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Modern civil commercial transport aircraft provide the means for the safest of all 

forms of transportation. While advanced computer technology ranging from flight 

management computers to warning and alerting devices contributed to flight safety 

significantly, it is undisputed that the flightcrew represents the most frequent primary 

cause factor in airline accidents. From a system perspective, machine actors such as the 

autopilot and human actors (the flightcrew) try to achieve goals (desired states of the 

aircraft). The set of activities to achieve a goal is called a function. In modern 

flightdecks both machine actors and human actors perform functions. Recent accident 

studies suggest that deficiencies in the flightcrew's ability to monitor how well either 

machines or themselves perform a function are a factor in many accidents and incidents. 

As humans are inherently bad monitors, this study proposes a method to automatically 

assess the status of a function in order to increase flight safety as part of an intelligent 

pilot aid, called the AgendaManager. The method was implemented for the capture 

altitude function: seeking to attain and maintain a target altitude. Fuzzy systems were 

used to compute outputs indicating how well the capture altitude function was performed 

from inputs describing the state of the aircraft. In order to conform to human expert 

assessments, the fuzzy systems were trained using a genetic algorithm (GA) whose 

objective was to minimize the discrepancy between system outputs and human expert 

assessments based on 72 scenarios. The resulting systems were validated by analyzing 

how well they conformed to new data drawn from another 32 scenarios. The results of 

the study indicated that even though the training procedure facilitated by the GA was able 

to improve conformance to human expert assessments, overall the systems performed too 
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poorly to be deployed in a real environment. Nevertheless, experience and insights 

gained from the study will be valuable in the development of future automated systems to 

perform function assessment. 
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Automating Pilot Function Performance Assessment Using Fuzzy Systems and a Genetic 
Algorithm 

1. Introduction 

Flightdecks of modern civil commercial transport aircraft are becoming more 

sophisticated as advanced computer equipment is installed to help pilots perform their 

jobs better. It appears that the cockpit of the future will resemble an office designed for 

"information management, communication, decision making, and supervisory control" 

(Wiener, 1988). In order to complete a flight mission, pilots have to achieve a number of 

goals in each phase of the flight ranging from attaining a target altitude to configuring the 

airplane for landing. While in the early days of aviation, pilots had to "manually" 

perform tasks to achieve their goals; today's digital on-board systems can be programmed 

to automatically achieve them. From a system perspective, the process of achieving a 

goal is called a function. So on the flightdeck, machine actors, such as the autopilot, and 

human actors (the flightcrew) are performing functions to accomplish goals. 

While air travel is the safest of all forms of transportation (Bureau of 

Transportation Statistics, 1995), accidents still do occur. According to a report released 

by Boeing (1996), 59.8% of hull loss accidents were caused by the flightcrew while only 

12.3% of the accidents were attributed to the airplane during the last ten years. Recent 

studies show that human deficiencies in assessing function status were a factor in past 

incidents and accidents (Chou et al., 1996). Why is it so important to assess how well 

functions are being performed? Firstly, pilots make mistakes, meaning that they may 

poorly perform the function manually, or may fail to program the automation correctly to 

perform the function for them. Secondly, the automation may fail to perform the function 

it is programmed for. In both cases, the problem can be recognized before it matures if 

one monitors if a function pursues a stated goal. So far, the flightcrew is called upon to 

perform this monitoring task. The dilemma is that humans are bad monitors and may fail 

to detect deteriorated functions. For instance, there are reported incidents and accidents 
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in which the flightcrew failed to capture a target altitude (Chou, 1994). The reasons for 

failure varied from excessive workload to distraction and improper understanding of 

flightdeck automation. Whatever the reasons were, in most cases the flightcrew failed to 

respond to signs that if interpreted correctly would have indicated to the flightcrew that a 

function was not performed correctly. 

As part of the Agenda Manager, a computational aid to help pilots manage their 

flightdeck activities, it was sought to develop a system to automatically perform function 

assessment with regards to the capture altitude function, a function that seeks to attain 

and maintain a target altitude. The problem was how to devise such a system. 

The objectives of this thesis were to implement function assessment for the 

capture altitude function, calibrate the implemented method to emulate human expert 

assessment, and validate if the method was reliable and coincided with human expert 

assessments. To facilitate function assessment, fuzzy systems were designed to assess 

the status of capture altitude functions. Subsequently, these systems were trained to 

emulate human expert assessment by the application of a genetic algorithm minimizing 

the discrepancy between fuzzy system and human expert assessments based on 72 

scenarios. I validated the fuzzy systems by analyzing the discrepancies between them 

and the human experts based on another set of 32 scenarios. 

The thesis is organized as follows: chapter 2 provides background information on 

automation in aviation technology and intelligent pilot aides. Chapter 3 lists the 

objectives of this thesis. Chapter 4 describes a fuzzy logic framework and 

computer-based fuzzy logic tools that were used in this study to create fuzzy systems 

facilitating function assessment. Chapter 5 talks about a genetic algorithm to train fuzzy 

systems. Chapter 6 details the fuzzy systems that were created to automatically perform 

function assessment and explains how human expert knowledge was extracted to train the 

fuzzy systems to conform to human assessment. Chapter 7 presents the results indicating 

how well the fuzzy systems conformed to human function assessment. Chapter 8 

contains the conclusions and recommendations drawn from this study. 
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2. Background 

In the coming millennium flightdeck automation is likely to change operations in 

the cockpit of modern civil transport aircraft and in ground based air traffic control 

facilities. Better ways of storing, retrieving, processing, and visualizing information and 

new airline and air traffic control policies and procedures as well as modified regulations 

by the Federal Aviation Administration (FAA) are called for as the number of 

commercial airplanes is estimated to triple within the next 20 years (Pelegrin, 1992). As 

fuzzy function assessment (FFA) described in this thesis represents a form of flightdeck 

automation, an overview of flightdeck automation related issues is provided here. 

This chapter is organized as follows: First, various issues regarding flightdeck 

automation are overviewed. In particular, perceived flightdeck automation benefits and 

problems are summarized. Second, existing experimental intelligent pilot aid systems as 

a response to current automation problems are mentioned. Third, FFA for the capture 

altitude function is introduced. 

2.1 Flightdeck Automation 

There are many possible definitions of automation. Essentially, automation is the 

"automatic operation or control of a process, equipment, or a system" (American 

Heritage Dictionary, 1969). According to Billings, human operators use automation to 

"accomplish some task that would otherwise be more difficult or impossible, or ... would 

otherwise require increased human attention or effort" (1996, p 3). Billings divides 

flightdeck automation into three groups: automation of control, information, and 

management (1996, p 18). While control automation is concerned with controlling the 

aircraft in space and time, information automation handles information to be presented to 

the flightcrew. Management automation performs strategic planning and controlling 

tasks. Recently, computer-based pilot aids combine all or some forms of automation in 



4 

an integrated fashion and often include AI algorithms to produce better solutions. 

Supplied with vast data sources from digital systems, artificial intelligence applications 

become feasible and are candidate systems for solving problems relating to pilot 

workload, situational awareness, and in flight emergency handling (Lee & Sanders, 

1993). In section 2.2 those "intelligent" forms of automation are discussed in more 

detail. 

2.1.1 Evolution of Flightdeck Automation 

While early civil commercial jet airplanes such as the Boeing 707, introduced in 

1958, enabled air travel at high altitude and speed, the systems the pilot operated with 

were simple compared with today's modern aircraft and many tasks such as navigation 

had to be performed manually (Billings, 1996). In those first generation jet aircraft, 

sensors provided pilots with essential state data such as magnetic heading, speed, altitude, 

and position while an analog autopilot was capable of controlling pitch, roll, and yaw as 

well as heading and altitude (Billings, 1996). Second generation aircraft such as the 

Lockheed L-1011 were equipped with more sophisticated analog autopilot offering a 

broader range of lateral and vertical aircraft control options and also provided autoland 

capabilities (Billings, 1996). Third generation aircraft such as the Airbus A-310 were 

equipped with digital computer systems and graphic cathode ray tube (CRT) displays, the 

trademark of so-called glass cockpits (Sweet, 1995). The emergence of CRT displays 

allowed designers to reduce the total number of displays on the flightdeck (Sexton, 

1988). Also, flight management systems appeared allowing the pilot to program the 

airplane to follow a 4-D path defined as a sequence of longitudes, latitudes, altitudes and 

airspeeds (Billings, 1996). More information was made available to the crew; and pilots 

especially appreciated display formats allowing data integration such as weather pattern 

maps superimposed on graphics representing intended or alternative flight paths (Sweet, 

1995). Fourth generation aircraft such as the A320 took automation a step further to a 

process called "envelope protection" where pilot commands are first processed by a 
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digital "fly-by-wire" avionics system making sure that flight operating limits and 

boundaries are not exceeded by the pilot's control inputs (Billings, 1996). 

2.1.2 Flightdeck Automation Benefits 

Facilitated by rapidly improving micro-processor technology, the trend of using 

better computer equipment and software on the flightdeck is likely to continue. 

Advanced computer systems are deployed in the flightdeck in order to improve economy, 

customer satisfaction, and flight safety (Billings 1996; Wiener, 1989; Wiener & Curry 

1980). 

2.1.2.1 Economy 

Today, the usage of flight management computers saves millions of dollars due to 

their effect of reducing fuel consumption significantly. In addition, wear and tear of tires, 

brakes, and engines is reduced by application of autothrottle and autobrake (Wiener, 

1985b). Money is also saved by reducing the flightcrew size. With the certification of 

two pilot transport aircraft came a productivity boost as the flight engineer was 

substituted by automated systems (Wiener, 1985b). Digital systems are easy to maintain 

and are very reliable; in fact the fraction of time a scheduled aircraft is available for a trip 

is higher for more advanced aircraft than for conventional ones (Wiener, 1985b). For the 

airline industry the goal is "to conduct the flight as economical as possible, minimizing 

flight time, ground delays, fuel consumption, and wear on the equipment" (Wiener & 

Curry, 1980, p. 1005). The cost savings potential are likely to grow. While airspace is 

currently managed by Air Traffic Control (ATC) ordering aircraft to follow dedicated 

routes and airways, in the future, a less stringent way of managing the airspace, called 

"free flight", may give aircraft equipped with more powerful computer systems the 

opportunity to use more efficient flight paths (Billing, 1996, Sweetman, 1995). 

Computer systems also help utilize scarce airspace more efficiently in times of increasing 
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air traffic (Wiener, 1985b). For instance, the FAA and NASA investigate how 

automation may be used to increase aircraft throughput by enabling closely-spaced 

parallel approaches in terminal areas (Billings, 1996). 

2.1.2.2 Customer Satisfaction 

In order to satisfy their customer needs, airlines have to tightly adhere to promised 

schedules and cater to passenger comfort. Thus, flight missions ought to progress in a 

timely manner and at an adequate level of comfort. Wiener and Curry describe passenger 

comfort as "to provide passengers with the smoothest possible flight (by weather 

avoidance, selection of the least turbulent altitudes, gradual turns and pitch changes, 

gradual altitude changes)" (1980, p. 1004). Computer systems become indispensable in 

devising passenger-friendly flight plans. In fact, the newest airplanes are equipped with 

gust alleviation algorithms and in the future "free flight" will allow pilots to select more 

comfortable flight paths (Billings, 1996). 

2.1.2.3 Flight Safety 

At least 60% of all aircraft accidents are attributed to human error (Billings, 1996; 

Nagel, 1988). Advanced information technology is likely to be the tool to make air-based 

transportation safer as evidence exists "that more highly automated aircraft have had 

substantially less accidents than earlier aircraft" (Billings, 1996). Various computer 

systems are deployed on today's modern fly-by-wire aircraft to enhance flight safety. 

There are automated systems such as autoflight systems that accurately fly the plane as 

commanded and warning devices that alert the flightcrew of imminent dangers such as 

system faults, stall and overspeed conditions, and environmental threats such as terrain, 

aircraft, and wind shear. The Ground Proximity Warning System (GPWS) detects terrain 

hazards and suggests climbing to a safe altitude to remove the hazard Similarly, the 

traffic alert and collision avoidance system (TCAS) tracks dangerously approaching 
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aircraft and proposes descending or climbing to alleviate the problem. The wind shear 

advisory system (WSAS) recognizes hazardous wind shear and suggests climbing to a 

safe altitude. GPWS and TCAS are proven to have increased safety (Billings, 1996). 

Those systems are effective because they alert the crew to hazards that they otherwise 

would not be aware of. Less obvious but nonetheless important is the improvement in the 

human-machine interface. Software generated displays (soft-displays) are very flexible 

and allow a great deal of data integration by visualizing data using symbols, colors, text, 

and multi-dimensional graphics (Wiener, 1985b). While graphics are now being used for 

map displays and system synoptics displays, the full potential of graphics is not utilized 

yet as displays visually integrating information regarding attitude and flight path in 3-D 

are still under development (Billings, 1996). 

2.1.3 Flightdeck Automation Challenges and Problems 

Accident and incident reports covering a series of fatal crashes as well as major 

flight abnormalities of modern civil transport aircraft show evidence that there are 

problems related to usage of advanced computer equipment on the flightdeck and suggest 

that current systems should be improved to enhance flight safety (Funk, Lyall, and Riley, 

1995; Billings, 1996). Major problem areas identified so far are presented in the 

following section. The first problem area is related to adverse effects of flightdeck 

automation. The second addresses the issue of human limitations. The last points out the 

need for better human-machine interfaces. 

