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Abstract. The P1 discretization of the Laplace operator on a triangulated
polyhedral surface is related to geometric properties of the surface. This pa-
per studies extremum problems for eigenvalues of the P1 discretization of the
Laplace operator. Among all triangles, an equilateral triangle has the maxi-
mal first positive eigenvalue. Among all cyclic quadrilateral, a square has the
maximal first positive eigenvalue. Among all cyclic n-gons, a regular one has
the minimal value of the sum of all positive eigenvalues and the minimal value
of the product of all positive eigenvalues.

1. Introduction

1.1. Dirichlet energy. A polyhedral surface S is a surface obtained by gluing
Euclidean triangles. It is associated with a triangulation T . We assume that T

is simplicial. Suppose (Σ, T ) is a polyhedral surface so that V,E, F are sets of
all vertices, edges and triangles of T. We identify vertices of T with indices, edges
of T with pairs of indices and triangles of T with triples of indices. This means
V = {1, 2, ...|V |}, E = {ij | i, j ∈ V } and F = {△ijk | i, j, k ∈ V }. A vector
(f1, f2, ..., f|V |)

t indexed by the set of vertices V defines a piecewise-linear function
over (S, T ) by linear interpolation.

The Dirichlet energy of a function f on S is

ES(f) =
1

2

∫

S

|∇f |2dA.

When f is obtained by linear interpolation of (f1, f2, ..., f|V |)
t, the Dirichlet

energy of f turns out to be

E(S,T )(f) =
1

4

∑

ijk∈F

[cotαi
jk(fj − fk)

2 + cotαj
ki(fk − fi)

2 + cotαk
ij(fi − fj)

2]

where the sum runs over all triangles of T and for a triangle ijk ∈ F , αi
jk, α

j
ki, α

k
ij

are angles opposite to the edges jk, ki, ij respectively.
Collecting the terms in the sum above according to edges, we obtain

E(S,T )(f) =
1

2

∑

ij∈E

wij(fi − fj)
2(1)

where the sum runs over all edges of T and

wij =

{
1
2 (cotα

k
ij + cotαl

ij) if ij is shared by two triangles ijk and ijl
1
2 (cotα

k
ij) if ij is an edge of only one triangle ijk
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The Dirichlet energy of a piecewise linear function on a polyhedral surface was
introduced and the formula (1) was derived by R. J. Duffin [6], G. Dziuk [7] and
U. Pinkall & K. Polthier [15] in different context. For applications of the Dirichlet
energy and formula (1) in characterization of Delaunay triangulations, see [16, 9, 3,
5]. For interesting applications of the Dirichlet energy and formula (1) in computer
graphics, see the survey [4].

1.2. Discrete Laplace operator. By rewriting the Dirichlet energy using nota-
tion of matrices, we get

E(S,T )(f) =
1

2
(f1, ..., f|V |)L(f1, ..., f|V |)

t

where each entry of the matrix L is

Lij =





∑
ik∈E wik if i = j

−wij if ij ∈ E

0 otherwise

The matrix L is the P1 discretization of the Laplace operator. By definition,
the Dirichlet energy ES(f) is non-negative for any f . Consequently, E(S,T )(f) is
non-negative for any f . Therefore L is positive semi-definite. The eigenvalues of L
are denoted by

0 = λ0 ≤ λ1 ≤ λ2 ≤ ... ≤ λ|V |−1.

For the derivation of this discretization of the Laplace operator, see also [14] and
[1]. The P1 discretization of the Laplace operator and its eigenvalues are related to
the geometric properties of the polyhedral surface (S, T ). For example, it is proved
in [5] that among all triangulations, the Delaunay triangulation has the minimal
eigenvalues. In [21], it is shown that a polyhedral surface is determined up to scaling
by its P1 discretization of the Laplace operator.

There are many other possible discretization of the Laplace operator, for exam-
ple, see [20, 2]. Discretization of the Laplace operator has important applications
in spectral mesh processing, for example, see [17, 11, 19, 13].

1.3. Pólya’s theorem. The spectral geometry is to relate geometric properties of
a Riemannian manifold to the spectra of the Laplace operator on the manifold.
One of the interesting results is the following one due to G. Pólya. For reference,
for example, see [10], page 50.

Theorem (Pólya). The equilateral triangle has the least first eigenvalue among

all triangles of given area. The square has the least first eigenvalue among all

quadrilaterals of given area.

