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Physical Human Interactive Guidance: Identifying

Grasping Principles From Human-Planned Grasps
Ravi Balasubramanian, Ling Xu, Peter D. Brook, Joshua R. Smith, and Yoky Matsuoka

Abstract—We present a novel and simple experimental method
called Physical Human Interactive Guidance to study human-
planned grasping. Instead of studying how the human uses his/her
own biological hand or how a human teleoperates a robot hand
in a grasping task, the method involves a human interacting
physically with a robot arm and hand, carefully moving and
guiding the robot into the grasping pose while the robot’s
configuration is recorded. Analysis of the grasps from this simple
method has produced two interesting results. First, the grasps
produced by this method perform better than grasps generated
through a state-of-the-art automated grasp planner. Second, this
method when combined with a detailed statistical analysis using
a variety of grasp measures (physics-based heuristics considered
critical for a good grasp) offered insights into how the human
grasping method is similar or different from automated grasping
synthesis techniques. Specifically, data from the Physical Human
Interactive Guidance method showed that the human-planned
grasping method provides grasps that are similar to grasps
from a state-of-the-art automated grasp planner, but differed
in one key aspect. The robot wrists were aligned with the
object’s principal axes in the human-planned grasps (termed
low skewness in this paper), while the automated grasps used
arbitrary wrist orientation. Preliminary tests shows that grasps
with low skewness were significantly more robust than grasps
with high skewness (77% to 93%). We conclude with a detailed
discussion of how the Physical Human Interactive Guidance
method relates to existing methods for extracting the human
principles for physical interaction.

I. INTRODUCTION

FOR a roboticist, the way a human grasps or manipulates

an object is of great interest for at least two reasons.

First, automated grasp planning is still not robust enough

when implemented on a physical robot, in stark contrast to

human grasps which rarely fail. Second, a personal robotic

assistant that uses human-like grasps may perform better in

situations when the human and the robot co-manipulate an

object. For example, when a robot is handing an object to

a human, it would be better if the robot grasped the object

proximally rather than distally so that the person can grasp

it. However, there is still much to learn about the heuristics

that make human grasping or even human-planned grasping (a

grasp that is planned by a human, say, for a robot) so robust.

This paper presents a novel experimental method that enables

a direct comparison of human-planned grasping with the

performance of a state-of-the-art automated grasp planning

algorithm and simultaneously identify the heuristics humans

use in performing grasps. In particular, this paper presents
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a previously unnoticed grasping heuristic called skewness,

which significantly improves robotic grasping performance as

well.

Apart from direct observation of humans using their

hands [12], two primary approaches have been popular in the

literature to identify how humans perform grasps: 1) Perform-

ing motion capture of the human hand itself performing grasps

using vicon cameras [34], [30], data gloves [39], [27], [16],

force sensors [48], or video footage [4], [11]; 2) Studying the

grasps that humans plan for the robot using teleoperation either

through direct sight [10], [37], using real-time video [14], [26],

[29], or using a virtual environment [24].

However, there are significant challenges with these ap-

proaches. First, the human hand’s complex geometry makes

a direct study of its posture in grasping experiments very

challenging. While the exact numbers are debated, the human

hand has over twenty one degrees of freedom, including

joints in the fingers, thumb, palm, and wrist [22]. Also, the

joints’s rotational axes are typically non-orthogonal and non-

intersecting and usually differ between human subjects [44],

[17], [5], [6]. Finally, the high compliance of the palm and

skin and feedback control loops [20], [45] in the human body

make grasp contact analysis difficult. Consequently, the large

parameter space and the approximations made in describing

hand kinematics and contact complicates the identification of

the heuristics behind finger and wrist posture in a human

grasp [30], [11]. Furthermore, if we want to use the human

grasping heuristics to improve the performance of robotic

grasping, then the difference in kinematics between the human

hand and the robotic hand poses a further challenge. For

example, the popular BarrettHand1 [43] has only four joints

compared to the many joints in the human hand. There is no

straightforward procedure to map the human hand posture to

the robot hand and consequently human hand grasps to robotic

grasps (see [19] for an example).

Similarly, there are challenges in extracting the princi-

ples of human grasping from the human-planned grasps

obtained through teleoperation. The artificial (and usually)

two-dimensional visual or haptic feedback that the human is

provided may limit the human subject’s choice of grasps. Thus,

the human may provide suboptimal grasps arising from poor

access. In addition, the more physically removed the human

is from the task, the role of practice and training becomes

more significant to achieve optimal performance. Thus, there

may be strong variability in the grasps that the human subjects

provide, depending on the variability in experience operating

1http://www.barrett.com/robot/index.htm
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Fig. 1. The Physical Human Interactive Grasping environment: the human
physically guides the robot wrist and fingers into a grasping posture.

the device. As a result of these challenges, these works

have primarily yielded qualitative information about human

grasping, such as a grasp taxonomy [12] and the postural

synergies in hand grasping movements [39], from which it

is difficult to infer which aspects of human grasping lead to

its high robustness.

To achieve our goal of identifying human grasping princi-

ples, we wanted a data collection process that allowed the

human to express their grasping intentions naturally with

minimal training. Simultaneously, we wanted an easy and

straight-forward method to interpret the kinematics of the

human grasp.

Our approach, in contrast to existing techniques, allowed

the human subjects to plan a grasp for the robot by physically

guiding the robot hand (wrist and fingers) into a grasping

posture for a given task (see Fig. 1). This procedure, called

Physical Human Interactive Guidance, allowed the human

subject to be intimately involved in the task—arguably as

involved and simple as placing a pair of tongs on an object for

grasping. The advantage of the human subject using the robot

hand rather than his/her own hand is that the geometry of robot

wrist and finger placement are straightforward to measure

through the joint encoders in the robot. Another unique aspect

of our method is that instead of a stand-alone analysis of

human-planned grasping, since the human plans grasps for a

robotic hand, we can compare the human-planned grasps with

grasps generated for the same robot by an automated grasp

planner [42].

