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ABSTRACT

This work compares the Weather Research and Forecasting (WRF) and Hadley Centre Regional Model

(HadRM) simulations with the observed daily maximum and minimum temperature (Tmax and Tmin) and

precipitation at Historical Climatology Network (HCN) stations over the U.S. Pacific Northwest for 2003–07.

The WRF and HadRM runs were driven by the NCEP/Department of Energy (DOE) Atmospheric Model

Intercomparison Project (AMIP)-II Reanalysis (R-2) data. The simulated Tmax in WRF and HadRM as well

as in R-2 compares well with the observations. Predominantly cold biases of Tmax are noted in WRF and

HadRM in spring and summer, while in winter and fall more stations show warm biases, especially in HadRM.

Large cold biases of Tmax are noted in R-2 at all times. The simulated Tmin compares reasonably well with

the observations, although not as well as Tmax in both models and in the reanalysis R-2. Warm biases of Tmin

prevail in both model simulations, while R-2 shows mainly cold biases. The R-2 data play a role in the model

biases of Tmax, although there are also clear indications of resolution dependency. The model biases of Tmin

originate mainly from the regional models. The temporal correlation between the simulated and observed

daily precipitation is relatively low in both models and in the reanalysis; however, the correlation increases

steadily for longer averaging times. The high-resolution models perform better than R-2, although the nested

WRF domains do have the largest biases in precipitation during the winter and spring seasons.

1. Introduction

The U.S. Pacific Northwest is characterized by moun-

tainous terrain and intricate land–sea contrasts (Fig. 1)

resulting in a host of finescale weather systems such as

sea and land breezes, rain shadows, and downslope

windstorms that define the local weather and climate

(Mass 2008). In a warming climate, such finescale

weather systems can significantly alter the local tem-

perature and precipitation trends (Salathé et al. 2008)

and are essential to consider in climate simulations and

climate change assessment at regional and local scales.

Global models are generally able to resolve the large-

scale weather systems that affect the Pacific Northwest

but not the finescale processes associated with the local

terrain. To capture these smaller features, a more real-

istic representation of the local complex terrain and the

heterogeneous land surfaces is needed (Mass et al. 2002;

Salathé et al. 2008). Therefore, the use of limited-area

regional climate models with horizontal resolutions on

the order of tens of kilometers is crucial for simulating

the regional climate of the Pacific Northwest.

Recently, there have been increasing efforts over the

Pacific Northwest in using limited-area mesoscale mod-

els for downscaling reanalysis data (Leung et al. 2003a,b)
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and global climate model simulations (Salathé et al. 2008)

to study regional climate and climate change. Much of

the work has been involved with the fifth-generation

Pennsylvania State University–National Center for At-

mospheric Research (NCAR) Mesoscale Model (MM5;

Grell et al. 1993). As NCAR has been phasing out MM5

and has released the state-of-the-art, next-generation

Weather Research and Forecasting Model (WRF; http://

www.wrf-model.org/index.php), it is timely to switch

from the MM5-based to the WRF-based mesoscale cli-

mate modeling and examine its performance over the

Pacific Northwest. The Hadley Centre Regional Model

(HadRM) is another limited-area regional climate model

widely used worldwide as part of the Providing Regional

Climates for Impacts Studies (PRECIS) system, which

was developed at the Hadley Centre of the Met Office.

The PRECIS system can be easily applied to any area of

the globe to generate detailed climate change projections.

Both the WRF and HadRM models are coupled land–

atmosphere modeling systems that can be used to add

finescale information to the large-scale projections of

global climate models. What differs between these two

models is that WRF, like MM5, was designed for short-

term weather forecasts and refinements have to be applied

in the model to perform long-term climate simulations

(Salathé et al. 2008).

In this study, we apply the WRF-based and HadRM

modeling systems over the Pacific Northwest in down-

scaling reanalysis data (Kalnay et al. 1996; Kanamitsu

et al. 2002) for the period of 2003–07. The reanalysis

data incorporate all the available observations at the

time of processing and are generally regarded as best

representing the 6-hourly large-scale state of the at-

mosphere. Reanalysis fields are particularly suitable for

driving regional climate models and for model valida-

tion. Here, we present validation results based on

comparisons to station observations over the Pacific

Northwest from the Historical Climatology Network

(HCN; Karl et al. 1990). Our purpose is to examine the

models’ performance in reproducing station observa-

tions at various time scales. This work is organized in the

following manner. Section 2 contains a brief description

of the models. Experimental design is discussed in sec-

tion 3. Section 4 compares model simulations with the

observations. Major conclusions and discussions are

presented in section 5.

2. Model description

a. WRF model

The WRF model is a state-of-the-art, next-generation

mesoscale numerical weather prediction system de-

signed to serve both operational forecasting and atmo-

spheric research needs (http://www.wrf-model.org). It

is a nonhydrostatic model, with several available dy-

namic cores as well as many different choices for phys-

ical parameterizations suitable for a broad spectrum

of applications across scales ranging from meters to

thousands of kilometers. The dynamic cores in WRF

include a fully mass- and scalar-conserving flux form

mass coordinate version. The physics package includes

microphysics, cumulus parameterization, planetary

boundary layer (PBL), land surface models (LSM), and

longwave and shortwave radiation (Skamarock et al.

2006).

