
AN ABSTRACT OF THE THESIS OF

Catherine A. Rem ley for the degree of Doctor of Philosophy in

Electrical and Computer Engineering presented on March 16, 1999.

Title: Time Domain Modeling of Electromagnetic Radiation with Application to

Ultrafast Electronic and Wireless Communication Systems.

Abstract approved:

Andreas Weisshaar

A versatile computational technique for improved time domain modeling of electro-

magnetic radiative systems is demonstrated. Two computational methods are combined:

the finite-difference time domain (FDTD) method, a full-wave electromagnetic field solver,

and the Kirchhoff surface integral formulation, a spatial transformation technique. The

combined FDTD/Kirchhoff technique is shown to increase accuracy and efficiency in the

analysis of a wide variety of electronic systems. Two approaches to the implementation

of the Kirchhoff surface integral formulation are discussed, using exact expressions and

using the FDTD method for the generation of the components of the integral. Several

examples are presented which validate the technique and illustrate the roles of the various

components.

Utilizing the combined FDTD/Kirchhoff technique, improved modeling of radiative

systems is presented in two applications. The first involves characterization of broadband

non-time-harmonic radiation from an ultrafast electronic system. Increased accuracy in

the representation of the far-field radiation arising from a photoconducting structure is

demonstrated by inclusion of inhomogeneous material parameters such as the substrate and

metal electrodes. By comparison of results with those from the FDTD/Kirchhoff method, a

simple technique is developed for obtaining the far-field radiation by considering the edges

of the substrate as secondary diffracting sources.
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In the second application, the accuracy of a commonly used propagation modeling

technique, the ray-tracing method, is investigated as the size of local scatterers approaches

the wavelength of operation. By comparison with results from the FDTD/Kirchhoff tech-

nique, the accuracy of the ray-tracing method for scatterer sizes down to a fraction of a

wavelength is demonstrated. Additionally, the FDTD/Kirchhoff technique is used in de-

veloping improvement terms for a set of heuristically derived diffraction coefficients, the

Luebbers' coefficients, that are frequently used in the ray-tracing method. The thesis ends

with an examination of the applicability of the FDTD/Kirchhoff method to various sim-

ulation scenarios. The use of this technique as a standard to assist in the assessment,

improvement, and development of more computationally efficient methods is discussed,

and recommendations for future work are given.
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TIME DOMAIN MODELING OF ELECTROMAGNETIC
RADIATION WITH APPLICATION TO ULTRAFAST ELECTRONIC

AND WIRELESS COMMUNICATION SYSTEMS

1. INTRODUCTION

Accurate computational modeling of radiative effects has become a significant aspect

of circuit and system design, particularly with the increased availability of portable per-

sonal communication devices [1]. Increased precision in fabrication techniques has enabled

large-scale circuit integration, with the incorporation of hundreds or even thousands of com-

ponents into a single package or circuit board. This, in turn, has led to the development of

high-speed, compact devices such as laptop computers and personal communications sys-

tems (pagers, cellular phones, wireless modems, etc.). Radiative effects can be significant

in these high speed, often digital, circuits and systems. The radiation may be desirable, as

in the received signal from a personal communication system, or parasitic, as in crosstalk

caused by the crowding of components on a circuit board.

The increased precision in fabrication techniques which has enabled large-scale inte-

gration has also led to the development of many ultrafast electronic circuits and systems

in which the wavelength of excitation is on the order of feature size. For example, one type

of ultrafast device, the electro-optic modulator, typically may have an electrode length

of 4-8 mm, which is electrically equivalent to roughly a quarter to a half wavelength of

the free space microwave modulating frequency of, for example, 15 GHz [2, 3]. Parasitic

radiation in ultrafast electronic circuitry can be extremely troublesome since components

with feature sizes on the order of a wavelength may easily act as radiating elements.

Computational modeling is essential for the design of radiative systems and it can also

reduce the need for difficult and time-consuming measurements of some systems. Modeling

can be carried out either in the time domain (where the time evolution of a signal or system

is considered) or in the frequency domain (where the phase and frequency response of a sys-

tem are considered). In some situations, time domain modeling has important advantages.
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Efficient characterization of systems with broadband and/or non-time-harmonic excitation

is one of the strengths of time domain modeling. For example, time domain models are

often used for analysis of transient effects such as time dispersion and crosstalk in digital

circuits [4]-[6]. For many years, time domain analysis has been commonly used on pulsed

transmission lines and antenna systems [7]-[10]. Recently, time domain techniques are also

finding use in the analysis of ultrafast electronic systems with non-time-harmonic excita-

tion, such as photoconducting switches [11, 12] and photoconducting antenna structures

[13, 14].

With the advent of digitally-modulated communication systems, time domain field

analysis finds increasing use in channel characterization [15]-[17] as well. Instantaneous pa-

rameters such as power delay spread and fast fading of multipath signals may be accurately

and efficiently determined. Mobile communication systems with time-varying channel pa-

rameters may be more easily characterized in the time domain than in the frequency domain

[18]-[20].

There are several areas, however, in which difficulties are encountered in time domain

computational modeling. For example, characterization of radiation from structures with

arbitrary inhomogeneous material parameters, such as those found in ultrafast electronic

systems, has historically been difficult. Analytical expressions are generally not available

for the electromagnetic fields in systems which include a variety of materials. Numerical

techniques capable of including such material inhomogeneity tend to be computationally

intensive, particularly so because a fine level of detail is often required to describe the

radiating components.

Another area in which modeling difficulties may be encountered is the characteri-

zation of propagation in wireless communication systems. When a detailed description of

the propagation environment is included in the model, standard computational techniques

often become very complex, and thus, computationally inefficient. Approximate numerical

techniques exist which are computationally efficient but which require large feature size of

objects in the simulation space with respect to the wavelength of operation for accurate

results. As the limits of this requirement are approached, these techniques may give er-
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roneous results. Additionally, these techniques sometimes utilize heuristically developed

parameters which may introduce inaccuracy into simulation results.

The goal of the present work is to improve both the accuracy and the efficiency of

time-domain techniques for the modeling of electromagnetic systems such as those just

described. A versatile full-wave time domain computational technique, capable of char-

acterizing a wide variety of electronic systems, is developed. Utilizing this technique,

improved modeling of radiative systems is presented in two applications. The first applica-

tion involves characterization of broadband non-time-harmonic radiation from an ultrafast

electronic system. Increased accuracy in the representation of the far-field radiation arising

from a photoconducting structure is demonstrated using the full-wave technique. Then,

by comparison to results generated using the full-wave method, a computationally efficient

technique for modeling the far-field radiation from the photoconducting structure is devel-

oped. In the second application, the accuracy of a commonly used propagation modeling

technique, the ray-tracing method, is investigated as the limits of its inherent approxima-

tions are approached. Errors are quantified by comparison to the full-wave computational

technique developed in this thesis. Additionally, the full-wave technique is used in de-

veloping improvement terms for a heuristically derived parameter frequently used in the

ray-tracing method.

1.1 Time Domain Modeling Techniques for Radiative Systems

Several commonly used modeling techniques for radiative electromagnetic systems

can incorporate time domain effects. One of the most simple techniques is the direct

calculation of radiation from a known excitation (generally, a current density distribution

or a dipole moment). In a limited number of cases, analytic expressions are available

[7, 21, 22]. More generally, the Method of Moments (MoM) combined with Green's function

techniques can be used to find radiation for structures with simple geometries [23, 24]. This

technique typically requires use of the Fourier transform to obtain time domain information.

Recently, however, hybrid methods combining the MoM with time domain techniques have

been proposed [25, 26].
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As the frequency of operation rises and the feature sizes approach the wavelength

of operation, the ability to include arbitrary environmental and/or device material param-

eters becomes increasingly important. Finite-element and finite-difference techniques are

extremely versatile in this respect, and may easily be implemented in the time domain.

The finite-difference time domain (FDTD) technique [27]-[29] is a commonly used time

domain method which can be accurate over a wide frequency range. This technique may

incorporate arbitrary excitation, including discrete, distributed, and multiple sources, and

can provide for accurate representation of radiating elements. Increased computing power

enabled by large-scale integration has made computationally intensive techniques such as

the FDTD method viable.

Computational efficiency can be substantially increased when a spatial transforma-

tion technique is combined with the FDTD method. Spatial transformation techniques

may have either scalar [21], [30] - [39] or vector form [40] [55]. These "equivalent source"

techniques are based on Huygens' Principle, which states that a point on an expanding

wavefront can be used as a new source of radiation [31]. An advantage of most spatial

transformation techniques is that they may be incorporated into the FDTD method in a

straightforward manner.

One final computational modeling technique is the ray-tracing method [56]-[58]. Al-

though it is a frequency domain technique, it may easily provide time domain propagation

characteristics such as power delay profile and delay spread. Ray-tracing is based on Ge-

ometrical Optics [56, 59] and the Uniform Theory of Diffraction [60]-[62]. Signals are

represented as ray "tubes," cylinders of extremely small diameter in which cross-sectional

phase and amplitude are constant. The ray-tracing technique is a high frequency approxi-

mation, i.e., it is assumed that the wavelength of operation is much smaller than the size

of local scatterers.

1.2 Organization of the Present Work

Chapter 2 presents the development of a computational technique combining the

FDTD method and the Kirchhoff surface integral formulation, a scalar spatial transforma-
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tion technique. Derivations of both the FDTD and the combined FDTD/Kirchhoff tech-

nique are presented, and two approaches to the implementation of the Kirchhoff surface

integral formulation are discussed. The first approach involves the use of exact expressions

for the generation of the components of the integral. This formulation enables a very effi-

cient solution for cases where an analytic expression exists for the source fields. The second

approach uses the FDTD method to calculate the source fields. This is useful for simula-

tions of structures with inhomogeneous material parameters or complex sources. Several

examples are presented which validate the technique and illustrate the roles of the various

components of the integral. Implementation and analysis of this spatial transformation

technique are important contributions of this thesis, so these aspects are discussed in some

detail.

In Chapters 3 and 4, the combined FDTD/Kirchhoff technique is utilized in two

diverse applications. In Chapter 3, the technique is applied to the characterization of the

broadband radiation from a photoconducting structure. The physics of radiation generation

from the structure are first presented, and a commonly used technique for characterizing

the radiation is described. Then, simulation results provided by the FDTD/Kirchhoff

technique are used to deduce a very computationally efficient model for radiation from the

gallium arsenide substrate of the photoconducting structure. Finally, it is shown that the

FDTD/Kirchhoff technique applied to the full photoconducting structure provides a more

accurate portrait of the far-field radiation than has previously been reported.

A second application of the FDTD/Kirchhoff technique is presented in Chapter 4,

where indoor propagation is modeled using both the FDTD/Kirchhoff technique and the

ray-tracing method. The accuracy of the ray-tracing technique is quantified for several dif-

ferent propagation configurations as feature size approaches the wavelength of operation by

comparison to results found using the FDTD and the combined FDTD/Kirchhoff method.

Additionally, a method for improving the accuracy of a commonly used diffraction coeffi-

cient in the ray-tracing method is heuristically derived. The thesis ends with a conclusion

and recommendations for future work.
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2. DEVELOPMENT OF A COMPUTATIONAL TECHNIQUE
COMBINING THE FINITE-DIFFERENCE TIME DOMAIN
METHOD WITH THE KIRCHHOFF SURFACE INTEGRAL

FORMULATION

In this chapter, two time domain computational techniques are combined to increase

the accuracy and efficiency of modeling for certain radiative systems. As mentioned in

Chapter 1, the finite-difference time domain (FDTD) method is a well-established compu-

tational technique capable of characterizing radiation and scattering in environments with

objects of arbitrary shape and material parameters. All six Cartesian field components

are accessible at discrete grid cell locations throughout the computational domain. How-

ever, in some situations, observation of the fields at the FDTD grid cell points does not

provide sufficient information. Problems may arise, for example, if the observation point

is far from the radiative system or is outside the computational domain. Another poten-

tial problem arises when the observation point is located between FDTD grid cell points.

These problematic situations often arise in the modeling of ultrafast electronic systems,

where a high level of structural detail representing a small physical region may necessitate

a large computational domain (due to small grid cell size). Observation points external

to the computational domain may be required in this case. A similar situation may arise

in propagation modeling, where the observation point may be located many wavelengths

from the source or from scattering interactions. Additionally, the fields available at the

FDTD grid cell points may not provide sufficient or accurate enough information, that is,

it may be necessary to specify observation points between grid cell locations.

In these cases, the FDTD method may be combined with a spatial transformation

technique, enabling determination of the fields at analytically specified observation points.

The observation points may be located either far from the source and/or scattering interac-

tions, or between FDTD grid cell locations. In a spatial transformation technique, the field

on a virtual surface surrounding the source or scatterers is integrated with respect to an

external observation point. The results of the integration are used to determine the time

evolution of the field at the observation point. The combination of the FDTD method
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with a spatial transformation technique may increase accuracy because the observation

points can be analytically assigned. This approach can also enhance efficiency since field

calculation is not required beyond the virtual surface.

In this chapter, a review of the finite-difference time domain technique is first pre-

sented. The governing equations are developed and important implementation considera-

tions are discussed. Then, a scalar spatial transformation technique, the Kirchhoff surface

integral formulation, is presented. The combination of the Kirchhoff surface integral with

the FDTD method is heavily utilized in the present work for the characterization of ra-

diative systems. Analysis, implementation, and application of this technique are major

contributions of this thesis, and are therefore presented with a high level of detail. Two

different techniques for calculation of the surface fields are presented, one based on analytic

expressions, and one based on the FDTD method. Then, new work is presented demon-

strating the way in which the components of the integral combine to give an accurate final

solution. Several examples are given to demonstrate and validate the implementation of

the Kirchhoff surface integral formulation.

2.1 Review of the Finite-Difference Time Domain Method

The finite-difference time domain (FDTD) technique [27, 28, 29, 63] is a versatile nu-

merical method that enables incorporation of arbitrary three-dimensional geometries and

a wide range of material parameters into the problem space. Since it is a time domain

technique, broadband response predictions are possible with a single excitation. A compa-

rable frequency domain technique would require simulations at several different frequencies

followed by a Fourier transformation to the time domain.

The FDTD method can incorporate material parameters ranging from perfect con-

ductors to perfect dielectrics, as well as lossy dielectric, anisotropic, and magnetic. As

a result, it is well-suited to the analysis of many types of electromagnetic systems. The

FDTD method has been used for a wide variety of applications including microwave circuit

analysis [4, 5, 64, 65], optical/photoconducting system analysis [11, 66, 67], and scattering

problems [68, 44, 69, 70]. In the analysis of radiative systems, one advantage of the FDTD
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technique is that it can model both the physical source of radiation and the materials of

the propagation environment [9, 47, 71, 72]. An extensive survey of FDTD literature may

be found in Ref. [73].

In the FDTD method, the differential forms of Maxwell's equations are discretized

in time and space and are solved iteratively in an alternating fashion. First, the electric

field equations are solved, and then these results are used to solve the magnetic field equa-

tions. Field component values are accessible throughout the simulation space at each time

step, enabling determination of a variety of response quantities such as antenna patterns,

scattered fields, surface currents, radar cross section (RCS), penetration, and coupling [74].

In the simulation of a problem in an infinite (open) domain, such as propagation

in free space, the problem space must be terminated in boundary conditions that prevent

reflections of outgoing waves. Several types of absorbing boundary conditions (ABCs) have

been developed over the years [21, 75, 76, 77]. In 1994, Berenger developed the Perfectly

Matched Layer (PML) [77] which utilizes a fictitious magnetic loss for impedance matching

of the outgoing wave to a highly lossy material. The PML effectively attenuates outgoing

waves over a wide frequency range and over a wide range of angles of incidence. It is

currently considered the state of the art for absorbing boundary conditions and is utilized

in all FDTD simulations presented in this thesis.

In the following section, a brief derivation of FDTD equations in the context of the

Yee cell [27] is presented, and important aspects of accurate FDTD implementation are

discussed, including grid cell size and time step size. A discussion of numerical phase

velocity follows, with an example demonstrating the undesirable dispersive effect which is

implicit in the FDTD formulation.

2.1.1 The Yee Cell and FDTD Equations

The differential form of Maxwell's equations in the time domain may be given as

a f -
v x ff. =

6--W j
fV X f = --iL

a M
(2.1)

(2.2)
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where electric current density I may represent either actual or equivalent sources, and the

magnetic current density M represents equivalent sources [78].

In Cartesian coordinates, these equations can be discretized as follows [79]:

axx 1 ( aEy 5E,)
= Al. (2.3)

at µ az ay
axy 1 ( aE, aEx, my (2.4)
at ea ax az )

ax, 1 aEx aEy
(2.5)

at it ay ax
aEx 1 (OH, ally), J. (2.6)
at E ay az )

aEy 1 axx OH,
Jy (2.7)

at e az ax
aE, = 1 ( ally a

(2.8)
at e ax ay Jz

In the Yee cell formulation, it is assumed that the electric fields are updated at

time step n and that the magnetic fields are updated at time step n + ---. Using centered

differences and field components as specified in the Yee cell (Figure 2.1), the discretized

Maxwell's equations can be written as follows:

E1,1±1(i, j, k + 0.5) = k + 0.5)+

Pt Hr°.5(i + 0.5, j, k + 0.5) H;+°.5(i 0.5, j, k + 0.5)

E Ax

1-41±°-5(i, j +0.5, k +0.5) H;1+°.5(i, j -0.5, k +0.5)
Jz+°.5(i, j, k +0.5)]

Ay
(2.9)

141±°.5(i, j + 0.5, k + 0.5) = 1-17;°-5 (i, j + 0.5, k + 0.5)

At j + 1,k + 0.5) Erzz(i,j,k + 0.5)
Ay

E;(i,j + 0.5, k + 1) Ey'+°.5(i, j + 0.5, k)
Az

M j + 0.5, k + 0.5) (2.10)
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where (2.9) and (2.10) are examples of the centered difference equations based on the Yee

cell for two field components.

z
I

Ez

EY

Fix/
(i,j,k)/

Figure 2.1: Positions of the field components in the Yee cell.

