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Abstract—A statistical analysis technique for estimating bit-error rate (BER) and eye 

opening is presented for both NRZ and duobinary signaling schemes. This method 

enables fast and accurate BER distribution simulation of a serial link transceiver 

including channel and circuit imperfections, such as finite pulse rise/fall time, duty cycle 

variation, and both receiver and transmitter forwarded-clock jitter. A comparison between 

20-Gb/s NRZ and duobinary transmitters using this simulator shows that while duobinary 

transmission relaxes the requirements on the receiver equalizer due to the lower Nyquist 

frequency of the transmitted data, significant eye-opening and BER degradation can arise 

from clock non-idealities. The proposed statistical analysis is verified against traditional 

time-domain, transient eye-diagram simulations at 20-Gb/s, transmitted through 

measured s-parameter channel characteristics.  

 

Index Terms— Bit-error rate (BER), inter-symbol interference (ISI), eye diagram, jitter, 

duobinary, non-return-to-zero (NRZ), serial link. 
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I. INTRODUCTION AND MOTIVATION 

The demand for higher bandwidth chip-to-chip interconnections has been increasing 

dramatically, as future many-core systems require significant aggregate I/O bandwidth to 

keep computational units occupied. Recent publications have shown that hundreds of 

Gb/s to several Tb/s of off-chip bandwidth will be required for future applications [1], [2]. 

Fortunately, link parallelization [3], [4], circuit innovations, and higher transistor 

transition frequency (fT) due to CMOS transistor scaling can help enable energy-efficient, 

off-chip communications. On the other hand, lossy channel bandwidth critically limits the 

maximum data rate due to inter-symbol interference (ISI), making a higher order 

modulation (e.g. PAM-4, partial response such as duobinary) necessary. 

 

Chip-to-chip communications can show widely varying channel losses (e.g.  

-3dB to -30dB at Nyquist) due to variations in trace length, PCB material, connector type, 

via stubs, and proximity to aggressor signal coupling. For next generation serial links 

above 20-Gb/s data rate, such as in short-range chip-to-chip applications [5], the channel 

typically exhibits moderate losses of -20dB or less. Fig. 1 depicts the measured channel 

losses of typical FR4 PCB traces from 10cm to 80cm long, showing that for a 40cm trace 

length, the measured channel loss at 10GHz is -18.9dB. While such channel losses may 

contribute to a reduced signal-to-noise ratio (SNR) in the eye opening, other non-ideal 

effects beyond channel losses may also contribute to performance degradation, such as 

PLL jitter, crosstalk, duty cycle distortion (DCD), jitter amplification, and finite rise/fall 

time of the data symbol. 
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Besides the issue of channel and circuit impairments, another critical problem is the 

difficulty in achieving simulation accuracy at the circuit transistor level for data rates 

above 20-Gb/s. As date rate goes up, the time step for simulation becomes smaller. 

Therefore, excessive transient simulation time is required for the same accuracy; 

otherwise, simulation inaccuracy will appear due to the incomplete characterization of the 

link performance. For example, the simulation length of a random input sequence 

exhibiting error-free operation should be at least three times the inverse of the expected 

bit-error rate (BER), in order to obtain reasonable accuracy with a 95% confidence level 

[6]. For a typical serial link application with an expected BER of 10-12, the data sequence 

needs to be at least 3x1012 symbols long, which requires a significant amount of 

simulation time even for a 64-bit workstation. Moreover, to accurately model the jitter, 

duty cycle variation and finite symbol rise/fall time, the time step of the simulator must 

be further reduced, again resulting in increased simulation time. Worst-case analysis has 

been proposed in [7], [8] for obtaining quick link estimation, but is unable to provide 

more complete link characteristics, such as BER versus eye sampling location.  

 

Statistical analysis techniques [7], [9]-[12] enable accurate and more efficient methods to 

estimate the performance of serial links beyond conventional transient simulations. These 

simulators calculate the BER distribution plot by convolving the probability density 

function (PDF) of all individual cursors of the pulse response. While the PDF of 

interference sources such as crosstalk can be easily added by summing the corresponding 



5 
 

aggressor responses, timing uncertainty such as accurate analysis of transmitter jitter is 

more difficult to perform [10]. For example, the original work in [7] simply treats 

transmitter jitter similarly to receiver jitter, though it has travelled through the lossy 

channel which causes jitter amplification. In [9], jitter from both the transmitter and 

receiver are converted to an equivalent voltage noise, based on a jittered pulse 

decomposition model that gives accurate results in the voltage domain. Extending on the 

work in [7], a more accurate analysis of transmitter jitter was proposed in [10], [11], 

which requires extensive calculations to take almost every possible position of the 

transmitted pulse shapes into account according to the PDF of the transmitter jitter. 

