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ABSTRACT  32 

Nonalcoholic fatty liver disease (NAFLD) has increased in parallel with central obesity and its prevalence 33 

is anticipated to increase as the obesity epidemic remains unabated. NAFLD is now the most common 34 

cause of chronic liver disease in developed countries and is defined as excessive lipid accumulation in 35 

the liver, i.e., hepatosteatosis. NAFLD ranges in severity from benign fatty liver to nonalcoholic 36 

steatohepatitis (NASH), where NASH is characterized by hepatic injury, inflammation, oxidative stress 37 

and fibrosis.  NASH can progress to cirrhosis; and cirrhosis is a risk factor for primary hepatocellular 38 

carcinoma (HCC). The prevention of NASH will lower the risk of cirrhosis and NASH-associated HCC.  39 

Our studies have focused on NASH prevention. We developed a model of NASH using Ldlr-/- mice fed the 40 

western diet (WD). The WD induces a NASH phenotype in these mice that is similar to that seen in 41 

humans; and includes robust induction of hepatic steatosis, inflammation, oxidative stress and fibrosis. 42 

Using transcriptomic, lipidomic and metabolomic approaches, we examined the capacity of 2 dietary ω3 43 

polyunsaturated fatty acids, eicosapentaenoic acid (20:5ω-3; EPA) and docosahexaenoic acid (22:6ω-3; 44 

DHA), to prevent WD-induced NASH. Dietary DHA was superior to EPA at attenuating WD-induced 45 

changes in plasma lipids and hepatic injury; and reversing WD effects on hepatic metabolism, oxidative 46 

stress, and fibrosis. The outcome of these studies suggests that DHA may be useful in the prevention of 47 

NASH and reducing the risk of HCC.  48 

 49 
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Introduction.  52 

Primary hepatocellular carcinoma (HCC) is the 5th most common human cancer in men and the 53 

7th most common cancer in women in the western societies;  and HCC represents the 3rd most frequent 54 

cause of cancer deaths worldwide  (1-3). High rates of HCC are seen in eastern and southeastern 55 

Africa and Asia and lower levels in western countries.  Risk factors for HCC include age and gender 56 

(male), hepatitis virus infection (HBV, HCV), exposure to toxins (aflatoxin), chronic alcohol abuse, 57 

cirrhosis, tobacco, and genetic disorders (hereditary hemochromatosis, α1-antitrypsin deficiency and 58 

primary biliary cirrhosis) (1, 2).  59 

The unabated increase in the incidence of  obesity, type 2 diabetes and non-alcoholic fatty liver 60 

disease (NAFLD) (Fig. 1) is driving the concern for an increased HCC incidence in western societies 61 

(4). This is because NAFLD can progress to non-alcoholic steatohepatitis (NASH) and cirrhosis; 62 

cirrhosis is a risk factor for HCC. Chronic fatty liver disease sets the stage for poorly regulated 63 

regeneration of hepatic parenchymal cells resulting from hepatic inflammation, parenchymal cell death 64 

and fibrosis; thus increasing HCC risk. Current treatment options for HCC are limited to surgery and 65 

drugs like the multi-kinase inhibitor, sorafenib.  Since diet is a major driver of NAFLD and NASH 66 

progression, our focus has been on developing nutritional strategies to prevent NASH. This report 67 

focuses on the use of dietary C20-22 ω-3 polyunsaturated fatty acids (PUFAs) to prevent NASH.  68 

 69 

NAFLD and NASH. 70 

Current data from the CDC estimates that nearly 78.6 million obese adults and 12.7 million obese 71 

children (ages 2-19) are in the US (5, 6). Obesity is a risk factor for developing NAFLD and NASH. As 72 

such, the prevalence of NAFLD and NASH has increased in parallel with the incidence of central 73 

obesity in western societies (7, 8). NAFLD is the most common fatty liver disease in developed 74 

countries (9) and is defined as excessive lipid accumulation in the liver, i.e., hepatosteatosis (10, 11). 75 

NAFLD is the hepatic manifestation of metabolic syndrome (MetS) (12); and MetS risk factors include 76 

obesity, elevated plasma triacylglycerols (TAG) and LDL cholesterol, reduced HDL cholesterol, high 77 

blood pressure and fasting hyperglycemia (13).  The prevalence of NAFLD in the general population is 78 
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estimated to range from 6% to 30% depending on the method of analysis and population studied (14) 79 

(Fig. 1).  80 

NAFLD ranges from benign hepatosteatosis to NASH (15), which is defined as hepatosteatosis 81 

with inflammation and hepatic injury (16).   Approximately 30-40% of patients with steatosis develop 82 

NASH (17); representing ~3% to 5% in the general population (14). NAFLD and NASH have high 83 

prevalence (>60%) in the type 2 diabetic (T2D) population (18). The level of NAFLD and NASH in 84 

patients undergoing bariatric surgery is 93% and 26%, respectively (19). NASH patients have higher 85 

mortality rates than NAFLD patients; and both are higher than in the general population (20-22). Over a 86 

10 year period, cirrhosis and liver related death occurs in 20% and 12% of NASH patients, respectively 87 

(23).  Given the increasing prevalence of NASH and its adverse clinical outcome, NASH is rapidly 88 

becoming a significant public health burden. NASH can progress to cirrhosis and HCC (8, 17). By the 89 

year 2020, cirrhosis resulting from NASH is projected to be the leading cause of liver transplantation in 90 

the United States (24). 91 

 92 

Multi-hit hypotheses for NASH development.   93 

The development of NASH has been proposed to follow a multi-hit model (25-27). The  “1st Hit” 94 

involves excessive neutral lipid accumulation in the liver which sensitizes the liver to the “2nd Hit” (26) 95 

(Fig. 2). The “2nd Hit” is characterized by hepatic inflammation, oxidative stress and hepatic insulin 96 

resistance. These events promote hepatic damage which is associated with increased blood levels of 97 

hepatic enzymes/proteins (alanine aminotransferase [ALT], aspartate aminotransferase (AST), C-98 

reactive protein, serum amyloid A1 and plasminogen activator inhibitor-1 (PIA1) (7, 8, 28).  This pro-99 

inflammatory state leads to hepatocellular death & necrosis (necroinflammation); and cell death 100 

promotes fibrosis, i.e., the “3rd Hit”. Fibrosis is mediated by activation of hepatic stellate cells and 101 

myofibrillar cells; these cells produce extracellular matrix (ECM) proteins, such as collagen (collagen 102 

1A1, Col1A1) and smooth muscle α2 actin (29). Dietary (excess fat, cholesterol, glucose and fructose), 103 

metabolic (plasma and hepatic fatty acid profiles, hepatic ceramide, oxidized LDL), endocrine/paracrine 104 

(insulin, leptin, adiponectin & TGFβ), gut (endotoxin, microbial metabolites) and genetic (e.g., patatin-105 
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like phospholipase domain containing 3 [PNPLA3] polymorphisms) factors contribute to NASH 106 

progression (30-38).  107 

Hepatosteatosis develops because of an imbalance of hepatic lipid metabolism leading to the 108 

accumulation of hepatic neutral lipids as TAG and diacylglycerols (DAG) and cholesterol esters (CE). 109 