2.1.2 Creating the Grid: Cell Size and Time Step Size

The grid cell size chosen for use in a particular FDTD simulation is typically based

on minimizing the effects of numerical dispersion (a phenomenon discussed in the next

section). Generally the grid cell size is determined first and then the time step size is based

on this calculation. If the highest significant frequency component in the simulation has

a wavelength given by Au in material medium, it has been found that the cell size should

generally be smaller than Au/10 [29, 80]. The required level of discretization beyond Au/10

depends on several factors including the following:
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The degree of geometrical detail required in describing objects in the propagation

environment.

The frequency considered to be the "highest significant frequency component." See,

for example, Figure 4.4, where the highest frequency component is arbitrarily defined

as 10 dB below the signal level at the carrier frequency.

Once the grid cell size is determined, the time step, At, can be ascertained. In a

single time step, the farthest a signal can propagate in the FDTD algorithm is from one

cell to its nearest neighbors. Therefore, any point on a propagating wave must not travel

farther than one grid cell in one time step [74]. For a cubic grid cell and a given velocity

of propagation, this sets a limit on the maximum time step size, i.e.,

At <
V3
,As

c
(2.11)

where Ax = Ay = Az = As, 0As is the distance along the diagonal of a cube, and c is

the velocity of propagation in free space. In fact, the Courant stability condition, outlined

in [63], is the generally accepted rule for determining time step size in an FDTD grid where

Ax is not necessarily equal to Ay, etc. It is based on (2.11), and is given as

At <
1

c\/(+2-0 ± (off ± Wiz-7

(2.12)

2.1.3 Numerical Grid Dispersion

Numerical grid dispersion is a phenomenon caused by the discretization of Maxwell's

curl equations in the FDTD method. The phase velocity of the numerical waves propagat-

ing through the FDTD grid can differ from the physical phase velocity depending on factors

such as grid discretization and direction of propagation through the grid [80]. Numerical

dispersion can be a significant source of error in FDTD simulations, especially for large

grids. The derivation of an expression for the numerical dispersion error of a plane wave

propagating through a two-dimensional FDTD grid is given in Appendix A.
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Figure 2.2: Theoretical phase velocity for the FDTD method for various propagation angles
in free space. An angle of zero degrees corresponds to the direction of the Cartesian axis.
Cell sizes are A/z.
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Figure 2.3: Theoretical phase velocity in free space for the FDTD method in the direction
of the Cartesian axis for cell sizes of A = A/z, where z is the cell size reduction factor.

According to the results of (A.7) and (A.8), the free-space propagation error of the

FDTD method is maximum when a plane wave is propagating in the direction of the

grid, i. e., in one of the Cartesian axis directions. Figure 2.2 demonstrates this effect,

showing the expected numerical phase velocity due to grid dispersion for a plane wave

propagating through the FDTD grid at various angles for four different grid cell sizes. A

propagation angle of 0° corresponds to the direction of the Cartesian axes. Figure 2.3
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shows the decreasing error in the numerical phase velocity at 0° propagation angle for a

plane wave propagating through an FDTD grid. From these results, it is apparent that

it is necessary to compromise between computational efficiency and the minimization of

phase velocity error when implementing the FDTD grid.

A graphical demonstration of numerical grid dispersion is presented in Figure 2.4.

A signal with an operating frequency of 900 MHz (a commonly used frequency in wireless

PCS applications) has propagated 2.046m (P--, 6A) through the FDTD grid in the direction

of one Cartesian axis. The FDTD grid cell size is 2.2cm A/15). From Figure 2.3, the

expected numerical phase velocity for a wave propagating in the direction of the Cartesian

coordinates in a 2-D FDTD grid with cell size A/15 is approximately 0.9944c. Therefore,

comparison of the signal which has propagated through the grid with an ideal signal which

has propagated this distance with phase velocity of 0.9944c will verify the grid dispersion

calculation and will thus give an indication of the accuracy of the FDTD implementation.

The first result (solid line) in Figure 2.4 represents the signal which has propagated

2.046 meters in the horizontal plane (i. e., essentially a 2-D case) in the FDTD program

utilized throughout this thesis. The second result (dashed line) represents an ideal signal

traveling with a phase velocity based on predicted numerical dispersion, vp = 0.9944c. The

third case (dotted line) shows, for comparison, an ideal signal with a velocity of propagation

equal to the free space value of c = 3x108m/s. In all three cases a Hertzian dipole source

is used. Good agreement is seen between the FDTD simulation and the predicted phase

velocity of vp = 0.9944c, indicating that the FDTD implementation used in the present

work is behaving according to theory.
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Figure 2.4: A sinusoidal signal which has propagated through the FDTD grid is compared
with two ideal signals, one whose phase velocity, vp = 0.9944c, corresponds to the predicted
numerical phase velocity, and the other, where vp = c.
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2.2 Development of the Kirchhoff Surface Integral Formulation

The Kirchhoff surface integral [30, 31] is one of several near-to-near and near-to-far

field transformation techniques (see Section 1.1). These spatial transformation techniques

are based on Huygens' principle, which states that each point on an expanding wavefront

may act as a new source of radiation.

Spatial transformation techniques allow determination of electromagnetic fields any-

where in a source-free problem space in terms of known field values on a "virtual" surface

(see Figure 2.5). Sources, scatterers, and any other material inhomogeneities are specified

inside this surface. The transformation enables calculation of radiative fields arising from

these sources (or secondary sources) at any analytically specified observation point external

to the virtual surface. When combined with the FDTD method, the spatial transforma-

tion allows calculation of fields at points external to the FDTD grid and at points located

between FDTD grid cell points, as stated earlier.

The Kirchhoff formulation differs from that of other spatial transformation techniques

because it is a scalar technique, that is, one scalar field quantity is utilized and determined

separately in each calculation. For example, Ez at a far-field point is determined only in

terms of Ez on the calculation surface

Observation
point, P

A
n

,1-. ,,
.

.

Original .
.

source . 1

. i

. ,

Integration
surface, S

V V

Observation
point, P

Infinite
plane

Original
source

R=r-r
Integration
surface, S/

Figure 2.5: Equivalent source representations for the Kirchhoff surface integral. A closed
surface or, equivalently, an infinite plane may be used.
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The Kirchhoff surface integral may be stated as follows: Given a homogeneous prob-

lem space outside a closed surface, S, let 1(x, y, z, t) be a solution of the wave equation

v_72,/, 1 a2
W C2 at2

(2.13)

whose first and second order partial derivatives are continuous on S, and let P be a point

outside S. Then,

(k

f m 1 aR raoi 1 [(ta]} dS
(P't1 47r j js, an' R ) cR an' at R

(2.14)

where the prime refers to points on the integration surface. Refer to Figure 2.5 for definition

of the remaining terms.

The square brackets indicate retarded time corresponding to the time required for a

signal to travel from a point, Q, on the surface to P with speed c = 1/oftW, that is,

[0] = (x', y, z', t 11-ic ). (2.15)

The first term on the right side of (2.14) will be called the direct term, since it is

directly proportional to the scalar field. The second and third terms will be called the time

and normal terms, since they are proportional to the time and normal derivatives of the

scalar field, respectively. Note that the direct term decreases as 1/R2 (once the derivative

a/a7-e(1/R) is taken), while the time and normal terms decrease as 1/R. The derivation of

the Kirchhoff surface integral, based on Kirchhoff's original paper in 1883 (published four

years before his death), is presented in Appendix B.

2.2.1 Implementation of the Kirchhoff Surface Integral

The Kirchhoff surface integral formulation used in the present work is designed for

implementation on a digital computer. This means that the development of a discretized

version of the integral is a primary consideration in the implementation of the spatial

transformation. As discussed in [21], the discretized Kirchhoff surface integral may be

readily combined with a Yee-cell-based FDTD code (described in Section 2.1). For efficient

combination with the FDTD method, similar levels of discretization and the use of similar
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indexing techniques are desirable features. These issues, among others, are addressed in

the following discussion.

A primary aspect of implementation of the Kirchhoff surface integral is determina-

tion of the fields at the surface of integration. These surface fields can be found using a

variety of computational methods, including the FDTD technique, the MoM, and, in a

limited number of cases, analytical solutions. The Kirchhoff surface integral utilized in the

present work has been implemented in two versions. One uses analytic equations for the

surface fields, and was written for use with the Mat lab [81] software. Because analytic

expressions are used, this method is computationally very efficient, although the use of

a higher-level programming language somewhat slows the calculation time. The second

implementation utilizes a computer program incorporating the FDTD method previously

developed by researchers at Oregon State University [82]. This FDTD program is extended

in the present work to include the Kirchhoff surface integral formulation. A source term

specified in the FDTD code generates the fields at the integration surface. Each of the two

versions follows the same basic procedures for determining the components of the integral

and the integration. Because of the versatility of the combined FDTD/Kirchhoff integral

formulation, it is used extensively throughout the thesis. Therefore, its implementation is

discussed in detail here.

In the discretized version of the Kirchhoff surface integral, the integration surface

for a given field component is considered to lie midway between two of the component's

discrete spatial locations, e. g., FDTD grid points, designated Din and Omit in Figure 2.6,

where 0 may refer to any of the six field components in Cartesian coordinates. Using

difference equations, the fields at the integration surface may be efficiently calculated from

quantities already computed in the FDTD code. For example, the surface field may be

given by

'in + out
2

(2.16)

Difference equations are also used to find the other terms in the integral (2.14) efficiently.

For example, the normal derivative term may be given by
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Figure 2.6: Implementation of the integration surface in the FDTD code. Here, (/) may
refer to any of the six field components in Cartesian coordinates.

acbi,j,k (kin + Omit
an A

(2.17)

where A refers to the grid cell size between (kin and 00,a. The time derivative term may

be found in a similar manner.

The discretized version of the surface integration may be considered as a time

weighted summation. Time is discretized as nzt, with n corresponding to the time step

and At to the time increment. The delay time between surface element Asij,k and the

observation point is given by ridni,k = Rij,k/c, where the velocity of propagation is the speed

of light, c. (See Figure 2.7.) This delay time is used to assign the evolving surface field

terms to the proper elements of the delayed field vector. The delayed field vector contains

the final result of the integration, i. e., the time evolution of the spatially-transformed field

at the observation point. The contribution from an individual surface element to the final

result is incorporated into the delayed field vector sequentially in time. However, since the

time delays, rifij,k, are not uniform, the initial entry into the delayed field vector will gen-

erally be different for each surface element. For the case shown in Figure 2.7, for example,

the surface fields generated by the dipole source will be equal in both amplitude and arrival

time at surface elements Asio,k and Asi,3,_k. However, since Ri,3,k is greater than Ri,3,-k,

the contribution to the final result from Asi,3,k will be incorporated into the delayed field

at a later time step than the contribution from element Asij,_k.

Because the delay time from each surface point to the observation point rarely falls

as an integer multiple of At, time interpolation is used. A simple linear interpolation



Yt
x

0 0

2Asi,j,k = x2prn

S=4211 m x 42pm x 421.tm

R.= Ri,j,k
1,j,k

R. i,j,-k
1,j-k

Delayed field vector

nAt+ T.1,j .
k

time (n At)

nAt+
d
i,j,k

19

Figure 2.7: The evolution of the delayed field vector at time step n. The schematic shows
the delay time from each surface element to the observation point.

scheme is used for the direct and normal derivative terms, and second order Lagrangian

interpolation is used to maintain second order accuracy of the time derivative [21]. Thus,

the expressions for the direct, time, and normal terms calculated with respect to retarded

time, T = nAt + rid,,j,k (see (2.14)), can be given by

[02,3,k] = (1 p) OZ3,k P

1[ 21;e1 A1.1 (kin,37: 2 in, 1) inn}

Direct

Time

[a 4, kk] p)Maile patinple Normal

(2.18)

where n is the integer part and p is the fractional part of r/ t, the term 02,3,k is the surface

field given by (2.16), and the term ao,,,,klan is the normal derivative given by (2.17).

In this formulation, the terms OZ and a (*) in (2.14) are equivalent to (n aR) and

-(fiRtR), respectively, where fi is the unit vector directed outward from and normal to the
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integration surface, and aR is the unit vector in the direction of R. The subscripts i, j, k

have been omitted for clarity.

With the use of these expressions for the individual terms of the Kirchhoff surface

integral and the time-weighted surface integration method described above, the combined

FDTD/Kirchhoff spatial transformation computational technique is complete. Details of

the computational algorithm used in the present work can be found in Appendix C.

2.2.2 Validation of the Technique and Evolution of the Delayed
Field Vector

To validate the accuracy of the FDTD/Kirchhoff integral formulation and to illustrate

the evolution of the delayed field vector, an example is presented comparing the numerical

results to the exact solution. Again refer to Figure 2.7. The source is a Hertzian dipole

excited by a Gaussian current pulse

nAtto \ 2
p(nLt) = (2.19)

with pulse width 7-=13At, and delay time t0 =4-r. This choice of to sets the starting value

of the pulse at exp(-16) = 140 dB in order to minimize noise in the FDTD caused by

the turn-on characteristics of the source [29]. With 13=32 and Ax=0y=0z=2pm, the time

step, At, is taken as At=3.47 fs, which is 0.9 times the Courant stability condition for the

FDTD technique. The Ez field component is calculated at observation point P, located 60

pm and 45° off the axis of a z-oriented dipole.

The exact solution for the electric field from a Hertzian dipole source may be found

using the equations for an infinitesimal dipole [7, 83]:

f(R,t) =

[2d1 cos 0 (I' L, Je (7- LI) de f J, (t In de)]
47E0 .1t

(hR dr + v
R3 cR2

[di sin 0 ( r fi, Jv' (7- 14) de f J., (t 1) de
47E0 itao dr v

R3 cR2

± '1 ft, Jv, (t -f) de)]
0 R (2.20)
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Here R is the distance from the dipole to the observation point, dl is the length of the

dipole, Jv is the volume current density induced by the dipole, and 0 is measured off the

dipole axis. The permittivity and velocity of propagation corresponding to free space are

given by eo and c, respectively. Note that the subscript R corresponding to the unit vector

aR indicates the radial direction in spherical coordinates rather than the distance R.
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Figure 2.8: The evolution of the delayed field vector at time steps (a) n = 100, (b) n = 150,
(c) n = 200, and (d) n = 300 using the Kirchhoff surface integral formulation.

For the FDTD method, the Hertzian dipole is approximated using the technique

described in [84], that is, the current distribution is assumed constant over the volume of

one grid cell. The field at the integration surface is found using the FDTD technique. To
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implement the Kirchhoff transformation, at time step n, the elements of the delayed field

vector (found using (2.14)) accumulate according to nAt + rtt,k. In the evolution of the

delayed field vector, each surface element may be considered as a secondary source 1.

As can be seen in Figure 2.8, agreement between the exact solution and the combined

FDTD/Kirchhoff technique is excellent. Even for simulations in the near field, such as the

present example, the additional calculation time required by the Kirchhoff technique is

often offset by the propagation time through the FDTD grid required when the FDTD

method is used alone. Additionally, use of the FDTD/Kirchhoff technique reduces the

time dispersion associated with the FDTD method [80] since the FDTD calculation only

extends spatially from the original dipole source to the surface of integration.

2.2.3 The Components of the Kirchhoff Surface Integral

In the present work, the combined FDTD/Kirchhoff technique is used to simulate

the fields arising from non-time-harmonic sources of radiation. It may not be readily

apparent how the correct solution is obtained when contributions from the surface integral

may arrive at the observation point at times later than the duration of the pulse. The

way in which the various components of the integral interact can resolve its apparent

nonphysicality. Therefore, in this section two aspects of the evolution of the integral are

described how contributions from the various regions of the integration surface combine,

and how contributions from the three terms of the integral combine. Other researchers

have utilized the Kirchhoff surface integral formulation in the time and frequency domains

[21], [33]-[35]. However, a discussion of the relationships among the various components

of the integral has not, to the author's knowledge, been presented.

In the first case, the contribution from each side of a closed rectangular integra-

tion surface similar to the schematic shown in Figure 2.7 is considered. A scalar (non-

'Because the Kirchhoff surface integral is a scalar technique, each surface element may not be considered
as a true "source" of electromagnetic radiation since that would imply a vector quantity. As stated in
Huygens' Principle by Baker and Copson [31], p.103, "...the secondary disturbances obtained in this way
are not solutions to Maxwell's equations...[E]ach secondary source in Huygens' principle ought to give rise
to an electromagnetic wave." However, the concept of a secondary source accurately describes the time
delay.
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Figure 2.9: The time evolution of the contribution from each region of the integration
surface. The contributions are summed to yield the complete result of the Kirchhoff surface
integral calculation.

electromagnetic) source is used to present clearly the interrelationships between compo-

nents of the integral. Excitation is a Gaussian pulse (2.19) with = 18, T = 154 ps, and

to = 616 ps. The exact equations for fields at the integration surface from the scalar source

were implemented in Matlab [811 with Ax=Ay=0z=0.75pm and At= 86.7 fs. The surface

of integration is a cube with 30.75pm side dimensions, and the observation point is located

50pm directly above the source at the point (0, 50pm, 0).
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Figure 2.10: The time evolution of the direct, time, and normal terms of the Kirchhoff
surface integral.
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Figure 2.9 shows that the contribution from the top surface is exact until the time the

evolving surface field reaches the edge of the top surface (at approximately 0.23 ps). From

this time on, contributions from the top and four sides must be considered collectively.

Because the excitation is scalar and centered in the box, the contribution from each of the

four sides is equal. Similarly, at around 0.33 ps the contribution from the bottom surface

must also be included. Note that components of the received signal have significant value

long after the duration of the original pulse.

Infinite
plane

Dipole
source

Observation
point, P

R=r-r'

Figure 2.11: Structure used for the single infinite surface example.

The individual contributions from the direct, time, and normal terms of the Kirch-

hoff surface integral (2.14) are next considered. Using the same structure and excitation

as in the previous example, the time evolution of each of the three components is displayed

in Figure 2.10. Because the direct term decreases as 1/R2, its contribution to the integral

is minimal except in the very near field. The time and normal terms combine to form

the received pulse and cancel at times greater than the received pulse duration. Again, it

may be seen that the fields generated at times that are greater than the pulse duration

effectively cancel, and thus the correct solution is produced.

