
Transactions of the American Fisheries Society 141:1586–1599, 2012
C© American Fisheries Society 2012
ISSN: 0002-8487 print / 1548-8659 online
DOI: 10.1080/00028487.2012.716011

ARTICLE

Susceptibility of Juvenile Steelhead to Avian Predation:
the Influence of Individual Fish Characteristics and River
Conditions

Nathan J. Hostetter*1

Department of Fisheries and Wildlife, Oregon State University, 104 Nash Hall, Corvallis,
Oregon 97331, USA

Allen F. Evans
Real Time Research, Inc., 52 Southwest Roosevelt Avenue, Bend, Oregon 97702, USA

Daniel D. Roby
U.S. Geological Survey, Oregon Cooperative Fish and Wildlife Research Unit,
Department of Fisheries and Wildlife, Oregon State University, 104 Nash Hall,
Corvallis, Oregon 97331, USA

Ken Collis
Real Time Research, Inc., 52 Southwest Roosevelt Avenue, Bend, Oregon 97702, USA

Abstract
Identification of the factors that influence susceptibility to predation can aid in developing management strategies to

recover fish populations of conservation concern. Predator–prey relationships can be influenced by numerous factors,
including prey condition, prey size, and environmental conditions. We investigated these factors by using juvenile
steelhead Oncorhynchus mykiss from the Snake River (Pacific Northwest, USA), a distinct population segment that is
listed as threatened under the U.S. Endangered Species Act. During 2007–2009, steelhead smolts (n = 25,909) were
captured, examined for external condition characteristics (e.g., body injuries, descaling, external signs of disease,
fin damage, and ectoparasite infestations), marked with passive integrated transponder (PIT) tags, and released
to continue their out-migration. Recoveries of PIT tags on a downstream colony of Caspian terns Hydroprogne
caspia (n = 913 tags) indicated that steelhead susceptibility to Caspian tern predation increased significantly with
decreases in steelhead external condition, decreased water discharge, and decreased water clarity. Susceptibility to
Caspian tern predation also increased with increasing steelhead fork length up to 202 mm but then decreased for
longer steelhead. Recoveries of PIT tags on a downstream colony of double-crested cormorants Phalacrocorax auritus
(n = 493 tags) indicated that steelhead susceptibility to double-crested cormorant predation increased significantly
with declining external condition of steelhead, and that steelhead of hatchery origin were more susceptible than their
wild counterparts. Results indicate that steelhead susceptibility to avian predation is dependent on fish condition and
length and is influenced by river conditions and rearing environment.

Predation is a key ecological process influencing the size of
fish populations and the composition of fish communities (Sih
1987). Predator–prey relationships are often influenced by nu-
merous factors, including prey condition (see review by Mesa
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et al. 1994), prey size (see review by Sogard 1997), and envi-
ronmental factors (Gregory 1993; Mesa 1994; Mesa and War-
ren 1997; Gregory and Levings 1998; De Robertis et al. 2003).
An understanding of how these factors influence predator–prey
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JUVENILE STEELHEAD SUSCEPTIBILITY TO AVIAN PREDATION 1587

relationships has important implications for fitness at both the
individual and population levels and also provides valuable in-
formation regarding the efficacy of top-down ecosystem man-
agement (i.e., predator management).

The theory that predators disproportionately prey on individ-
uals that are in substandard condition (e.g., weak, sick, stressed,
or inexperienced; sensu Temple 1987) is widely accepted and
has been well supported in fish predation studies (see review by
Mesa et al. 1994). The occurrence and magnitude of condition-
dependent predation may vary as a function of predator foraging
strategy. In theory, predators that chase their prey should be more
likely to disproportionately take individuals in poorer condition
compared to predators that ambush their prey (Estes and God-
dard 1967; Schaller 1968). Studies evaluating predator–prey
interactions and the efficacy of predator management, however,
rarely consider the influence of prey condition and predator for-
aging strategies (Mesa et al. 1994). For instance, the success
of predator management efforts to increase prey populations
would be diminished if the prey would have died from other
causes (e.g., disease, competition, or other predators) regardless
of the predation event (Errington 1956; Temple 1987). Thus,
the degree to which the mortality caused by predation is com-
pensatory is a primary consideration for programs that seek to
restore prey populations through predator management.

Within populations of Pacific salmon Oncorhynchus spp., in-
creased susceptibility to predation by piscivorous fish and birds
has been attributed to differences in fish behavior, condition,
size, rearing, and environmental conditions (Gregory and Lev-
ings 1998; Mesa et al. 1998; Collis et al. 2002; Schreck et al.
2006; Kennedy et al. 2007). Environmental conditions experi-
enced by juvenile salmonids during out-migration (e.g., water
flow, turbidity, or factors associated with migration timing) are
known to increase stress, reduce fish performance, and increase
susceptibility to predation (Raymond 1979; Gregory and Lev-
ings 1998; Budy et al. 2002; Schreck et al. 2006). The external
condition (e.g., body injuries, descaling, external signs of dis-
ease, fin damage, and ectoparasite infestations) of out-migrating
juvenile steelhead O. mykiss has been linked to internal fish
condition and to survival during out-migration (Hostetter et al.
2011). Although some studies have suggested that the condi-
tion of smolts influences their susceptibility to avian predation
(Schreck et al. 2006; Kennedy et al. 2007), no direct link be-
tween external fish condition and susceptibility to avian preda-
tion has been documented in the wild.

Predator foraging strategy can play an important role in de-
termining which factors influence prey susceptibility to preda-
tion (Estes and Goddard 1967; Schaller 1968; Temple 1987). In
the Columbia River basin, Caspian terns Hydroprogne caspia
and double-crested cormorants Phalacrocorax auritus are re-
sponsible for the majority of the avian predation mortalities
among smolts (Collis et al. 2002; Evans et al. 2012), but the
two waterbird species employ very different foraging behaviors.
Double-crested cormorants are pursuit divers that actively hunt
their prey underwater (Hatch 1999), whereas Caspian terns are

plunge divers that capture (i.e., ambush) their prey at or near the
water surface (Cuthbert and Wires 1999). In addition to forag-
ing behavior, these predators also differ in size, gape width, and
foraging range from the breeding colony (Cuthbert and Wires
1999; Hatch 1999), suggesting that factors influencing the sus-
ceptibility of juvenile salmonids to avian predation may differ
between the two predator species.

Avian predation on salmonid smolts has been identified as
one of several factors limiting recovery of salmonid evolution-
arily significant units (ESUs) and steelhead distinct popula-
tion segments (Waples 1991) within the Columbia River basin
that are listed as threatened or endangered under the U.S. En-
dangered Species Act (ESA; Roby et al. 2003; Lyons 2010).
Management efforts to reduce the impact of avian predation
on survival of juvenile salmonids within the Columbia River
estuary are currently being implemented (Roby et al. 2002;
USFWS 2006). However, knowledge of how individual fish
characteristics and environmental factors influence the suscep-
tibility of juvenile salmonids to avian predation is extremely
limited.

