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Regions of Backprojection and Comet Tail Artifacts for π-Line Reconstruction
Formulas in Tomography∗
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Abstract. We explore two characteristic features of x-ray computed tomography inversion formulas in two and
three dimensions that are dependent on π-lines. In such formulas the data from a given source
position contribute only to the reconstruction of f(x) for x in a certain region, called the region
of backprojection. The second characteristic is a certain small artifact in the reconstruction called
a comet tail artifact. We propose that the comet tail artifact is closely related to the boundary
of the region of backprojection and make this relationship precise, developing a general theory of
the region of backprojection, its boundary, and the location of the artifact in helical and fan-beam
tomography. This theory is applied to a number of specific examples and confirmed by numerical
experiments. Furthermore it is demonstrated that a strong comet tail artifact appears in numerical
reconstructions from misaligned fan-beam data. A numerical method for using the artifact to find
the correct alignment is suggested.
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1. Introduction. The advent of exact and feasible inversion formulas for helical x-ray
tomography [9, 18, 19] has generated much interest in applications and research. In this
paper we investigate two features of these so-called π-line reconstruction formulas and their
two-dimensional (2D) analogues [1, 13, 12, 20]. The first is a distinctive feature of π-line
reconstruction formulas, namely that data from a given x-ray source position y(s) contribute
only to the reconstruction of f(x) for points x in a certain region, called the region of backpro-
jection. The second feature is a usually small but characteristic artifact in the reconstruction,
called a comet tail artifact, which is illustrated in Figure 1. Here an artifact, originating from
the reconstructed smooth function, resembles the appearance of a comet’s tail. The size of
the error of the comet tail artifact is not large, and it does not affect the rate of convergence
of our numerical implementation. In Figure 1 the gray scale is chosen especially to make the
artifact clearly visible. Our aim is to better understand why the comet tail artifact occurs
and to determine where it will occur.

The paper is organized as follows. In the remainder of this section the definitions and
some examples of π-lines, π-intervals, and π-line reconstruction formulas are given.

In section 2 a heuristic principle for determining the location of the comet tail artifact
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1160 RYAN HASS AND ADEL FARIDANI
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Figure 1. Left: Original smooth function given by (7.11) with x0 = (−1,−1, 0), a1 = .3, a2 = .3, a3 =
2, m = 3, and ψ = 0. Displayed in the plane x3 = 0. Right: 3D reconstruction by (1.10) displayed in the plane
x3 = 0 with a comet tail artifact present. The image is displayed with a gray scale [−1E−4, 1E−4] in order to
highlight the artifact. Reconstruction with parameters P = 2560, Q = 579, D = 6, R = 3, and h = .274/(2π).
For the meaning of these parameters see (1.1) and section 7.

is given which relates the location of the artifact to the boundary of the region of backpro-
jection. Then some general properties of the region of backprojection and its boundary are
proved which yield a useful reformulation of the heuristic principle and also reveal a close
connection between the location of the comet tail artifact and the support of the “Hilbert
image” of (1.9) below. The section closes with some specific cases where the general theory
simplifies.

Sections 3 and 4 are devoted to specific results and applications in three and two di-
mensions, respectively. Section 3 details the appearance of the comet tail artifact in three-
dimensional (3D) helical tomography. In this case the region of backprojection and its bound-
ary are collections of π-lines. The presentation of the results is greatly eased by the use of
certain surfaces of π-lines, called chips in [7], instead of planes.

In section 4 the region of backprojection in 2D fan-beam tomography is constructed for
a number of specific families of π-lines, the support of the comet tail artifact is determined
according to the theory of section 2, and the results are confirmed with numerical experiments.

If the x-ray data are misaligned, π-line reconstruction formulas yield large comet tail arti-
facts. In section 5 this particular sensitivity of π-line reconstruction formulas with respect to
data misalignment is explored in the 2D case, including the possibility of using this sensitivity
to determine the correct data alignment.

A summary and discussion are presented in section 6, and section 7 provides some back-
ground on our numerical implementation of the reconstruction formula (1.10) for the experi-
ments presented in this paper.

1.1. π-lines and π-intervals. In x-ray tomography one measures the attenuation of an
x-ray beam that passes through the object. The mathematical model used in this paper is
given by the divergent beam transform

Df(y,θ) =
∫ ∞

0
f(y + tθ) dt.
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COMET TAIL ARTIFACTS IN COMPUTED TOMOGRAPHY 1161

y(s)
y(sb(x))

y(st(x))

x
Iπ(x)

Figure 2. The π-line for x is shown as the line segment between y(sb(x)) and y(st(x)).

The function f is the linear x-ray attenuation coefficient of the object, the point y is the
position of the x-ray source, and the unit vector θ gives the direction of the ray. This model
assumes a monochromatic x-ray beam and neglects the effects of scatter and the finite size of
both the x-ray tube focal spot and the detector pixel. We assume a mode of data acquisition
where the x-ray source moves on a curve y(s). While π-line reconstruction formulas have also
been developed for more general classes of scanning curves [11, 16], in this article the following
specific curves are considered. In three dimensions we assume y(s) to be a helix

(1.1) y(s) = (R cos(s), R sin(s), hs)

with radius R and pitch h. In two dimensions we assume y(s) to be a circle with radius R,

(1.2) y(s) = (R cos(s), R sin(s)).

In the 2D case let S denote the interior of the circle (1.2) and in three dimensions the open
helix cylinder S = {(x, y, z) ∈ R3 : x2 + y2 < R2} corresponding to (1.1). In both cases we
assume the support of f to be contained within S.

Definition 1.1. Let L(a,b) denote the line segment connecting points a and b. A π-line
is a line segment L(y(sb),y(st)) connecting two points y(sb), y(st) on the source curve such
that 0 < st − sb < 2π. A π-line for a point x ∈ S is a π-line Lπ(x) = L(y(sb(x)),y(st(x)))
that contains the point x. We call

Iπ(x) = [sb(x), st(x)]

the π-interval or the parametric interval of x.
The condition 0 < st − sb < 2π means that in the 3D case, y(sb(x)) and y(st(x)) are

separated by no more than one turn of the helix; cf. Figure 2. The name of the line segment
comes from the fact that the data from the source positions on the curve segment between
y(sb(x)) and y(st(x)) provide views of the point x over a 180 degree angular range, as is also
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1162 RYAN HASS AND ADEL FARIDANI

y(sb(x))

y(st(x))

x

Figure 3. Orthogonal-long π-lines.

evident from Figure 2. In two dimensions y(s) is 2π-periodic, and one identifies s and s± 2π.
In this case Iπ(x) denotes the values of s for which y(s) lies on the circular arc traversed by
beginning at y(sb(x)) and moving counterclockwise to y(st(x)).

The following remarkable theorem shows that in the case of the helix the π-lines are
uniquely determined.

Theorem 1.2. Let y(s) be given by (1.1) and let S be the helix cylinder. Then for any point
x ∈ S there is a unique π-line containing x.

Proof. See [2, 7].
On the other hand, in the 2D case with x in the interior of the circle (1.2), every line

through x would give rise to a π-line for x. We then assume that a specific π-line Lπ(x) =
L(y(sb(x)),y(st(x))) has been selected for each x and will refer to Lπ(x) as the π-line of x.
We will consider three initial examples.

Orthogonal-long π-lines. The first family of π-lines we consider are orthogonal-long π-
lines; cf. Figure 3. For the π-line of x ∈ S we take the line through x that is perpendicular
to the line segment from the origin to x. The π-line divides the circle into two arcs, and the
π-interval of x is chosen to correspond to the longer arc. Let x have polar coordinates (ρ, θ);
then the orthogonal-long π-line interval is given by

(1.3) sb(x) = θ + γ, st(x) = θ − γ, where γ = arccos(ρ/R).