In a second example, the results of De Moerloose and De Zutter [21] are repro-

duced using an infinite plane as the integration surface. This integration surface is shown



25

schematically in Figure 2.11. The infinite plane formulation is valid as long as the integra-

tion surface is large enough to contain the surface field for the duration of the simulation,

as is here demonstrated by comparison to analytical results. The authors of [21] utilize

a closed integration surface similar to those shown in prior examples. The present exam-

ple additionally demonstrates the equality of the normal term and the sum of the time

and direct terms for the case of symmetric source and observation points relative to the

integration surface.
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0 0.2 0.4 0.6 0.8
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Figure 2.12: Source excitation used for the infinite plane integration surface example.

The observation point, P, is located half a grid cell above the integration surface. The

spatial transformation is generally more difficult when the observation point is extremely

close to the integration surface because of the need for more precise determination of angles

and distances.

In this example, the source is a z-directed dipole whose excitation is described by

the time variation of the dipole moment (Figure 2.12). The time variation of the dipole

moment is given by [76]:

where

10 15 cos wit + 6 cos wet cos wit, t < T
f (t) = (2.21)

0 , t > T

27rn
wn = 7

T
T = 1 IIS (2.22)
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Figure 2.13: (a) Comparison of direct, time, and normal terms, and the sum of the direct
and time terms, showing the equivalence of the normal and sum terms. (b) Comparison of
the solution found using the Kirchhoff surface integral formulation and the exact solution.

Figure 2.13(a) shows the individual components of the integral as well as the sum

of the direct and time components. Note that the sum of the direct and time terms is

approximately equal to the normal term. This condition is true for symmetric cases,

where the observation point is located directly above the center of the integration surface

(an effect seen also in Figure 2.10). Calculations made near the integration surface are more

difficult than are calculations at distant observation points because accurate integration

over each grid space becomes more critical. (Note the discrepancy between the sum term

and the normal term.) Additionally, the source data are precalculated in this example and



27

the surface fields are found using linear interpolation between pre-calculated data points,

adding some error.

Figure 2.13(b) compares the Kirchhoff transformation results with the exact solution.

The exact calculation was found using a Hertzian dipole source with dipole moment exci-

tation given by (2.21). Note that the sum of all terms of the Kirchhoff surface integral do

not add to give the precise solution, a manifestation of the effect shown in Figure 2.13(a).

However, the results shown in Figure 2.13(b) are similar to those found in Figure 6 of [21].

2.3 Conclusion

In this chapter, the incorporation of a discretized version of the Kirchhoff surface

integral into the FDTD technique has been presented. The basic FDTD equations were

first reviewed and implementation considerations were discussed. A demonstration of nu-

merical grid dispersion, an artifact inherent to the FDTD method, was presented, serving

to illustrate the effect and to validate the FDTD implementation used in this thesis. The

Kirchhoff surface integral, a spatial transformation technique, was next presented. The

development of a discretized expression for the Kirchhoff surface integral was discussed.

Various techniques for obtaining the fields at the integration surface were included, as well

as the representation of the surface integration routine as a time-weighted summation.

Results found using the combined FDTD/Kirchhoff technique and an exact calculation for

the field arising from an ideal Hertzian dipole were compared, and agreement was shown

to be excellent. To illustrate how the various components of the integral combine to pro-

vide the final solution, a demonstration was given using a pulsed scalar source. It was

shown that significant contributions from the integral may arrive at the observation point

at times later than the duration of the pulse, but that these contributions always combine

to provide the correct final solution. Finally, it was demonstrated that a single infinite

plane may replace the standard closed surface of integration.

In the following two chapters, the combined FDTD/Kirchhoff technique is applied to

improve modeling of radiative systems in two different areas: ultrafast electronic and wire-

less communication systems. It is shown that this versatile technique can offer improved
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efficiency and accuracy when compared to the standard FDTD method. Additionally, be-

cause of its high degree of accuracy, it can also be used as a standard for comparison in

the development of other highly efficient computational techniques for modeling radiative

systems.
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3. MODELING TERAHERTZ RADIATION FROM ULTRAFAST
ELECTRONIC STRUCTURES

Technology for the fabrication of electronic devices has greatly improved in recent

years. These improvements have enabled reduction in device feature size, which, in turn,

has led to large-scale integration of electronic components with reduced inter-device transit

times, as well as development of high speed devices which utilize traveling-wave and/or

guided-wave effects. With incorporation of these advances has come the possibility of

increasing device frequency of operation beyond the microwave region into the millimeter-

wave and low infrared (terahertz) regions. The resulting ultrafast devices have a number

of uses, for example, as modulators [2, 3], in switching applications [11, 12, 85], and in

material characterization [86, 87].

Characterization of radiative effects is particularly important in the design and analy-

sis of ultrafast electronic systems. Relative to the small wavelength of excitation, the ra-

diative source is often spatially distributed. That is, radiation may originate from an entire

component or region of a component. Therefore, there is a high probability of parasitic

radiation and resulting crosstalk, which should be accounted for in the design stages of

ultrafast electronic devices. Additionally, some ultrafast systems, such as the photocon-

ducting structure discussed in this chapter, utilize radiative coupling exclusively between

system components. Accurate representation of the radiative fields in these cases is essen-

tial for system design and development.

However, radiation from ultrafast electronic systems can be difficult to characterize

for a variety of reasons. The distributed nature of the source often makes the use of

many analytic techniques infeasible. A variety of material parameters may be involved

as well, significantly increasing the complexity of the characterization. Frequency domain

techniques, such as the method of moments (MoM), generally are not capable of efficiently

modeling the broadband radiation often associated with ultrafast electronic structures.

The combined FDTD/Kirchhoff technique is a natural choice for analyzing radiation

from a wide array of ultrafast electronic structures, since, as discussed in Chapter 2, it is
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Figure 3.1: Typical photoconducting structure for an electro-optic sampling experiment. A
sub-picosecond laser pulse is incident on a GaAs substrate with two biased metal electrodes.
(a) Photogenerated electron-hole pairs migrate toward the biased electrodes. (b) Side view
of the same structure showing the uniformly distributed source of radiation.

capable of addressing all of the issues mentioned above. Additionally, this technique allows

determination of radiative fields at large distances from the source.

In this chapter, analysis of a photoconducting structure (Figure 3.1) is carried out

as an example of the use of the FDTD/Kirchhoff technique for ultrafast electronic device

characterization. First, a description of the photoconducting structure is given, includ-

ing the physical system and the source of radiation. Then, a commonly used modeling

technique for characterizing the radiation is presented. This model, the far-field approxi-

mation, is based on the derivative of the source current and is limited to determination of

the far-field radiation. Additionally, because it is based on an analytic expression derived

for free-space propagation, material parameters cannot be included. The far-field approx-

imation is improved upon with the use of the FDTD/Kirchhoff technique. Utilizing this

technique, homogeneity of the problem space is not required and the radiative fields may

be determined in either the near or far field. The development of this technique is given in

two steps: first, inhomogeneous material parameters are introduced into the FDTD simula-

tion and their effects on the radiative fields are demonstrated. Then, results are presented

utilizing the FDTD/Kirchhoff technique in the characterization of radiation from the full
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photoconducting structure. Simulation results show a significantly more accurate portrait

of the far-field radiation compared to the standard far-field approximation [88, 89].

3.1 The Photoconducting Structure

As the name implies, photoconducting structures utilize optically (photo-) generated

carriers in electronic (conducting) device operation. The movement of these carriers gives

rise to electromagnetic radiative fields, which may have frequency content into the terahertz

range. Many ultrafast electronic systems that utilize photoconducting structures rely on

the coupling of these fields between the source, the electronic device, and/or the detector.

In some ultrafast electronic applications, however, the generation of radiative fields is

an unwanted effect. In either case, accurate characterization of the radiative fields is

important.

The utilization of radiative field coupling in photoconducting structures is called

electro-optic (EO) sampling [86, 90, 91, 92]. The process of EO sampling includes: photo-

generation of carriers in the device from an external laser source; carrier/device interaction

resulting in generation of an electric field; and subsequent photodetection of the electric field

at a point removed from the photoconducting structure. EO sampling provides a method of

in situ testing and excitation of devices. It provides spatial resolution in the micron range

without the need for physical contact. Applications which utilize EO sampling include

high-speed switching [11, 12, 93, 94], photoconducting dipole antennas [13, 14, 95, 96, 97],

and terahertz spectroscopy for material characterization [87, 98, 99, 100].

A general photoconducting structure is shown in Figures 3.1(a) and (b). Two metal

electrodes lie parallel to each other on a gallium arsenide (GaAs) substrate. A sub-

picosecond laser pulse is incident on the substrate, creating electron-hole pairs. Appli-

cation of a bias voltage to the electrodes accelerates the electrons and holes in opposite

directions, as shown in Figure 3.1(a). This produces a time-varying current density, which

can be modeled as a uniformly-distributed dipole source [66, 88], as indicated in Figure

3.1(b). The orientation of the dipole is parallel to the substrate surface and transverse to

the biased electrodes. This time-varying source of radiation has a rise time on the order
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of a few hundred femtoseconds. Once the excitation is removed, the biased electrodes con-

tinue to attract the electrons and holes. Therefore recombination occurs (and the resulting

electric field is generated), over a time-scale much longer than the simulation time.

POISSON
INIT FDTD

MONTE CARLO
SCATTER PARTICLES

4*
FDTD SOLVE

B-FIELDS

MONTE CARLO
SCATTER PARTICLES

COMPUTE J(t)
PARTICLE CURRENT

FDTD SOLVE
E-FIELDS

DETERMINE
FAR FIELD

Figure 3.2: Computer algorithm used in the PMC-3D.

To determine accurately the current density generated in the photoconducting struc-

ture, a simulation tool developed by researchers at Oregon State University [101] is utilized.

The tool, called the PMC-3D, couples a Monte Carlo particle simulator 2 to either a Pois-

son solver or an FDTD electromagnetic field solver to determine device characteristics such

as potential, particle distribution, and current density anywhere in the computational do-

main. In the present case, an FDTD solver rather than a Poisson solver is used, enabling

determination of the electromagnetic (EM) fields throughout the simulation space. The

2The Monte Carlo particle simulator allows stochastic solution of the Boltzmann transport equation
for particle motion. Particle motion is modeled as a series of free flights subject to magnetic and electric
forces. Motion is terminated by instantaneous, random scattering events. Random scattering times are
generated using a random number generator and the calculated quantum mechanical scattering cross-
section. Important scattering mechanisms for the three lowest energy bands of GaAs are included in the
model.
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Monte Carlo simulator and the FDTD solver are coupled together in a leap-frog manner,

allowing updates of both the particle distribution and the EM fields at each time step.

Figure 3.2 shows the computer algorithm for this numerical procedure.

Before time stepping commences, each grid cell in the computational domain is ini-

tialized using a Poisson solver. At each time step, the Monte Carlo routine first calculates

the particle motion, and then the magnetic fields are updated by the FDTD routine. The

effects of the magnetic fields are next incorporated into a second particle motion calcu-

lation. At this point, the volume particle current density, ,/,(t), is calculated, based on

the carrier distributions in the GaAs substrate. The particle current density, which is the

source of the radiative fields, is next incorporated into the FDTD routine for calculation

of the electric fields. When the time stepping has been completed, the far-field radia-

tion is calculated using either the far-field approximation discussed in the next section

or the FDTD/Kirchhoff spatial transformation. The PMC-3D has been implemented on

both standard single processor workstations and on an n-cube parallel processor supercom-

puter. The asterisks in Figure 3.2 indicate processor information exchange in the parallel

implementation of the PMC-3D.

3.2 Far-Field Approximation Based on the Time Derivative

The far-field approximation has been used for many years by engineers to describe the

electromagnetic fields arising from antennas in free space [102, 103]. It gives very accurate

results for cases where the field may be described by an analytic expression and the where

the observation point is sufficiently far from the source. For example, to approximate the

far-field radiation from an ideal dipole, only terms in dipole equations (2.20) which decrease

as 1/R are retained. Then, the electric field is given by:

d/ sin° a
d171Eo(R,t)

471-foRc2 ffv (3.1)

See page 20 for a definition of terms. (3.1) states that the far-field radiation is proportional

to the time derivative of the excitation. This expression has been used to approximate the

far-field radiation arising from photoconducting antennas and arrays [13, 14, 66].
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Figure 3.3: Comparison of the total field and the far-field approximation for a pulse-
modulated ideal dipole source in free space. (a) R = 0.5A, (b) R = 1A, (c) R = 2A, and
(d) R = 6A, where R is the distance from the source.

The far-field approximation is valid several wavelengths from the source. For ex-

ample, refer to Figure 3.3, which shows the electric field arising from a Gaussian-pulse-

modulated ideal dipole source in free space. The solid line shows the field utilizing the

full set of dipole equations (2.20), and the dashed line shows the far-field approximation.

Approximately 6A from the source, the two curves are almost indistinguishable.

In a typical PMC-3D simulation of the photoconducting structure, it is assumed that

the laser pulse has a Gaussian wavefront with a beam radius standard deviation of 2,um

and a Gaussian-distributed energy variation between 1.42 eV and 1.62 eV (larger than the

bandgap of GaAs). The laser pulse duration is approximately 20 fs. Because the source

distribution is spatially so small with respect to the physical structure, it is approximated
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Figure 3.5: Two smoothed versions of the derivative of the current pulse shown in Figure
3.4. The thicker line represents the case with more smoothing.

as an ideal dipole. The excitation of the ideal dipole is a current pulse found by integration

of the current density throughout the GaAs substrate. Figure 3.4 shows an example of the

current pulse generated with a bias of 40 volts on the metal electrodes and an injection

rate of 1e15/cm3.

Figure 3.5 shows two numerically smoothed versions of the derivative of the pulse

in Figure 3.4, representing the far-field radiation over time. Smoothing is necessary be-

cause numerical implementation of time differentiation emphasizes the high frequency noise

components. Smoothing is accomplished using a moving average filter. Use of the far-field

approximation, (3.1), assumes a dipole source of negligible length and free space propaga-
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tion, and also neglects the effects of the GaAs substrate and metal electrodes. How close

this representation is to a more physical one incorporating material parameters depends

on several factors, including the duration of the pulse relative to the transit time through

the substrate, the spacing of the metal electrodes, and the observation angle. For exam-

ple, Figure 3.5 compares well to measured results such as [91], but may not be accurate

enough when the pulse duration of the excitation is shorter. An indication of the effects

of the material parameters for the present case may be found by looking at the near-field

radiation.

Figures 3.6(a) and 3.7(a) show the near-field radiation along a surface above and

parallel to the GaAs substrate of the structure shown in Figure 3.1. These fields are

calculated using the PMC-3D, with the dipole excitation given in Figure 3.4. Figures

3.6(b) and 3.7(b) show the fields from an ideal dipole for comparison. The effects of the

various material parameters in the simulation space may be seen clearly in Figure 3.7(a).

The GaAs/air interface causes some variation in the field distribution near the center of

the surface. The effects of the interface are accounted for in the next section.
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3.3 Inclusion of Inhomogeneous Material Parameters

In the following section, the effects of the inhomogeneous material parameters on the

radiation characteristics are addressed. The FDTD/Kirchhoff method is first applied to

radiation from a GaAs substrate only. Then, analysis of the full photoconducting system

is considered.

GaAs substrate

...

Dipole
array

Observation
point P H=1.15prn

W=5 p.m
L=15.2µ m

.............

Integration surface

Figure 3.8: Structure used to determine the effects of including inhomogeneous material
parameters in the simulation. The integration surface is located external to the inhomoge-
neous problem space.

The extent to which inhomogeneous material parameters significantly alter results

depends on several factors, including the temporal characteristics of the excitation relative

to the dimensions of the structure. The effects of the material parameters on the radia-

tion are illustrated with a representative structure, with excitation provided by a Gaussian

current pulse. The structure consists of a GaAs substrate with relative permittivity of ap-

proximately 12 at the highest frequency involved in the experiment. A worst-case scenario

is presented, with absorption equal to zero. The integration surface is placed external to

the inhomogeneous material, as discussed in Section 2.2. The dimensions of the structure

are shown in Figure 3.8. For some applications, such as the photoconducting system, a

uniformly distributed current density transverse to the plane of the GaAs substrate is as-
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sumed. Therefore, the excitation model for this experiment consists of a vertical array of

dipoles embedded uniformly in the GaAs substrate, as shown in Figures 3.1(b) and 3.8.

The observation point is 100pm above the center of the GaAs substrate, where the received

pulse is approaching the far-field response, i. e., the derivative of the current excitation in

free space.
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Figure 3.9: Electric field 100pm from the source for two different pulse widths: (a) r=56
fs and (b) r=30 fs. Transit time to the far edge of the GaAs substrate is 87.8 fs. Dashed
lines represent the calculation for an ideal dipole in free space, with an appropriate time
delay to account for the presence of the GaAs.

Distortion of the received signal occurs when the pulse width, T, is narrow enough

for reradiation from the air/GaAs interfaces to become resolvable. Results are presented
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in Figure 3.9 for two cases with pulse widths that correspond to approximately (a) 2/3

(T=56 fs) and (b) 1/3 (T=30 fs) of the transit time to the far edge of the GaAs substrate

(which is 87.8 fs). Also shown are the cases for an ideal Hertzian dipole in free space. For

both pulse widths, diffraction from the edges of the GaAs/air interfaces alters the received

electric field. For the narrower pulse width, the diffraction additionally causes distortion of

the received waveform. These effects would be neglected using the far-field approximation

discussed in the previous section.
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Figure 3.10: Model based on ideal Hertzian dipoles used to represent the reradiation from
the corners of the GaAs/air interfaces of the structure shown in Figure 3.8. In (a) /3 = 32
and in (b) 3 = 64.
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The edges and corners of the GaAs substrate shown in Figure 3.8 effectively act as

new sources of radiation. A simple model using ideal Hertzian dipoles to represent the

diffracting sources has been developed for this structure, based on the simulations using

the FDTD/Kirchhoff technique. The excitation for each dipole is delayed corresponding

to transit time through the GaAs substrate and attenuated appropriately. Results for the

simple dipole model are presented in Figure 3.10, where comparison is made to the field

found using the FDTD/Kirchhoff technique. Five dipoles are used to represent reradiation

from the top and bottom edges, where advantage has been taken of the symmetry of the

structure relative to the observation point. It may be seen that, while the model is not

exact, many of the effects of inclusion of the GaAs material may be accounted for using a

very efficient computational technique. This model would be difficult to develop without

comparison to a rigorous solution such as that provided by the FDTD/Kirchhoff technique.

