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Abstract

 A fault-tolerant routing method that can tolerate solid faults using only two virtual channels is

presented. The proposed routing algorithm not only uses a fewer number of virtual channels but

also tolerates f-chains in the meshes. It is shown that the proposed algorithm is deadlock-free and

livelock-free in meshes when it has nonoverlapping multiple f-regions.
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1 Introduction

 Many recent multicomputers and multiprocessors are implemented with mesh topology. These

computers usually use the e-cube routing algorithm with wormhole switching because of its

simplicity. Deterministic routing algorithms, such as e-cube routing algorithm, establish the path

as a function of the destination address and always supply the same path between every pair of

nodes. When wormhole switching was invented, system designers chose the simple deterministic

algorithms in order to keep routing hardware as compact and as fast as possible [5].

 Since a deterministic routing algorithm always provides a fixed path for the same source and

destination pair, it cannot tolerate even single node or link failure.  Thus, fault tolerance is a

dominant issue facing the design of interconnection networks for large-scale multiprocessor

architectures.  An extensive amount of work has been done on fault-tolerant routing in wormhole-

switched networks [1, 2, 3, 4, 6, 7, 8, 9, 10, 11, 12]. The most common approach is to route

messages around the faulty regions and so the complexity of the routing algorithm depends on the
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shape of the faulty regions. One method has been proposed by Boppana and Chalasani in [1],

where by making some appropriate fault-free nodes to faulty, rectangular regions are constructed.

 An f-ring is a sequence of links and nodes that surround a faulty region and an f-chain is similar

to f-ring but it touches one or more boundaries of the network.  So, in an f-chain, there are two

nodes marked as end nodes at which the f-chain touches the network boundaries. An f-ring or an

f-chain is called as an f-region.

 The algorithm proposed in [1] is a modification of the e-cube algorithm and uses two virtual

channels per physical channel. The algorithm provides deadlock-free routing in mesh networks

provided the f-rings are nonoverlapping. For the more complex faults with overlapping f-rings

and f-chains, four virtual channels are used. Later Sui and Wang [10] have proposed an improved

algorithm that tolerates overlapping f-rings and f-chains using only three virtual channels.  By

relaxing the restrictions on the shape of the faulty regions, in [3] the authors have devised a new

routing algorithm that tolerates more general forms of f-rings, called non-convex faults using four

virtual channels. This fault model is referred to as a solid fault model. Although they have

devised a fault-tolerant routing algorithm for more relaxed faulty regions, the proposed algorithm

does not consider f-chains or overlapping f-rings.

  In this paper, we present a fault-tolerant routing method that can tolerate solid faults, shaped

such as +, T, L and ⊥ using only two virtual channels. Since the e-cube routing with wormhole

switching has been widely used in current multiprocessors and multicomputers, the algorithm

presented in this paper is also based on the e-cube routing with wormhole switching. The

proposed algorithm not only require a fewer number of virtual channels but also tolerates f-chains

in the meshes. We assume that each node has only local knowledge of the faults. So, there is no

need to maintain global fault information and also there is no restriction on the number of faults.

 The rest of this paper is organized as follows. Section2 gives preliminaries that underlie this

work. Section 3 describes the algorithms for acquiring position information on f-rings and f-

chains. Section 4 presents the proposed fault-tolerant routing method and the proof of deadlock

and livelock freedom. Finally in section 5, some concluding remarks are made.

2 Preliminaries

  In this section, we briefly introduce the topology of n-dimensional mesh network and the well-

known e-cube routing algorithm. Formally, an n-dimensional mesh has k0 × k1 × k2 × … × kn-2 ×

kn-1 nodes, ki nodes along the dimension i, where ki ≥ 2 and 0 ≤ i ≤ n-1. Each node X in an n-

dimensional mesh is represented by (xn-1, xn-2, … , x2, x1, x0), where 0 ≤ xi ≤ ki –1 and 0 ≤ i ≤ n-1.
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Two nodes X and Y are adjacent if and only if for some j, 0 ≤ i ≤ n-1, xj = yj ±1 and xi = yj all for i

≠ j, 0 ≤ i ≤ n-1.  It is denoted by X ↔ Y.

  In the e-cube algorithm, the routing is done in dimensional order. Suppose X = (xn-1, xn-2, … , x2,

x1, x0) is the source node and Y = (yn-1, yn-2, … , y2, y1, y0) is the destination node. The message

travels along the i-th dimension till xi = yi , in the order i=0, 1, 2, … , n-1. It can be easily proved

that this algorithm is deadlock free.