We let Iπ(0) = [−π/2, π/2] and note that sb(x) and st(x) are continuous for x ∈ S\{0}, but
are not continuous at the origin.

Fan-type π-lines. This family of π-lines is given by

Iπ(x) = [sb(x), 2π],

sb(x) = π − 2α∗(0,x).
(1.4)

Here α∗(0,x) denotes the angle between the two rays with vertex y(0) that pass through
x and through the origin, respectively, as illustrated in Figure 4.
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COMET TAIL ARTIFACTS IN COMPUTED TOMOGRAPHY 1163

x

y(0)

y(sb(x))

α∗(0,x)

Figure 4. Construction of fan-type π-lines from (1.4).

The construction of the π-line at x follows from Figure 4; that is, one takes the line from
y(0) through x. We call this a fan-type family of π-lines.

Parallel π-lines. The third family of π-lines are parallel π-lines, where the π-line of x is
given by the line through x that is parallel to the y-axis. If x = (x, y), then

(1.5) Iπ(x) = [−α,α], α = arccos(x/R).

Definition 1.3. A family of π-lines is called nonintersecting if any two π-lines either coincide
or do not intersect in S. Equivalently, this means that

(1.6) for all x,x′ ∈ S : x ∈ Lπ(x
′) if and only if x′ ∈ Lπ(x).

The π-lines of the helix as well as the 2D fan-type and parallel π-lines are nonintersecting,
while the orthogonal-long π-lines are not.

1.2. π-line reconstruction formulas.
Definition 1.4. A π-line reconstruction formula uses for reconstruction at a point x only

data from sources y(s) with s in the π-interval of x.
Two fundamental types of π-line reconstruction formulas are backprojection-filtration and

filtered backprojection. The backprojection filtration formula can in principle be derived as
follows.

Definition 1.5. For a sufficiently smooth function f of compact support in Rn the Hilbert
transform in direction θ at the point x is given by

(1.7) Hθf(x) =
1

π

∫ ∞

−∞
f(x− tθ)

t
dt,

where the integral is understood in the principal value sense.
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1164 RYAN HASS AND ADEL FARIDANI

The following relationship between the Hilbert transform and the divergent beam trans-
form was first found in [4] and later rediscovered and applied to tomography; see, e.g., [19, 18]
or [1]. Let

(1.8) β = β(s,x) =
x− y(s)

|x− y(s)| .

Then

(1.9) Hβ(st(x),x)f(x) =
1

2π

∫
Iπ(x)

1

|x− y(s)|
∂

∂q
Df(y(q),β(s,x))

∣∣∣∣
q=s

ds.

The Hilbert transform on the left-hand side of (1.9) is taken along the π-line of x. In
practice it is computed for points x on a finite segment of a π-line and then needs to be
inverted in order to obtain the values of f(x) on that segment. This reconstruction method
is known as backprojection-filtration.

Katsevich [9] found an ingenious way to invert by filtering the derivative of the data in a
carefully chosen plane before backprojecting. This yields the filtered backprojection formula

(1.10) f(x) =
1

2π2

∫
Iπ(x)

1

|x− y(s)|
∫ 2π

0

∂

∂q
Df(y(q), cos γβ + sin γβ⊥)

∣∣∣∣
q=s

1

sin γ
dγ ds,

where β is given again by (1.8).
In three dimensions this is Katsevich’s inversion formula [9] for helical tomography. In

this case β⊥ is defined as follows [9]. For each s ∈ Iπ(x) we have a unique s2 ∈ Iπ(x) such
that x lies in a so-called κ-plane that intersects the helix at y(s), y(s1), and y(s2), where
s1 = (s + s2)/2. Now β⊥ is chosen as a unit vector orthogonal to β such that the κ-plane is
spanned by β and β⊥.

Remarkably, both (1.9) and (1.10) also hold in two dimensions. In (1.10) β⊥ is in this
case given by β⊥ = (−β2, β1); cf. [3, Theorem 1]. We always assume the density function f
to be sufficiently smooth for (1.9) and (1.10) to hold.

While (1.9) holds for all families of π-lines, using it for the backprojection filtration re-
construction method as described above will be computationally most efficient for families
of π-lines that are nonintersecting in the sense of (1.6). On the other hand, the computa-
tional efficiency of the filtered backprojection formula (1.10) is not affected by the lack of this
property.

2. Region of backprojection. The distinctive feature of π-line reconstruction formulas
is that for reconstruction at a point x only data from source positions from the π-interval
of x are used. Viewed another way, this means that data from a given source position y(s)
contribute only to the reconstruction of f(x) for points x in a certain region. This region,
denoted by RBP (s), is called the region of backprojection for y(s). In this section we first
formulate a heuristic principle for determining the location of the comet tail artifact, which
is closely related to the boundary of the region of backprojection. Then a number of general
properties of the region of backprojection and its boundary are proved. These allow a useful
reformulation of the heuristic principle and also reveal a close connection between the location
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COMET TAIL ARTIFACTS IN COMPUTED TOMOGRAPHY 1165

of the comet tail artifact and the support of the Hilbert image of (1.9). The following two
sections are then devoted to specific results and applications in two and three dimensions,
respectively.

Definition 2.1. We call RBP (s) = {x ∈ S | s ∈ Iπ(x)} the region of backprojection of
position y(s). Let ∂RBP (s) denote the boundary of RBP (s).

A point x is in the region of backprojection if the current source position is in the point’s
π-interval. The boundary of RBP (s) is the feature of interest. It represents the cutoff of the
points where data from position y(s) contribute to the reconstruction. This cutoff is the cause
of the comet tail artifact, and a heuristic principle for identifying the location of the comet
tail artifact can be formulated as follows. Suppose the support of f is a small region around
x0, e.g., f is an approximate δ-function centered at x0. Then for a given s, the filtered x-ray
data will be large for the line connecting x0 to y(s), and a contribution to the artifact will
occur at the intersection of this line with ∂RBP (s). This motivates the following definition.

Definition 2.2. For x0 ∈ S we define the set Γx0 by

Γx0 = {x ∈ S | ∃s : x ∈ ∂RBP (s) and x0, x, and y(s) are collinear}.(2.1)

Loosely speaking, the points in Γx0 are where the comet tail artifact would occur if f were
given by f(x) = δ(x − x0). For a proper function f the location of the full artifact is then
given by

(2.2) Γ =
⋃

x0∈supp(f)
Γx0 .

In order to more easily identify the region of backprojection and Γx0 for various families
of π-lines we now explore some general properties of the region of backprojection and its
boundary. These properties of RBP (s) will require continuity of sb and st. Let Sc denote the
set

Sc = {x ∈ S : sb and st are continuous at x}.
Proposition 2.3. For all x ∈ Sc one has x ∈ ∂RBP (sb(x)) ∪ ∂RBP (st(x)).
The proposition asserts that x ∈ Sc cannot lie outside both ∂RBP (sb(x)) and ∂RBP (st(x)).
Before proving Proposition 2.3 we investigate under what conditions one may have x �∈

∂RBP (sb(x)) or x �∈ ∂RBP (st(x)) for some x ∈ Sc. An example for x �∈ ∂RBP (st(x)) is
provided by the fan-type π-lines defined above. Since st(x) = 2π for all x ∈ S, RBP (2π) = S
and S ∩ ∂RBP (2π) = ∅. Thus x �∈ ∂RBP (st(x)) for all x ∈ S.

Lemma 2.4. Let x ∈ Sc. If x �∈ ∂RBP (sb(x)), then sb has a local maximum at x. If
x �∈ ∂RBP (st(x)), then st has a local minimum at x.

