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Data from large-scale biological inventories are essential for understanding and managing Earth's ecosystems.
The Forest Inventory and Analysis Program (FIA) of the U.S. Forest Service is the largest biological inventory in
North America; however, the FIA inventory recently changed from an amalgam of different approaches to a
nationally-standardized approach in 2000. Full use of both data sets is clearly warranted to targetmany pressing
research questions including those related to climate change and forest resources. However, full use requires
lumping FIA data fromdifferent regionally-based designs (pre-2000) and/or lumping the data across the tempo-
ral changeover. Combining data from different inventory types must be approached with caution as inventory
types represent different probabilities of detecting trees per sample unit, which can ultimately confound tempo-
ral and spatial patterns found in the data. Consequently, the main goal of this study is to evaluate the effect of
inventory on a common analysis in ecology, modeling of climatic niches (or species-climate relations). We use
non-parametric multiplicative regression (NPMR) to build and compare niche models for 41 tree species from
the old and new FIA design in the Pacific coastal United States. We discover two likely effects of inventory on
niche models and their predictions. First, there is an increase from 4 to 6% in random error for modeled predic-
tions from the different inventories when compared to modeled predictions from two samples of the same
inventory. Second, systematic error (or directional disagreement among modeled predictions) is detectable
for 4 out of 41 species among the different inventories: Calocedrus decurrens, Pseudotsuga menziesii, and
Pinus ponderosa, and Abies concolor. Hence, at least 90% of niche models and predictions of probability of occur-
rence demonstrate no obvious effect from the change in inventory design. Further, niche models built from
sub-samples of the same data set can yield systematic error that rivals systematic error in predictions
for models built from two separate data sets. This work corroborates the pervasive and pressing need
to quantify different types of error in niche modeling to address issues associated with data quality and
large-scale data integration.

© 2013 Elsevier B.V. All rights reserved.
1. Introduction

Survey data collected in situ across space and time are indispensable
for understanding and managing earth's ecosystems. Biological invento-
ries occurworldwide as repositories of ecological data that can accommo-
date diverse stakeholders and research (European Commission, 1997;
Rudis, 2003a, 2003b). The Forest Inventory and Analysis Program (FIA)
of the U.S. Forest Service conducts the largest in situ forest data collection
effort in North America. However, the current nationally-standard
inventory resulted from modifications of regional inventories beginning
gram; NPMR, Non-parametric

e); fax: +1 541 737 2540.
ntz).

rights reserved.
in 2000. Before 2000, FIA used varied plot sizes, densities, sampling
extents, sampling periods, and protocols. While these differences do not
affect the ability to provide statistical summaries at local to national scales
for many attributes of interest (Barrett, 2004; Bechtold and Patterson,
2005), the comparison of plot-level attributes across inventories can be
affected (Gray, 2003). To use historical data with new standardized
data, we need to confront an important question that can pervade other
biological inventories and large scale data (e.g. Hijmans et al., 2000;
National Research Council, 2000; Nelson et al., 1990): howdo differences
among inventories, when combined, confound patterns found in the
data?While one study concluded that lumping FIA sample designs is haz-
ardous for the assessment of treemigration through time (Woodall et al.,
2009), data from thedifferent FIA sample designs are often lumpedacross
regions (before 2000) or across sample designs (pre- and post-2000)
without knowledge of the consequences.

One important use of forest inventory data is the development
of ecological niche models (e.g. Evans and Cushman, 2009; Iverson
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and Prasad, 1998; McKenzie et al., 2003; Rehfeldt et al., 2006, 2008;
Svenning and Skov, 2004). The relationship between a species and
its environment is part of a ‘species niche’ or an ‘n-dimensional
hypervolume’ that describes conditions where a species can persist
(Hutchinson, 1957). Currently, niche models are used for many
research purposes including species' conservation (e.g. Hannah et al.,
2002; Marini et al., 2009), species' re-introduction (Yanez and Floater,
2000), species' migration and invasion (e.g. Crossman et al., 2011;
Woodall et al., 2009), biodiversity conservation (e.g. Newbold and
Eadie, 2004), specimen collection (e.g. Jarvis et al., 2005), the discovery
of new species (Raxworthy et al., 2003), and estimating potential effects
of climate change on species (e.g. Iverson et al., 2008). Nichemodels are
also used to investigate basic scientific questions on various topics
(e.g. Engelbrecht et al., 2007; Graham et al., 2004; Hugall et al., 2002;
Kelly et al., 2008; Svenning and Skov, 2004).

The effect of combining data from different inventories can be
problematic in niche modeling largely due to different plot-level
probabilities of detecting species (Azuma and Monleon, 2011;
Grosenbaugh and Stover, 1957). This can bias niche models, particu-
larly if different sample designs are used in different portions of a species'
niche and/or geographic range. In addition, the amount of resources and
effort devoted to sampling often increases with tree size in forest inven-
tories, which could bias models if tree size varies substantially in differ-
ent portions of a species' niche or range. A change in forest inventory
methods clearly has the potential to affect niche models, and to our
knowledge, this effect has not yet been examined.

Consequently, we ask, does the change in forest inventory type
affect niche models and their predictions for tree species across the
Pacific coastal United States? In so asking, we determine how results
from an amalgam of approaches (from the old inventory) compare
to results from a single, large-scale, standardized approach (the new
inventory).

We assume little change in species' probability of occurrence
across two sequential time periods of study. We also treat all aspects
of sampling that changed in 2000 (further described below) as a
single source of potential error. We compare two large samples
from the old and new inventory, and we compare two large samples
from the new inventory. We then juxtapose these two comparisons,
and we examine both random error and systematic error from these
comparisons. We define random error as differences between modeled
predictions that follow a random frequency distribution and can be
due to chance. We define systematic error as error between modeled
predictions that demonstrate bias or directional disagreement due
to causes likely not associated with chance.

Specifically, we address the following questions:

– How does the change in FIA inventory affect random prediction
error for models built from each inventory?