2.1.3.1 Adverse Effects of Flightdeck Automation 

While flightdeck automation overall contributes to safety, evidence exists that in a 

number of incidents automation actually was the cause of the problem or a contributing 

factor. As Billings summarizes: 
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In some cases, automated configuration warning devices have failed or been 
rendered inoperative and flightcrew procedures have failed to detect by 
independent means an unsafe configuration for takeoff. In other cases, 
automation has operated in accordance with its design specifications, but in a 
mode incompatible with safe flight under particular circumstances. In still others, 
automation has not warned, or flightcrews have not detected, that the automation 
was operating at its limits, or was operating unreliably, or was being used beyond 
its limits. Finally, we have seen incidents and a few accidents in which pilots 
have simply not understood what automation was doing, or why, or what it was 
going to do next. (1996, p. 2-3). 

The following sections explain problems with flightdeck automation more 

specifically. 

2.1.3.1.1 Imperfect Automation 

The programs, computers, sensors and digital devices of today's avionics systems 

are not error free. In fact, as the total volume of software implemented in the A340 

exceeds 20 megabytes, error-free software becomes utopia. So, despite their high 

reliability, computer systems are prone to fail sometimes. The problem is that a failure in 

the computer system often remains unnoticed by the human operator until the situation 

turns bad (Wiener & Curry, 1980). Also, some warning devices such as the Ground 

Proximity Warning System (GPWS) have the tendency to give frequent false alarms. 

The effectiveness of those warning devices is reduced since "people will ignore an alarm 

if experience has shown that the alarm may be false" (Wiener & Curry, 1980, p. 1003). 

2.1.3.1.2 Vulnerable Automation 

Automation allows the flightcrew to make mistakes that were not possible without 

it and the consequences of automation induced errors tend to be severe (Kantowitz & 

Campbell, 1996). For instance, many errors with programming the inertial navigation 

system (INS) are documented (Wiener, 1980, Wiener 1988). Systems like the INS are 
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particularly vulnerable to data entry errors. In several cases flightcrews entered an 

erroneous initial position or waypoint into the INS resulting in a major deviation from the 

intended flight path as the time displacement between error and noticeable consequences 

is fairly large (Wiener, 1985; Nagel, 1988). 

2.1.3.1.3 Clumsy Automation 

While automation is installed to decrease workload, Wiener suggests that 

although automation reduces workload in relaxed phases of flight such as cruise, it 

actually increases workload in busy phases such as final approach (1983, 1985a, 1985b). 

As the pilot has to monitor or scan the automation periodically, the potential for 

automation to actually increase workload is explained by its constant demand for 

attention. With the advent of automation such as the flight management system "pilots 

complain about more programming, planning, sequencing, and alternative selection, and 

more thinking" (Wiener 1985b). 

2.1.3.1.4 Opaque Automation 

A study performed by Suter and Woods showed that pilots fail to understand the 

behavior of advanced automation under certain circumstances and revealed that the 

human-machine interface falls short of providing feedback as to what the automation is 

doing and why it is doing it (1994). The devices are opaque in that they operate silently 

and lack transparency. The focus of the researchers' criticism is the "proliferation of 

modes" allowing the autoflight system in combination with the flight management 

system to provide the flightcrew with a large number of functions and options for 

achieving their goals under different circumstances (1995, p. 17). The downside of mode 

rich systems is that -a human user can commit an erroneous action by executing an 

intention in a way that is appropriate to one mode when the device is actually in another 

mode." (1995, p. 6). Since advanced automation is gradually taking on the role of a 
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semi-autonomous actor, transparency and predictability of the automation is more and 

more important. Lack of automation transparency may cause goal conflicts between 

flightcrew and machine as happened at Nagoya, Japan, in April 1994, when a Taiwanese 

A300-600 was programmed to perform go-around, a flight maneuver in which the 

airplane is commanded to climb and accelerate, while the pilot tried to land the airplane. 

The airplane got out of trim and crashed. 

2.1.3.2 Human Limitations 

Wiener concludes that the human is an unreliable monitor (1985a). Parasuraman 

found that "monitoring computers to make sure they are doing their job properly can be 

as burdensome as doing the same job manually, and can impose considerable mental 

workload on the human operator" (1996). In light of these findings it is surprising to see 

that the pilot's role has changed from a continuous in-the-loop controller to a system 

supervisor and monitor. The large number of warning and alerting systems installed in 

today's jets indicates that backup systems are necessary in case the flightcrew fails to 

perform its monitoring task correctly. As there are fewer and fewer meaningful functions 

to be performed manually, problems related to loss of flying skills, complacency, and 

boredom become an issue (Wiener, 1983, 1985a, 1988). Humans have limited short-term 

memories; thus, maintaining a correct mental model of the complex automation becomes 

a formidable task (Wickens and Flach, 1988). Today's flightdeck automation fails to 

address human limitations in many aspects. Billings proposes "human-centered aviation 

automation" tailored to human needs (1996). Other researchers argue that adaptive 

automation allowing the modification of the level of automation in real time may 

"represent an optimal coupling of the level of automation to the level of operator 

workload" (Scerpo, 1996). 
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2.1.3.3 Human-machine Interface 

The human-machine interface provides the flightcrew with information regarding 

the state of the airplane and systems. According to Wiener, most cockpits overload the 

flightcrew with data (Wiener, 1983); partly because "most warning and alerting systems 

have grown up piecemeal in the cockpit, often being added one-by-one as the result of 

accidents" (Wiener, 1989, p 4). In addition, automated devices such as the flight 

management system are not very transparent to the human, causing the flightcrew to lack 

situational awareness about the status of the automatic device (Wiener, 1988). There is 

still room for improving the human-machine interface: existing information can be better 

integrated and more meaningful information about the state of the automation is needed. 

2.2 Intelligent Pilot Aids 

Faced with the deficiencies of current cockpit automation researchers go new 

ways. Promising is the area of intelligent assistant systems (Boy, 1991). Such systems, 

when configured as pilot aids, integrate functions such as monitoring, assessing, 

planning, and plan execution into one cohesive unit. This section reviews experimental 

pilot aids and the functions they perform. 

Woods (1991) distinguishes between intelligent advisory, subordinate, and 

information systems. An important dimension of intelligent systems is their style of 

collaboration with the human operator and their level of autonomy. Autonomous systems 

operate on an underlying process silently without much interaction with the operator, 

whereas purely dependent systems are not authorized to manipulate the monitored 

process at all. According to Woods, advisory systems are dependent on the human as 

problem holder, while in contrast, intelligent subordinate systems, supervised by the 

human operator, act on the monitored process autonomously (1991). Information 

systems are designed to facilitate the information exchange between the human and the 
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machine and provide better information for the human problem solver. The pilot aids 

reviewed here fit Wood's categorization scheme well. 

Hammer (1984) developed a rule-based procedural aid capable of identifying pilot 

errors in procedure execution. Similarly, Search Technology's Hazard Monitor detects 

flight management system programming errors resulting in inappropriate airplane 

configuration (Search Technology, 1995). Hammer's system as well as the Hazard 

Monitor are intelligent advisors fitting Woods description of a critiquing advisor that 

"analyzes a user's decision, solution or plan of action in order to detect errors, verify the 

adequacy of the human's decision, or suggest improvements" (p. 153). Diverter, 

developed by Lockheed Aeronautical Systems Company, and Finder, developed by 

Sextant Avionique are advisors performing high level planning functions. Planning on 

the flightdeck is performed less frequently compared with continuous system monitoring, 

and flight control tasks and involves aggregating vast amounts of data. Typical planning 

tasks on the flightdeck have the objective to devise or revise a flight path. During initial 

flight planning a flight path is created that best meets multiple criteria such as economy 

and flight time. During flight, the flightcrew may have to revise the flight path to react to 

an emergency situation or to avoid bad weather. In case of a diversion that is selecting an 

alternate destination airport in an emergency situation, the flight-crew has to quickly 

make an assessment of which airport fits best given a number of constraints. Diverter as 

well as Finder support real-time flight planning taking into account all available data such 

as fuel capacity, weather forecasts, ground facilities, regulation rules, and 

passenger-based regulations (Bittermann et al., 1992; Rudolph et al., 1990). 

The Cockpit Assistant System (CASSY) is more comprehensive than the systems 

mentioned above as it integrates flight planning, system monitoring, situation assessment, 

pilot intent and error recognition, plan execution, and an advanced human-machine 

interface featuring graphic displays in combination with a speech recognition and speech 

synthesis into one intelligent pilot aid (Gerlach et al., 1995; Onken, 1992, 1995). 

Advisory aiding is performed by continually checking pilot conformance to ATC 

instructions. If CASSY detects a significant deviation the pilot is alerted. CASSY 
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functions like a semi-autonomous subordinate when the pilot authorizes CASSY to 

execute a flight plan previously generated by CASSY or the flightcrew. The advanced 

interface implemented in CASSY can be regarded as an intelligent information system. 

The Pilot's Associate (PA) uses expert system technology to aid fighter pilots in tasks 

required for air combat (Rouse et al., 1990; Banks & Lizza, 1991). Since the PA 

combines monitoring, planning, pilot intent and error recognition, plan execution, and 

display management, it exhibits characteristics of intelligent advisory, subordinate and 

information systems. 

The Agenda Manager (AM) checks flightcrew compliance to ATC instructions, 

monitors system status, detects goal conflicts between the flightcrew and the auto flight 

system, and prioritizes functions (Funk & Braune, 1997, Funk et al., 1997). Pilot goals 

are declared verbally mostly as a response to ATC clearances and progress towards 

achieving those goals is continuously monitored. If progress is determined to be 

unsatisfactory, warning messages are presented visually to alert the crew. Given these 

capabilities, the AM is an intelligent advisory and information system. The 

AgendaManager evolved as a mean to facilitate Agenda Management (Funk & McCoy, 

1996). In the context of Agenda Management, a function is a set of activities to achieve a 

goal, a desired state of the aircraft. Functions are performed by human actors, the 

flightcrew, or by machine actors such as the autopilot. For instance, if the goal is to 

climb and maintain 10,000 feet, the flightcrew has the choice to hand-fly the airplane to 

the target altitude or program the autopilot to perform this function automatically. The 

AM is decomposed into software objects representing entities such as actors (pilot, 

automation), aircraft systems, goals, and functions. Software objects representing 

functions are called Function Agents and monitor whether their corresponding goals are 

being achieved in a satisfactory and timely manner. The method called fuzzy function 

assessment (FFA) described in this thesis is aimed at facilitating the logic, Function 

Agents use to determine how satisfactorily goals are being pursued. 
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2.3 Fuzzy Function Assessment (FFA) 

Assessing a function is a process that unveils abnormal behavior and detects 

problems before they mature; thus, it is an operation that is likely to increase safety 

(Wiener, 1989). Assessing a function involves determining how close the current state is 

with regards to the goal and analyzing the magnitude of the deviation from the goal in a 

continous manner in order to recognize if progress is being made. In addition, a function 

is deemed unsatisfactory if safety constraints are violated. Current system monitors do 

not take the flightcrew's goals into account and therefore lack the capability to indicate if 

the airplane is heading in the wrong direction. As function assessment is embedded as 

part of the AM, the flightcrew's goal is known at any point of time; thus, function 

assessment with regards to pilot goals is feasible. What motivation is there to automate 

function assessment? Function assessment is a repetitive monitoring process that when 

performed incorrectly or not performed at all may threaten mission safety. For example, 

the flightcrew of Eastern Air Lines L-1011, distracted by a minor landing gear indicator 

malfunction, failed to monitor the function to maintain 2,000 feet. Starting at 2,000 feet, 

the airplane gradually descended and crashed into ground, killing 99 passengers. 

According to the National Transportation Safety Board the probable cause of this 

accident was "the failure of the flightcrew to monitor the flight instruments during the 

final 4 minutes of flight" (NTSB, 1973). Since humans are inherently bad monitors 

(Wiener, 1985, 1988; Parasuraman, 1996) automating functions, which monitor a 

process, is justified as long as "the detection algorithms and associated software are 

reliable" (Parasuraman, 1996. p. 96). Humans tend to perform salient tasks first in a 

serial manner (Chou, 1992). Aviate functions involve controlling the aircraft in space 

and attitude and are considered the most important ones. Due to the lack ofcues alerting 

the crew of high priority aviate functions deviating from declared goals, less important 

functions such as diagnosing a malfunctioning gear indicator light may receive more 

attention than necessary. By delivering feedback indicating if functions are in agreement 

with declared goals, aviate functions are likely to receive the right level of attention and 

therefore, function prioritization errors are mitigated. 
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In this thesis FFA is implemented for the capture altitude function. Capturing in 

this context means to attain and maintain a target altitude. A capture altitude function is 

performed satisfactorily if and only if progress is made towards attaining and maintaining 

a target altitude in a safe manner. The following two cases show that automation can be 

used to climb to an altitude in a manner that is not safe. In 1979, Aeromexico, flight 945, 

a DC-10 cleared to climb to 31,000 ft. stalled at 29,800 ft. and was recovered at 18,900 ft. 

Heavily damaged, the airplane landed at its destination. According to the NTSB, the 

flightcrew programmed the autothrust system to maintain an airspeed of 320 kts and the 

autopilot was set to maintain a vertical speed of 1,200 ft per minute. Once maximum 

continuous thrust was commanded from the autothrust system to maintain 320 kts at high 

altitude, the autopilot increased pitch attitude to reach the selected vertical speed. 