Proof. Since sb(x) ∈ Iπ(x), one has x ∈ RBP (sb(x)). If x �∈ ∂RBP (sb(x)), then there
is a neighborhood of x that is contained in RBP (sb(x)). This means that for all points
x′ in this neighborhood, one has sb(x) ∈ Iπ(x

′) = [sb(x
′), st(x′)]. In case of the 3D helix

this directly implies sb(x) ≥ sb(x
′) as desired. In the 2D case the continuity of sb at x

implies that there is a neighborhood of x where |sb(x) − sb(x
′)| is sufficiently small. In such

a neighborhood the condition sb(x) ∈ Iπ(x
′) does imply sb(x) ≥ sb(x

′). In this context we
understand sb(x) ≥ sb(x

′) in the sense that y(sb(x)) is obtained from y(sb(x
′)) by a small

counterclockwise rotation. The proof for st is entirely analogous.
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1166 RYAN HASS AND ADEL FARIDANI

We now present the proof of Proposition 2.3.
Proof. We first show that in the case of the helix the functions sb(x), st(x) have no local

extrema. The assertion then follows from Lemma 2.4 and the continuity proved in Lemma 3.5
at the end of section 3. Let x0 ∈ S be arbitrary and let t = (sb(x0) + st(x0))/2 and α =
(st(x0)−sb(x0))/2. Then Iπ(x0) = [t−α, t+α] with 0 < α < π and x0 ∈ L(y(t−α),y(t+α)) =
Lπ(x0). Let U be any open neighborhood of x0. Because of the continuity of the helical curve
y(s) there are α−, α+ sufficiently close to α with 0 < α− < α < α+ < π such that the line
segments L− = L(y(t − α−),y(t + α−)) and L+ = L(y(t − α+),y(t + α+)) intersect U . Let
x± ∈ L±∩U , respectively. Both L+ and L− are π-lines, and according to Theorem 1.2 one has
L± = Lπ(x±), respectively. Because of t− α+ = sb(x+) < t− α = sb(x0) < t− α− = sb(x−)
and t + α− = st(x−) < t + α = st(x0) < t + α+ = st(x+), it follows that neither sb(x) nor
st(x) can have a local extremum at x0.

We now turn to the 2D case where the curve y(s) is the circle (1.2) and S its interior.
Let x0 ∈ Sc be arbitrary, β = (β1, β2) the unit vector in direction of x0 − y(sb(x0)), and
β⊥ = (−β2, β1). That is, β⊥ is obtained by rotating β by 90 degrees counterclockwise. Note
that β is parallel and β⊥ perpendicular to Lπ(x0). The π-line Lπ(x0) divides S, the closure
of S, into two disjoint parts S+ and S− given by

S+ = {x ∈ S : (x− x0) · β⊥ ≥ 0},
S− = {x ∈ S : (x− x0) · β⊥ < 0}.

Assume that x0 �∈ ∂RBP (sb(x0))∪∂RBP (st(x0)). According to Lemma 2.4 this implies that
sb has a local maximum and st a local minimum at x0. Hence there is an open neighborhood
U of x0 such that sb(x) ≤ sb(x0) and st(x) ≥ st(x0) for all x ∈ U . This implies that both
y(sb(x)) and y(st(x)) lie in S+ for all x ∈ U . Since S+ is convex, the π-lines Lπ(x) =
L(y(sb(x)),y(st(x))) lie entirely in S+ for all x ∈ U . But this is a contradiction since U does
contain points in S−.

Proposition 2.5. Suppose x ∈ Sc∩∂RBP (s). Then x ∈ RBP (s) and s = sb(x) or s = st(x).
In particular, the line segment from x to y(s) is contained in the π-line of x.

Proof. Suppose x ∈ Sc lies outside RBP (s), that is, s �∈ Iπ(x) = [sb(x), st(x)]. Since Iπ is
closed and sb and st are continuous at x, the condition s �∈ Iπ(x

′) must then also hold for all
x′ in some open neighborhood of x. Hence, if x ∈ Sc∩∂RBP (s), then x ∈ RBP (s). Similarly,
the continuity of sb and st at x implies that if x ∈ Sc ∩ RBP (s) and s lies in the interior
of Iπ(x), then s will also lie in the interior of Iπ(x

′) for all x′ in some open neighborhood of
x. Hence this neighborhood is contained in RBP (s), so x does not lie on the boundary of
RBP (s). It follows that if x ∈ Sc ∩ ∂RBP (s), then either s = sb(x) or s = st(x). In either
case, the line segment from x to y(s) is contained in the π-line of x.

The next proposition provides a useful characterization of Γx0 ∩ Sc.
Proposition 2.6. For all x0 ∈ S one has

(2.3) Γx0 ∩ Sc = {x ∈ Sc | x0 ∈ Lπ(x)}.

Proof. Let x0 ∈ S be arbitrary. If x ∈ Γx0 , then by (2.1) there is s such that x ∈ ∂RBP (s)
and x,x0 and y(s) are collinear. If in addition x ∈ Sc, it follows from Proposition 2.5 that
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Lπ(x) contains both x and y(s), and therefore also x0. On the other hand, for all x ∈ Sc it
follows from (2.1) and Proposition 2.3 that if x0 ∈ Lπ(x), then x ∈ Γx0 .

As an immediate consequence one obtains the following characterization of the support of
the comet tail artifact.

Corollary 2.7. A point x ∈ Sc lies in the support Γ of the comet tail artifact if and only if
its π-line intersects the support of f .

Proof. With the set Γ as given by (2.2) and using Proposition 2.6 one has

Γ ∩ Sc =
⋃

x0∈supp(f)
Γx0 ∩ Sc

=
⋃

x0∈supp(f)
{x ∈ Sc : x0 ∈ Lπ(x)}

= {x ∈ Sc : Lπ(x) ∩ supp(f) �= ∅}.(2.4)

This in turn reveals a close connection to the support of the Hilbert image Hβ(st(x),x)f(x)
of (1.9).

Corollary 2.8. Let g(x) = Hβ(st(x),x)f(x) and x ∈ Sc. If x �∈ Γ, then g(x) = 0.
Proof. It follows from (1.9) that g(x) = 0 if the π-line of x does not intersect the support

of f . The assertion then follows from Corollary 2.7.
We conclude this section with some simplifications that occur for families of π-lines with

special properties.
Corollary 2.9. Let the family of π-lines Lπ(x),x ∈ S be nonintersecting. Then

(2.5) Γx0 ∩ Sc = Lπ(x0) ∩ Sc
for all x0 ∈ S. Consequently, Γ∩Sc equals the intersection of Sc with the union of all π-lines
that intersect the support of f .

Proof. It follows from the hypothesis that x0 ∈ Lπ(x) if and only if x ∈ Lπ(x0). The
assertion now follows from Proposition 2.6 and (2.2).

It has already been mentioned that the fan-type π-lines are an example of where the
converse of Proposition 2.5 does not hold. We call those families of π-lines for which it does
hold boundary-regular.

Definition 2.10. A family of π-lines is called boundary-regular if

for all x ∈ Sc : x ∈ ∂RBP (s) ⇔ s ∈ {sb(x), st(x)}
⇔ y(s) ∈ Lπ(x).

It follows from Lemma 2.4 and Proposition 2.5 that a family of π-lines will be boundary-
regular if sb has no local maxima and st no local minima in Sc. For the helix these conditions
were verified in the proof of Proposition 2.3, so the π-lines of the helix are boundary-regular.
It is easy to see, as shown in the next section, that the orthogonal-long and parallel π-lines
are also boundary-regular, while we have already seen that the fan-type π-lines are not.