Fatty acid sources of hepatic TAG and CE include non-esterified fatty acids (NEFA) mobilized from 110 

adipose tissue, de novo lipogenesis (DNL), and the diet via the portal circulation. Hepatic fatty acid 111 

oxidation (FAO) and very low density lipoprotein (VLDL) assembly and secretion represent two 112 

pathways for removal of fat from the liver. Hepatosteatosis develops when lipid storage exceeds lipid 113 

export and oxidation (39). In humans with NAFLD,  ~60% of the fatty acids appearing in the liver are 114 

derived from circulating NEFA mobilized from adipose tissue; 26% are from DNL and 15% from diet 115 

(40). Both hepatic and peripheral insulin resistance also contribute to the disruption of these pathways 116 

and to the development of hepatosteatosis (39).  117 

Patients with NASH consume a lower ratio of polyunsaturated fatty acid (PUFAs) to saturated 118 

fatty acid (SFA) when compared to the general population (41, 42). Consumption of a low ratio of ω3 119 

PUFAs to ω6 PUFAs is also associated with NAFLD development, whereas increased dietary long-120 

chain ω-3 PUFAs decreases hepatic steatosis (43-45).  Mice fed a ω3 PUFA-deficient diet developed 121 

hepatosteatosis and insulin resistance (46). Livers of these mice exhibited a major decline in α-linolenic 122 

acid (ALA, 18:3ω-3), eicosapentaenoic acid (EPA, 20:5ω-3) and docosahexaenoic acid (DHA, 22:6ω-3), 123 

but no change in hepatic ω-6 PUFAs, such as linoleic acid (LA, 18:2ω-6) or arachidonic acid (ARA, 124 

20:4ω-6). Depletion of hepatic ω-3 PUFAs lowered FAO, a peroxisome proliferator activated receptor α 125 

(PPARα)-regulated mechanism, and increased DNL and TAG accumulation; which are sterol regulatory 126 

element binding protein-1 (SREBP1), carbohydrate regulatory element binding protein (ChREBP), max-127 

like factor X (MLX) regulated pathways. PPARα, SREBP1 and the ChREBP/MLX heterodimer are well 128 

established targets of C20-22 ω-3 PUFAs control (47).  While trans-fatty acid (TFA) consumption is 129 

associated with insulin resistance and cardiovascular disease, the impact of TFA consumption on 130 

NAFLD in humans is less clear (48). Studies utilizing mice suggest that TFA consumption is associated 131 
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with hepatic steatosis and injury (49, 50). Thus, reduced hepatic ω-3 PUFAs and increased levels of 132 

TFA may account for changes in hepatic lipid metabolism that promote NAFLD.  133 

Excess dietary cholesterol contributes to NASH (51) by promoting hepatic inflammation (32, 52-134 

54). In the Ldlr-/- mouse model, high fat-high cholesterol diets promote NASH (55). Kupffer cells, i.e., 135 

resident hepatic macrophage, become engorged with oxidized-LDL (ox-LDL) which induces 136 

inflammatory cytokine secretion. These locally secreted cytokines act on neighboring hepatic cells to 137 

promote a pro-inflammatory state leading to cell injury. Kupffer cells also secrete chemokines 138 

(monocyte chemoattractant protein-1, MCP1) that recruit monocytes to the liver further amplifying 139 

hepatic inflammation. Controlling hepatic inflammation is an attractive target for NASH management 140 

and therapy.   141 

 Excessive consumption of simple sugar has been implicated in hepatosteatosis and NASH 142 

progression. Over the last 30 years there has been a dramatic increase in obesity and NAFLD in the 143 

United States. While total fat consumption has remained steady, carbohydrate and total caloric intake 144 

have increased (56-60). As such, elevated carbohydrate, and specifically fructose consumption, has 145 

been linked to NAFLD and NASH progression (61-63).  The liver expresses the fructose-specific 146 

transporter (Glut5). Moreover, the liver metabolizes up to 70% of dietary fructose (62, 63); and fructose 147 

metabolism is independent of insulin regulation. When compared to glucose, fructose more readily 148 

enters the pathways for DNL and TAG synthesis. Fructose promotes all aspects of MetS including 149 

hepatosteatosis, insulin resistance, dyslipidemia, hyperglycemia, obesity and hypertension. In contrast 150 

to fructose, hepatic glucose metabolism is well-regulated by insulin in healthy individuals; and glucose 151 

is converted to glycogen for storage. Excess glucose consumption does not promote hepatosteatosis 152 

as aggressively as excess fructose consumption. Fructose also affects several biochemical events that 153 

exacerbate NASH development, including formation of advanced glycation end-products (AGEP) and 154 

reactive oxygen species (ROS), (64-67). 155 

 156 

 157 

 158 
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Development of mouse models of NASH.  159 

Several mouse models of NAFLD and NASH have been developed. Four such models include the 160 

genetic models (ob/ob and db/db mice), a dietary model (methionine-choline deficient diets) and 161 

chemically-induced model (intraperitoneal carbon tetrachloride) (68, 69). These models recapitulate 162 

some aspects of human NAFLD/NASH, but not other aspects of the disease.  Mice with global ablation 163 

of the low density lipoprotein receptor (Ldlr-/-) develop hypercholesteremia due to elevated plasma 164 

VLDL and LDL when fed a high cholesterol diet (70). While Ldlr-/- mice have been used to study 165 

atherosclerosis, we and others observed that when Ldlr-/- mice are fed high fat-high cholesterol diet, like 166 

the western diet, mice develop a NASH phenotype similar to that seen in humans (32, 36, 54, 71-74). 167 

Since humans and Ldlr-/- mice develop NAFLD and NASH in a context of obesity and insulin resistance, 168 

these mice appear to be a useful preclinical model to investigate the development, progression and 169 

remission of NASH.  170 

The western diet (WD; Research Diets, D12079B) used in our studies is moderately high in 171 

saturated and trans-fat (41% total calories), sucrose (30% total calories) and cholesterol (0.15 g%, 172 

w/w); and is similar to the “fast-food” diet (75) and human diets linked to obesity in the US (76, 77). 173 

Both the WD and “fast food” mouse models induced a NASH phenotype that recapitulates many of the 174 

clinical features of human NASH with MetS, including dyslipidemia, hyperglycemia, hepatosteatosis, 175 

hepatic damage (plasma ALT & AST), hepatocyte ballooning, induction of hepatic markers of 176 

inflammation (MCP1), oxidative stress (NOX2 and other NOX components) and fibrosis (TGFβ1, 177 

proCol1A1, TIMP1) (54, 73, 75, 78-80) (Fig. 3). Moreover, NASH is associated with a major enrichment 178 

of both plasma and liver with saturated (SFAs) and monounsaturated fatty acids (MUFAs) and 179 

depletion of hepatic ω3 PUFAs (54, 73, 78). The development of this phenotype has been attributed to 180 

a diet high in saturated and trans-fat, sucrose and cholesterol (62, 67, 81-83).   181 

 182 

 183 

 184 

 185 
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Potential for dietary C20-22 ω3 PUFAs to prevent NASH.   186 

C20-22 ω3 PUFAs are pleiotropic regulators of cell function; they have well established effects on 187 

membrane structure, cell signaling, gene expression, lipid and carbohydrate metabolism and 188 

inflammation (84). As such, these fatty acids appear to be an ideal bioactive nutrient to combat NASH. 189 

