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Abstract

A fault-tolerant routing method that can tolerate solid faults using only two virtual channels is
presented. The proposed routing algorithm not only uses a fewer number of virtual channels but
also tolerates f-chains in the meshes. It is shown that the proposed algorithm is deadl ock-free and

livel ock-free in meshes when it has nonoverlapping multiple f-regions.
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1 Introduction

Many recent multicomputers and multiprocessors are implemented with mesh topology. These
computers usually use the e-cube routing algorithm with wormhole switching because of its
simplicity. Deterministic routing agorithms, such as e-cube routing agorithm, establish the path
as a function of the destination address and aways supply the same path between every pair of
nodes. When wormhole switching was invented, system designers chose the simple deterministic
algorithms in order to keep routing hardware as compact and as fast as possible [5].

Since a deterministic routing algorithm always provides a fixed path for the same source and
destination pair, it cannot tolerate even single node or link failure. Thus, fault tolerance is a
dominant issue facing the design of interconnection networks for large-scale multiprocessor
architectures. An extensive amount of work has been done on fault-tolerant routing in wormhole-
switched networks [1, 2, 3, 4, 6, 7, 8, 9, 10, 11, 12]. The most common approach is to route
messages around the faulty regions and so the complexity of the routing algorithm depends on the



shape of the faulty regions. One method has been proposed by Boppana and Chalasani in [1],
where by making some appropriate fault-free nodes to faulty, rectangular regions are constructed.
An f-ring is a sequence of links and nodes that surround a faulty region and an f-chain is similar
to f-ring but it touches one or more boundaries of the network. So, in an f-chain, there are two
nodes marked as end nales at which the f-chain touches the network boundaries. An f-ring or an
f-chain iscalled as an f-region.

The agorithm proposed in [1] is a modification of the e-cube agorithm and uses two virtual
channels per physica channel. The algorithm provides deadlock-free routing in mesh networks
provided the f-rings are nonoverlapping. For the more complex faults with overlapping f-rings
and f-chains, four virtual channels are used. Later Sui and Wang [10] have proposed an improved
algorithm that tolerates overlapping f-rings and f-chains using only three virtual channels. By
relaxing the restrictions on the shape of the faulty regions, in [3] the authors have devised a new
routing algorithm that tolerates more general forms of f-rings, called non-convex faults using four
virtua channels. This fault model is referred to as a solid fault model. Although they have
devised a fault-tolerant routing algorithm for more relaxed faulty regions, the proposed algorithm
does not consider f-chains or overlapping f-rings.

In this paper, we present a fault-tolerant routing method that can tolerate solid faults, shaped
such as+, T, L and [J using only two virtua channels. Since the e-cube routing with wormhole
switching has been widely used in current multiprocessors and multicomputers, the algorithm
presented in this paper is adso based on the e-cube routing with wormhole switching. The
proposed agorithm not only require afewer number of virtual channels but also tolerates f-chains
in the meshes. We assume that each node has only local knowledge of the faults. So, there is ho
need to maintain global fault information and also there is no restriction on the number of faults.
The rest of this paper is organized as follows. Section2 gives preliminaries that underlie this
work. Section 3 describes the agorithms for acquiring position information on f-rings and f-
chains. Section 4 presents the proposed fault-tolerant routing method and the proof of deadlock
and livelock freedom. Finally in section 5, some concluding remarks are made.

2 Preliminaries

In this section, we briefly introduce the topology of n-dimensional mesh network and the well-
known e-cube routing algorithm. Formally, an n-dimensional mesh has ky X k; X K, X ... X Ky, X
ko1 nodes, ki nodes along the dimension i, where k=2 2 and 0 < i < n-1. Each node X in an n-

dimensional mesh is represented by (X1, Xn.2, ... , X2, X1, Xo), Where0< x, < k—-land 0<i < n-1.



Two nodes X and Y are adjacent if and only if for somej, 0<i<n-1,x =yl and x =y; al for i
#j,0<i<n-1 Itisdenotedby X « Y.