Proposition 2.11. Let the family of π-lines Lπ(x), x ∈ S, be nonintersecting and boundary-
regular. Then Sc ∩ ∂RBP (s) equals the intersection of Sc with the union of all π-lines that
contain y(s).
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Proof. LetM(s) denote the union of all π-lines Lπ(x
′), x′ ∈ S, that contain y(s). It follows

immediately from Proposition 2.5 that Sc ∩ ∂RBP (s) ⊆ M(s). Now assume x ∈ Sc ∩M(s).
Then there is x′ ∈ S such that Lπ(x

′) contains both x and y(s). Since the family of π-lines is
nonintersecting, Lπ(x

′) = Lπ(x). Hence y(s) ∈ Lπ(x), so s ∈ {sb(x), st(x)}. Since the family
of π-lines is boundary-regular, it follows that x ∈ ∂RBP (s).

3. Helical scanning trajectories. In this section we describe the support of the comet
tail artifact and the region of backprojection for the 3D helical scanning trajectory. The
source curve is the helix (1.1); i.e., y(s) = (R cos(s), R sin(s), hs) and S now denotes the helix
cylinder S = {(x, y, z) ∈ R3 : x2 + y2 < R2}.

Theorem 3.1. The family of π-lines for the helix is nonintersecting and boundary-regular
with Sc = S. ∂RBP (s) ∩ S equals the intersection of S with the union of all π-lines that
contain y(s). The set Γx0 ∩ S is given by the intersection of S with the π-line of x0, and the
support Γ of the comet tail artifact equals the intersection of S with the union of all π-lines
that intersect the support of f .

Proof. Theorem 1.2 implies that the π-lines are nonintersecting. It follows from Lemma 2.4
and Proposition 2.5 that a family of π-lines will be boundary-regular if sb has no local maxima
and st no local minima in Sc. For the helix these conditions were verified in the proof of
Proposition 2.3, so the π-lines of the helix are boundary-regular. Lemma 3.5, proved at the
end of this section, gives Sc = S. The remaining assertions now follow from Corollary 2.9 and
Proposition 2.11.

As observed in [15], the π-lines containing y(s) form an upper surface SU and a lower
surface SL given by

SU =
⋃

0<α<2π

L(y(s),y(s + α)),

SL =
⋃

0<α<2π

L(y(s − α),y(s))

so that
∂RBP (s) = SU ∪ SL.

The region of backprojection RBP(s) is then the region between these two surfaces. Further-
more, the symmetry of the helix implies that RBP (s) will be a rotated and translated copy
of RBP (0).

The intersections of the region of backprojection and of the support of the comet tail
artifact with a plane turn out to be somewhat complicated. For example, as seen in Figure 5,
RBP (s) ∩ {x3 = 0} changes its size and shape as s varies. Similarly, the simple structure of
the support of the comet tail artifact being a union of π-lines is not readily apparent from
its intersection with the plane x3 = 0 as shown in Figure 1 (right) and also in Figure 7 (left)
below. Nevertheless, an analytical expression for the intersection of ∂RBP with a horizontal
plane can be given.

Proposition 3.2. Let y(s) denote the helix y(s) = (R cos s,R sin s, hs) and Π(s0) the plane
x3 = hs0. Let

Ks(t) =
1

s− t
((s − s0)y(t) − (t− s0)y(s)).
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RBP (−4)

-2 -1 0 1 2

-2

-1

0

1

2

RBP (−1)

-2 -1 0 1 2

-2

-1

0

1

2

RBP (2)

-2 -1 0 1 2

-2

-1

0

1

2

RBP (3)

-2 -1 0 1 2

-2

-1

0

1

2

Figure 5. Region of backprojection for the 3D formula (white) for helix π-lines for the plane x3 = 0 with
R = 3.

Then

(3.1) ∂RBP (s) ∩Π(s0) ∩ S =

{ {Ks(t), s− 2π < t < s0} if s0 < s < s0 + 2π,
{Ks(t), s0 < t < s+ 2π} if s0 − 2π < s < s0.

Proof. ∂RBP (s) is the union of all π-lines that pass through y(s). The intersection of
this family of π-lines with the plane Π(s0) defines the desired curve. Let s0 < s < s0 + 2π. A
π-line passing through y(s) and intersecting Π(s0) will intersect the source curve at a point
y(t) for s− 2π ≤ t ≤ s0. The line segment connecting y(s) and y(t) is given by

(1− u)y(s) + uy(t), 0 ≤ u ≤ 1.

This line segment intersects the plane Π(s0) for the value of u for which (1−u)hs+uht = hs0,
that is, for u = (s− s0)/(s − t). This gives

(1− u)y(s) + uy(t) =
1

s− t
((s0 − t)y(s) + (s− s0)y(t)) = Ks(t).

The case of s0 − 2π < s < s0 follows in the same way.
One observes that the endpoints of the curve (3.1) are Ks(s0) = y(s0) and Ks(s± 2π) =

(R cos(s), R sin(s), hs0), the latter being the orthogonal projection of y(s) onto Π(s0). The
curve divides S ∩ Π(s0) into two regions. The region not containing the line connecting the
two endpoints is RBP (s) ∩Π(s0); cf. Figure 5.
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More insight can be gained from studying the intersections of the region of backprojection
and the artifact with the following surfaces, called chips, that are unions of π-lines and are
adapted to the geometry of the helix.

Definition 3.3. The chip anchored at y(t), denoted by C(t), is the portion within the helix
cylinder S of the union of all π-lines with endpoints equidistant along the helix from y(t).
That is,

C(t) = S ∩
⋃

α∈(0,π)
L(y(t− α),y(t + α))

= {x ∈ S|Iπ(x) = [t− α, t+ α], α ∈ (0, π)}.(3.2)

The line joining y(t) to (0, 0, ht) is called the chip axis.
Chips were originally introduced in [7] and used in an algorithm to calculate the π-interval

endpoints for any point in S. It was shown in [7] that every point in S belongs to a unique
chip C(t) and that

(3.3) (y(t+ α)− y(t− α)) · ((0, 0, ht) − y(t)) = 0,

i.e., all π-lines in a chip are orthogonal to the chip axis. Chips are also very convenient for
implementing the backprojection-filtration reconstruction method based on (1.9); cf. [5].

The intersection of RBP (s) with chip C(t) is now conveniently described.
Lemma 3.4. Let C(t) be the chip anchored at t. Then

RBP (s) ∩ C(t) = S ∩
⋃

|t−s|≤α<π

L(y(t− α),y(t + α))

and

(3.4) ∂RBP (s) ∩ C(t) = S ∩ L(y(t− α0),y(t + α0)), α0 = |t− s| < π.

Proof.

RBP (s) ∩ C(t) = {x ∈ C(t) | s ∈ Iπ(x)}
= {x ∈ C(t) | Iπ(x) = [t− α, t+ α], |t − s| ≤ α < π},
= S ∩

⋃
|t−s|≤α<π

L(y(t− α),y(t + α));

see also Figure 9. Furthermore,

x ∈ C(t) ∩ ∂RBP (s) ⇔ x ∈ C(t) and s ∈ {sb(x), st(x)}
⇔ Iπ(x) = [t− α0, t+ α0], 0 < α0 = |t− s| < π.

If, for example, s < t, then according to (3.4) the intersection of the boundary of the
region of backprojection RBP (s) with the chip C(t) is the π-line from y(s) to y(2t− s).