– How does the change in FIA inventory affect systematic prediction
error for models built from each inventory?
Table 1
Data source definition, inventory dates, and sampling density by inventory units in Californ

Code for source name Source name States

Old, periodic inventory
WWA FIA, Western Washington WA
EWA FIA, Eastern Washington WA
CA FIA, California CA
WOR FIA, Western Oregon OR
EOR FIA, Eastern Oregon OR
R6 Forest Service, Region 6, Pacific Northwest OR, WA
R5 Forest Service, Region 5, Pacific Southwest CA
BLM Bureau of Land Management Western OR
RMRS FIA, Rocky Mountain Research Station Eastern WA, Eastern

New, annual inventory—all states
PNW annual FIA CA, OR, WA
– How do prediction error types shown across inventories compare
to prediction error types for samples within the same inventory?

– How do models and mapped prediction errors differ for within-
inventory samples and across-inventory samples?

We answer these questions and also investigate evidence of bias
in the data themselves to assist our interpretation of its potential
effect on the models and their predictions.

2. Methods

2.1. FIA inventories

The U.S. Forest Service Research branch was mandated in 1928
to report on the status and trends of forest resources on all lands, with a
focus on timber production (Frayer and Furnival, 1999). Since the
1930s, surveys have differed by state and region, and inventories were
conducted all-at-once for a state (known as the periodic inventory). The
periodicity of state inventories ranged from 4 to 18 or more years, and
by the early 1990s, most states completed a third inventory cycle with
some states re-inventoried as many as six times (Frayer and Furnival,
1999; Hiserote and Waddell, 2003). Starting in 1990, the Forest Service
initiated surveys through the Forest Health Monitoring Program (FHM),
which used a fixed sampling grid across the U.S. with a quarter of the
grid measured each year (Scott et al., 1993). A decade later, the periodic
inventory merged with FHM to form the nationally-consistent annual
inventory. Instead of periodic sampling that differed by state and rotat-
ed by state, the annual inventory samples 10% of permanent plots yearly
in the west on a common national grid irrespective of state boundaries.

Key differences among the periodic and the annual inventories for
our study region include periodicity, grid density, sampling extent,
plot size, and protocol (Tables 1 and 2). Each inventory represents a
systematic sample with variable density, sampling dates, and types
of lands included. In the old periodic inventory, some management
regions only included land capable of timber production (or sites
capable of producing 1.4 cubic meters per hectare per year at their
peak of mean annual increment). Not all inventories included lands
protected from timber production (e.g. State and National Parks).
The greatest difference in sample population between old and new
inventories was the large National Parks in California andWashington
that were measured in the new inventory. Some inventories relocated
subplots from the fixed design if a plot happened to straddle more
than one condition class. Condition class classifies variation in a sam-
pled area with respect to land use, forest type, and stand size class.
Important differences between inventories at the plot level include
the area sampled and the sampling methods used; the new design
relies on a standard set of nested, fixed-radius plots centered on four
points for sampling trees of different sizes (see Appendix A, Fig. A1).
However, the old inventory often used a variable-radius method
to sample most trees >12.7 cm DBH. This was done using a wedge
ia, Oregon, and Washington (Hiserote and Waddell, 2003).

Dates of inventory Distance between points of sample grid

1988–1990 3.9 km
1990–1991 5.5 km
1991–1994 5.5 km (7.7 km in oak woodland)
1995–1997 5.5 km
1998–1999 5.5 km
1993–1997 2.7 km (5.5 km in wilderness)
1993–2000 Numerous (5.5 km base grid)
1997 5.5 km

CA 2001, 1997 5.5 km

CA and OR began in 2001;WA in 2002 5 km



Table 2
Differences in plot-level protocols by inventory units for the “large tree” size class.
Variable radius plots were sampled using a wedge prism. Each inventory sampled
smaller trees with a variety of fixed-radius plot sizes.

Code for
source name

Plot radius
(m)

BAF⁎

(m2/ha)
Sub-plots
(#)

Total
area (m2)

Tree tally size
criteria (DBH, cm)

Periodic inventory
WWA Variable 6.9 5 Variable >17.8⁎⁎

EWA Variable 9.2 5 Variable >12.7
CA Variable 6.9 5 Variable >17.8
WOR Variable 6.9 5 Variable >12.7
EOR Variable 4.6 or 6.9 5 Variable >12.7
R6 + BLM 8.016 N/A 5 1009.4 >7.6
R6 + BLM 15.575 N/A 5 3810.6 >33
R5 Variable 4.6 or 9.2 5 Variable >12.7

Annual inventory
PNW annual 7.32 N/A 4 672.5 >12.7
PNW annual 15.575 N/A 4 4050.1 >76.2 west;

>61 east

“West” and “east” refer to locations relative to Cascade Mountains in Oregon and
Washington. In California, the same minimum diameter as “east” was used.
⁎ BAF stands for basal area factor.

⁎⁎ DBH stands for tree diameter at breast height.
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prism projecting a fixed angle from a central point (Bitterlich, 1948;
Grosenbaugh, 1952). The prism angle (or basal area factor, BAF) varied
among regions to maximize efficiency (Table 2; also see Appendix A;
Fig. A1), and this affected the probability of sampling trees of different
diameters. The probability of tree capture is proportional to tree basal
area for the variable-radius method (Grosenbaugh and Stover, 1957);
whereas, the probability of tree capture is proportional to tree density
for fixed-radius plots (Grosenbaugh and Stover, 1957). Also, the subplots
of the new design, in general, are closer together and fewer compared to
the old design. The tree tally size criteria differ among andwithin designs
(Table 2; Fig. A1 of Appendix A).

The datawe used from the old design sampled 100% of the plots on a
1 to 4 year cycle but not synchronously among regions (Hiserote and
Waddell, 2003). We used data from the new design that sampled 10%
of plots across regions per year with a full round occurring every
decade. Data from the new design spanned 2001 to 2007, and the
data from the old design spanned 1988 to 2000 (with the exception
of one ownership, which ended in 2001).