In the present study, we tested three hypotheses regarding
the predator–prey relationship between piscivorous birds (e.g.,
Caspian terns and double-crested cormorants) and anadromous
salmonids (e.g., steelhead) in the Columbia River basin. Hy-
pothesis 1 was that the probability of a smolt being consumed
by an avian predator is influenced by both individual fish char-
acteristics (e.g., size, rearing type [hatchery versus wild], and
external condition) and environmental factors (e.g., turbidity and
water discharge rate). Hypothesis 2 was that avian predation on
salmonid smolts is condition dependent, such that the probabil-
ity of a smolt being consumed by an avian predator increases
with declining external condition of the smolt. Hypothesis 3
was that factors influencing smolt susceptibility to avian preda-
tion will vary with the species of avian predator. Snake River
steelhead were selected for this study because prior research
suggested that among salmonids in the mid-Columbia River,
steelhead smolts were the most susceptible to avian predation
(Antolos et al. 2005). In addition, data describing the impact
of avian predation are needed to evaluate recovery options for
Snake River steelhead, which are listed as threatened under the
ESA (Good et al. 2005).

METHODS
Study area.—Our research efforts focused on out-migrating

juvenile steelhead from the Snake River basin, which were
guided into juvenile collection facilities at either Lower Mon-
umental Dam (LMN; river kilometer [rkm] 589) or Ice Harbor
Dam (ICH; rkm 538) on the lower Snake River, Washington
(Figure 1). We investigated two piscivorous waterbird breeding
colonies on two different islands in the mid-Columbia River: a
Caspian tern colony on Crescent Island (rkm 510) and a double-
crested cormorant colony on Foundation Island (rkm 518; Fig-
ure 1). These islands were situated in an impoundment formed
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1588 HOSTETTER ET AL.

FIGURE 1. Map of the main-stem Columbia and Snake rivers, showing locations of the hydroelectric dams (bars) noted in the text. The Caspian tern colony was
located at Crescent Island, and the double-crested cormorant colony was located at Foundation Island.

by McNary Dam (hereafter, “McNary Pool”), just downstream
of the Snake River–Columbia River confluence and downstream
of the smolt capture and release sites. The smolt capture and re-
lease locations (Figure 1) were specifically selected because
they were directly upstream of the two nesting colonies in Mc-
Nary Pool and were within the documented foraging ranges of
the two waterbird species (Hatch 1999; Anderson et al. 2004;
Lyons et al. 2007; Maranto et al. 2010).

Fish capture, tagging, and external examination.—In gen-
eral, juvenile steelhead were sampled 6 d/week at LMN and
2 d/week at ICH during the steelhead out-migration period in
2007–2009. Sampling corresponded with the run-at-large, start-
ing in early April and ending either in early July or when capture
numbers dropped below 100 steelhead/week. Steelhead were
collected daily, and prior to sampling they were held for up
to 24 h in the holding tanks (supplied with flow-through river
water) at each dam’s juvenile collection facility. Daily samples
of captured juvenile steelhead were then separated into small
batches (10–50 fish) via a slide gate, were anesthetized with tri-
caine methanesulfonate (MS-222), and were tagged with a 12-
× 2-mm (length × width) passive integrated transponder (PIT)

tag (134.2 kHz) via a modified hypodermic syringe equipped
with a 12-gauge needle (Prentice et al. 1990a, 1990b; Nielsen
1992). To reduce disease transmission, needles were soaked for
a minimum of 10 min in a 70% solution of ethyl alcohol prior
to PIT tag loading.

Methods for the noninvasive examination of steelhead smolts
followed those of Hostetter et al. (2011) and are briefly summa-
rized here. After a steelhead was PIT-tagged, it was placed in a
sample tray, measured (fork length [FL]; nearest mm), weighed
(nearest g), classified according to rearing environment (i.e., nat-
ural origin: indicated by the presence of an adipose fin; hatchery
origin: indicated by the absence of an adipose fin or by character-
istics associated with hatchery rearing practices, including the
erosion of pectoral, pelvic, caudal, or dorsal fins), and digitally
photographed (Canon EOS Rebel XTi camera; Canon EF 50-
mm f/2.5 Compact Macro lens; Bencher Copymate II copy stand
with fluorescent light source). Digital photographs were taken
of both sides of each fish to allow for classification of external
symptoms (by type and severity) after the fish was released; the
total handling time for each fish was therefore reduced (<30 s).
Detailed information on the external condition of each steelhead
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JUVENILE STEELHEAD SUSCEPTIBILITY TO AVIAN PREDATION 1589

(body injuries, descaling, external signs of disease, fin damage,
and ectoparasite infestations; classifications are described in
Table 1) was collected by analyzing the digital photographs.
Each steelhead smolt was scored for overall external condition
(good, fair, or poor; modified from Evans et al. 2004) based
on the scores for the five external condition categories (see
Table 1).

After the examination process, daily groups of PIT-tagged
steelhead were placed in a holding tank with flow-through river
water for at least 1 h and were then released into the tailrace
of the dam via the juvenile bypass facility’s outflow pipe. Re-
lease times alternated between mornings and evenings to reduce
possible bias in steelhead predation susceptibility associated
with release time. Release times at LMN alternated between
(1) 1800–2300 hours Pacific Daylight Time (PDT) on the day
of processing and (2) 0700–1100 hours PDT on the day after
processing. Release times at ICH alternated between 0900–1300
and 1800–2200 hours PDT on the day of processing. All mortal-
ities and ejected PIT tags were removed from temporary holding
tanks prior to the release of fish, and these individuals and tags
were excluded from further analyses.

Recovery of PIT tags.—A PIT-tagged steelhead smolt was
considered to have been consumed by a Caspian tern or a double-
crested cormorant if the unique PIT tag associated with that
individual was detected on the avian colony at Crescent Island
or Foundation Island. During each year of the study, PIT tags
were recovered from the colonies after nesting birds had dis-
persed (i.e., July–August, after the breeding season). A detailed
description of the methods used to recover PIT tags from bird
colonies is provided by Ryan et al. (2001); thus, the methods are
only briefly summarized here. On the Caspian tern colony, PIT
tags were recovered by systematically scanning the area occu-
pied during the nesting season with a flat-plate PIT tag detector
mounted on a four-wheel-drive vehicle. Pole-mounted, hand-
held transceivers were then used to detect PIT tags in areas that
were inaccessible to the flat-plate detector. The thick woodland
on Foundation Island prevented the use of a vehicle; therefore,
the entire double-crested cormorant colony was scanned using
pole-mounted, hand-held transceivers.