3.4 Characterization of the Photoconducting Structure

Building on results from the previous example, the complete photoconducting struc-

ture shown in Figure 3.11 is now characterized. The dimensions of the structure are similar

to those given in the last example, but with W=14.26pm and L=35.88pm. The metal strips

are assumed to be perfect conductors, 1.6pm wide, 0.23pm thick, and separated by lOpm.

The time-varying current density in the substrate has been modeled using the combined

Monte Carlo/FDTD simulation technique described in Section 3.1. Three typical current

pulses are shown in Figure 3.12 to demonstrate the effects of varying the bias voltage and

the thickness of the GaAs substrate.

These realistic current pulses contain random high frequency content. To study

effects caused by inhomogeneous material parameters, rather than by errors in FDTD

modeling (see Section 2.1.2), the frequency content of each pulse is limited to the degree

that FDTD stability criteria are satisfied. This is verified by comparing the time derivative

of the current pulse to the far-field radiation generated by the combined FDTD/Kirchhoff

integral method for the homogeneous case.
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Figure 3.11: The complete photoconducting structure, including GaAs substrate and metal
electrodes. The location of the absorbing boundary conditions used in the combined
FDTD/Kirchhoff method is indicated.
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Figure 3.12: Comparison of three different current pulses generated by the photoconducting
experiment.

The far-field radiation arising from two of these current pulses is presented in Figures

3.13 and 3.14, where the fields are measured: a) off the axis of the dipole (E-plane) and

b) transverse to the axis of the dipole (H-plane). Simulation results are presented for a

narrow pulse (the solid line in Figure 3.12, with 1.15pm GaAs, bias=40V) and for a wider

pulse (the dashed line in Figure 3.12, with 1.15pm GaAs, bias=30V). In each case the

GaAs substrate is included and comparison is made with and without the metal electrodes.

The narrower pulse shows more distortion due to reradiation from the edges of the GaAs

substrate, particularly for the H-plane observation points. In a homogeneous problem
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Figure 3.13: E-plane comparison of the fields from (a) the narrower current pulse and (b)
the wider current pulse in Figure 3.12 at observation points 250pm from the center of the
structure at angles of 0°, 30°, 60°, and 90° from the plane of the substrate and off the axis
of the dipole array. The dashed lines represent the structure with the GaAs substrate only;
the solid lines include the metal contacts.

space, the H-plane waveforms would be identical. Effects of the metal electrodes include

increased confinement of the field to the substrate region and additional distortion due to

reradiation from the edges and corners of the metal. The significance of these effects is,

again, pulse-width-dependent, with quite severe distortion of the field from the narrower

pulse. For the wider pulse width, the effects of reradiation are less significant, however,

the pulse is still distorted. For the narrower pulse in particular, severity of the distortion

could affect timing measurements of the received signal pulse. Effects such as these due

to inclusion of the material parameters would be difficult to model using other techniques,

particularly for far-field radiation.

3.5 Conclusion

Use of the combined FDTD/Kirchhoff technique has been demonstrated to deter-

mine accurately and efficiently near- and far-field radiation from microwave and ultrafast

electronic devices. Effects of the inclusion of materials in simulations of high frequency

systems was explored with an example in which a dipole source embedded in a GaAs sub-
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Figure 3.14: H-plane comparison of the fields from (a) the narrower current pulse and
(b) the wider current pulse in Figure 3.12 at observation points 250pm from the center
of the structure at angles of 0°, 30°, 60°, and 90° from the plane of the substrate and
perpendicular to the axis of the dipole. The dashed lines represent the structure with the
GaAs substrate only; the solid lines include the metal contacts.

strate was excited with current pulses of various durations. Pulse-width-dependent effects

were shown to be significant in an application of the method to the analysis of a photo-

conducting structure. Additionally, the combined FDTD/Kirchhoff technique was used to

develop a simple model of the radiation from an inhomogeneous structure. Further im-

provements to the method may include consideration of the frequency-dispersive effects of

the substrate material. The technique described here is, in many situations, more efficient

than the FDTD method alone since the wave needs to propagate only to the integration

surface, where it is transformed in space to the observation point. It is expected that the

technique will be of benefit in a wide range of ultrafast device modeling applications.
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4. INDOOR PROPAGATION MODELING

The utilization of wireless communication systems in indoor environments has greatly

increased in recent years. Radiative systems including cellular phones, pagers, personal

communication systems (PCS), wireless modems, and wireless local area networks (LANs)

are used in both the workplace and the home. Wide bandwidth signals utilized in many of

these modern communication systems are particularly sensitive to the detrimental effects of

multipath distortion and dispersion. In digital systems, these effects can cause intersymbol

interference (ISI) and can ultimately limit the data rate of the entire system. Multipath

and dispersion tend to be more pronounced in indoor environments where object feature

size often approaches the wavelength of operation. As a result, computational modeling

of indoor wireless communication systems is critical for accurate and efficient system de-

sign. Additionally, computational modeling of propagation systems reduces the need for

measurements, which are often time consuming and/or expensive.

Computational techniques currently used in propagation modeling can be classified

into two main categories: empirical techniques and deterministic techniques. Empirical

modeling techniques utilize statistically-derived classifications based on measurements per-

formed in various types of environments. Classification of these propagation environments

is based on the density and size of scatterers (objects that interact with the propagating

signal). As an example, an indoor propagation environment may have significant loss due

to interference caused by a relatively large number of scatterers in the local environment,

and would therefore have a high loss classification. An outdoor suburban environment,

where objects are more widely spaced and are of larger size relative to the incident wave-

length, would tend to have a lower loss classification. Examples of statistical modeling

techniques are given in Refs. [15, 16, 19, 104].

Deterministic techniques for computational modeling are site-specific, that is, mod-

els are developed incorporating the physical features of each propagation environment. In

Chapter 4, only deterministic propagation modeling techniques are considered. Currently,

one of the most common site-specific computational modeling techniques is ray-tracing
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[56, 57, 58]. In ray-tracing, the principles of ray optics analysis are utilized, that is, field

propagation is assumed along discrete ray paths from transmitter to receiver. In gen-

eral, this assumption is valid when the wavelength is small compared to the geometrical

dimensions of objects in the propagation environment, the so-called "high frequency ap-

proximation."

The goal of the work presented in this chapter is to improve the ray-tracing tech-

nique for use in indoor wireless applications. Ray-tracing is a computationally efficient

deterministic method. However, because of the inherent high frequency approximation,

the accuracy of the ray-tracing method depends, among other things, on the wavelength

of operation as compared to the size of local scatterers. This is a particularly important

issue in indoor environments, where obstacle feature sizes may approach or be less than

the wavelength of operation, especially at the lower PCS frequencies of 900 MHz (A :-.--- 34

cm) and 1800 MHz (A ;--, 17 cm).

Therefore, the accuracy of the ray-tracing technique in the characterization of indoor

propagation environments, or channels, is first explored. Errors in the ray-tracing method

as the high frequency approximation becomes invalid are quantified by comparison to a

"standard," that is, a solution known to be accurate. The standard is generated, in this

case, using the FDTD method or the combined FDTD/Kirchhoff method. Additionally,

based on simulation results, a method is developed to enhance the accuracy of ray-tracing

in the characterization of non-line-of-sight (NLOS) diffracted signals arising from objects

with finite conductivity.

The chapter begins with a review of the ray-tracing method in Section 4.1. The

method is described, and the basic equations used in the method are derived. In Section

4.2, some basic parameters relevant to the modeling of wireless communication channels

are defined. In Section 4.3, the use of both ray-tracing and the FDTD method for wireless

communication channel modeling is demonstrated, including a discussion of important

implementation considerations for each technique. Both techniques are then utilized in

a simple numerical experiment designed to illustrate channel modeling concepts in an

indoor environment. Results are compared to published measurement data. In Section
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4.4, experiments are carried out characterizing the accuracy of the ray-tracing method as

scatterer size approaches the wavelength of operation. Results are presented for a variety of

propagation channel configurations, including those in which both reflection and diffraction

play dominant roles, and those in which diffraction dominates. In Section 4.5, it is shown

that the model for diffraction commonly used in ray-tracing programs can give inaccurate

results in certain propagation configurations for scatterers made of dielectric material with

finite or zero conductivity. The development of a method to minimize the inaccuracies in

the diffraction model is then presented. The chapter ends with a summary and conclusion.

4.1 A Review of the Ray-Tracing Method

Ray-tracing is a commonly used method for site-specific prediction of the radio chan-

nel characteristics of wireless communication systems. The ray-tracing technique inherently

provides time delay and angle of arrival information for multipath reception conditions.

Therefore, the ray-tracing technique is particularly attractive for indoor propagation envi-

ronments, since accurate representation of multipath and dispersion can be important for

system design.

One of the primary calculation requirements in the ray-tracing technique is the deter-

mination of the dominant ray propagation paths, that is, determination of the rays which

will significantly affect the received signal. The efficient calculation of dominant ray prop-

agation paths for ray-tracing models is an active area of current research. Several different

techniques have been proposed. The most basic is ray launching [58] in which the radiation

sphere around the transmitter is divided into solid angular segments from which rays are

launched. Imaging theory [57, 105, 106] replaces reflecting walls and corners with images

of the illuminating source. Other techniques to determine the dominant propagation paths

include the use of neural network algorithms [107, 108], the use of "cone launching" [109],

in which cones are launched instead of rays, and various sweep algorithms [110]. The

method of moments (MoM) combined with boundary integral equation (BIE) formalism

[111] has been proposed for a full-wave deterministic solution. Full-wave solutions utilizing

the FDTD method [112, 113, 114, 115] are also occasionally used in propagation model-
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ing. The use of full-wave techniques is less common than the use of ray-based techniques

because of the computational intensity involved. The MCSTM ray-tracing software used

in the present work utilizes imaging theory. Refer to [116] for a more complete discussion

of this technique.

Ray-tracing is based on geometrical optics (GO) [56, 59, 62], a method for describ-

ing the propagation of EM radiation in terms of rays, that is, narrow "tubes" in which

cross-sectional amplitude and phase are assumed constant. As the name geometrical op-

tics implies, this technique is useful in the analysis of systems in which the geometry of

the problem space, rather than the wave nature of the signal in scattering interactions,

dominates in determining the received signal. Generally this condition implies that an-

tennas or scatterers are electrically large, and it is the reason that GO-based techniques

are called high frequency approximations. Scattering events are considered independent of

each other in high frequency approximations; that is, it is assumed there is no interaction

on the scatterer between, for example, reflected and diffracted rays. In modern GO-based

techniques used for analysis of wireless communication systems (e. g., ray-tracing), the

intensity, polarization, phase (or delay time), and angle of arrival of rays are considered in

determination of the received signal. Rays which have propagated along various paths to

the receiver are combined appropriately in order to accurately describe wave interactions.

The methodology of geometrical optics, however, is not always sufficient to describe

propagation with adequate accuracy. Therefore, other related techniques are often com-

bined with GO in the ray-tracing model. For example, a diffracted field is generated when

a ray encounters an abrupt, wedge-like material discontinuity. The diffracted field may be

described by the uniform theory of diffraction (UTD) [60, 61] and may simply be added to

the GO field under the high frequency approximation.

4.1.1 Propagation Primitives

Ray-tracing techniques, such as the MCSTM software [117] considered in the present

work, utilize GO, UTD, and other scattering techniques to describe the effects of various

environmental interactions on the amplitude, phase, and time delay of the received signal.
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These environmental interactions are called propagation primitives in Ref. [116]. Three

propagation primitives are considered in this chapter: free space propagation, specular

reflection, and diffraction. Each is discussed briefly below. The reader is referred to [116]

for a more complete discussion.

4.1.1.1 Free Space Propagation

Free space propagation occurs when a ray is propagating in a homogeneous medium

(generally air) and encounters no environmental obstacles such as walls or corners. The

expression for the free space field at the receive antenna can be found from the power flux

density, Pd [118, 119],

Pd 47r S2 1-4782

PtGt EIRP lEdI2 (W
m2

where Pt is the time average power into the transmit antenna, Gt is the gain of the transmit

antenna in the direction of maximum radiation (as compared to an isotropic radiator),

47rs2 is the surface area of a sphere with radius s, and s is the distance from the source to

the observation point. The commonly used expression effective isotropic radiated power,

EIRP, is the maximum radiated power in the direction of maximum antenna gain, as

compared to an isotropic radiator. The magnitude of the electric field at the input to the

receive antenna is given by IEd I, and 7/0 is the intrinsic impedance of free space, Vµ0/0.

The third expression for power flux density indicates that the amplitude of the electric

field at the input to the receive antenna can be written as

(4.1)

1 PtGtno
lEd1= N/Pdno = s 47r

(4.2)

where Vi±-9tGt ° is the reference amplitude at the transmit antenna. The complete expres-

sionsion for the electric field (magnitude and phase) becomes

E
S 47r

PtGt710 3(00-133)
d =

e

where 00 is the reference phase, and e-313s is the spatial delay factor.

(4.3)
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4.1.1.2 Specular Reflection

Reflection occurs when a ray propagating in some homogeneous material is incident

on a second material with different electrical properties. In the high frequency approxima-

tion, it is assumed that reflection occurs from the specular point, that is, the point where

the angle of reflection equals the angle of incidence, and that no sharp irregularities such

as corners or edges are encountered (see Figures 4.1(a) and 4.1(b)). Reflection from and

transmission through smooth surfaces, i. e., those in which "surface roughness" may be

neglected, are used exclusively in this thesis. These reflections can be described using the

Fresnel reflection coefficients, which are different for parallel and perpendicular polariza-

tions. When the first medium is free space and pi = 12, the Fresnel reflection coefficients

can be given by [18, 56, 116]

R11 =
Er Sill ei JEr cos2 0,

Er Sill ei V'Er C052 Oi

R
sin 0, VEr COS2 ei

sin 0, + VEr cost 0,

(4.4)

(4.5)

where R11 and Rd, refer to parallel and perpendicular polarization, respectively, 0, is the

angle of incidence, and Er is the relative permittivity of medium two. Parallel polarization

occurs when the incident electric field is in the plane of incidence, while perpendicular

polarization implies the electric field is not in the plane of incidence. The plane of incidence

is defined as the plane containing the direction vector of the incident ray (02 in Figure 4.1)

and the normal to the reflecting surface (given by ii). For the cases shown in Figures 4.1(a)

and 4.1(b), the plane of incidence is the plane of the page. For vertical wall reflections,

a vertically polarized antenna (with respect to the ground) is perpendicular to the plane

of incidence, while for horizontal reflections, such as from the surface of the ground, a

vertically polarized antenna is parallel to the plane of incidence.

The electric field created by reflection is given by

Ern (s) = A(S)RR a Ei1 eI I
(4.6)
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(a)

Figure 4.1: Uniform plane wave obliquely incident on an interface with (a) parallel polar-
ization and (b) perpendicular polarization.

where s is the distance from the reflection point to the observation point and E2 is the

incident field. The attenuation factor, A(s)R, is given by

A(s) R =
1

(4.7)

For a perfect conductor, the magnitude of R11 is one and there is no transmitted
±

power. If the second medium is a dielectric, however, power will also be transmitted

through the interface. The field corresponding to this transmitted signal is given by

Ell (s) = A(s) R(1 + R11)Ei e-313s. (4.8)
I I _L
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x.1.1.3 Wedge Diffraction

The principles of geometrical optics predict that in the incident field shadow region of

an obstacle, that is, in the region not directly illuminated by the source (see Figure 4.2), the

field is zero. Furthermore, GO predicts that in the transition region from the illuminated

region to the shadow region, the field abruptly drops to zero. Both of these conditions

are non-physical. Diffracted rays permit calculation of the fields in shadow regions and

provide a more accurate representation of the fields in the transition regions [56, 116].

Wedge diffraction occurs when a freely propagating ray is incident on an edge or corner of

a material other than the original transmission medium (often, the original transmission

medium is air). Other types of diffraction include the creeping wave that arises when a

field is incident tangentially on a curved surface, or diffraction that arises from the tip of a

structure (a higher order effect than simple wedge diffraction [120]). In the present work,

only wedge diffraction is considered, since diffraction of a radio signal around buildings,

indoor furnishings, or other wedge-like objects is an important phenomenon in providing

an accurate model of a wireless communication channel.

Under the high frequency approximation, diffraction is considered to be a local effect.

Therefore, the diffracted ray is proportional to the incident ray multiplied by a diffraction

coefficient, found from the solution of the appropriate boundary value problem. The devel-

opment of the solution to this boundary value problem for use in ray-tracing was carried

out by Joseph Keller in 1953 [60] and is known as the geometrical theory of diffraction

(GTD). Diffracted rays originating from the edge of an infinite wedge are represented as

cylindrical wave fields that decay as p-1/2, where p is the distance from the edge.

The original GTD erroneously predicted singularities in the field at the shadow

boundaries. Kouyoumjian and Pathak [61] proposed the uniform theory of diffraction

(UTD) in 1967, introducing a correction factor based on a Fresnel integral in the shadow

boundary regions to eliminate the singularities. The Fresnel integral goes to zero at the

same rate the original diffraction coefficient tends to infinity. Away from the transition

regions, the magnitude of the Fresnel integral is approximately one.
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Figure 4.2: Geometry for diffraction calculations. (a) Top view showing the reflected field
shadow boundary (RSB) and the incident field shadow boundary (ISB). (b) Elevated side
view showing the Keller cone, created when the angle of incidence is not perpendicular to
the diffracting wedge.

The GTD and the UTD were both developed utilizing only perfectly conducting

wedge materials. Luebbers [121] in 1984 proposed the incorporation of Fresnel reflection

coefficients in the diffraction coefficients to account for dielectric and lossy wedge materials.