  When there is a faulty node/link in the mesh network, a message can be blocked by the faulty

node/link; further, this message can hold the channels which it has already acquired. This may

cause the blockage of additional messages and as a result of this, there is a chance of occurrence

of deadlock.

2.1 Fault model

  The failure of a processing element and its associated routers is referred to as a node failure and

the failure of any communication channel is referred to as a link failure. In our fault model, both

node failures and link failures are considered. We assume that each node can test the fault status

of the links incident to it and also it neighboring nodes. Thus, each node knows the fault status of

its links and the neighboring nodes. Since the nodes do not know the global faulty information,

messages routed through a portion of a faulty region may not use the shortest path.

 Each node on an f-region is classified according to the number of faulty links incident to it and

its functionality. There are four types: convex node which has no faulty link incident to it,

concave node which has exactly two faulty links incident to it, plain node which has only one

faulty link incident to it and relay-only node which performs only the routing operations.

A portion of an f-ring that consists of two convex nodes with only plain nodes, if any, between

them is called a convex section. In solid fault model, there are exactly four convex sections. If a

convex section of an f-ring is projecting towards the North (respectively South) side of the f-ring,

it is called a north (respectively south) convex section.

 The proposed method handles solid faults in meshes, shaped such as +, T, L and ⊥. More

precisely, let l1 and l2 be any two links in the same row (respectively, column) of a given fault-

region. In our fault model, no fault-free node exists between two faulty links, l1 and l2, in the

same row (respectively, column).

 Since the proposed routing method does not tolerate overlapping faulty regions, first we describe

how the overlapping f-regions are merged and reformed during the formation of f-regions. The

detection of overlapping f-regions is not difficult. Note that if there is no overlapping f-rings then

all nodes in the f-ring will have exactly two links which are from the f-ring incident to it.
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However, if there is an overlapping region then exactly two nodes wil l have three links, one each

from the f-rings and the third common to these two f-rings, incident to them. So the overlapping

f-ring can be easily detected. A similar method can be used to detect overlapping faulty regions in

f-chains.

 By sending shape-finding message in each f-regions as described in [3], all non-overlapping

nodes get exactly one message, whereas the overlapping nodes get more than one messages. By

making these overlapping nodes except the two extreme nodes in this portion faulty, two f-

regions can be merged. After merging, the new f-region might contain a concave region and this

needs to be changed to a convex region by making some appropriate nodes faulty. This can be

done by sending another shape-finding message and making some non-faulty nodes to faulty.

 A similar method can be used for detecting/merging overlapping regions in two f-chains or

between an f-chain and an f-ring. In the case of f-chain, a shape finding message must be initiated

from one of the end nodes.

3 The position on f-regions

  In the proposed algorithm, each node has to know its position on the f-region, i.e., in which side

it resides: North, South, East or West. In this section we describe an algorithm for this position

information. The algorithm are described in terms of a 2-dimemsional mesh, but it is easily

extended to higher dimensions.

   

Step 1: Every convex node in an f-region sends its position information, { North, South, East,

West} , in both clockwise and counter-clockwise orientations. This message is propagated until it

reaches a concave node, a convex node, or an end node. If a plain node or a concave node

receives the position information message, then this node sets its position to the value in the

received message. If a plain node on the f-region receives both ‘E’  and ‘W’ , then it initially sets

its position information to E; only the nodes contained in the north or south convex section

receive both ‘E’  and ‘W’ . If a plain node in the f-region receives both ‘N’  and ‘S’ , then it sets the

position information to N; only the nodes contained in the west or east convex section receive

both ‘N’  and ‘S’  messages. So, the north, south, east and west convex sections are identified in

this step. If a concave node receives ‘N’  (or ‘S’ ) and ‘E’  (or ‘W’ ) messages, then it sets its

position information appropriately, as NW, SW, NE or SE.

If there is no end node in the f-region, then Step 2a is performed. Otherwise Step 2b is performed.
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Step 2a (f-rings): The leftmost node in the north (respectively south) convex section injects a

position-update message into the f-ring in counter-clockwise (respectively clockwise) direction.

This message is propagated until i t reaches the leftmost node in the south (respectively north)

convex section. Similarly, the rightmost nodes in the north and south convex sections do the same

thing. A position-update message contains the x coordinate of the starting node and p where p ∈

{ W, E} . If a sender is a leftmost convex node, then p is ‘W’ . Otherwise p is ‘E’ .

