311 

NLS and GXFE were nearly identical.  The Hosmer-Lemeshow goodness-of-fit test statistics 312 

were significant (df = 8, p<0.001) for all models considered, indicating that no models fit data at 313 

an acceptable level (e.g., χ
2
 ≤ 15.5).  Pearson’s residuals increased with DBH > 20 cm and BAL 314 

< 40 m
2
/ha; a pattern did not appear evident between residuals and DFSI.  Among the models, 315 

GXFE’s score was substantially higher than either NLS or GXME, and NLS had the lowest score 316 

of the three.  Pearson’s correlations among variables was highest between DBH and DBH
2
 317 

(0.935), the next highest was between DBH
2
 and DFSI (0.191). 318 

 319 

Bias was generally lowest for model GXME across all values of all predictor variables with a 320 

few close exceptions (Figure 2).  Values and patterns of bias were similar for NLS and GXFE 321 

across variables, although the bias values for GXFE were generally but not always more 322 

extreme.  In particular, bias for GXFE was more than twice as great as other models at DBH < 323 
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20 cm.  Comparisons of observed and predicted values of mortality (Figure 3) demonstrate the 324 

generally closer fit of the mixed model predicted values to observed mortality.  Relative to 325 

GXFE, NLS better predicts tree mortality at DBH values < 20 cm and is fairly equivalent at other 326 

DBH values.  NLS mortality predictions were closer to observed values at all BAL categories 327 

except 50-59 m.  NLS also outperformed GXFE at four of the six DFSI categories (not including 328 

30-34m and > 45m). 329 

 330 

We compared predicted model performance to observed values to determine where model 331 

shortcomings were (Figure 4).  Of note, GXME appeared to best match observed mortality at 332 

DBH values < 20 cm while the other models generally underpredicted tree mortality. However, 333 

all models except for NLS predicted a dramatic increase in mortality beyond 90 cm DBH.  The 334 

20% observed mortality at 97 cm DBH represented one of five trees of that size class perishing.  335 

We examined fixed-effects parameter values for GXME for trees with DBH < 90 cm to 336 

determine if this mortality was exhibiting a strong influence on DBH
2
 and found that results 337 

were virtually unchanged.  338 

 339 

DISCUSSION 340 

We report partial success at meeting our study objectives.  The mixed-effect models accounted 341 

for overdispersion in the data and accordingly increased parameter standard errors.  The mixed-342 

effects model GXME additionally reduced prediction bias relative to NLS.  However, the 343 

predicted fits at observed parameter values were of concern; the DBH
2
 parameter of the mixed-344 

effects model GXME and its related models predicted an unreasonably high mortality rate for 345 

trees with DBH > 90 cm.  The larger-DBH predictions for NLS were more reasonable.  The 346 
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GXME model appeared to best fit the data at DBH < 40 cm, a range that included the bulk of our 347 

data.  348 

 349 

The inclusion of R-sided random effects assisted in reducing model overdispersion.  Although 350 

unreported, the estimated standard errors of parameter estimates resulting from earlier analyses 351 

such as Temesgen and Mitchell (2005) and Hann et al. (2003; 2006) would have been too small.  352 

For those authors the models were used in validation trials so the means, not standard errors, 353 

affected validation outcomes.  The increase in error terms could indicate that previously-354 

supported parameters were not contributing to the model, although all of our parameters 355 

remained supported in all models.   356 

 357 

Once we included a random intercept in the model along with an R-sided random effect, the term 358 

for DBH
2
 increased markedly.  Bias for the mixed-effects model was improved relative to the 359 

marginal model.  However, when we examined predicted fits for the mixed model’s fixed-effects 360 

parameters without taking into account the individual installation information (random intercept) 361 

the bias increased to an amount four times greater than the marginal model.  Clearly, it would be 362 

difficult to justify this model’s use.  This finding is similar to results reported by several other 363 

authors (Monleon 2003; Temesgen et al. 2008; Garber et al. 2009), and confirms our expectation 364 

that this would be the case.   365 

 366 

Other authors provide examples of studies in which mixed models produce an improvement in 367 

predictive ability, and minimal data collection allowed for an application of the mixed models to 368 

novel stands (Monleon, 2003; Temesgen et al., 2008; Garber et al., 2009).  Obtaining ancillary 369 
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mortality data to estimate random effects is prohibitively difficult.  Given the modest 370 

improvements in prediction from the G-sided mixed model, the anticipated poor performance of 371 

the uninformed mixed model, and our lack of ability to apply the mixed model to novel stands, 372 

we find no advantage here with utilizing the generalized linear mixed-effects models for 373 

predicting Douglas-fir mortality. 374 

 375 

Our issues with model bias when fixed-effects parameter estimates were extracted from the 376 

generalized mixed model indicate a problem with our application, not a problem with the model.  377 