In the e-cube algorithm, the routing is done in dimensional order. Suppose X = (Xn.1, Xn-2s --- 5 X2,
X1, Xo) IS the source node and Y = (Vn1, Yn2: --- » Y2, Y1, Yo) 1S the destination node. The message
travels along thei-th dimension till x, = vy, inthe order i=0, 1, 2, ..., n-1. It can be easily proved
that thisagorithmis deadlock free.

When there is a faulty node/link in the mesh network, a message can be blocked by the faulty
node/link; further, this message can hold the channels which it has aready acquired. This may
cause the blockage of additional messages and as a result of this, there is a chance of occurrence
of deadlock.

2.1 Fault model

The failure of a processing element and its associated routers is referred to as a hode failure and
the failure of any communication channel is referred to as alink failure. In our fault model, both
node failures and link failures are considered. We assume that each node can test the fault status
of the links incident to it and also it neighboring nodes. Thus, each node knows the fault status of
its links and the neighboring nodes. Since the nodes do not know the global faulty information,
messages routed through a portion of afaulty region may not use the shortest path.

Each node on an f-region is classified according to the number of faulty links incident to it and
its functionality. There are four types: convex node which has no faulty link incident to it,
concave node which has exactly two faulty links incident to it, plain node which has only one
faulty link incident to it and relay-only node which performs only the routing operations.
A portion of an f-ring that consists of two convex nodes with only plain nodes, if any, between
them is called a convex sedion. In solid fault model, there are exactly four convex sections. If a
convex section of an f-ring is projecting towards the North (respectively South) side of the f-ring,
itiscaled anorth (respectively south) convexsection.

The proposed method handles solid faults in meshes, shaped such as +, T, L and . More
precisely, let I, and |, be any two links in the same row (respectively, column) of a given fault-
region. In our fault model, no fault-free node exists between two faulty links, |, and I, in the
same row (respectively, column).

Since the proposed routing method does not tolerate overlapping faulty regions, first we describe
how the overlapping f-regions are merged and reformed during the formation of f-regions. The
detection of overlapping f-regionsis not difficult. Note that if there is no overlapping f-rings then
all nodes in the f-ring will have exactly two links which are from the f-ring incident to it.



However, if there is an overlapping region then exactly two nades will have three links, one each
from the f-rings and the third common to these two f-rings, incident to them. So the overlapping
f-ring can be easily detected. A similar method can be used to detect overlapping faulty regionsin
f-chains.

By sending shape-finding message in ead f-regions as described in [3], all nonoverlapping
nodes get exactly one message, whereas the overlapping nodes get more than ore messages. By
making these overlapping nodes except the two extreme nodes in this portion faulty, two f-
regions can be merged. After merging, the new f-region might contain a mncave region and this
nedls to be dhanged to a convex region by making some gpropriate nodes faulty. This can be
dore by sending ancther shape-finding message and making some non-faulty nodes to faulty.

A similar method can be used for deteding/merging overlapping regions in two f-chains or
between an f-chain and an f-ring. In the cae of f-chain, a shape finding message must be initiated
from one of the end rodes.

3 Theposition on f-regions

In the proposed agorithm, each nade has to know its position onthe f-region,i.e., in which side
it resides: North, South, East or West. In this sction we describe an algorithm for this position
information. The algorithm are described in terms of a 2-dimemsional mesh, bu it is easly

extended to higher dimensions.

Step 1: Every convex nock in an f-region sends its position information, { North, South, East,
West}, in bath clockwise and counter-clockwise orientations. This message is propagated until it
reaches a mncave node, a corvex node, or an end rode. If a plain node or a @mncave nocde
reaives the position information message, then this node sets its position to the value in the
received message. If a plain noce on the f-region receives both ‘E’ and ‘W', then it initially sets
its position information to E; only the nodes contained in the north or south convex section
receive bath ‘E" and*W'. If aplain node in the f-region receives bath ‘N’ and ‘S’ then it sets the
position information to N; only the nodes contained in the west or east convex section receive
both ‘N’ and 'S messages. So, the north, south, east and west convex sedions are identified in
this dep. If a cncave node receives ‘N’ (or ‘S') and ‘E’ (or ‘W’) messages, then it sets its

pasition information appropriately, as NW, SW, NE or SE.

If thereisnoend nade in the f-region, then Step 2ais performed. Otherwise Step 2b is performed.