As s increases from t− π to t+ π, the region of backprojection for the chip C(t) expands
from y(t − π) to the chip’s anchor point y(t) and then retracts, as illustrated in Figure 6.
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RBP (−2)

•y(0)

RBP (.75)

•y(0)

Figure 6. On each chip, RBP (s) expands toward the anchor point and then retracts as s traverses the
interval [t− π, t+ π]. Shown is RBP (s) ∩ C(0).

x3 = 0

-2 -1 0 1 2

-2

-1

0

1

2

C(.4)

• y(.4)

-2 -1 0 1 2

-2

-1

0

1

2

Figure 7. Left: 3D reconstruction with (1.10) in the plane x3 = 0. The reconstructed function is (7.11)
with x0 = (−1,−1, 0), a1 = .3, a2 = .3, a3 = 2, m = 3, and ψ = 0. Reconstructed with P = 2560, Q = 579,
R = 3, D = 6, and p = .274. The image grayscale range is [−1E − 4, 1E − 4]. Right: Same function as before
but reconstructed on the chip C(.4).

Figure 7 (right) shows the reconstruction on the chip C(.4) instead of the plane x3 = 0.
Now the structure of the support Γ of the artifact as the set of all π-lines that pass through the
support of the function is readily apparent. Here the π-lines on the chip C(.4) are orthogonal
to the chip axis that passes through the point y(.4) as shown in (3.3).

The reconstructions shown in this paper are based on the filtered backprojection formula
(1.10) as described in section 7 below. In particular, the backprojection step has been imple-
mented using formulas (63) and (64) in [14]. The images shown in Figure 8 demonstrate that
the comet tail artifact does not depend on this one particular discretization of the backpro-
jection step and also occurs in reconstructions with the backprojection-filtration approach.
Figure 8 (left) shows the same reconstruction as in Figure 7 (left), except that the backpro-
jection has been implemented differently, this time according to formulas (57) and (58) in
[14] instead of formulas (63) and (64). Figure 8 (right) corresponds to Figure 7 (right), the
reconstruction being done this time with the backprojection-filtration approach. In both cases
the comet tail artifact remains present at the expected locations.

We conclude this section by proving the continuity of sb and st.
Lemma 3.5. For the helix, sb(x) and st(x) are continuous functions of x ∈ S.
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x3 = 0

-2 -1 0 1 2

-2

-1

0

1

2

C(.4)

-2 -1 0 1 2

-2

-1

0

1

2

Figure 8. Left: Same image as in Figure 7 (left) but reconstructed with an alternative discretization of the
backprojection. Right: Reconstruction on the chip C(.4) from the same data as in Figure 7 (right) but with the
backprojection-filtration approach.

y(t+ α)

y(t)

y(t− α)

rR

ρ
α

θ

x

Figure 9. C(t) projected onto the xy-plane.

Proof. As shown in [7], every point in S belongs to a unique chip C(t), and each point
x ∈ C(t) may be written as

(3.5) x =

(
ρ cos(θ + t), ρ sin(θ + t), h

(
t+

(ρ/R) sin θ cos−1 ((ρ/R) cos θ)√
1− (ρ/R)2 cos2 θ

))

for some 0 ≤ ρ < R, θ ∈ [−π, π); cf. Figure 9. Thus the chips provide a natural decomposition
of S and introduce a new coordinate system (t, ρ, θ).

Now let x ∈ C(t) with chip coordinates (t, ρ, θ) with respect to the representation (3.5).
Suppose xn → x where xn has chip coordinates (tn, ρn, θn). It follows from (3.5) that as
n→ ∞, (tn, ρn, θn) → (t, ρ, θ), provided that ρ, ρn < R for all n.

Now sb(x) = t−α = t−arccos(ρ cos(θ)); cf. Figure 9. Let zn ∈ C(t) with chip coordinates
(t, ρn, θn). Then |sb(x) − sb(xn)| ≤ |sb(x) − sb(zn)| + |sb(zn) − sb(xn)| = | arccos(ρ cos(θ)) −
arccos(ρn cos(θn))|+ |t− tn|. Hence |sb(x)− sb(xn)| → 0 as n→ ∞. The continuity of st can
be shown in the same way.
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Parallel π-lines

-2 -1 0 1 2

-2

-1

0

1

2

Radial π-lines

-2 -1 0 1 2

-2

-1

0

1

2

Figure 10. Left: Comet tail artifact for parallel π-lines. Right: Comet tail artifact for radial π-lines. Both
images reconstructed using formula (1.10) in the form (7.5) with P = 2560, Q = 668, R = 3, and D = 6. The
image grayscale range is [−8E − 5, 8E − 5], chosen to display the artifact. The reconstructed function is (7.11)
with x0 = (−1,−1), a1 = .3, a2 = .3, m = 3, and ψ = 0.

4. Fan-beam geometry. This section is devoted to the 2D case, with y(s) given by the
circle (1.2) and S the interior of the circle. In the following we examine the region of back-
projection and the support of the comet tail artifact for several families of π-lines.

For the parallel π-lines defined by (1.5) it is easy to see that they are nonintersecting and
that sb and st are continuous in S and have no local extrema. So the family is boundary-
regular and Sc = S. By Proposition 2.11, ∂RBP (s) is the intersection of S with the π-line
containing y(s), that is, with the vertical line passing through y(s). By the definition (1.5)
of the π-intervals, RBP (s) is the part of S to the left of that line, i.e., RBP (s) = {(x, y) ∈
S | x ≤ R cos(s)}. As s increases from −π to π, the region of backprojection expands from the
left toward the point (R, 0) and then retracts. We have seen similar behavior with the helix
chips in section 3; cf. Figures 6 and 9. By Corollary 2.9 the comet tail artifact appears along
all π-lines that intersect the support of f . The numerical experiment shown in Figure 10 (left)
confirms this finding.

The radial π-lines are given by taking the line through x and the origin, together with the
π-interval [θ, θ + π], where θ is the polar angle of x. For x = 0 we choose the x-axis as the
π-line with the π-interval [0, π]. This family of π-lines is boundary-regular with Sc = S\{0}.
The nonintersection property (1.6) holds for x,x′ �= 0. It follows by direct inspection that
Sc ∩ RBP (s) is the intersection of Sc with the half-plane x · y(s)⊥ ≤ 0, where y(s)⊥ equals
y(s) rotated counterclockwise by 90 degrees. Hence ∂RBP (s) equals the intersection of S
with the line through y(s) and the origin. The origin itself is always contained in ∂RBP (s)
but lies in RBP (s) only for the values s ∈ Iπ(0) = [0, π]. By (2.1) one has for x0 �= 0 that
Γx0 = S ∩ Lπ(x0) and Γ0 = S. The comet tail artifact will thus appear along all π-lines
that intersect the support of f , which is illustrated in the numerical experiment in Figure 10
(right). If the support of f contains the origin, then the artifact will appear everywhere in S.

For the fan-type π-lines one has Sc = S and RBP (0) = S. For s �= 0 the line segment
L(y(0),y(s)) divides S into two regions; cf. Figure 4. It follows directly from (1.4) that
RBP (s) corresponds to the region bounded by this line segment and the arc {y(t), 0 ≤ t ≤ s}.
Since the fan-type π-lines are nonintersecting, according to Corollary 2.9 the comet tail artifact
will again appear along all π-lines that intersect the support of f .
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D(0)

y(0)

Figure 11. The region of backprojection for orthogonal-long π-lines is the region inside S and outside the
open disk D(s) = {x : |x− y(s)/2| < R/2}, shown here for s = 0. The exceptional point x = 0 lies in RBP (s)
only for s ∈ Iπ(0) = [−π/2, π/2].

The next few families of π-lines lack the nonintersection property, and determination of
RBP (s) and Γ is less immediate. We begin with the orthogonal-long π-lines.