We first verified that the grasps collected using the Physical

Human Interactive Guidance method performed better than

grasps generated for the robot by a state-of-the-art automated

grasp planning software, even though both the human and the

automated planner provided the same information to the robot,

namely wrist orientation and finger posture (and no dynamic

information such as contact force). Second, we showed that

even though the subjects were not using their biological hands

to perform grasps, we could still identify critical heuristics

that humans use in grasping by comparing the human-planned

grasps with the grasps from the automated planner, including

a new human grasping principle that to our knowledge has not

been noticed before and that significantly improves grasping

performance on a robot when used to filter automated grasp

planning results.

After describing our method for collecting human-planned

grasping data in section II and the method for testing the grasps

in section III, we then present a method for analyzing the

human-planned grasps in section IV. Section V provides the

results of the experiments conducted, in terms of the success

rate of the human-planned grasps and the key parameters

optimized by the human-planned grasps. We also show how

the Physical Human Interactive Guidance method identified a

new grasp measure. In section VI, we discuss how this novel

method for grasp acquisition relates to previous methods in

the context of human-robot interaction. Portions of this work

were briefly reported earlier in [1], but that paper did not

focus on the novelty of the data collection method. Also,

this paper provides additional insights into human-planned

grasping heuristics and the effectiveness of human involvement

in teaching robots.

II. PHYSICAL HUMAN INTERACTIVE GUIDANCE

Our approach to acquiring grasping examples from humans

allowed a human subject to teach a robot different grasps

by being in the robot’s workspace and physically interacting

with the robot. This interaction method required the person

to guide the robot to specific wrist configurations and finger

postures. This experimental set-up was called the Physical

Human Interactive Guidance environment (see Fig. 1) and the

grasps collected “human-planned grasps”.

Through the Physical Human Interactive Guidance method,

the human subject had an opportunity to understand the motion

capabilities of the robot arm and hand, the object’s inertial and

geometrical properties, and how the robot and object would

interact during the grasp (including the type of contact). These

aspects of the grasping process are critical since grasping is

a physically interactive task where the “last few centimeters”

could make the difference between a successful and unsuc-

cessful grasp. That is, however carefully the hand’s path was

planned to reach the grasping posture, the grasp could still

fail if the finger placement was not good. Note also that the

human subject could move freely around the robot to use

different views of the object-hand interaction to decide on the

best grasp posture (in contrast to other work that has explored

how limited visual feedback can affect human grasping [8]

and reaching [47] strategies). The Physical Human Interactive

Guidance method was possibly the most intimate way for

human subjects to build an internal model of the grasping

process using a robot hand.

Such interactive robotic grasping with a human in the loop

has been explored before by the GraspIt! group [9], but their

goal and approach was different from the work in this paper.

Their goal was to demonstrate how GraspIt! goes through

search iterations to generate a grasp for a given wrist position.

Also, only wrist posture was controlled by the human and

finger posture was controlled by GraspIt!. The purpose of our

experiment was to identify what was unique about human-

planned grasping strategies, which might not be expressed

properly in other methods. Also, in our method, the human

had full control over the wrist and finger posture, both of

which are critical to grasp quality.
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Fig. 2. The experimental procedure of a human subject guiding the robot
to grasp an object: (a), (b) approach the object, (c) adjust wrist orientation
and finger spread, (d) fingers close in on the object, and (e) lift object. Note
that the subject was free to move around the workspace to view the physical
interaction from multiple angles.

A. Robotic Equipment

The Physical Human Interactive Guidance environment

used a robotic platform consisting of a seven degree-of-

freedom Barrett Whole Arm Manipulator robotic arm and a

three-fingered four degree-of-freedom BarrettHand2 [43]. The

robotic system was run on Willow Garage’s ROS software3,

and the robotic hand was equipped with electric field sen-

sors [46] which enabled the fingers to detect their proximity to

objects. The electric field sensors were used primarily to close

the fingers on the object simultaneously. Note that the choice

of robotic equipment used in this paper is only incidental to

available resources, and other robotic arms and hands could

be used to recreate the experimental set-up.

B. Grasp Guidance and Acquisition

Grasp data acquisition was kept as simple as possible. The

object to be grasped was placed by the experimenter at a

known location and orientation in the robot’s workspace. The

robot arm was placed in a “gravity compensation” mode,

where the robot arm had negligible weight and could be easily

moved by a human subject. The robot arm was reset to a

neutral position in the workspace and the robot hand’s fingers

were kept open. The grasp guidance procedure included the

following four steps.

Step 1: The human subject physically guided the robot

arm to an initial wrist pose at which the object could be

grasped (see Figs. 2a and 2b). The human subject was free to

move around the robot and use as many views as necessary to

position the robot wrist with or without an offset with respect

to the object axes.

Step 2: Using electric-field sensing, the finger motors were

commanded to close on the object so that each fingerpad

was approximately 5 mm from object surface. At this point,

the BarettHand motors were turned off to allow the human

subject to physically adjust the spread angle of the fingers,

depending on whether a parallel gripper-like grasp or a three-

finger triangular grasp was desired. Additionally, the subject

could adjust wrist pose again to better align the fingers with

2http://www.barrett.com/robot/index.htm
3http://www.ros.org/

the object (see Fig. 2c). Importantly, the human subject was

again given ample freedom, time, and space to move around

the robot in order to choose what he/she believed was the best

grasp for that task.

Step 3: When the subject was satisfied with this grasp pose,

the robotic fingers were commanded to close on the object,

completing the grasp guidance procedure. The final closure

step was guided by the electric-field sensors so that all fingers

contacted at the same time as to not perturb the object (see

Fig. 2d).

Step 4: Subjects were then allowed to lift and shake the

robotic arm to determine if they liked the grasp. Note that

this light shaking performed by the subject is different from

the vigorous programmed shaking that was performed during

the grasp testing phase (see section III). If the subject did

not like the grasp or if the object slipped out, the grasp was

disregarded (see Fig. 2e). We eliminated such grasps because

the goal was to collect the best grasps that humans could

provide.