Step 2a (f-rings): The leftmost node in the north (respectively south) convex section injeds a
position-update message into the f-ring in counter-clockwise (respectively clockwise) direction.
This message is propagated urtil it reaches the leftmost node in the south (respectively north)
convex section. Similarly, the rightmost nodes in the north and south convex sections do the same
thing. A position-update message antains the x coordinate of the starting node and p where p O
{W, E}. If asender isaleftmost convex node, thenpis‘W’. Otherwisepis‘E'.

When the leftmost node in the convex section recaves the pasition-update message, it compares
its X coordinate, Xq, t0 Xs. If Xs > Xy, then the node propagates the received message to its east
neighba and the neighbar performs the steps siown in Fig. 1. Similarly, when the rightmost node
in the anvex section receives the position-update message, it compares its x coordinate, Xg, t0 Xs.
If Xs < X4, then the node propagates the received message to its west neighba and the neighbar
performs the steps gownin Fig 1.

Let xs be the x coordinate value contained in the message, xc be the x coordinate value of the
current node and p be the position information in the received message.

STEP:
IF (Xs > Xc AND p =W) OR (Xs <Xc AND p = E)
THEN {
propagate the message to its neighbor in the f-ring along the same direction
in which the message was received;
IF the message traveled in the direction opposite to p,
THEN {
IF the current node is located in the north or south convex section
THEN set the current node’s position information to p.
ELSE make the status of this node ‘relay-only node’.
make the neighbor node the current node.
goto STEP

Figure 1. Updating the positioninformation of nodesin the f-ring

Step 2b (f-chains): The end node injects a shape-change-request message and it is propagated
along the f-chains until it reaches a corvex node. A shape-change-request message wntains the
location information of the end node. Let N = (Xy, Yn) be an end nodcein the f-chain.

» If Nislocated in the east boundary, the shape-change-request message wntains (yn, W).

* If Nislocated in the west boundary, the shape-change-request message wntains (yn, E).

* If Nislocated in the north boundary, the shape-change-request message @ntains (xy, S).

» If Nislocated in the south bourdary, the shape-change-request message aontains (Xy, N).



When a nock receives a shape-change-request message, it performs the steps sownin Fig. 2.

Let M = (c, p) be the received message, where c is the x or y coordinate of the end node and
p L{W, E, S, N} is the position information in the received message.

STEP:
IF the current node is not a convex node in a convex section
THEN {
propagate the message to its neighbor in the f-chain along the same direction
(i.e. clockwise or counter-clockwise) in which the message was received
IF the message traveled in a direction different than the p,
THEN {
the node marks itself as faulty.
initiate a node-disable message along the direction opposite to p.
(This message is propagated until it reaches the network boundary and
the nodes that receive a node-disable message also mark themselves as faulty.)
}
make the neighbor node the current node.
go to STEP
}
ELSE /* the current node is a convex node in the convex section */
IF ¢ # the corresponding coordinate of the current node
THEN {
change its position information to p.
initiate a position-change message along the directions of p and opposite to p.
(This message is propagated until it reaches a convex node or a node located
in the network boundary. The node that receives a position-change message
changes its position to p)

Figure 2. Updating the positioninformation of nodesin the f-chains

Example 1: In Fig. 3, the dark nodes are faulty. Some cnvex nodes are (0,5), (3,7), (7,1) and
(8,3, some mncave nodes are (1,5), (3,6), (6,5) and (7,3) and some plain nades are (04), (1,3),
(2,3 (4,6) and (8,4). {(5,), (6,1), (7,2), (51) - (6,1), (6,1) -~ (7,1)} isthe south convex section.
{(@,7,2,7), 37,1727, (2,7 - (3,7)} isthe north convex section.

Every convex nock injects two position messagesinto the f-ringin Step 1as siownin Fig 3. (a).
For example, (7,1) sends ‘S’ toits northern neighba and ‘E’ to its western neighbar. After Step
1, every node mntains the position information as down in Fig 3. (a). Furthermore, (1,7), (2,7)
and (3,7) know that they are locaed in the north convex section and (5,1), (6,1) and (7,1) know
that they are located in the south convex section. According to the rule given in Step 1, (2,7) and
(6,1) set their pasitioninto *E’ and (0,4) and (8,4) set their pasitioninto ‘N’.