However, this will degrade the efficiency of the statistical analysis. Furthermore, it treats 

individual transmit jitter shaped by the PDF separately as a time offset from an ideal 

pulse, regardless of its frequency content. This can be problematic, as the transmitted 

sequence will be fed to an ideal high-pass filter in order to capture the jitter amplification 

at high frequency [13], [14] -- resulting in the same inaccuracy problem as the 

conventional transient simulation mentioned above. For 20-Gb/s data rates or above, 

these timing uncertainties become even more critical for accurate analysis and prediction 

of link performance across various modulation schemes. 

 

In this paper, we propose a statistical analysis technique for multi-Gb/s serial links that 

not only includes the effect of channel loss such as ISI and equalization, but also predicts 

the effects of transmitter jitter amplification, random receiver jitter, finite rise/fall time, 

and clock duty cycle variation. Furthermore, this analysis at 20-Gb/s data rate compares 

the conventional NRZ signaling with duobinary modulation, which has recently been 
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shown to relax the requirements on the channel equalization [15], [16], assuming a 

simplified, ideal clock behavior. In order to understand the proposed statistical analysis 

methodology, we first present an overview of NRZ and duobinary signaling in Section II. 

In Section III, the proposed statistical method is described, along with the enhancements 

needed to accurately model the timing inaccuracies. In Section IV, simulation results 

using actual measured channel characteristics are presented, thereby verifying the 

statistical analysis implementation.  

 

II. OVERVIEW OF NRZ AND DUOBINARY SIGNALING 

NRZ signaling is commonly used in high-speed chip-to-chip communications due to its 

simplicity and therefore straightforward design in both the transmitter and receiver circuit 

architectures. In the frequency domain, its main spectral lobe occupies bandwidth up to 

its data rate of 1/Tb, where Tb is the period of a symbol. To relieve ISI due to channel loss, 

equalization is predominantly used to flatten the channel response. The tap coefficients of 

the equalization filter can be calculated by zero-forcing the nearby cursors except for the 

main cursor. For example, the coefficients (c-1 c0 c1 c2)T of a 4-tap feed-forward 

equalization (FFE) for a channel pulse response shown in Fig. 2 can be solved by 
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where targeted cursors (g-1 g0 g1 g2)T are (0 1 0 0)T for NRZ; gF(t) is the pulse response of 

the channel and gF(t-kTb) is noted as gF,k.  

 

Duobinary is a partial response signaling scheme that introduces controlled ISI to reduce 

the transmitted bandwidth. Its main spectral lobe occupies bandwidth up to only half the 

data rate, or 1/2Tb. In theory, duobinary is performed as the exclusive-or sum of the 

current bit and the preceding one within a NRZ sequence, resulting in a 3-level signaling 

constellation [17]. In practice, it can be achieved by combining both the channel low-pass 

characteristics and the transceiver equalization together. For example, the coefficients of 

a 4-tap FFE used for duobinary can be calculated from (1) with targeted cursors (g-1 g0 g1 

g2)T equivalent to (0 0.5 0.5 0)T. To prevent error propagation, a precoder and decoder 

must be implemented at baseband. Fig. 2 and Fig. 3 show the pulse and frequency 

responses before and after equalization for both NRZ and duobinary signaling, using a 4-

tap FFE through a 40cm FR4 PCB trace at a 20-Gb/s data rate. The smaller bandwidth of 

duobinary modulation confirms its higher spectral efficiency, showing less loss than NRZ 

for the same date rate. 