Luebbers' diffraction coefficients are used in many ray-tracing programs including MCSTM

[117], and their accuracy is one of the topics explored in the present work (Section 4.5).

Luebbers' diffraction coefficients are given in Appendix D.

The expression for the diffracted field, Ed, is:

E (s) = A(s1 , s) DD (L , ck' ) Cifls (4.9)

where s is the distance from the point of diffraction to the observation point, s' is the dis-
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tance from the source to the point of diffraction, D(L, 0, 0') are the diffraction coefficients

given in Appendix D, and A(s' , s)D is an attenuation factor given by

for plane and cylindrical wave incidence

for spherical wave incidence
(4.10)

4.1.2 The Total Received Signal

In general, a ray may undergo several reflections and/or diffractions before it reaches

the receive antenna. This can be accounted for simply by compounding the effects of each

interaction. For each interaction, the field incident on the scatterer is multiplied by the

coefficient associated with the appropriate propagation primitive (e. g. R11 from (4.4) and

(4.5) or D11 from (D.2)) and the associated attenuation coefficient. The phase delay is also

accounted for. For example, the total field received at a distance s from the transmitting

antenna may be given as:

1 PtG
Eray (s) =

s' 4

t\/ [11 A(sR,i)RRil H A(siD,
ir

no

3 1

,sp,j)DDi e 13(s.f+Ei sR,i+Ei 8D,

(4.11)

Gwhere s' is the free space propagation distance to the first interaction and Pt47r oo is the

reference level at the transmit antenna (defined in (4.2)). The distance sirt,i is from the ith

reflection point to the next interaction or observation point, A(sR,i)R is the ith attenuation

coefficient, defined in (4.7), and Ri is the ith reflection coefficient, given by (4.4) or (4.5).

The attenuation coefficient for the jth diffraction is given by A(s'Dj, sp,i)D, defined in

(4.10), and the jth diffraction coefficient Dj is defined in (D.2)). The phase delay is given

by eil3(st±E,"'2+E ,3), and s = (s f + Ei sR,, + E3 sD,j) is the sum of all interaction

path lengths.

In propagation environments where there are multiple ray paths from receiver to

transmitter, i. e., for a multipath channel, the field due to each ray may be found by using

(4.11) repeatedly. An example of this technique is presented in Section 4.3.
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4.2 Multipath Channel Modeling for Indoor Environments

Accurate computational modeling of the propagation channel is especially important

for indoor environments because of the number of objects (floors, ceilings, furnishings,

etc.) which can provide multiple signal paths. Indoor propagation channels are therefore

particularly sensitive to this type of "multipath distortion," which occurs when a signal is

able to take more than one path from transmitter to receiver. Associated with each path is

a corresponding amplitude and time delay. As a result, the various signal components may

interfere with each other. In this section, some of the key parameters used in describing

multipath channels are defined.

One important parameter characterizing multipath channels is the power delay spread.

This parameter describes the extent of multipath in a particular environment. Generally,

the larger the power delay spread, the more severe the multipath distortion and the greater

the potential for intersymbol interference (ISI) in a digital signal. Depending on system

design, detection errors resulting from ISI may ultimately limit the bit rate for a digital

signal.

The power delay profile is a plot of the received power of the various multipath com-

ponents over time. When measurements of the power delay profile are made ("channel

sounding") [122], RF pulses are generated at a repetition rate longer than any observed

delay [16, 18]. The direct RF pulse method [20] involves direct modulation of the RF car-

rier signal by short duration pulses. Because envelope detection is typically used, this

technique has problems with interference and noise in detection of the wideband received

signal. Additionally, the use of an envelope detector means that the phases of the individ-

ual multipath components are not detected. Frequency domain channel sounding is also

possible [123]. An RF sweep generator scans a frequency band centered around the carrier

frequency. A vector network analyzer monitors the frequency response of the received sig-

nal and performs an inverse Fourier transformation to recover the time domain pulse. This

method requires careful calibration and synchronization between the transmitter and re-

ceiver, and it is not useful for characterization of time-varying systems. A third alternative

for channel sounding is the use of a sliding correlator [124].
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Whichever technique is used to determine the multipath components, the pulse must

be narrow enough for resolution of the most significant multipath components, and so it

will generally have a wide bandwidth. The power delay profile is therefore one type of

wideband measurement. The pulse-modulated signal can be expressed as [123]:

s(t) = p(t)ei(wt+4)) (4.12)

where p(t) is the baseband pulse shape, w is the RF carrier frequency, and 0 is the phase

of the signal.

Many multipath channels can be represented as a collection of discrete received sig-

nals (as opposed to a "diffuse channel," where the multipath components are not resolvable

[19]). A discrete multipath channel can be represented as [18, 19]

h(t) = E ako(t Tk) (4.13)

where ak is the amplitude of each multipath component, rk is the delay of each component,

and (5 is the Dirac delta function.

If there is no overlap of pulses, the signal may be represented by the baseband, or low

pass equivalent model. The derivation of the low pass equivalent of the multipath channel

is given in Appendix E. The power representation of the multipath signal may be then be

found from (E.18), also described in [16]

IY(t)I2 = E 4/32 (t Tk ).
k

(4.14)

Calculation of the power delay profile and other parameters is vastly simplified with the

use of the low pass equivalent.

Three parameters often used in describing the characteristics of the multipath signal

are the multipath power gain, the mean excess delay, and the RMS delay spread [18, 16].

These quantities are measured relative to the first signal which arrives at the receiver,

usually along the direct path for line-of-sight systems. The expression for the multipath

power gain simply shows that the total received power is related to the sum of the powers

in the individual multipath components. The multipath power gain is defined as:

(4.15)



57

Equations (4.14) and (4.15) can be used to calculate the received power for either wideband

or narrowband signals, since received local ensemble average power will be equivalent for

both [18, page 150].

The RMS delay spread is a description of the differential delay, that is, the difference

in time between the shortest and the longest received signal paths above a given threshold.

It gives the time period for which the received multipath signal is essentially non-zero. The

RMS delay spread is defined as the square root of the second central moment of the power

delay profile:

where

\/.7-2 (i-)2,

7--n = Ek Teak
Ek ak

The mean excess delay, 1', is the mean of the power delay profile. It gives information

about the expected length of the delay spread, and thus the severity of multipath distortion.

It is defined as the first central moment of the power delay profile.

To calculate these quantities (multipath power gain, mean excess delay, and RMS

delay spread), a computational method is needed to find the amplitude and phase (or,

equivalently, the time delay) of the arriving multipath components. In the following section,

the ray-tracing method and the FDTD method are compared for this purpose. The relative

accuracy of each method is discussed and important implementation considerations are

presented.

(4.16)

n = 1, 2. (4.17)

4.3 Generation of the Power Delay Profile for a Multipath Channel

As described in Section 4.1, the ray-tracing method can be used to find the amplitude

and phase or time delay of the multipath components of a received signal. These quantities

can also be derived from FDTD simulation results. Because the FDTD method is a full-

wave simulation tool, it is capable of providing very accurate information in multipath

propagation environments. The FDTD method is not commonly employed in propagation

modeling, however, because of the computational intensity of the technique.
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In this section, utilization of the ray-tracing and FDTD methods for multipath chan-

nel modeling is introduced in the simulation of a simple multipath environment. Require-

ments for an accurate FDTD implementation are discussed. The ray-tracing and FDTD

techniques are compared and contrasted in the determination of some key parameters com-

monly considered in wireless communication channel modeling (as described in Section 4.2).

The section begins with a description of the simulation model, including the physical space

and the radiative systems. Details of implementation specific to each modeling technique

are next discussed. Finally, simulation results are presented showing a comparison to

published measurements.

4.3.1 The Simulation Model

In the simple multipath environment considered here, a physical configuration con-

sisting of an open space with a reflecting floor and a reflecting metal side wall is simulated.

This system is similar to that described in Ref. [123]. The layout is given in Figure 4.3.

Transmitting and receiving antennas 0.5 meter high and separated by 2.5 meters are placed

at equal distances from the side faces of a metal wall whose front face is one meter square

and whose depth is several meters. The wall is offset from the direct transmission path by

one meter. There are four primary propagation paths: the direct, floor-reflected, side wall-

reflected, and combined side-wall/floor-reflected paths. With this large wall size, diffraction

is neglected since specular reflection dominates the multipath received signal.

The transmit and receive antennas are both modeled as dipole antennas of small

physical size, approaching that of an ideal Hertzian dipole. This source is utilized since it

is easy to model in the FDTD [84], the corresponding field equations arising from it are

well known, and its small physical size makes it appropriate for wideband simulations.

As mentioned previously (see Section 2.1), several factors must be taken into ac-

count in the implementation of the FDTD method for an accurate simulation. The source

excitation, grid size, and terminating boundary conditions are all important parameters.
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Figure 4.3: Configuration used to determine power delay profile. A room with a reflecting
floor and a vertical metal plate one meter square is simulated. Transmitting and receiving
antennas are placed equidistant from the vertical edges of the wall.

by

The source excitation is a 900MHz carrier modulated by a Gaussian pulse, p(t), given

p(t) = poe((tto)17)2 (4.18)

where T ;Z:', 1 ns defines the pulse width, and to ::--- 3.66 ns is a time offset. See Figure

4.4. The pulse width is narrow enough for accurate resolution of the various multipath

components. In this example, use of a pulse rather than sinusoidal excitation enables

easy resolution of the multipath components. The received signal is demodulated using a

lowpass filter, in this case, a 4-pole Chebyshev filter with a cutoff frequency of 600 MHz.

Calculations of the power delay profile and other parameters are performed using the low

pass equivalent (4.14).

The FDTD grid dimensions utilized here are small enough for accurate simulation

of a modulated 900 MHz carrier. The frequency response of the modulated carrier used

in this example is shown in Figure 4.4(b). The FDTD grid cell dimensions are chosen

to be less than 1/10A per cell side for f=-1.27 GHz, the frequency at which the source
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Figure 4.4: The modulated pulse used for calculation of the power delay profile. The
Gaussian pulse is given in (4.18). The carrier frequency is 900 MHz. (a) Time domain
representation. (b) Frequency domain representation.

signal strength is reduced by 10 dB. This frequency, denoted by f. in Figure 4.4(b), has a

corresponding wavelength of approximately 25 cm. Therefore, the grid cell size chosen for

the FDTD simulations is 2.5 cm. For the simulation of the multipath environment, where

dimensions are on the order of meters, the computational domain then becomes very large.

In the present example, the overall grid size is 115x45x37 cells. The computational domain

is terminated in absorbing boundary conditions (Berenger's Perfectly Matched Layer), as

discussed in Section 2.1.

The measured data for this configuration are those presented in [123], in which a semi-

anechoic chamber with an aluminum floor is configured as shown in Figure 4.3. Frequency
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Ray-Tracing FDTD Measured [123]

Direct 8.34ns 8.28ns 8.5ns

Floor 9.04ns 8.97ns 9.2ns

Side 10.67ns 10.53ns 10.9ns

Side/Floor 11.2ns 11.09ns 11.5ns

Table 4.1: Delay Time using Ray-Tracing, FDTD, and Measurements in Simulation of a
Simple Multipath Environment.

domain channel sounding measurements are made using the technique described in Section

4.2. The microwave measurement system consists of a vector network analyzer (HP8510C),

an X-band waveguide, open-ended waveguide aperture antennas, and hardware for data

acquisition. The frequency is swept from 8.2-12.4 GHz, and the impulse response of the

system is estimated using the network analyzer time domain option.

4.3.2 Computational Results

Simulation results showing delay times for the propagation environment of Figure

4.3 are presented in Table 4.1. The ray-tracing timing results were calculated analytically

using the free space and reflected field propagation primitives (Section 4.1). The maximum

FDTD discretization error of one-half grid space is 0.025m/(2c) ::-...2. 0.042 ns, corresponding

to a significant part of the difference between the FDTD method results and the ray-

tracing (theoretical) results. The remaining error may be attributed to grid dispersion,

since the overall grid size is quite large (115x45x37 cells). Note that use of the Kirchhoff

transformation would alleviate both the grid discretization and grid dispersion problems

since the observation points would not be limited to grid cell locations and the grid size

could be reduced, minimizing the effects of grid dispersion. The discrepancies between

the measurement timing data and the ray-tracing solution are not surprising since timing

measurements into the tenths of nanoseconds are at the limit of current channel sounding

technology [123].
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Figure 4.5 shows the power delay profile generated using the FDTD method (solid

lines) and the ray-tracing/theoretical technique (vertical lines with circles). The four mul-

tipath components that correspond to the direct, floor-reflected, side-reflected and com-

bined side/floor-reflected paths are clearly discernible. Note that the amplitude of the

floor-reflected pulse is lower than the side-reflected pulse, even though the free space path

is shorter. This is because the ideal dipole source (2.20) has maximum E-plane radiation

perpendicular to the axis of the antenna, where the angle of elevation, 0, = 90°. For lower

angles of elevation, as in the case of the ray angled toward the floor, the radiation is less,

reaching 0.707 Emax at 0 = 45°. In these simulations, the radiation angle is calculated

analytically for each ray-tracing/theoretical solution.

The mean excess delay for the FDTD method is calculated to be 1.18 ns, and the RMS

delay spread is 1.17 ns (the horizontal line marked with triangular symbols in Figure 4.5).

Error in received signal amplitude found using the ray-tracing method is caused in part by

the exclusion of diffracted rays in the simulation and by the difficulty in incorporating the

antenna pattern in the side/floor-reflected ray. For the ray-tracing method, the mean excess

delay is 1.19 ns and the RMS delay spread is 1.16 ns. These results are similar to those

found using the FDTD method, indicating good agreement between the two computational

techniques.
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Figure 4.5: The power delay profile for the simulated configured in Figure 4.3. The FDTD
solution (solid lines) is compared to a ray-tracing calculation (vertical lines with symbols)
demonstrating comparable timing and amplitude results for both techniques.
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4.4 Accuracy of the Ray-Tracing Method for Small Scatterers

As stated in Section 4.1, ray-tracing is a high frequency approximation technique for

site-specific characterization of electromagnetic wave propagation. In other words, the size

of local scatterers relative to the wavelength of operation is an important consideration in

the accurate implementation of the ray-tracing method. As feature size decreases relative

to incident wavelength, limits on the accuracy of GO and UTD emerge, as has been dis-

cussed in previous work [120, 125, 126]. The work presented in this section extends these

discussions.

TX

RX RX

Figure 4.6: The limits on the accuracy of ray-tracing for various scatterer sizes is demon-
strated in Section 4.4.

The accuracy of the ray-tracing method for local scatterer sizes approaching the

wavelength of operation is investigated, as illustrated in Figure 4.6. A comparison is made

between simulation results provided by the FDTD method and results based on ray-tracing.

The FDTD method is computationally intensive and is therefore generally not practical

for site-specific modeling and/or for use with large computational domains. It is, however,

very accurate for moderately sized grids [80]. For larger computational domains, the FDTD

method may be combined with a near-to-near or near-to-far field transformation technique

such as the Kirchhoff surface integral formulation, as demonstrated in Section 2.2. The

ability of the FDTD technique to analyze structures of arbitrary shape and material is a

great asset in the present application. In this section, the FDTD method and the combined
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FDTD/Kirchhoff technique are used as standards for verification and validation of the ray-

tracing technique.

A numerical experiment designed to illustrate the dependence of the ray-tracing

method on feature size of local scatters is presented. Simulation results show that when

the magnitude and phase of the received rays are properly accounted for, the ray-tracing

technique describes the received scattered signal strength quite accurately, even when the

scatterer size is a fraction of a wavelength. The importance of the inclusion of the diffracted

rays in simulations with so-called "small" scatterers is also demonstrated.

4.4.1 Description of the Numerical Experiment

In the following section, the numerical experiment used to quantify the accuracy of

the ray-tracing method for electrically small scatterers is described. The physical configu-

ration of the experiment is first given. Then important implementation aspects for both the

ray-tracing method and the FDTD method in the experimental procedure are discussed.

4.4.1.1 Physical Configuration

The experimental configuration is similar to that presented in Section 4.3, with a

vertical wall offset between transmit and receive antennas of equal height, as shown in

Figure 4.7. There are two primary differences in this example compared to the earlier

structure: First, the wall is of variable width, which means that diffracted rays must be

included in the analysis, and second, the reflective floor is eliminated. Because diffracted

rays are now included in the simulation, the wall is made higher to ensure that diffraction

over the top may be neglected. With this configuration, the ray-tracing method generates

four rays corresponding to the direct path, as well as a specular reflection from the wall

and two corner diffractions from the vertical edges of the wall.

To demonstrate the effect of obstacle size on the scattered signal, consider the FDTD

mesh plots shown in Figures 4.8(a) and 4.8(b). These plots show a horizontal cross section

of the simulation space, including the wall, which is made, in this example, of a perfect

electrically conducting (PEC) metal. The locations of the transmitter and receiver are
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Figure 4.7: Configuration used in simulations.

indicated in each figure. The scattered field is found in two steps: The field corresponding

to the direct path is first found in a simulation with no metal wall. Then a second simulation

is conducted in which the metal wall is included. The scattered field is calculated by

subtracting the direct path field from the simulation result which includes the metal wall.

The scattered field result is shown in Figures 4.8(a) and 4.8(b) for two different wall sizes:

2A (a) and 0.2A (b). For the larger wall, the diffracted and reflected components of the

scattered signal can be clearly discerned. However, for the smaller wall, the magnitude

of the reflected component is reduced, making it difficult to see what effect, if any, this

ray will have on the received signal. Note that because the direct field has been simply

subtracted out, the result in the incident field shadow region (Figure 4.2) is incorrect and

should be disregarded.

Three configurations are now considered for various ray interactions (refer to Figure

4.9): First the transmitter and receiver are equally spaced on either side of the wall (Case

A), yielding diffraction and specular reflection. The receiver is next positioned nearer the
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which allow incorporation of details of the scattering surface. Exact techniques include

integral equation solutions: the electric field integral equation (EFIE) and the magnetic

field integral equation (MFIE) [23, 24, 127, 128]. Integral equation techniques involve

finding the surface current of the illuminated scatterer, which is then used as a new source

of radiation. The FDTD method is a strictly numerical technique and thus it cannot

render fully exact results in this application. However, it may be used, often with sufficient

accuracy, to approximate the scattered field, as is done here.