FIG. 1. (a) WRF model domains with two nests (domains 1, 2,

and 3) and HadRM domain and (b) WRF innermost domain (do-

main 3) and terrain height (m). Shadings in (a) represent terrain

height (m) for the corresponding WRF domain. Grid spacing for

each domain is as follows: WRF domain 1 5 108 km; WRF domain

2 5 36 km; WRF domain 3 5 12 km; and HadRM domain 5

25 km. HCN stations in the states of Washington, Oregon, and

Idaho are represented by filled black circles in (b).
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In this work, the microphysics and convective pa-

rameterizations used were the WRF Single-Moment

5-class (WSM5) scheme (Hong et al. 2004) and the

Kain–Fritsch scheme (Kain and Fritsch 1993), respec-

tively. The WSM5 microphysics explicitly resolves water

vapor, cloud water, rain, cloud ice, and snow. The Kain–

Fritsch convective parameterization utilizes a simple

cloud model with moist updrafts and downdrafts that

includes the effects of detrainment and entrainment.

The land surface model used was the Noah LSM 4-layer

soil temperature and moisture model with canopy

moisture and snow-cover prediction (Chen and Dudhia

2001). The LSM includes root zone, evapotranspiration,

soil drainage, and runoff, taking into account vegetation

categories, monthly vegetation fraction, and soil texture.

The PBL parameterization used was the Yonsei Uni-

versity (YSU) scheme (Hong and Pan 1996). This scheme

includes countergradient terms to represent heat and

moisture fluxes due to both local and nonlocal gradients.

Atmospheric shortwave and longwave radiations were

computed by the NCAR Community Atmospheric

Model (CAM) shortwave scheme and longwave scheme

(Collins et al. 2004), respectively.

The design of the WRF-based mesoscale climate model

over the Pacific Northwest follows that of the MM5-based

mesoscale climate model described in Salathé et al.

(2008). Basically, similar refinements as in the MM5

setup are made to the WRF configuration to perform

long simulations and fully represent the climate system

response to climate change forcing. First, nudging is

applied throughout the interior of the outermost re-

gional model domain using the forcing fields. Nudging

relaxes the regional model simulations for wind, tem-

perature, and moisture toward the driving global climate

model simulations, which prevents possible drift of re-

gional model solution from that of the driving global

model over a long term. The inner nested domains are

not nudged in the interior, allowing the mesoscale model

to freely develop finescale features. Second, WRF is

modified so that soil temperatures vary at the lower

boundary (;8 m) in accordance with the evolving sur-

face temperatures predicted by the model. The readers

are referred to Salathé et al. (2008) for the rationale and

procedures for updating deep soil temperature in MM5

and similarly in WRF.

b. HadRM model

HadRM (Jones et al. 2004) is the third-generation

Hadley Centre regional climate model. It is a limited-

area, high-resolution version of the Hadley Centre at-

mospheric general circulation model (HadAM3H), which

is itself a high-resolution version of the atmospheric

component of the atmosphere–ocean coupled general

circulation model (HadCM3; Gordon et al. 2000; Johns

et al. 2003). HadRM is a hydrostatic version of the fully

primitive equations and includes dynamical flow, hori-

zontal diffusion, clouds and precipitation, radiative

processes, boundary layer and land surface, deep soil,

and gravity wave drag.

The latitude–longitude grid is rotated in HadRM so

that the equator lies inside the region of interest to ob-

tain quasi-uniform gridbox area over that region. The

available horizontal resolutions are 0.448 3 0.448 and

0.228 3 0.228. For the purpose of this study, we chose the

higher resolution that corresponds to a minimum grid

spacing of 25 km at the equator of the rotated grid.

The HadRM simulations were performed using the

PRECIS package. This package also includes software

to allow display and processing of the model output data

(http://precis.metoffice.com). The PRECIS package is

flexible, easy to use, and computationally inexpensive. It

can be applied over the U.S. Pacific Northwest to pro-

vide detailed climate information for regional climate

studies and climate impact assessment.

3. Experimental design

WRF was set up by using multiple nests at 108, 36, and

12 km horizontal grid spacing (Fig. 1a). The outermost

WRF domain covers nearly the entire North American

continent as well as much of the eastern Pacific Ocean

and the western Atlantic Ocean. The use of this large

domain ensures that synoptic weather systems ap-

proaching the United States are well represented by the

time they reach the region. The 36-km model domain

(domain 2) covers the continental United States and

part of Canada and Mexico. The innermost model do-

main (domain 3) is centered on the Pacific Northwest

and includes the states of Washington, Oregon, and

Idaho (Fig. 1b). We used 31 vertical levels in the model

with the highest resolution (;20–100 m) in the bound-

ary layer. The model top was fixed at 50 mb. One-way

nesting was used in this work.

The domain of HadRM (Fig. 1a) was chosen with the

highest available horizontal resolution of ;25 km at the

equator of the rotated grid. The HadRM model domain

covers a large part of the eastern Pacific Ocean and part

of Mexico and Canada to better resolve the synoptic

weather systems that affect the Pacific Northwest. This

model domain encompasses entirely the states of Ari-

zona, California, Idaho, Nevada, Oregon, Utah, and

Washington. There are 19 vertical hybrid levels in

HadRM spanning from the surface to 0.5 hPa.