A meta-analysis of 9 clinical studies indicated that dietary supplementation with C20-22 ω-3 PUFAs 190 

decreased liver fat (85) and clinical trials suggest C20-22 ω-3 PUFAs may lower liver fat in children and 191 

adults with NAFLD (86-91). Of 235 clinical trials (119) assessing NASH and NASH therapies, 23 trials 192 

used C20-22 ω3 PUFAs as a treatment strategy. In most trials, diets were supplemented with fish oil or a 193 

combination of EPA + DHA; few studies used EPA or DHA alone.  194 

 195 

Preclinical assessment of the efficacy of ω3 PUFA supplementation to prevent NASH in Ldlr-/- mice.  196 

Diets supplemented with fish oil, EPA or DHA prevent high fat diet-induced NASH to varying 197 

degrees (54, 73, 78, 84). The level of EPA and DHA in these high fat diets was at ~2% of total calories. 198 

This dose of C20-22 ω-3 PUFAs is comparable to the dose consumed by patients taking LovazaTM 199 

(GlaxoSmithKline) for the treatment of dyslipidemia (92). Humans consuming EPA + DHA ethyl esters 200 

(4 g/d for 12 wks) exhibited increased plasma EPA + DHA from 5.5 mol% before treatment to 16.2 201 

mol% after treatment (93). Supplementing human diets with a DHA-enriched fish oil (6 g/day for 8 wks) 202 

increased plasma DHA from 4 mol% before treatment to 8 mol% after treatment (94, 95).  Plasma 203 

levels of DHA and total C20-22 ω-3 PUFA [EPA, docosapentaenoic acid (DPA, 22:5ω-3) and DHA] in Ldlr-204 

/- mice fed a western diet for 16 wks was 4.3 and 6.7 mol%, respectively.  Feeding Ldlr-/- mice a western 205 

diet containing DHA (at 2% total calories) for 16 wks increased plasma DHA and total C20-22 ω-3  PUFA 206 

to 9 and 15.2 mol%, respectively.  Our protocol for C20-22 ω-3 PUFA supplementation of diets yields a 207 

change in blood C20-22 ω3 PUFAs that is comparable to that seen in humans consuming 4-6 g/d of C20-22 208 

ω-3 PUFA.  209 

 210 

 211 
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Dietary ω3 PUFAs do not prevent WD-induced systemic inflammation.  212 

Systemic inflammation is a major driver of NASH. Inflammatory signals affecting NASH 213 

progression include: gut-derived microbial products, e.g., endotoxin/LPS, oxidized LDL (ox-LDL) (34, 214 

55, 80, 96); adipokines (leptin & adiponectin) & cytokines (TNFα) (97) and products from hepatocellular 215 

death (27, 98) (Fig. 2). Supplementation of the WD with either EPA or DHA fails to attenuate WD-216 

induced endotoxinemia (78).  The appearance of endotoxin in the plasma of WD-fed Ldlr-/- mice (99) 217 

may represent a problem with gut physiology such as microbial overgrowth, increased gut permeability 218 

(leaky gut), or co-transport of microbial lipids with chylomicron (34, 100, 101). A link between the gut 219 

microbiome and NAFLD has been established (34, 102, 103). 220 

 221 

ω3 PUFAs attenuate hepatic inflammation.   222 

Despite the absence of an effect of C20-22 ω-3 PUFAs on systemic inflammation markers, like 223 

endotoxin, gene expression analyses showed that DHA was more effective than EPA at attenuating 224 

WD-induced expression of  hepatic toll-like receptor (TLR) subtypes (TLR2, TLR4, TLR9), CD14 (binds 225 

endotoxin), downstream targets of TLRs; like NFκB (p50 subunit) nuclear abundance and downstream 226 

targets of NFκB like chemokines (MCP1), cytokines (IL1β), inflammasome components (NLRP3) and 227 

oxidative stress (NOX2, and its subunits) markers (73, 78).  These studies suggest that EPA and DHA 228 

attenuate the hepatic (cellular) response to plasma inflammatory factors by down-regulating key cellular 229 

mediators of inflammation, like TLRs, CD14 (binds LPS, effect on CD14 mRNA and protein), NFκB-p50 230 

nuclear abundance.  231 

 232 

ω3 PUFAs have selective effects on hepatic oxidative stress.   233 

Hepatic oxidative stress increases with NASH and is reflected by a significant increase in gene 234 

expression and metabolite markers of oxidative stress that appear in liver and urine (54, 73). A 235 

response to increased oxidative stress is the induction of nuclear factor (erythroid-derived 2)-like 2 236 

(Nrf2), a key transcription factor involved in the antioxidant response (78). Nrf2 regulates the 237 

expression of multiple transcripts linked to the anti-oxidant stress response, such as Hmox1, Gst1α and 238 
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several NOX subunits. Adding EPA or DHA to the WD did not prevent the WD-mediated increase in 239 

hepatic nuclear content of Nrf2 or expression of Hmox1 or Gst1α. The EPA- and DHA-containing diets, 240 

however, significantly lowered WD-mediated induction of multiple NOX subunits [Nox2, P22phox, 241 

P40phox and P67phox] (73). NOX subtypes are a major source of superoxide and hydrogen peroxide. 242 

As such, the NOX pathway is a major target of WD and C20-22 ω3 PUFAs. 243 

 244 

 245 

ω3 PUFAs attenuate hepatic fibrosis.  246 

Hepatic fibrosis (scarring) develops as a result of cell death and activation of hepatic stellate 247 

cells and myofibrillar cells to produce extracellular matrix (ECM) proteins. Key regulators of fibrosis 248 

include transforming growth factor (TGFβ), connective tissue growth factor (CTGF), platelet-derived 249 

growth factor (PDGF), NOX, inflammatory mediators (endotoxin, TLR agonist), and leptin (38, 80, 104). 250 

A fibrotic liver can progress to a cirrhotic liver (Fig. 1); and 90% of HCCs arise from cirrhotic livers 251 

(105).  252 

Addition of DHA to the WD attenuated the WD-mediated fibrosis as quantified by suppression of 253 

expression of  Col1A1, tissue inhibitor of metalloprotease-1 (TIMP1), TGFβ1, plasminogen activated 254 

inhibitor-1 (PIA1) and staining of liver for fibrosis using trichrome, a collagen stain (54, 73). 255 

Interestingly, EPA did not prevent WD-induced fibrosis. Based on these studies, DHA is the preferred 256 

ω-3 PUFA to prevent NASH-associated fibrosis. 257 

 258 

The WD and C20-22 ω3 PUFAs affect all major hepatic metabolic pathways.   259 

Additional insight into the impact of the WD and C20-22 ω-3 PUFAs on liver metabolism was 260 

gained by using a global non-targeted metabolomic approach. The analysis identified 320 known 261 

biochemicals (78). When compared to chow-fed mice, both the WD + olive oil- and WD + DHA-262 

containing diets significantly affected the abundance of metabolites in all major hepatic metabolic 263 

pathways including amino acids & peptides, carbohydrate and energy, lipid, nucleotide and vitamins & 264 

cofactors. Our studies have identified gene expression and metabolite signatures for NASH (73, 78). 265 
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The gene expression signature for NASH includes increased expression of chemokines (MCP1), 266 