2.2. Study area and data preparation

The area of study contained the conterminous states within the
Pacific Coast unit for the FIA program. The included states, California,
Oregon, and Washington, are topographically diverse with numerous
mountain ranges.Maritime influence combineswith complex orographic
effects and a wide span of latitude to create a variety of different climatic
zones and vegetation types. The region has the broadest range of average
annual precipitation (from 25 to 4600 mm/year) found in the lower 48
United States.

Plot grid density and sample size were equalized among model-
building data sets. Plots were selected from the old design that was
on the shared base grid with 5.5 km spacing, except for the R5 inven-
tory where this was not possible, which resulted in a subset of plots
with mean spacing of 3.9 km. Plots with a tree species recorded
more than 100 km outside the species' range (as determined by
existing flora and current herbarium records) were examined and
removed from the analysis because they were presumed to be errors
in identification. The data removed for this work subsequently went
through an FIA internal review process (while this paper was in
review) and were confirmed to be incorrectly recorded through plot
re-visits. A total of 27 plots from the old design and 36 from the new
design were removed. A certain error rate in identification should be
assumed among con-generics in the FIA database, andmost outlier pop-
ulations in our region would be otherwise documented in herbaria.
Also, only plots that were at least 50% forested were selected from
each dataset, resulting in pools for the old and new designs of 10,831
and 6950 plots respectively. The larger sample from the old design
was randomly sampled to obtain a sample size equivalent to that of
the new design (N = 6950). The sample size of 6950 is still large, and
for this reason, the two samples are statistically similar. For example,
the number of presences for all species studied essentially fall on the
1-to-1 line (when compared among samples). A linear regression
between numbers of presences in each sample yielded R2 of 0.9992.

Each data set (one for the old and one for the new inventory) was
randomly sampled without replacement to split into two halves of
equal size, referred to as the “training” and “testing” data sets. Species'
occurrences were summed for the training data. Species with more
than 25 occurrences in both training sets were retained for a total of 41
species (Table 3). The training data were used to build models and the
testing data were used for model selection and evaluation. Fig. 1 shows
geographic comparisons of training data set locations among designs.

We extracted climate data corresponding to FIA plot locations to
serve as climatic variables or predictors. We started with 11 variables
derived by Ohmann and Gregory (2002) from Daymet grids of the
western United States (Thornton et al., 1997) (Table 4). We reduced
the number of grids or climate variables as input for our analyses by
performing a Principal Components Analysis (PCA) (PC-ORD version
5.2, McCune and Mefford, 2006). We first gathered data for the PCA
by taking a random sample comprising 8000 points acrossWashington,
Oregon, and California. These random points were not associated with
FIA plot locations. Instead, they were a random sample across the
entirety of California, Oregon, andWashington. We choose 8000 points
to ensure high density coverage at the resolution of the climate grids.
The climate grids resolved data to 4 km. (The authors had past success
building strong niche models for tree species using climate grids at
the scale of 4 km, so this scale was maintained for this work.) We
extracted the climate data from the 11 Daymet grids corresponding to
our random sample of 8000 points. We based our PCA on a matrix
of correlation coefficients among the data. We selected the first four
components that represented 97% of variability in the data (Table 5).
The four corresponding eigenvectors were then used to generate the
new grids representing PCA scores across Washington, Oregon, and
California (Table 5). These PCA scores were extracted from the PCA
grids to corresponding FIA pot locations. The use of PCA scores as
predictors in our niche models ensured statistical independence among
the predictors. The PCA scores also simplified the comparison among
inventories by reducing the number of predictors.

While the fourth PCA component has a low eigenvalue, we are not
testing a hypothesis concerning howmuch of the variance is represented
by the principal components. Rather, we are interested in whether the
principal components serve as useful predictors for external variables.
The amount of variance explained in the original matrix has no bearing
on whether the component represents a phenomenon with biological
importance in subsequent regression (Joliffe, 1982).

2.3. Model building

Non-parametric multiplicative regression (NPMR) was used to
build the climate niche models using HyperNiche 2.0 (McCune, 2006;
McCune andMefford, 2008). This techniquewas chosen among numer-
ous empirical techniques in the literature for species-habitat models
(e.g. Elith et al., 2006; Guisan et al., 2007; Kampichler et al., 2010;
Pino-Mejías et al., 2010) as it captures the nature of biological response
to multiple interacting factors (McCune, 2006). The technique has been
compared with linear regression, logistic regression, General Additive
Models (GAMs), Classification and Regression Trees (CART), and
Random Forest (Lintz et al., 2011; McCune, 2006). Current theory
supports that species' response patterns take non-linear, complex
shapes (Austin, 2002; Oksanen and Minchin, 2002), and when tested
against other species distribution modeling methods, NPMR proved to



Table 3
Forty-one species were studied. Species were retained for study if they contained more
than 25 occurrences in the primary training data sets from the old and the new design.

Species
code

Latin name Common name Prevalence
(old)

Prevalence
(new)

ABAM Abies amabilis Pacific silver fir 243 213
ABCO Abies concolor White fir 801 579
ABGR Abies grandis Grand fir 333 351
ABLA Abies lasiocarpa Subalpine fir 189 164
ABMA Abies magnifica California red fir 214 121
ABPR Abies procera Noble fir 70 80
ABSH Abies shastensis Shasta red fir 31 46
ACMA Acer macrophyllum Bigleaf maple 291 261
AECA Aesculus californica California buckeye 26 37
ALRU Alnus rubra Red alder 334 358
ARME Arbutus menziesii Pacific madrone 305 301
CADE Calocedrus decurrens Incense-cedar 573 398
CHNO Chamaecyparis

nootkatensis
Alaska yellow-cedar 32 35

CONU Cornus nuttallii Pacific dogwood 100 72
JUOC Juniperus occidentalis Western juniper 274 356
LAOC Larix occidentalis Western larch 210 212
LIDE Lithocarpus