The WRF and HadRM runs were initialized at 0000

UTC 1 December 2002 and ended at 0000 UTC 1 Janu-

ary 2008. The first one-month simulations by WRF and
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HadRM were regarded as model spinup. The initial

and lateral boundary conditions for WRF and HadRM

were interpolated from the National Centers for Envi-

ronmental Prediction/Department of Energy (NCEP/

DOE) Atmospheric Model Intercomparison Project

(AMIP)-II Reanalysis (R-2) data (Kanamitsu et al. 2002).

The lateral boundary conditions were updated every

six hours for both models. SST was updated every six

hours in WRF using the Real-Time, Global, Sea Sur-

face Temperature (RTG_SST) analysis (ftp://polar.ncep.

noaa.gov/pub/history/sst) developed and archived at

NCEP. In HadRM, SST was taken from a combination

of the monthly Hadley Centre Sea Ice and Sea Surface

Temperature dataset (HadISST; http://badc.nerc.ac.uk/

data/hadisst) and weekly NCEP observed datasets

(http://www.cdc.noaa.gov/cdc/reanalysis/reanalysis.shtml).

Nudging was applied to WRF domain 1 every six hours.

The simulations from both WRF and HadRM models

were output every hour.

4. Results

In this section, model simulations from WRF and

HadRM are compared with observations at 72 HCN

stations in the states of Washington, Oregon, and Idaho.

We select only the stations from which 80% or more of

the daily precipitation and temperature measurements

are available during 2003–07 and the stations whose

corresponding model grid points are land grid points in

the WRF and HadRM model domains. The locations of

these HCN stations are indicated in Fig. 1b.

Comparisons will be focused on daily maximum and

minimum temperatures (Tmax and Tmin) and precipi-

tation with averages over various time scales. The daily

maximum and minimum temperatures are found from

the hourly temperature simulations. We used the lapse

rates obtained from the WRF and HadRM simulations

to account for the difference in elevation of the model

topography and the observing station. The lapse rates

were found as the mean lapse rates at four neighboring

points of the observing station and were set to be be-

tween 28C km21 and 78C km21. P. W. Mote et al. (2009,

unpublished manuscript) examined the surface and free-

air lapse rates in the Cascade Mountains of Washington

using data from many sources [National Weather Ser-

vice (NWS) Cooperative Station Network, balloon

soundings, i-Button senses, and MM5 simulations] over

a course of one year. They obtained a mean lapse rate

of 2.68C km21 for January Tmin and a mean lapse rate

of 6.28C km21 for July Tmax. They noted that the ob-

served lapse rates generally range between 28C km21

and 78C km21 and that the lapse rates in MM5 simula-

tions match the observations rather well. Our exami-

nations show that the differences between using the

model generated lapse rates and the standard lapse rate

of 6.58C km21 are rather small. For R-2, the standard

lapse rate of 6.58C km21 was used.

No lapse rate was applied to precipitation, as a lapse

rate over complex terrain would depend on several fac-

tors such as mountain width, buoyancy, and moisture

fields (Smith and Barstad 2004) as well as winds (Esteban

and Chen 2008).

a. Maximum temperature

Figure 2 shows scatterplots of the observed and sim-

ulated Tmax for 5-day and monthly averages at all HCN

stations combined during the 5-yr period. Correlation

coefficients between the observations and simulations

are listed in Table 1. Notice in Table 1 that all values are

significant at significance level 0.05 based on Student’s

t test. The R-2 reanalysis data, with the lapse-rate cor-

rection applied, resolve the observed spatial pattern of

Tmax well (correlation coefficients are 0.92, 0.96, and

0.98 for daily values and 5-day and monthly averages,

respectively). As a consequence, WRF and HadRM also

simulate the observed Tmax well, following the skill in

the forcing fields. High correlation coefficients (.0.90)

between the observations and simulations are noted.

There is slight indication of parabolic tendency in the

scatterplots for the HadRM-simulated Tmax especially

for Tmax ranging between 58 and 208C (Figs. 2d,h). As

will be shown later, this appears to be partly related to

the driving data.

The normalized probability density functions (PDFs)

of daily model biases of Tmax is presented in Fig. 2i. The

PDF is a function that represents a probability distri-

bution in terms of integrals. PDFs are characterized by

their mean and standard deviation. The PDFs of daily

model biases of Tmax (Fig. 2i) have a mean of 23.408C

for R-2, 20.748C for WRF domain 2, 20.958C for do-

main 3, and 0.248C for HadRM; a standard deviation of

4.168C for R-2, 4.098C for WRF domain 2, 4.008C for

WRF domain 3, and 3.838C for HadRM. The PDFs for

the two nested WRF domains are virtually identical.

Cold biases dominate in the R-2 reanalysis data. WRF

domain 2 and 3 show mainly cold biases while HadRM

exhibits nearly equal number of cold and warm biases.

Figure 3 shows the seasonal and annual mean model

biases of Tmax at HCN stations averaged over the 5-yr

period. Biases from both models are generally smaller

than 58C in magnitude for all seasons. During winter and

fall, the nested WRF domains exhibit predominantly

warm biases along the coast of Oregon and Washington

and cold biases in the interior. During spring, virtually

all stations show cold biases in the nested WRF domains.

Summer is characterized by mainly cold biases in the
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nested WRF simulations with scattered warm biases

noted along the coast of Oregon and Washington and

the southern part of Idaho. For HadRM, the distribution

of model biases appears similar to those of WRF except

in the interior, where mainly warm biases are noted in

winter and fall.