Since the subjects had less than five minutes of practice with

the system before experiment data was collected, the grasp

guidance procedure provided an opportunity for the subjects to

review the grasps. This allowed the subjects to understand the

grasping process with the robotic hand and build an internal

model based on their grasping experiences with their own

hands. It turned out in the experiment described in the next

section that less than five percent of all the human guidance

grasps were eliminated because the subject was not satisfied

with the grasp. Therefore, the grasp review process did not

significantly affect the set of grasps collected.

Each grasp was represented simply as the kinematic con-

figuration of the robot arm and hand relative to the object

reference frame. Thus, a grasp was an eleven dimensional

vector containing the seven degree-of-freedom robot arm joint

angles and the four degree-of-freedom hand joint angles (one

spread and three flexion) relative to the object’s reference

frame.

C. Human-Subject Experiment Paradigm

Seven human subjects participated in a study approved by

the University of Washington Human Subjects Division. Each

subject was given five minutes of practice with the robot,

and a total of 210 grasps were collected with the robot.

Nine everyday objects were used in the experiment: three

small objects, three medium-sized objects, and three large

objects (see Fig. 3).

Since these everyday day objects had straightforward ge-

ometry, the experimenter used the objects’s edge features to

carefully position the objects at the required location and

orientation with respect to a known world coordinate frame

marked on the table4. Since the experiment was to study

the details of human-planned grasping of everyday objects

in natural configurations, the objects were placed in the

vertical orientation only (as shown in Fig. 3). Since the robot

4In this particular experiment (see Fig. 2), a white rectangular box on which
the objects were placed was used to align the object. This was only incidental
to this experimental set-up, and any means of repeated accurate positioning
of the object will suffice.
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Fig. 3. Objects used in the experiment fall into three size categories: small, medium, and large.

TABLE I
FUNCTIONAL TASKS

Object Functional task

Wine glass Lift to pour
One-liter bottle Lift to pour

Soda can Lift to pour
Cereal box Lift to pour

Coil of wire Lift to remove wire
Phone Lift to answer
Pitcher Lift to pour

Soap dispenser Lift to dispense
CD pouch Lift to open

base’s position and location was also known accurately with

respect to the world coordinate frame and the robot’s forward

kinematics available from the manufacturer, the robot hand’s

pose could be computed in the object’s frame of reference5.

Each subject was asked to perform three different tasks for

an object, namely, lifting the object, handing the object over,

and performing a function with the object. For the handing

over task, the subject was asked to grasp the object such

that there was space left for someone else to grasp it. The

functional tasks depended on the object. For example, the

functional task for the wine glass was pouring and for the

phone, the task was picking up to make a phone call (see

Table I for complete list).

For each object-task pair, the subject was asked to provide

two grasps, providing a total of six grasps per object. The

subjects were asked to vary the grasps if they could so as

to obtain some variety in the grasps collected. Each subject

was randomly assigned to five objects, while ensuring an even

distribution of grasps for each of the objects (each object was

selected four times except for the soda can which was selected

three times). After each human-planned grasp, the object was

again placed carefully by the experimenter in the required

position and orientation and the experiment was repeated.

The human subjects also responded to a questionnaire to

help identify the heuristics they believed they used to perform

the grasping task. Specifically, we wanted to find out what

geometric and force-related aspects of the grasp the subjects

thought they used to perform the grasp. For example, one

specific question asked if the subjects paid attention to wrist

orientation and finger posture (geometric) and wrist position

relative to object center of mass (force-related). More details

5We also placed the objects randomly in three different locations on the
table (left, right, and center with respect to the robot base) to ensure that
the human-planned grasps were not unduly influenced by the specificity of
the arm posture required for a particular location. Since we did not find any
significant differences between the grasps from different locations in terms of
the robot wrist and finger posture relative to the object, we combined all the
human-planned grasps from the different locations into one set to be tested
by the stationary robot.

are presented in section V.

III. GRASP TESTING ON PHYSICAL ROBOT

After collecting the human-planned grasps, we wanted to

test how well each grasp performed on average on those same

objects. Several past works have tried to infer grasp quality

simply from simulation models [25], [15], [28], [32], [33],

[3], [42], [36] with mixed results (see section V). In this

paper, the human-planned grasps were validated on a physical

robot rather than in simulation. From the eight human-planned

grasps for each object-task pair (six for the soda can), our

protocol was to choose three grasps randomly for testing on a

physical robot. Thus, we expected to test a total of 27 grasps

for each task (3 candidate grasps x 9 objects). However, it

turned out that some human-planned grasps for the lifting and

functional task which were performed when the objects were

placed to the left and right of the robot could not be tested

on the stationary robot when the grasps were mapped to the

center location (in particular, grasps from the object’s front)

due to the lack of an inverse kinematics solution. Thus, all

the human-planned grasps for the lifting and functional tasks

which could be tested (25) were tested.

The testing procedure was intentionally kept simple. The

object was placed by the experimenter in a known position and

orientation (similar to the procedure outlined in section II-C).

Since each grasp was represented as an eleven-dimensional

vector of robot arm and hand joint angles relative to the object,

the robot was simply commanded to the grasp posture as

follows. The robot arm was commanded to the recorded arm

joint angles with the fingers fully opened. The robot hand

was then commanded to the required spread angle. Finally,

the fingers were commanded to close in quickly on the object,

and the robot lifted the object and then executed a shaking

procedure, where the object was shaken by the robot four times

in a continuous circular motion (see Table II for peak and mean

velocities and accelerations). Note that this automated shaking

by the robot was different and significantly more vigorous than

the light shaking that the users performed after they planned

the grasp (see Step 4 in section II-B). Also, the users did not

know that the grasp would be tested in this manner.