densiflorus
Tanoak 197 271

PIAL Pinus albicaulis Whitebark pine 57 34
PICO Pinus contorta Lodgepole pine 475 450
PIEN Picea engelmannii Engelmann spruce 178 145
PIJE Pinus jeffreyi Jeffrey pine 389 213
PILA Pinus lambertiana Sugar pine 515 324
PIMO Pinus monophylla Singleleaf pinyon 58 76
PIMONT Pinus monticola Western white pine 255 184
PIPO Pinus ponderosa Ponderosa pine 1133 958
PISA Pinus sabiniana California foothill pine 48 73
PISI Picea sitchensis Sitka spruce 76 73
POBAT Populus balsamifera Black cottonwood 60 35
PSME Pseudotsuga menziesii Douglas-fir 1830 1920
QUAG Quercus agrifolia California live oak 48 31
QUCH Quercus chrysolepis Canyon live oak 407 374
QUDO Quercus douglasii Blue oak 56 97
QUGA Quercus garryana Oregon white oak 101 106
QUKE Quercus kelloggii California black oak 463 317
QUWI Quercus wislizenii Interior live oak 84 94
SESE Sequoia sempervirens Redwood 44 76
TABR Taxus brevifolia Pacific yew 116 81
THPL Thuja plicata Western redcedar 332 321
TSHE Tsuga heterophylla Western hemlock 567 613
TSME Tsuga mertensiana Mountain hemlock 180 161
UMCA Umbellularia

californica
California-laurel 97 98
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be most tractable with any shape of underlying data structure (Lintz
et al., 2011). Further, recent tests with MaxEnt against NPMR
demonstrated that NPMR had the highest mean externally-validated
prediction accuracy compared to MaxEnt for 48 different shapes of
simulated data structures (Yost and Lintz, 2013, unpublished data).
NPMR has advantages over other methods through reduced model
bias and improved prediction accuracy (Lintz et al., 2011). It is designed
to automatically accommodate complex interactions and increase
user understanding of the nature of complex interactions. NPMR is an
iterative algorithm that can takemore time thanothermethods especially
with large data sets.

NPMR objectively optimized kernel width by maximizing fit. To do
this, a local window centered on a target point within the predictor
space (as with other kernel smoothers). A weight function was applied
within the window to assign numeric weight to points surrounding
the target that decrease with distance from the target. A local model
(the local mean) predicted the dependent variable at the target point.
NPMR repeated this procedure for all target points to generate a predic-
tion curve or surface. NPMR omitted the target point when predicting
the response at that point and multiplied weights from individual
predictors. The multiplicative combination of weights can accommo-
date any type of interactions including additive or multiplicative.
To adequately gauge the effect of inventory on niche models, we
compared statistics from models built from the different data. We
also compared qualitative attributes of the models and geographic
maps of predicted probabilities of occurrence generated from the
different models. We juxtaposed comparisons of the old and new
inventories (referred to as ‘old–new’) with comparisons of the two
subsamples of the new inventory (referred to as ‘new–new’). The
old–new comparison used the training sets from each inventory
for model building. The new–new comparison used both the testing
and training data sets within the new design for model building.
Each half of the data set from the new inventory was a sample for
model building with the other half used for model testing. In this
way, we examined the type of error that can arise in NPMR from
taking different samples of the same data set where the difference
among data sets was maximized. The data sets were so large that
bootstrapped confidence bands were both unnecessary and too time
consuming. We reasoned that if the same magnitude and type of
deviations from the predicted 1:1 line across species in the ‘old–new’

comparison are also seen in the ‘new–new’ comparison, then error
arising from sources other than sample design or environmental change
was likely the cause.

2.4. Model evaluation and selection

Two measures of model performance for binary data were used for
different purposes, model selection and model evaluation. First, we
used a measure called the LogB, which is based in the common like-
lihood ratio. To derive this measure, we take the log of the likelihood
ratio and divide it by the number of sample units (or FIA plots used
for model building). In so doing, we obtain the average contribution of
a sample unit to the log likelihood ratio for the purpose of model selec-
tion (McCune, 2006). Popular statistics for model selection with classi-
fiers are often derived from the likelihood ratio such as the Akaike
Information Criterion (AIC) and the Bayesian Information Criterion (BIC)
(Hastie and Tibshirani, 2001); however, the AIC and BIC approximate
the optimization curve used in model selection for sample sizes too
small to generate the curve empirically (Hastie and Tibshirani, 2001).
The empirical optimization curve represents the loss in externally-
validated fit that occurs as model complexity increases. Theoretically,
the model with the greatest externally-validated likelihood ratio is the
most robust and accurate. Given our large sample size, instead of relying
on an index to approximate this curve such as an AIC, we rely on external
validation itself using LogB. This is considered to be the ideal scenario for
model selection that can occur only when sufficient data are available
(Hastie and Tibshirani, 2001).

Second, we use the Area under the Receiver Operating Characteristic
(ROC) curve or AUC for model evaluation (Hanley and McNeil, 1982).
The LogB is not suited to compare the fit of models among species
with different numbers of presences because the LogB varies with
number of presences. Instead, we use the AUC for model evaluation
among species as it is much less sensitive to number of presences
(Fawcett, 2006). An AUC of 0.5 represents amodelfit no better achieved
by chance alone. The maximum value of the AUC is 1. See Fig. A2 for
a comparison of AUC with LogB for candidate models of three species.

Climate and species' occurrence data from plots withheld from
model building were used to calculate externally-validated measures
of model performance. The withheld climate data were supplied
as input to the candidate models (after the models were built from
the training data sets), and the corresponding withheld species'
presence/absence data were compared to the resulting predictions.

2.5. Inventory effect on models and data

We compared models based on the two inventory types using the
following measures: the fit as externally-validated AUC, the quality of
the predictors or the type of predictors chosen for a model, random



Fig. 1. Study area. Locations of FIA plots for training samples (N = 3475) are shown for the old and new design.
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deviations from the 1:1 line for predicted values amongmodels of the
same species, and systematic deviations from the 1:1 line (or whether
models from one data set tended to overestimate or underestimate
Table 4
Definitions for climate variables derived by Ohmann and Gregory (2002) from Daymet
values (Thornton et al., 1997) used in the Principal Components Analysis.