In Step 2, the mnvex nades in both north and south convex sedions inject position-update
messages with their x coordinate value and p where p O {W, E}; (1,7) sends the message <1, W>,
(3,7) sends the message <3, E>, (5,1) sends the message <5, W> and (7,1) sends the message <7,




E>. After Step 2, (2,7) changesits positioninto ‘W’ because it propagates the message to its west
neighbar. But (3,7) does not change the position information because it relays the message to the
south neighbor. Furthermore, (3,6), (4,6), (4,3) and (5,3) bemme relay-only nodes; which implies
that these nodes perform only the routing operations.

©.0

Normal O Relay-only O Faulty .

(b) STEP 2

Figure 3. Example of positioninformation in the f-ring

Example 2: An example of Step 2bis drown in Fig. 4. There ae two end nades in Fig. 4 (a),
(8,1 and (8,5). Since they are located in the east boundary of the 2D mesh, the shape-change-
request message antains <y coordinate, W>. The shape-change-request message injeded from
(8,2 (i.e. the message <1, W>) is propagated urtil it reaches (6,1). When (7,1) receves the
message, it propagates the message dong the f-chain in the same orientation. Because it
propagates the message to its west neighba, (6,1), it does not inject a node-disable message.
When the message arrives at a convex node, (6,1), the receiver compares its y coordinate to the y
coordinate in the message. Sincethey are same, (6,1) does not do anything.

Now, let us consider the shape-change-request message injected from (8,5 (i.e. the message
<5, W>). This message travels along the f-chain in the counter-clockwise orientation from (8,5) to
(6,7). First, the message is @ent to (7,5). (7,5) sends it to (7,6), injeds a hode-disable message to
its east neighba, (8,5), and marks itself as faulty. (8,5) becomes a faulty when it receives the
node-disable message. Although (7,6) is a convex node, it is not located in the mrnvex section.

Thus, when it receives the shape-change-request message, it just sends the message to the west



neighba, (6,6). (6,6) relays the shape-change-request message to (6,7), injects a node-disable
message to its east neighbar, (7,6), and marks itself as faulty. (7,6) and (8,6) beame faulty when
they receive the node-disable message. Since (6,7) is the cnvex nodce in the closest convex
sedion, it does not propagate the message any more. Instead, it changes its position information
to ‘West’ and propagates the new position, ‘West’ to its west and east neighbas. The new
position is propagated urtil it reaches the convex nodg, (5,7) and the node (8,7), which is located
in the network bourdary.

. Faulty

O End node

Position Info.

Node-disable

.

Shape-change-
request

Figure 4. Example of positioninformation in the f-chain

4 Routing algorithms

Let M denote a message to be routed from the airrent node, (., Yc), to the destination nale (Xg,
Va). Our agorithms are based onthe ecube routing, in which all messages are routed in two
phases:. in the first phase the message is routed along dy dimension (row dimension) until (X, = Xq)
and in the second phase it is routed along d; dimension (column dmension) until it reaches the
destination. M is said to be row messageif it isinitsfirst phase and column message, otherwise.
Further, row messages traveling from West to East (respedively, East to West) are WE
(respectively, EW) messages. Likewise, column messages traveling from North to South



(respectively, South to North) are NS (respectively, SN) messages. The proposed fault-tolerant
routing algorithm requires only two virtual channels, C, and C;, and tolerates multiple

nonoverlapping f-regions.

4.1 A Fault-Tolerant Routing Algorithm (FT-Ecube)

Let (X.,Yc) be the current host node of the given message M. If (X, Yo) = (X Ya), then M has
reached its destination and so it is consumed. At the source node, M is labeled as WE or EW
message depending on the x dimension values of the source and destination addresses, M is
labeled as WE if X, < X3 and as EW otherwise. Once it reaches a node where (X. = Xg), M is
changed as a column message (i.e. NS or SN message) and then it continues to travel towards its
destination. M travelsin the network based on the e-cube algorithm until it reaches an f-region.
Once it reaches the f-region, two things can happen:

1. If itse-cube hopison thef-region, then it continuesto travel in the f-region, or

2. If itse-cube hop is blocked, theniit is misrouted.

In both cases, the message traveling on an f-region can use the following virtual channels
depending on the message type: Row (i.e. WE and EW) messages use Cy and column (i.e. NS and
SN) messages use both Cy and C;. Column messages usually use C; virtua channels. But, if aNS
(respectively SN) message is misrouted from south to north (respectively from north to south)
along thef-rings, it uses Cy virtual channels until it leaves the f-ring.