It is conjectured that, for n ≥ 5, the regular n-gon has the least first eigenvalue
among all n-gons of given area.

1.4. Statements of results. In this paper, similar results as Pólya’s theorem are
obtained for the P1 discretization of the Laplace operator L.

Theorem 1. Among all triangles, an equilateral triangle has the maximal λ1, the

minimal λ2 and the minimal λ1 + λ2.

Proof. See section 2. �
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In [18], there is a discussion of λ2 for triangles and its significance in finite element
modeling. In fact λ2 is a scale-invariant indicator of the quality of a triangle’s shape.

A cyclic polygon is a polygon whose vertices are on a common circle. By adding
diagonals, a cyclic polygon is decomposed into a union of triangles. For each inner
edge of any triangulation of a cyclic polygon, the weight wij is zero. Therefore the
discrete Laplace operator is independent of the choice of a triangulation of a cyclic
polygon. For example, there are two ways to decompose a cyclic quadrilateral into
a union of two triangles. The two ways produce the same P1 discretization of the
Laplace operator.

Theorem 2. Among all cyclic quadrilaterals, a square has the maximal λ1, the

minimal λ1 + λ2 + λ3, the minimal λ1λ2 + λ2λ3 + λ3λ1 and the minimal λ1λ2λ3.

Proof. See section 3. �

Theorem 3. For n ≥ 5, among all cyclic n-gons, a regular n-gon has the minimal∑n−1
i=1 λi and the minimal

∏n−1
i=1 λi.

Proof. See section 4. �

Acknowledgment. The author would like to thank the referees for careful reading
of the manuscript and for valuable suggestions on correction and improving the
exposition.

2. Triangles

2.1. Characteristic polynomial. Let θ1, θ2, θ3 be the three angles of a triangle.
Let ci := cot θi for i = 1, 2, 3. The condition θ1 + θ2 + θ3 = π implies that

c1c2 + c2c3 + c3c1 = 1.(2)

The P1 discretization of the Laplace operator on the triangle is

L3 =




c1 + c3 −c1 −c3
−c1 c1 + c2 −c2
−c3 −c2 c2 + c3


 .

The characteristic polynomial of L3 is

P3(x) = det(L3 − xI3) = −x3 + 2(c1 + c2 + c3)x
2 − 3(c1c2 + c2c3 + c3c1)x

= −x3 + 2(c1 + c2 + c3)x
2 − 3x

= −x(x2 − 2(c1 + c2 + c3)x + 3)

= −x(x2 − (λ1 + λ2)x+ λ1λ2)

by the equation (2).
The eigenvalues of L3 are 0 = λ0 ≤ λ1 ≤ λ2 satisfying λ1 + λ2 = 2(c1 + c2 + c3).

2.2. Sum of eigenvalues. To verify that an equilateral triangle has the minimal
λ1 + λ2, we claim that c1 + c2 + c3 ≥

√
3 and the equality holds if and only if

θ1 = θ2 = θ3 = π
3 .

Consider f := c1 + c2 + c3 = cot θ1 + cot θ2 + cot θ3 as a function defined on the
domain

Ω3 := {(θ1, θ2, θ3) | θ1 + θ2 + θ3 = π, θi > 0, i = 1, 2, 3}.
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To find the global minimum of f , we apply the method of Lagrange multiplier.
Let

F := c1 + c2 + c3 + y(θ1 + θ2 + θ3 − π).

Since
dci

dθi
= − 1

sin2 θi
= −(1 + c2i ),

we have

0 =
∂F

∂θ1
= −(1 + c21) + y,

0 =
∂F

∂θ2
= −(1 + c22) + y,

0 =
∂F

∂θ3
= −(1 + c23) + y,

0 =
∂F

∂y
= θ1 + θ2 + θ3 − π.

Therefore the function f has the unique critical point (θ1, θ2, θ3) = (π3 ,
π
3 ,

π
3 ).

Next, we investigate the behavior of the function f when the variables (θ1, θ2, θ3)
approach the boundary of the domain Ω3. Let (θ1(t), θ2(t), θ3(t)), t ∈ [0,∞), be a
path in the domain Ω3. Without loss of generality, we assume

lim
t→∞

(θ1(t), θ2(t), θ3(t)) = (0, s2, s3)

where s2 ≥ 0, s3 ≥ 0 and s2 + s3 = π.