Detection efficiency.—Recoveries of PIT tags on bird
colonies provide a minimum estimate of predation on PIT-
tagged smolts because (1) an unknown proportion of consumed

TABLE 1. Description and prevalence (%) of external condition characteristics of steelhead (n = 25,909) that were captured and PIT-tagged at Lower Monumental
Dam or Ice Harbor Dam during 2007–2009. External condition descriptions are from Hostetter et al. (2011).

External Tagged Prevalence
condition Category fish (%) Description

Body injury Absent 20,963 81 No visible hemorrhages, scars, or other damage to the head, trunk,
operculum, or eyes

Moderate 3,025 12 Closed or healed scars to the head, trunk, operculum, or eyes
Severe 1,921 7 Deformity, open wound, or large surface area scars on head, trunk,

operculum, or eyes
Descaling <5% 16,975 65 Scale loss on less than 5% of the body

5–20% 7,916 31 Scale loss on 5–20% of the body
>20% 1,018 4 Scale loss on over 20% of the body

Disease Absent 24,917 96 No external symptoms of bacterial, fungal, or viral infections
Moderate 349 1 Visible infection limited to one external area

Severe 643 3 Visible infection in multiple areas or symptoms that suggest a systemic
infection

Ectoparasites Absent 25,217 97 No visible ectoparasites
Moderate 523 2 Visible ectoparasites found in one area

Severe 169 1 Visible ectoparasites in more than one area or on the gills
Fin damage Absent 5,762 22 Fin wear and damage less than 50% on any fin

Moderate 14,553 56 Fin wear and damage greater than 50% on one or two fins
Severe 5,594 22 Fin wear and damage greater than 50% on three or more fins

Integrated
conditiona

Good 15,228 59 No noticeable external injury or symptoms of disease; descaling of no
more than 10% of body surface

Fair 7,197 28 Minor scars or other closed external damage; descaling of greater than
10% but no more than 50% of body surface

Poor 3,484 13 Any steelhead with externally apparent fungal, parasitic, or bacterial
infections; or descaling of greater than 50% of body surface; or open
external body lesions

aModified version of the procedure developed by Evans et al. (2004) for scoring external condition in adult steelhead.
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1590 HOSTETTER ET AL.

PIT tags are deposited off-colony; (2) PIT tags that are deposited
on the colony may be lost due to wind and water erosion; (3)
either before or after deposition, some PIT tags are damaged to
the point of being unreadable; and (4) detection efficiency for
functioning PIT tags on the colony is less than 100% due to
signal collision and other factors (Ryan et al. 2003; Evans et al.
2011). To better account for possible interannual differences in
tag loss and damage, we measured detection efficiency in each
year of the study by systematically sowing known PIT tags (of
identical dimensions and design to those implanted in steel-
head) on each of the colonies (n = 400 tags·colony−1·year−1,
except at the Crescent Island colony in 2007 and 2008, when
800 tags/year were sown). To investigate possible intraseasonal
variation in PIT tag detection efficiency, known PIT tags were
sown on each colony (1) prior to the birds’ arrival at the colony
(March), (2) during the incubation period (May), (3) near the
time of chick fledging (June), and (4) once the birds had left
the colony after the nesting season (late July to early August).
Recoveries of sown tags during PIT tag recovery allowed the
estimation of weekly detection efficiencies by interpolation us-
ing logistic regression. Weekly estimates of detection efficiency
were then included as fixed effects in all models to account for
seasonal variation in colony-specific detection efficiency.

Environmental factors.—Environmental variables that were
evaluated as part of this study included (1) steelhead release
location (LMN or ICH), (2) steelhead abundance, (3) water
discharge (hereafter, “discharge”), (4) Caspian tern or double-
crested cormorant abundance, (5) water clarity, and (6) mi-
gration year. Steelhead were PIT-tagged and released at two
locations upstream of the avian colonies (ICH and LMN) to eval-
uate whether either bird species disproportionately consumed
steelhead released at one of the two dams. Measurements of
the number of in-river juvenile steelhead passing McNary Dam
(prey abundance) and the water discharge (kilo cubic feet per
second [kcfs]; 1 kcfs = 28.3 m3/s) at LMN were obtained from
the Fish Passage Center website (www.fpc.org) and the Data Ac-
cess in Real Time website (www.cbr.washington.edu/dart). In-
river juvenile steelhead abundance was calculated as a weekly
(Sunday–Saturday) average of the estimated number of juve-
nile steelhead that passed McNary Dam each day. Although
the in-river steelhead index at McNary Dam is not an exact
measurement of the overall abundance of juvenile steelhead in
McNary Pool, it does provide a quantitative estimate of the
relative numbers of in-river juvenile steelhead within and be-
tween migration years. The McNary Dam passage index was
selected (relative to passage indices at other dams) because it
includes steelhead from both the Snake and Columbia rivers and
because this dam is located just downstream of and within the
presumed foraging radius of the avian colonies on Crescent and
Foundation islands (Figure 1). Discharge measurements were
obtained from LMN instead of ICH, as measurements were
correlated between dams (Pearson’s product-moment correla-
tion coefficient r > 0.80) and the majority of PIT-tagged steel-
head were released from LMN. Data on weekly Caspian tern

and double-crested cormorant abundance (hereafter, “predator
abundance”) were obtained from the Bird Research Northwest
website (www.birdresearchnw.org). These data were estimated
by averaging three to eight weekly counts of the number of adult
and juvenile birds present on each colony; counts were con-
ducted from observation blinds located at the periphery of the
colonies. Water clarity was estimated using averages of two to
four weekly Secchi depth measurements (nearest 0.25 m) taken
from a boat in the main channel of the Snake River just upstream
from its confluence with the Columbia River. Water clarity mea-
surements were also taken at other locations within the McNary
Pool but were correlated between locations (Pearson’s r > 0.70
during peak out-migration periods). We therefore used water
clarity measurements that were taken in the main channel of
the Snake River—a location that was used by all out-migrating
steelhead smolts in this study. Discharge, water clarity, preda-
tor abundance, and prey abundance variables were not highly
correlated with one another (Pearson’s r < 0.60; Figure 2).

Susceptibility to avian predation.—A suite of logistic regres-
sion models was used to evaluate the influence of environmental
factors and individual fish characteristics on the probability of
recovering a PIT-tag (i.e., representing an individual steelhead)
on the Crescent Island Caspian tern colony or the Foundation
Island double-crested cormorant colony. We considered a null
model that included colony-specific detection efficiency, num-
ber of birds on-colony, in-river steelhead abundance, and migra-
tion year (hereafter, “base model”) due to the biological impor-
tance of these variables in predicting steelhead susceptibility to
avian predation (Ryan et al. 2003; Antolos et al. 2005). Vari-
ables that were included in the base model were also included
in all candidate models; this allowed us to account for varia-
tion in steelhead predation susceptibility associated with these
variables prior to investigating relationships between predation
susceptibility and explanatory variables of interest.