Variable Definition

ANNPRE Natural logarithm of mean annual precipitation (mm)
ANNSWRAD Annual average of the total daily incident shortwave radiative flux

(MJ m−2 day−1)
SMRPRE Natural logarithm of mean precipitation from May through

September (mm)
CVPRE Coefficient of variation of mean monthly precipitation for wet and

dry months (December and July)
ANNGDD Average number of growing degree days where daily air

temperatures exceed 0.0 °C
SMRTP Moisture stress during the growing season; a ratio of mean summer

temperature (SMRTMP) over mean summer precipitation (SMRPRE)
ANNVP Annual mean of the daily average of partial pressure of water vapor

in the air near the surface (Pa)
AUGMAXT Mean maximum temperature in August (°C)
DECMINT Mean minimum temperature in December (°C)
DIFTMP Difference between AUGMAXT and DECMINT (°C)
CONTPRE Percentage of mean annual precipitation falling June through August
probability of occurrence, relative to the other data set). Model com-
parisons were performed by obtaining predictions frommodels based
on the same random sample of 3475 points and their corresponding
Table 5
PCA loadings corresponding to the Daymet climate variables for each component or
eigenvector. We used (and show) the first four eigenvectors or V vectors as climatic
predictors where each is scaled to its standard deviation. The PCA was based on a
matrix of correlation coefficients among the data. Each respective eigenvalue is shown
in the second to last row, and the cumulative variance explained with the addition of
each eigenvector is shown in the last row.

Variable PCA1 PCA2 PCA3 PCA4

ANNGDD 0.9228 0.2589 0.2695 0.0319
ANNPRE −0.8082 0.5282 −0.0299 0.1217
ANNSWRAD 0.7613 −0.1694 −0.4915 −0.2046
ANNVP 0.2223 0.7232 0.6341 0.1060
AUGMAXT 0.9291 −0.1634 0.1353 0.2793
CONTPRE −0.1127 −0.7740 0.6006 −0.0894
CVPRE −0.0056 0.7378 −0.6187 0.2054
DECMINT 0.6329 0.6928 0.3103 −0.0735
DIFTMP 0.3694 −0.8390 −0.1563 0.3644
SMRPRE −0.9135 −0.0095 0.3162 0.1599
SMRTP 0.9703 0.0903 0.0506 −0.0096
Eigenvalue 5.323 3.260 1.702 0.361
Cumulative % variance 48.39 78.03 93.49 96.78



Fig. 2. Predicted probability of occurrence by species for models built from new versus old sample designs. Red line represents the ideal 1:1 line. Predicted values were generated
from a random sample of unseen climate data (N = 3475). Species codes with asterisks* denote that the compared models for that set of axes had the same model functional form
or number and type of predictors.
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climate values within the study area. Predictions were compared
for old–new and new–new comparisons. The random error or non-
directional deviation from the 1:1 line was derived using Root Mean
Squared Prediction Error (RMSE). However, the RMSE is a function
of the maximum in predicted probability of occurrence for a species,
which varied with a species number of presences. Hence, the RMSE
was standardized to compare across species with different maxima
in probability of occurrence. The differences from the 1:1 line were
divided by the range of the data or maximum probability of occurrence
before squaring and summing to yield the ‘normalized RMSE’ or
NRMSE. The NRMSE is often expressed as a percentage. The NRMSE
represents the degree of deviation from the 1:1 line as a percentage
of the axis length. The Wilcoxon signed-rank test evaluated the null
hypothesis that the median in NRMSEs from the new–new and old–
new comparisons was equal (Wilcoxon, 1945).

The systematic deviations from the 1:1 line were also compared.
The residuals were standardized by their range, and three quartiles,
the 25th, 50th, and 75th, were plotted and compared for the old–
new and new–new comparisons. These indicate the central tendency
of the residuals and whether one data set tends to model and predict
a greater probability of occurrence compared to another. The median
standardized residual tracks themedian non-zero standardized residual
closely and linearly except for values very near to zero, which were not
meaningful.
Raw differences among data sets were investigated to aid the
interpretation of modeled comparisons. We compared several metrics
from the data: ‘climatic bias,’ probability of tree capture, and number
of presences for a species. Climatic biaswas defined as the disagreement
among two histogramswhere each histogram represents the frequency
of climatic data values corresponding to locations where a species' was
found (Kadmon et al., 2003). This characterized and compared species-
specific structure of climatic data from two different samples of
presence/absence data. Instead of calculating a statistic to characterize
climate bias, we relied on data visualization for the following reason.
We considered using ameasure of effect size, the Kolmogorov–Smirnov
two-sample test statistic (d) (Massey, 1951), to compare climatic bias
across different sample sizes (or specieswith different numbers of pres-
ences). This statistic assumes no particular form between the compared
distributions, it measures the maximum absolute difference among em-
pirical cumulative distribution functions, and it accommodates differ-
ences in both shape and central tendency. However, we checked the
immunity of this statistic, d, to sample size, and we discovered d to
depend on sample size using simulated data (which was surprising
for a measure of effect size) (Appendix A, Fig. A3; Appendix B).

Also, we derived grossmeasures of probability of tree capture across
sample designs using the average number of trees per FIA plot by
management region. Before the switch from the old to new design,
approaches to sampling differed in numerous aspects by management
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Fig. 3. Predicted probability of occurrence by species for models built from ‘new versus new’ sample designs where a random sample from one design is compared to a second
random sample from the same design. Red line represents the ideal 1:1 line. Predicted values were generated from a random sample of unseen climate data (N = 3475). Species' codes
with asterisks* denote that the compared models for that set of axes had the same model functional form or number and type of predictors.
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region; hence, we used management regions as sample units to exam-
ine probability of tree capture across designs.

2.6. Sample design effect on maps

We used geographic grids of PCA scores of climate variables across
the study area as input to make maps of probability of species' occur-
rence for niche models (using HyperNiche 2.0 and ArcGis 9.2).
We mapped differences among predictions for new–new and old–
new comparisons. This was done for three species, Arbutus menziesii,
Tsuga heterophylla, and Pinus ponderosa. The species were chosen
arbitrarily to span a range of numbers of presences in the data
(N = 301, 613, 958 respectively). We extrapolated conservatively
or little beyond the existing range of the data using the default setting
in HyperNiche 2.0 where the minimum neighborhood size (in envi-
ronmental space) for an estimate (in geographic space) is equal
to or greater than a quarter of the average neighborhood size for
a model. The average neighborhood size is the average amount of
data bearing on the estimate of the response variable at each point.