The approach used with ray-tracing in this experiment is an approximation called the

relative phase method [129, 130]. The relative phase method involves vectorially combin-

ing the contributions from individual scattering elements on a single structure. Vectorial

combination is utilized even when the scatterer size is only on the order of a wavelength.

Historically this technique has been used to find the radar cross section (RCS) of a complex

scatterer when it is not feasible or efficient to use a more accurate method. The relative

phase method is described in more detail in Appendix F. Use of this method in the present

work provides a simple technique for approximating the received signal strength from a

single, physically small scatterer. The ray-tracing program MCSTM is used to generate the

"experimental" data.

4.4.1.3 The FDTD Method

The source excitation used is a 900MHz carrier modulated by a Gaussian pulse, p(t):

p(t) = Poe- ((t- to) /T)2 (4.19)

where T r-:1 1 ns defines the pulse width, and to ,=::: 3.66 ns is a time offset (see Figure

4.4). The pulse width has been selected to be narrow enough for accurate resolution of the

scattered pulse when compared to the direct received pulse (Figure 4.10), yet wide enough

to allow coincident illumination of the wall and associated corners. Pulse spreading of the

scattered pulse due to the separate effects of reflection and diffraction is thus minimized.

That is, the righthand pulse in Figure 4.10 will have approximately the same width for

a wide range of wall sizes despite the difference in the arrival times of the reflected and

diffracted waves.
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Figure 4.10: Typical demodulated received pulse found with the FDTD method.

The grid cell size Ax = Ay = 0.025 m and Az = 0.075 m has been chosen so

that height can be increased to minimize diffractive effects over the top of the wall. The

cell size of 0.025 m corresponds to approximately A/15 at 900 MHz. The computational

domain has again been terminated in PML boundary conditions, as discussed in Section 2.1.

Calibration between the FDTD simulation and the ray-tracing simulation is accomplished

by equating the amplitude of the received direct path signal generated by means of each

technique.

TX RX

2.5 m (7.5X)

Side view

-4111-11.-

VV

I
1 m (3X )

Top view

Figure 4.11: Spatial configuration used for Case A. Transmitter and receiver are spaced
equally from the center of the wall. The edges of the wall move laterally in equal increments
with respect to transmitter and receiver.
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4.4.2 Case A: Diffraction and Specular Reflection

In this case, the transmitter and receiver are located equal distances on either side

of the wall, as shown in Figure 4.11. The width of the wall, w, varies from 0.2A to 10A.

Figures 4.12(a) and 4.12(b) indicate that use of the relative phase method provides a fairly

accurate portrait of the scattered field strength, even when the dimension of the scattering

wall is a fraction of a wavelength.
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Figure 4.12: Simulation results for Case A: A comparison of the received signal strength
for (a) a metal wall and (b) a dielectric wall with and without the inclusion of diffraction
rays. The relative signal levels are referenced to the direct ray.
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Figure 4.12(b) shows a comparison of ray-tracing and FDTD total received signal

for a dielectric wall. The wall material is that of a poor insulator, like wood, with 67. = 10

and conductivity a = 0.1 S/m. The results show a greater overall loss, but behavior of

the received rays is similar to that of the perfectly conducting metal wall shown in Figure

4.12(a).
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Figure 4.13: The magnitude (a) and phase (b) of the received signal rays for the metal
wall of Case A (see Figure 4.12(a)).

Theoretically, as the width of the wall increases, the three curves in Figures 4.12(a)

and 4.12(b) should converge to the value of the specularly reflected signal. The difference

in received signal strength between the FDTD method and ray-tracing curves for large
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wall sizes may be attributed to resolution accuracy of receiver placement in the ray-tracing

program. The feature sizes utilized in this experiment are extremely small relative to a

typical ray-tracing simulation. A similar range of error may be expected in the other

ray-tracing data points as well.

As demonstrated in Figures 4.8(a) and 4.8(b), as scatterer size decreases, the rela-

tive amplitude of the reflected wave decreases. Since the specularly reflected ray in the

ray-tracing method is independent of scatterer size, this indicates that as the feature size

is reduced the contribution from the diffracted rays becomes significant. In fact, it ap-

pears that in ray-tracing, the diffracted rays compensate for the non-physical nature of the

specularly reflected ray, as is now discussed.

TX
rf

RT RR

I. 1

epl=
X

RX

First Fresnel zone

Figure 4.14: Definition of the first Fresnel zone.

Figures 4.13(a) and 4.13(b) show the components of the ray-tracing signal, plotted

on a linear scale. For smaller wall sizes, the magnitude of the two diffracted rays, combined

using the relative phase method, is significant. As shown in Figure 4.13(b), the diffracted

and reflected signals are out of phase for small wall sizes, yielding a total received signal

of small magnitude. Likewise, when the two signals are in phase, the total received signal

is maximum. The point at which the two rays (diffracted and reflected) are in phase (wall

size of approximately 4A) is the point where the extra path length (epl), i. e. the difference
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in path length between the diffracted and reflected rays, is A/2. This is also the edge of

the first Fresnel zone [131], as shown in Figure 4.14. The Fresnel zones describe the spatial

regions where signals add either constructively (e. g. for epl < A/2) or destructively. These

regions alternate every multiple of A/2 of the epl. However, the magnitude of the oscillatory

effect decreases as the extra path lengths get larger, and thus the effect is not noticeable

for larger wall sizes in Figure 4.13.

One way to determine the Fresnel zone (Figure 4.14) is to form an ellipsoid of rev-

olution around the straight line connecting 1) the image of the transmitter, TX'; 2) the

specular reflection point, S; and 3) the receiver, RX, with the focal points at TX' and

RX. The intersection of the reflector plane with the ellipsoid of revolution is called the

first Fresnel zone. Rays which fall inside this region add constructively, adding perfectly

in phase at the edge, where epl = A/2. In general, the center of the Fresnel zone does not

correspond to S unless RT = RR. However, in the examples just presented in Case A this

is true.

2.0 m
(6.0X)

Side view

.11-- W--411.1

I
0.5 m (1.5X )

Top view

Figure 4.15: Spatial configuration used for Case B. The receiver location is fixed in line
with one edge of the wall. The other edge of the wall moves laterally.

4.4.3 Case B: Diffraction and Non-specular Reflection

In the next experimental scenario, Figure 4.15, the position of the edge of the wall

nearest the receiver is fixed. The transmitter is positioned so that, for smaller wall sizes, no
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Figure 4.16: Simulation results for Case B: A comparison of the ray-tracing and FDTD
method for a shallower angle of incidence than that of Case A. No specular reflection occurs
for wall sizes less than 4A.

specularly reflected rays are generated. Again, good agreement is seen between the FDTD

method and RT results for wall sizes from ti 0.2A 7A (see Figure 4.16). In particular,

this example demonstrates the accuracy of the diffracted ray solutions in the illuminated

region of the problem space.
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Figure 4.17: Components of the ray-tracing signal for Case B.

The components of the ray-tracing solution, shown on a linear scale in Figure 4.17,

indicate that for smaller wall sizes the solution is dominated by the diffracting ray farthest

from the transmitter. Equations (4.10) and (4.7) show that diffracted rays decay as 8-1/2
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and reflected rays decay as s-1, respectively. Therefore, this result is not unexpected.

Figure 4.17 also shows that the diffracted and reflected rays combine in a manner similar

to that in the previous example, adding increasingly in phase as the wall size increases

until the maximum signal is received for epl = Al2.

4.4.4 Case C: Diffraction Only

To characterize the received signal in the incident field shadow region (defined in

Figure 4.2), the simulation configuration shown in Figure 4.18 is utilized. For the ray-

tracing simulations, receivers are placed every 1° around the diffracting corner. For the

FDTD method, 50 receivers are spaced every 5.4° over the 270° arc (see Figure 4.19).

-.111-W-11.

Side view

RX

0.75 m
(2.25A )

0.5 m (1.5X )

Top view

Figure 4.18: Spatial configuration used in Case C. The diffraction region is considered.

For accurate receiver placement in the FDTD simulation, it is useful to extend the

FDTD domain via the Kirchhoff surface integral formulation (Section 2.2). Receiver place-

ment is then not limited to FDTD grid point locations. To implement the Kirchhoff

surface integral formulation in this case, the scatterer (wall), transmitter, and receiver are

all enclosed by the surface of integration (Figure 4.20). Validation of the Kirchhoff surface

integral implementation in this configuration is shown in Figure 4.21, where the results

of Case A are reproduced using both the FDTD alone and the FDTD combined with the

Kirchhoff transformation.
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Figure 4.19: Top view of the FDTD method simulation space showing the diffracting wall
and receiver placement. 50 receivers (circles) are spaced every 5.4° over the 270° arc. The
transmitter location is also shown (cross).

Figure 4.22(a) shows the received signal generated by the combined FDTD/Kirchhoff

technique for several different wall widths. In this simulation, the 50 receivers are placed

at a radius of 0.75 m (2.25A) from the diffracting corner. The magnitude of the diffracted

signal in the incident field shadow region shows very little dependence on the wall width

until the wall size is a small fraction of a wavelength, which agrees with results presented in

[125, 126]. In Figure 4.22(b), the effect of carrier frequency on the simulation is considered.

The overall amplitude is reduced, following the expected response of the envelope of the

modulated carrier as shown in Figure 4.4(b). In Figure 4.22(c) diffraction effects over the

top of the wall become significant, interfering with a meaningful evaluation of diffraction

from the edge of the wall. This demonstrates the importance of running the simulation

with a wall of sufficient height.

Results for diffraction in the shadow region found using the FDTD method are again

comparable to results found using ray-tracing, with a mean squared error of ti 6.2% over

the range of the incident field shadow region.
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Figure 4.20: The location of source scatterers when the Kirchhoff surface integral formu-
lation is used for indoor propagation modeling.
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Figure 4.21: Validation of the Kirchhoff surface integral transformation for use in propa-
gation modeling. Comparison is made between the FDTD method and the FDTD method
combined with Kirchhoff in the configuration of Case A.
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Figure 4.22: FDTD results in the diffraction region for a perfectly conducting wall of several
different widths. In (a), the carrier frequency is 900MHz, in (b), the carrier frequency is
450MHz, and in (c) the carrier frequency is 900MHz, but the wall height is insufficient
(3.2A as opposed to 7.0) for the case in (a)), yielding unusable data. RSB refers to the
reflected field shadow boundary and ISB is the incident field shadow boundary.
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Figure 4.23: Comparison of the FDTD simulation shown in Figure 4.22(a) and the ray-
tracing simulation.
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4.5 Correction Terms for Diffraction from Dielectric Wedges

An important aspect of propagation modeling is the accurate determination of re-

ceived signal strength for non-line-of-sight (NLOS) signals. NLOS conditions are frequently

encountered in urban cellular/microcellular applications and in many indoor applications

such as wireless LAN systems. The accurate determination of diffracted fields is therefore

an essential component of any ray-tracing model. As discussed in Section 4.1, the geometri-

cal theory of diffraction (GTD) [60] is the basis for diffraction modeling in many ray-tracing

programs. The original GTD successfully treated diffraction from PEC wedges. This tech-

nique erroneously predicted discontinuities in the fields at the reflection and incident field

shadow boundaries (RSB and ISB, respectively, defined in Figure 4.24). However, the de-

velopment of the uniform theory of diffraction (UTD) [61] enabled accurate prediction of

the fields in the transition regions between the illuminated and shadowed regions. In the

UTD, the original GTD diffraction coefficients are multiplied by Fresnel integrals in the

transition regions. Then, as the GTD fields become infinite at the shadow boundaries, the

Fresnel integrals decrease toward zero, and the resulting field remains finite.

While diffraction modeling methodology for PEC wedges is well-established, the de-

velopment of a uniform diffraction coefficient for wedges with finite conductivity is the

subject of continuing research. A limited number of methods have been proposed. An

asymptotic solution for diffraction from lossy wedges was originally developed by Mali-

uzhinets in 1953 [132]. Improvements to this technique, including development of a tran-

sition function for continuity at the reflection shadow boundaries, have been proposed

in subsequent work [133]-[136]. This technique has not been widely incorporated into

ray-tracing programs because the integration involved in determination of the diffraction

coefficients can be difficult to evaluate except for certain wedge angles (n = 1/2, 1, 3/2, 2)

[137].

A second method, proposed by Luebbers in 1984 [121], introduces a heuristic modifi-

cation to the UTD equations. Fresnel reflection coefficients corresponding to the dielectric

material of the diffracting wedge are incorporated into the UTD diffraction coefficient terms

associated with the reflection field shadow boundary. Further discussion on this work can
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The improvement is developed by comparison to results generated with the combined

FDTD/Kirchhoff method.

The chapter begins with a more detailed description of the Luebbers formulation and

a discussion of the inaccuracies arising from the method when it is used for applications

other than those for which it was intended. Simulation results are presented for several

different dielectric materials. In Section 4.5.2, validation is presented for the use of the

FDTD/Kirchhoff method in diffraction calculations by comparison to published data of

scattering from an infinitely high, perfectly conducting square cylinder. The heuristic

modification to the Luebbers coefficients is presented in Section 4.5.3, with validation

given by comparison to FDTD method simulations. Results are presented for a 90° wedge

including a variety of materials and for the entire range of angles of incidence.

4.5.1 Description of the Luebbers Formulation and Its Inherent In-
accuracies

To describe the Luebbers formulation for diffraction coefficients, consider a wedge

with the interior angle defined by (2 n)ir (see Figure 4.24). For convenience, the diffraction

coefficients given in Appendix D are repeated below. Fresnel reflection coefficients, such as

those given in (4.4) and (4.5), which correspond to either the incidence face ("0" face) or

the diffraction face ("n" face), are incorporated into the two UTD diffraction coefficients

associated with the reflection shadow boundary (the terms with argument (0 + 01) in

(4.21)).

D i(L, 0, 0')
e-jr/4

2nri3 sin -4,

x [cot Cr ((k /5'1 F PLa+ (4) 41)]
2n

cot (
2n

) / F [fiLa- (ch 95')]

+ 17,o cot (0 + 0)) F [oLa- (0 + 0')]
2n

[La10 + 01)]]fri' cot
+ 0')1 F 13

II

lJ

(4.20)
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Here, the terms R° and Rn are the reflection coefficients found in (4.4) and (4.5), where 0

refers to the illuminated wedge face (toward the incident field) and n refers to the diffraction

face, as shown in Figure 4.24.

0 =230°

(a)

I SB =210° RSB =150°

(b)

0=500

Figure 4.25: Diffraction from a dielectric wedge (a = 0.1 S/m, Er = 15.0) with angle of
incidence, 0' = 30°, and various angles of observation, 0: (a) 01 = 30° and 0 = 230°
(shadowed region), (b) 0/ = 30° and 0 = 50° (illuminated region).

The two diffraction coefficient terms with argument 7 (0 + 01) correspond to the

RSB, as is now demonstrated. Consider the wedge shown in Figure 4.25(a), where a ray

is incident on a diffracting corner at 30°. The RSB occurs at 180° 30° = 150°, and the

ISB occurs at 180° + 30° = 210°. For an observation point at 0 = 230°, the quantities

7r (0 + 0') = 180° 260° = 80° (4.21)

7r + (0 + 01) = 180° + 260° = 440°, (440° 360° = 80°) (4.22)

correspond to the angular distance between the observation point, 0, and the RSB.

The dielectric wedge shown in Figure 4.25(b) is now considered. The incident ray

is still at an angle of 30°, but now the observation point is in the illuminated region, at
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Figure 4.26: Two configurations for comparing diffracted signals from an infinite wedge.
50 receivers are placed equidistant from the diffracting corner: (a) Transmitter at 0' = 22 °;
(b) Transmitter 01 = 248°.

= 50°. The arguments of the diffraction coefficients are given by

7r (0 + 0') = 180° 80° = 100° (4.23)

+ (0 + 0') = 180° + 80° = 100° (4.24)

These quantities correspond to the angular distance between 0 and the RSB, but note the

angles have the opposite sign compared to (4.21) and (4.22). From these examples, the

relation (0 + 0') may be thought of as corresponding to the RSB. The other two terms of

4.21 correspond to the ISB through the relation (0 0').

The Luebbers coefficients can give inaccurate results for diffraction calculations for

certain angles of incidence, as noted in [135]. As a demonstration, the total field found using

ray-tracing is calculated for two infinite wedges made from a perfect electrical conductor

(PEC) and from a lossy dielectric. In these simulations, observation points are located in

a circular ring centered around the diffracting corner (Figure 4.26). The angle of incidence

is 22° from either the 0 face (0' = 22°) or the n face (0' = 248°). Both the source and
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observation point locations are in the far field (s' = 28.0m (cz-J 84A), s = 27.5m (r-:, 82.5A),

for a frequency of 900MHz). The solution consists of direct, reflected, and diffracted rays.

-20

-40

-60

RSB ISB

Total field
Direct ray

-80 i Reflected ray
- - - Diffracted ray

0

-20

-40

-60

-80

1000

50 100 150 200
Angle (degrees)

(a)

250

to
0

_0

Total field
Direct ray
Reflected ray
Diffracted ray

Dielectric,
v.220

50 100 150 200
Angle (degrees)

(c)

0

-20

-40

-60

-80

-100
0

ISB RSB

Total field `ms`s
Direct ray
Reflected ray ;

- - - Diffracted ray l

0
Co'

ra
.0)
CO -50
ID

-a

CC
-100

50 100 150 200
Angle (degrees)

(b)

250

ISB

Dielectric,
0'.248°

RSB

-141 III

Total field
Direct ray
Reflected ray

- - - - Diffracted ray

250 0 50 100 150 200
Angle (degrees)

(d)

250

Figure 4.27: Comparison of the ray-tracing field components of the total field from a
diffracting corner for a PEC wedge (a = 1.0e6 S/m, ET = 1.0) and a dielectric wedge
(a = 0.1 S /m, Er = 15.0): (a) 0' = 22°, PEC wedge; (b) = 248°, PEC wedge; (c)
c/1 = 22°, dielectric wedge; and (d) = 248°, dielectric wedge. The dip in the diffracted
ray in the illuminated region of (c) and the dip in the diffraction region of (d) are non-
physical. Their elimination is the goal of the present work.