Kupffer cell surface marker (CD68), TLRs and their components (TLR4, CD14), enzymes involved in 267 

oxidative stress (NOX2), stearoyl CoA desaturase (SCD1) and collagen (Col1A1). The metabolomic 268 

signature for NASH includes increased hepatic content of palmitoyl-sphingomyelin, MUFA (16:1ω-7; 269 

18:1ω-7 and 18:1ω-9), α-tocopherol (vitamin E), 5-methyl tetrahydrofolate (5MeTHF); and decreased 270 

hepatic content of EPA, DHA and oxidized lipids derived from EPA, specifically 18-271 

hydroxyeicosapentaenoic acid [18-HEPE] and 17,18-dihydroxyeicosatetraenoic acid [17,18-DiHETE]). 272 

A volcano plot of the metabolomic and gene expression data illustrates the impact of diet on the hepatic 273 

level of these molecules (Fig. 4). The metabolites and mRNAs that comprise the metabolomic and 274 

gene expression signature were changed dramatically by the WD + olive oil diet, when compared to 275 

mice fed the chow diet. These changes were reversed in mice fed the WD + DHA diet.    276 

The oxidized lipids identified in these studies are generated by enzymatic and non-enzymatic 277 

processes. 18-HEPE is a resolvin (RvE1) precursor; and resolvins are anti-inflammatory oxidation 278 

products of EPA (106). 17,18-DiHETE  is an oxidized lipid generated first by CYP2C-catalyzed 279 

formation of 17,18-epoxy-eicosatetraenoic acid from EPA; this epoxy fatty acid is converted to the di-280 

hydroxy fatty acid by a epoxide hydrolase to form 17,18-DiHETE.  The metabolomic analysis did not 281 

detect the 17,18-epoxyETA suggesting that this lipid does not accumulate as a non-esterified lipid. 282 

When compared to chow-fed mice, WD + olive oil-fed mice have >60% reduction in hepatic content of 283 

18-HEPE and 17,18-DiHETE. When compared to WD + Olive oil-fed mice hepatic, levels of 18-HEPE 284 

and 17,18-DiHETE  increased >40-fold in mice fed the WD containing EPA or DHA. These dramatic 285 

changes in oxidized derivatives of EPA are inversely associated with the severity of NASH. A recent 286 

report suggest the Cyp450 epoxygenase pathway may play a key role in regulating hepatic 287 

inflammation in fatty liver disease (107).  As such, the generation of these oxidized ω3 PUFAs may be 288 

hepatoprotective.  289 

 290 

 291 

 292 
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Can ω3 PUFA be used to treat human NASH?  293 

Therapeutic strategies for human NASH start with life style management (diet and exercise) and 294 

treating the co-morbidities associated with NASH, i.e., obesity, T2D, dyslipidemia. The best strategy for 295 

managing NASH, however, has not been established (108). Some clinical approaches to manage 296 

NASH included: 1) reduce overall body weight through diet management, exercise or bariatric surgery; 297 

2) pharmaceutical & dietary supplements, i.e., metformin, fibrates, thiazolididiones, statins, ω3 PUFAs; 298 

3) suppress inflammation using TLR modifiers or ω-3 PUFAs); and 4) suppress oxidative stress using 299 

vitamin E, silybin  and other antioxidants (86, 109-114). Therapeutic regulators of fibrosis, however, are 300 

less well-defined (80, 115).  301 

 Several clinical trials have reported that ω3 PUFAs lower hepatic fat in obese children and 302 

adults with NAFLD (86-91, 116, 117), while others report that fish oil (116) and  EPA-ethyl esters (117) 303 

do not attenuate the histological features of the disease, like fibrosis. As such, human studies using ω3 304 

PUFAs to treat NAFLD/NASH have yielded mixed results.  305 

The Ldlr-/- mouse studies described above suggest that ω3 PUFAs may be an attractive dietary 306 

supplement to combat NAFLD and NASH, with the added benefit of preventing NASH-associated HCC. 307 

These fatty acids have well-defined effects on hepatic lipid metabolism and inflammation (84, 118); and 308 

more recently hepatic fibrosis (54, 73, 119). While several human studies have provided evidence in 309 

support of using supplemental ω-3 PUFAs to treat NAFLD (86-91, 116, 117), some studies suggest 310 

there may be limitations to the use of ω-3 PUFAs to treat NASH (116, 117).  For example, in a recent 311 

double-blind, placebo-controlled trial, NAFLD patients received placebo or LovazaTM at 4 g/d (~50:50 312 

mix of EPA- and DHA-ethyl esters) for 15-18 months. When compared to the placebo-treated group, 313 

the LovazaTM -treated group showed a significant reduction in liver fat without a significant reduction in 314 

fibrosis scores.    315 

Since DHA attenuates fibrosis in two separate rodent models of liver injury, i.e., WD-induced 316 

fibrosis in mice and BDL-induced fibrosis in rats (54, 73, 119), we speculate that failure of C20-22 ω-3 317 

PUFAs to decrease hepatic fibrosis in humans may be explained by study design. Likely explanations 318 
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include the type and amount of ω-3 PUFAs used in the trial. Our studies established that DHA is more 319 

effective than EPA at attenuating the onset and progression of NASH (73). Human studies, however, 320 

have examined the impact of ω-3 PUFAs on patients with pre-existing disease (86-91, 116, 117). We 321 

are unaware of preclinical rodent studies that have assessed the impact of ω3 PUFAs to promote 322 

remission or regression of NASH or hepatic fibrosis. As such, more preclinical studies are required to 323 

establish the capacity of ω-3 PUFAs to attenuate NASH at various stages in the disease process.  324 

 325 

 326 

Conclusions and key unanswered questions.  327 

 To date, several human studies have indicated that ω-3 PUFAs may be useful in reducing liver 328 

fat in obese patients with NAFLD. Moreover, preclinical studies in mice have established that DHA can 329 

prevent NASH and NASH-associated fibrosis. It remains unclear whether dietary ω3 PUFAs have the 330 

capacity to reverse the NASH, cirrhosis or HCC phenotypes once these diseases are established. 331 

Equally important is defining the molecular mechanisms for DHA control of hepatic fibrosis. Finally, 332 

changes in hepatic EPA and DHA content significantly impact oxidized lipids derived from ω-3 and ω-6 333 

PUFAs. These oxidized lipids likely play a role in inflammation and will affect the onset and progression 334 

of NASH. Whether these oxidized lipids impact the development of NASH, cirrhosis or HCC remains to 335 

be determined.   336 

 337 
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Figure Legends: 345 

Figure 1: Transition from normal liver to primary hepatocellular carcinoma (HCC). 346 

 347 

Figure 2: Factors contributing to the onset and progression of NASH.  348 

 349 

Figure 3: Effects of the western diet and C20-22 ω-3 PUFAs on the prevention of NASH Ldlr-/- mice. 350 