Eventually, the autopilot increased pitch beyond operating limits and caused the airplane 

to stall. The flightcrew failed to "follow standard climb procedures and to adequately 

monitor the aircraft's flight instruments" (NTSB, 1979). In 1994, Airbus A330-322 

crashed during a test flight at Toulouse Blagnac Airport, France. According to Billings, 

"it was found that the aircraft autopilot had gone into altitude acquisition (ALT) mode. 

In this mode, there was no maximum pitch limitation in the autoflight system software. 

As a consequence, ... the autopilot can induce irrelevant pitch attitudes since it is still 

trying to follow an altitude acquisition path which it cannot achieve" (Billings, 1996, p. 

181). 

In light of potentially hazardous function execution by automation or the 

flightcrew, FFA is designed to evaluate if a function is being carried out with respect to 

the goal and without creating a hazardous situation. The hazard assessment part of FFA 

can be seen as an "electronic cocoon" (Wiener, 1989, p. 5) that senses to what degree the 

aircraft violates the safety envelope. As mentioned earlier, many automated warning and 

alerting devices issue nuisance warnings that impede their total effectiveness. A type of 

FFA is desirable that matches human expert assessment capabilities to alleviate the 

problem of nuisance warnings and as suggested by Wiener indicates the degree of 

emergency (1980). 
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3. Research Objectives 

The primary objectives of this study were to 1: implement FFA for the capture 

altitude function; 2: calibrate FFA to emulate human expert assessment; 3: evaluate if the 

implemented FFA is reliable and coincides with human expert assessment. A secondary 

but important objective was to develop software making it easy to rapidly implement 

FFA. 

The methods to reach the above objectives are described in chapters 4 - 6 and are 

organized as follows: chapter 4 reviews fuzzy systems as the underlying technology for 

FFA. Chapter 5 describes the use of a genetic algorithm to train fuzzy systems to match 

human assessment. Chapter 6 deals with how fuzzy systems were developed to facilitate 

FFA. 



17 

4. Fuzzy Systems 

FFA relies on fuzzy systems using fuzzy if-then rules to transform system inputs 

to system outputs. Fuzzy systems are based on fuzzy logic theory (Munakata & Jani, 

1994). The way fuzzy logic is used in this study is presented in the following section for 

the reader's convenience. First, background information about fuzzy logic in general is 

provided. Next, it is shown how fuzzy logic helps overcome the shortcomings of 

traditional logic with regards to representing the reality, as humans perceive it. Finally, 

basic concepts of fuzzy logic pertaining to fuzzy systems are described in more detail in 

order to lay a solid foundation for chapter 6 in which the development of fuzzy systems 

for FFA is described. 

4.1 The History of Fuzzy Logic 

Fuzzy logic provides a method for computers to represent vague or imprecise 

concepts such as warm, tall, and expensive. While in terms of Boolean logic an object 

for example is either warm or not warm, fuzzy logic introduces the degree of membership 

that quantifies to what degrees an object belongs to various sets such as the set of cold, 

and hot objects. So, a warm object may belong to the set of cold objects to degree 0.1
 

and the set of hot objects to degree 0.9. The degree of membership ranges from 0 to 1,
 

where 0 means no membership and 1 full membership.
 

Since its invention in 1965, fuzzy logic has gained in importance and many
 

successful applications of fuzzy logic, ranging from industrial process control to
 

consumer products to aerospace and bioengineering, provide empirical evidence that
 

fuzzy logic is a practical tool to solve real problems (Langari & Yen, 1994). Fuzzy logic 

went on a journey around the globe, which is well documented by von Altrock (1995). 

Lotfi A. Zadeh devised fuzzy logic at the University of Berkeley in California in 1965. 
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Initially, fuzzy logic faced harsh criticism from statisticians who believed that probability 

theory already provided the tool set to model human-like decision making and therefore 

argued that fuzzy logic was unnecessary. Given the controversy about fuzzy logic in the 

U.S., it was not surprising to see the first technical application to come from Europe. 

Mamdani and Assilian (1975) developed the first fuzzy rule-based control system 

implemented on a laboratory-scale steam engine in England. Encouraged by the good 

result, more and more applications of fuzzy logic followed in Europe as well in the 

United States. However, the applications in Europe were mostly limited to process 

control automation while in the U.S. the focus was on military applications. A large-

scale breakthrough of fuzzy logic did not occur until Japanese industry became interested 

in the technology. First, Japanese companies applied fuzzy logic for various control 

applications such as in the case of the Sapporo subway control system (Yasunobu, 

Miyamoto, and Ihara, 1983). The subsequent "history of industrial applications of fuzzy 

logic in Japan," (p. 43) is well documented by Hirota (1995). Starting in 1987, through a 

collaborative effort of universities, companies and the government, fuzzy logic 

experienced a phenomenal boom in Japan. The merits of this collaboration became 

visible when Japanese consumer goods manufacturers incorporated fuzzy logic in all 

kinds of home electronics ranging from camcorders to washing machines. The 

proliferation of fuzzy logic in the consumer goods sector was accompanied by strong 

marketing campaigns promoting the idea of intelligent consumer goods through fuzzy 

logic. In fact, fuzzy logic became one of the buzzwords of the nineties. A new concept 

called "softcomputing", which combines neural networks, fuzzy logic, genetic algorithms 

and other artificial intelligence methods, is studied by many researchers to solve 

complicated problems and make consumer products smarter (Dote, 1995; Linkens & 

Nyongesa, 1996; Munakata & Jani, 1994; Zadeh, 1994). Fuzzy logic is still booming in 

Japan and is supported by huge governmental budgets, while in the U.S. and Europe, in 

light of the strategic role of fuzzy logic, measures are under way to catch up with the 

Japanese competition. 



19 

4.2 Boolean vs. Fuzzy Logic 

In this section the fundamental principle of fuzzy logic is illustrated by first 

showing how Boolean logic fails to address the way humans process information and 

perceive reality and then, by describing how fuzzy logic extends Boolean logic in order to 

handle imprecision and vagueness. 

4.2.1 The Weakness of Boolean Logic 

In a world modeled in Boolean logic, questions are answered in a yes-or-no rather 

than in a more-or-less fashion. In the same way, statements are true or false and objects 

belong to a set or not. In well defined domains without imprecision and vagueness, 

Boolean logic works well. For example, consider you want to define A as a set 

containing all numbers that are greater than 10. A priori, it is known which numbers 

belong to A and which ones do not. Thus, defining A := {xI x > 10} is legitimate. But 

now consider the task of defining B as a set containing all old humans. Here, fuzziness is 

introduced because it is no longer evident which humans would be in B and which ones 

would not. An attempt to define the set in crisp terms such as B := {x is hum* age(x) 

60 years} would be counterintuitive and also introduces an artificial and arbitrary 

threshold. Classifying a 60 year-old person as old while considering a 59.99 year-old not 

old seems to misrepresent the true state of reality. A sharp boundary is counterintuitive 

in most real situations, since an insignificant and almost unidentifiable difference 

between two objects results in a different classification of those two. Conventional logic 

bears the problem that whenever the attempt is made to model a system, whose elements 

are imprecise and vague, precision has to be artificially injected. The implication for a 

rule-based system is that more rules are needed to model the system behavior in crisp 

terms than the fuzzy formulation of the system would require. A large number of rules 

are needed to cover all possible situations and to prevent the system from reacting too 

sensitively under varying system inputs. I explain the complications of Boolean logic 
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regarding rule-based systems using the following example. Consider the rule-based 

system with airspeed and output stall: 

IF airspeed is low THEN stall is likely. 

IF airspeed is high THEN stall is unlikely. 

low(airspeed):= {
 

true, for airspeed 140 kts;
 

false, for airspeed> 140 kts;}
 

high(airspeed):= {
 

true, for airspeed> 140 kts;
 

false, for airspeed __ 140 kts}
 

When increasing airspeed, stall abruptly changes from likely to unlikely at the 

defined threshold of 140 kts, which separates low from high airspeed. In order to reduce 

sensitivity, the system has to be modified in the following way: 1. increase the granularity 

of the output stall into say, likely, possible, and unlikely; 2. increase the granularity of 

input airspeed into say, low, medium, and high; 3. add another rule resulting in the 

modified rule base: 

IF airspeed is medium THEN stall is possible 

IF airspeed is low THEN stall is likely 

IF airspeed is high THEN stall is unlikely 

Still, even after this modification the system behavior changes abruptly at the 

threshold values of medium, low, and high of the system input airspeed. An adequately 

smooth behavior can only be obtained by increasing the granularity of stall and airspeed 

significantly and adding a considerable number of rules. 
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To summarize, crisp logic faces the following two major complications as 

described by Zimmermann (1991): 

1.	 Real situations are very often not crisp and deterministic and they cannot be 
described precisely. 

2.	 The complete description of a real system often would require far more detailed 
data than human being could ever recognize simultaneously, process and 
understand. (p. 3) 

4.2.2 The Fuzzy Logic Benefit 

While fuzzy logic is based on a strict mathematical framework, it allows one to 

model imprecise and vague information at a high level of abstraction. One of the main 

benefits of fuzzy logic is its capability to model human logic (von Altrock, 1997). 

Humans do not devise a rule for each possible situation; instead humans formulate rules 

for a few typical situations and arrive at a conclusion through approximation. In that 

respect, fuzzy logic is very similar to human logic. Whenever a decision process for 

certain typical cases can be formulated in rules, fuzzy logic will use the limited 

knowledge contained in the rules to approximate a solution for any given case by 

selecting rules whose if-part match the given situation to some degree, and computing an 

aggregated result that combines the net effects of those selected rules. For expert system 

designers fuzzy logic has one very desirable characteristic: by applying fuzzy logic, the 

number of rules can be usually reduced significantly; thus drastically simplifying the 

design and reducing design time (Linkens & Nyongesa, 1996). 

4.3 Fuzzy Logic Framework 

The material presented here is a mathematical framework, which is used for the 

implementation of fuzzy systems in this study. The technology involved is based on the 
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work of von Altrock (1993, 1997), Dote (1996), Langari & Yen (1993), Mendel (1995), 

Sugeno (1985), Zadeh (1965, 1975a, 1975b, 1975c), and Zimmermann (1991). For 

further information about fuzzy logic, the reader is referred to the above sources. 

4.3.1 Fuzzy Set 

A fuzzy set A is characterized by its membership function fA: X > [0,1] that 

assigns a real number between 0 and 1 to any object in the universe of discourse X on 

which A is defined. The value of the membership function fA(x) for a specific element 

xEX represents the degree of membership of x in A. Important operations on fuzzy sets 

are union and intersection, which are defined as follows: 

fA,B(x) = min(fA(x),fB(x)) 

fAuB(x) = max(fA(x), fB(x)) 

In this example the fuzzy set low is defined on the universe of discourse X which 

contains all possible altitude values. Figure 4.1 depicts the membership function values 

flow(x) for certain altitude values. 
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Figure 4.1 Membership function flow 

While an altitude of 750 ft. is considered low to degree of 2/3; an altitude of 1000 

ft. is considered low to degree of 1.0, and an altitude of 2000 ft. is considered low to 

degree of 1/3. 

4.3.2 Membership Function 

In this study four different kinds of membership functions, the so-called linear 

standard membership functions, are used. Standard membership functions are 

normalized, that is, their maximum is always 1, and their minimum is 0. The four 

different types are described as follows: 
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4.3.2.1 Z-Type Standard Membership Function 

The Z-type membership function is defined as follows: 

,x <_t
 

f4(x) 
1 ,t<x<r
 

r
 

0 ,x>r
 

where r and t define the shape of the function as can be seen from figure 4.2. 

r t t 

fA(x) 

Figure 4.2 Z-type membership function 

The typical value p(A) of fuzzy set A whose membership function is Z-type is t. 

Thus, p(A) = t. 
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4.3.2.2 A-Type Standard Membership Function 

The A-type membership function is defined as follows:
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where 1, t, and r define the shape of the function as can be seen from figure 4.3. 

JA(C) 

Figure 4.3 A-Type Membership Function 

The typical value p(A) of fuzzy set A whose membership function is A-type is t. 

Thus, p(A) = t. 
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4.3.2.3 II-Type Standard Membership Function 

The fl-type membership function is defined as follows:
 

0 ,x <1
 

1 1 
x ,1<xt1t + t 1
 

f4(x) = ,t<xe
1 

1 
x ,e <.xrre er 

0 ,x>r 

where 1, t, e, and r define the shape of the function as can be seen from figure 4.4. 
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Figure 4.4 fl -Type Membership Function 

The typical value p(A) for the fuzzy set A whose membership function is II-type 

et 
is the median of the maximizing interval for which fA(x) = 1, thus p (A) = 

2 
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4.3.2.4 S-Type Standard Membership Function 

The S-type membership function is defined as follows:
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where 1 and t define the shape of the function as can be seen from figure 4.5. 

x 

Figure 4.5 S-Type membership function 

The typical value p(A) of fuzzy set A whose membership function is S-type is t. 

Thus, p(A) = t. 