Annual mean model biases of Tmax at HCN stations

indicate large cold biases on the order of 38–68C in the

R-2 reanalysis data over the entire model domain. For

both WRF domain 2 and domain 3, similar but small

biases on the order of 218–18C are identified along the

coast of the Pacific Northwest while cold biases on the

order of 28–38C are noted in the interior. Cold biases

scatter around the mean of 21.98C are also noted in

high-resolution MM5 simulations over the Pacific North-

west driven by the NCEP–NCAR reanalysis project

(NNRP) data (Salathé et al. 2008). The annual mean

biases of Tmax in the HadRM simulations range pre-

dominantly between 228 and 128C at HCN stations and

are generally smaller in magnitude when compared to

the WRF simulations.

Similar seasonal and annual distributions in the model

biases of Tmax between WRF and HadRM seem to

suggest that the large-scale driving data play a role in

bringing the biases. This is supported by examining the

model biases of Tmax in WRF domain 1 at 108-km

resolution that exhibit distributions sitting between the

driving data and the mesoscale domains (Fig. 3). This

may suggest that the cold biases in the R-2 reanalysis

data are passed onto the high-resolution WRF and

HadRM domains, thereby partially explaining the cold

biases in those simulations. Meanwhile, high-resolution

simulations also appear to partially offset the cold biases

FIG. 2. Scatterplots of 5-day averaged Tmax (8C) at HCN stations between observations and (a) the R-2

reanalysis data, (b) WRF domain 2 simulations, (c) WRF domain 3 simulations, and (d) HadRM sim-

ulations. (e)–(h) The same as (a)–(d), respectively, but for monthly averaged Tmax. (i) The normalized

PDF of daily model biases of Tmax.

TABLE 1. Correlation coefficients of daily, 5-day mean, and

monthly mean Tmax, Tmin, and precipitation between observa-

tions and model simulations from R-2 reanalysis data, WRF

domain 2, WRF domain 3 and HadRM. Note: All values are sig-

nificant at significance level 0.05 based on Student’s t test.

Tmax Tmin Precipitation

Obs-R-2 Daily 0.92 0.83 0.46

5-day 0.96 0.92 0.65

Monthly 0.98 0.96 0.74

Obs-D02 Daily 0.91 0.83 0.43

5-day 0.96 0.91 0.64

Monthly 0.99 0.97 0.74

Obs-D03 Daily 0.92 0.84 0.43

5-day 0.97 0.91 0.65

Monthly 0.98 0.97 0.76

Obs-HadRM Daily 0.93 0.87 0.42

5-day 0.96 0.94 0.64

Monthly 0.98 0.97 0.76
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inherited from the R-2 reanalysis data, especially for the

winter and autumn periods.

We further examined the surface radiation budget at

the time of the maximum temperature from WRF do-

mains 1, 2, and 3 and HadRM. Since the model biases of

Tmax for WRF domain 1 lie between the biases for the

driving data and the mesoscale domains, it is worthwhile

to examine the surface radiation budget among the

different model domains to see where the model biases

might come from. We noted similar radiation budget in

all model domains without significant differences that

could explain the biases. This would imply that the

model biases of Tmax are related more to the driving

data than to the regional models.

It is intriguing to notice that the large cold biases

in the R-2 reanalysis data are partially ‘‘corrected’’ in

the high-resolution simulations (Fig. 3). This may indi-

cate that finescale processes resolved in regional climate

models are important in reducing large biases in

the driving data; however, similarities between WRF

FIG. 3. Geographical distributions of seasonal (DJF, MAM, JJA, and SON) and annual (ANN) mean model biases

of Tmax (8C) for (a) R-2 reanalysis data, (b) WRF domain 1, (c) WRF domain 2, (d) WRF domain 3, and (e) HadRM

averaged over the 5-yr period. Each horizontal panel corresponds to model biases for one season and the annual

mean and is arranged in the order for DJF, MAM, JJA, SON, and ANN from top to bottom. Size of the filled squares

corresponds to the magnitude of the represented model biases. Cross represents a magnitude range of 20.28–0.28C.
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domain 2 and domain 3 also indicate that this resolution-

correction has no effect beyond a certain horizontal

resolution.

To further evaluate the performance of WRF and

HadRM in representing the observed Tmax, we com-

puted the statistical variables (linear regression slope,

correlation coefficients, mean biases, and absolute mean

biases) at seasonal [December–February (DJF), March–

May (MAM), June–August (JJA), and September–

November (SON)] and annual time scales averaged over

the HCN stations and over the 5-yr period. Absolute

mean biases are used instead of the root-mean-square

errors (RMSE) since RMSE tends to overweight large

biases. The results are presented in Fig. 4. Except for

MAM, the slopes range around 1.0 and do not differ

appreciably from each other among the R-2 reanalysis

data and the WRF and HadRM models (Fig. 4a). This is

expected since variations in temperature are largely

dictated by large-scale systems. For MAM, all the slopes

are smaller than 0.9 and the slope for HadRM is the

smallest (0.65).