The size of the arrow indicated effect size. “No effect” indicates no changes from western diet + olive 351 

oil-fed mice. Olive oil was added to the WD to keep all diets isocaloric.    352 

 353 

Figure 4: Volcano plots of western diet effects on hepatic metabolites.  A metabolomic and 354 

transcriptomic analysis was carried out as described (78). Over 300 hepatic metabolites and 6 mRNAs 355 

markers of NASH were examined using MetaboAnalyst 3.0 356 

[http://www.metaboanalyst.ca/MetaboAnalyst/] (120). The outcome of this analysis provided a volcano 357 

plot. Results are plotted as log2 Fold Change versus –log10 p-value. Several metabolites and RNA 358 

transcripts are labeled to illustrate the impact of diet on hepatic abundance of these molecules. Panel A 359 

is the comparison of hepatic molecules from Chow-fed versus WD + olive oil-fed Ldlr-/- mice. Panel B is 360 

the comparison of hepatic molecules from WD + Olive oil-fed mice versus WD + DHA-fed Ldlr-/-.  361 

 362 

 363 

 364 

 365 

 366 

 367 

 368 

 369 

 370 
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eicosapentaenoic acid; IL1β, interleukin-1β;  LA, linoleic acid; LDLR, low density lipoprotein receptor; 379 

MCP1, monocyte chemoattractant protein-1; 5MeTHF, 5-methyl tetrahydrofolate;  MetS, metabolic 380 

syndrome; MLX, max-like factor X;  MUFA, monounsaturated fatty acids; NAFLD, non-alcoholic  fatty 381 

liver disease; NASH, non-alcoholic steatohepatitis; NEFA, non-esterified fatty acid; NFκB, nuclear 382 

factor κB; NLRP3, NACHT, LRR and PYD domains-containing protein 3; NOX, NADPH oxidase; Nrf2, 383 

nuclear factor (erythroid-derived 2)-like 2; p-βOx, peroxisomal β-oxidation; PIA1, plasminogen activator 384 

inhibitor-1; PPAR, peroxisome proliferator activated receptor; PDGF, platelet-derived growth factor;  385 

PUFAS, polyunsaturated fatty acids; ROS, reactive oxygen species; SCD1, stearoyl CoA desaturase-1; 386 

SFA,  saturated fatty acids; SREBP, sterol regulatory element binding protein; TAG, triacylglycerol; 387 

T2D, type 2 diabetes;  TGFβ, transforming growth factor-β; TLR, toll-like receptor;  TNFα, tumor 388 

necrosis factor-α; VLDL, very low density lipoprotein; WD, western diet. 389 

  390 
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ABSTRACT 

Nonalcoholic fatty liver disease (NAFLD) has increased in parallel with central obesity and its prevalence is anticipated to increase as the obesity epidemic remains unabated. NAFLD is now the most common cause of chronic liver disease in developed countries and is defined as excessive lipid accumulation in the liver, i.e., hepatosteatosis. NAFLD ranges in severity from benign fatty liver to nonalcoholic steatohepatitis (NASH), where NASH is characterized by hepatic injury, inflammation, oxidative stress and fibrosis.  NASH can progress to cirrhosis; and cirrhosis is a risk factor for primary hepatocellular carcinoma (HCC). The prevention of NASH will lower the risk of cirrhosis and NASH-associated HCC.  Our studies have focused on NASH prevention. We developed a model of NASH using Ldlr-/- mice fed the western diet (WD). The WD induces a NASH phenotype in these mice that is similar to that seen in humans; and includes robust induction of hepatic steatosis, inflammation, oxidative stress and fibrosis. Using transcriptomic, lipidomic and metabolomic approaches, we examined the capacity of 2 dietary 3 polyunsaturated fatty acids, eicosapentaenoic acid (20:5-3; EPA) and docosahexaenoic acid (22:6-3; DHA), to prevent WD-induced NASH. Dietary DHA was superior to EPA at attenuating WD-induced changes in plasma lipids and hepatic injury; and reversing WD effects on hepatic metabolism, oxidative stress, and fibrosis. The outcome of these studies suggests that DHA may be useful in the prevention of NASH and reducing the risk of HCC. 
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Introduction. 

Primary hepatocellular carcinoma (HCC) is the 5th most common human cancer in men and the 7th most common cancer in women in the western societies;  and HCC represents the 3rd most frequent cause of cancer deaths worldwide  (1-3). High rates of HCC are seen in eastern and southeastern Africa and Asia and lower levels in western countries.  Risk factors for HCC include age and gender (male), hepatitis virus infection (HBV, HCV), exposure to toxins (aflatoxin), chronic alcohol abuse, cirrhosis, tobacco, and genetic disorders (hereditary hemochromatosis, 1-antitrypsin deficiency and primary biliary cirrhosis) (1, 2). 

The unabated increase in the incidence of  obesity, type 2 diabetes and non-alcoholic fatty liver disease (NAFLD) (Fig. 1) is driving the concern for an increased HCC incidence in western societies (4). This is because NAFLD can progress to non-alcoholic steatohepatitis (NASH) and cirrhosis; cirrhosis is a risk factor for HCC. Chronic fatty liver disease sets the stage for poorly regulated regeneration of hepatic parenchymal cells resulting from hepatic inflammation, parenchymal cell death and fibrosis; thus increasing HCC risk. Current treatment options for HCC are limited to surgery and drugs like the multi-kinase inhibitor, sorafenib.  Since diet is a major driver of NAFLD and NASH progression, our focus has been on developing nutritional strategies to prevent NASH. This report focuses on the use of dietary C20-22 -3 polyunsaturated fatty acids (PUFAs) to prevent NASH. 



NAFLD and NASH.

Current data from the CDC estimates that nearly 78.6 million obese adults and 12.7 million obese children (ages 2-19) are in the US (5, 6). Obesity is a risk factor for developing NAFLD and NASH. As such, the prevalence of NAFLD and NASH has increased in parallel with the incidence of central obesity in western societies (7, 8). NAFLD is the most common fatty liver disease in developed countries (9) and is defined as excessive lipid accumulation in the liver, i.e., hepatosteatosis (10, 11). NAFLD is the hepatic manifestation of metabolic syndrome (MetS) (12); and MetS risk factors include obesity, elevated plasma triacylglycerols (TAG) and LDL cholesterol, reduced HDL cholesterol, high blood pressure and fasting hyperglycemia (13).  The prevalence of NAFLD in the general population is estimated to range from 6% to 30% depending on the method of analysis and population studied (14) (Fig. 1). 

NAFLD ranges from benign hepatosteatosis to NASH (15), which is defined as hepatosteatosis with inflammation and hepatic injury (16).   Approximately 30-40% of patients with steatosis develop NASH (17); representing ~3% to 5% in the general population (14). NAFLD and NASH have high prevalence (>60%) in the type 2 diabetic (T2D) population (18). The level of NAFLD and NASH in patients undergoing bariatric surgery is 93% and 26%, respectively (19). NASH patients have higher mortality rates than NAFLD patients; and both are higher than in the general population (20-22). Over a 10 year period, cirrhosis and liver related death occurs in 20% and 12% of NASH patients, respectively (23).  Given the increasing prevalence of NASH and its adverse clinical outcome, NASH is rapidly becoming a significant public health burden. NASH can progress to cirrhosis and HCC (8, 17). By the year 2020, cirrhosis resulting from NASH is projected to be the leading cause of liver transplantation in the United States (24).