4.3.3 Linguistic Variable 

Within a fuzzy system imprecise knowledge is represented by linguistic variables 

"whose values are words or sentences in a natural or artificial language" (Zadeh, 1975a, p 

199). The motivation for using linguistic variables instead of numerical variables is 
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based on the fact that linguistic variables introduce a high level of abstraction that helps 

us describe the state of the world in simple linguistic terms. When asked how the 

weather is, we seldom respond in a precise manner such as "the temperature is exactly 

20.5 degrees Celsius and it is raining at a rate of 1.2 mm per hour"; instead we rather give 

a more rudimentary description such as "it is warm and it is raining very hard". The 

words "warm" and "very hard" can be interpreted as terms of the linguistic variables 

"temperature" and "rainfall" respectively. Also, linguistic variables are very helpful 

when formulating rules such as "IF altitude is very low and vertical speed is slightly 

negative THEN flight phase is landing". The variables altitude, vertical speed, andflight 

phase can be associated with linguistic variables; very low, slightly negative, and landing 

are terms for the respective linguistic variables. For the purposes of this study the 

concept of a linguistic variable is augmented from the original form defined by Zadeh 

(1975b) and is described as follows: 

Let / denote the name of a linguistic variable. A linguistic variable is decomposed 

into a set of terms, T(1) = U{tk} , where Q = {1, 2, ...,p}; note that tk tt for all 
kEQ 

(k, t) E {(k, t) E Q x Q k # t} . We define a bijective function gi that maps a term t ET(l) 

to an index keQ. Thus, T(l) --> Q ; maps an index keQ back to the 

corresponding term t ET(1); thus, g71: Q -+ T(1) , and g7I (g,(t))= t . The linguistic 

value of a linguistic variable can be expressed as a vector of truth values that quantify the 

degrees to which the terms are valid. So the linguistic value of 1 is: 

2 

V(1) = 

I 
v 

P 

where vkl E [0, 1] (Ice Q ) quantifies the degree to which the term t = gi' (k) holds 

true for variable 1. We differentiate between system input linguistic variables, 
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intermediate linguistic variables, and system output linguistic variables. When we do not 

want to differentiate between the different variable types we simply refer to a linguistic 

variable 1. A system input linguistic variable h and a system output linguistic variable o 

have the numerical values x EX and ye Y respectively while an intermediate linguistic 

variable i has no numerical value. Any term tE T(h) of a system input linguistic variable 

h has a membership function ft associated with it, likewise any term re T(o) of a system 

output linguistic variable o has a membership function fr associated with it. None of the 

terms of an intermediate linguistic variables i relates to a membership function. The 

following example helps clarify the concept of a linguistic variable. 

This example defines the linguistic variables altitude, vertical speed, and terrain 

hazard. These linguistic variables are used in subsequent examples where they describe 

properties of an airplane. The system input linguistic variable named altitude is 

decomposed into the terms very low, low, and medium. Therefore, T(altitude) = {very 

low, low, medium). The function galtitude is defined as follows: 

1, t = very low 

g a,de(t) = 2, t = low 

3, t = medium 

The universe of discourse X= [0, 5000] is the set of altitude values (in ft.) under 

consideration. The membership functions of tE T(altitude) are graphed in figure 4.6. 
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Figure 4.6 Terms and membership functions of altitude 

The system input linguistic variable named vertical speed is decomposed into the 

terms negative large, and negative. Therefore, T(vertical speed) = { negative large, 

negative}. The universe of discourse X= [-6000, 0] is the set of vertical speed values (in 

ft. per minute) under consideration. The function gvertical speed is defined as follows: 

{1, t = negative large 
gvertical speed(t) = 

2, t = negative 

The membership functions of to T(vertical speed) are graphed in figure 4.7. 
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Figure 4.7 Terms and membership functions of vertical speed 

The system output linguistic variable named terrain hazard is decomposed into 

low, medium, and high. Therefore, T(terrain Hazard) = {low, medium, high} . I define 

the universe of discourse X= [0, 10]. Xis the set of crisp terrain hazard values 

quantifying terrain hazards numerically. An output value close to 10 indicates a high 

terrain hazard whereas a value close to 0 indicates a low terrain hazard. The function 

gterrain hazard is defined as follows: 

1, t = /ow 

2, t = mediumgterrain hazard (t) 
3, t = high 

The membership functions of tE T(terrain hazard) are graphed in figure 4.8. 



32 

f "(x) 

fh,gh(x)
 

low medium high
 

1.0 

x
0.0 

0 1 2 3 4 5 6 7 8 9 10 

Figure 4.8 Terms and membership functions of terrain hazard 

4.3.4 Fuzzy Rule Block 

Fuzzy reasoning is the mechanism used to define system behavior for fuzzy 

systems. The knowledge that governs the computation of system outputs from system 

inputs is described in fuzzy rules. A fuzzy rule block B is a set of fuzzy rules. B can be 

expressed as B = {RI, R2, ... Rn}, where Ri is a fuzzy rule, i E I = {1, 2, ..., n}. In turn Ri 

is of the form: 

Ri= (di, ai) IF (// is ti,i) and (12 is ti,2) and ... (//7/ is ti,m) THEN (/m-4-] is 

ti,m+j), (1m+2 is ti,m+2), (/m±z is ti,m+z) 

where diE [0,1] is the degree of support of rule Ri, ai denotes the aggregation 

operator used to compute the weight of Ri during fuzzy inferencing, ti j E T(//),/ EJ = 1, 

m+z}, is a term of the linguistic variable /i in fuzzy rule Ri. Note that /i #/k for all 

(j, k) E{(j,k) E J x J j # . Further, we denote the set of linguistic variables 

appearing in the if-part of B as F(B)={11, 12, ...,lm} and call the variables within F(B) 
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block input variables, and the set of linguistic variables appearing in the then-part of B as 

E(B)=-{/m+i, Im+2, ,1m±z} and call the variables within E(B) block output variables. 

The purpose of the degree of support di of rule Ri is to differentiate between strong and 

weak rules. The higher the degree of support the stronger the impact of the rule is on the 

solution. Likewise, the lower the degree of support the weaker the impact of the rule is 

on the result. 

Table 4.1 represents a rule block computing the terrain hazard value given the 

altitude and vertical speed. Rule 1 for instance states "If altitude is very low and vertical 

speed is negative large then terrain hazard is high." 

Table 4.1 Rule block example 

IF THEN 

Rule # degree of aggregation altitude vertical speed terrain hazard 
support operator 

1 1 min very low negative large high 

2 1 min very low negative medium 

3 1 min low negative large high 

4 1 1-ty = 0 4 low negative medium 

5 1 min medium negative large medium 

6 1 min medium negative low 

In the above rule block altitude, vertical speed, and terrain hazard are linguistic 

variables. The terms very low, low, and medium belong to altitude; negative large, and 

negative are linguistic terms of vertical speed; low, medium and high are linguistic terms 

of terrain hazard. The linguistic variables altitude and vertical speed are block inputs 

while terrain hazard is a block output. 
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4.3.5 Fuzzy System 

A fuzzy system S is comprised of a queue of rule blocks denoted by C = {BI, B2, 

Bw}, a set of system input linguistic variables denoted by H= {hl, h2, hu}, and a 

set of system output linguistic variables denoted by 0 = {oh 02, ..., ov}. Essentially, S 

implicitly describes a function that maps the numerical input vector NH = (x I, .x2, ..., xu) 

to the numerical output vector NO = I, Y2, -., Yv); where xi, x2, ..., xu are the numerical 

values of hi, h2, hu and y1, y2, ..., yv are the numerical values of ov. 

Therefore: 

NO = S(NH) 

The set of linguistic variables contained in S is 

V = U E(BOU F(B0={11,12,...,14 
q=i 

Further S fulfills the following constraints: 

1. V.13q EC: (E(Bg) n F(130= 0) 

2. V By E C :(e/j E F(Bg) :Q/EHv E E(Bx),x W {q})) 

3. VBq E C :(eij E E(130:01 E 0 V // E F(.13x), X E W {q})) 

4. V (Bq , E {(Bg, Br) E C X CI q t} :(E(B q) n E(BO) = 0) 

5. V(Bq,Bt)E {(B,,,Bi)CxC q t}:(F(Bil) E(Bi) t < q) 

where W = {1, 2, ..., w} . 

The first constraint states that the set of block input variables and the set ofblock 

output variables of any rule block are disjunct. The second constraint states that any 

block input variable of a rule block is an element of H or an element of the set of block 

output variables of another rule block. The third constraint states that any block output 

variable of a rule block is an element of 0 or an element of the set of block input 

variables of another rule block. The fourth constraint prevents the manipulation of any 

variable by multiple rule blocks. The fifth constraint establishes an order within C such 

that any particular block in C does not contain a block input variable that is also a block 

output variable of any of the subsequent blocks. 
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4.3.6 Fuzzy Logic Algorithm 

While the previous sections introduced fuzzy sets, linguistic variables, fuzzy 

rules, fuzzy rule blocks, and fuzzy system this section explains now the process 

computing system outputs from system inputs. The algorithm can be divided into three 

procedures as follows: 1. fuzzification (calculation of linguistic values for the system 

input linguistic variables); 2. fuzzy Inference (calculation of linguistic values for the 

system output linguistic variables); 3: defuzzification (translation of system output 

linguistic variable values into corresponding numerical system outputs). Figure 4.9 

shows an example of a fuzzy system consisting of four inputs, two outputs, and three rule 

blocks. Note the usage of intermediate linguistic variables it and i2. 

Numerical Variables Fuzzy System Numerical Variables 
(numerical level) (linguistic level) (numerical level) 

Fuzzification Defuzzification 

Figure 4.9 Example of fuzzy system 

The first procedure, fuzzification, is performed in order to obtain a level of 

abstraction needed for the application of fuzzy if-then rules. In general, fuzzification is 

the process of computing the membership function values associated with the linguistic 

terms of system input linguistic variables given the numerical system inputs. After the 

fuzzification step, fuzzy inference evaluates the solution in terms of the system output 
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linguistic variables. The latter are translated into numerical system outputs in the third 

step, called defuzzification. 

Fuzzification, fuzzy inference, and defuzzification are performed on a fuzzy 

system. Let S be the fuzzy system under study, C = {B1, B2, ..., Bw} be a queue of rule 

blocks of S, H = {hi, h2, hu} be a set of system input linguistic variables of S, 0 = 

{o1, 02, ov} be a set of system output linguistic variables of S, x1, x2, ..., xu be the 

numerical inputs for the respective system input linguistic variables hi, h2, hu, y 1, y2, 

yv be the numerical outputs for the respective system output linguistic variables 

02, ov. 

4.3.6.1 Fuzzification 

Fn7zification is the process of calculating the linguistic value for each system 

input linguistic variable hi EH, jEJ {1, 2, ..., u} as follows: 

v fg);" (Xj) 

gh 
1(2)(Xj)V, 

V(h4) 

v .1' -I (xj)P gh, (P) 

where v,"' (k E K= {1, 2, ..., /3}, p = I T(h;) ) is the truth value relating to the 

term gh-: (k) E T(h1) of system input linguistic variable hi, and fe is the corresponding 

membership function. 
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4.3.6.2 Fuzzy Inference 

Within S, fuzzy inference is performed for each rule block in a sequential order 

imposed by C. For each rule block an aggregation and composition process is performed. 

The aggregation process of a rule block involves the computation of rule weights from 

the truth values of the block input variables. The composition process determines the 

values of the block output variables. A rule weight quantifies to what extent the premises 

of the if-part of the rule hold true for a given situation. 

Fuzzy inference is performed in an order imposed by C, thus first Bi, then B2, ..., 

and finally Bw. Fuzzy inference of a generic fuzzy rule block BE C works as follows: 

Let B = {RI. R2, ... Rn} , al (i = 1, 2, ..., n) be the aggregation operators, di (i = 1, 

2, ..., n) be the degrees of support, F(B) = {11,12, ..., lm} be the set of block input 

variables of B, E(B) = {1m+1,1m+2, lm+z} be the set of block output variables of B, 

ti J ET(1J) (j = 1, 2, ... 171+7, I = 1, 2, ..., n) are terms. Further, we define: 

(4.1) /../(t) = { iE Q I tii = t} 

where 11(t) is a subset of Q = {1, 2, , n}, n = IBI, and tE T(1j). (t) is the set of 

indices corresponding to rules that contain the premise is t", where /i is a linguistic 

variable, and t is a term of /j. 

4.3.6.2.1 Rule Block Aggregation 

Then aggregation via aggregation operator ai yields the weight wi representing the 

conjunction of m premises of the if-part of rule Ri: 

mw = a (l v gh(ti,i) vg -12(ti.2) 9 9 
vglm (tifi, )) 

where v 'gii(t ,) is the truth value associated with term ti,in of variable /./. 
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In this study a1 is either the min or the 7-operator. The min-operator simply yields 

the smallest of the m truth values, while the 7-operator is more complex and is defined as 

follows: 

m \ (1Y) / in
 

itir (P15 P2 , Au) =(11,ui 1-no _pi))
 
i=1 i =1 

4.3.6.2.2 Rule Block Composition 

We compute the linguistic values for all block output variables /j- EE(B) of B. The 

linguistic value of block output variable /1 EE(B) is computed as follows: 
^ 

v 

1,2 

V(11) = 
(4.2) 

where a truth value vkli , kE {1, 2, ..., p}, is given as: 

0, g71 (k) i,
iQ

(4.3) 
max (widi), (k) E Ufti, ;EP (k)) iQ 

4.3.6.3 Defuzzification 

Defuzzification is the computation of the crisp values yi, y2, ..., yv from the 

linguistic values of the output linguistic variables oi, 02, ..., ov. Let o be an output 

linguistic variable, and r E= T(o) be a term of o. p(r) is the typical value of the fuzzy set 

characterized by the membership function associated with term r. The Center of 
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Maximum defuzzification method (Altrock, 1997, p 45) computes the crisp value y from 

of the linguistic value of o as follows: 

v;(r) p(r) 
PET(o)

(4.4) y = 
Z,..d Vogo (r)
 

rET(o)
 

where v°go(r) is the truth value associated with term r of variable o. 