We fit logistic regression functions,

logit (pi) = β0 + β1Di + β2Pi + β3Si + β4Yi . . . + βpXi,

where pi is the probability that steelhead i would be detected on
a specific bird colony, β0 is the regression intercept, β1Di is the
regression coefficient for the weekly colony-specific detection
efficiency for steelhead i, β2Pi is the regression coefficient for
the weekly colony-specific predator abundance for steelhead i,
β3Si is the regression coefficient for the weekly in-river steel-
head abundance for steelhead i, β4Yi is the regression coefficient
for the migration year of steelhead i, and βpXi is the regression
coefficient for the independent explanatory variable X associated
with steelhead i. Independent explanatory variables evaluated in
this study included the river conditions and the individual fish
characteristics described above.

The influence of individual fish characteristics and environ-
mental factors on the probability of recovering a PIT tag on a
bird colony was evaluated by using three sets of a priori general
models and a best-fit model from backwards stepwise selection
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JUVENILE STEELHEAD SUSCEPTIBILITY TO AVIAN PREDATION 1591

FIGURE 2. Weekly averages of (A) water discharge (kilo cubic feet per second [kcfs]; 1 kcfs = 28.3 m3/s) at Lower Monumental Dam, (B) water clarity
(Secchi depth, m), (C) number of in-river steelhead smolts, (D) number of steelhead smolts that were PIT-tagged and released as part of this study, (E) number of
double-crested cormorants at the nesting colony on Foundation Island, and (F) number of Caspian terns at the nesting colony on Crescent Island. Data points are
plotted on the last day of each sample week. See Methods for complete descriptions of the variables.

(following the methods used by Keefer et al. 2008 for adult steel-
head). The general models included (1) the previously described
base model, (2) a global additive model that included all vari-
ables of interest, and (3) individual models that evaluated each
explanatory variable irrespective of other individual fish char-
acteristics and environmental factors of interest (Table 2). The
best-fit model from a backwards stepwise selection process that
began with the global additive model was also examined. Only
additive models were investigated due to the small proportion
of PIT tags that were recovered on bird colonies (∼2–4% per
colony per year) and the high number of explanatory variables
that were evaluated. Logistic regression models were evaluated
for goodness of fit (Pearson’s χ2), and the covariance matri-
ces were corrected if overdispersion was detected (Hosmer and

Lemeshow 2000). All models were ranked and compared by
using Akaike’s information criterion corrected for small sample
size (AICc) and by using the AICc difference (�AICc; Burnham
and Anderson 2002). Relative differences in the probability of
recovering a PIT tag on a bird colony were further investigated
through probabilities, odds, and odds ratios of specific explana-
tory variables. Evaluation of explanatory variables by AICc val-
ues, stepwise selection, and odds ratios allowed us to address
our hypotheses by identifying the most influential explanatory
variables while also assessing the direction and strength of these
variables for explaining steelhead susceptibility to each avian
predator species. All analyses were conducted in the Statistical
Analysis System version 9.2 (SAS Institute, Inc.) with statistical
significance α set at 0.05.
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1592 HOSTETTER ET AL.

TABLE 2. Model selection results used to evaluate the influence of individual fish characteristics and environmental factors on the susceptibility of juvenile
steelhead to predation by Caspian terns or double-crested cormorants (FL = fork length; AICc = Akaike’s information criterion corrected for small sample size;
�AICc = AICc difference). External condition characteristics are defined in Table 1.

Caspian tern Double-crested cormorant

Modela df AICc �AICc AICc �AICc

Individual characteristics
Body injury 8 6,881.7 262.8 4,861.7 68.3
Descaling 8 6,881.3 262.4 4,865.4 72.0
Disease 8 6,883.3 264.4 4,829.2 35.8
Ectoparasites 8 6,881.9 263.0 4,861.1 67.7
Fin damage 8 6,882.7 263.8 4,858.7 65.3
Integrated condition 8 6,878.6 259.7 4,848.9 55.5
Rearing type (hatchery or wild) 7 6,880.3 261.4 4,854.7 61.3
FL 7 6,769.9 151.0 4,864.9 71.5
FL + FL2 8 6,635.8 16.9 4,863.5 70.1

Environmental factors
Discharge 7 6,881.1 262.2 4,865.4 72.0
Water clarity 7 6,875.0 256.1 4,861.5 68.1
Release location 7 6,878.8 259.9 4,834.1 40.7

A priori models
Base modela 6 6,881.9 263.0 4,863.3 70.0
Global modelb 23 6,627.0 8.1 4,804.0 10.6

Backward stepwise models

FL + FL2 + integrated condition +
discharge + water clarity

12 6,618.9 0.0

Disease + release location + rearing type 10 4,793.4 0.0

aAll models controlled for detection efficiency, predator abundance, prey abundance, and migration year (base model).
bAdditive model that included all individual characteristics and environmental factors.

RESULTS

Steelhead Capture and Condition
In total, 25,909 juvenile steelhead were PIT-tagged and re-

leased from either LMN (n = 22,401) or ICH (n = 3,508) as part
of this study. Sampling effort was relatively consistent across the
3-year study, with annual releases of 7,065 PIT-tagged steelhead
in 2007, 9,143 fish in 2008, and 9,701 fish in 2009. Released
PIT-tagged steelhead consisted of more hatchery-reared smolts
(n = 22,135) than wild smolts (n = 3,774), corresponding to the
relative abundances of these two rearing types among run-of-
the-river steelhead sampled at lower Snake River dams during
the study period (FPC 2011). Of the PIT-tagged steelhead, 59%
were classified as being in good condition, 28% were in fair
condition, and 13% were in poor condition (Table 1). The most
prevalent external fish condition was fin damage (78% of the
tagged fish), followed by descaling of 5% or greater (35% of
the tagged fish), body injuries (19%), external symptoms of dis-
ease (4%), and ectoparasite infestations (3%; Table 1). Average
FL of hatchery-reared steelhead (mean = 225 mm) was 21.2%
greater than that of wild steelhead (mean = 185 mm; 95% CI
of difference = 20.7–21.7%; two-tailed t-test: P < 0.001). De-

spite this difference, the range of FLs of hatchery-reared and
wild steelhead overlapped considerably (hatchery-reared fish:
132–375 mm FL; wild fish: 131–354 mm FL).