Then limt→∞ cot θ1(t) = ∞ and cot θ2(t) + cot θ3(t) ≥ 0 for t ∈ [0,∞). Hence

lim
t→∞

(cot θ1(t) + cot θ2(t) + cot θ3(t)) = ∞.

If θi + θj < π, then cot θi > cot(π − θj) = − cot θj . Therefore ci + cj > 0. Hence
2f = (c1 + c2)+ (c2 + c3)+ (c3 + c1) > 0. Thus f has the global minimum. But the
global minimum can not be achieved at a point on the boundary of Ω3. It must be
achieved at the unique critical point (π3 ,

π
3 ,

π
3 ).

This shows that c1+ c2+ c3 ≥
√
3 and the equality holds if and only if θ1 = θ2 =

θ3 = π
3 .

2.3. The first and second eigenvalues. Since

λ2 = c1 + c2 + c3 +
√

(c1 + c2 + c3)2 − 3,

we have λ2 ≥
√
3 and the equality holds if and only if θ1 = θ2 = θ3 = π

3 .

Since λ1λ2 = 3, we have λ1 ≤
√
3 and the equality holds if and only if θ1 = θ2 =

θ3 = π
3 .

3. quadrilaterals

3.1. characteristic polynomial. In Figure 1, the vertices of a cyclic quadrilateral
decompose its circumcircle into four arcs. We assume the radius of the circumcircle
is 1 and the lengths of the four arcs are 2θ1, 2θ2, 2θ3, 2θ4. Let ci := cot θi for i =
1, ..., 4. The condition θ1 + θ2 + θ3 + θ4 = π implies

c1c2c3 + c1c2c4 + c1c3c4 + c2c3c4 = c1 + c2 + c3 + c4.(3)

There are two ways to decompose a cyclic quadrilateral into a union of two
triangles. The two ways produce the same P1 discretization of the Laplace operator:
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1

2

3

4

2θ1

2θ2

2θ3

2θ4

Figure 1

L4 =




c1 + c4 −c1 0 −c4
−c1 c1 + c2 −c2 0
0 −c2 c2 + c3 −c3

−c4 0 −c3 c3 + c4


 .

The characteristic polynomial of L4 is

P4(x) = x4 − 2(c1 + c2 + c3 + c4)x
3

+ (3(c1c2 + c2c3 + c3c4 + c4c1) + 4(c1c3 + c2c4))x
2

− 4(c1c2c3 + c1c2c4 + c1c3c4 + c2c3c4)x

= x4 − 2(c1 + c2 + c3 + c4)x
3

+ (3(c1c2 + c2c3 + c3c4 + c4c1) + 4(c1c3 + c2c4))x
2

− 4(c1 + c2 + c3 + c4)x,

by the equation (3).
The eigenvalues of L4 are 0 = λ0 ≤ λ1 ≤ λ2 ≤ λ3 satisfying λ1 + λ2 + λ3 =

2(c1 + c2 + c3 + c4) and λ1λ2λ3 = 4(c1 + c2 + c3 + c4).

3.2. Sum and product of eigenvalues. By the similar argument in the case
of triangles, we can show that c1 + c2 + c3 + c4 has the unique critical point at
(π4 ,

π
4 ,

π
4 ,

π
4 ). And we have 2(c1 + c2 + c3 + c4) = (c1 + c2) + (c1 + c3) + (c3 + c4) +

(c4 + c1) > 0.
Next, we investigate the behavior of the function c1 + c2 + c3 + c4 when the

variable (θ1, θ2, θ3, θ4) approaches the boundary of the domain

Ω4 := {(θ1, θ2, θ3, θ4) | θ1 + θ2 + θ3 + θ4 = π, θi > 0, i = 1, 2, 3, 4}.
Let (θ1(t), θ2(t), θ3(t), θ4(t)), t ∈ [0,∞), be a path in the domain Ω4.