If the next e-cube hop for M is not blocked by a fault, then M is routed using the e-cube
algorithm. Otherwise it is misrouted according to the rules given in Table 1. Once its direction
(i.e. clockwise or counter-clockwise) on the current f-region is set, it will never be changed until
M leaves the f-region or it changes its message type. If a message takes an e-cube hop on alink
that isnot on an f-region, it can use any virtual channel without causing deadl ock.

Procedure FT-Ecube (M)
I* The address of the current node of M is (X, Yc) and the destination is (Xq, Ya)-
When a message is generated,
it is set to normal and labeled as WE if X, < x4 and as EW otherwise.
IF the message type is EW, or WE use Cy virtual channel
ELSE IF the message type is NS or SN, use C; virtual channel *

1 IF (Xc = Xg) and (Y¢ = Yq), THEN M is consumed by the current node and return.
2 IF M is a row message and (X¢ = Xg),
THEN set M’s status to normal and change M'’s type to SN if (yq> y.) or NS if (yc > Yq).
3 IF M’s status is normal {
IF the next e-cube hop is blocked by a fault,
THEN set M’s status misrouted and route M according to Table 1.
ELSE M is routed using the e-cube hop. /* If the next e-cube hop is available */




4 |F M’s status is misrouted {
IF the next e-cube hop is available {

IF (M is a row message) OR (M is a column message AND X = Xg)
THEN set M'’s status to normal and M is routed using the e-cube hop.

}
ELSE M is routed along the orientation that is being used by the message.
}
Figure 5. Fault-Tolerant e-cube routing algorithm
Node Message Used Virtual Channels Misrouted Direction
Position Type

WE Co Misroute M along the clockwise orientation

N until the e-cube hop exists
EW Co Misroute M aong the courter-clockwise

orientation until the e-cube hop exists

WE Co Misroute M aong the courter-clockwise

S orientation until the e-cube hop exists
EW Co Misroute M along the clockwise orientation

until the e-cube hop exists

NS Cy,C, Misroute M along the courter-clockwise

W orientation until the e-cube hop exists and x. = X4
SN Co, G, Misroute M along the clockwise orientation

Until the e-cube hop exists and x; = X4

NS Co, C, Misroute M along the clockwise orientation

E Until the e-cube hop exists and x; = X4
SN Co, C; Misroute M along the courter-clockwise

orientation until the e-cube hop exists and x. = X4

Table 1. Direction to be set for the misrouted messages on f-regions.

Example 3: Let us consider the message M; from (8,1) to (1,7) in Fig. 6. M; isrouted as a hormal
EW message from (8,1) to (7,1). At (7,1) its next e-cube hop is blocked and its direction is set to
counter-clockwise, since the position of (7,1) is north. M; is misrouted from (7,1) to (7,2). At
(7,2) M{'s next e-cube hop is available, it becomes a normal EW message and is routed from (7,2)
to (3,2). Note that a C, channel is used from (7,2) to (6,2) and both C, and C, channels can be
used from (6,2) to (3,2). At (3,2) its next e-cube hop is blocked and so it is misrouted in the
clockwise orientation to (1,1). At (1,1), M; is set to a normal SN message since its x dimension
offset is equal to zero. Then, it is routed by e-cube from (1,1) to (1,5). Since M; is blocked by a
fault in (1,5), it is misrouted in the counter-clockwise orientation using C; virtua channels from
(1,5) to (2,7).

At (2,7), the SN message is misrouted from north to south. Thus, M, uses C, virtua channels until
it leaves the f-ring. It is misrouted from (2,7) to (1,6) in the same (i.e. counter-clockwise)
orientation using Co. At (1,6), M; becomes a normal SN message again because its next e-cube
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hop is available and also because both the current node and the destination node are in the same
column. M isrouted from (1,6) to (1,7) using the e-cube a gorithm.