 

A general block diagram of a serial link transceiver for chip-to-chip interconnection is 

shown in Fig. 4. On the transmitter side, several data sequences are multiplexed, with the 

transmitted symbol pulse width and position determined by the clock shape and data 

multiplexing ratio. The multiplexed data sequence {dk} is equalized by the FFE and fed 

into the channel by the output driver. After passing through a receiver linear equalizer 
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(LE) and/or nonlinear decision feedback equalizer (DFE), the data is then recovered and 

demultiplexed by the quantizer(s). For NRZ signaling, the receiver uses the quantizer to 

slice the 2-level analog input into a single digital value. For duobinary modulation, an 

LSB distiller or 3-level ADC [16] (not shown in Fig. 4 for simplicity) is necessary to 

convert the recovered sequence to NRZ, resulting in two digital outputs for each 3-level 

duobinary analog input. 

 

III. STATISTICAL METHOD ON SERIAL LINK 

A. Background of Statistical Analysis 

As previously mentioned in Section I, since the BER for a typical serial link can be less 

than 10-12 and random noises are boundless, transient simulations of eye diagrams and 

SNR are both excessively time-consuming and difficult to process (due to the large 

amount of sampled data). Statistical analysis, on the other hand, can give a detailed eye 

plot of the BER distribution across both different timing offsets and decision thresholds 

[7], [9]-[11]. Based on the transmitted pulse response through the channel, statistical 

analysis convolves all the PDFs of the residual ISI to produce the BER eye. For NRZ 

signaling, the PDF of the ISI from the kth preceding bit can be expressed as 

( ) ( )0 1 ,k F kISI P x P x gδ δ= + −
,   0k ≠                                         (2) 

where P0 and P1 are the probability of transmitting ZERO and ONE symbols, with typical 

values of 0.5 for equal possibility of ZERO and ONE. ( )xδ  is the unit impulse function. 

When k > 0, ISI results from the postcursor tails of previous bits, while when k < 0, the 



9 
 

ISI arises from the precursor of proceeding bits. The total ISI is then calculated by 

convolving all the ISIs as: 

2 1 1 2ISI ISI ISI ISI ISI− −= ⊗ ⊗ ⊗ ⊗ ⊗                                 (3) 

The PDFs of the main cursor with symbols ZERO and ONE are: 

0 ( )main xδ= ,   1 ,0( )Fmain x gδ= −                                        (4) 

Then the PDFs of ZERO and ONE interfered by the ISI are: 

0 0pdf main ISI= ⊗ ,   1 1pdf main ISI= ⊗                                  (5) 

Hence, the BER of NRZ signaling for a given decision threshold yT can be written as: 

( ) ( ) ( )0 1 0 1 0 1

0 0 1 1

| |
T

T

NRZ T

y

y

BER y P P D H P P D H

P pdf dx P pdf dx
∞

−∞

= ⋅ + ⋅

= +∫ ∫
                              (6) 

where P(D1|H0) is the probability of transmitting a ZERO but mistaking it as a ONE at 

the receiver, while P(D0|H1) is the opposite scenario. The BER distribution at any single 

time instance is obtained by sweeping yT across the input dynamic range. After repeating 

the above steps across one complete symbol period, the entire BER eye plot can be 

derived. 

 

B. Statistical Analysis for duobinary 
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Duobinary modulation introduces controlled ISI, implicit within the coding. Therefore, 

there exist two large distributions (one caused by the main cursor and the other by the 1st 

postcursor) in pdf0 and pdf1, instead of only one as in case of NRZ. Also because of the 

three-level signaling, two decision boundaries vTH1 and vTH2 need to be set in order to 

obtain the BER for duobinary: 
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                           (7) 

where vmid is the position of the peak impulse from the sum of pdf0 and pdf1. The 

decision boundaries vTH1 and vTH2 can be obtained by searching for the minimum BER 

located around the position of vmid±0.5max(gF(t)), such that the BER can be low enough 

to open the eye near the boundaries. 

 

C. Clock Non-idealities 

In addition to ISI, clock non-idealities such as transmitter jitter, receiver jitter, rise/fall 

time and duty cycle variation will also degrade the performance of a serial link receiver.  

 

When the jittery data sequence is transmitted through the channel and arrives at the input 

of the receiver, the jitter value will be increased, especially for its high frequency portion. 

This is typically referred to as jitter enhancement or jitter amplification in [13], [14], and 
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it worsens as data rate increases. One way to quantify the amount of jitter amplification is 

to use the jitter impulse response (JIR) and jitter transfer function (JTF). The JIR at a 

given data rate can be extracted by comparing the ideal zero-crossings with the zero-

crossings of the response where the data sequence gives a single-shot of a small time 

offset. Then JTF can be obtained by calculating the Fourier transformation of the JIR. Fig. 