Tag Recoveries
Of the 25,909 PIT-tagged steelhead that were released, PIT

tags representing 913 steelhead (3.5%) were recovered on the
Crescent Island Caspian tern colony and PIT tags from 493 steel-
head (1.9%) were recovered on the Foundation Island double-
crested cormorant colony. There was a positive association be-
tween the detection efficiency of PIT tags sown on the Crescent
Island colony and the date of sowing, indicating that the prob-
ability of smolt PIT tag recovery was higher for tags that were
deposited later in the nesting season. This trend was significant
in 2007 (χ2 = 140.9, df = 1, P < 0.001), 2008 (χ2 = 153.1,
df = 1, P < 0.001), and 2009 (χ2 = 92.1, df = 1, P < 0.001).
Results from the Foundation Island colony indicated that the
probability of PIT tag recovery on this colony was inversely
related to the date of sowing. This relationship was significant
in 2009 (χ2 = 5.0, df = 1, P = 0.03) but was not significant in
2007 (χ2 = 1.8, df = 1, P = 0.17) or 2008 (χ2 = 3.3, df = 1,
P = 0.07).
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Susceptibility to Caspian Tern Predation
Steelhead susceptibility to predation by Caspian terns was

associated with six different individual fish characteristics and
environmental factors (Tables 2, 3). Fork length, discharge, wa-
ter clarity, and integrated condition category (good, fair, or
poor) were the most influential explanatory variables in pre-
dicting steelhead susceptibility to predation by Caspian terns
(Table 2). A quadratic function of steelhead FL was the most
important individual fish characteristic in predicting suscepti-
bility to Caspian tern predation. Steelhead FL was highly sig-
nificant in the top model (Table 3), and the model with FL had
the lowest AICc value of any model based on a single explana-
tory variable (Table 2). Results indicated that the relationship
between steelhead FL and susceptibility to Caspian tern preda-
tion was convex: the greatest susceptibility was at FLs of around
202 mm, whereas lower susceptibility was observed at greater
and lesser FLs (Figure 3). For example, the odds of recovering
a PIT tag from a 202-mm steelhead on the Caspian tern colony
was more than twice the odds of recovering a PIT tag from a
steelhead smaller than 150 mm FL or larger than 250 mm FL
(Figure 3).

Similar trends were observed when investigating discrete
associations between steelhead susceptibility to Caspian tern
predation and individual fish characteristics or environmental
factors. Once again, the quadratic function of steelhead FL was
the most important variable in predicting the relative suscepti-
bility of steelhead smolts to predation by Caspian terns (Table 2;
Appendix Table A.1). Individual fish characteristics, including
severe body injuries, over 20% descaling, and the integrated
condition category, were associated with higher susceptibility
to Caspian tern predation, supporting the hypothesis that steel-
head susceptibility to avian predation is condition dependent
(Table A.1). Specifically, on the Caspian tern colony, the odds
of recovering a PIT tag from a steelhead in poor condition was
1.31 times the odds of recovering a PIT tag from a steelhead in
good condition (95% CI = 1.08–1.58; P = 0.006). Similarly,
the odds of recovering a PIT tag from a steelhead with over
20% descaling and severe body injuries was 1.40 times (95%

FIGURE 3. Regression lines for the relationship between juvenile steelhead
fork length and susceptibility to predation by Caspian terns (i.e., probability of
PIT tag recovery on the Crescent Island nesting colony). Regression lines for
each integrated condition category (defined in Table 1) were calculated while
other variables in the top model (colony-specific PIT tag detection efficiency,
number of steelhead smolts in-river, number of Caspian terns on the colony,
water clarity, and discharge) were held constant at their respective median
values.

CI = 1.02–1.92; P = 0.035) and 1.24 times (95% CI = 0.99–
1.55; P = 0.057), respectively, the odds of recovering a PIT
tag from a steelhead without descaling or body injuries. Sev-
eral individual fish characteristics were not included in the top
model and were also not significantly associated with steelhead
susceptibility to Caspian tern predation in the discrete models
(Table 3; Table A.1). For instance, rearing type was not included
in the top model (Table 3), and only a small and suggestive rela-
tionship was detected in the discrete model, indicating that the
odds of recovering a PIT tag from a hatchery-reared steelhead
was 0.83 times the odds of recovering a PIT tag from a wild
steelhead (95% CI = 0.68–1.00; P = 0.053; Table A.1).

For all models, the results indicated that high river flows,
high water clarity, and large numbers of out-migrating steel-
head smolts reduced steelhead susceptibility to predation by
Caspian terns (Table 3; Table A.1). For instance, results from
the top model indicated that steelhead susceptibility to Caspian

TABLE 3. Results from the top model used to evaluate susceptibility of juvenile steelhead to predation by Caspian terns. See Methods for variable descriptions
(kcfs = kilo cubic feet per second [1 kcfs = 28.3 m3/s]).

Variable Effect df χ2 Odds ratio 95% CI P

FL 1-cm increase 1 83.1 3.95 2.94–5.31 <0.001
FL2 1-cm increase 1 96.4 0.97 0.96–0.97 <0.001
Steelhead abundance 1,000-fish increase 1 61.6 0.97 0.96–0.98 <0.001
Water clarity 1-m increase in Secchi depth 1 13.2 0.56 0.41–0.77 <0.001
Discharge 10-kcfs increase 1 12.3 0.95 0.92–0.98 <0.001
Migration year 2008 vs. 2007 1 44.2 2.60 1.96–3.44 <0.001

2009 vs. 2007 1 3.5 1.34 0.99–1.83 0.060
Integrated condition Fair vs. good 1 0.5 1.06 0.90–1.25 0.494

Poor vs. good 1 6.7 1.29 1.06–1.57 0.010
Caspian tern abundance 100-bird increase 1 0.8 1.03 0.97–1.09 0.380
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1594 HOSTETTER ET AL.

tern predation increased when in-river steelhead abundance de-
creased (P < 0.001), water clarity decreased (P < 0.001), and
discharge decreased (P < 0.001; Table 3). However, there was
no evidence of a relationship between the number of Caspian
terns on Crescent Island and the susceptibility of steelhead to
Caspian tern predation after accounting for other variables in the
model (P = 0.380; Table 3). Although release location was not
included in the top model, there was a significant relationship
between release location and steelhead susceptibility to Caspian
tern predation in the discrete model (Table A.1). This result in-
dicated that the odds of recovering a PIT tag from a steelhead
released at LMN (i.e., farther upriver from the Caspian tern
colony) was 1.32 times the odds of recovering a PIT tag from
a steelhead released at ICH (i.e., closer to the colony; 95%
CI = 1.03–1.69; P = 0.028).

Susceptibility to Double-Crested Cormorant Predation
Steelhead susceptibility to predation by double-crested cor-

morants was also associated with a select group of individual
fish characteristics and environmental factors. External symp-
toms of disease appeared to be the most important individual fish
characteristic for predicting steelhead susceptibility to double-
crested cormorant predation. Variables for both moderate and
severe external symptoms of disease were highly significant
(P < 0.001) in the top model (Table 4), and the model that in-
cluded disease had the lowest AICc value of any individual char-
acteristic model (Table 2). Results from the top model indicated
that on the double-crested cormorant colony, the odds of recov-
ering a PIT tag from a steelhead with moderate or severe exter-
nal symptoms of disease was 2.78 times (95% CI = 1.67–4.65;
P < 0.001) and 2.94 times (95% CI = 2.05–4.24; P < 0.001),
respectively, the odds of recovering a PIT tag from a steelhead
without external symptoms of disease (Table 4). Results from
the top model also indicated that the odds of recovering a PIT
tag from a hatchery-raised steelhead on the double-crested cor-
morant colony was 1.54 times the odds of recovering a PIT
tag from a wild steelhead (95% CI = 1.14–2.09; P = 0.005;
Table 4).