We now consider the message, M, from (3,5) to (6,2) in Fig. 6. M, is routed as a normal WE
message from (3,5) to (5,5). At (5,5), its next e-cube hop is faulty and its direction is set to
clockwise, since the position of (5,5) is north. M, is misrouted from (5,5) to (6,6) using Co
channels. When M, arrives (6,6), its x dimensional offset is zero and it becomes a normal NS
message. But the next e-cube hop is blocked at this node and it is changed as a misrouted NS
message. M, is misrouted from (6,6) to (6,3) using C, channels in the counter-clockwise
orientation. At (6,3), M, becomes anormal NS message again. This is because its next e-cube hop
is available and also the current node and the destination node are in the same column. Then, itis
routed to (6,2) by the e-cube algorithm using either C, or C; channel.
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Figure 6. Examples of FT-Ecube routing.
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4.2 The proof of deadlock freedom

Misrouted WE messages never travel the eastern part of an f-ring and misrouted EW messages
never travel the western part of an f-ring. Furthermore, note that nodes that located in the column
between the north and south convex sections in f-rings have been made as relay-only nodes.
Thus, there are some virtual channels in C, that are never used by EW or WE messages. Those
channels are located in the northern or southern part of f-rings. An example of unused virtua
channelsis shown in Fig. 7. The dotted arrows indicate unused virtual channelsin the f-ring.

|

|

|

Virtual channels used by :
|

WE and EW messages !
|

|

—_——— e — -

Unused virtual channels

Figure 7. Unused virtual channelsin Cqy

Theorem 1. FT-Ecube Routing is deadlock-free and livelock-free in meshes when it has
nonoverlapping multiple f-regions.

Proof: Since FT-Ecube routing is based on the e-cube routing, row messages may turn into
column messages, but column messages do not become row messages. Thus, to prove the
deadlock freedom, it is sufficient to show that there is no deadlock among row messages and
column messages.

The deadlock freedom among WE and EW messages is straightforward. WE messages travel
from west to east but not from east to west and they never touch the eastern part of an f-ring.
Similarly, EW messages travel only from west to east and they never touch the western part of an
f-ring. Thus, EW messages and WE use exclusive set of virtual channels and so, WE and EW
messages do not cause any deadlock.
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To prove the deadlock freedom among NS and SN messages, first we consider the deadlock
freedom in f-rings. Since the deadlock freedom in multiple f-rings is shown in [3], we show only
the deadlock freedom in single f-ring.

There ae two cases:

1) There are at least two nodes one from north convex section and the other from the south
convex section located in the same column (for example, refer Fig. 8. (a) and Fig. 8. (b)):

Let Wy =(Xn, Yn) be the leftmost node in the north convex section, Ws =(xs, Ys) be the leftmost
node in the south convex section and xyax be max (xy, Xs). When a node V=(x,, y,) located in the
north or south convex section receives a olumn message M, it routes M along the east side of the
f-ring if X,> xvax and along the west side otherwise. Because the same x coordinate, Xuax, 1S used
for deciding the misrouted orientation in north and south convex sedions, the NS and SN
messages are aways misrouted in the opposite orientations. Also, the misrouted NS (respectively
SN) messages may go in the south (respectively north) convex section up to a node whose x
coordinate is the same & that of the x coordinate of the destination. Thus, the virtual channels
used by NS and SN messages are digoint and NS and SN messages do nd cause any deadlock in

f-rings.

2) The intersection of the x coordinates of the south and north convex sections is digoint (for
example, see Fig. 8. (c) and Fig 8. (d)):

In this case, NS and SN messages are misrouted in the oppdaite diredions each other except in
the region ‘R’. Here NS and SN messages are misrouted in the same orientation. But they use
different set of virtual channelsin this region. Further, the Cy virtual channels used by NS and SN
messages are never used by row messages. Thus, the virtual channels used by NS and SN
messages are digoint.