Figures 4.27(a) &(c) and 4.27(b) &(d) compare the ray-tracing calculations for the

PEC and the dielectric wedge, respectively. As shown, the direct ray exists in the illu-

minated region up to the incident field shadow boundary (ISB). The specularly reflected

ray exists in the illuminated region up to the reflected field shadow boundary (RSB), and
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has a constant value since the total path length is constant for all receiver locations. The

diffracted ray is generated for all receiver locations from 0 = 0° to 0 = 270°. The interfer-

ence pattern between the direct and reflected rays is apparent in the total received signal.

In the reflected field shadow region, the total field is given by the combination of the direct

and diffracted rays; in the incident field shadow region, the total received signal is given

by the diffracted ray alone.

The dips occurring in the illuminated region in Figure 4.27(b) and in the diffraction

region in Figure 4.27(d) are erroneous. The diffracted ray solution should be monotonically

decreasing, as with the results shown in Figures 4.27(a) &(c). In the present formulation

of the Luebbers coefficients [117] and in the formulation of [142], the inaccuracy in the

illuminated region occurs when the angle of incidence is less than 180°. The inaccuracy

in the shadowed region occurs when the angle of incidence is greater than 180°. However,

other researchers [135, 136], have encountered the opposite effect, where the dip occurs in

the diffraction region for 0' < 180°. These discrepancies may be due to implementation of

the diffraction coefficients. Note that when 0' < 180°, the inaccuracy may not be apparent,

since the direct and specularly reflected rays dominate the total received signal.

To eliminate the inaccuracy and increase the versatility of the Luebbers diffraction

coefficients, a heuristic modification may be implemented by comparing the Luebbers re-

sults to diffraction field results calculated using the combined FDTD/Kirchhoff method. In

the next section, validation of the FDTD/Kirchhoff method for use in diffraction problems

is presented by comparison to published data. Then, in Section 4.5.3, the development of

the heuristic improvement is presented.

4.5.2 Validation of the Combined FDTD/Kirchhoff Method for Use
in Diffraction Problems

This section presents validation of the FDTD/Kirchhoff method for calculation of

the fields in the diffraction region. A numerical experiment characterizing scattering from

an infinitely high rectangular cylinder is considered. The geometry of the problem is given

in Figure 4.28. This numerical experiment was first carried out for the case of parallel
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Figure 4.29: Comparison of results generated using the FDTD/Kirchhoff method and those
published by Holm. Results from the FDTD/Kirchhoff method are presented with both
sinewave and pulse-modulated excitation.

Gaussian pulse, p(t), is given by:

ntt t0 2
p(nAt) = ek r ) (4.25)

with pulse width T = 0.915ns, and delay time to = 4T = 3.66ns. The FDTD grid cell

dimensions, chosen according to the guidelines presented in Section 2.1.2, are Ax = Ay =

0.025m, and Az =0.075m.

The infinitely high cylinder is approximated by a perfectly conducting square metal

cylinder whose height (2.325m ::-.-1 7A) is much greater than the side dimension (0.525m

P...,- 1.57A). The Kirchhoff transformation is used to find the field at receiver points spaced

every 2.24° on a circle with a radius of 5m (P...- 15A) centered around the diffracting corner

(The configuration is similar to that shown in Figure 4.26). The distance of 15A is in the

far field, as demonstrated by an example in Section 3.2 (see Figure 3.3).

Results are shown in Figure 4.29 for the FDTD/Kirchhoff method with both sinewave

excitation and pulsed excitation. These are compared to published results presented by

Holm in [120]. The agreement between the FDTD/Kirchhoff method and Holm's results

serves to validate the technique. Frequency dependence of the FDTD diffraction problem

does not appear to be significant since results for the broadband pulse-modulated case are

quite similar to the single-frequency case except in the deep shadow region.
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4.5.3 Development of Heuristic Improvement Terms

The basis of the heuristic modification of the Luebbers formulation is the determi-

nation of the angle at which the Fresnel coefficients R° and lin are calculated. In the

Luebbers formulation, R° is calculated at 01 = 0' and lin is calculated at 02 = nor 0.

For a wedge with interior angle of 90°, commonly associated with objects in propagation

modeling, 02 = 270° 0. Additionally, in the Luebbers formulation, it is assumed that the

angle of incidence, 0', is always greater than the angle of observation, 0.

(a)

0=1400

(b)

Fl SB =120°

ISB =60°

Figure 4.30: Diffraction from a dielectric wedge (a = 0.1 S/m, Er = 15.0) with angle of
incidence, 0' = 230°, and various angles of observation, 0: (a) 01 = 230° and 0 = 40°
(shadowed region), and (b) 41 = 230° and 0 = 140° (illuminated region).

In the proposed heuristic modification of the Luebbers formulation, 01 remains de-

pendent on 01, as in the original formulation. However, since the relationship between

the observation point and the RSB depends on both 0 and 41, the proposed modification

contains the quantity 0 + 0'.

Four different configurations of 0' and 0 are considered in the present work. They

depend on whether the angle of incidence is greater than or less than 180°, and whether

the observation point, 4, is in the "illuminated" region (where (0 0') < 180°, i. e, smaller
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Region 01,L °2,L 01,H 02,H

01 < 7r, illum., Fig. 4.25(a) nir 0 0' (45 + 41)

0' < 7r, shadow, Fig. 4.25(b) nir 0 0' 7/7r (0 + 0')

7r, ilium., Fig. 4.30(a) nir 0 0' nir (0 + 0')

0' > 71-, shadow, Fig. 4.30(b) 0' n7r 0 nir 0' 0

Table 4.2: Comparison of the Luebbers coefficients (01,2,L) and the heuristic modification
(01,2,H)

than the angle of the ISB) or in the "shadow" region, where 0 is greater than the angle of

the ISB. A summary of the Luebbers formulation values for 01 and 02, and the proposed

modification for these four cases is given in Table 4.2. An example of each case is given

in Figures 4.25(a) &(b) and Figures 4.30(a) &(b). Note that the Luebbers formulation is

not valid for angles of incidence greater than angles of observation. Corresponding to

the difference in sign noted between (4.21)/(4.22) and (4.23)/(4.24), 01,H and 02,11 have

different signs depending on whether they are in the illuminated or shadowed region.

The proposed modification to the Luebbers coefficients has been implemented, and

simulation results are presented in Figures 4.31(a)-(d). The different components of the

ray-tracing signal are shown without and with the improvement in place. With the im-

provement in place, the diffracted rays are always monotonically decreasing away from the

shadow boundaries as, theoretically, they should be. Figure 4.32(a)-(f) shows the diffracted

ray solution with and without the improvement terms for angles of incidence ranging from

5° to 265°. In each case, the dielectric wedge has a = 0.1 S/m, Er = 15.0, s' = 28.0m

(r-:,' 84)x), s = 27.5m (:::: 82.5A), and the frequency is 900MHz.

To validate the improvement terms, comparison is made to simulations carried out

with the FDTD/Kirchhoff technique in the incident field shadow region. To approximate an

infinite wedge, the transmitter and receivers are placed close enough to the wedge to prevent

diffraction around the back of the wedge for the duration of the simulation. Transmission
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Figure 4.31: The components of the total field from a diffracting dielectric corner with
a = 0.1 S/m, Er = 15.0. (a) 01 = 22°, no fix, (b) (/)' = 248°, no fix (c) = 22°, with fix
and (d) = 248°, with fix.

through the dielectric material is not significant, as determined by examination of mesh

field plots from the FDTD simulations. The configuration shown in Figure 4.19 on page

76 is used, with 50 receiver points located in a circular ring with a radius of 0.75m (2.25) )

centered around the diffracting corner. The Kirchhoff surface integral formulation is used

to determine the field at the observation points. Note that some of the observation points

are located within the Kirchhoff surface and must be disregarded. The FDTD/Kirchhoff

solution is valid up to approximately 260°. The transmitter is located 0.8m (2.4A) from

the corner. The FDTD grid cell dimensions are again .6.x= Ay =0.025m and Az =0.075m.

The overall grid size is 79x91x50. The large y-dimension is required to ensure that there

is no diffraction around the back side of the dielectric wedge.
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Figure 4.32: Comparison of the new (modified) and original Luebbers diffraction coefficients
for a wide range of incident angles: (a) ck' = 5°, (b) = 22°, (c) QS' = 60°, (d) (ki =
150°, (e) 01 = 248°, (f) 01 = 265°. Note that the modified coefficients have smooth and
monotonically decreasing magnitude away from the shadow boundaries.
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Figures 4.33(a)-(c) and 4.34(a)-(c) compare the FDTD method results with the ray-

tracing results in the diffraction region for 0' = 22° and for 0' = 248° respectively. Com-

parison is made with and without the improvement terms for three different materials. The

PEC case (a), with a = 1.0x106 S/m, Er = 1.0, is compared to two dielectric materials:

case (b), with a = 0.1 S/m, Er = 15.0, and case (c), with a = 0.001 S/m, Er = 3.4, with a

frequency of 900MHz in each case. For the cases shown in Figures 4.33(a)-(c), s' = 0.8m

(z 2.4A), s = 0.75m (.-:-.; 2.25) ). The curves corresponding to the original Luebbers formu-

lation in Figures 4.34(a)-(c) were calculated at ten times these distances (s' = 8.0m and

s = 7.5m) to better illustrate the dip effect, which becomes more pronounced at larger

distances.

The PEC cases in Figure 4.33(a) and in Figure 4.34(a) represent the original UTD

formulation, and therefore, no difference between the original and new ray-tracing repre-

sentations is expected. The comparison of the curves generated by the FDTD method and

the ray-tracing technique for the PEC case represents the fundamental level of accuracy

which can be expected when comparing these two computational methods in diffraction

calculations. The improvement in the ray-tracing cases with 0' = 248° (Figure 4.34(b)&(c))

is readily apparent, since the dip in the diffraction region has been eliminated. For the

cases with 0' = 22° (Figure 4.33(b) &(c)), note that the slope of the diffraction coefficient

with the original formulation is shallower than that of the FDTD method case. The results

obtained with the original formulation differ by more than 5 dB from those produced by

the new formulation for some observation angles for the angular range shown, and are even

worse in the deep diffraction region (0 > 260°), as can be readily seen in a comparison of

the diffraction region slopes in Figures (4.31)(a) and (4.31)(c).

This implementation of the heuristically modified Luebbers diffraction coefficients

requires only a simple modification of the original computer code, i. e., the inclusion of two

conditional statements. Therefore, it is still computationally efficient when compared to

the original implementation. Additionally, the proposed modification provides increased

accuracy in both the diffraction and illuminated regions, and it enables simulations over a

wider range of angles than does the original formulation.
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Figure 4.33: Comparison of the original Luebbers formulation, the heuristic improvement,
and the combined FDTD/Kirchhoff method for 01 = 22° with (a) metal a = 1.0x106, eT =
1.0; (b) dielectric with a = 0.1, Er = 15.0; and (c) dielectric with a = 0.001, er = 3.4.
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Figure 4.34: Comparison of the original Luebbers formulation, the heuristic improvement,
and the combined FDTD/Kirchhoff method for 0' = 248° with (a) metal a = 1.0x106, c, =
1.0; (b) dielectric with a = 0.1, Er = 15.0; and (c) dielectric with a = 0.001, Er = 3.4.
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4.6 Conclusion

In this chapter, the accuracy of the ray-tracing method for indoor propagation mod-

eling was investigated. First the fundamentals of the ray-tracing technique were reviewed,

including derivations of the direct, reflected, and diffracted ray propagation primitives.

Then, some of the key parameters used in describing multipath signal propagation were

defined. An example was next presented to illustrate implementation aspects of both

ray-tracing and the FDTD method in indoor propagation modeling. A simple multipath

environment was simulated and the use of each computational technique to determine the

power delay profile was discussed.

In Section 4.4, a numerical experiment was carried out to investigate the accuracy of

the ray-tracing method for local scatterer sizes approaching the wavelength of operation.

Simulations were carried out for three different cases involving 1) diffraction and specular

reflection, 2) diffraction and "non-specular" reflection, and 3) diffraction only. The received

signal predicted by the ray-tracing method was compared to results generated using the

FDTD and the combined FDTD/Kirchhoff methods. Results demonstrated the accuracy

of the ray-tracing method for scatterer sizes down to a fraction of a wavelength when

the phase of the received rays for small scatterers was accounted for. An explanation for

the ray-tracing results was provided in terms of the path length difference between the

diffracted and reflected rays.

Finally, the heuristic development of improvement terms for a set of diffraction coeffi-

cients that are often utilized in ray-tracing models was presented. The Luebbers coefficients

are commonly used to characterize diffraction from dielectric wedges. They were originally

developed for use in a limited set of diffraction applications, and have inherent inaccuracies

when used otherwise. The proposed improvement terms eliminate some of the inaccura-

cies and thus enable the use of the Luebbers coefficients for a wider range of propagation

modeling problems, especially in indoor environments. Throughout Chapter 4, the use

of the combined FDTD/Kirchhoff technique has provided a standard against which the

ray-tracing technique can be both evaluated and improved upon.
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5. CONCLUSIONS AND SUGGESTIONS FOR FURTHER WORK

In this final chapter, the main points presented in the thesis are briefly summarized,

and the more significant contributions of this work are discussed. The motivation behind

the development of the combined FDTD/Kirchhoff technique and its applicability to var-

ious simulation scenarios is discussed. Examples taken from the thesis demonstrate the

advantages and disadvantages of this technique. Next, the use of computationally inten-

sive techniques such as the combined FDTD/Kirchhoff method as standards to assist in

the assessment, improvement, and development of more computationally efficient methods

for device characterization is discussed. The thesis has presented several examples of this

comparison-oriented use of the combined FDTD/Kirchhoff technique, and some of the im-

portant contributions arising from this methodology are highlighted. In the final section,

potential avenues of exploration for further research work are considered.

5.1 Conclusions

The goal of the thesis has been to develop improvements, either in accuracy or in

efficiency, in the modeling of a class of electromagnetic (EM) radiative systems that can be

readily characterized using the FDTD technique. These systems include those with non-

time-harmonic excitation, those with a distributed source of excitation, and those which

contain a variety of material parameters. Additionally, radiative systems from which broad-

band characteristics are of interest, such as the impulse response of wireless communica-

tion systems, may be modeled directly in the time domain. The computational technique

developed in this thesis, the combined FDTD/Kirchhoff method, is versatile enough to

accurately predict EM radiation from all of the above mentioned systems, and it can do

so for near- and far-field observation points. It is complementary to the well-established

FDTD technique, and in many cases it improves the efficiency and/or the accuracy of the

FDTD method. Because of the computational intensity of the combined FDTD/Kirchhoff

method, it is not practical for use as a commercial design tool. However, because it provides

very accurate solutions, it may be used in the development of other, more computationally
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efficient techniques by acting as a standard against which other techniques can be validated

and/or verified.

The main points examined in the thesis will be discussed in this section. They fall

into two broad topic areas: The advantages and disadvantages in the application of the

combined FDTD/Kirchhoff computational technique to various modeling problems, and

the use of the FDTD/Kirchhoff technique to develop and/or improve other, more efficient,

computational techniques.

5.1.1 The Combined FDTD/Kirchhoff Technique

As demonstrated in several examples in this thesis, the combination of the FDTD

method with a spatial transformation technique enables characterization of EM radiation

from a wider variety of systems than does the use of the FDTD method alone. In the present

work, the FDTD method was combined with the scalar Kirchhoff integral formulation

[30, 31, 21] as opposed to other spatial transformation techniques based on equivalent

surface current source terms [41, 40, 44, 45]. This choice was made because the Kirchhoff

integral requires no interpolation between electric and magnetic equivalent source terms

in the FDTD implementation, a necessary feature of the other techniques. The following

discussion will refer to the combined FDTD/Kirchhoff method. However, the points raised

would generally apply to the combination of the FDTD with other spatial transformation

techniques.

One primary advantage of the combined FDTD/Kirchhoff method over the use of

the FDTD alone is the ability to find the fields at locations far removed from the FDTD

computational domain. This was demonstrated in Chapter 3, where the far-field radiation

from a photoconducting structure was modeled. The high level of detail required to accu-

rately model the inhomogeneous regions of current/field interaction in the photoconducting

structure would have necessitated an unreasonably large FDTD grid for observation points

in the far field. FDTD/Kirchhoff simulation results for the far-field radiation demonstrated

that the pulsewidth of the excitation as compared to transit time through the device is

important in design because significant distortion of the received signal can occur.
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Another advantage of combining the FDTD method with a spatial transformation

such as the Kirchhoff surface integral is that it allows determination of fields at analytically

specified observation points, i. e., there is no restriction to FDTD grid cell locations as

points of observation. While interpolation between FDTD grid points is possible, the use

of the spatial transformation enables easy specification of arbitrary observation points,

such as the ring of 50 receivers used in the diffraction modeling problems of Sections 4.4

and 4.5.

A further advantage the combined FDTD/Kirchhoff technique over utilization of the

FDTD method alone is that EM waves need to propagate no farther through the FDTD

grid than to the integration surface. This can reduce the effects of grid dispersion, an

artifact of the FDTD method which can introduce errors into phase and time delays of

signals that propagate long distances through the FDTD grid. An example of this was given

in Section 2.1.3 on page 11, where a sinusoidal signal that had propagated approximately

6A through the FDTD grid developed a delay time error of more than 0.56%.

Combined FDTD/spatial transformation techniques also have disadvantages. The re-

quirement that the integration surface be in a homogeneous problem space means that all

interacting surfaces need to be enclosed (or, equivalently, that all significant surface fields

be contained on a single quasi-infinite plane). This can create the need for an unreason-

ably large FDTD computational domain in order to "capture" all important field/surface

interactions as, for example, reflections off a wall or floor. This effect was exemplified in

Section 4.4, where it was necessary to utilize a large computational domain and unequal

grid spacing to simulate an infinitely high diffracting wedge (see Figure 4.22(c)). Appli-

cation of the Kirchhoff surface integral requires that the integration surface be located

in a homogeneous medium, i. e., external to the wedge, further increasing the size of the

computational domain.