If the object stayed in the hand after the shaking, it was

considered a success (scored 1). All other situations (object

pushed away during acquisition or object falls down during

shaking) were considered a failure (scored 0). This testing

process was repeated for each grasp five times.

Note that this simple grasp testing procedure helps maintain

the focus of our research on grasp generation rather than elab-

orate grasp testing methods that include, say, feedback control.

The success rate was computed for each grasp by averaging
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TABLE II
SHAKING TRAJECTORY DETAILS

Peak Mean

Angular Velocity (rad/s) 4.62 2.74
Linear Velocity (m/s) 0.62 0.39

Angular Acceleration (rad/s2) 4.39 2.22

Linear Acceleration (m/s2) 0.63 0.33

over the five trials. Hypothesis testing was performed with a

significance level of 0.05, and standard errors were reported

for all mean values.

IV. GRASP ANALYSIS

A. Analysis Using a Grasp Measure Set

Given our goal of identifying the principles behind human-

planned grasping, we needed a grasp measure space which

identified the properties of a grasp. Specifically, the eleven-

dimensional finger and wrist posture of the grasp alone does

not provide insights into grasp quality, since the way the

fingers are placed relative to the object is critical for the grasp.

Several grasp measures have been proposed in prior literature

to infer grasp quality [15], [31], [7], [41], [35], [2], [38]. After

a detailed survey, we chose a set of eleven grasp measures from

the literature (see Table III; the citations correspond to all the

features in each section of the table). The “grasp volume”

measure is a three-dimensional version of the “grasp area”

suggested for planar grasps in [7].

Each grasp measure is associated with a heuristic. For

example, the epsilon metric in row 1 of Table III measures

the minimum disturbance force and moments that a grasp

can resist in all directions, and results from simulation show

that a grasp is better if it has a larger epsilon score [15].

But few grasp measures have been rigorously evaluated using

experiments on a physical robot.

The last row of Table III also proposes a new grasp measure

that was suggested by the data during the human-subject

experiments and that we hypothesize may be broadly useful.

The new measure, called skewness, measures the robot wrist

orientation relative to the object’s principal axis. Suppose

the object’s principal axis (axis of longest dimension) is

represented by unit vector u, and the axis pointing out of the

palm of the BarrettHand by unit vector v (see Fig. 4). The

angle δ between u and v may be computed as δ = arccos(u ·v).
Then the skewness measure α is defined as:

α =



















δ , if δ < π/4

π/2−δ , if π/4 < δ < π/2

δ −π/2, if π/2 < δ < 3π/4

π −δ , if δ > 3π/4

(1)

In the human-planned lifting grasp for the bottle in Fig. 5,

robot’s wrist orientation in the bottle-lifting task is approx-

imately parallel to the bottle’s principal axis (vertical), and

the grasp’s skewness measure α is near zero. In contrast, the

computer generated GraspIt! grasp for the bottle would have

a skewness measure α close to thirty degrees.

Note that it was easy to notice the peculiarity of wrist place-

ment in the human-planned grasps only because we used the

Physical Human Interactive Guidance method. This is because

the robot hand geometry is simple and known explicitly and

Fig. 4. Relative orientation of the object and robot hand: The object’s
principal axis is u. In pose v, the robot hand has skewness of zero, while
in pose v′, the robot hand has skewness close to thirty degrees.

the subjects were comfortable with the guidance process. Thus,

the subjects were able to use their natural grasping heuristics,

and we could identify the new skewness measure. In contrast,

if we were studying the human hand directly, it would have

been significantly more difficult to identify a grasp measure

such as skewness due to the complexity of the human hand

geometry.

We computed values for all the grasp measures for each

human-planned grasp, and thus the grasp could now be eval-

uated in the chosen twelve dimensional grasp-measure space.

This will help understand the parameters that humans optimize

for when performing grasps. Note that this is in addition to

testing on a physical robot, which provides a true measure of

grasp quality.

B. Comparison with Automated Grasping Methods

Instead of a stand-alone analysis of human-planned grasp-

ing, we wanted to compare the human-planned grasping tech-

nique against existing grasp synthesis methods both in terms

of average success rate as well as the heuristics optimized for

during grasp generation. The most common and standardized

procedure in the robotics community is automated grasp

synthesis for robots using a set of grasp measures. We used

an open-source state-of-the-art grasp planning software called

GraspIt! developed by Columbia University [32] for grasp gen-

eration6. Note that we could have used other software such as

openRAVE [13] as well for grasp generation. However, many

of these programs use the same force-closure metrics standard

in robotics community [15] developed by for evaluating grasp

quality. We chose GraspIt! since it had been well-tested for

several years and their team helped us understand the code.

Given an object’s three-dimensional model, GraspIt! finds

grasps for an object by searching the high-dimensional hand-

configuration space and then focuses the search on the best

grasps by using a variety of grasp measures. Combined with

a compliant contact (soft-contact) simulation, GraspIt! uses

grasp measures that are popular in the robotics community:

6http://grasping.cs.columbia.edu/
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TABLE III
GRASP MEASURE SET

Grasp Measure Description Minimum Maximum Citation

Epsilona Minimum disturbance wrench that
can be resisted

0 1 [15],
[31]

Wrench space volumea Volume of grasp wrench space 0 26

Grasp energyb Hand-object proximity Negative infinity Infinity

Point arrangementa Proximity of fingertips being in a
plane parallel to palm.

0 1 [7]

Grasp volumea* Volume enclosed by hand 0 ∼669 cm3

Hand flexionb Similarity of finger flexion 0 1

Hand spreadb Proximity of the finger spread to equi-
lateral triangle

0 1

Finger limitc Extent of finger extensions 0 1

Volume of object encloseda Object volume enclosed by hand nor-
malized by object volume

0 1 [41],
[40]

Parallel symmetryb Distance between center of mass and
contact point centroid along object
principal axis

0 0.5

Perpendicular symmetryb Distance between center of mass and
contact point centroid perpendicular
to object principal axis

0 0.5

Skewness See section IV-A 0 π/4

aLarger⇒Better grasp; bSmaller⇒Better grasp; cMid-range⇒Better grasp

1) wrench space computations (epsilon and volume [15]) that

estimate a grasp’s ability to provide force closure based on

the minimum disturbance that the grasp can resist in all

directions (first and second rows of Table III); and 2) the

shortest distance between the object and pre-defined grasp

points on the hand (defined as grasp energy in the third row

of Table III).