 When the leftmost node in the convex section receives the position-update message, it compares

its x coordinate, xd, to xS. If xS > xd , then the node propagates the received message to its east

neighbor and the neighbor performs the steps shown in Fig. 1. Similarly, when the rightmost node

in the convex section receives the position-update message, it compares its x coordinate, xd, to xS.

If xS < xd, then the node propagates the received message to its west neighbor and the neighbor

performs the steps shown in Fig 1.

Let xS be the x coordinate value contained in the message, xC be the x coordinate value of the
current node and p be the position information in the received message.

STEP:         
        IF (xS > xC AND p = W)  OR (xS < xC AND p = E)  
        THEN {

propagate the message to its neighbor in the f-ring along the same direction
           in which the message was received;

 IF the message traveled in the direction opposite to p,
THEN {
        IF the current node is located in the north or south convex section
        THEN set the current node’s position information to p.
        ELSE make the status of this node ‘relay-only node’.
        make the neighbor node the current node.
        go to STEP
}

        }

Figure 1. Updating the position information of nodes in the f-ring

Step 2b (f-chains): The end node injects a shape-change-request message and it is propagated

along the f-chains until it reaches a convex node. A shape-change-request message contains the

location information of the end node. Let N = (xN, yN) be an end node in the f-chain.

• If N is located in the east boundary, the shape-change-request message contains (yN, W).

• If N is located in the west boundary, the shape-change-request message contains (yN, E).

• If N is located in the north boundary, the shape-change-request message contains (xN, S).

• If N is located in the south boundary, the shape-change-request message contains (xN, N).
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When a node receives a shape-change-request message, it performs the steps shown in Fig. 2.

Let M = (c, p) be the received message, where c is the x or y coordinate of the end node and
p ∈ {W, E, S, N} is the position information in the received message.

STEP:         
        IF the current node is not a convex node in a convex section  
        THEN {

    propagate the message to its neighbor in the f-chain along the same direction
    (i.e. clockwise or counter-clockwise) in which the message was received

     IF the message traveled in a direction different than the p,
    THEN {
             the node marks itself as faulty.
             initiate a node-disable message along the direction opposite to p.
             (This message is propagated until it reaches the network boundary and
              the nodes that receive a node-disable message also mark themselves as faulty.)
    }
    make the neighbor node the current node.
    go to STEP

        }
        ELSE /* the current node is a convex node in the convex section */

    IF c ≠ the corresponding coordinate of the current node
    THEN {
             change its position information to p.
             initiate a position-change message along the directions of p and opposite to p.
             (This message is propagated until it reaches a convex node or a node located
              in the network boundary. The node that receives a position-change message
              changes its position to p)
    }

Figure 2. Updating the position information of nodes in the f-chains

Example 1: In Fig. 3, the dark nodes are faulty. Some convex nodes are (0,5), (3,7), (7,1) and

(8,3), some concave nodes are (1,5), (3,6), (6,5) and (7,3) and some plain nodes are (0,4), (1,3),

(2,3) (4,6) and (8,4). { (5,1), (6,1), (7,1), (5,1)↔(6,1), (6,1)↔(7,1)} is the south convex section.

{ (1,7), (2,7), (3,7), (1,7)↔(2,7), (2,7)↔(3,7)} is the north convex section.   

  Every convex node injects two position messages into the f-ring in Step 1 as shown in Fig 3. (a).

For example, (7,1) sends ‘S’  to its northern neighbor and  ‘E’  to its western neighbor. After Step

1, every node contains the position information as shown in Fig 3. (a). Furthermore, (1,7), (2,7)

and (3,7) know that they are located in the north convex section and (5,1), (6,1) and (7,1) know

that they are located in the south convex section. According to the rule given in Step 1, (2,7) and

(6,1) set their position into ‘E’  and (0,4) and (8,4) set their position into ‘N’ .

  In Step 2, the convex nodes in both north and south convex sections inject position-update

messages with their x coordinate value and p where p ∈ {W, E} ; (1,7) sends the message <1, W>,

(3,7) sends the message <3, E>, (5,1) sends the message <5, W> and (7,1) sends the message <7,
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E>. After Step 2, (2,7) changes its position into ‘W’  because it propagates the message to its west

neighbor. But (3,7) does not change the position information because it relays the message to the

south neighbor. Furthermore, (3,6), (4,6), (4,3) and (5,3) become relay-only nodes; which implies

that these nodes perform only the routing operations.