3. Results

3.1. Sample design effect on models

Most species from the old and the new FIA sample designs yielded
similar predicted values for models of species' probability of occurrence
(Fig. 2). The mean NRMSE in the old–new comparison was 6% (95%
quantiles: 3%, 12%) compared to a mean of 4% (1%, 10%) in the
new–new comparison for the 41 species. The difference among
median NRMSEs (across species for old–new and new–new com-
parisons) was not likely to be due to chance alone (Wilcoxon
signed-rank two-tailed, p b 0.001). Additionally, many species
that showed strong systematic deviation from the 1:1 line among
designs (detectable by eye) also showed this type of deviation for
models built from different samples of the same design (AECA,
CHNO, PIAL, POBAT, QUAG, QUDO, QUWI; Figs. 2, 3). Others showed
greater deviation from the 1:1 line in the old–new comparison than
in the new–new (ABAM, ABMA, CONU, PIJE, PILA, PIMO, PIMONT, PIPO,
PISA, QUKE, SESE). Many of these species represented a subset of 16
species with numbers of presences below 100 among training data
sets (where N = 3475; Table 3).

The median standardized residual remained close to zero for most
species. Medians ranged from 0.02 to −0.06 among old–new and
new–new comparisons (Fig. 4). For most species, the inter-quartile
range was smaller and medians were closer to zero for the new–

new comparison than for the old–new comparison. Four species,
ABCO, CADE, PIPO, and PSME, had greater probabilities of occurrence pre-
dicted for the old design compared to the new (Fig. 4). Themedians of the
deviations were, however, small (absolute systematic deviation b0.06).
Systematic error was present but substantially weaker in the new–new
comparison than in the old–new comparison for CADE, PIPO, and
PSME (Fig. 4).
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Fig. 4. Stem plots show the central trend in the standardized residuals with respect
to the 1:1 lines in Figs. 2 and 3. The mean (white dot), the 25th quantile (black dot),
and the 75th quantile (black dot), are shown by species (rows) and by comparison,
old–new (left) and new–new (right).
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The differences among models built with old and new data did
not appear to be caused by model selection of different predictor vari-
ables. The same number and type of predictors were chosen among
models for 26 species in the new–new and 26 species in the old–
new comparisons (see species codes with asterisks in Figs. 2 and 3).
Most models selected four predictors out of the four available
(an overall mean of 26 species among models built from different
data pools). Only four instances occurred with models containing
two predictors, and the rest contained three.

All models contained the first PCA component. Also, most predic-
tions fell near the 1:1 line even for models without the same number
and/or type of predictors (e.g. ABAM, ABGR, ABLA in Figs. 2 and 3).
Despite the differences among predictors for many of the compared
models, agreement in model fit for old–new was strong and similar for
new–new (NRMSE of AUC = 8% for new–new and 13% for old–new;
Fig. 5). The minimum model fits (or the minimum externally-validated
AUCs) among the comparisons were 0.766 (new–new) and 0.835 (old–
new), and the maximum models fits (or the maximum externally-
validated AUCs) were essentially the same, 0.995 and 0.996 (new–new
and old–new respectively). The mean externally-validated AUC across
all models was 0.935. Four species consistently had fits above 0.975
across data sets: Pinus monophylla, Sequoia sempervirens, Quercus
douglasii, and Quercus agrifolia. These species have presences under
100 and occur mostly in California. Most species with strong fits tended
toward increased agreement among predictions (Fig. 5). However, the
agreement between compared models in type and number of predic-
tors did not play a role in these relationships (see symbol coding in all
subplots of Fig. 5). Species with high numbers of presences had slightly
lower fit than species with low numbers of presences, albeit very
weakly (nonparametric regression, cross-validated r2 = 0.08) and
nonlinearly (results not shown). Model fit did not vary with sample
design across all models.

3.2. Sample design effect on data

The mean number of trees per plot by size class (where the mean
is used as a proxy for probability of tree capture) deviated strongly
from the expected 1:1 line (RMSE = 8 or NRMSE = 25%). The devia-
tion was pronounced for all but the largest trees (Fig. 6). The number
of trees per plot was higher for the R6 and BLM areas for all tree sizes
in the old design compared to the new design. For the regions using
variable-radius sampling in the old inventory, numbers of small
trees (12.7–38.1 cm dbh) per plot were lower in the old inventory,
while numbers of larger trees (38.1–76.2 cm) were higher in the
old inventory (Fig. 6; tree selection probabilities for each design are
shown in Fig. A1).

Differences among the ECDFs (empirical cumulative distribution
functions) from different sample designs for each speciesweremore vi-
sually pronounced for species with presences less than 100 (e.g. CONU,
PIMO, QUAG, and POBAT) (Fig. 7). However, the difference among two
ECDFs drawn from the same population is always more pronounced for
smaller samples (see Appendix A; Fig. A4). Further, one would expect
that species with themost pronounced systematic error in themodeled
predictions would demonstrate greatest evidence of climatic bias in the
data (which may be attributed to sampling differences). This was not
clearly the case as ABCO, CADE, PIPO, and PSME did not have climatic
bias greater than that shown for species without systematic error
among predictions (e.g. ALRU, QUCH, TSHE, LAOC, CHNO, ABSH)(Figs. 4,
7). However, for specieswith greater numbers of presences like PSME, a
small gap has more ecological consequence and meaning compared
to the same gap in a species with low numbers of presences (see
Fig. A4). To zoom in on ABCO, CADE, PIPO, and PSME, we used
Quantile–Quantile plots (QQ-plots). QQ-plots among two samples will
be linear if two samples come from the same distribution. The ABCO
QQ-plots showed the strongest exception to linearity for PCA2, and
the tail of the QQ-plot for the old–new comparison deviated compared
to the new–new comparison (Fig. 8).