The NS messages misrouted in the clockwise (respectively courter-clockwise) orientation never
travel the west (respedively east) convex section and the NS messages misrouted in the counter-
clockwise orientation rever touch the eat convex section. Thus, NS messages do rot cause aly
deallock in f-rings. Similarly, SN messages do ot cause ay deadlock in f-rings either.

In the case of f-chains, the virtual channels used by NS and SN are dso dgoint. NS messages
are never routed from south to nath and SN messages are never routed from north to south, in f-
chains. Also, NS and SN messages are dways misrouted in the oppdsite orientations in f-chains.
Thus, NS and SN messages use exclusive sets of virtual channels in f-chains and do rot cause
deallock in FT-Ecube routing.
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In FT-Ecube routing, messages are misrouted by a finite number of hops only when they are
blocked by f-regions. Otherwise, they proceed toward their destinations using the e-cube
algorithm. Since thereis afinite number of f-ringsin the network and the messages never visit the
same f-ring more than twice, the amount of misrouted steps is aso finite. Therefore, every
message will eventually reach its destination without any livelock.

Figure 8. Misrouted orientations for column messages

5 Conclusions

In this paper, we have proposed a fault-tolerant routing agorithm for meshes. The proposed
algorithm, FT-Ecube, can tolerate solid faults using only two virtual channels. In addition to the
knowledge about the neighbor nodes on the f-region, each node has to know its position on the f-
region. The position information can be attained after the formation of the f-region using the
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propcsed method FT-Ecube not only reduces the number of virtual channels but also tolerates f-
chains in the meshes. We asume that each nade has only loca knowledge of faults. So, there is
no read to maintain gobal fault information and there is no restriction an the number of faults.
We show that the proposed algorithm does not lead to deadlock and livelock with any number of
nonoverlapping f-regions.

Reference:
[1] R.V. Boppana and S. Chaasani, “Fault-tolerant wormhole routing algorithms for mesh
networks,” IEEE Trans. Computers, vol. 44,n0.7, pp. 848864,July 1995.
[2] Y. M. Boura and C. R. Das, “Fault-toelrant routing in mesh retworks’, Proceedings of the
1997International Conference on Parallel Processing, vol |, pp. 106109, August 1995.
[3] S. Chalasani and R.V. Boppana, “Communication in multicomputers with nonconvex faults,”
IEEE Trans. Computers, vol. 46, na 5, pp.616-622,May 1997.
[4 A. Chien and J. Kim, “Planar-adaptive routing: low-cost Adaptive networks for
multi processors’, Proc., 19" Ann., Int’'[Symp. Computer Architecture, pp.268-277, 1992
[5] J. Duato, S. Yamanchili and L. Ni, “Interconnedion retworks an engineaing approad”, Los
Alamitos, California, IEEE Computer Society Press 1997.
[6] C. Glassand L. M. Ni, “Fault-tolerant wormhoale routing in meshes without virtual channels’,
IEEE Trans. Parallel andDistributed Systems, vol. 7, no. 6,pp. 620636, June 1996.
[7] T. Lee ad J.P. Hayes, “A fault-tolerant communicaion scheme for hypercube computers’,
|EEE Transactions on Computer, vol. C-41, no. 10, pp. 142256,0ctober 1992.
[8] S. Park, J. Younand B. Bosg, “Fault-tolerant wormhole routing algorithms in the presence of
concave faults’, International Parallel and Distributed Processing Symposium, pp. 633-638,
May 200Q
[9] S. Park, J. Youn and B. Bose, “Wormhale routing in faulty mesh networks’, International
Conference on Parallel and Distributed Processing Tedhniques and appications, pp. 1007
1012,June 2000.
[10 C. Su and K. Shin, “Adaptive fault-tolerant deadlock-free routing in meshes and
hypercubes,” |IEEE Trans. Computers, vol. 45, no 6, pp.666-683, June 1996.
[17] P. Sui and S. Wang, “An improved agorithm for fault-tolerant wormhole routing in
meshes,” IEEE Trans. Computers, vol. 46, no. 9,pp. 1040-1042,September 1997.

[12] J. Youn, B. Bose and S. Park, “Fault-Tolerant Communication in Meshes with Some
Noncornvex Faults’, International Conference on Comrrunications in Computing, pp. 233
239,June 2000.

15