Figure 3. Example of position information in the f-ring

Example 2: An example of Step 2b is shown in Fig. 4. There are two end nodes in Fig. 4 (a),

(8,1) and (8,5). Since they are located in the east boundary of the 2D mesh, the shape-change-

request message contains <y coordinate, W>. The shape-change-request message injected from

(8,1) (i.e. the message <1, W>) is propagated until it reaches (6,1). When (7,1) receives the

message, it propagates the message along the f-chain in the same orientation. Because it

propagates the message to its west neighbor, (6,1), it does not inject a node-disable message.

When the message arrives at a convex node, (6,1), the receiver compares its y coordinate to the y

coordinate in the message.  Since they are same, (6,1) does not do anything.

  Now, let us consider the shape-change-request message injected from (8,5) (i.e. the message

<5, W>). This message travels along the f-chain in the counter-clockwise orientation from (8,5) to

(6,7). First, the message is sent to (7,5). (7,5) sends it to (7,6), injects a node-disable message to

its east neighbor, (8,5), and marks itself as faulty. (8,5) becomes a faulty when it receives the

node-disable message. Although (7,6) is a convex node, it is not located in the convex section.

Thus, when it receives the shape-change-request message, it just sends the message to the west
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neighbor, (6,6). (6,6) relays the shape-change-request message to (6,7), injects a node-disable

message to its east neighbor, (7,6), and marks itself as faulty. (7,6) and (8,6) become faulty when

they receive the node-disable message. Since (6,7) is the convex node in the closest convex

section, it does not propagate the message any more. Instead, it changes its position information

to ‘West’  and propagates the new position, ‘West’  to its west and east neighbors. The new

position is propagated until it reaches the convex node, (5,7) and the node (8,7), which is located

in the network boundary.

Figure 4. Example of position information in the f-chain

4 Routing algorithms

  Let M denote a message to be routed from the current node, (xc, yc), to the destination node (xd,

yd). Our algorithms are based on the e-cube routing, in which all messages are routed in two

phases: in the first phase the message is routed along d0 dimension (row dimension) until (xc = xd)

and in the second phase it is routed along d1 dimension (column dimension) until it  reaches the

destination.  M is said to be row message if it is in its first phase and column message, otherwise.

Further, row messages traveling from West to East (respectively, East to West) are WE

(respectively, EW) messages. Likewise, column messages traveling from North to South



9

(respectively, South to North) are NS (respectively, SN) messages. The proposed fault-tolerant

routing algorithm requires only two virtual channels, C0 and C1, and tolerates multiple

nonoverlapping f-regions.

4.1 A Fault-Tolerant Routing Algorithm (FT-Ecube)

Let (xc,yc) be the current host node of the given message M. If (xc, yc) = (xd, yd), then M has

reached its destination and so it is consumed.   At the source node, M is labeled as WE or EW

message depending on the x dimension values of the source and destination addresses; M is

labeled as WE if xc < xd and as EW otherwise. Once it reaches a node where (xc = xd), M is

changed as a column message (i.e. NS or SN message) and then it continues to travel towards its

destination.   M travels in the network based on the e-cube algorithm until it reaches an f-region.

Once it reaches the f-region, two things can happen:

1. If its e-cube hop is on the f-region, then it continues to travel in the f-region, or

2. If its e-cube hop is blocked, then it is misrouted.

In both cases, the message traveling on an f-region can use the following virtual channels

depending on the message type: Row (i.e. WE and EW) messages use C0 and column (i.e. NS and

SN) messages use both C0 and C1. Column messages usually use C1 virtual channels. But, if a NS

(respectively SN) message is misrouted from south to north (respectively from north to south)

along the f-rings, it uses C0 virtual channels until it leaves the f-ring.

 If the next e-cube hop for M is not blocked by a fault, then M is routed using the e-cube

algorithm. Otherwise it is misrouted according to the rules given in Table 1. Once its direction

(i.e. clockwise or counter-clockwise) on the current f-region is set, it will never be changed until

M leaves the f-region or it changes its message type.  If a message takes an e-cube hop on a link

that is not on an f-region, it can use any virtual channel without causing deadlock.

Procedure FT-Ecube (M)
/*          The address of the current node of M is (xc, yc) and the destination is (xd, yd).