Using the same procedure that was used to generate grasps

for the Columbia Grasp Database [18], we ran GraspIt! for

thirty minutes with the intention of generating multiple top

grasps for each object according to its grasp heuristics. In

thirty minutes, GraspIt! explored a large set (135000) of varied

wrist and finger configurations to generate six top grasps for

most of the objects, but for three objects, GraspIt! generated

only four or five grasps (wine glass: 4, coil of wire: 5, one-liter

bottle: 4). This was partly due to search complexity as well as

the lack of an inverse kinematics solution when implemented

on the robot (since the robot was stationary relative to the table

and object in the set-up). Thus, the automated grasp search

provided a total of 49 grasps across the nine objects after

exploring 1.2 million wrist and finger configurations. Since

we collected a sufficient number of automated grasps from

GraspIt! we did not feel the few grasps that we lost to the

search complexity were significant in our results. Note again

that each grasp is represented as the eleven-dimensional vector

containing robot arm and hand joint angles.

Note that GraspIt! cannot provide task-specific grasps, and

its grasps are intended for lifting tasks only. So the perfor-

mance of only the human-planned lifting grasps and GraspIt!

grasps will be directly compared. The GraspIt! grasps also

were validated using the same process as the human-planned

grasps (see section III).

V. RESULTS

A. Human-planned Grasps Versus Automated Grasps

Fig. 5 shows a sample of grasps generated by GraspIt! and

through the Physical Human Interactive Guidance method for

Fig. 5. Example grasp postures generated by human subjects (for a lifting
tasks) and GraspIt! for three objects. Note that the human subjects manually
specified the grasps on the physical Barrett robotic hand, which were then
visualized using the OpenRAVE program [13].

the different tasks. All the fingers were used in every grasp,

whether human-planned or from GraspIt!.

Table IV presents the success rates for each object (averaged

over five trials) for the human-planned grasps and for the

GraspIt! grasps (a total of (25 + 27 + 25 + 49)×5 = 630 testing

trials). Across objects, the human-planned lifting strategy

yielded a 91(3)% success rate while GraspIt! yielded 77(3)%.

An outlier for the human lifting grasps was the one-liter

bottle. If these grasps were removed, the success rate for

human-planned lifting grasps would be 97(1)%. Interestingly,

while the human-planned grasps for the handing-over task and
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TABLE IV
MEAN SUCCESS RATES FOR HUMAN-PLANNED GRASPING AND GRASPIT!

Object Human-planned GraspIt!
Lifting Handing-over Functional

Wine glass 93 (7) 33 (13) 100 (0) 100 (0)
One-liter bottle 40 (13) 67 (13) 93 (7) 65 (26)

Soda can 93 (7) 87 (9) 100 (0) 90 (5)
Cereal box 93 (7) 87 (10) 100 (0) 90 (4)

Coil of wire 100 (0) 100 (0) 60 (13) 32 (11)
Phone 100 (0) 100 (0) 50 (13) 70 (6)
Pitcher 100 (0) 100 (0) 100 (0) 83 (5)

Soap dispenser 100 (0) 87 (9) 100 (0) 67 (11)
CD pouch 100 (0) 100 (0) 67 (13) 100 (0)

Overall 91 (3)* 84 (3) 86 (3) 77 (3)*

Number of grasps 25 27 25 49

*⇒ p < 0.05 when comparing the human-planned lifting and GraspIt! grasps.

TABLE V
GRASP MEASURE VALUES FOR HUMAN-PLANNED GRASPING AND GRASPIT!

Grasp measure Mean (Standard error)
Human-planned GraspIt!

Lifting Handing-over Functional

Epsilon 0.1 (0.02)* 0.10 (0.01) 0.09 (0.01) 0.19 (0.01)*
Wrench space volume 0.15 (0.05)* 0.14 (0.03) 0.19 (0.06) 0.42 (0.04)*
Grasp energy -1.33 (0.09) -1.46 (0.07) -1.2 (0.09) 3.95 (2.57)

Point arrangement 0.78 (0.02) 0.79 (0.02) 0.75 (0.02) 0.76 (0.02)

Grasp volume (cm3) 281 (29) 271 (24) 238 (35) 259 (33)

Hand flexion 0.05 (0.01)*a 0.05 (0.01)b 0.29 (0.08)a,b 0.19 (0.04)*
Hand spread 0.39 (0.02) 0.38 (0.02) 0.43 (0.02) 0.37 (0.02)
Finger limit 0.70 (0.05) 0.71 (0.02) 0.73 (0.03) 0.76 (0.02)

Volume of object enclosed 0.06 (0.01) 0.06 (0.01) 0.05 (0.01) 0.05 (0.01)
Parallel symmetry 0.30 (0.05) 0.35 (0.05) 0.28 (0.04) 0.39 (0.03)
Perpendicular symmetry 0.33 (0.03) 0.30 (0.03) 0.33 (0.04) 0.28 (0.03)

Skewness 5.2 (1.3)* 6.09 (1.90) 4.79 (1.01) 23.2 (1.86)*

Number of grasps 25 27 25 49

*⇒ p < 0.05 when comparing the human-planned lifting and GraspIt! grasps
a,b

⇒ p < 0.05 when comparing the human-planned grasps for different tasks.

the functional task did not perform as well as the human-

planned grasps for lifting, they still outperformed on average

the GraspIt! grasps which are meant for lifting only.