4.3.6.4 Example Fuzzy Logic Algorithm 

The whole algorithm can be easily illustrated using the rule block B of illustrated 

in table 4.1 and the linguistic variables depicted in figures 4.6, 4.7, and 4.8. Thus the 

fuzzy system S is characterized by C={B}, H={altitude, vertical speed} , 0={terrain 

hazard} . We set: 

11 = hi = altitude, x1= 750 

12 = h2 = vertical speed, x2 = -3000 

13 = o = terrain hazard 

The objective is to compute y, the crisp value that corresponds to the linguistic 

value of o. By means of fu7zification, the numerical values quantifying altitude and 

vertical speed respectively are translated into their corresponding linguistic variable 

values. Once the values of the linguistic variables altitude and vertical speed are 

obtained, fuzzy inference determines the value of the output linguistic variable terrain 

hazard. The result is translated into a numerical value in the defuzzification step. 
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4.3.6.4.1 Fuzzification Example 

Given an altitude of 750 ft. and a vertical speed of 3000 ft. per minute, the 

membership functions as described in figure 4.6 yield the following results: 

_ _ 
fg,i,(1) (750) f,h).(750) 0.33V li 

V(h, = altitude) = v2' fg;,(2)(750) = fo,,(750) 0.67 
hi 

f,61 (750) finedium (750)- 0 
Lv3 ­ _ 

Regarding the vertical speed the values of the membership functions as illustrated 

in figure 4.7 are given as follows: 
_ _ - _ _ _

fa (-3000) fnegaave large (-3000) 0.5 
V(h2 = vertical speed) = . ,_ 

v 
h2 f40)(-3000) (-3000) 0.5negative2 

4.3.6.4.2 Fuzzy Logic Inference Example 

After the fuzzification step the system inputs are given in terms of linguistic 

variables. The fuzzy inference step computes the values of the output linguistic variables. 

Fuzzy inference consists of an aggregation and a composition process for rule block B. 

The if-part of a fuzzy rule defines the extent to which the rule is applicable for a given 

case. In this case (x/ = 750, x2 = -3000), altitude is very low to the degree 0.33, and 

vertical speed is negative large to degree 0.5. Consider the if-part of rule 1: 

R1: (1, min) IF altitude is very low and vertical speed is negative large 

The if-part of rule 1 combines the two conditions "altitude is very low" and 

"vertical speed is negative large". The aggregation operator is the minimum operator, 

thus, the weight of the rule or the extent to which rule 1 is valid is wi = min(0.33, 0.5) -­

0.33. Table 4.2 summarizes the result of the aggregation. 

http:min(0.33
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i 

Table 4.2 Aggregation example 

Rule Result of Aggregationti,, 1, 11,2 11
 

V ,,,- (t
(altitude) Vg 1( t ,1) (vertical 612,12) pp; 

speed) 

12very low i, = 0.33 negative = 0.5 min(0.33; 0.5) = 0.33 
V1 large V1 

2 very low = 0.33 negative 1, = 0.5 min(0.33; 0.5) = 0.33 

1 

1 

V V2­1 

1 

3 low = 0.67 negative 12 = 0.5 min(0.67; 0.5) = 0.5 1 

V2I v 
1large 

114 low = 0.67 negative 1, = 0.5 -1() 4 (0.67; 0.5) = 0.48
V2 V2 

5 medium 1, = 0.0 negative 1 = 0.5 min(0.0; 0.5) = 0.0 
V3 large V1

2 

6 medium 1, = 0.0 negative 1, = 0.5 min(0.0; 0.5) = 0.0 
V3 V/ 

To perform the composition we first compute the index sets I3 (t) for each t E T(/3) 

according to equation 4.1: 

I3 (low) = {6} 

I3 (medium) = {2, 4, 5} 

I3 (high) = 1, 3 } 

This means that premise "terrain hazard is low" occurs in rule 6, premise "terrain 

hazard is medium" occurs in rules 2, 4, and 5, and premise "terrain hazard is high" 

occurs in rules 1 and 3. 

n=1BI 

Note that Ufti'31= {low, medium, high} 
. We compute the value of o 

1=1 

according to equation 4.2 and 4.3: 

http:min(0.67
http:min(0.33
http:min(0.33
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1.0 

rmax (wi d) 1 max@) 0 
i13(low)v° 

V(13 =terrainhazara)= v2
0 = max (wi di) = max(0.33, 0.48, 0) = 0.48 

iE13 (niediunO 

V3 max(0.33, 0.5) 0.5max (Iv; cL) 
ie13 (high) 

The truth values of the terms associated with the output linguistic variable are 

used in the defuzzification step. 

4.3.6.4.3 Defuzzification Example 

Defuzzification is performed according to equation 4.4. Figure 4.10 illustrates the 

fact that the Center of Maximum method computes a crisp value that represents the best 

compromise between the typical values of the terms. 

frowl(x) 

(high(x) 

low medium high 

x
0.0 

0 1 2 3 4 5 6 7 9 10 

7.55 

Figure 4.10 Defuzzification example 

http:max(0.33
http:max(0.33
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g(r) P r('l 
rEr(o) V p(low) + vgo( medium) p(medium) + g(high) p(high) 

Y = =-. 
O 

Vo ° Vg(r) g (low) ± Vg (medium) g o(high) 
rET (0) 

0-0+0.48-5+0.5-10 
0+0.48+0.5 

Thus, at an altitude of 750 ft. and a vertical speed of 3000 ft. per minute, the 

terrain hazard is 7.55. 

4.4 Fuzzy Logic Tools 

Commercial tools such as fuzzyTech, CubiCalc, TILSHELL, and FIDE are 

available for fuzzy logic implementation (Chiu, 1995). While the commercial packages 

are very powerful regarding computation speed, the integration of the AgendaManager. 

implemented in Smalltalk, with those is not as seamless as is possible with a fuzzy logic 

class library implemented in Smalltalk. Therefore, a fuzzy logic class library and 

graphical tools were implemented in Smalltalk for representation of membership 

functions, linguistic variables, rules, rule blocks, and fuzzy systems as defined in section 

4.3. The development environment is composed of a fuzzy system editor to define fuzzy 

system structures, a rule block editor to specify rule blocks, a linguistic variable editor to 

manipulate linguistic tenns and their associated membership functions, and a debugger 

for system tuning. 

4.4.1 Fuzzy System Editor 

This section describes the fuzzy system editor tool. The fuzzy system editor 

allows the system designer to load a previously saved system, create a new system, 

import linguistic variables and rule bases from saved systems into the currently active 

system, and save the currently active system, as well as add, remove, and rename 
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linguistic variables and rule blocks within the currently active system. Figure 4.11 shows 

the graphical user interface of the fuzzy system editor. The currently active system 

consists of one rule block with inputs altitude and vertical speed, and output terrain 

hazard. The system designer manipulates variables and rule blocks with the linguistic 

variable editor and rule block editor respectively. 

Fde Tools Development 

Linguistic Variable Rule Block 

yerticalSpeed 
terrainHazard 

Rule Block Input Rule Block Outpu 

altitude terrainHazard 

Input 
verticaiSpeed 

> Output 

7 

7 

Figure 4.11 Fuzzy system editor interface 

4.4.2 Linguistic Variable Editor 

The purpose of this tool is to provide an interface for a linguistic variable to 

manipulate its type, terms, and membership functions. The variable type is system input, 

system output, or intermediate. The system designer can rename, add, remove, or copy 

terms at will and manipulate the corresponding membership functions. The membership 

functions employed are standard linear membership functions as described in section 

4.3.2. Figure 4.12 shows the graphical user interface of the linguistic variable editor 

displaying the properties of the linguistic variable altitude. Altitude is an output variable 
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comprised of the terms very low, low, and medium. The membership functions are 

plotted on the lower panel of the editor. 

-- - ' if..4!t A, '1 *' , 

4 system Input: I altitude 
f Enable teaming

Variable Type N., System Output
 

intermediate
 

Tenn
 
Function Type Move _LJye Low I
 

N., Z Left (250.00000 ....1
1 

medium 
4 Lemda Typical I 1000 00000 I 

,, PI Right 2500 00000 I 

vs7 

Left limit 1 0.00 step width 1 1.00000 Right Unit 1 3000.00 

very Low low medium
 

0
 2500D 

.-----,..,... 

250.0 1000.0 2500.0 

Resealed 

Figure 4.12 Linguistic variable editor 

4.4.3 Fuzzy Rule Block Editor 

The rule block editor is a tool for manipulating the rules of a rule block. In 

particular the rule block editor allows the system designer to alter rules, add rules, and 

delete rules from the rule base. Figure 4.13 shows the rule block editor displaying the rule 

base of rule block "b terrain ". Rule block inputs are altitude and vertical speed; rule 

block output is terrain hazard. Each row within figure 4.13 represents a rule. For 

example the first row translates into the rule "IF altitude is very low and vertical speed is 

very negative THEN terrain hazard is high". The columns named "gamma" and "DoS" 
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refer to the parameter for the y-operator, and the degree of support of the rule 

respectively. If the entry for "gamma" remains empty the aggregation for the 

corresponding rule is performed with the min-operator, if an entry for "gamma" is made, 

the aggregation is performed with the y-operator. 

Learning DoS Input Term P Output Tenn D' Operator 

altitude verticaiSpeed terrain Hazard gamma DoS 

*veryLow *negativeLarge *high 1.000 

everyLow *negative *medium 1.000 

*low linegativeLarge *high 1.000 

#10w *negative *medium 0.4 1.000 

*medium itnegativeLarge *medium 1.000 

*medium *negative *low 1.000 

Figure 4.13 Rule block editor 

4.4.4 Debugger 

The debugger allows the system developer to feed the fuzzy system with input 

data and obtain the resulting outputs, as well as find the weights of rules and linguistic 

values of linguistic variables. Figure 4.14 shows the user interface of the debugger. 

Given the input values 750 ft. for altitude and 3000 ft. per minute for vertical speed, the 

fuzzy system yields the output value 7.549 for terrain hazard. Information about the state 
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of rule block "b_terrain" is presented in the lower part of the graphical user interface. For 

instance the following information about the rule "IF altitude is very low and vertical 

speed is negative large THEN terrain hazard is high" can be obtained: the premise 

"altitude is very low" is true to degree 0.333, the premise "vertical speed is negative 

large" is true to degree 0.5. Consequently, the weight of the rule is 0.33. 

e Development 

a Rule Blocks and VariablesInput Variable Value Output Variable Value 

altitude 750.00( terrainHazard 7.549 MallEllat 
altitude 

Compute rl verticalSpeedverticaiSpeed -3000 
terrainHazardTime (ms): 

15
 

RuleNariable Information 

altitude Value vertIcalSpeed Value IF THEN terrainHazard 

veryLow 0.333 negativeLarge 0.500 0.333 0.333 high 

veryLow 0.333 negative 0.500 0.333 0.333 medium 

low 0.667 negativeLarge 0.500 0.500 0.500 high 

low 0.667 negative 0.500 0.481 0.481 medium 

medium 0.000 negativeLarge 0.500 0.000 0.000 medium 

medium 0.000 negative 0.500 0.000 0.000 low 

Figure 4.14 Debugger interface 

4.5 Fuzzy System Development 

Before going into the details of explaining the development process of a fuzzy 

system, I address the issue of when a fuzzy system should be employed. Generally, if 

human expert knowledge plays an important role in supervising, monitoring, or 
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controlling the system, fuzzy logic technology is suitable (Munakata and Jani, 1994; 

Sugeno, 1985). Fuzzy Logic is also commendable for very complex processes, when 

there is no simple mathematical model. The process of building a fuzzy system starts 

with the identification of system inputs and system outputs and their ranges. Thereafter, 

linguistic input and output variables are designed whose terms are associated with 

membership functions. Selecting the number of terms and the types of membership 

functions is not a science but rather an art practiced by the system designer. 

Subsequently, a rule base is formulated and again, the system designer decides the 

magnitude of the rule base governing the behavior of the system. Finally, the system 

designer has to verify that some sample system inputs actually yield the expected system 

outputs and also validate the system as to whether it serves the purpose it was made for. 

Three methods for developing fuzzy systems are described here. 

4.5.1 Human Expert-Based Development 

This kind of development is based on human expert knowledge formulated in 

rules (Munakata and Jani). The expert is interviewed by the system designer and asked to 

formulate the underlying reasoning process when making decisions or assessments. The 

observation is that human decision making is often expressed in rules such as "If airspeed 

is too low then increase thrust". This rule can be easily mapped into a fuzzy rule with the 

input airspeed and output thrust. An iterative tuning process may follow optionally. 

4.5.2 Iterative Tuning 

This approach is characterized by the fact that the system designer devises a 

system to his best knowledge and thereafter tunes the system in subsequent steps. Tuning 

involves feeding the fuzzy system with inputs and checking the consistency and 

correctness of the corresponding outputs. If the results are not satisfactory, changes are 
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made in the rule base and/or membership functions of the linguistic variables to obtain 

the desired system outputs. When the system behaves satisfactorily, the system designer 

terminates the tuning iterations. 

4.5.3 Adaptive Approach 

The adaptive approach can be used if sample data mapping inputs to outputs is 

available. The adaptive approach is a two step process. First, the designer creates a 

tentative fuzzy system. Second, an algorithm manipulates the tentative fuzzy system to 

approximate the sample data. 