When a message is generated,
      it is set to normal and labeled as WE if xc < xd and as EW otherwise.
IF the message type is EW, or WE use C0 virtual channel
ELSE IF the message type is NS or SN, use C1 virtual channel                     */

1 IF (xc = xd) and (yc = yd), THEN M is consumed by the current node and return.
2 IF M is a row message and (xc = xd),

THEN set M’s status to normal and change M’s type to SN if (yd > yc) or NS if (yc > yd).
3 IF M’s status is normal  {
     IF the next e-cube hop is blocked by a fault,

THEN set M’s status misrouted and route M according to Table 1.
               ELSE M is routed using the e-cube hop.  /* If the next e-cube hop is available */
   }
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4 IF M’s status is misrouted  {
IF the next e-cube hop is available {
          IF (M is a row message) OR (M is a column message AND xc = xd) 
                  THEN set M’s status to normal and M is routed using the e-cube hop.
}
ELSE M is routed along the orientation that is being used by the message.

   }

Figure 5. Fault-Tolerant e-cube routing algorithm

Node
Position

Message
Type

Used Virtual Channels Misrouted Direction

WE C0 Misroute M along the clockwise orientation
until the e-cube hop existsN

EW C0 Misroute M along the counter-clockwise
orientation until the e-cube hop exists

WE C0 Misroute M along the counter-clockwise
orientation until the e-cube hop existsS

EW C0 Misroute M along the clockwise orientation
until the e-cube hop exists

NS C0 , C1 Misroute M along the counter-clockwise
orientation until the e-cube hop exists and xc = xdW

SN C0 , C1 Misroute M along the clockwise orientation
Until the e-cube hop exists and xc = xd

NS C0 , C1 Misroute M along the clockwise orientation
Until the e-cube hop exists and xc = xdE

SN C0 , C1 Misroute M along the counter-clockwise
orientation until the e-cube hop exists and xc = xd

Table 1. Direction to be set for the misrouted messages on f-regions.

Example 3: Let us consider the message M1 from (8,1) to (1,7) in Fig. 6. M1 is routed as a normal

EW message from (8,1) to (7,1). At (7,1) its next e-cube hop is blocked and its direction is set to

counter-clockwise, since the position of (7,1) is north. M1 is misrouted from (7,1) to (7,2). At

(7,2) M1’s next e-cube hop is available, it becomes a normal EW message and is routed from (7,2)

to (3,2). Note that a C0 channel is used from (7,2) to (6,2) and both C0 and C1 channels can be

used from (6,2) to (3,2). At (3,2) its next e-cube hop is blocked and so it is misrouted in the

clockwise orientation to (1,1). At (1,1), M1 is set to a normal SN message since its x dimension

offset is equal to zero. Then, it is routed by e-cube from (1,1) to (1,5). Since M1 is blocked by a

fault in (1,5), it is misrouted in the counter-clockwise orientation using C1 virtual channels from

(1,5) to (2,7).

At (2,7), the SN message is misrouted from north to south. Thus, M1 uses C0 virtual channels until

it leaves the f-ring. It is misrouted from (2,7) to (1,6) in the same (i.e. counter-clockwise)

orientation using C0. At (1,6), M1 becomes a normal SN message again because its next e-cube
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hop is available and also because both the current node and the destination node are in the same

column. M1 is routed from (1,6) to (1,7) using the e-cube algorithm.

  We now consider the message, M2 from (3,5) to (6,2) in Fig. 6. M2 is routed as a normal WE

message from (3,5) to (5,5). At (5,5), its next e-cube hop is faulty and its direction is set to

clockwise, since the position of (5,5) is north. M2 is misrouted from (5,5) to (6,6) using C0

channels. When M2 arrives (6,6), its x dimensional offset is zero and it becomes a normal NS

message. But the next e-cube hop is blocked at this node and it is changed as a misrouted NS

message. M2 is misrouted from (6,6) to (6,3) using C1 channels in the counter-clockwise

orientation. At (6,3), M2 becomes a normal NS message again. This is because its next e-cube hop

is available and also the current node and the destination node are in the same column. Then, it is

routed to (6,2) by the e-cube algorithm using either C0 or C1 channel.

Figure 6. Examples of FT-Ecube routing.
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4.2 The proof of deadlock freedom

 Misrouted WE messages never travel the eastern part of an f-ring and misrouted EW messages

never travel the western part of an f-ring. Furthermore, note that nodes that located in the column

between the north and south convex sections in f-rings have been made as relay-only nodes.