Correlation coefficients for the WRF domain 1 are the

highest during DJF and MAM and, for the regional

simulations, are the highest in HadRM during JJA and

SON (Fig. 4b). WRF domain 2 and 3 show identical

correlation coefficients at all times. Correlation coeffi-

cients corresponding to the R-2 reanalysis data are al-

ways lower than the WRF and HadRM simulations for

MAM, JJA, SON, and annual means. It is evident that

higher horizontal resolutions do not necessarily corre-

spond to higher correlation coefficients, and hence it

does not mean that Tmax is better simulated by in-

creasing the horizontal resolution.

The R-2 reanalysis data always exhibit the largest

model biases and absolute model biases at all time scales

followed by the WRF domain 1 (Figs. 4c,d). WRF do-

mains 2 and 3 show similar biases to those for the cor-

relation coefficients. HadRM appears to show the

smallest model biases among the regional simulations.

In all cases, the biases in the regional models are reduced

substantially compared to those in the R-2 forcing data.

MAM is the season when the regional models gener-

ally show smaller slopes, lower correlation coefficients,

and higher absolute model biases when compared to the

other seasons (Figs. 4a,b,d). This deficiency can be

traced to the driving data since the R-2 reanalysis data

FIG. 4. Statistical performance of Tmax in the R-2 reanalysis data and WRF and HadRM

simulations at seasonal (DJF, MAM, JJA, SON) and annual (ANN) time scales averaged over

the HCN stations and over the 5-yr period: (a) linear regression slope, (b) correlation coeffi-

cient, (c) mean biases, and (d) absolute mean biases.
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also exhibit the smallest slope, the lowest correlation

coefficient, and the highest mean biases and absolution

mean biases in MAM when compared to the other

seasons.

b. Minimum temperature

Figure 5 shows scatterplots of the observed and sim-

ulated Tmin for 5-day and monthly averages at all HCN

stations combined during the 5-yr period. Correlation

coefficients between the observations and simulations

are presented in Table 1. A good correspondence is ev-

ident between the observations and model simulations

with the correlation coefficients for daily values being

0.83, 0.84, and 0.87 for WRF domain 2, WRF domain 3,

and the HadRM domain, respectively. It is noted that the

correlation coefficients of Tmin between the observa-

tions and simulations are always smaller than those of

Tmax (see Table 1). There are possibly two causes that

could account for these differences. First, the R-2 rean-

alysis data show a correlation coefficient of 0.83 for daily

minimum temperature and 0.92 for daily maximum

temperature, indicating that the large-scale driving data

at a 6-hourly temporal resolution do not represent the

observed daily minimum temperatures as well as the

maximum temperature. Second, WRF and HadRM may

contain model deficiencies in the parameterization of

nocturnal boundary layer physics and dynamics that

have a large impact on nighttime (Tmin) temperatures.

Warm biases are suggested in the scatterplots especially

for the HadRM simulations in that the majority of points

are located above the 1:1 line (Fig. 5).

The normalized PDFs of daily model biases of Tmin

have a mean of 20.768C for R-2, 1.698C for WRF do-

main 2, 1.628C for WRF domain 3, and 2.328C for

HadRM; a standard deviation of 4.508C for R-2, 4.018C

for WRF domain 2, 3.988C for WRF domain 3, and

3.758C for HadRM. The PDFs for the two nested WRF

domains are identical as in the case for Tmax. Mainly

cold biases are indicated in the R-2 reanalysis data while

the nested WRF and HadRM domains contain mainly

warm biases.

Figure 6 shows the seasonal and annual mean model

biases of Tmin at HCN stations. The R-2 reanalysis data

exhibit predominantly cold biases at all times (Fig. 6). In

contrast, the nested WRF and HadRM simulations show

mainly warm biases on the order of 08–58C during each

season, with a few cold biases along the coast of the

Pacific Northwest. WRF domain 1 also shows predom-

inantly warm biases even though nudging was applied to

WRF domain 1 every 6 hours. This discrepancy implies

that the model biases of Tmin in the nested WRF and

HadRM simulations cannot be attributable to the driv-

ing data, which suggests that the warm biases are most

likely associated with the regional models.

We examined the surface radiation budget at the time

of the minimum temperature from WRF domains 1, 2,

FIG. 5. As in Fig. 2, but for Tmin (8C).
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and 3 and HadRM. We noted similar radiation budget in

both models except for the downward longwave flux at

surface, which is larger in HadRM than in WRF. This

may partially explain the relatively larger warm biases of

Tmin in HadRM than in WRF. We also examined the

PBL height and outgoing longwave radiation at the top

of the atmosphere in all the model domains and we did

not notice significant differences between WRF and

HadRM.

The statistical variables (linear regression slope, cor-

relation coefficients, mean biases, and absolute mean

biases) at seasonal (DJF, MAM, JJA, and SON) and

annual time scales averaged over the HCN stations and

over the 5-yr period are presented in Fig. 7. A relatively

large spread is noted in the slopes with that for the R-2

reanalysis data situated in middle (Fig. 7a). The slopes

for the WRF domains are nearly identical to each other

most of the time, indicating that horizontal resolutions

do not play a large role in bringing about the spread of

the simulated Tmin. Notice that the slopes generally

vary around 1.0 except for MAM when the slopes for

R-2 and WRF domains 1 and 2 are about 0.85 and the

slope for HadRM is 0.75.

WRF domain 1 shows the highest correlation coeffi-

cients at all times and is followed by HadRM (Fig. 7b).