The fuzzy systems facilitating FFA were developed according to this approach. A 

Genetic Algorithm (GA) was used to minimize the discrepancy between actual FFA 

system outputs and desired FFA system outputs based on the sample data obtained from 

experiments discussed in chapter 6. In a sense, through the application of the GA the 

fuzzy system "learned" from the examples provided by the sample data. 

The sample data for fuzzy system S was a collection of vector pairs. The first 

vector was the system input; the second vector was the desired system output. In short, 

sample data was denoted as D = { (Xl, Z1), (X2, Z2), ... (X,, Zn)}; where (Xk Zk) was the 

k-th vector pair of D (k E { 1, 2, ... n }). Vector Zk (zl,k z2,k zv,k), contained the 

desired numerical outputs of the output linguistic variables 0/, 02, ..., ov, as response to 

vector Xk = k x2, k xu,k), containing the numerical inputs to the input linguistic 

variables hi, h2, hu of fuzzy system S. The GA was used to minimize the function: 

(4.5) SOE(S, D) =E (S(Xk) Zk) (S(Xk) Zk) 
k 

where S(Xk) was the vector of actual numerical outputs of fuzzy system S as 

response to system inputs Xk. The value of SQE represented the sum of squared error of 

fuzzy system S based on sample data D. 
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5. Genetic Algorithms for Fuzzy Systems 

GAs are general purpose multi-dimensional optimization algorithms that are 

modeled after mechanisms of evolution in nature (Takagi, 1993). GAs are defined in 

terms of population, reproduction, crossover, and mutation (Linkens & Nyongesa). The 

population is a pool of individuals, represented by their genomes. A genome is a string 

of genes and is implemented as a binary string. Thus, the genome is a sequence of zeros 

and ones in which the properties and characteristics of the corresponding individual are 

encoded. A fitness function specifies each individual's fitness. Reproduction involves 

selecting two parent genomes from the current population to produce offspring that can 

then replace members of the old generation. An Offspring is constructed by copying 

portions of its parents' genome as specified by crossover points. Figure 5.1 illustrates 

this concept as two crossover points partition the genome of two parents and define what 

portions of the parent genome is passed on to which offspring. 

Parent 1 

10 0 1 1 0 1 0 0 1 1 01 01 1 

Parent 2 

1 1 1 1 1 0 0 1 1 1 0 

Offspring 1
 

0 0 1 0 1 1 0 0 1 0 0 0
1 1 
1 1 1 

Offspring 2 

110 01 1 1 

Figure 5.1 Genetic crossover operation 

Mutation involves inverting randomly selected bits from the affected individual. 

Inverting a bit is setting the bit to zero if it is one or one if it is zero. Figure 5.2 shows the 
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state of the individual's genome before and after mutation. The shaded areas mark the 

mutated genes. 

Before Mutation 

1 1 1 1 1 1 0 01 

After Mutation 

0 1 1 0 1 1 1 0 0 

Figure 5.2 Genetic mutation operation 

A GA is easily described in pseudo code: 

initialize a random population P 

while termination condition is not fulfilled do:
 

produce offspring 0 from certain members of P
 

select members of 0 to replace members of P
 

mutate population P
 

The following sections deal with the implementation of a particular GA used in 

this study to train fuzzy systems. 

5.1 Population 

Given the initial fuzzy system S', an initial population P of size n is derived as 

follows: 

Create genome G(S') corresponding to fuzzy system S'
 

Set P = {G(S') }
 

for j = 1 to n-1 do:
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Set = copy of G(S')
 

mutate G., at rate r
 

Set P = P
 

After n-I iterations P = {G1, G2, ..., Gn} and n = IP1. 

The fitness value of an individual Gk is F(Gk) = 
1 

where FS(Gk),
SQE(FS(Gk), D) 

or short Sk, is the fuzzy system represented by its genome Gk. Note that SQE(Sk, D) is the 

sum of squared error defined in equation 4.5 and quantifies how well Sk fits the sample 

data D. The higher F(Gk), the better does Sk fit sample data D. The following section 

explains how a genome G i.s derived from a fuzzy system S, and how a fuzzy system S is 

derived from a genome G for fitness function evaluation. 

A fuzzy system is encoded into a genome by encoding its linguistic variables and 

rules. New fuzzy systems are constructed using instructions encoded in modified 

genomes according to a coding scheme common to all individuals. Within population P 

and across all generations, the lengths of all individuals' genomes are the same. 

The initial fuzzy system S' defines static parameters for fuzzy system structure, 

linguistic variables and rule blocks. Static parameters for fuzzy system structure are: 1. 

number of linguistic variables; 2: number of rule blocks; 3: input-output relationships 

between linguistic variables and rule blocks. Static parameters for linguistic variables 

are: 1. variable type (input, output, intermediate); 2. variable name; 3. name of each 

linguistic term; 4. universe of discourse of each membership function. Static parameters 

for rule blocks are: 1. number of rules; 2. names of block input and block output 

variables. In other words, the GA may only modify the shape of membership functions, 

premises of rules, the choice of aggregation operators, and the setting of the degree of 

support. The GA does not manipulate the overall structure of the fuzzy system by any 

means. 
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The genome of a fuzzy system S' as defined in section 4.3.5 is the composition of 

genes of variables contained in set V' = {1 '1,1'2, ..., 1 'h}and genes of rule blocks 

contained in queue C' = ...,B'). So, the genome of S' is: 
w 

G(Y) = I G(1'0 + F G(B1q) , where "plus" means the concatenation of binary 
i,1 i=1 

strings. IG(S')I is the size of G(S ') and equals the number of binary digits G(S ') is 

composed of. A new fuzzy system S can be constructed from any genome G, if IQ 

=IG(S , by decoding the genes corresponding to linguistic variables and rule blocks 

according to the coding scheme provided by S'. 

In particular, G is partitioned into: G = g. + bq , where Ig,I = IG(/ ',)I and Ibql = 
=1 q=1 

G(B q). Then, g, and bq represent gene strings containing instructions on how to construct 

new versions of the initial Linguistic variable l' and the initial rule block B 

respectively. The new versions oft', and B 'q are lv, and Bq respectively. The resulting 

new fuzzy system S is defined by its variables V= { lv 1, 1v2, lvh} and rule blocks C = 

{B1, B2, ..., BO. 

A linguistic variable l'1 is encoded by encoding its membership functions. Given 

a queue of membership functions L' = f'2, J'n}, fulfilling the constraint: 

V( fp, f'r) E f, 'p, f E x I p r}:t'p < where x = 1, 2, ..., n, is the t-parameter 

of membership function r): U,r1-->[0,1] explained in section 4.3.2, I define the following 

parameters: 

er-1dr= 
1-r 

ex tx 
x 

rIxt1x
 

, type of f' is
 
p,= 

, type of f' is T1 
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a , 1=1'1-1
I' 1 
0 , type of f'i is
 

i = 2,3,..., n-1
p'i = 11 , type of f g ,
 

2 , type of f ' z
 

, rin tin
 
C n =
 

r 

, type of f n is A.,
 

pin= {0 , type of f n is ir
1 

3 , type of f 'n is z 

where, e 1'x, and r x are e-, /-, and r-parameters respectively of membership 

functionf'x as described in section 4.3.2. The genome G(/',) is the composition of the 

parameters d'i, a"2, d'3, d'n, b '1, p'1, b' 2,p'2, b '3, p '3, .., b t 'n-1, C 'n, b'n, p n in 

binary form. Each parameter is encoded into a fixed length binary code. Table 5.1 

summarizes the digit lengths of binary codes for linguistic variable related parameters. 

Table 5.1 Lengths of linguistic variable related codes 

Parameter a', p', d' b', If i p' c',, 
2 -,Binary code 10 10 10 1 2 10
 

length
 

A new linguistic variable 1v, with n membership functions defined on the universe 

of discourse X = [1, r] is constructed corresponding to the parameters d1, d2, d3, , dn, a1, 

b1, p1, b2, P2, b3, p3, ..., b_1, to -1, bn, pn decoded from gene string g, as follows: 

1. Set t-parameters tx = dx (1 r)+ 1, x = 1, 2, ..., n and sort them in increasing order. 

The sorted collection of t-parameters is T = Itt r ,t2! , . 
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2. Ifp # 2 then set 11 = (ti /)+/ . Set r1 =t2. Ifpi = 1 then set ei= bt(r1 tr) +tr. 

membership function01, , pi = 0 

Associate f t = n membership fimction(Ii, tr, el, ri) , pi =1 with the corresponding 

z membership function(tr, ri) ,pi = 2 

linguistic term of membership function,/ I. 

3.	 For i = 2, 3, ..., n-1: Set b = ly . Set r, = to + ly . Ifp, = I then set 

2 membership function(b,h',r,) 3 pi
= bt	 (I., t1')+ . Associate f = with 

membership function( /;,7"1" , Pi =
 

the corresponding linguistic term of membership function'',
 

4.	 If p # 3 then set rn = cn-fr . Set in = . Ifp = 1 then set 

en = bn (rn 0+ . 

2 membership function(in, tn, rn) , pn = 0 

Associate fn = it membership function(ln,tw,en,rn) , pn =1 with the corresponding 

s membership function(ln, in) , pn = 3
 

linguistic term of membership function f'n.
 

The genome of rule block B'q = {R '1, R ..., R'n} is obtained by concatenating 

the gene strings of its rules. Therefore, G(B1q)=ZG(R'i) . Thus, bq =Zri is a 
i.1 

concatination of sub-gene strings, where 1r11 = 1G(R '01. Rule R'i within rule block B 'q is 

of the form (section 4.3.4): 

R'i= a') IF (/ is t 'i,j) and (l '2 is t'1,2) and ... (/ 'm is t 'i,m) THEN (1 is 

t 'i,m+1), (1 m+2 is t , (1 'm+ziS 'i,m+z) 

The genome G(R ') is the composition of the parameters 

gh(t'ii), cit, i,b'i in 

binary form. Note that gi, (t'i,j) is function maping term Cif of linguistic variable i1 to an 

index, as described in section 4.3.3 and 
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y parameter of a" ,if a" isy operator 
= 

},if a" is min operator0 

, if a" isy operator1 

= 
if a" is min operator0 

Table 5.2 summa'izes the digit lengths of binary codes for rule related parameters. 

IT(/ )1 is the number of terms variable l .1' is decomposed into. 

Table 5.2 Lengths of rule related codes 

Parameter rii d'i r'i b'i 
Binary code 7 7 1In( T (15) +1) 1 
length 

In 2 

A new rule block Bq with n rules is constructed corresponding to the gene string 

bq = E ri . Each sub-gene string ri is used to construct a new rule Ri. The new rule bock 

is defined as Bq = {Ri, R2, ..., Rri}. A new rule Ri is constructed according to the 

parameters 0,1i.2, , ii,m+1, ii,m+2, ii,m+z, di, yi, bi decoded from gene string ri as 

follows: 

Set tij = g-1 y @I, , j = 1, 2, ..., m+z, where is the index being mapped to 

If bi= 1 then set ai = 7)4-operator. 

If bi= 0 then set al = min - operator. 

Set Ri= (di, d) IF (/v/ is to) and (1v2 is 42) and ... (/vm is THEN (/vm+, is 

ti,m+/), (lVm +2 is ti m-2), ! (ivm+z is ti,m+z) 

Note that lv is the new linguistic variable corresponding to 
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5.2 Reproduction 

Reproduction involves selecting parent genomes from the current population P 

and creating offspring by copying portions of parent genes. The resulting offspring 

replaces members of the old population and a new generation of individuals is formed. 

F(Gk)
The probability for an individual Gk to be selected as parent is p(Gk) = 

E F (Gi) 
=1 

The higher an individual's fitness value the more likely it is selected as parent. 

The reproduction method employed is called "selective breeding" and works as follows 

(Linkens & Nyongesa, 1995): 

given initial population 

P' = next generations population 

0 = set containing offspring 

Al = genome of parent 1 

A2 = genome of parent 2 

G1 = genome of offspring 1 

G2 = genome of offspring 2 

initialize 0 = 0 

repeat -LP times: 
2 

select parent A1 

select parent A2 

create two children G1 and G2 by performing crossover operation with Al and A2 

Set 0 = 0 L.) {G1, G2} 

set P' = best 'PI individuals from OvP 
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5.3 Crossover 

The crossover points partition the genome of the parents selected for reproduction 

and determine which part of the parents genome is passed on the which offspring. The 

crossover operator returns the genome of two children (Gj, G2). It works as follows: 

k = given number of crossover points 

Al = given genome of parent 1 

A2 = given genome of parent 2 

/ = given length of individual's genome 

G1 = genome of offspring 1 

G2 = genome of offspring 2 

C = set/collection of crossover points 

initialize C = q5, G1= 0, G2= 0 

k times repeat: 

create random integer number c between 1 and 1 -1 

set C = C v {c} (C never contains duplicate elements) 

set C = C v {0, /}
 

set C = C sorted in ascending order according to element's magnitude = lc!, C2, Cp}
 

for j = 1 top-1 do:
 

ifj is odd then
 

G1= G1 + (copy o fib between c; + 1 and cf+i)
 

G2= G2 + (copy of A2 between c; + 1 and ci+i)
 

else
 

G1= G1 + (copy of A2 between c; + 1 and c; 1)
 

G2= G2 + (copy of Ai between cf + 1 and c;+ j)
 

So, G1 and G2 are the resulting genomes of the crossover operation performed on 

Al and A2. 
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5.4 Mutation 

Mutation involves inverting a number of genes. Inverting is changing 0 to 1 and 1 

to 0. The algorithm works as follows given r, the mutation rate, and G, the genome to 

mutate: 

rr G 1 times repeat: 

invert a randomly selected gene within G 

5.5 Termination Condition and Quality of Resulting Fuzzy System 

The questions of when to terminate the GA and how to validate the quality of the 

resulting fuzzy system are addressed in this section. The GA terminates after a certain 

number of generations. At each generation the fittest and median fit individual of the 

current population are determined to be the one with the highest fitness and the median 

fitness value respectively. When the GA terminates, the individual that best fits the 

sample data is the fittest individual of the latest generation. It is found in the latest 

population since the fittest members of the population always survive and are passed on 

to the next generation. H ow is the quality of the fittest individual validated? Minimizing 

the sum of squared errors on the sample data does not mean that the error on new cases is 

minimized. In fact, the longer the fuzzy system is trained the better it fits the data it is 

being trained on. Ultimately, it will "memorize" the data almost exactly. However, by 

doing so the fuzzy system may lose its generality to fit new data. To counteract the effect 

of overfitting, the sample data is divided into sets of training data, overtraining test data, 

and validation test data. Instead of training the GA on the whole sample data set, the GA 

trains the fuzzy system o n the training data only while the error with regards to the 

overtraining test data is a predictor of how well the fittest individual fits new data. The 

fittest individual at the generation at which the error with regards to the overtraining test 

data is the smallest is the best guess of an individual likely to fit new data well. This 

individual is denoted as Best. The quality of Best is then evaluated according to the 
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validation test data. The lower SQE(FS(Best), VD), where VD is the validation test data 

set, the better the quality of the fuzzy system FS(Best). 