Theorem 4.1. The orthogonal-long family is boundary-regular with Sc = S\{0}. The set
Γx0 is the circle centered at x0/2 with radius |x0/2|. The region of backprojection is given by

RBP (s) ∩ Sc = {x ∈ Sc : |x− y(s)/2| ≥ R/2};
cf. Figure 11. The exceptional point x = 0 lies on ∂RBP (s) for all s, in RBP (s) for s ∈
Iπ(0) = [−π/2, π/2], and in Γx0 for all x0 ∈ S.

We first establish an auxiliary result about the nesting of orthogonal-long π-intervals.
Lemma 4.2. Let 0 < t < 1 and 0 �= x ∈ S. Then Iπ(tx) � Iπ(x).
Proof. Let x have polar coordinates (ρ, θ). Recall that the orthogonal-long π-intervals

are defined by (1.3), i.e., sb(x) = θ + γ and st(x) = θ − γ, where γ = arccos(ρ/R). Hence
sb(tx) = θ + arccos(tρ/R) > θ + arccos(ρ/R) = sb(x) and st(tx) = θ − arccos(tρ/R) <
θ − arccos(ρ/R) = st(x). Thus Iπ(tx) � Iπ(x).

We can now prove Theorem 4.1.
Proof. It follows directly from (1.3) that Sc = S\{0}. Lemma 4.2 implies that sb and st

have no local extrema in Sc, so by Lemma 2.4 and Proposition 2.5 the orthogonal-long π-lines
are boundary-regular. Because of boundary-regularity one has for x �= 0

x ∈ ∂RBP (s) ⇔ y(s) ∈ Lπ(x) ⇔ x ⊥ (x− y(s)) ⇔ |x− y(s)/2| = |y(s)|/2.
The orthogonality of x and (x− y(s)) comes from the π-lines being orthogonal to x for this
family. The last equivalence is evident from the calculation

|x− y(s)/2|2 = x · (x− y(s)) + |y(s)|2/4.
Hence ∂RBP (s) is the circle with center y(s)/2 and radius |y(s)|/2 = R/2, and direct in-
spection shows that the points inside this circle lie outside the region of backprojection, so
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Orthogonal-long π-lines
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Support of Artifact
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Figure 12. Left: Comet tail artifact for orthogonal-long π-lines by (1.10). Reconstructed with formula (7.8)
with P = 2560, Q = 668, R = 3, and D = 6. The image grayscale range is [−8E−5, 8E−5]. The reconstructed
function is (7.11) with x0 = (−1,−1), a1 = .3, a2 = .3, m = 3, and ψ = 0. Right: Support Γ of comet tail
artifact predicted by Theorem 4.1.

RBP (s) ∩ Sc = Sc\D(s). A very similar argument applies for Γx0 : According to Proposi-
tion 2.6 one has for x �= 0 that

x ∈ Γx0 ⇔ x0 ∈ Lπ(x) ⇔ x ⊥ (x− x0) ⇔ |x− x0/2| = |x0|/2.
For ε positive and sufficiently small one observes that εy(s) �∈ RBP (s) while −εy(s) ∈
RBP (s). Hence the point x = 0 lies in ∂RBP (s) for all s. It then follows from (2.1) that
0 ∈ Γx0 for all x0 ∈ S. Finally, by definition, 0 ∈ RBP (s) for s ∈ Iπ(0) = [−π/2, π/2].

For an alternative, entirely geometric proof for the set Γx0 , see [5, Theorem 4.13].
Theorem 4.1 predicts that the support of the comet tail artifact for the orthogonal-long

π-lines is a union of circles centered halfway between a point in the object and the origin.
Figure 12 demonstrates that the artifact for the orthogonal-long π-lines is located where our
theory predicts.

The orthogonal-long π-lines are a special case of the tilted-long π-lines where the radial
ray through x and the π-line of x have a fixed angle of intersection ψ, 0 < ψ < π, as shown in
Figure 13. The tilted-long π-line of a point x �= 0 is the orthogonal-long π-line for the point
x′ = Ax, where A is the matrix

(4.1) A = sin(ψ)

[
sin(ψ) − cos(ψ)
cos(ψ) sin(ψ)

]
, 0 < ψ < π;

see Figure 13. We derive Ax as the rotation of x by ψ−π/2 and dilated by sin(ψ). For x = 0
we define Iπ(0) = [−π/2, π/2].

Corollary 4.3. For the tilted-long family, one has Sc = S\{0} and

RBP (s) ∩ Sc =
{
x ∈ Sc : |x−A−1y(s)/2| ≥ R

2 sinψ

}
.

The set Γx0 is the intersection of S with the circle centered at A−1x0/2 with radius
|A−1x0/2| = |x0|/(2 sinψ).

The exceptional point x = 0 lies on ∂RBP (s) for all s, in RBP (s) for s ∈ Iπ(0) =
[−π/2, π/2], and in Γx0 for all x0 ∈ S.
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y(sb(x))

y(st(x))

x

x′ ψ

y(sb(x
′))

y(st(x
′))

Figure 13. Orthogonal-long and tilted-long π-lines.

Proof. The corollary follows in a straightforward way from Theorem 4.1 by utilizing that
the π-interval and π-line of x are the orthogonal-long π-interval and π-line of Ax, respectively,
as well as the relation AT = sin2 ψA−1, which implies that |Ax−b| = sinψ |x−A−1b|.

The final family of π-lines to be considered here are the projected helix π-lines. These
are given by taking the corresponding values of sb and st for the 3D helix and points in the
x3 = 0 plane, modulo 2π. That is, sb(x) = sHb (x) + 2π, st(x) = sHt (x). Here the superscript
H denotes the 3D helical case, and one identifies points in S ⊂ R2 with the corresponding
points in the x3 = 0 plane in R3. The radius of the helix is taken to be equal to the radius
of the circle. For x in the x3 = 0 plane, sHt (x) and sHb (x) are independent of the helix pitch
[3]. Since sb(x) > st(x), one has Iπ(x) = [sb(x), 2π) ∪ [0, st(x)] for all x ∈ S. In particular,
0 ∈ Iπ(x) for all x ∈ S, so

RBP (0) = S.

For s �= 0, one has

RBP (s) = {x ∈ S : s ∈ Iπ(x)}
= {x ∈ S : s+ 2πk ∈ [sHb (x), sHt (x)] for some integer k}
= (RBPH(s) ∪RBPH(s− 2π)) ∩ S.

The region of backprojection can now be obtained from Proposition 3.2. Let

(4.2) Ks(t) =
1

s− t
(sy(t)− ty(s))

be the 2D analogue of the function Ks(t) in Proposition 3.2. From (3.1) with s0 = 0, one
obtains

(4.3) ∂RBP (s) ∩ S = {Ks(t) : s− 2π < t < 0} ∪ {Ks−2π(t) : 0 < t < s}, s �= 0.
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Figure 14. Left: Boundary of the region of backprojection for the projected helix π-lines. The source circle
of radius R = 3 is plotted in black and the source position y(3π/4) in red. The green curve is the boundary of
RBP (s) for s = 3π/4 as given by (4.3). The region of backprojection is the part of S exterior to this curve.
Center: The set Γx0 (blue curve) for projected helix π-lines with R = 3 and x0 = (−1,−1) according to (4.4).
Right: Reconstruction of a smooth function centered at x0. The comet tail artifact appears at the location
predicted by (2.2) and (4.4). The function and parameters for reconstruction and display are the same as those
given in the caption of Figure 12.

The two segments of the curve above share the same endpoints, namely Ks(s− 2π) = y(s) =
Ks−2π(s) and Ks(0) = y(0) = Ks−2π(0). Hence, including these endpoints, (4.3) defines a
closed curve. For s = 3π/4 this curve is shown in Figure 14 (left). The region of backprojection
is the intersection of S with the exterior of this closed curve.