Both WRF domains 2 and 3 exhibit the lowest correlation

FIG. 6. As in Fig. 3, but for Tmin (8C).
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coefficients for JJA and SON. The correlation coeffi-

cients corresponding to the R-2 reanalysis data are the

lowest for DJF and MAM. It is evident that higher res-

olutions do not necessarily correspond to higher corre-

lation coefficients as in the case for Tmax.

Small biases of Tmin are identified in the R-2 rean-

alysis data for DJF and SON while cold biases are noted

for MAM and JJA (Fig. 7c). The regional models all

show warm biases in consistence with the spatial distri-

butions of the model biases (see Fig. 6). Among them,

WRF domain 1 has the smallest biases while the biases

in the other domains are close to each other, except for

SON where the bias in HadRM is larger than in the

other domains (;3.58C). In terms of the mean absolute

biases (Fig. 7d), the R-2 reanalysis data and WRF do-

main 1 show the smallest biases at all times, except for

MAM when the R-2 reanalysis data display the largest

absolute biases because of large cold biases (Fig. 7c).

HadRM shows the largest absolute biases for SON that

are related to the large warm biases during the same

time period.

We can draw several conclusions from the above

discussions. First, the regional models do not necessarily

perform better in representing the observed Tmin than

the R-2 reanalysis data. Second, warm biases of Tmin

find their origin in the regional models. This is in con-

trast to Tmax where the model biases are related to the

R-2 reanalysis data to some extent. Finally, higher res-

olution does not necessarily improve model perfor-

mance in resolving the observed Tmin.

c. Precipitation

At daily time scale, the scatterplot shows consid-

erable spread between the observed and simulated

precipitation (not shown). The correlations between

the observed and simulated precipitation are 0.43 for

WRF domains 2 and 3 and 0.42 for the HadRM domain

(Table 1). The correlation coefficients steadily increase

when averaging over increasing number of days (Fig. 8).

For each time scale, the corresponding running mean of

the observed and simulated precipitation time series at

each station was formed and the computed correlation

was averaged over all HCN stations. For example, the

correlation coefficients of 5-day mean precipitation

are 0.64 for WRF domain 2, 0.65 for WRF domain 3,

and 0.64 for the HadRM domain and they become 0.74,

0.76, and 0.76 for monthly mean precipitation. The im-

provement in correlation over the range of the averaging

days is the largest between 1- and 20-day means but

saturates substantially after the 30-day mean (Fig. 8). Av-

eraging was not performed beyond 90 days since the cor-

relation coefficients may become misleading for averaging

FIG. 7. As in Fig. 4, but for Tmin.
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periods approaching the 5-yr simulated time period.

Also notice in Fig. 8 that all values are significant at

significance level 0.05 based on Student’s t test.

It is noted in Fig. 8 that the R-2 reanalysis data exhibit

slightly higher correlation coefficients than the regional

models for 7 averaging days and shorter time periods.

This suggests that the reanalysis data represent the rain-

bearing storms reasonably well at synoptic time scales as

has also been noted in Widmann et al. (2003). This is

important since the assumption in dynamic downscaling

at regional and local scales is that the driving data are

able to resolve the large-scale weather systems. The

timing of rain-bearing storms is determined by the re-

analysis, and the regional models cannot alter this tim-

ing. Note that WRF domain 3 and HadRM show slightly

higher correlation coefficients for 10 averaging days and

beyond when compared to the R-2 reanalysis data and

the other domains. The improvement in capturing pre-

cipitation in the high-resolution models is presumably

due to the improved representation of the local terrain.

Leung et al. (2003b) found that it is important to capture

the regional orography correctly when determining

variability at longer time scales.

To establish how well the models capture the ob-

served daily weather sequences at different locations

across the region, temporal correlation coefficients of

daily precipitation at all HCN stations are illustrated in

Fig. 9. Relatively high correlation coefficients ($0.6) are

noted along the coast of Oregon and Washington and

the windward sides of the mountains in the simulations

of both models. Relatively low correlation coefficients

(0.2 ; 0.4) are identified on the lee sides of the moun-

tains and the Snake River plain. These regional differ-

ences in model performance may be related to the

modeled terrain effects as air masses move across the

Cascade and Rocky Mountains and are subject to larger

modifications in the interior domain and lee sides than

the coastal areas and windward sides. While the timing

of large-scale systems may be well represented, the

modulation of precipitation by orography, depending on

wind direction, is not well represented and reduces

correlations largely in the lee of the Cascade Range.

Notice that the R-2 reanalysis data show rather similar

distributions to those of WRF and HadRM, so higher

spatial resolution does not automatically increase the

correlations.

Figure 10 shows scatterplots of the observed and

simulated precipitation for 5-day and monthly averages

at all HCN stations combined during the 5-yr period.

Correlation coefficients between the observations and

simulations are listed in Table 1. A relatively large

spread of points is identified in the 5-day and monthly

mean precipitation when compared to those of Tmax

FIG. 8. Correlation coefficients of precipitation between obser-

vations and model simulations at various time scales averaged over

the HCN stations. The result of Student’s t test is included in

the plot.

FIG. 9. Correlation coefficients of daily precipitation between observations and model simulations at HCN stations for (a) R-2 reanalysis

data, (b) WRF domain 2, (c) WRF domain 3, and (d) HadRM. Magnitudes of the correlation coefficients are represented by the size of the

filled squares.
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and Tmin (Figs. 2 and 5), as precipitation generally oc-

curs as a result of interaction between large-scale

weather systems and local terrain and thus is more dif-

ficult to observe and to match with the observations.