The GA determines Best as follows: 

OD = Overtraining test data 

generation 

maxGen = maximum number of generations 

P = population at generation j 

fittest individual of population Pj 

set Po = randomly generated population 

set Best = Go 

for j = 1 to maxGen - 1 do: 

create population Pi 

if SQE(FS(G)),OD) < SQE(FS(Best),OD) then set Best = Gi 

5.6 Genetic Algorithm Tool 

A tool providing the interface for specifying parameters of an underlying genetic 

algorithm for fuzzy system manipulation is discussed in this section. The tool allows the 

user to input the population size, number of crossover points, an initial mutation rate for 

creation of the initial population, a regular mutation rate, the number of generations to be 

run, and the file name that contains the training data. Optionally, the name of a file 

containing the overtraining test data to check for overfitting can be input as well. The 

current generation number is provided along with the time since algorithm activation. 

Figure 5.3 shows the interface of the tool. In this example, the example fuzzy system 

composed of the rule blo3k of table 4.1 and linguistic variables of figures 4.6, 4.7, and 4.8 

undergoes training with regards to data contained in the file "terrainTraining". The 

overtaining test data is stored in the file "terrainOvertraining". The population size, the 

number of crossover points, the initial mutation rate, the regular mutation rate, and the 
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maximum number of generations are set to 50, 5, 0.2, 0.01, and 100 respectively. It takes 

0.318 hours to complete 100 generations. 

.1111121111111111111111111111111111111111111 
Algorithm Graph Development 

artral .1 
Runs 

--) 

Training Data File terrainTraining 

Overtraining Data Rle terrainOvertraining 

Population Size 50 

Crossovers 5 

Initial Mutation Rate 0.2000 

Reg. Mutation Rate 0.0100 

Max. Generations 100 

Generation 

Computation Time 0.318 

Figure 5.3 Genetic algorithm tool 

Figure 5.4 represents a graphical tool showing the mean of sum of squared error 

(MSE) of the fittest and the median individual with regards to the training data and the 

MSE of the fittest with regards to the overtraining test data. Overfitting is reached 

around generation 10 from which onwards the MSE of the fittest regarding the 

overtraining test data set is increasing. Around generation 35 the population is 

converging as the median and the fittest individual have about the same MSE regarding 

the training data. 
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Figure 5.4 Graphical tool showing MSE over generation 

At run time of the GA, the user can open a fuzzy system editor on the best fuzzy 

system found so far. Figure 5.5 shows the optimized rule block "b_terrain". 
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Auto Design 

Learning pir DoS Input Tenn Output TermJ a Operator 

altitude vertIcaiSpeed terrain Hazard gamma DoS 

*veryLow fnegativeLarge *high 1.000 

overyLow *negative *medium 1.000 

*low *negativeLarge *high 0.937 

*low *negative (581127) 0.969 

0.964 

*medium *negative *low (161127) 0.969 

Figure 5.5 Rule block editor showing modified rule base 
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6. Fuzzy Systems for FFA 

This chapter deals with the implementation of FFA for the capture altitude 

function. A thorough explanation of FFA is given in section 6.1. As stated earlier, fuzzy 

systems, denoted as FFA systems, were used to facilitate FFA and are introduced in 

section 6.2. Calibrating FFA to emulate human expert assessment was arranged by 

training initial FFA systems through the application of a GA as described in chapter 5. 

The data required for training the FFA systems was extracted from real aviation experts. 

This knowledge acquisition process was conducted by letting human experts watch 

simulated altitude capture functions and rate how well the functions were performed; this 

is the topic of section 6.3, Section 6.4 discusses the training process of the initial FFA 

systems in more detail. I proceed with a more formal explanation of how FFA for the 

capture altitude function works. 

6.1 Functioning of FFA 

FFA for the capture altitude function is a process that continuously outputs a 

vector NO indicating how well a capture altitude function, say I, characterized by its 

target altitude a is being performed. When function I is created by declaring target 

altitude a, state information of the airplane in form of a state vector is collected 

periodically, every d milliseconds, but only the most recent x vectors are retained in 

memory M= V2, V3, ... Vxl. Thus M describes the history of the flight during the 

last x d milliseconds. Vector Vi E M is of the form: 

(6.1) V, =(s,,1, SJ,2, Sj,3, SJ,4, Sj,5);
 

where sj,/ is the altitude, sj,, is the indicated airspeed, sj,3 is the vertical speed, sj,4
 

is the flight path angle, and sj,5 is the thrust setting representing the state of the airplane 

(x j) d milliseconds ago. A function H transforms memory M to vector X as follows: 
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( 2 
(sr_ j)x, = 

d n (n 1) ),,
 

X) =
 

X3 =
 

X4 = a
(6.2) 
X5 = Sx,5

H(M)= X = 
X6 = Sx.4 

X7 = Sx 

nI2 
Xs = (S,_ *1,2 Sx_ j,2 )* (r1 )

d n (n 1) i=1 

x, = su a 
x,0= 

Table 6.1 explains the meaning of the variables. Weighted averages were 

calculated for acceleration measures in order to reduce noise. 

Table 6.1 Input variables 

Variable Meaning Explanation Dimension 

x, current vertical 
speed 
acceleration 

calculated as the weighted average of the last n-1 
vertical speed rate of change values of memory M; 
where the most current, second most current, ..., 

feet per 
minute per 
second 

and the (n-1)th most current vertical speed rate of 
change value received a weight of n-1, (n-2), ..., 
and 1 respectively 

X2 current vertical latest recorded vertical speed value in memory M feet per 

X3 

speed 
current altitude latest recorded altitude value in memory M 

minute 
feet 

X4 current altitude calculated as current altitude target altitude feet 
error 

x5 current thrust latest recorded thrust value in memory M fraction of 
maximum 
thrust 

x6 

x-

current flight 
path angle 
current airspeed 

latest recorded flight path angle recorded in 
memory M 
latest recorded airspeed value in memory M 

degrees 

knots 
X8 current airspeed 

acceleration 
calculated as the weighted average of the last n-1 
airspeed rate of change values of memory M; where 
the most current, second most current, ..., and the 

knots per 
minute per 
second 

(n-1)th most current airspeed rate of change value 
received a weight of n-1, (n-2), ..., and 1 
respectively 

X9 past altitude 
error 

calculated as earliest recorded altitude in memory M 
target altitude 

feet 

x10 past vertical 
speed 

earliest recorded vertical speed in memory M feet per 
minute 
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The resulting vector Xis comprised of variables functioning as numerical input 

variables of fuzzy systems outputting vector NO, the result of FFA. Vector NO is: 

( 
YI 

Y2
NO = 

Y3 

\,y4 

where the variables yj (j = 1,2,...,4) are defined as described in table 6.2. 

Table 6.2 Output variables 

Variable Meaning Value Explanation 

Range 

Y1 overspeed [0, 10] The variables quantify the extent to which the 
hazard corresponding hazard is present. The extent ranges from 0 

Y2 stall hazard [0, 10] to 10. At 0 no hazard is present while at value 10 the 

Y3 terrain hazard [0, 10] 
hazard is fully developed. The higher the value the more 
developed the hazard. 

Y4 function [0, 10] The variable quantifies how well the function is being 
performance performed considering safety, and compliance to the 

specified target altitude. 

For this study, the variables x, d, and n were set to 150, 50, and 11 respectively. 

Therefore, memory was confined to 7.5 seconds worth of flying time, data was collected 

in real-time at 20 Hz, and acceleration measures aggregated 0.55 seconds worth of flying 

time. While basing function assessment on just 7.5 seconds of observed flight is 

controversial the reader should note that the length was chosen to be rather short for the 

following reason. As the 'number of flight scenes to be played to the human experts was 

to be maximized in order1:o collect as much sample data as possible and time was scarce, 

the flight scene length had. to be kept as short as reasonably possible. 

The initial fuzzy systems used to compute overspeed-, stall-, and terrain hazard as 

well as function performance are discussed in the next section. 
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6.2 Initial FFA Systems 

As the input and output variables of the FFA systems are identified, the next step 

is to explain properties and the architecture of FFA systems in this section. The FFA 

systems were designed as a combination of fuzzy hazard systems assessing the level of 

emergency for different hazards, and a fuzzy system integrating hazards and level of goal 

compliance to compute the function performance. As described before, the fuzzy hazard 

systems output a value between 0 and 10. A high output value was interpreted as a 

highly developed hazard. Function performance reflected how well the airplane was 

being operated considering safety constraints and goal compliance. The greater the value 

the better the performance. A detailed description of the fuzzy systems regarding 

definition of linguistic variables and rules is included in appendix A. 

Using fuzzy logic as the underlying technology was justified because it provided 

the flexibility to integrate, many sensor readings to assess hazards or evaluate function 

performance in real time at any given situation. A very important feature of these fuzzy 

systems was that they represented knowledge captured in comprehensible if-then rules. 

The FFA systems described in this thesis were envisioned to become the underlying data 

source for warning and alerting devices indicating a degree of emergency. Section 6.3 

discusses how the initial FFA systems were trained on the average assessments taken 

from an expert panel. 

6.2.1 Fuzzy Terrain Hazard System 

The function of the fuzzy terrain hazard system (FTHS) is similar to the logic of a 

Ground Proximity Warning System (GPWS) alerting the flight crew to potential 

terrain-related hazards. The GPWS checks for hazards such as excessive descent rate and 

unsafe terrain clearance (Boeing, 1988). 
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Two alternatives were under consideration. Fuzzy Terrain Hazard System 1 

(FTHS 1) determined the terrain hazard based on current altitude and current vertical 

speed only. 

current 
vertical 
speed 

current 
altitude 

terrain 
hazard 

Figure 6.1 FTHS 1 architecture 

Figure 6.1 represents the architecture of FTHS 1. A rule block computed the 

output terrain hazard given the inputs current vertical speed and current altitude. The rule 

base containing 32 rules reasoned that with increasingly negative current vertical speed 

and decreasing current altitude, the terrain hazard increased (see appendix table A.5). 