The parametrization of the curve ∂RBP (s)∩S used above also lends itself to determining
the set Γx0 directly from its definition (2.1). Given some x0 ∈ S one seeks for each s ∈ [0, 2π)
the point xs ∈ ∂RBP (s) ∩ S such that xs,x0 and y(s) are collinear. Rewriting Ks(t) as
Ks(t) = y(s) + s

s−t(y(t)− y(s)) shows that Ks(t) lies on the line through y(s) and y(t). The
same holds true for Ks−2π(t) and K(s(t − 2π) since y(s − 2π) = y(s). Let s∗ = s∗(s,x0) be
such that y(s∗), x0, and y(s) are collinear. From (4.3) it now follows that

xs =

{
Ks(s

∗ − 2π) if s < s∗ < 2π,
Ks−2π(s

∗) if 0 < s∗ < s.

It is well known in fan-beam tomography that s∗ = (s− 2α∗(s,x0) + π) modulo 2π, with
α∗(s,x0) being the fan-angle of the ray with vertex y(s) that passes through x0; see (7.6).
In Figure 4 one has sb(x) = s∗(0,x). It can be seen from Figure 4 that s∗(s,x0) > s for
0 < s < s∗(0,x0) and 0 < s∗(s,x0) < s for s∗(0,x0) < s < 2π. Hence

xs =

{
Ks(s

∗ − 2π) if 0 < s < s∗(0,x0),
Ks−2π(s

∗) if s∗(0,x0) < 2 < 2π.

Furthermore, if s1 ≥ s∗(0,x0), then s1 = s∗(s,x0) for some s ∈ [0, s∗(0,x0)) and s∗1 =
s∗(s1,x0) = s. It follows that

xs1 = Ks1−2π(s
∗
1) = Ks1−2π(s) = Ks(s1 − 2π) = Ks(s

∗ − 2π) = xs.

It therefore suffices to determine xs for 0 ≤ s < s∗(0,x0). This gives

(4.4) Γx0 = {Ks(s
∗) : 0 ≤ s < π − 2α∗(0,x0)}, where s∗ = s− 2α∗(s,x0) + π.
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Figure 15. Reconstruction of a calibration phantom from real data. Source radius R = 2.868, P = 720
source positions, 512 equispaced detectors with Δα = arcsin(1/R)/256. Center of rotation assumed at detector
257. Left: Reconstruction with the π-line formula (7.5) and orthogonal-long π-lines. A comet tail artifact is
visible near the small bright block. Right: Reconstruction from the same data set using formula (7.9), which is
not a π-line formula. No comet tail artifact appears.

Figure 14 (center) shows Γx0 for R = 3 and x0 = (−1− 1). The numerical experiment shown
in Figure 14 (right) confirms that the comet tail artifact appears at the location given by (4.4)
and (2.2).

5. Misalignment of projection data and comet tail artifacts. In [3, section 7] we com-
pared the performance of 2D reconstruction algorithms based on the 2D version of (1.10) in
the form (7.5) with reconstructions from formula (7.9) and the standard filtered backprojec-
tion algorithm as described, for example, in [8]. The latter two methods are not based on
π-line formulas. Our conclusion from these experiments was that for objects with stronger
singularities the reconstructions based on (7.5) showed artifacts that the other two algorithms
did not exhibit. Figure 15 shows one of these experiments, consisting of reconstructions of a
calibration phantom from real data using (7.5) and (7.9), respectively. In the reconstruction
from (7.5) a comet tail artifact emerging from the small bright block is visible that is absent in
the other image. It is the purpose of this section to show that these artifacts stem from a par-
ticular sensitivity of the π-line reconstructions to even small misalignments in the measured
data with respect to the fan-angle α, and that better reconstructions are obtained if data
alignment is properly accounted for. Furthermore, we will demonstrate that this sensitivity
can be used in some cases to determine the correct alignment of a data set.

Suppose that our measured x-ray data g(s, α) (cf. (7.4)) has a uniform shift in the α
coordinate. That is, for some t ∈ R we have gt(s, α) = g(s, α + t). We now investigate the
effect of this misalignment by means of a linearization. Let ft(x) be the reconstruction from
the data gt and assume that we have sufficiently smooth data g(s, α). Then a Taylor expansion
with respect to α yields

(5.1) gt(s, α) � g(s, α) + t
∂g

∂α
(s, α).

The reconstruction error e(t) = f(x)−ft(x) caused by the data misalignment is approximately
given by

e(t) ≈ − t

2π2

∫
Iπ(x)

1

|x− y(s)|
∫ 2π

0

(
∂

∂α

∂g

∂s
(s, α) +

∂2g

∂α2
(s, α)

)
k(α∗ − α) dα ds,
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where k(α) = 1/ sin(α). An integration by parts with respect to α yields

(5.2) e(t) ≈ − t

2π2

∫
Iπ(x)

1

|x− y(s)|
∫ 2π

0

(
∂g

∂s
(s, α) +

∂g

∂α
(s, α)

)
k′(α∗ − α) dα ds.

This formula has the same structure as the reconstruction formula (7.5) but with a different
convolution kernel. This new kernel can be discretized, for example, by differentiating the
band-limited kernel (7.7), which gives

(5.3) k′(α) ≈ b sin(bα)

sin(α)
− (1− cos(bα)) cos(α)

sin2(α)
,

where b is the cut-off frequency.
As seen in the upper four images in Figure 16, the approximate error term for e(t), (5.2),

and e(t) contain the comet tail artifacts found in the calibration phantom reconstruction and
thus confirm that data misalignment causes strong comet tail artifacts when the reconstruction
is performed with a π-line reconstruction formula. The images of (5.2) and e(t) are very similar
and thus validate the approximation used in (5.1). The comet tail artifact varies with the
selection of the family of π-lines and appears in the locations predicted by Theorem 4.1 and
(4.4), respectively. The bottom two images in Figure 16 show that these distinctive comet
tail artifacts are absent in reconstructions with formula (7.9), which is not a π-line formula.
Of course, in the case of a sizeable misalignment of t � 0.8Δα as shown in Figure 16, there
are other strong artifacts besides the comet tail artifact.

The presence of the comet tail artifact in the reconstruction from formula (7.5) shown in
Figure 15 suggests that the assumed alignment of the α coordinate of the x-ray data may be
inaccurate. Our experiments have shown that the comet tail artifact is not nearly as strong
with well-aligned projection data of discontinuous functions. The comet tail artifact resulting
from misaligned data is of the same order of magnitude as the density values of the function
and thus is a leading source of error. However, the high sensitivity with regard to alignment
may be used to determine the correct alignment. Figure 17 (left) shows a graph of the TV
norm of a subregion of the reconstructed image as a function of a shift in α. Here the shifts
vary between −Δα and Δα. The minimum occurs at a shift of 0.19Δα. Figure 17 (right)
shows a reconstruction with this shift taken into account. The comet tail artifact is much
reduced. While these results are an encouraging proof of concept, further development of
this method for misalignment correction will be the subject of future research. For a recent
alternative method for misalignment correction, see [10].