The normalized PDFs of daily model biases of pre-

cipitation shows a mean of 0.28 mm for R-2, 2.32 mm for

WRF domain 2, 2.09 mm for WRF domain 3, and

0.35 mm for HadRM; a standard deviation of 7.60 mm

for R-2, 9.03 mm for WRF domain 2, 8.78 mm for WRF

domain 3, and 8.29 mm for HadRM (Fig. 10). Wet biases

are indicated in the regional models. Model biases in

HadRM are rather small. Daily model biases of pre-

cipitation between 20.1 and 0.1 mm were omitted in

constructing the PDFs, which would otherwise show

huge peaks at the 0-mm line with similar distributions

elsewhere.

Figure 11 shows the 5-yr seasonal and annual mean

model biases of precipitation normalized by the ob-

served 5-yr seasonal and annual mean precipitation at

each HCN station. Normalization was employed on

precipitation to make meaningful comparisons between

dry and wet stations. The WRF and HadRM simulations

show a large variability in the spatial distributions of the

normalized biases. This reflects the strong influence of

complex terrain on local precipitation. The nested WRF

simulations exhibit predominantly wet biases on the

order of 100%–400% in the interior at all times. The wet

biases in WRF domain 3 tend to be smaller than in WRF

domain 2. Dry biases are noted at a number of stations

along the coast in the nested WRF simulations. Model

biases in HadRM tend to be small at all times. Wet

biases on the order of 100%–300% are noted in the

southern parts of Oregon and Idaho in the HadRM

simulations.

For precipitation, the R-2 reanalysis data show mainly

dry biases on the windward side of the mountains and

wet biases on the lee side (Fig. 11). The wet biases can be

as high as 700% at some of the stations. This result re-

flects the poor simulation of the rain shadow in the

coarse-grid reanalysis. The model biases in the WRF

domain 1 simulations bear much resemblance to those in

the R-2 reanalysis data except over the southern part of

Idaho where wet biases on the order of 200%–600% are

noted in WRF domain 1.

The statistical variables (linear regression slope, cor-

relation coefficients, mean biases, and absolute mean

biases) at seasonal (DJF, MAM, JJA, and SON) and

annual time scales averaged over the HCN stations and

over the 5-yr period are presented in Fig. 12. The slopes

corresponding to the R-2 reanalysis data and WRF do-

main 1 range between 0.5 and 0.6 and are the furthest

from the 1.0 line among all the simulations (Fig. 12a).

Such a small slope in the R-2 reanalysis data is consistent

with the scatterplots (Figs. 10a,e), which show appre-

ciable deviations from the 1:1 line. The slopes corre-

sponding to HadRM are also small for SON (0.6) and

DJF (0.7). The slopes corresponding to WRF domains 2

and 3 fluctuate around 1.0, suggesting a best match to the

FIG. 10. As in Fig. 2, but for precipitation (mm).
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observations. The slopes relate directly to the simulated

spatial gradient in precipitation, which depends on

model resolution. Thus, the benefits of fine-grid spacing

are clear in the results for WRF domain 3 and HadRM.

The correlation coefficients for WRF domain 1 are the

lowest at all times and are followed by the R-2 reanalysis

data and HadRM (Fig. 12b). HadRM shows slightly

higher correlation coefficients than the R-2 reanalysis

data for JJA and SON. The correlation coefficients cor-

responding to WRF domain 3 are the highest at all times.

Mean biases in the R-2 reanalysis data, WRF domain

1, and HadRM simulations are small (;0.5–0.5 mm;

Fig. 12c). Large wet biases (;2 mm) are noted in WRF

domains 2 and 3 for DJF and MAM. As a result, abso-

lute mean biases are also the largest in WRF domains 2

and 3 for DJF and MAM (Fig. 12d). JJA and SON

correspond to small mean biases and absolute mean

biases in the R-2 reanalysis data and all the regional

domains. Notice that JJA is the dry season over the

Pacific Northwest.

The above analyses suggest that WRF domains 2 and

3 simulate precipitation better than the R-2 reanalysis

and WRF domain 1; however, the biases are also the

largest in WRF domain 2 and 3 for DJF and MAM.

FIG. 11. As in Fig. 3, but for seasonal and annual mean model biases of precipitation normalized by seasonal

and annual mean precipitation at each HCN station over the 5-yr period. Cross represents a magnitude range of

20.1%–0.1%.
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HadRM shows appreciable improvement over the R-2

reanalysis data in terms of slope, correlation coefficients,

and biases. Between WRF domains 2 and 3, the corre-

lation coefficient is slightly higher in WRF domain 3

with slightly lower biases than WRF domain 2. WRF

domain 1 does not show improvement over the R-2

reanalysis data.

5. Conclusions and discussion

This work examines the performance of two regional

models, WRF and HadRM, in simulating the observed

Tmax, Tmin, and precipitation at HCN stations over the

U.S. Pacific Northwest over a 5-yr period (2003–07). The

large-scale driving data (i.e., the R-2 reanalysis data) are

also verified against the station observations. The anal-

yses are focused mainly on daily, monthly, and seasonal

time scales.