Another limitation of combined FDTD/spatial transformation techniques is the re-

striction on secondary interactions. The field at the observation point cannot, at present,

easily be used as a secondary source to generate a further interaction. The FDTD tech-

nique used alone does not suffer from this problem, since the fields at each grid cell location
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are components of the full-wave solution and may be used, in turn, to generate further in-

teractions. Suggestions for alleviating this limitation in the spatial transformation include

the use of equivalent source techniques, such as those proposed independently by Taflove

and Umashankar [79, 44] and Merewether et al. [143] as well as the use of multiple FDTD

simulation spaces [36, 37]. To date, however, an efficient method has not been presented

in the literature. This topic will be discussed in more detail in Section 5.2.

5.1.2 Using the FDTD/Kirchhoff Technique to Assess, Improve,
and Develop Other Computational Methods

While the combination of the spatial transformation with the FDTD method can

increase the efficiency of the latter, this full-wave simulation technique still tends to be

computationally intensive compared to other techniques based on approximations. As was

demonstrated in several examples in this thesis, the FDTD/Kirchhoff method can be used

to validate, improve, and develop approximate computational techniques. Some of these

examples will now be discussed.

In Chapter 3, the far-field approximation was assessed for use in modeling radiation

from a photoconducting structure by comparing it to the FDTD/Kirchhoff technique. The

far-field approximation is commonly used for modeling radiation from free-space antennas,

and has been proposed for use in modeling the radiation from photoconducting structures

[13, 14, 66]. In the far-field approximation, only the dominant term is retained in the equa-

tions that describe the fields arising from a dipole source, e. g., (2.20). Propagation in a

homogeneous problem space is assumed in the far-field approximation, and this was found

to be a significant source of error in modeling the radiation from a photoconducting struc-

ture when compared to the modeling results obtained using the combined FDTD/Kirchhoff

technique.

Inclusion of inhomogeneous material parameters in the characterization of the far-

field radiation from the photoconducting structure led to the development of a compu-

tationally efficient model for the radiation from within the substrate. This approximate

method was developed by considering the edges of the substrate as secondary diffract-
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ing sources and replacing the substrate material by equivalent Hertzian dipole sources.

When compared to results from the combined FDTD/Kirchhoff method, the approximate

technique was found to accurately reproduce the effects of the substrate material on the

far-field radiation. These simulations demonstrated that distortion can be significant for

pulse widths on the order of 1/3 the transit time across the substrate to the diffracting

edges.

In Chapter 4, the combined FDTD/Kirchhoff method was used to assess the accuracy

of the ray-tracing technique as local scatterer size approaches the wavelength of operation,

a situation often found in indoor wireless communication environments. The ray-tracing

technique is a high frequency approximation in which EM waves are assumed to propagate

as rays, that is, as narrow cylinders with constant cross-sectional phase and amplitude.

The high frequency approximation means that the wavelength is assumed to be much

smaller than objects in the propagation environment, and, hence, ray interactions such as

diffractions and reflections are assumed to be independent of each other.

A numerical experiment was carried out in Section 4.4 in which the width of an

infinitely thick wall was incrementally decreased to quantify the accuracy of the ray-tracing

method. The wall generated three ray interactions: one reflection and two diffractions. Use

of the relative phase method, in which the phase of nearby ray interactions is accounted for

in the total received signal, allowed a comparison of ray-tracing results to those obtained by

use of the combined FDTD/Kirchhoff method. It was shown that the ray-tracing method

can accurately represent the received signal for scatterer sizes down to a fraction of a

wavelength. This experiment demonstrates the importance of incorporating the phase of

the received rays in the total received signal. Additionally, it provides confidence in the

ray-tracing method for modeling systems in which objects approach the wavelength of

operation such as is commonly found in indoor propagation environments.

Finally, in Section 4.5, improvement terms were developed for a set of coefficients

commonly used in ray-tracing to model diffraction effects from dielectric objects. The

so-called Luebbers coefficients were heuristically developed by Raymond Luebbers in 1984

[121] for characterization of fields for a limited class of diffraction problems. The original
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Luebbers formulation was restricted to the characterization of wedges with a large interior

angle, to cases with observation points near the shadow boundaries, and to cases where

the angle of incidence is less than the angle of observation. In recent years, the Luebbers

coefficients have been adopted for use in many ray-tracing programs, e. g., [57, 117, 141,

142]. In many cases, these coefficients have been shown to provide adequate solutions for

diffraction fields from dielectric wedges even when the restrictions mentioned above are

not met. Currently, computationally efficient alternatives which can be easily incorporated

into ray-tracing programs do not exist.

A set of heuristically derived modifications to Luebbers' original diffraction coeffi-

cients was presented in Section 4.5. These modifications were developed by comparison

of the diffraction fields predicted by the modified ray-tracing algorithm to the diffraction

fields found using the FDTD/Kirchhoff technique. The new set of coefficients improve the

accuracy in modeling dielectric wedge diffraction for any angle of incidence or observation

(see Figures 4.32(a)-(f)) and for a wide range of dielectric materials with finite conductivity

(see Figures 4.33(a)-(c) and 4.34(a)-(c)).

In summary, the use of the combined FDTD/Kirchhoff technique has proven ad-

vantageous in a number of time domain modeling problems for radiative EM fields. The

technique is often more accurate and/or efficient than the use of the FDTD method alone.

Further, its use as a standard against which other, more computationally efficient tech-

niques can be assessed, improved, and developed is a great asset.

5.2 Suggestions for Future Work

Several of the topics discussed in this thesis would provide opportunities for further

research. Three broad categories, based on Chapters 2-4 of the thesis, may be defined as

potential areas for further development:

1. Improvements to the implementation of the combined FDTD/Kirchhoff method

2. Improvements in modeling radiation from the photoconducting structure and other

ultrafast electronic devices
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3. Improvements in propagation modeling

Some suggestions for addressing these topics are presented in the following sections.

5.2.1 Improvements to the Implementation of the Combined
FDTD/Kirchhoff Technique

The combination of the Kirchhoff spatial transformation with the FDTD method

presented in this thesis extends the work of DeMoer and DeZutter [21] to include multiple

observation points. In this extension, the Kirchhoff integral is iteratively solved for each

observation point at each timestep. The development of a computationally efficient algo-

rithm for the case involving multiple observation points is an area in which further research

is needed. Incorporation of a simple parallel processing routine could greatly enhance ef-

ficiency, as would the use of precalculated surface or observation point field values for a

given configuration. The latter may be applicable when observation points share certain

Cartesian coordinates, as in the cases of Sections 4.4 and 4.5 where the receivers are all

located in a plane. In these cases, calculations made for certain field components at one

observation point could subsequently be utilized by all observation points.

The present work was implemented as a modification of an FDTD method code

already in existence. Presumably this is the case for many such spatial transformation im-

plementations [21, 35, 42]. The development of a combined FDTD/Kirchhoff method code

with well-integrated initialization and calculation routines and with a carefully designed

user interface would shorten computation times and increase efficiency.

5.2.2 Improvements in Modeling Radiation from Photoconducting
Structures and other Ultrafast Electronic Devices

Several areas relating to the modeling of radiative effects from ultrafast devices would

provide opportunities for further research. Some of these are discussed below.

5.2.2.1 Extension of Radiation Modeling to Other Structures

The simulation results presented in the thesis compare favorably with published

data, such as that presented in [91]. This work could readily be extended by compari-
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son to published results with other structures such as those presented in [99] or through

collaborative efforts with other research groups. The versatility of the PMC-3D and the

combined FDTD/Kirchhoff technique would enable characterization of a wide range of

device structures.

5.2.2.2 Incorporation of the Spatial Transformation into the PMC-3D

The implementation of the Kirchhoff spatial transformation for characterization of

the far-field radiation from a photoconducting structure was carried out as an extension

of an existing computer code. In this extension, the far-field radiation is calculated in

a "post-processing" step. The current density found from an external simulation is used

as excitation for a Hertzian dipole (or array of Hertzian dipoles) embedded in the GaAs

substrate. The radiation arising from the dipole source is then transformed to the far field

with the Kirchhoff surface integral formulation. The external simulation is provided by

the PMC-3D computer code, introduced in Section 3.1. Incorporation of the Kirchhoff

surface integral formulation into the PMC-3D would increase both accuracy and efficiency

of the far-field radiation model. It would eliminate the approximation of the source as a

Hertzian dipole or array of dipoles, increasing accuracy. Further, it would eliminate the

post-processing calculation routine, increasing efficiency.

5.2.2.3 Improvement of the Computationally Efficient Model for Radiation
from the Photoconducting Device

The development of a model for characterization of broadband radiation by sub-

stituting secondary sources for diffraction fields arising from the edges of the substrate

material was presented in Chapter 3. This model could readily be extended to characterize

reradiation from other materials (such as the metal electrodes). A further improvement

to this model would enable implicit representation of the far-field radiation by monitoring

points on the edges of the substrate or other relevant diffracting locations.
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5.2.2.4 Incorporation of Frequency-Dependent Material Parameters

For the photoconducting structure model presented in Chapter 3 and for other ul-

trafast device models, incorporation of frequency-dependent permittivity (e(u")) is impor-

tant. The frequency-dependence of the GaAs substrate material is well documented [144].

Similarly, accurate implementation of the metal electrodes may require incorporation of

frequency-dependent conductivity. In general, implementation of frequency-dependent ma-

terials is difficult in time domain computational methods, but various alternatives have

been proposed. One basic technique involves Fourier transformation of a known E(w) to

the time domain, and subsequent convolution of (t) with the appropriate field quantities

in the FDTD equations. For example, the discretized Maxwell's equation for Ez would be

written

where

aE, axy axx)
(')® at =( Jzax ay

(5.1)

c(t) = .F-16(w) (5.2)

and F-1 is the inverse Fourier transformation operation.

The development of computationally efficient methods for implementing both com-

plex impedance materials and numerical convolution procedures are topics of current re-

search. These methods could be incorporated into the PMC-3D code.

5.2.3 Improvements in Propagation Modeling

Interesting areas for further research in propagation modeling include an extension

of the FDTD/Kirchhoff technique to allow multiple interactions and the development of a

physical basis for the improvements to the Luebbers diffraction coefficients.

5.2.3.1 Development of a Technique to Model Multiple Scattering Interactions

As discussed in Section 5.1, one drawback of the use of spatial transformation tech-

niques is that the received field cannot easily be used as a secondary source to generate a

subsequent interaction. The FDTD method does not suffer from this limitation because
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field/object interaction occurs naturally in the FDTD algorithm, as shown in Figure 5.1.

It would seem that a comparable use of the combined FDTD/Kirchhoff technique to find

secondary interactions would be viable because the FDTD/Kirchhoff method can provide

all six scalar field components at each timestep, as does the FDTD method. The develop-

ment of such a technique would be of great benefit in, for example, propagation modeling

because the transmitter could be located far from scatterers, which could, in turn, be lo-

cated far from receivers. One possible method for modeling secondary interactions is briefly

outlined below and the difficulties encountered in its implementation are discussed. The

technique has been the subject of substantial research for the present work, but because

of the inherent limitations in the method, has not as yet proved useful in propagation

modeling.

The proposed technique is an extension of the "total field/scattered field" method

proposed independently by Taflove and Umashankar [79, 44] and Merewether et al. [143].

Both formulations proposed by these researchers utilize an equivalent Huygens' surface

source to specify the field resulting from an external source that is incident on the FDTD

problem space (see Figure 5.2). Analytical expressions for an incident plane wave field

are incorporated into the FDTD grid surrounding a scatterer in such a way that, while

the total field (incident and scattered) exists inside the surface, only the field due to the

interaction with the scatterer exists outside the surface.

In the proposed extension of this technique, a Kirchhoff integration surface surround-

ing the Huygens' surface transforms the scattered field to an external observation point

(Figure 5.3). This would enable placement of a transmitter far from the FDTD grid, and,

through use of the Kirchhoff transformations, would permit arbitrary receiver placement.

In a further extension proposed in [36, 37], multiple FDTD grids are used to develop

both the primary and secondary interactions (Figure 5.4). This is an interesting proposal.

However, satisfactory simulations results have not yet been published.

Currently there are two primary limitations on these proposed techniques. One limi-

tation is that the use of an equivalent Huygens' surface source requires a much higher degree

of discretization than is required by the FDTD technique alone. For example, Taflove and
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Figure 5.1: Secondary interactions in the FDTD method arise naturally from object/field
interactions.

Huygens' surfac

TX
(external)

FDTD grid

Total field

Scattered field
RX

Figure 5.2: The total field/scattered field formulation.

Umashankar [44] compute the surface currents on an infinitely high square metal cylinder

using the equivalent surface source technique. Their FDTD grid discretization is smaller

than A/60, impractical for most EM field calculations. The second limitation on the tech-

nique is the computational burden necessitated by calculation of all six scalar field com-

ponents at locations surrounding a scatterer. Again, parallel implementation could relieve

the computational burden, or possibly, development of a more efficient algorithm could be

carried out.

The multiple transformation/multiple interaction concept has much to offer. With its

use, arbitrary transmitting structures, including embedded antennas, could be accurately
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Figure 5.3: Proposed extension of the total field/scattered field formulation to include a
spatial transformation.
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Figure 5.4: Proposed extension of the total field/scattered field formulation to include
multiple spatial transformations.

incorporated into propagation modeling problems. Characterization of an entire indoor

propagation environment could be carried out with a degree of accuracy not yet attainable

using current modeling techniques.

5.2.3.2 Improvements to the Proposed Diffraction Model

The basis of the heuristic modification of the Luebbers formulation presented in this

thesis is the determination of the angle at which the Fresnel coefficients R° and lin are

calculated. Because lin multiplies the diffraction coefficient that relates to the reflection

field shadow boundary, the angle 02 at which lin is calculated in the modification depends

on the angular distance from the reflection field shadow boundary to the observation point.
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The original Luebbers formulation used a value for 02 measured the from the n face of the

wedge to the observation point, regardless of the angle of incidence. With the restrictions

that Luebbers placed on the use of the coefficients, this value for 02 gave results of sufficient

accuracy. The heuristically developed modification has an apparent physical basis, and the

connection of the diffraction coefficients to the physics from which they were derived would

be an interesting topic of further research.
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A. FDTD GRID DISPERSION: TWO-DIMENSIONAL
CASE

Find the velocity of a wave as it travels through a 2-D FDTD grid as a fraction of

the velocity in free space, c. Specify the angle of propagation, a, off the x axis of the grid

(a = 0 corresponds to the x axis of the grid, a = r/2 corresponds to the y axis of the

grid).

Start with the 2-D grid dispersion relationship (see [80]):

r 1 sin (wAt)12 r sin (k.Ax)12+ r I sin ocyAy
) j
\12.

L, At 2 ) j I_Ax 2 ) j [Ay

For A = Ax = Ay = Az, (A.1) may be written

(
At

coil)2
sin2

2

( At) ( )kxA (kyA)
2 ) 2 )

Letting kx = k cos a, and ky = k sin a,

A
2 Ak cos a 2 Ak s

2

in a( )
2

sin2 (wAt) = sin + sin
c At 2 2

Use the Newton-Rapheson method to find the values of k that satisfy (A.3):

fkz±i = (ki)
(ki)

Here

Aki cos ( sin a A 2

f (ki) = sin2 + sin2 sin2 wAt
2 2 (c At 2 )

and, using the trigonometric identity sin2 1 cos 2x
2

(A.1)

(A.2)

(A.3)

(A.4)

(A.5)

A cos a A sin a
(k) = 1

2
cos (A/c, cos a)

2
cos (A/c, sin a) . (A.6)

Letting A = A c2os a B A s2in a and C = )2 sin2 (q),

sin2 (Aki) + sin2 (Bki) C
ki+1 = ki

1 A cos (2Aki) B cos (2Bki)
(A.7)
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the amplitude and phase of the baseband part of the signal.

E.1.2 The Bandpass Model

A bandpass signal, y(t), may be modeled as the convolution of the modulated carrie

signal, s(t), with the impulse response of a bandpass filter, h(t) (see Figure E.1):

where:

y(t) = s(t) h(t) (E.3f

s(t) = 'Re [§(t) e3wct] (E.4

h(t) = Re [h(t) eiwcti (E.5

y(t) = 'Re [y(t) e3wct] (E.6

and 0 denotes convolution

Note that s(t), h(t), and y(t) are all real signals and s(t), h(t), and y(t) are

complex signals.

s(t) h (t)

Bandpass
filter

y(t)

Figure E.1: Block diagram of a bandpass filter.

where H* represents the complex conjugate of H. The magnitude spectrum of H

that of a bandpass signal, as shown in Figure E.2.

The frequency domain representation of the impulse response h(t) may be fount

from the Fourier transformation of (E.5):

1 1
H(f) = 2H [f + -2ft* [ -f (E.7

(f) i
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-fc fc

Figure E.2: The magnitude spectrum of a bandpass signal.

E.1.3 The Equivalent Low-Pass Model

To derive the equivalent low-pass model, the bandpass filter impulse response is

represented using an equivalent low-pass filter with a complex-valued impulse response

Again, it is convenient to work in the frequency domain. The Fourier transformation of

y(t) = s(t) ® h(t) may be written using (E.4)-(E.6) as

i7Lffel+lk*H.fici=2 2

G§[f fc] + 1 §* [ f fc]) x G Ti f f fel + i i E f fel) (E.8:

Note:

§[f fc] x il*[f fc] = 0

§ 1f fcl x H h] = 0

since there is no spectral overlap.

Therefore:

1 1

i7[.t.ic] +-i7*[.fic] =
1 ., 1 1 1

2 51.f hi
2

11 [f ic] +
2

§* Hi ic]
2

11*[fA]

With a change of variables, f f, -4 f,

1 1 1

2 1(f) = 2 §(f) x 2 ii(i)

i7(f) = §(f) x 11(i)

(E.9

(E.10


