Table V shows the range of values for the grasp measures for

human-planned grasps and the GraspIt! grasps. Looking first

at the human-planned lifting grasps and the GraspIt! grasps,

we notice that only four grasp measures, namely epsilon,

grasp wrench-space volume, hand flexion, and skewness, were

significantly different between the two grasp sets. The energy

measure showed a borderline significant difference (p = 0.05)

between human-planned lifting and GraspIt!, but that was due

to outliers.

While larger epsilon and volume indicated better grasp qual-

ity theoretically, we noticed from the experiment that epsilon

and volume were lower for the human-planned grasps when

compared with the GraspIt! grasps even though the human

guided grasps had a higher success rate than the GraspIt!

grasps. The hand-flexion measure indicated that humans used

lifting grasps which had significantly different finger flexion

values when compared with the GraspIt! grasps. The hand-

spread values for the human-planned grasps indicated that the

humans used largely pinch grasps with low spread. This also

led to small volumes of the object enclosed by a grasp.

The stand-out grasp measure however was skewness. The

skewness measure for the human lifting grasps was signif-

icantly smaller than for the GraspIt! grasps, indicating that

wrist orientation in the human-planned lifting grasps are much

closer to the object’s principal axis or its perpendiculars (see

Fig. 5; the principal axis for the bottle and wine glass

was vertical and phone horizontal). Fig. 6 shows a scatter

plot of the the skewness measure for human-planned lifting

grasps (mean 5.2 (1.3) degrees) and the GraspIt! grasps

(mean 23.2 (2) degrees), indicating that the human-planned

grasps used wrist orientation that deviated very little from the

objects’s principal axes, whereas the automated grasps’s wrist

orientations were scattered all over.

Focusing on the task-dependent human-planned grasps,

Fig. 5 shows some examples of variation in grasping strategy

for different task requirements. Grasps used by the handing-

over and functional tasks were not statistically different from

the lifting-task grasps as measured by these grasp measures ex-

cept for the hand flexion measure (p < 0.05). The hand flexion

measure showed differences between the functional human-

planned grasps and the lifting and handing-over human-

planned grasps. This indicated that the functional task caused

the human subjects to change the hand-flexion significantly.

There were near-significant differences (0.05 < p < 0.1) be-

tween the handing-over and functional human-planned grasps

for the finger spread, parallel symmetry, and energy grasp

measures and near-significant differences between the lifting

and functional human-planned grasps for the finger-spread

grasp measure. Interestingly, the skewness measure was low

for the human-planned handing-over (6.3 (1.8) degrees) and

functional tasks (4.8 (1.0) degrees) also.
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Fig. 6. A scatter plot of the skewness measure of the human-planned lifting
grasps (red dots) and the GraspIt! grasps (blue circles)

Low skewness

grasps

High skewness

grasps

Fig. 7. Success rates for low-skewness (< 13 degrees) and high-skewness
grasps from two groups: (a) Human lifting grasps combined with GraspIt!
grasps (low-skewness and high-skewness grasps n = 37 each; p-value = 0.01),
and (b) GraspIt! grasps only (low-skewness grasps n = 14, high-skewness
grasps n = 35; p-value = 0.01).

B. GraspIt! Performance Improvement with Low Skewness

Each grasp, whether from GraspIt! or planned by a human,

was stored as a eleven dimensional vector containing the seven

robot arm angles and four hand joint angles. All the grasps

were divided into two groups: Group 1 was the set of grasps

obtained by merging the set of human-planned lifting grasps

and the set of grasps from GraspIt!. Group 2 consisted of

GraspIt! grasps only. Fig. 7 shows the variation in success rates

for the two groups of grasps, each split by a skewness thresh-

old of 13 degrees. This result showed that the success rate of

low-skewness grasps from GraspIt! was significantly higher

than high-skewness grasps from GraspIt! (93(5)% compared

with 77(3)%, p-value=0.01). In contrast, when investigating

the significance of the hand-flexion measure for grasping, we

did not see a significant difference in grasp success for grasps

with small hand-flexion measures when compared with grasps

with large hand-flexion measures. This indicated that a low

hand-flexion measure was likely not a reason for a better grasp.

C. Questionnaire

Table VI provides the results of the short questionnaire

provided to the human subjects, the rows ordered in decreasing

importance of the heuristic (according to the subject’s belief)

in generating a grasp. The results indicate that the human

subjects consciously tried to use finger spread, the object’s

curves, and location of the robot hand relative the object center

of gravity to generate a good grasp. The role of object weight,

and the robot wrist being vertical or horizontal, the ridges on

object surface in determining a grasp were also strong, but

the subjects were not unanimous in using that heuristic. The

subjects did not feel that they used the robot hand’s palm

heavily in generating the grasp. Finally, the subjects felt that

TABLE VI
HUMAN SUBJECT QUESTIONNAIRE RESULTS

Heuristic Positive Response (%)

Object curves influence grasp 100
Use finger spread for stability 100

Grasp close to center of gravity 86
Object weight influence grasp 71

Keep robot wrist vertical/horizontal 71
Ridges influence grasp 71

Use palm of hand for grasp 57
Grasp strategy change with practice 43

their grasp strategy did not change during the experiment with

practice.

VI. DISCUSSION

The methods proposed by this paper (Physical Human Inter-

active Guidance, analysis using grasp measures, comparison

with automated techniques) provides an exciting integration

of the human physical experience and the human ability to

extrapolate that experience to understand physical interaction

in new scenarios along with the exhaustiveness of computer-

based logic and simulation speed. Given the goals mentioned

in section I, our work has provided interesting results. It was

clearly shown that the human-planned grasps performed well

with a high success rate (91%). While not near-perfect like

the human hand’s grasping performance, the human-planned

grasps were significantly better than the success rate of the

state-of-the-art automated grasp planners (77%, see Table IV).

Simultaneously, the physical interaction method showed that

the human grasping method was similar in most aspects to

a state-of-the-art automated grasp planner that exhaustively

searched the entire configuration space for the best grasps.