Without loss of generality, we assume

lim
t→∞

(θ1(t), θ2(t), θ3(t), θ4(t)) = (0, s2, s3, s4)

where si ≥ 0 for i = 2, 3, 4 and s2 + s3 + s4 = π. Since two of s2, s3 and s4 must
be less than π

2 , we assume that s2 < π
2 and s3 < π

2 . Then limt→∞ cot θ1(t) = ∞,
cot θ2(t) > 0 when t is sufficiently large and cot θ3(t) + cot θ4(t) > 0 for any t ∈
[0,∞). Hence

lim
t→∞

(cot θ1(t) + cot θ2(t) + cot θ3(t) + cot θ4(t)) = ∞.
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Therefore c1 + c2 + c3 + c4 achieves its absolute minimum at the unique critical
point (π4 ,

π
4 ,

π
4 ,

π
4 ). Hence c1 + c2 + c3 + c4 ≥ 4 and the equality holds if and only if

θ1 = θ2 = θ3 = θ4 = π
4 .

Therefore λ1 + λ2 + λ3 ≥ 8, λ1λ2λ3 ≥ 16 and the equality holds if and only if
θ1 = θ2 = θ3 = θ4 = π

4 .

3.3. Polynomial of degree 2. In the subsection, we verify that a square has the
minimal λ1λ2+λ2λ3+λ3λ1. By the formula of the characteristic polynomial P4(x),
it is enough to show

3(c1c2 + c2c3 + c3c4 + c4c1) + 4(c1c3 + c2c4) ≥ 20

and the equality holds if and only if θ1 = θ2 = θ3 = θ4 = π
4 .

In fact, consider g := 3(c1c2 + c2c3 + c3c4 + c4c1) + 4(c1c3 + c2c4) as a function
defined on the domain Ω4.

To find the absolute minimum of g, we apply the method of Lagrange multiplier.
Let

G := 3(c1c2 + c2c3 + c3c4 + c4c1) + 4(c1c3 + c2c4) + y(θ1 + θ2 + θ3 + θ4 − π).

Then

0 =
∂G

∂θ1
= −(3c2 + 3c4 + 4c3)(1 + c21) + y,

0 =
∂G

∂θ2
= −(3c1 + 3c3 + 4c4)(1 + c22) + y,

0 =
∂G

∂θ3
= −(3c2 + 3c4 + 4c1)(1 + c23) + y,

0 =
∂G

∂θ4
= −(3c3 + 3c1 + 4c2)(1 + c24) + y,

0 =
∂G

∂y
= θ1 + θ2 + θ3 + θ4 − π.

The first and the third equation above imply that

(3c2 + 3c4 + 4c3)(1 + c21) = (3c2 + 3c4 + 4c1)(1 + c23)

which is equivalent to

(c1 − c3)(3c1c2 + 3c1c4 + 3c2c3 + 3c3c4 + 4c1c3 − 4) = 0.

We claim that the second factor is positive, i.e.,

3c1c2 + 3c1c4 + 3c2c3 + 3c3c4 + 4c1c3 > 4.

In fact, since θ1 + θ2 + θ3 < π, then cot(θ1 + θ2) > cot(π − θ3). Then

c1c2 − 1

c1 + c2
> −c3

which is equivalent to

c1c2 + c2c3 + c3c1 > 1(4)

since c1 + c2 > 0.
By the similar reason,

c1c4 + c4c3 + c3c1 > 1.
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At least one of c2 and c4 is positive. If c2 > 0, then

3c1c2 + 3c1c4 + 3c2c3 + 3c3c4 + 4c1c3

= 3(c1c4 + c4c3 + c3c1) + (c1c2 + c2c3 + c3c1) + 2(c1 + c3)c2

> 3 + 1 + 0.

If c4 > 0, then

3c1c2 + 3c1c4 + 3c2c3 + 3c3c4 + 4c1c3

= (c1c4 + c4c3 + c3c1) + 3(c1c2 + c2c3 + c3c1) + 2(c1 + c3)c4

> 1 + 3 + 0.

Thus the only possibility is c1 = c3 which implies θ1 = θ3. By the similar
argument, 0 = ∂G

∂θ2
and 0 = ∂G

∂θ4
imply θ2 = θ4. Since θ1 + θ2 + θ3 + θ4 = π, we have

θ1 + θ2 = π
2 which implies c1c2 = 1.

Now 0 = ∂G
∂θ1

and 0 = ∂G
∂θ2

imply

(3c2 + 3c4 + 4c3)(1 + c21) = (3c1 + 3c3 + 4c4)(1 + c22).

Since c1 = c3 and c2 = c4, we have

(6c2 + 4c1)(1 + c21) = (6c1 + 4c2)(1 + c22).