Multi-hit hypotheses for NASH development.  

The development of NASH has been proposed to follow a multi-hit model (25-27). The  “1st Hit” involves excessive neutral lipid accumulation in the liver which sensitizes the liver to the “2nd Hit” (26) (Fig. 2). The “2nd Hit” is characterized by hepatic inflammation, oxidative stress and hepatic insulin resistance. These events promote hepatic damage which is associated with increased blood levels of hepatic enzymes/proteins (alanine aminotransferase [ALT], aspartate aminotransferase (AST), C-reactive protein, serum amyloid A1 and plasminogen activator inhibitor-1 (PIA1) (7, 8, 28).  This pro-inflammatory state leads to hepatocellular death & necrosis (necroinflammation); and cell death promotes fibrosis, i.e., the “3rd Hit”. Fibrosis is mediated by activation of hepatic stellate cells and myofibrillar cells; these cells produce extracellular matrix (ECM) proteins, such as collagen (collagen 1A1, Col1A1) and smooth muscle 2 actin (29). Dietary (excess fat, cholesterol, glucose and fructose), metabolic (plasma and hepatic fatty acid profiles, hepatic ceramide, oxidized LDL), endocrine/paracrine (insulin, leptin, adiponectin & TGF), gut (endotoxin, microbial metabolites) and genetic (e.g., patatin-like phospholipase domain containing 3 [PNPLA3] polymorphisms) factors contribute to NASH progression (30-38). 

Hepatosteatosis develops because of an imbalance of hepatic lipid metabolism leading to the accumulation of hepatic neutral lipids as TAG and diacylglycerols (DAG) and cholesterol esters (CE). Fatty acid sources of hepatic TAG and CE include non-esterified fatty acids (NEFA) mobilized from adipose tissue, de novo lipogenesis (DNL), and the diet via the portal circulation. Hepatic fatty acid oxidation (FAO) and very low density lipoprotein (VLDL) assembly and secretion represent two pathways for removal of fat from the liver. Hepatosteatosis develops when lipid storage exceeds lipid export and oxidation (39). In humans with NAFLD,  ~60% of the fatty acids appearing in the liver are derived from circulating NEFA mobilized from adipose tissue; 26% are from DNL and 15% from diet (40). Both hepatic and peripheral insulin resistance also contribute to the disruption of these pathways and to the development of hepatosteatosis (39). 

Patients with NASH consume a lower ratio of polyunsaturated fatty acid (PUFAs) to saturated fatty acid (SFA) when compared to the general population (41, 42). Consumption of a low ratio of 3 PUFAs to 6 PUFAs is also associated with NAFLD development, whereas increased dietary long-chain -3 PUFAs decreases hepatic steatosis (43-45).  Mice fed a 3 PUFA-deficient diet developed hepatosteatosis and insulin resistance (46). Livers of these mice exhibited a major decline in -linolenic acid (ALA, 18:3-3), eicosapentaenoic acid (EPA, 20:5-3) and docosahexaenoic acid (DHA, 22:6-3), but no change in hepatic -6 PUFAs, such as linoleic acid (LA, 18:2-6) or arachidonic acid (ARA, 20:4-). Depletion of hepatic -3 PUFAs lowered FAO, a peroxisome proliferator activated receptor  (PPAR)-regulated mechanism, and increased DNL and TAG accumulation; which are sterol regulatory element binding protein-1 (SREBP1), carbohydrate regulatory element binding protein (ChREBP), max-like factor X (MLX) regulated pathways. PPAR SREBP1 and the ChREBP/MLX heterodimer are well established targets of C20-22 -3 PUFAs control (47).  While trans-fatty acid (TFA) consumption is associated with insulin resistance and cardiovascular disease, the impact of TFA consumption on NAFLD in humans is less clear (48). Studies utilizing mice suggest that TFA consumption is associated with hepatic steatosis and injury (49, 50). Thus, reduced hepatic -3 PUFAs and increased levels of TFA may account for changes in hepatic lipid metabolism that promote NAFLD. 

Excess dietary cholesterol contributes to NASH (51) by promoting hepatic inflammation (32, 52-54). In the Ldlr-/- mouse model, high fat-high cholesterol diets promote NASH (55). Kupffer cells, i.e., resident hepatic macrophage, become engorged with oxidized-LDL (ox-LDL) which induces inflammatory cytokine secretion. These locally secreted cytokines act on neighboring hepatic cells to promote a pro-inflammatory state leading to cell injury. Kupffer cells also secrete chemokines (monocyte chemoattractant protein-1, MCP1) that recruit monocytes to the liver further amplifying hepatic inflammation. Controlling hepatic inflammation is an attractive target for NASH management and therapy.  

	Excessive consumption of simple sugar has been implicated in hepatosteatosis and NASH progression. Over the last 30 years there has been a dramatic increase in obesity and NAFLD in the United States. While total fat consumption has remained steady, carbohydrate and total caloric intake have increased (56-60). As such, elevated carbohydrate, and specifically fructose consumption, has been linked to NAFLD and NASH progression (61-63).  The liver expresses the fructose-specific transporter (Glut5). Moreover, the liver metabolizes up to 70% of dietary fructose (62, 63); and fructose metabolism is independent of insulin regulation. When compared to glucose, fructose more readily enters the pathways for DNL and TAG synthesis. Fructose promotes all aspects of MetS including hepatosteatosis, insulin resistance, dyslipidemia, hyperglycemia, obesity and hypertension. In contrast to fructose, hepatic glucose metabolism is well-regulated by insulin in healthy individuals; and glucose is converted to glycogen for storage. Excess glucose consumption does not promote hepatosteatosis as aggressively as excess fructose consumption. Fructose also affects several biochemical events that exacerbate NASH development, including formation of advanced glycation end-products (AGEP) and reactive oxygen species (ROS), (64-67).







Development of mouse models of NASH. 

Several mouse models of NAFLD and NASH have been developed. Four such models include the genetic models (ob/ob and db/db mice), a dietary model (methionine-choline deficient diets) and chemically-induced model (intraperitoneal carbon tetrachloride) (68, 69). These models recapitulate some aspects of human NAFLD/NASH, but not other aspects of the disease.  Mice with global ablation of the low density lipoprotein receptor (Ldlr-/-) develop hypercholesteremia due to elevated plasma VLDL and LDL when fed a high cholesterol diet (70). While Ldlr-/- mice have been used to study atherosclerosis, we and others observed that when Ldlr-/- mice are fed high fat-high cholesterol diet, like the western diet, mice develop a NASH phenotype similar to that seen in humans (32, 36, 54, 71-74). Since humans and Ldlr-/- mice develop NAFLD and NASH in a context of obesity and insulin resistance, these mice appear to be a useful preclinical model to investigate the development, progression and remission of NASH. 