While the automated planner required hours across all objects

to compute (suboptimal) grasps, the human subjects required

only five minutes of practice to find the best grasps. This

showed that humans excel at using their internal models to

prune away large regions of the search space to exponentially

speed up the search process. More work is also required in

identifying why the existing grasping heuristics in the robotics

community do not perform well when implemented on a

physical robot and also develop better heuristics for automated

grasping.

This experiment also showed that the human subjects used

grasp measures different from those used by automated grasp

planners. The strong preference of humans to exploit an

object’s principal axes to perform a grasp even with a robotic

hand prompted us to create a new grasp measure called

skewness, which to our knowledge has not been mentioned

previously in the literature. Our robot experiments showed that

when skewness was used to filter the grasps from automated

grasp planning, low-skewness GraspIt! grasps performed sig-

nificantly better than high-skewness GraspIt! grasps.

Note that while we used the Physical Human Interactive

Guidance method in a specific experimental setting with a cho-

sen robot arm and hand combination and with objects placed in

their natural configurations without clutter, our approach can

easily be extended to other scenarios, such as using a different

robot arm and hand, using cluttered environments where a

direct approach to the object is unavailable, and using objects

placed in non-natural orientations. It would interesting to see
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how the human-planned grasps and their performance would

vary under other conditions.

A. The Robustness of Human-planned Grasps

Humans have a strong sense of causal physicality, or how

objects in the physical world interact. Humans use this sense

everyday when they interact with the world, specifically when

they use tools to perform various tasks. Indeed, the human

subjects may have considered the robotic hands that they

used in the experiment as tools to perform the required task.

The models of physical interaction that the subjects have

internalized through their daily interactions would certainly

have been used in conceiving the grasps to performing the

various tasks [21], which would explain the higher quality of

the human-planned grasps.

Even though the humans did not have the opportunity in

this experiment to dynamically control grasp forces or finger

location during the disturbance, which they typically do when

performing grasps with their own hands [45], [20], just the

geometry of low skewness provided significant performance

benefits over automated grasp planning. The low skewness

of wrist orientation in the human-planned grasps might seem

obvious in hindsight considering how a majority of everyday

objects are designed with Cartesian coordinate frames. A

grasp with low skewness provides two advantages with such

“Cartesian” objects: 1) With Cartesian objects, palm contact

and finger placement might be improved when the wrist ori-

entation is parallel to or perpendicular to the object’s principal

axis. Since the BarrettHand had a flat palm, grasp with low

skewness would likely generate more palm contact which

created a more robust grasp. 2) The contacts used in low-

skewness grasps are more robust to small variations in contact

location. For example, a grasp where the palm approached the

soap bottle perpendicularly from the side is robust to small

perturbations in position in the approach direction—all fingers

will still have contact. In contrast, a grasp with high skewness

that approached from the same side may lose contact at one

finger due to a positioning error in the approach direction. This

would cause the grasp to change from a three-finger contact

to a weaker two-finger contact.

Indeed, humans might have a natural preference for grasps

with low skewness, since human motor control literature has

shown that many motor neurons encode human movements

in extrinsic Cartesian coordinate frames rather than intrin-

sic (muscle or joint) coordinate frames [23]. A deeper analysis

of how skewness influence grasping performance, particularly

in different environment contexts (uncommon objects placed

non-vertically in the presence of obstacles and clutter) will

offer interesting insights into its effectiveness.

B. Implications for Automated Grasp Synthesis

While GraspIt! likely produced some of the best automated

grasps, the mismatch between simulation models and the

real world (in terms of, say, contact friction coefficients,

unmodeled movement of the target object, and inaccurate soft-

contact models) may have produced uncertainty in the grasping

process and hurt the success rate of automated grasps. Also,

it could be that the automated grasp planners did not have the

optimal grasp measures to narrow down on the best grasps.

One of goals of this work is to use human skill to identify

key grasp measures that can speed up automated grasp syn-

thesis and improve real-world grasp quality. Table V shows

that the skewness feature has significantly different values

for human-planned grasps and GraspIt! grasps. Furthermore,

Fig. 7 shows that low-skewness grasps have significantly

higher success rate than high-skewness grasps. These results

indicate that an automated search process can focus on grasps

with low skewness values before exploring grasps with higher

skewness values. This will likely result in better grasps faster

for GraspIt! and other automated grasp synthesis methods.

This paper did not further analyze the grasp measures

that produced similar results between human-guided grasps

and GraspIt!. This is because our data only contained highly

successful grasps and thus it could not be used to identify good

and bad grasp measures, unless significant differences were

found between human-guided and GraspIt! grasps. Also, the

lack of correlation between epsilon and grasp wrench space

volume with the high human-planned grasp success rates is

worth investigating further to validate the grasp measures used

by the grasping research community. In particular, a more

rigorous experimental testing of these grasping heuristics is

necessary.

C. Task-Dependency of Grasps

An advantage of Physical Human Interactive Guidance is

the simplicity with which the grasps that the human subjects

specified for various tasks can be mapped into the robotic hand

space. Previous studies have shown through human-subject

experiments with datagloves such as the Cyberglove7 that

humans varied finger position carefully based on the task [16].

Indeed, it was also shown how finger posture influenced grasp

force capability and stiffness. However, it is difficult to map

the human-planned grasps to robot grasps.

In our work, the human subjects had an opportunity to

control only finger and wrist placement (and not force and

stiffness), and indeed we saw some variability between tasks

in finger posture (hand flexion measure; see Table V). Specif-

ically, for the coil of wire the functional task was to “lift

the object to remove a wire”. It was noticed that the human

subjects held the coil of wire by the rim, rather along its length

as was the case in the lifting or handing-over task. Similarly,

for the CD pouch, the functional task was to hold the object

so that it may be opened. These differences in grasps have

been captured by the hand flexion measure. However, we did

expect to see more differences between the grasps for different

tasks. We possibly need more appropriate grasp measures (than

those measures listed in Table III) and object-task pairs that

are suitable for differentiating task-specific human-planned

grasping strategies. Also, the large size of the robot hand

relative to the object size could have influenced the human

subjects to use similar grasps for the different tasks.