Since c1c2 = 1, we have

(c1 − c2)(c
2
1 + c22 + 2) = 0.

The only possibility is c1 = c2.

Therefore the function g = 3(c1c2 + c2c3 + c3c4 + c4c1) + 4(c1c3 + c2c4) has the
unique critical point (π4 ,

π
4 ,

π
4 ,

π
4 ).

Next, we claim that g > 0. Since at least three of c1, c2, c3, c4 are positive,
without loss of generality, we may assume that c1 > 0, c2 > 0, c3 > 0. Let’s write

g = 2(c1c2 + c2c4 + c4c1) + 2(c2c3 + c3c4 + c4c2) + (c2 + c4)c1 + (c1 + c4)c3 +4c1c3.

Then each term of sum above is positive.
At last, we investigate the behavior of g when the variables approach the bound-

ary of the domain Ω4. Let (θ1(t), θ2(t), θ3(t), θ4(t)), t ∈ [0,∞), be a path in the
domain Ω4. Without loss of generality, we have

lim
t→∞

(θ1(t), θ2(t), θ3(t), θ4(t)) = (0, s2, s3, s4)

where si ≥ 0 for i = 2, 3, 4 and s2 + s3 + s4 = π. And we can assume that s2 < π
2

and s3 < π
2 .

Let’s write

g = 2(cot θ1(t) cot θ2(t) + cot θ2(t) cot θ4(t) + cot θ4(t) cot θ1(t))

+ 2(cot θ2(t) cot θ3(t) + cot θ3(t) cot θ4(t) + cot θ4(t) cot θ2(t))

+ (cot θ2(t) + cot θ4(t)) cot θ1(t) + (cot θ1(t) + cot θ4(t)) cot θ3(t)

+ 4 cot θ1(t) cot θ3(t).

By the inequality (4),

cot θ1(t) cot θ2(t) + cot θ2(t) cot θ4(t) + cot θ4(t) cot θ1(t) > 1

and

cot θ2(t) cot θ3(t) + cot θ3(t) cot θ4(t) + cot θ4(t) cot θ2(t) > 1
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for any t ∈ [0,∞). Since cot θ2(t)+ cot θ4(t) > 0 any t ∈ [0,∞), limt→∞(cot θ2(t)+
cot θ4(t)) cot θ1(t) = ∞. And

(cot θ1(t) + cot θ4(t)) cot θ3(t) > 0, 4 cot θ1(t) cot θ3(t) > 0

when t is sufficiently large. Hence g approaches ∞.

Therefore g has a lower bound and can not achieve its global minimum at a
boundary point. It much achieve its global minimum at the unique critical point
(π4 ,

π
4 ,

π
4 ,

π
4 ).

3.4. The first eigenvalue. In this subsection, we verify that a square has the
minimal λ1. First, we verify that λ1 ≤ 2 as follows. Let

Q(x) :=
P4(x)

x
= x3 − 2(c1 + c2 + c3 + c4)x

2

+ (3(c1c2 + c2c3 + c3c4 + c4c1) + 4(c1c3 + c2c4))x

− 4(c1 + c2 + c3 + c4).

We have Q(0) = −4(c1 + c2 + c3 + c4) ≤ −16.
If Q(2) > 0, then the first root of Q(x) is less that 2, i.e., λ1 < 2.
If Q(2) ≤ 0, we claim that Q′(0) > 0 and Q′(2) ≤ 0. Once the two statements

are established, we have λ1 ≤ λ2 ≤ 2.
In fact Q′(0) = 3(c1c2 + c2c3 + c3c4 + c4c1) + 4(c1c3 + c2c4) ≥ 20.
To verify Q′(2) ≤ 0, we need to use the assumption Q(2) ≤ 0. In fact Q(2) ≤ 0

implies

3(c1c2 + c2c3 + c3c4 + c4c1) + 4(c1c3 + c2c4) ≤ 6(c1 + c2 + c3 + c4)− 4.