The western diet (WD; Research Diets, D12079B) used in our studies is moderately high in saturated and trans-fat (41% total calories), sucrose (30% total calories) and cholesterol (0.15 g%, w/w); and is similar to the “fast-food” diet (75) and human diets linked to obesity in the US (76, 77). Both the WD and “fast food” mouse models induced a NASH phenotype that recapitulates many of the clinical features of human NASH with MetS, including dyslipidemia, hyperglycemia, hepatosteatosis, hepatic damage (plasma ALT & AST), hepatocyte ballooning, induction of hepatic markers of inflammation (MCP1), oxidative stress (NOX2 and other NOX components) and fibrosis (TGF1, proCol1A1, TIMP1) (54, 73, 75, 78-80) (Fig. 3). Moreover, NASH is associated with a major enrichment of both plasma and liver with saturated (SFAs) and monounsaturated fatty acids (MUFAs) and depletion of hepatic 3 PUFAs (54, 73, 78). The development of this phenotype has been attributed to a diet high in saturated and trans-fat, sucrose and cholesterol (62, 67, 81-83).  









Potential for dietary C20-22 3 PUFAs to prevent NASH.  

C20-22 3 PUFAs are pleiotropic regulators of cell function; they have well established effects on membrane structure, cell signaling, gene expression, lipid and carbohydrate metabolism and inflammation (84). As such, these fatty acids appear to be an ideal bioactive nutrient to combat NASH. A meta-analysis of 9 clinical studies indicated that dietary supplementation with C20-22 -3 PUFAs decreased liver fat (85) and clinical trials suggest C20-22 -3 PUFAs may lower liver fat in children and adults with NAFLD (86-91). Of 235 clinical trials (119) assessing NASH and NASH therapies, 23 trials used C20-22 3 PUFAs as a treatment strategy. In most trials, diets were supplemented with fish oil or a combination of EPA + DHA; few studies used EPA or DHA alone. 



Preclinical assessment of the efficacy of 3 PUFA supplementation to prevent NASH in Ldlr-/- mice. 

Diets supplemented with fish oil, EPA or DHA prevent high fat diet-induced NASH to varying degrees (54, 73, 78, 84). The level of EPA and DHA in these high fat diets was at ~2% of total calories. This dose of C20-22 -3 PUFAs is comparable to the dose consumed by patients taking LovazaTM (GlaxoSmithKline) for the treatment of dyslipidemia (92). Humans consuming EPA + DHA ethyl esters (4 g/d for 12 wks) exhibited increased plasma EPA + DHA from 5.5 mol% before treatment to 16.2 mol% after treatment (93). Supplementing human diets with a DHA-enriched fish oil (6 g/day for 8 wks) increased plasma DHA from 4 mol% before treatment to 8 mol% after treatment (94, 95).  Plasma levels of DHA and total C20-22 -3 PUFA [EPA, docosapentaenoic acid (DPA, 22:5-3) and DHA] in Ldlr-/- mice fed a western diet for 16 wks was 4.3 and 6.7 mol%, respectively.  Feeding Ldlr-/- mice a western diet containing DHA (at 2% total calories) for 16 wks increased plasma DHA and total C20-22 -3  PUFA to 9 and 15.2 mol%, respectively.  Our protocol for C20-22 -3 PUFA supplementation of diets yields a change in blood C20-22 3 PUFAs that is comparable to that seen in humans consuming 4-6 g/d of C20-22 -3 PUFA. 





Dietary 3 PUFAs do not prevent WD-induced systemic inflammation. 

Systemic inflammation is a major driver of NASH. Inflammatory signals affecting NASH progression include: gut-derived microbial products, e.g., endotoxin/LPS, oxidized LDL (ox-LDL) (34, 55, 80, 96); adipokines (leptin & adiponectin) & cytokines (TNF) (97) and products from hepatocellular death (27, 98) (Fig. 2). Supplementation of the WD with either EPA or DHA fails to attenuate WD-induced endotoxinemia (78).  The appearance of endotoxin in the plasma of WD-fed Ldlr-/- mice (99) may represent a problem with gut physiology such as microbial overgrowth, increased gut permeability (leaky gut), or co-transport of microbial lipids with chylomicron (34, 100, 101). A link between the gut microbiome and NAFLD has been established (34, 102, 103).



3 PUFAs attenuate hepatic inflammation.  

Despite the absence of an effect of C20-22 -3 PUFAs on systemic inflammation markers, like endotoxin, gene expression analyses showed that DHA was more effective than EPA at attenuating WD-induced expression of  hepatic toll-like receptor (TLR) subtypes (TLR2, TLR4, TLR9), CD14 (binds endotoxin), downstream targets of TLRs; like NFB (p50 subunit) nuclear abundance and downstream targets of NFB like chemokines (MCP1), cytokines (IL1, inflammasome components (NLRP3) and oxidative stress (NOX2, and its subunits) markers (73, 78).  These studies suggest that EPA and DHA attenuate the hepatic (cellular) response to plasma inflammatory factors by down-regulating key cellular mediators of inflammation, like TLRs, CD14 (binds LPS, effect on CD14 mRNA and protein), NFB-p50 nuclear abundance. 



3 PUFAs have selective effects on hepatic oxidative stress.  

Hepatic oxidative stress increases with NASH and is reflected by a significant increase in gene expression and metabolite markers of oxidative stress that appear in liver and urine (54, 73). A response to increased oxidative stress is the induction of nuclear factor (erythroid-derived 2)-like 2 (Nrf2), a key transcription factor involved in the antioxidant response (78). Nrf2 regulates the expression of multiple transcripts linked to the anti-oxidant stress response, such as Hmox1, Gst1 and several NOX subunits. Adding EPA or DHA to the WD did not prevent the WD-mediated increase in hepatic nuclear content of Nrf2 or expression of Hmox1 or Gst1 The EPA- and DHA-containing diets, however, significantly lowered WD-mediated induction of multiple NOX subunits [Nox2, P22phox, P40phox and P67phox] (73). NOX subtypes are a major source of superoxide and hydrogen peroxide. As such, the NOX pathway is a major target of WD and C20-22 3 PUFAs.





3 PUFAs attenuate hepatic fibrosis. 

Hepatic fibrosis (scarring) develops as a result of cell death and activation of hepatic stellate cells and myofibrillar cells to produce extracellular matrix (ECM) proteins. Key regulators of fibrosis include transforming growth factor (TGF, connective tissue growth factor (CTGF), platelet-derived growth factor (PDGF), NOX, inflammatory mediators (endotoxin, TLR agonist), and leptin (38, 80, 104). A fibrotic liver can progress to a cirrhotic liver (Fig. 1); and 90% of HCCs arise from cirrhotic livers (105). 

Addition of DHA to the WD attenuated the WD-mediated fibrosis as quantified by suppression of expression of  Col1A1, tissue inhibitor of metalloprotease-1 (TIMP1), TGF1, plasminogen activated inhibitor-1 (PIA1) and staining of liver for fibrosis using trichrome, a collagen stain (54, 73). Interestingly, EPA did not prevent WD-induced fibrosis. Based on these studies, DHA is the preferred -3 PUFA to prevent NASH-associated fibrosis.



The WD and C20-22 3 PUFAs affect all major hepatic metabolic pathways.  