Thus, there are some virtual channels in C0 that are never used by EW or WE messages. Those

channels are located in the northern or southern part of f-rings. An example of unused virtual

channels is shown in Fig. 7. The dotted arrows indicate unused virtual channels in the f-ring.

Figure 7. Unused virtual channels in C0

Theorem 1. FT-Ecube Routing is deadlock-free and livelock-free in meshes when it has

nonoverlapping multiple f-regions.

 Proof: Since FT-Ecube routing is based on the e-cube routing, row messages may turn into

column messages, but column messages do not become row messages. Thus, to prove the

deadlock freedom, it is sufficient to show that there is no deadlock among row messages and

column messages.

 The deadlock freedom among WE and EW messages is straightforward. WE messages travel

from west to east but not from east to west and they never touch the eastern part of an f-ring.

Similarly, EW messages travel only from west to east and they never touch the western part of an

f-ring. Thus, EW messages and WE use exclusive set of virtual channels and so, WE and EW

messages do not cause any deadlock.
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 To prove the deadlock freedom among NS and SN messages, first we consider the deadlock

freedom in f-rings. Since the deadlock freedom in multiple f-rings is shown in [3], we show only

the deadlock freedom in single f-ring.

There are two cases:

1) There are at least two nodes one from north convex section and the other from the south

convex section located in the same column (for example, refer Fig. 8. (a)  and Fig. 8. (b)):  

 Let WN =(xN, yN) be the leftmost node in the north convex section, WS =(xS, yS) be the leftmost

node in the south convex section and xMAX be max (xN, xS). When a node V=(xv, yv) located in the

north or south convex section receives a column message M, it routes M along the east side of the

f-ring if xv> xMAX and along the west side otherwise. Because the same x coordinate, xMAX, is used

for deciding the misrouted orientation in north and south convex sections, the NS and SN

messages are always misrouted in the opposite orientations. Also, the misrouted NS (respectively

SN) messages may go in the south (respectively north) convex section up to a node whose x

coordinate is the same as that of the x coordinate of the destination. Thus, the virtual channels

used by NS and SN messages are disjoint and NS and SN messages do not cause any deadlock in

f-rings.

2) The intersection of the x coordinates of the south and north convex sections is disjoint (for

example, see Fig. 8. (c)  and Fig 8. (d)):

 In this case, NS and SN messages are misrouted in the opposite directions each other except in

the region ‘R’ . Here NS and SN messages are misrouted in the same orientation. But they use

different set of virtual channels in this region. Further, the C0 virtual channels used by NS and SN

messages are never used by row messages. Thus, the virtual channels used by NS and SN

messages are disjoint.

 The NS messages misrouted in the clockwise (respectively counter-clockwise) orientation never

travel the west (respectively east) convex section and the NS messages misrouted in the counter-

clockwise orientation never touch the east convex section. Thus, NS messages do not cause any

deadlock in f-rings. Similarly, SN messages do not cause any deadlock in f-rings either.

  In the case of f-chains, the virtual channels used by NS and SN are also disjoint. NS messages

are never routed from south to north and SN messages are never routed from north to south, in f-

chains. Also, NS and SN messages are always misrouted in the opposite orientations in f-chains.

Thus, NS and SN messages use exclusive sets of virtual channels in f-chains and do not cause

deadlock in FT-Ecube routing.
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In FT-Ecube routing, messages are misrouted by a finite number of hops only when they are

blocked by f-regions. Otherwise, they proceed toward their destinations using the e-cube

algorithm. Since there is a finite number of f-rings in the network and the messages never visit the

same f-ring more than twice, the amount of misrouted steps is also finite. Therefore, every

message will eventually reach its destination without any livelock.

Figure 8. Misrouted orientations for column messages

5 Conclusions

  In this paper, we have proposed a fault-tolerant routing algorithm for meshes. The proposed

algorithm, FT-Ecube, can tolerate solid faults using only two virtual channels. In addition to the

knowledge about the neighbor nodes on the f-region, each node has to know its position on the f-

region.  The position information can be attained after the formation of the f-region using the
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proposed method. FT-Ecube not only reduces the number of virtual channels but also tolerates f-

chains in the meshes. We assume that each node has only local knowledge of faults. So, there is

no need to maintain global fault information and there is no restriction on the number of faults.

We show that the proposed algorithm does not lead to deadlock and livelock with any number of

nonoverlapping f-regions.
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