Now

Q′(2)

= 12− 8(c1 + c2 + c3 + c4) + 3(c1c2 + c2c3 + c3c4 + c4c1) + 4(c1c3 + c2c4)

≤ 12− 8(c1 + c2 + c3 + c4) + 6(c1 + c2 + c3 + c4)− 4

= 8− 2(c1 + c2 + c3 + c4)

≤ 0,

since c1 + c2 + c3 + c4 ≥ 4.
Second, we verify that λ1 = 2 if and only if θ1 = θ2 = θ3 = θ4 = π

4 . Since λ1 = 2
is the first root of Q(x), we have Q′(2) ≥ 0. On the other hand, it is shown that
Q(2) ≤ 0 implies Q′(2) ≤ 0. Hence the only possibility is Q′(2) = 0. This requires
that c1 + c2 + c3 + c4 = 4. Therefore we must have θ1 = θ2 = θ3 = θ4 = π

4 .

4. general cyclic polygons

4.1. Discrete Laplace operator. Assume n ≥ 5. In Figure 2, the vertices of a
cyclic n-gon decompose its circumcircle into n arcs. We assume the radius of the
circumcircle is 1 and the lengths of the n arcs are 2θ1, 2θ2, ..., 2θn.

The P1 discretization of the Laplace operator of a cyclic n-gon is independent
of the choice of a triangulation. It is
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1

2

3

n− 1
n

2θ1

2θ2

2θn−1

2θn

Figure 2

Ln =




c1 + cn −c1 0 0 ... −cn
−c1 c1 + c2 −c2 0 ... 0
0 −c2 c2 + c3 −c3 ... 0
0 0 −c3 c3 + c4 ... 0
0 0 0 −c4 ... 0

. . .

−cn 0 0 0 ... cn−1 + cn




.

The eigenvalues are 0 = λ0 ≤ λ1 ≤ ... ≤ λn−1.

4.2. Sum of eigenvalues. We have
∑n−1

i=1 λi = 2
∑n

i=1 ci. By the similar argument
in the case of triangles and cyclic quadrilaterals, we can show that

∑n

i=1 ci has the
unique critical point (θ1, θ2, ..., θn) = (π

n
, π
n
, ..., π

n
).

Since there is at most one non-positive number in c1, ..., cn, without loss of
generality, we may assume c1 > 0, ..., cn−1 > 0. Since cn−1 + cn > 0, we have∑n

i=1 ci > 0.
We investigate the behavior of

∑n
i=1 ci when the variables approach the boundary

of the domain

Ωn = {(θ1, θ2, ..., θn) | θ1 + θ2 + ...+ θn = π, θi > 0, i = 1, 2, ..., n}.
Let (θ1(t), θ2(t), ..., θn(t)), t ∈ [0,∞), be a path in the domain Ωn.

Without loss of generality, we have

lim
t→∞

(θ1(t), θ2(t), ..., θn(t)) = (0, s2, ..., sn)

where si ≥ 0 for i = 2, ..., n and s2 + ... + sn = π. And we can assume that s2 <
π
2 , ..., sn−1 < π

2 . Since cot θi(t) > 0 for i = 2, ..., n−1 and cot θn−1(t)+cot θn(t) > 0

when t is sufficiently large, limt→∞ cot θ1(t) = ∞ implies that limt→∞

∑n

i=1 cot θi(t) =
∞.

Thus
∑n

i=1 ci achieved the absolute minimum at (π
n
, ..., π

n
).

4.3. Product of eigenvalues. In this subsection we verify that a regular n-gon
has the minimal

∏n−1
i=1 λi. We need the following result.

The weighted matrix-tree Theorem. Let M be an n×n matrix. If the sum of

the entries of each row or each column of M vanishes, all principal (n−1)× (n−1)
submatrices of M have the same determinant, and this value is equal to 1

n
times

the product of all nonzero eigenvalues of M .
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For the reference of the weighted matrix-tree Theorem, for example, see [12],
page 450, Problem 34A or [8], Theorem 1.2.

In our case, according the weighted matrix-tree Theorem, to calculate
∏n−1

i=1 λi

of the matrix Ln, it is enough to calculate the determinant of a particular principal
(n− 1)× (n− 1) submatrix.

Lemma 4. Let Nn be the submatrix obtained by deleting the first row and first

column of the matrix Ln. Then

detNn =

n∑

i=1

c1...ĉi...cn,

where ĉi means that ci is missing.

Proof. We prove the statement by mathematical induction. It holds for n = 4 as
we see in the formula of the characteristic polynomial P4(x). We assume it holds
for n ≤ m− 1. By the property of tridiagonal matrices, we have

detNm = (cm−1 + cm) detNm−1 − c2m−1 detNm−2.