5 shows the JIR and JTF of the 40cm FR4 PCB trace at a 20-Gb/s data rate. Assuming 

the transmitter jitter sequence JTX is wide-sense stationary (WSS), the mean of the jitter 

response at the input of the receiver J’TX can be expressed as: 

[ ] [ ] [ ] ( )/ 0TX TX TX TXE J E JIR J E J JIR dt E J JTF
∞

−∞

⎡ ⎤ = ⊗ = =⎣ ⎦ ∫                   (8) 

where E(x) is the expected value or mean of x [18]. STX and S’TX, which are the power 

spectral density (PSD) of the JTX and J’TX, can be related as the well-known equation: 

( ) 2/
TX TXS JTF f S=                                                     (9) 

Then the auto-covariance C’TX of J’TX is 

( ) ( ) ( )/ 1/ / /2 2 /
TTX TX T XX TXC R E J E JSτ τ −⎡ ⎤ ⎡ ⎤= − ⎣ −=⎦ ⎣ ⎦F                   (10) 

where R’TX is the auto-correlation of J’TX, while the second equation comes from Wiener-

Khinchin theorem. From (8)-(10), if the distribution of JTX is known, we can obtain both 

the mean and auto-covariance of its response J’TX through the channel. Moreover, if the 

input process JTX is a Gaussian WSS random process, the output J’TX will also be a 

Gaussian WSS random process [18]. Thus, the mean and auto-covariance will be 

sufficient to determine the distribution of J’TX. 
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It should be noted that while the jitter is amplified as it passes through the channel, the 

sampling clock can track some amount of this jitter, such that the total degradation on 

BER can be mitigated. This jitter tracking is constrained by the bandwidth limitation of a 

clock data recovery (CDR) circuit* [14] (which generates the clock for the receiver in Fig. 

4) in an embedded clock architecture, or from the mismatch observed between the data 

and clock paths in the forwarded clock architecture. To model this effect, we assume a 

first order low-pass system to track the jitter up to its tracking bandwidth BWtrack, with 

only the portion outside this tracking bandwidth is integrated. The transfer functions of 

the ‘jitter tracking’ and the ‘not tracking’ can be expressed as below: 
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                (11) 

By doing so, the transmitter jitter is converted to its equivalent jitter distribution at the 

receiver side.  

 

The random timing jitter uncertainty at the receiver side can be modeled as a Gaussian 

distribution. Though a Gaussian distribution is boundless, the probability that the random 

variable exceeds 7.0345σ is only 10-12, where σ is its standard deviation [18]. We include 

the range between ±Nsσ in the calculation, where Ns is chosen as 8 in order to leave 

sufficient margin for a BER of 10-12. The time positions of the cursors in the pulse 
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response gF(t) , shown in Fig. 2, are disturbed by the presence of the jitter. Therefore, the 

PDFs of the ISI and the main cursor ONE can be modified from (2) and (4) to:  

( ) ( )( ), 0 1 ( )
s

s

N

k j F
N

ISI P x P x g t kT gs
σ

τ σ

δ δ τ τ
=−

⎡ ⎤= + − − − ⋅⎣ ⎦∑
                 (12) 

( )( )1, ( )
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N

j F
N

main x g t gs
σ

τ σ

δ τ τ
=−

⎡ ⎤= − − ⋅⎣ ⎦∑
                             (13) 

where gs(τ) is the PDF of the jitter. Different PDFs of uncorrelated jitter sources can be 

convolved together to obtain the total equivalent PDF at the receiver side. 

 

The effects of finite rise/fall time and duty cycle variation are added to this analysis by 

directly shaping the input symbol pulse according to its rise/fall time and pulse width, 

and then regenerating the pulse response through the channel. 

 

* Interested readers can refer to [9], [20] for detailed CDR modeling. 