3.3. Sample design effect on maps

Coarse patterns in predicted probability of occurrence in geographic
space appeared similar between sample designs within species, except
for the aerial extentwhere predictionsweremade (Fig. 9). Also,maps of
the differences among predictions within the old–new and new–new
comparisons revealed spatial clustering of strong differences at differ-
ent scales (Fig. 10). These patterns (e.g. in the highest magnitude resid-
uals per map) tended to follow broad gradients in topography
and climate rather than cluster by management region (Fig. 10).
A map of FIA management regions in the old inventory is provided
(Appendix A; Fig. A5). Spatial clustering at scales much smaller then
FIAmanagement unitswas evident across new–new and old–new com-
parisons (e.g. the contiguous blue patch in the upper left portion of the
map of “ARME new–new,” Fig. 10). The source of that error is unknown
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Fig. 5. Top row: Externally-validated area under the receiver-operator characteristic curve (AUC) compared from old–new comparison (left) and new–new comparison (right). Bottom
row: Standardized RMSE (NRMSE) versus mean AUC among models for old–new (right) and new–new (left) comparisons. Points represent species. Paired models where qualitatively
different predictors were chosen for the same species are shown with circles. Paired models where the same predictors were chosen for a species are shown with triangles.
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but could be due to sub-sampling or to a contributing variable not in-
cluded in models such as fire or competitive exclusion.

The maximum absolute differences in predictions differed among
species (Fig. 10). These magnitudes depended on the difference among
predictions for a location and the range in probability of occurrence
Fig. 6. Mean number of trees per plot and by age class. The ideal 1:1 line is shown.
Each point represents a size class in a particular management region from the old
design (see Table 1).
predicted for a species. In all three examples the old–new had the
highest absolute differences among the comparisons.
4. Discussion

We found two likely effects of inventory method on niche models
and their predictions. First, there is a 2% increase in random error
among modeled predictions when using one design to predict occur-
rences in the other design (an average 2% more than within-design
sample error for a single within-design comparison). Second, small
quantifiable systematic error is present for 4 out of 41 species, yet
the error for only one species, ABCO, showed the strongest evidence
for a link to inventory.

Although it is possible that the 2% increase in error derived from
climate change or other potential factors, we believe the 2% increase
in random error is due largely to the change in inventory methods
for the following reason: probability of detection and resulting esti-
mates of occurrence are a function of plot size, and plot sizes differed
across management regions in the old inventory. Larger plots were
used for all tree sizes on R6 and BLM lands while other management
regions used variable radius plots with plot size proportional to tree
diameter. At least with respect to tree frequency, the varied effects
of different regional inventories on tree frequency are suggested
(Fig. 6). Hence, when the data from the old design were pooled across
regions with different protocols, the cumulative effect (of different
types of bias imposed by different samplingmethods) likelymanifested
as randomerror that propagated tomodeled predictions. The difference
in plot size that changes a presence record to an absence record at a
local scale will depend on the species' density and size distribution
for each of species. Our work suggests that the variation in size of
FIA plots within and among inventories probably has a small effect
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Fig. 7. The ECDF (empirical cumulative distribution function) for each climate variable (or PCA component) as it corresponds to species' occurrence for each design (old and new).
Climate variables are color coded, magenta shows PCA1 from both designs, black shows PCA2 from both designs, blue shows PCA3 from both designs, and red shows PCA4 from both
designs.
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on presence/absence data patterns. However, the future study of the ef-
fects of inventory on precision could benefit from not only from
old–new and new–new comparisons, but also old–old comparisons.
Variations within the old inventories could be directly compared to
variations within the new inventories to better understand the 2%
difference in random error between modeled predictions.

Inventory change does not seem to be the cause for the systematic
error associated with Calocedrus decurrens, Pseudotsuga menziesii, and
P. ponderosa. We reach this conclusion given the assumption that
the effect of the inventory would first manifest as climatic bias.
We define climate bias as the difference between histograms of climatic
data corresponding to presence locations. Climate bias was not clearly
evident for these species (Fig. 8).

Conversely, stronger evidence of climatic bias existed for
Abies concolor (Figs. 4, 7, 8). A. concolor is part of an intergrading com-
plex of species with Abies grandis (Critchfield, 1988). Field discernment
of the two species can be difficult where they hybridize yet the species
are ecologically distinct (Ferrell and Smith, 1976; Zobel, 1974). Proto-
cols for identification of both species changed in some areas from the
old to new design. Old data from R6 national forests tended to either
use one species code or the other in areas where research crews have
used both, which would affect the tails of the frequency distributions
in climate (see Figs. 7 and 8). This difference in inventory procedures
shows up as climatic bias because it changes the geographic distribution
of presences. The change manifests as difference between frequency
distributions of a climate variable.

Spatial patterns in the mapped differences between predictions
occurred across scales for the old–new as well as the new–new com-
parisons. To further examine whether differences among inventories
may be the cause for these patterns, we clipped the maps shown in
Fig. 10 by management regions (see Appendix A; Fig. A5) and com-
pared distributions of the differences for old–new and new–new by
region. Although the disparity in median differences (among mapped
predictions) was greater for some management regions in old–new
compared to new–new, the patterns did not appear to correspond
with differences in inventory (not shown). Apparently, the climate
predictors did not segregate by management region enough to affect
the distribution of residuals within them. The overlap in climate values
among regions with different plot designs probably explains why,
despite greater error, the accuracy of the species' predictions was high
and similar among designs (e.g. revealed by externally-validated AUCs).