Then by the assumption of mathematical induction,

detNm = (cm−1 + cm)

m−1∑

i=1

c1...ĉi...cm−1 − c2m−1

m−2∑

i=1

c1...ĉi...cm−2

= cm−1

m−1∑

i=1

c1...ĉi...cm−1 − cm−1

m−2∑

i=1

c1...ĉi...cm−2cm−1

+ cm

m−1∑

i=1

c1...ĉi...cm−1

= c1...cm−1 + cm

m−1∑

i=1

c1...ĉi...cm−1

=

m∑

i=1

c1...ĉi...cm.

�

In the following, we prove that
∑n

i=1 c1...ĉi...cn achieves its global minimum
when θ1 = ... = θn = π

n
. It is enough to show that

a.
∑n

i=1 c1...ĉi...cn has the unique critical point (π
n
, ..., π

n
);

b.
∑n

i=1 c1...ĉi...cn > 0;
c.

∑n
i=1 c1...ĉi...cn approaches ∞ as the variables approach the boundary of

the domain Ωn.

When n = 4, since c1c2c3+ c1c2c4+ c1c3c4 + c2c3c4 = c1 + c2+ c3+ c4, the three
statements above are already shown to be true in section 3. We assume that the
three statements above hold when n ≤ m− 1.

Let’s check the three statements when n = m. Consider the function

H :=

m∑

i=1

c1...ĉi...cm − y(θ1 + ...θm − π).
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Then 0 = ∂H
∂θ1

and 0 = ∂H
∂θ2

imply that

(c3...cm + c2

m∑

i=3

c3...ĉi...cm)(1 + c21) = (c3...cm + c1

m∑

i=3

c3...ĉi...cm)(1 + c22).

Since c1 + c2 > 0, it is equivalent to

(c1 − c2)(c1 + c2)(c3...cm +
c1c2 − 1

c1 + c2

m∑

i=3

c3...ĉi...cm) = 0.

The third factor is

cot θ3... cot θm + cot(θ1 + θ2)
m∑

i=3

cot θ3...ĉot θi... cot θm

which is written as
∑m

i=1 c̃1...
̂̃ci...c̃m−1, where c̃1 = cot(θ1 + θ2), c̃i = cot θi+1 for

i = 2, ...,m−1. This expression corresponds to a cyclic (m−1)-gon. By assumption

of the induction,
∑m

i=1 c̃1...
̂̃ci...c̃m−1 > 0.

Hence the only possibility is c1 = c2. By similar argument, we show that ci = cj
for any i, j. Hence the function

∑m

i=1 c1...ĉi...cm has the unique critical point such
that θi =

π
m

for any i = 1, ...,m.

Next, we claim that
∑m

i=1 c1...ĉi...cm > 0. Without loss of generality, we assume
that c1 > 0, c2 > 0, ..., cm−1 > 0. Now

m∑

i=1

c1...ĉi...cm

= c1c2...cm−2(cm−1 + cm) +

m−2∑

i=1

c1...ĉi...cm−2(cm−1cm)

= c1c2...cm−2(cm−1 + cm) +

m−2∑

i=1

c1...ĉi...cm−2(cm−1cm − 1) +

m−2∑

i=1

c1...ĉi...cm−2

= (cm−1 + cm)(c1c2...cm−2 +

m−2∑

i=1

c1...ĉi...cm−2
cm−1cm − 1

cm−1 + cm
) +

m−2∑

i=1

c1...ĉi...cm−2.

Let c̃m−1 = cm−1cm−1
cm−1+cm

= cot(θm−1 + θm). Then

c1c2...cm−2 +

m−2∑

i=1

c1...ĉi...cm−2
cm−1cm − 1

cm−1 + cm

= c1c2...cm−2 +

m−2∑

i=1

c1...ĉi...cm−2c̃m−1.

Consider an cyclic (m− 1)-gon with angles θ1, ..., θm−2, θm−1+ θm. By the assump-
tion of induction,

c1c2...cm−2 +

m−2∑

i=1

c1...ĉi...cm−2c̃m−1 > 0.

Therefore
∑m

i=1 c1...ĉi...cm > 0.