 

D. Sub-block Modeling of Serial Link 

As shown in Fig. 4, the sub-blocks of a serial link transceiver includes the channel, FFE, 

LE and DFE. The channel pulse response can be extracted from the inverse FFT of the S-

parameters of the channel [7]. Because the FFE and DFE are discrete-time in nature, they 

are easily included in the analysis, as the tap coefficients calculated from (1) can be used 
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directly as the coefficients for the FIR filter of the FFE or DFE. The receiver front-end 

LE, on the other hand, is the analog component that works at the highest frequency of all 

the receiver blocks. It is usually implemented as a source-degenerated, linear equalizer 

[19], as shown in Fig. 6. Its voltage gain can be written as: 

( )( ),

1 /1/ /
11 1 / 1 /1 / /

m m D z
v m out D

L m s p p out
m s

g g R jA G R R
j C g R j jg R

j C

ω ω
ω ω ω ω ω

ω

⎛ ⎞ +
= ≈ =⎜ ⎟ +⎛ ⎞ + +⎝ ⎠+ ⎜ ⎟

⎝ ⎠      (14) 

where gm is transconductance of the input transistor pair, 1/z sR Cω = , 

( ) ( )1 / 1p m s s m s zg R R C g Rω ω= + = + , and output pole , 1/p out D LR Cω = . Therefore, Rs and C 

introduce a zero zω  before the pole pω . If the output pole ,p outω  is designed to be larger 

than the zero, the gain will be boosted between zω and the smaller one of pω  and ,p outω . 

By increasing the value of the degenerated resistor Rs, the DC gain will decrease and zω  

will be smaller. However, the location of two poles will not change significantly, 

resulting in an effective high-pass filtering effect with a constant frequency peak that 

compensates for some of the channel loss. Finally, the BER distribution plot with 

equalization can be obtained from the resulting pulse response convolving with the 

impulse responses of the equalizers.   

 

IV. BEHAVIORAL SIMULATIONS 

The above analysis is verified using behavioral simulations in MATLAB. Several FR4 

PCB traces with two SMA connectors for different lengths from 10cm to 80cm were 

measured (Fig. 1). The impulse responses of the channels were derived from the 
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measured S parameters. Unless otherwise stated, the default settings for the simulations 

below are 20-Gb/s data rate with 0.5V transmitter amplitude and 20mV tap coefficient 

resolution through the 40cm PCB trace.  

 

Due to the large channel loss of the 40cm trace, the eye without equalization will be 

closed. Therefore, the effectiveness of the statistical analysis is verified by traditional 

transient simulation with 4-tap FFE equalization for both NRZ and duobinary. The two 

methods exhibit similar horizontal and vertical openings, as shown in Fig. 7 and Fig. 8. 

Note that for the transient results, 10k bits are simulated in order to trade-off between 

accuracy and simulation time. The proposed statistical analysis not only provides similar 

eye diagram with less simulation time but also includes sufficient BER information. This 

BER eye plot can easily be converted to the conventional bathtub curve for a given 

decision threshold.  

 

To fairly compare the performance of NRZ without equalization, NRZ with equalization 

and duobinary equalization, the tap coefficients of the 4-tap FFE are normalized.  Each 

modulation scheme is analyzed by comparing the area of the region where BER<10-12 in 

the BER eye plot, in unit ps*V. As there are two eye openings for duobinary signaling, 

only the minimum of the two is counted as the worst case when there are uneven eyes for 

duobinary. As shown in Fig. 9, the eye is almost closed after 20cm if no equalization is 

performed. As duobinary equalization relies on a faster decreased channel loss in the 

frequency domain, it is not as effective as NRZ equalization for small channel losses. 
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However, for severe loss channels like those longer than 40cm, its eye opens more 

compared with NRZ equalization. 

 

The effects of finite rise/fall time and duty cycle deviation are shown in Fig. 10 and Fig. 

11. Here it is observed that NRZ equalization dose not degrade as much as duobinary due 

to these variations. Interestingly, the eyes improve slightly with small rise/fall time, 

because the finite transition times smooth the pulse shape and excite less interference. Fig. 

12 shows the BER eye openings of NRZ and duobinary signaling with different receiver 

and transmitter jitter values, where the eye opening of duobinary degrades faster than that 

of NRZ in the existence of jitter. Thus, while the eye opening of jitter-free duobinary is 

larger than that of NRZ, as the jitter value increases, duobinary performs worse than NRZ.  