Results from models based on individual explanatory
variables provided additional support for the hypothesis

that steelhead susceptibility to double-crested cormorant
predation was condition dependent. Several external condition
characteristics, including body injuries (P = 0.050), external
symptoms of disease (P < 0.001), fin damage (P = 0.012), and
the integrated condition category (P < 0.001), indicated that
as the condition of steelhead declined, their susceptibility to
double-crested cormorant predation increased (Appendix Table
A.2). No relationship was detected between other individual fish
characteristics and susceptibility to double-crested cormorant
predation (Table A.2).

Environmental factors included in the top model indicated
that steelhead susceptibility to predation by double-crested cor-
morants increased when the abundance of these birds increased
(P < 0.001) and when steelhead were released closer to the
double-crested cormorant nesting colony (i.e., released at ICH;
P < 0.001). Unlike the results for Caspian terns, there was no
evidence of predator swamping associated with double-crested
cormorant predation on steelhead, as in-river steelhead abun-
dance was not related to steelhead susceptibility to predation by
double-crested cormorants (P = 0.946). Although water clarity
was not included in the top model, this variable was associ-
ated with steelhead susceptibility to double-crested cormorant
predation when modeled as a separate explanatory variable.
Results from the model with water clarity as the single explana-
tory variable indicated that as water clarity increased, steelhead
susceptibility to double-crested cormorant predation increased
(P = 0.047; Table A.2). This result was opposite that obtained
for Caspian terns, wherein steelhead susceptibility to Caspian
tern predation decreased as water clarity increased (Table A.1).
Finally, discharge was not associated with steelhead susceptibil-
ity to double-crested cormorant predation, as it was not included
in the top model and was not significant when modeled as the
single explanatory variable (P = 0.959; Table A.2).

DISCUSSION
This study tested hypotheses regarding the influence of in-

dividual fish characteristics and environmental factors on the
relative susceptibility of steelhead smolts to avian predation.
We found that the size and condition of juvenile steelhead as

TABLE 4. Results from the top model used to evaluate susceptibility of juvenile steelhead to predation by double-crested cormorants (LMN = Lower Monumental
Dam; ICH = Ice Harbor Dam). See Methods for variable descriptions.

Variable Effect df χ2 Odds ratio 95% CI P

Disease Moderate vs. absent 1 15.3 2.78 1.67–4.65 <0.001
Severe vs. absent 1 33.8 2.94 2.05–4.24 <0.001

Release location LMN vs. ICH 1 33.7 0.53 0.43–0.66 <0.001
Double-crested cormorant abundance 100-bird increase 1 12.0 1.15 1.06–1.25 <0.001
Rearing type Hatchery vs. wild 1 7.8 1.54 1.14–2.09 0.005
Release year 2008 vs. 2007 1 5.9 1.43 1.07–1.90 0.015

2009 vs. 2007 1 3.2 1.45 0.97–2.16 0.072
Steelhead abundance 1,000-fish increase 1 0.0 1.00 0.99–1.01 0.946
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JUVENILE STEELHEAD SUSCEPTIBILITY TO AVIAN PREDATION 1595

well as the river conditions at the time of their release were
related to a steelhead’s probability of being eaten by an avian
predator; however, the importance and strength of these fac-
tors differed between the two avian predator species. One con-
sistent trend for both Caspian terns and double-crested cor-
morants was the disproportionate consumption of steelhead that
exhibited degraded physical condition. These results corrobo-
rate previous work suggesting that the susceptibility of Chinook
salmon O. tshawytscha smolts to predation by Caspian terns
in the Columbia River estuary was influenced by the incidence
of disease in the out-migrating smolts (Schreck et al. 2006).
Kennedy et al. (2007) found similar relationships between de-
creased saltwater preparedness and increased susceptibility of
juvenile steelhead to avian predation in the Columbia River estu-
ary, thus supporting the hypothesis that salmonid susceptibility
to avian predation is associated with individual fish characteris-
tics and condition.

The results presented here support the theory that predator
foraging strategies play an important role in the incidence and
magnitude of condition-dependent predation (Estes and God-
dard 1967; Schaller 1968; Temple 1987). Condition-dependent
susceptibility of steelhead was more evident for double-crested
cormorant predation (pursuit-diving foraging strategy) than for
Caspian tern predation (plunge-diving foraging strategy). Four
different external indices of health status (body injuries, ex-
ternal symptoms of disease, fin damage, and integrated condi-
tion category) were significantly associated with steelhead sus-
ceptibility to double-crested cormorant predation (Table A.2),
but only one external health index (integrated condition cate-
gory) was associated with susceptibility to Caspian tern preda-
tion (Table A.1). Furthermore, the magnitude and significance
of condition-dependent susceptibility were greater for double-
crested cormorant predation than for Caspian tern predation in
the top models and the individual-variable models. For instance,
on the double-crested cormorant colony, the odds of recovering
a PIT tag from a steelhead in poor condition was 1.72 times
the odds of recovering a tag from a steelhead in good con-
dition (Table A.2), whereas the odds ratio was only 1.31 for
recovery of these PIT tags on the Caspian tern colony (Table
A.1). Taken together, these results indicate that both piscivorous
bird species disproportionately consumed steelhead that were in
degraded condition, but the magnitude of condition-dependent
susceptibility varied between the avian predator species.

Selective predation can result from several conditional
events, including differences in predator–prey encounter rates,
attack rates, capture rates, or a combination of these (Temple
1987). For instance, the behavior of potential prey in poorer
health could make them more conspicuous to predators, thus in-
creasing encounter rates. Likewise, predators could selectively
attack prey in poorer condition to enhance foraging efficiency
(rate of successful attacks), expending less energy to capture
substandard prey than healthy prey (Stephens and Krebs 1986).
Finally, increased predation rates on prey in substandard con-
dition could result when predators attack all encountered indi-

viduals of the prey population but have a higher capture rate for
fish in poorer health (Temple 1987).

Although this study could not address the mechanisms influ-
encing selective predation, Caspian terns and double-crested
cormorants both disproportionately consumed steelhead that
were in degraded condition. The external indices of steelhead
health status used in this study were associated with other met-
rics of overall fish condition, including increased pathogen
prevalence and reduced survival (Hostetter et al. 2011).
Hostetter et al. (2011) demonstrated that the likelihood of sur-
vival was significantly less for juvenile steelhead with external
symptoms of degraded condition than for relatively undamaged
smolts. These previous results, coupled with the condition-
dependent avian predation demonstrated in the present study,
support the hypothesis that avian predators disproportionately
consume smolts that are less likely to survive to adulthood,
indicating that smolt mortality from avian predation is partly
compensatory.