The simulated Tmax from WRF and HadRM as well

as in the R-2 reanalysis data compares well with the

observations as reflected by high correlation coefficients

at all times. Large cold biases of Tmax on the order of

48–88C are noted in the R-2 reanalysis data over the

HCN stations when averaged both seasonally and an-

nually. The cold biases in the R-2 reanalysis data are

larger in spring and summer than in winter and fall.

Predominantly cold biases of Tmax on the order of

28–48C are noted in the nested WRF and HadRM do-

mains in spring and summer, while in winter and fall more

stations show warm biases, especially in the HadRM

simulations. There are clear indications that the large cold

biases in the R-2 reanalysis data are reduced in the high-

resolution regional domains. It is suggested that the cold

biases in the R-2 reanalysis data are passed onto the WRF

and HadRM domains, but high-resolution simulations

can partially offset the cold biases.

The correlation coefficients of Tmin between the ob-

servations and model simulations are reasonably good

although not as high as those of Tmax in both models.

The differences in model performance for Tmin and

Tmax are likely due to a combination of deficiencies in

the large-scale driving data and model parameteriza-

tions of nocturnal physics and dynamics, which specifi-

cally affect Tmin. Predominantly warm biases of Tmin

on the order of 28–68C are noted in both model sim-

ulations when averaged seasonally and annually. Model

biases of Tmin tend to be small along the coast of Ore-

gon and Washington in the WRF simulations when

compared to the model interior. Cold biases of Tmin on

the order of 28–48C are evident in the R-2 reanalysis data

FIG. 12. As in Fig. 4, but for precipitation.
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at all times. It is suggested that the model biases of Tmin

in WRF and HadRM are related to deficiencies in the

regional models.

The correlation coefficients between the simulated

and observed daily precipitation are relatively low.

However, correlation steadily increases when averaging

increasing number of days. This increase in the corre-

lation coefficients levels out considerably around 30

days. The temporal correlation between the observed

and simulated precipitation is higher at stations along

the coast of Oregon and Washington and windward

sides of the mountains than elsewhere in both models. A

large variability in the spatial distributions of the nor-

malized seasonal and annual biases of precipitation is

evident in both model simulations. Model overestima-

tion of the observed precipitation is indicated in the

WRF simulations. The seasonal and annual mean biases

in the HadRM simulations are rather small. For the R-2

reanalysis data, dry biases on the windward sides of the

mountains and wet biases on the lee sides are noted.

Our results suggest that the WRF simulation at 12-km

grid spacing does not clearly outperform 36-km simu-

lation in terms of Tmax and Tmin. Variations in local

temperatures are dictated by large-scale weather sys-

tems, with mesoscale processes associated with the un-

derlying surface playing a secondary role; thus grid

spacing is not critical to the temperature simulation even

over complex terrain. The primary local effect, namely

decreasing temperature with elevation, has been taken

into account through the lapse-rate correction applied to

model output. The value of fine-grid spacing may be

more significant in simulating extreme weather events,

climate variability, and climate change, which we shall

address in future work. Over interannual and decadal

time scales, regional alterations in snow cover, soil pa-

rameters, cloudiness, and circulation associated with

interactions between the large-scale climate change and

the regional topography and land–water contrasts be-

come increasingly important (Salathé et al. 2008). In

contrast to the temperature results, an appreciable im-

provement is found in the precipitation simulation for

the 12-km WRF when compared to the 36-km WRF and

25-km HadRM simulations. Precipitation in the Pacific

Northwest is generally localized over complex terrain

because of the interaction of airflow with local topog-

raphy. Thus, the magnitude and distribution of precipi-

tation are closely related to the topography, and accurate

simulation depends on a realistic representation of to-

pographic effects.

Our analyses also suggest that HadRM and WRF are

generally comparable in their performance in resolving

the observed Tmax, Tmin, and precipitation at hori-

zontal resolutions on the order of tens of kilometers. It is

clear that both models are suitable for climate simula-

tions. Note that HadRM is a hydrostatic model with less

flexibility in horizontal resolution but is computationally

efficient, while WRF is a complex modeling system with

a broad spectrum of applications across scales ranging

from meters to thousands of kilometers but is compu-

tationally expensive to run. Different sources of model

biases as reflected in this analysis strongly suggest that

the quality of the driving data is as much a limiting factor

in climate simulation as the regional models.
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Salathé, E. P., R. Steed, C. F. Mass, and P. H. Zahn, 2008: A high-

resolution climate model for the United States Pacific North-

west: Mesoscale feedbacks and local responses to climate

change. J. Climate, 21, 5708–5726.

Skamarock, W. C., J. B. Klemp, J. Dudhia, D. O. Gill, D. M. Barker,

W. Wang, and J. G. Powers, 2006: A description of the Ad-

vanced Research WRF version 2. NCAR Tech. Note NCAR/

TN-4681STR, 88 pp.

Smith, R. B., and I. Barstad, 2004: A linear theory of orographic

precipitation. J. Atmos. Sci., 61, 1377–1391.

Widmann, M., C. S. Bretherton, and E. P. Salathé Jr., 2003: Sta-

tistical precipitation downscaling over the northwestern

United States using numerically simulated precipitation as a

predictor. J. Climate, 16, 799–816.

5526 J O U R N A L O F C L I M A T E VOLUME 22