4.1. Spatial autocorrelation

Maps of the differences between predictions (Fig. 10) show spatial
autocorrelation. Spatial autocorrelation occurs when observations
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Fig. 8. QQ-plots are shown comparing the frequency distributions of climate variables corresponding to species' presence records across four species (rows) and climate variables
(columns). QQ-plots for the old–new comparisons are shown in black and QQ-plots from the new–new comparisons are overlaid in pink. Confidence bounds on QQ-plots that
compare two unknown distributions are not possible due to issues regarding multiple comparisons and resulting uncertainty (Chambers et al., 1983).
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in close spatial proximity tend to be more similar than expected for
observations more spatially separated (Schabenberger and Gotway,
2005). The treatment of spatial autocorrelation in niche modeling
is a topic of active research (Dormann et al., 2007; Fortin and Dale,
2009; Miller et al., 2007; Segurado et al., 2006). In our work, we
used a kernel smoother in climate space. The climate variables were
spatially auto-correlated in geographic space. We did not account
separately for the autocorrelation structure among the data in climate
space, and this is known as the “working independence” method in
kernel regression, which has theoretical basis (Lin and Carroll, 2000;
Ruckstuhl et al., 2000). Kernel smoothers are designed to accom-
modate spatially dependent data (e.g. Hutchinson and Gessler,
1994; Wahba, 1990; Yakowitz and Szidarovszky, 1985). Spatial ag-
gregation at variable scales should be expected in the maps of differ-
ences among predictions (our results). This is because local climate
has spatial autocorrelation. Additionally, spatial aggregation in resid-
uals can result from failing to account for other potential drivers.
Here, our main interest lies in the climate signal; thus, we don't at-
tempt to account for the autocorrelation in climate. However, it is
possible to pursue other local processes governing spatial autocorrela-
tion using NPMR by examining the residuals with respect to spatial
coordinates.

4.2. Cross-validation methods

We found noteworthy variation in modeled output due to within-
design sub-sampling. While the noteworthy variations could be due
to random chance (through taking a random sub-sample), the sub-
sample sizes were large enough to warrant exploring whether
something else might exacerbate this such as the modeling process.
Thus, we further examined whether model selection by external valida-
tion (as opposed to cross validation) could be the reason behind the
noteworthy variation in modeled output due to within-design sub-
sampling. Model selection by external validation (the method we used
here) is a variation of k-fold cross-validation where k = 2. Model selec-
tion with greater than 2-fold cross-validation uses models built from
repeated sub-sampling of the data. In cross-validation, the sample is ran-
domly divided into k > 2 sub-samples. One sub-sample is retained (out
of the k sub-samples) as the testing or validation data, and the other k-1
subsamples are used each to train or build models. Results of model per-
formance for iteration through k subsamples are combined for optimiza-
tion. The model that is most robust to external data and accurate is
selected.

We examined the subsets of models which used different pre-
dictors for a species and among sub-samples. We found that model
selection using cross-validation with NPMRmay result in greater preci-
sion (without compromising robustness) compared to model selection
using external validation. This interpretation is based on preliminary
results (not shown) that were stimulated from the modeling results of
this work. New–new predictions generated from models selected by
external validationwere comparedwith new–newpredictions generated
from models selected by cross-validation. The agreement among pre-
dictions improved and model similarity increased for model selection
using cross-validation. This is an interesting although preliminaryfinding
given that the statistical paradigm considers external validation as the
gold standard in model selection (Hastie and Tibshirani, 2001). More
research is needed in this regard with respect to kernel regression,
NPMR, and model selection.
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Fig. 9. Maps of probability of occurrence are shown for three species Arbutus menziesii (top row), Pinus ponderosa (middle row), and Tsuga heterophylla (bottom row).
Maps correspond to prediction from each data set compared (see Fig. 2).
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4.3. Sampling effects

Sampling has been identified as an area requiring further investiga-
tion in niche modeling especially given the haphazard nature of
some data sets (Araújo and Guisan, 2006; Elith et al., 2006; Guisan
and Zimmerman, 2000; Hampe, 2004; Heikkinen et al., 2006). Recent
papers that address sampling issues with respect to niche modeling
emphasize presence-only data and explore sample size (e.g. Elith
et al., 2006; Hernandez et al., 2006; Pearce and Ferrier, 2000; Stockwell
and Peterson, 2002), sample completeness (e.g. Kadmon et al., 2003),
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Fig. 10.Maps of differences among probabilities of occurrence show regions of uncertainty among the maps of probability of occurrence (see Fig. 9). The difference for the old–new
comparison equals the new minus the old (maps shown in Fig. 9 were subtracted). The difference for the new–new comparison equals the second sample of the new minus
the primary sample of the new. Differences are shown for the old–new comparison (top row) and the new–new comparison (bottom row) for the three species in Fig. 9, Arbutus menziesii
(left column), Pinus ponderosa (middle column), and Tsuga heterophylla (right column).
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sample attributes for optimal model validation (e.g. Araújo et al., 2005),
idealized sampling strategy for niche models (e.g. Reese et al., 2005;
Wessels et al., 1998), and sample bias due to site accessibility and/or
presence-only data (Kadmon et al., 2003, 2004; Reese et al., 2005).
Sampling bias can add extraneous error to ecological signals especially
with presence-only data, which canmisleadmodel development, spuri-
ously increase or decrease fit, and affect spatial predictions (Araújo and
Guisan, 2006; Barry and Elith, 2006; Guisan et al., 2006). Our work
suggests that a minimal effect occurs on predictions from niche models
due to a large change in a biological inventory. The inventory mea-
sures presences and absences of plant species across the landscape,
and various important aspects of the sample design changed with
the inventory including plot size.

5. Conclusion

Themany features that changed with the overhaul of sample design
for the Forest Inventory Analysis Program had a small cumulative
impact on niche models and maps of probability of occurrence based
on tree species' presence/absence data. The niche relations between
tree species and climate are mostly unchanged across the two decades
straddling the year 2000 for climate variables estimated at 4 km spatial
resolution. The fit or accuracy of all models developed for species'
occurrence based on climate was high for both data sets (mean
externally-validated AUC = 0.935). Additionally, this work corro-
borates the pervasive and pressing need to quantify different types of
error in niche modeling to address issues associated with large-scale
data integration (Barry and Elith, 2006; Elith et al., 2002). The isolation
of error types can help to ascertain the cause and uncertainty related
to observed patterns.
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Appendix A. Supplementary data

Supplementary data to this article can be found online at
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