Individual fish characteristics, including FL and rearing type
(hatchery versus wild), were also related to differences in steel-
head susceptibility to avian predation. The size of individual
prey and the relationship between individual prey size and the
size distribution of the prey population at large can have a ma-
jor influence on survival probability (Rice et al. 1993; Sogard
1997). One of the most prevalent theories regarding the influ-
ence of juvenile fish size on susceptibility to predation is the
“bigger is better” theory (Sogard 1997), which predicts that
larger prey will have a survival advantage over smaller prey.
However, our results support an alternative hypothesis—that
predators select intermediate-sized prey to optimize their en-
ergy intake (MacArthur and Pianka 1966; Rice et al. 1997).
Susceptibility to Caspian tern predation was highest for steel-
head with FLs around 202 mm and was lower for larger or
smaller steelhead. Evidence that salmonid susceptibility to pre-
dation by Caspian terns may be positively related to salmonid
smolt FL was previously presented by Collis et al. (2001) and
Ryan et al. (2003). Those authors noted that the relative suscep-
tibility of various salmonid species to Caspian tern predation
in the Columbia River estuary was correlated with fish size, as
juvenile Chinook salmon and coho salmon O. kisutch were less
susceptible than juvenile steelhead, which are generally larger.
Caspian terns nesting on Crescent Island in McNary Pool were
also found to disproportionately consume steelhead in compari-
son with relatively smaller Chinook salmon (Antolos et al. 2005;
Evans et al. 2012). Size-dependent susceptibility of steelhead
to Caspian tern predation in the present study provides strong
empirical evidence in support of the hypothesis that relative size
differences among salmonid ESUs are responsible, at least in
part, for ESU-specific differences in predation rates by Caspian
terns (Collis et al. 2001; Ryan et al. 2003; Evans et al. 2012).

A growing body of evidence suggests that the behavioral
and physical traits associated with hatchery-raised salmonids
enhance their susceptibility to predation (Olla and Davis 1989;
Johnsson and Abrahams 1991; Álvarez and Nicieza 2003; Fritts
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et al. 2007). Several studies in the Columbia River estuary have
noted that hatchery-reared salmonids were more susceptible to
avian predation than their wild counterparts (Collis et al. 2001;
Ryan et al. 2003; Kennedy et al. 2007). Our results indicate that
hatchery-reared steelhead were more susceptible to some avian
predators in freshwater systems: double-crested cormorants dis-
proportionately consumed hatchery-reared steelhead relative to
wild-origin steelhead, but this was not the case for Caspian
terns. Although the mechanisms associated with increased sus-
ceptibility of hatchery-reared salmonids to avian predation have
not been completely elucidated, numerous traits could play a
role in the higher susceptibility of hatchery-reared salmonids
to double-crested cormorant predation. Such traits include a
lack of innate and learned predator avoidance behaviors (Olla
and Davis 1989; Berejikian 1995), greater surface orientation
(Mason et al. 1967), and increased stress levels associated with
handling (Schreck 1981; Olla and Davis 1989).

Environmental factors have been shown to alter salmonid
susceptibility to predation in both field and laboratory settings
(Raymond 1979; Gregory 1993; Gregory and Levings 1998; Ko-
rstrom and Birtwell 2006). For instance, Antolos et al. (2005)
suggested that low river flows and reduced in-river salmonid
abundance were associated with increased predation rates on
salmonids by Caspian terns nesting on Crescent Island. In our
study, decreased discharge was strongly associated with in-
creased steelhead susceptibility to Caspian tern predation. Dis-
charge, which is correlated with water velocity, is a key fac-
tor determining the rate at which juvenile salmonids migrate
through reservoirs (Berggren and Filardo 1993) and beyond the
foraging range of central-place-foraging predators, such as colo-
nial piscivorous waterbirds. However, this relationship was not
consistent between the two predator species we examined, as
steelhead susceptibility to double-crested cormorant predation
was not significantly related to discharge.

Decreased water clarity (i.e., increased turbidity) can de-
crease the susceptibility of fish prey to predation by piscivorous
fishes due to a potential reduction in predator–prey encounter
rates (Gregory 1993; Gregory and Levings 1998; De Robertis
et al. 2003). Strod et al. (2008) found that increased turbid-
ity reduced fish prey detection and predation by the great cor-
morant Phalacrocorax carbo sinensis, a pursuit-diving species
similar to the double-crested cormorant. Similarly, we found
that steelhead susceptibility to double-crested cormorant preda-
tion decreased with increasing turbidity, indicating a decreasing
probability that a steelhead would be consumed by a double-
crested cormorant as turbidity increased. Unlike susceptibility to
double-crested cormorant predation, the susceptibility of steel-
head to Caspian tern predation was positively related to tur-
bidity. Differences between Caspian terns and double-crested
cormorants in terms of the influence of turbidity on steelhead
susceptibility to predation are likely due to variation in forag-
ing behavior between the two avian predators. The reduction in
steelhead susceptibility to double-crested cormorant predation
as turbidity increased may have been due to a decrease in en-

counter rates that would affect a pursuit-diving predator (Strod
et al. 2008). However, decreased reaction times and reduced
use of cover by salmonids in more-turbid water (Gregory 1993;
Gregory and Levings 1998; Korstrom and Birtwell 2006) may
increase steelhead susceptibility to plunge-diving predators like
Caspian terns.

The presence of large numbers of prey can swamp the short-
term capacity of predators to attack, handle, and consume them,
which in turn can improve an individual prey’s chances of
survival (Ims 1990). Consistent with the predator-swamping
hypothesis, an increased abundance of in-river steelhead was
associated with a decreased susceptibility of individual steel-
head to predation by Caspian terns. Ryan et al. (2003) noted
a similar relationship between increased salmonid abundance
and reduced susceptibility to avian predation in the Columbia
River estuary, attributing this relationship to a greater potential
for predator satiation and an improved ability of schooling fish
to avoid predation. The association between in-river steelhead
abundance and susceptibility to avian predation in the present
study was, however, specific to Caspian terns. The lack of a
relationship between in-river steelhead abundance and suscep-
tibility to double-crested cormorant predation was likely due to
the strong correlation between peak steelhead abundance and
peak double-crested cormorant abundance (Figure 2C, E). The
increased food demands associated with more breeding pairs and
chicks in the double-crested cormorant colony along with the
greater metabolic requirements of double-crested cormorants
relative to Caspian terns (Roby et al. 2003; Lyons 2010) may
have superseded any influence that steelhead abundance would
have had on their susceptibility to predation by double-crested
cormorants.