Interestingly, the human subjects chose grasps with low

skewness independent of the task, indicating that humans

valued a wrist configuration aligned with the object’s principal

axes significantly for grasping tasks. More work is required to

understand wrist usage in grasping using the human hand.

7http://www.cyberglovesystems.com/
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D. The Human Grasping Heuristics

Table VI presents a summary of the responses of the human

subjects after performing the experiment. These responses

provide insight into how the human subjects perceived their

own actions and then enable us to compare the human subject’s

perception with a ground-truth measurement of their actions.

It is clear that the subjects believed that object curves and

using a spread-out finger configuration were critical aspects

of the grasp. However, from Table V, we noticed that the

human subjects tended to use reasonably small hand-spread

values (twenty degrees, compared to sixty degrees for a

equilateral-triangle grasp), indicating that they used the fingers

closer to a parallel gripper form rather than a equilateral

triangular grip.

Interestingly, even though low skewness was an important

characteristic of the human-planned grasps, line 5 of Table VI

showed that only 71% of the human subjects were conscious

that the grasps that they performed had low skewness (we

had expected a higher percentage). However, a more detailed

study of the human-planned grasps with more subjects, more

grasp measures, and machine learning techniques is necessary

to derive insight into how humans plan grasps and manipulate

objects in everyday life.

E. Improving Human-Subject Experiment Protocol

When we were designing this experiment, we expected

the human-planned grasps to have a success rate near 100%;

however, the human-planned grasps had a success rate of only

91%. Why did the human-planned grasps have a success rate

of only 91%?

There might have been at least a few reasons related to

the experiment protocol why the human-planned grasps had a

lower success rate. First, we collected data from subjects who

had never seen or interacted with a robotic arm/hand before.

It is possible that with more practice with the robot, a subject

would provide better grasping strategies.

Second, we asked human subjects to vary the grasping

strategy every trial, if they could. In retrospect, we should not

have forced the subjects to devise different grasping strategies

as we do not believe that there are always multiple optimal

solutions. Note however that there was one outlier in the

human-planned lifting grasps success rates–the success rate

for the one-liter bottle (only 40(13)%, see Table IV). If this

outlier is removed, the human grasping success rate is 97(1)%

even with vigorous shaking. As seen in Fig. 2, subjects chose

to grasp the bottle from the top, when most humans with their

own hand would not grasp a filled bottle this way. This strategy

was chosen when we instructed subjects to vary the grasps

when they could. This technique did not work well on the

bottle’s slippery surface and large mass.

Third, the subjects were not informed of the vigorous

shaking used in the robustness test, and they only specified

grasps for the various tasks. If the subjects had known about

the shaking, they might have optimized their grasps for the

shaking procedure. In contrast, the epsilon metric that GraspIt!

uses actually optimizes the grasps for disturbances in all

directions, similar to the disturbances in the shaking procedure.

Thus, given that the human subjects did not know about the

testing procedure, the human subjects were at a disadvantage

compared with the GraspIt! grasps. However, the years of real-

world experience still enabled the human subjects to perform

better overall.

F. Extent of Human Involvement

In this experiment, the human subjects were involved

heavily, guiding the robot hand as though it was a child

learning to perform a grasp. The human subject provided to

the robotic system information on where the wrist and fingers

must be placed to perform a successful grasp. Surely, this

information can be “taught” to a robotic system by other

means as well, such as teleoperation or through interaction

in virtual representation. Indeed, there are some advantages as

the experiment moves toward using virtual representation—

the experiment becomes increasingly scalable (see Fig. 8),

since the experiment can be set-up on a computer allowing

the human subject to simply click where the robot should

grasp the object instead of requiring a robotic arm and physical

human involvement. Indeed, such supervised learning has been

explored before [40].

However, these methods of using virtual representations to

transfer human skill in physical interaction have only met

with moderate success (60–80% for multi-fingered grasping;

see [40]), compared with the 91% success rate using Physical

Human Interactive Guidance. Also, the identification of new

and powerful grasp measures (such as skewness) and human

grasping principles has been rare through prior virtual meth-

ods.

The main challenge when using virtual experimental set-

ups was that the task for the human became increasingly less

intuitive as he/she moved away from physical interaction (see

Fig. 8). Thus, the human-planned grasps might not be as

effective the farther the human was removed from the task

physically, since the specifics of the method (such as the

view provided to the human) may interfere with his/her

grasping method. More important than just the grasps the

human provided, it might become harder to identify key

grasping principles (such as skewness) when more virtualized

experiment procedures are used. Thus, data fidelity might

suffer with more virtualized experiment procedures despite

their scalability. More work is required to identify the trade-

off in scalability and data fidelity as the experiment procedure

changes.

VII. CONCLUSION

In this paper, we have shown that a novel experimental

method called Physical Human Interactive Guidance can be

used to obtain high-quality grasps planned by humans. The

human-planned grasps were shown to be significantly better

than grasps generated by state-of-the-art grasp planning algo-

rithms (included in a program called GraspIt!). An elaborate

grasp-measure set was also used to show that the human-

planned grasps with the GraspIt! grasps were similar; however,

a key contribution of this paper was finding a new grasp

measure called skewness which explained why the GraspIt!

grasps performed poorer than the human-planned grasps.

Finally, it was difficult to compare the performance of

the physical interactive guidance method directly with other
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Fig. 8. Trade-offs in the procedure used to transfer human skills to robots

human-planned grasping methods, because of the lack of

available data in the literature. In this paper, we performed

extensive experiments with a physical robot arm and hand to

evaluate the grasp performance of the human-planned grasps

and also compared it with the state-of-the-art automated grasp

planner. We look forward to comparing our results with results

from other groups using different human-subject experiments

for grasping.
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