6. Conclusion. We have investigated two distinctive features of π-line reconstruction for-
mulas, the region of backprojection and the comet tail artifact. Our results provide new
insights into the behavior of π-line reconstruction formulas and are independent of the de-
tector geometry. General properties of the boundary of the region of backprojection were
proved and applied in two and three dimensions. While the π-lines for the helix are uniquely
determined, there is great flexibility to choose a family of π-lines in the 2D case. Useful prop-
erties of the family of π-lines, such as being nonintersecting and/or boundary-regular, were
identified and shown to lead to a simplification of the theory. The general theory was used to
identify the region of backprojection for the helix as well as for a representative collection of
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Figure 16. Top left: Approximate error term (5.2) for e(t) with orthogonal-long π-lines. Top right: Actual
error term e(t) with orthogonal-long π-lines. Center left: Approximate error term (5.2) for e(t) with helical
π-lines. Center right: Actual error term e(t) with helical π-lines. Bottom left: Approximate error term for
reconstruction formula (7.9) which is not a π-line formula. Bottom right: Actual error term for reconstruction
with (7.9). For all six images images the data misalignment t is equal to 0.8 times the detector width, the source
radius is R = 2.868, and the images are displayed in the square [−0.5, 0.5]2. The reconstructions based on (7.9)
are included to better distinguish the comet tail artifact from other errors caused by the misalignment.
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Figure 17. Calibration phantom.
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2D families of π-lines. In the case of the helix the simple structure of the region of backpro-
jection and its boundary was most clearly apparent when considering its intersections with
surfaces of π-lines called chips instead of horizontal planes.

A heuristic principle relating the comet tail artifact to the boundary of the region of
backprojection was proposed, then reformulated to be expressed in terms of π-lines, and finally
validated with a variety of numerical examples which confirmed that the theory correctly
determines the location of the artifact. It was also shown that the proposed support of the
artifact contains the support of the Hilbert image g(x) = Hβ(st(x),x)f(x). We reiterate that
the comet tail artifact is usually small and does not significantly degrade the image.

One could ask whether in two dimensions π-line reconstruction formulas may have any
particular advantages, for example when compared to the conventional fan-beam filtered back-
projection algorithm as described in [8], or to reconstructions from formula (7.9). One such
situation occurs when the x-ray source is very close to the object. Then the conventional al-
gorithm as well as reconstruction algorithms based on (7.9) show artifacts in the parts of the
reconstruction region that are near the source curve. A π-line reconstruction formula where
the region of backprojection RBP (s) does not contain points close to the source position y(s)
mitigates this problem and therefore is advantageous. The optimal family of π-lines for this
purpose appear to be the orthogonal-long π-lines, but the effect can also be seen in Figure 14.
The left part of the figure shows that for s �= 0 most points in the vicinity of y(s) lie outside
the region of backprojection. This is not the case for s = 0, however, since for the projected
helix π-lines RBP (0) = S. Accordingly, the right image of the figure shows an additional
oscillatory artifact near the point y(0) = (3, 0) at the right boundary of the image, while
there is no such artifact near the source curve in other parts of the image.

A possible drawback of π-line reconstruction formulas is a relatively strong sensitivity
to misaligned data, which leads to a large comet tail artifact that does degrade the image.
On the other hand, we demonstrated the potential to use this sensitivity to find the correct
alignment. Using a linearization, we also derived an error term that reproduces the location
of the artifact.

7. Remarks on the numerical implementation. The discretization and numerical imple-
mentation of (1.10) used in the numerical experiments presented in this paper are as described
in [3] and [14]. The source code for some of the experiments is available from the authors
upon request. In this section we give a brief summary for completeness and as background
for section 5.

For the 3D case we introduce a coordinate system that rotates with the source and is given
by the three unit vectors

(7.1) eu(s) = (− sin s, cos s, 0), ev(s) = −(cos s, sin s, 0), ew = (0, 0, 1).

The source curve (1.1) can then be written as

(7.2) y(s) = −Rev + hsew.

For our numerical implementation we used a measurement geometry with a curved detector
array where x-rays that are emitted from a source at y(s) and pass through the object are
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recorded by detectors located on the rotating curved surface

d(s, α,w) = y(s) +D sinα eu +D cosα ev + w ew,(7.3)

|α| ≤ αmax, |w| ≤ wmax, D ≥ R.

Geometrically, D is the distance between y(s) and the surface d(s, ·, ·), α is the angle
between ev and the projection onto the x3 = 0 plane of the ray connecting the source y(s)
with a detector located at d(s, α,w), and w is the difference between the x3 coordinates of
the detector position d(s, α,w) and the source position y(s).

The measured data are then given by

g(s, α,w) = Df(y(s),θ(s, α,w))
with y(s) as in (7.2) and

θ(s, α,w) =
1√

D2 +w2
(D sinα eu +D cosα ev + w ew) .

We have P source positions per turn with Δs = 2π/P and Q = 2q x-rays measured
uniformly over the angular range α ∈ [−π/2, π/2]. That is, we have 2q discrete angular
measurements for αl = lΔα for l = −q, . . . , q − 1 with Δα = π/Q. The variable w is
discretized with a step size Δw = DΔα.

The corresponding expressions for the 2D case can be obtained by setting w = 0 and using
the circle (1.2), i.e., y(s) = −Rev, as the source curve. This gives

(7.4) g(s, α) = Df(y(s),θ(s, α)), θ(s, α) = sinα eu + cosα ev.

Expressed with respect to the detector coordinates (s, α), the 2D version of the reconstruction
formula (1.10) now reads as

f(x) =
1

2π2

∫
Iπ(x)

1

|x− y(s)|
∫ 2π

0

(
∂g(s, α)

∂s
+
∂g(s, α)

∂α

)
dα ds

sin(α∗ − α)
(7.5)

with x = (x1, x2, 0) and (s, α∗) being the detector coordinates for the ray from the source
position y(s) that passes through the point x,

(7.6) α∗(s,x) = arctan

(
β · eu
β · ev

)

with β = β(s,x) given by (1.8) and eu, ev by (7.1) with the third component omitted.
In practice the singular convolution kernel 1/ sin(α) is regularized by an approximation

k(α), e.g.,

(7.7) k(α) =
1− cos(bα)

sin(α)
,

where b is a cut-off frequency that is chosen according to the sampling density and noisiness
of the data. This gives the approximate reconstruction formula

(7.8) f(x) � 1

2π2

∫
Iπ(x)

1

|x− y(s)|
∫ 2π

0

(
∂g(s, α)

∂s
+
∂g(s, α)

∂α

)
k(α∗ − α) dα ds

which is of filtered backprojection type.
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The discrete implementation of the backprojection with the trapezoidal rule requires an
interpolation at the endpoints of Iπ(x). This interpolation was implemented according to
formulas (63) and (64) in [14].

For a given point x the π-line segment connecting y(sb(x)) and y(st(x)) divides the circle
y = R into two arcs. In (7.5) and (7.8) the integration in s from sb(x) to st(x) involves only
one of the arcs. It would be equally valid to interchange the roles of sb and st and integrate
over the other arc. Averaging the two possibilities gives the inversion formula

(7.9) f(x) =
1

4π2

∫ 2π

0

1

|x− y(s)|
∫ 2π

0

(
∂g(s, α)

∂s
+
∂g(s, α)

∂α

)
1

sin(α∗ − α)
dα ds,

which is no longer a π-line reconstruction formula and was first found in [6]. For further
details see [3, 17].

We use the following family of functions to construct mathematical phantoms for our
numerical experiments:

(7.10) bm(x) =
(
1− |x|2)m

+
=

{ (
1− |x|2)m if 1− |x|2 ≥ 0,

0 if 1− |x|2 < 0.

Here m is a parameter that controls the smoothness of the function. Usually we choose either
m = 3, which gives a smooth function, or m = 0, which yields the characteristic function of
the unit ball. Our object function is then given by linear combinations of functions of the
form

(7.11) f(x) = bm(T (x− x0))

with

T =

⎡
⎣ cos(ψ)/a1 sin(ψ)/a1 0

− sin(ψ)/a2 cos(ψ)/a2 0
0 0 1/a3

⎤
⎦.

For the 2D case we omit the third row and column of the matrix T .
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