12 REN GUO

At last, we investigate the behavior of the function
∑m

i=1 c1...ĉi...cm when the
variables approach the boundary of the domain

Ωm := {(θ1, ..., θm) | θ1 + ...+ θm = π, θi > 0, i = 1, ...,m}.
Let (θ1(t), ..., θm(t)), t ∈ [0,∞), be a path in the domain Ωm. Without loss of
generality, we assume

lim
t→∞

(θ1(t), ..., θm(t)) = (0, s2, ..., sm),

where s2 ≥ 0, ..., sm ≥ 0 and s2+ ...+sm = π. And we can assume furthermore that
s2 < π

2 , ..., sm−1 < π
2 . Thus cot θ1(t) > 0, ..., cot θm−1(t) > 0 when t is sufficiently

large. Now
m∑

i=1

cot θ1(t)... ̂cot θi(t)... cot θm(t)

= [cot θm−1(t) + cot θm(t)]

[cot θ1(t) cot θ2(t)... cot θm−2(t)

+

m−2∑

i=1

cot θ1(t)... ̂cot θi(t)... cot θm−2(t)
cot θm−1(t) cot θm(t)− 1

cot θm−1(t) + cot θm(t)
]

+

m−2∑

i=1

cot θ1(t)... ̂cot θi(t)... cot θm−2(t)

= [cot θm−1(t) + cot θm(t)]

[cot θ1(t) cot θ2(t)... cot θm−2(t)

+

m−2∑

i=1

cot θ1(t)... ̂cot θi(t)... cot θm−2(t) cot(θm−1(t) + θm(t))]

+

m−2∑

i=1

cot θ1(t)... ̂cot θi(t)... cot θm−2(t).

By the assumption of induction,

cot θ1(t) cot θ2(t)... cot θm−2(t)

+

m−2∑

i=1

cot θ1(t)... ̂cot θi(t)... cot θm−2(t) cot(θm−1(t) + θm(t)) > 0

for any t ∈ [0,∞). Since cot θm−1(t) + cot θm(t) > 0 for any t ∈ [0,∞) and∑m−2
i=1 cot θ1(t)... ̂cot θi(t)... cot θm−2(t) approaches ∞, we see that

m∑

i=1

cot θ1(t)... ̂cot θi(t)... cot θm(t)

approaches ∞.
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cessing. A K Peters, Ltd. Natick, Massachusetts. 2010.
[5] Renjie Chen, Yin Xu, Craig Gotsman, Ligang Liu, A spectral characterization of the

Delaunay triangulation. Comput. Aided Geom. Design 27 (2010), no. 4, 295–300.
[6] R. J. Duffin, Distributed and lumped networks. J. Math. Mech. 8 1959 793–826.
[7] Gerhard Dziuk, Finite elements for the Beltrami operator on arbitrary surfaces. Partial

differential equations and calculus of variations, 142–155, Lecture Notes in Math., 1357,
Springer, Berlin, 1988.

[8] Art M. Duval, Caroline J. Klivans, Jeremy L. Martin, Simplicial matrix-tree theorems.
Trans. Amer. Math. Soc. 361 (2009), no. 11, 6073–6114.

[9] David Glickenstein, A monotonicity property for weighted Delaunay triangulations. Dis-
crete Comput. Geom. 38 (2007), no. 4, 651–664.

[10] Antoine Henrot, Extremum problems for eigenvalues of elliptic operators. Frontiers in
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[13] Bruno Lévy, Hao Zhang, Spectral Geometry Processing. ACM SIGGRAPH course notes

2010
[14] Richard H. MacNeal, The Solution of Partial Differential Equations by the Means of

Electrical Networks. Ph.D. Thesis, Caltech, Pasadena, 1949
[15] Ulrich Pinkall, Konrad Polthier, Computing discrete minimal surfaces and their conju-

gates. Experiment. Math. 2 (1993), no. 1, 15–36.
[16] Samuel Rippa, Minimal roughness property of the Delaunay triangulation. Comput.

Aided Geom. Design 7 (1990), no. 6, 489–497.
[17] Martin Reuter, Franz-Erich Wolter, Niklas Peinecke, Laplace-Beltrami spectra as ”Shape-

DNA” of surfaces and solids. Computer-Aided Design, Volume 38, Issue 4, April, 2006,
Pages 342–366.

[18] Jonathan Shewchuk, What Is a Good Linear Finite Element? Interpolation, Condition-

ing, Anisotropy, and Quality Measures, preprint, 2002
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