Prey often live in communities that include several predator
species. However, the majority of studies have only examined
predation impacts associated with one predator species (Sih et al.
1998). In the Columbia River basin, Caspian terns and double-
crested cormorants are responsible for the majority of smolt
losses due to avian predation (Collis et al. 2002; Evans et al.
2012). Predator-specific differences in foraging behavior, size,
and gape width (Cuthbert and Wires 1999; Hatch 1999) suggest
that the functional roles of these top avian predator species may
be different, and thus their impacts on prey populations (e.g.,
salmonids) may also differ. The influences of individual fish
characteristics and river conditions on steelhead susceptibility to
avian predation in this study were often predator specific, further
demonstrating the need to evaluate predator-specific impacts. In-
formation on the predator-specific impacts from multiple preda-
tors will improve top-down ecosystem management (i.e., preda-
tor management) to recover fish populations of conservation
concern where such actions are warranted and applicable.

The efficacy of predator control efforts for restoring prey pop-
ulations of conservation concern depends on whether reductions
in mortality due to predation are compensated for by other mor-
tality factors. Separating the ultimate causes of mortality (e.g.,
degraded fish condition) from the proximate causes (e.g., avian
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predation on fish in degraded condition) can provide valuable
insight into complex predator–prey interactions. For instance,
if most of the juvenile salmonids that are consumed by avian
predators would have died from other causes, then reductions
in avian predation will not result in commensurate increases
in the number of returning adult salmonids (i.e., smolt-to-adult
survival; Schreck et al. 2006). Our results suggest that the ef-
ficacy of management actions to reduce avian predation may
be somewhat discounted by the disproportionate predation on
steelhead in degraded condition. However, the low prevalence
of externally degraded steelhead smolts observed in this study
(see Table 1) and the on-colony recovery of PIT tags from steel-
head that were apparently in good condition suggest that some
proportion, perhaps substantial, of smolt mortality due to avian
predation is additive. At this time, studies that quantify the level
of compensatory mortality associated with avian predation in
the Columbia River basin have yet to be published. Further, it
appears that hydrosystem operations and river conditions (e.g.,
discharge and water clarity) can also influence the susceptibil-
ity of steelhead to avian predation. Identification of individual
smolt characteristics and hydrosystem practices that affect smolt
survival and susceptibility to predation will aid in the develop-
ment of management strategies that contribute to the recovery
of ESA-listed salmonid stocks in the Columbia River basin.
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APPENDIX: INDIVIDUAL VARIABLE RESULTS FROM LOGISTIC REGRESSION MODELS

TABLE A.1. Individual variable results from logistic regression models used to evaluate the susceptibility of juvenile steelhead to predation by Caspian terns
(kcfs = kilo cubic feet per second; LMN = Lower Monumental Dam; ICH = Ice Harbor Dam). External condition characteristics are defined in Table 1.

Variablea df χ2 P Effect Odds ratio 95% CI P

Individual characteristics
Body injury 2 4.4 0.112 Moderate vs. absent 0.94 0.76–1.16 0.569

Severe vs. absent 1.24 0.99–1.55 0.057
Descaling 2 4.9 0.086 5–20% vs. <5% 1.09 0.93–1.27 0.298

>20% vs. <5% 1.40 1.02–1.92 0.035
Disease 2 2.9 0.232 Moderate vs. absent 1.55 0.86–2.77 0.145

Severe vs. absent 1.25 0.78–2.00 0.353
Ectoparasites 2 4.5 0.105 Moderate vs. absent 1.56 1.02–2.37 0.039

Severe vs. absent 0.79 0.28–2.22 0.660
Fin damage 2 3.2 0.198 Moderate vs. absent 0.87 0.74–1.03 0.115

Severe vs. absent 0.98 0.80–1.21 0.855
Integrated condition 2 7.7 0.022 Fair vs. good 1.05 0.89–1.23 0.584

Poor vs. good 1.31 1.08–1.58 0.006
Rearing type 1 3.7 0.053 Hatchery vs. wild 0.83 0.68–1.00 0.053
FL 1 111.8 <0.001 1-cm increase 0.90 0.88–0.91 <0.001
FL + FL2 2 97.8 <0.001 NA <0.001

Environmental factors
Discharge 1 2.8 0.093 10-kcfs increase 0.98 0.95–1.00 0.093
Water clarity 1 8.7 0.003 1-m increase in Secchi depth 0.66 0.50–0.87 0.003
Release location 1 4.8 0.028 LMN vs. ICH 1.32 1.03–1.69 0.028

aAssociations were determined after controlling for detection efficiency, predator abundance, prey abundance, and migration year.

TABLE A.2. Individual variable results from logistic regression models used to evaluate the susceptibility of juvenile steelhead to predation by double-crested
cormorants (kcfs = kilo cubic feet per second; LMN = Lower Monumental Dam; ICH = Ice Harbor Dam). External condition characteristics are defined in
Table 1.

Variablea df χ2 P Effect Odds ratio 95% CI P

Individual characteristics
Body injury 2 6.0 0.050 Moderate vs. absent 1.19 0.91–1.57 0.200

Severe vs. absent 1.42 1.05–1.93 0.025
Descaling 2 2.0 0.376 5–20% vs. <5% 1.15 0.95–1.39 0.164

>20% vs. <5% 1.09 0.69–1.70 0.721
Disease 2 48.9 <0.001 Moderate vs. absent 2.69 1.61–4.50 <0.001

Severe vs. absent 3.08 2.15–4.43 <0.001
Ectoparasites 2 0.2 0.917 Moderate vs. absent 0.86 0.43–1.75 0.680

Severe vs. absent NAb NAb 0.958
Fin damage 2 8.8 0.012 Moderate vs. absent 1.17 0.91–1.49 0.218

Severe vs. absent 1.49 1.13–1.96 0.005
Integrated condition 2 19.9 <0.001 Fair vs. good 1.20 0.97–1.48 0.092

Poor vs. good 1.72 1.36–2.19 <0.001
Rearing type 1 9.4 0.002 Hatchery vs. wild 1.61 1.19–2.18 0.002
FL 1 0.5 0.482 1-cm increase 1.01 0.98–1.04 0.482
FL + FL2 2 3.1 0.078 NA – – 0.078

Environmental factors
Discharge 1 0.0 0.959 10-kcfs increase 1.00 0.96–1.04 0.959
Water clarity 1 3.9 0.047 1-m increase in Secchi depth 1.44 1.00–2.07 0.047
Release location 1 34.9 <0.001 LMN vs. ICH 0.52 0.42–0.65 <0.001

aAssociations were determined after controlling for detection efficiency, predator abundance, prey abundance, and migration year.
bNo PIT tags from steelhead with severe ectoparasites were recovered on the double-crested cormorant colony.
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