 

Fig. 13 shows that a larger jitter tracking bandwidth will help to improve the BER 

performance. The eye openings for different FFE and DFE taps are plotted in Fig. 14. As 

the number of taps increases, residual ISI becomes less severe, opening the eyes of both 

NRZ and duobinary. However, as duobinary requires 3-level signaling, its eye is more 

likely to be limited by its voltage headroom than by residual ISI. Therefore, when a large 

number of equalizing taps are used, the duobinary eye with limited voltage headroom 

may perform unfavorably when compared with NRZ. 

 

V. CONCLUSION 
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A statistical method to analyze serial link systems for NRZ and duobinary signaling is 

presented, incorporating non-ideal effects such as transmitter jitter and receiver jitter, 

jitter tracking bandwidth, finite rise/fall time and duty cycle deviation. Using this analysis 

tool, a comparison of the performance between NRZ and duobinary at 20-Gb/s is then 

performed. While duobinary achieves less channel loss due to the reduced Nyquist 

bandwidth, in general, it suffers more than NRZ from non-idealities arising from the 

imperfect clock source. Only for long channels with significant attenuation does 20-Gb/s 

multi-level, duobinary signaling have a BER advantage over NRZ, given the expected 

amount of clock uncertainty. The proposed statistical analysis can therefore give early 

insight for quick and accurate system design tradeoffs for multi-Gb/s interconnections. 
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Fig. 7.  Eye diagram of 40cm trace after NRZ equalization, (a) transient simulation of 10k 
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Fig. 8.  Eye diagram of 40cm trace after duobinary equalization, (a) transient simulation 

of 10k random bits and (b) statistical analysis. 

Fig. 9.  Eye opening area for BER<10-12 with different length of traces. 

Fig. 10.  Eye opening area for BER<10-12 with different rising and falling times for 40cm 

trace. 
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Fig. 11.  Eye opening area for BER<10-12 with different duty cycle deviations for 40cm 

trace. 

Fig. 12.  Eye opening area for BER<10-12 with different receiver and transmitter RMS 

jitter for 40cm trace. 

Fig. 13.  Eye opening area for BER<10-12 with different jitter tracking bandwith for 40cm 

trace with both 1ps RMS TX and RX jitter. 

Fig. 14.  Eye opening area for BER<10-12 with different FFE and DFE taps for 40cm 

trace (for FFE, with 1 precursor tap and varying no. of postcursor taps). 
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Fig. 1.  Measured channel loss of 10cm to 80cm PCB traces (from top to bottom), 

showing -6,6dB, -18.9dB,-35dB loss at 10GHz for 10cm, 40cm and 80cm PCB traces 

respectively. 
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Fig. 2.  Pulse response to a 50ps (20-Gb/s) pulse before equalization, after NRZ 

equalization, and duobinary equalization of 40cm PCB trace. 
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Fig. 3.  Frequency response before equalization, after NRZ equalization and duobinary 

equalization of a 40cm PCB trace. 

 

 

 

Fig. 4.  Simplified architecture of a typical serial link transceiver. 
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(a) 

 

(b) 

Fig. 5  (a) Jitter impulse response and (b) jitter transfer function of a 40cm PCB trace at 
20-Gb/s. 
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Fig. 6  Schematic of receiver linear equalizer. 
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(a) 

 

(b) 

Fig. 7.  Eye diagram of 40cm trace after NRZ equalization, (a) transient simulation of 10k 
random bits and (b) statistical analysis. 
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(a) 

 

(b) 

Fig. 8.  Eye diagram of 40cm trace after duobinary equalization, (a) transient simulation 
of 10k random bits and (b) statistical analysis. 
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Fig. 9.  Eye opening area for BER<10-12 with different length of traces. 
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Fig. 10.  Eye opening area for BER<10-12 with different rising and falling times for 40cm 

trace. 
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Fig. 11.  Eye opening area for BER<10-12 with different duty cycle deviations for 40cm 

trace. 
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Fig. 12.  Eye opening area for BER<10-12 with different receiver and transmitter RMS 

jitter for 40cm trace. 
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Fig. 13.  Eye opening area for BER<10-12 with different jitter tracking bandwith for 40cm 

trace with both 1ps RMS TX and RX jitter. 
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Fig. 14.  Eye opening area for BER<10-12 with different FFE and DFE taps for 40cm 

trace (for FFE, with 1 precursor tap and varying no. of postcursor taps). 

 

  



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <>
    /ITA <>
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