Additional insight into the impact of the WD and C20-22 -3 PUFAs on liver metabolism was gained by using a global non-targeted metabolomic approach. The analysis identified 320 known biochemicals (78). When compared to chow-fed mice, both the WD + olive oil- and WD + DHA-containing diets significantly affected the abundance of metabolites in all major hepatic metabolic pathways including amino acids & peptides, carbohydrate and energy, lipid, nucleotide and vitamins & cofactors. Our studies have identified gene expression and metabolite signatures for NASH (73, 78). The gene expression signature for NASH includes increased expression of chemokines (MCP1), Kupffer cell surface marker (CD68), TLRs and their components (TLR4, CD14), enzymes involved in oxidative stress (NOX2), stearoyl CoA desaturase (SCD1) and collagen (Col1A1). The metabolomic signature for NASH includes increased hepatic content of palmitoyl-sphingomyelin, MUFA (16:1-7; 18:1-7 and 18:1-9), -tocopherol (vitamin E), 5-methyl tetrahydrofolate (5MeTHF); and decreased hepatic content of EPA, DHA and oxidized lipids derived from EPA, specifically 18-hydroxyeicosapentaenoic acid [18-HEPE] and 17,18-dihydroxyeicosatetraenoic acid [17,18-DiHETE]). A volcano plot of the metabolomic and gene expression data illustrates the impact of diet on the hepatic level of these molecules (Fig. 4). The metabolites and mRNAs that comprise the metabolomic and gene expression signature were changed dramatically by the WD + olive oil diet, when compared to mice fed the chow diet. These changes were reversed in mice fed the WD + DHA diet.   

The oxidized lipids identified in these studies are generated by enzymatic and non-enzymatic processes. 18-HEPE is a resolvin (RvE1) precursor; and resolvins are anti-inflammatory oxidation products of EPA (106). 17,18-DiHETE  is an oxidized lipid generated first by CYP2C-catalyzed formation of 17,18-epoxy-eicosatetraenoic acid from EPA; this epoxy fatty acid is converted to the di-hydroxy fatty acid by a epoxide hydrolase to form 17,18-DiHETE.  The metabolomic analysis did not detect the 17,18-epoxyETA suggesting that this lipid does not accumulate as a non-esterified lipid. When compared to chow-fed mice, WD + olive oil-fed mice have >60% reduction in hepatic content of 18-HEPE and 17,18-DiHETE. When compared to WD + Olive oil-fed mice hepatic, levels of 18-HEPE and 17,18-DiHETE  increased >40-fold in mice fed the WD containing EPA or DHA. These dramatic changes in oxidized derivatives of EPA are inversely associated with the severity of NASH. A recent report suggest the Cyp450 epoxygenase pathway may play a key role in regulating hepatic inflammation in fatty liver disease (107).  As such, the generation of these oxidized 3 PUFAs may be hepatoprotective. 







Can 3 PUFA be used to treat human NASH? 

Therapeutic strategies for human NASH start with life style management (diet and exercise) and treating the co-morbidities associated with NASH, i.e., obesity, T2D, dyslipidemia. The best strategy for managing NASH, however, has not been established (108). Some clinical approaches to manage NASH included: 1) reduce overall body weight through diet management, exercise or bariatric surgery; 2) pharmaceutical & dietary supplements, i.e., metformin, fibrates, thiazolididiones, statins, 3 PUFAs; 3) suppress inflammation using TLR modifiers or -3 PUFAs); and 4) suppress oxidative stress using vitamin E, silybin  and other antioxidants (86, 109-114). Therapeutic regulators of fibrosis, however, are less well-defined (80, 115). 

	Several clinical trials have reported that 3 PUFAs lower hepatic fat in obese children and adults with NAFLD (86-91, 116, 117), while others report that fish oil (116) and  EPA-ethyl esters (117) do not attenuate the histological features of the disease, like fibrosis. As such, human studies using 3 PUFAs to treat NAFLD/NASH have yielded mixed results.	

The Ldlr-/- mouse studies described above suggest that 3 PUFAs may be an attractive dietary supplement to combat NAFLD and NASH, with the added benefit of preventing NASH-associated HCC. These fatty acids have well-defined effects on hepatic lipid metabolism and inflammation (84, 118); and more recently hepatic fibrosis (54, 73, 119). While several human studies have provided evidence in support of using supplemental -3 PUFAs to treat NAFLD (86-91, 116, 117), some studies suggest there may be limitations to the use of -3 PUFAs to treat NASH (116, 117).  For example, in a recent double-blind, placebo-controlled trial, NAFLD patients received placebo or LovazaTM at 4 g/d (~50:50 mix of EPA- and DHA-ethyl esters) for 15-18 months. When compared to the placebo-treated group, the LovazaTM -treated group showed a significant reduction in liver fat without a significant reduction in fibrosis scores.   

Since DHA attenuates fibrosis in two separate rodent models of liver injury, i.e., WD-induced fibrosis in mice and BDL-induced fibrosis in rats (54, 73, 119), we speculate that failure of C20-22 -3 PUFAs to decrease hepatic fibrosis in humans may be explained by study design. Likely explanations include the type and amount of -3 PUFAs used in the trial. Our studies established that DHA is more effective than EPA at attenuating the onset and progression of NASH (73). Human studies, however, have examined the impact of -3 PUFAs on patients with pre-existing disease (86-91, 116, 117). We are unaware of preclinical rodent studies that have assessed the impact of 3 PUFAs to promote remission or regression of NASH or hepatic fibrosis. As such, more preclinical studies are required to establish the capacity of -3 PUFAs to attenuate NASH at various stages in the disease process. 





Conclusions and key unanswered questions. 

	To date, several human studies have indicated that -3 PUFAs may be useful in reducing liver fat in obese patients with NAFLD. Moreover, preclinical studies in mice have established that DHA can prevent NASH and NASH-associated fibrosis. It remains unclear whether dietary 3 PUFAs have the capacity to reverse the NASH, cirrhosis or HCC phenotypes once these diseases are established. Equally important is defining the molecular mechanisms for DHA control of hepatic fibrosis. Finally, changes in hepatic EPA and DHA content significantly impact oxidized lipids derived from -3 and -6 PUFAs. These oxidized lipids likely play a role in inflammation and will affect the onset and progression of NASH. Whether these oxidized lipids impact the development of NASH, cirrhosis or HCC remains to be determined.  
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Figure Legends:

Figure 1: Transition from normal liver to primary hepatocellular carcinoma (HCC).



Figure 2: Factors contributing to the onset and progression of NASH. 



Figure 3: Effects of the western diet and C20-22 -3 PUFAs on the prevention of NASH Ldlr-/- mice. The size of the arrow indicated effect size. “No effect” indicates no changes from western diet + olive oil-fed mice. Olive oil was added to the WD to keep all diets isocaloric.   



Figure 4: Volcano plots of western diet effects on hepatic metabolites.  A metabolomic and transcriptomic analysis was carried out as described (78). Over 300 hepatic metabolites and 6 mRNAs markers of NASH were examined using MetaboAnalyst 3.0 [http://www.metaboanalyst.ca/MetaboAnalyst/] (120). The outcome of this analysis provided a volcano plot. Results are plotted as log2 Fold Change versus –log10 p-value. Several metabolites and RNA transcripts are labeled to illustrate the impact of diet on hepatic abundance of these molecules. Panel A is the comparison of hepatic molecules from Chow-fed versus WD + olive oil-fed Ldlr-/- mice. Panel B is the comparison of hepatic molecules from WD + Olive oil-fed mice versus WD + DHA-fed Ldlr-/-. 
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