We wished to obtain a finding we could generalize between subjects when the mixed models 378 

were best able to generalize results within subjects.  We imagine that if we desired inference to 379 

additional plots within installations, our mixed model would have proven more useful than the 380 

marginal model.    381 

 382 

All of our models examined failed the goodness-of-fit test; it appears this may be in part due to 383 

results for larger-diameter trees that were among the largest trees in a stand.  We interpret this to 384 

indicate that our model did not fit mortality data well at these larger ranges where we had a 385 

relative paucity of data.  Other possible contributing issues include overfitting the model or 386 

providing insufficient fixed-effects parameters.  Among models, the goodness-of-fit scores were 387 

lowest for GXME with GXFE a distant third.  388 

 389 

Across models, bias was highest at low DBH and high BAL values (both well-represented in the 390 

data set).   With DFSI, bias was high for the smallest category which corresponded with few data 391 

relative to other categories.  Bias patterns differed across models as well.  GXME tended to 392 
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exhibit a different and reduced pattern of bias across all three predictor variable categories.  The 393 

models that were not incorporating installation-specific effects into their estimates tended to 394 

behave similarly with model GXFE frequently providing the most extreme bias per variable 395 

category.  396 

 397 

The intensity of the effect DBH
2
 had on mortality prediction at greater DBH values surprised us.  398 

Although our predicted U-shaped mortality curve is in spirit similar to that discussed by 399 

Harcombe (1987) and found by Monserud and Sterba (1999) for Norway Spruce and Hann and 400 

Hanus (2001) for Douglas-fir, grand fir, white fir, incense-cedar, ponderosa pine, and California 401 

black oak, only the predicted mortality for large DBH values from the model NLS appeared 402 

reasonable.  The mixed-effects based models predicted mortality rates at 95 cm DBH that are 403 

simply too extreme; if those estimates were real, old-growth (> 180 year) Douglas fir stands 404 

would not exist.  However, the models, particularly GXME, did appear to predict observed 405 

mortality for trees <80 cm DBH.  GXFE appeared most severely underpredict the 5-year 406 

mortality rate.   407 

 408 

CONCLUSION 409 

Our generalized linear mixed model of Douglas-fir mortality did not outperform a similar model 410 

lacking mixed effects.  In particular, the incorporation of mixed effects resulted in alterations to 411 

fixed effects that produced unreasonably high mortality rates for trees approaching 1 m in 412 

diameter. The practical application of predicting mortality rates for novel stands did not improve 413 

with the utilization of a mixed model.  We believe this will generally be the case for tree 414 

mortality estimation when random effects information is unavailable, a condition that should be 415 
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common.  The correction for model overdispersion was appropriate and represented an 416 

improvement in parameter variance estimation, but overall we cannot recommend the mixed 417 

model as a suitable replacement for the original model form.   418 

 419 
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 544 
 545 

 546 
Table 1. Fixed and random effects estimates and standard errors (SE) for the generalized linear 547 

least squares models NLS, GXR, and GXME. The overdispersion parameter (Residual) indicates 548 

the size of the underlying residual effect’s variance and the standard error of that effect. 549 

    550 

    NLS GXR GXME 

    Estimate StdError Estimate StdError Estimate StdError 

Fixed Effects             

Intercept    -4.5118 0.02807 -4.5118 0.09267 -5.0958 0.2891 

DBH        -0.2105 0.00251 -0.2105 0.00829 -0.2719 0.00677 

DBHSQ      0.00168 7.8E-05 0.00168 0.00026 0.00279 0.00017 

BAL          0.00421 1.8E-05 0.00421 6.1E-05 0.00495 8.3E-05 

DFSI         0.04897 0.00068 0.04897 0.00224 0.05996 0.00804 

                

Random 

Effects             

Residual   (Subject = Tree)   10.884 0.03879 10.275 0.03665 

Intercept  (Subject = Installation)     0.6353 0.07953 

 551 
 552 

553 
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 554 
 555 

 556 
Table 2: Comparisons of model performance at predicting the probability of tree mortality over a 557 

five-year period (PM5).  Comparisons include model bias, area under the ROC curve (AUC), a 558 

and the Hosmer-Lemeshow goodness-of-fit test statistic (H-L Test).  Number of observations = 559 

157,473.   560 

 561 

Models Bias (P5-year mort) AUC H-L Test 

NLS 0.002643908 0.845 366.8 

GXME -0.000604775 0.864 388.8 

GXFE 0.0110345 0.844 1505.6 

 562 
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 566 

 567 

Figure 1. Histograms of observations (live + dead) by variable name.  The clear bars represent all data of a particular category; black 568 

bars represent the number of dead observations.  569 

 570 
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 572 

Figure 2.  Prediction bias associated with models NLS, GXME, and GXFE across the range of data values for DBH, BAL, and DFSI.   573 
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 578 

Figure 3.  Five-year predicted and observed probability of mortality.  Mortality probabilities are presented by diameter, BAL, and 579 

DFSI classes.   580 
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 584 

Figure 4.  Predicted mortality rates by DBH and average parameter values at specific DBH 585 

values. 586 

 587 

 588 