Fuzzy Terrain Hazard System 2 (FTHS 2) determined the terrain hazard based on 

current altitude, current flight path angle, current airspeed, current thrust, and current 

altitude error. One rule block computed the intermediate variable attitude describing the 

vertical direction of the airplane in linguistic terms by integrating current thrust, current 

flight path angle, and current airspeed. Terrain hazard was the result of combining 

attitude, current altitude error, and current altitude. Figure 6.2 represents the structure of 

(FTHS 2). The knowledge base containing 224 rules in appendix table A.6 worked the 

following way: the more extreme the downward trend of the airplane expressed by 

attitude, and the lower the current altitude, the higher was the terrain hazard. However, if 

the attitude indicated an extreme upward trend at low airspeed, a stall condition might 

have been present. A stall at a low altitude implied a terrain hazard since a recovery 

maneuver would call for pitching down the airplane. Current altitude error in 
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combination with attitude indicated if the airplane was going in the right direction. If the 

goal was to climb, but the airplane descended, then the terrain hazard was considered to 

be more developed. 

current 
altitude 

error 

current terrain 
altitude hazard 

current 
thrust 

attitude 
current 

flight path 
angle 

current 
airspeed 

Figure 6.2 FTHS 2 architecture 

6.2.2 Fuzzy Stall Hazard System 

The fuzzy stall hazard system (FSHS) is similar to the logic that activates the stick 

shaker, a warning system to identify potential stall hazards. Two different fuzzy systems, 

one based on current flight path angle and current airspeed, the other based on current 

flight path angle, current airspeed, current airspeed acceleration, and current thrust, were 

explored. Figure 6.3 and 6.4 the knowledge base architecture of Fuzzy Stall Hazard 

System 1 (FSHS 1) and 2 (FSHS 2) respectively. A stall is caused by excessive angle of 

attack that is usually accompanied by low airspeed. Due to limitations in the flight 

simulator software the decision logic of both systems (appendix table A.3 and A.4) was 

based on lack of current airspeed, a symptom, and not excessive angle of attack, the true 
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cause. The logic of both systems reasoned that with increasing current flight path angle 

and decreasing current airspeed/future airspeed, the stall hazard increased. While FSHS 

1, consisting of 32 rules, used current airspeed, FSHS 2, consisting of 104 rules, made a 

prediction about the future airspeed based on current airspeed, current airspeed 

acceleration, and current thrust. 

current flight
 
path angle
 

stall
 
hazard
 

current
 
airspeed
 

Figure 6.3 FSHS 1 architecture 
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future 
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current thrust 

Figure 6.4 FSHS 2 architecture 
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6.2.3 Fuzzy Overspeed Hazard System 

The function of the desired fuzzy system is comparable with that of the logic 

controlling the "clacker", a warning system for excessive airspeed. The logic controlling 

the "clacker" of a Boeing 757 simply checks if the current airspeed is beyond the 

maximum allowable indicated airspeed (Boeing, 1988). Two fuzzy systems were under 

consideration. Fuzzy Overspeed Hazard System 1 (FOHS 1) tracked current airspeed and 

current airspeed acceleration while Fuzzy Overspeed Hazard System 2 (FOHS 2) tracked 

current airspeed, current airspeed acceleration, current thrust, and current flight path 

angle. Figure 6.5 and 6.6 represent the knowledge base architecture of the respective 

fuzzy systems. FOHS 1, consisting of 24 rules, reasoned that with increasing current 

airspeed and current airspeed acceleration the overspeed hazard increased (see appendix 

table A.1). After predicting the future airspeed, FOHS 2, consisting of 104 rules, 

reasoned that with increasing future airspeed and decreasing current flight path angle the 

overspeed hazard increased (see appendix table A.2). 

current 
airspeed 

accelerating overspeed 
hazard 

current 
airspeed 

Figure 6.5 FOHS 1 architecture 
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Figure 6.6 FOHS 2 architecture 

6.2.4 Fuzzy Hazard and Error Integration System 

The fuzzy hazard and error integration system (FHEIS) combined the output of 

three hazard systems with measures indicating how well the specified goal was being. 

pursued. Two error measures called past error and current error were used in 

combination to quantify if progress was being made towards achieving the goal. Past 

error represented the distance between the past state to the goal while current error 

represented the distance between the current state and the goal. Therefore, if the past 

error was positive large and the current error was positive small, then it was inferred that 

airplane was heading in the right direction and thus was in compliance with the goal. 

Figure 6.7 shows how the hazard system outputs were used to compute the overall 

hazard. The latter and the error measures were combined to yield function performance. 

The knowledge base, comprised of 496 rules (see appendix table A.7), approximately 

reasoned as follows. If there was a severe hazard present then function performance was 

low, if there was none and the airplane was going in the right direction then function 

performance was high. 
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Figure 6.7 FHEIS architecture 

6.3 Knowledge Acquisition 

This section explains how human expert knowledge was acquired in order to train 

the initial FFA systems. First, scenarios were developed in which capture altitude 

functions were carried out at various levels of performance. Those scenarios were played 

to a panel of human experts who then rated how well the functions portrayed in the 

scenarios were performed. Next, the expert ratings were averaged to yield the average 

expert assessment given a certain scenario. 

In total 104 scenarios were first designed and then executed. Each scenario 

portrayed a capture altitude function for 7.5 seconds. While a scenario was executed, 
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data from the flight simulator, was recorded at 20Hz in form of vectors as defined in 

equation 6.1. The vectors forming memory were later used to replay the scenarios to the 

human experts. The recorded memory was transformed into vectors as defined in 

equation 6.2. Those resulting vectors were saved and associated with the corresponding 

scenario since they were used later as inputs to the FFA systems during the training 

process. Appendix table B.1 lists the fuzzy system inputs associated with the scenarios. 

After the scenarios had been created human experts were invited to participate in 

this study. Their job was to rate the scenarios according to the measures defined in table 

6.2. The ratings for each measure were averaged across the human experts to yield 

average measures for each scenario. Thus any scenario, say scenario number k, had a 

vector pair (X, Zk) associated with it where Xk was an input to the FFA systems and Zk 

was the desired output of the FFA systems. Those vector pairs were exactly the sample 

data necessary for training the FFA system using a GA as described in section 4.5.3. 

The following sections explain limitations of the knowledge acquisition process 

and how the scenarios were designed and executed. 

6.3.1 Limitations 

Since the initial FFA systems were to be trained to reproduce the average human 

expert assessment for a number of scenarios, the quality of the resulting fuzzy systems 

depended on the selection and number of scenarios and human experts. In an ideal 

situation only the best aviation experts would have been selected and a large number of 

scenarios would have been created according to the specifications of another set of 

aviation experts. However, for practical reasons the scenarios were created by the 

researcher and the selection of human experts did not reflect a panel of best experts. 



75 

6.3.2 Scenarios 

Scenarios were first designed, then executed and recorded. A scenario was 

designed by specifying the initial conditions of the altitude capture function such as target 

altitude, initial altitude, initial airspeed, and initial flight path angle and control settings 

such as commanded airspeed, and commanded flight path angle. These scenario 

specifications were executed on a real-time flight simulator modeling a twin jet engine 

civil transport aircraft. During simulation data was recorded and transformed to yield 

inputs to the FFA systems. To collect desired output values regarding the FFA systems, 

the recorded scenarios were played to human experts by using the same flight simulator 

the scenarios were executed on. Human experts saw how the simulated airplane was 

operated by following the airplane's state dynamics displayed on an attitude director 

indicator (ADI) and mode control panel (MCP). The following assumptions were made 

with regards to the simulated environment and aircraft: 

Stall speed: 120 knots indicated airspeed 

Overspeed: 340 knots indicated airspeed 

No winds 

Ground is level, no mountains 

Ground impact occurs at sea level (0 ft. altitude) 

6.3.2.1 Scenario Design 

The fuzzy system had to work well in a broad variety of situations. Therefore the 

scenarios, which the fuzzy system were trained on, were designed to be diverse as well. 

The fuzzy systems were supposed to assess terrain, stall, and overspeed hazards at 

various severity levels and rate function performance at various levels correctly. Given 

the objective of a robust fuzzy system, the scenarios were grouped into terrain hazard 

scenarios, stall hazard scenarios, overspeed hazard scenarios, and altitude capturing 

scenarios. Each scenario group was created to yield a wide range of ratings for the metric 

it was designed for. However, a priori it was hard to predict any rating distribution 
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within the scenario groups. Although great care was taken to randomly generate 

scenarios within each group, the sample of all scenarios was not a random sample of 

possible scenarios. Scenario duration was fixed at 7.5 seconds. This relatively short 

duration was necessary to run 104 scenarios within a 2.5 hour experiment. Each scenario 

group consisted of 26 randomly generated scenarios. 

6.3.2.1.1 Hazard Groups 

Hazard scenarios were characterized by a state vector S describing the initial state 

of capture altitude function, and a reaction vector C describing the control settings 

determining how well the function was performed. Vector S was of the form (altitude, 

,ffia, airspeed, target); where altitude was the initial altitude,fioa was the initial flight path 

angle, airspeed was the initial airspeed, target was the target altitude to be captured. 

Vector C was of the form (cffia, cairspeed); where cfpa was the commanded flight path 

angle, and cairspeed was the commanded airspeed. In the following section the design 

for each hazard scenario group is discussed in more detail. 

The terrain hazard group was expected to obtain a wide range of terrain hazard 

ratings for its scenarios. Vector S as well as vector C was randomly generated according 

to the following scheme: 

Variable altitude = r1 100; where r I was a random variable that with probability 

of 0.5 took on integer values between 5 and 12 and with probability 0.5 took on integer 

values between 13 and 27. Its distribution was: 

, X E {5, 6, ..., 12} 
16 

p(r, = 
30 

, x e {13 ,14, 27} 

0 , otherwise 
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Variable_ffia = r2; where r2 was a random variable that with probability 0.5 took 

on real values between -8 and 0 and with probability 0.5 took on real values between 0 

and 20. Its density function was: 

1 

, 8 < x < 0 
16 

f,,, = 
1 

40 
, 0<x. 20 

0 , otherwise 

Variable airspeed = r3; where r3 was a random variable taking on integer values 

between 120 and 320. Its distribution was: 

1 
, X E {120,121, ..., 320} 

201p(r3 = x 
0 , otherwise 

Variable target = r4 100; where r4 was a random variable that with probability 

0.5 took on value 0 and with probability 0.5 took on integer values between 20 and 350. 

Its distribution was: 

, x = 0 

p(r4 = x ) = 
1 

, x E {20 ,21, ..., 350} 
6622 

0 , otherwise 

Variable cfpa = r5; where r5 was a random variable that with probability 0.5 took 

on real values between -8 and -5, with probability 0.25 took on real values between -5 

and 5, with probability 0.25 took on real values between 5 and 20. Its density function 

was: 
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1 8 < x < 5, 

6 

1 
, 5 < x 5 

fr3(x) 
40 

1 

60 
,5 

0 , otherwise 

Variable cairspeed = airspeed + r6; where r6 was a random variable taking on real 

values between -30 and 30. Its density function was: 

fr6 (x) 

The scenarios within this group started out at low altitude, below 2,700 ft. The 

hypothetical pilot reaction was biased towards extreme maneuvers that was either rapid 

descends or rapid climbs. In order to create low altitude stall conditions that posed a 

terrain hazard the probability of positive large commanded flight path angle was set to 

0.25. 

The stall hazard group was expected to obtain a wide range of stall hazard ratings 

for its scenarios. The randomization scheme for vector S and C are given as follows: 

Variable altitude = r7 100; where r7 was a random variable that took on integer 

values between 25 and 350. Its distribution was: 

1 
, x E {25, 26, ..., 350} 

Ai., x) { 326 

0 , otherwise 

Variable,ffia = r2. Variable airspeed = r8; where r8 was a random variable that 

with probability 0.7 took on integer values between 120 and 150 and with probability 0.3 

took on integer values between 145 and 240. Its distribution was: 
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7 
, x E {120,121,...,144}

310 
125 

, x e {145,146, ...,150}
4712

p(r8 = x) = 
3 

, x e {151,152, ..., 220} 
760 

0 , otherwise 

Variable target = r9 100; where r9 was a random variable that took on integer 

values between 20 and 350. Its distribution was: 

1 
, x e {20, 21, ..., 350} 

331p(r9 = x) --= 

0 , otherwise 

Variable cfpa = r10; where r10 was a random variable that with probability 0.6 

took on real values between 4 and 20 and with probability 0.4 took on real values 

between -5 and 4. Its density function was: 

2 
, 5 < x < 4
 

45
 

frio (x) =	 
3 

, 4 < x 20
 
80
 

0 , otherwise 

Variable cairspeed = airspeed + r 1 1; where r 1 I was a random variable that with 

probability 0.7 took on real values between -10 and 0 and with probability 0.3 took on 

values between 0 and 20. Its density function was: 

7 ,-10._.x0
100
 

frii(x) 
3 

, 0 < x 20
 
200
 

0 , otherwise
 

These scenarios were biased towards scenarios exhibiting low initial and 

commanded airspeeds and positive large commanded flight path angles. 
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The overspeed hazard group was expected to obtain a wide range of overspeed 

ratings for its scenarios. The randomization scheme for vector S and C are given as 

follows: 

Variable altitude = r7 100. Variable,ta = r2. Variable airspeed= r12; where r12 

was a random variable that took on integer values between 280 and 340. Its distribution 

was: 

, X E 1280, 281,...,3401 
poi2 x)	 61
 

0 , otherwise
 

Variable target = r9-100. Variable cfpa = r13; where r13 was a random variable 

that with probability 0.6 took on real values between -8 and 0 and with probability 0.4 

took on real values between 0 and 8. Its density function was: 

3 ,-8
40
 

fri,(x) 
1 

, 0 <x_8
 
20
 

0 , otherwise
 

Variable cairspeed = airspeed + r14; where r14 was a random variable that with 

probability 0.6 took on real values between 0 and 60 and with probability 0.4 took on 

values between -20 and 0. Its density function was: 

1 ,-20 0 
50 

1 ,0<x_60
100
 

0 , otherwise
 

Since scenarios starting out a very low airspeed were likely to result in very low 

overspeed hazard, the scenarios within this group started out at medium to high airspeed. 

The scenarios were biased towards exhibiting high commanded airspeeds. 
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6.3.2.1.2 Altitude Capture Group 

The altitude capture group contained scenarios in which the difference between 

initial altitude and target altitude was small enough to actually capture the altitude. 

Like hazard scenarios altitude capture scenarios were characterized by state vector 

S describing the initial state of the capture altitude function. Vector C describing the 

control settings was defined differently for altitude capture scenarios. 

C = (bfpa, cairspeed, caltitude); where bfpa was the flight path angle boundary, 

cairspeed was the commanded airspeed, and caltitude was the commanded altitude. The 

flight path angle boundary represented either the maximum flight path angle if the 

airplane had to climb or the minimum flight path angle if the airplane had to descend to 

capture the target. 

The randomization scheme was as follows: 

Variable altitude = r7 100. Variablefixi = r2 Variable airspeed = r15; where ris 

was a random variable that took on integer values between 120 and 340. Its distribution 

was: 

1 
}, X E {120, 121, ..., 340}

221p(r15 = x) =
 
0 , otherwise
 

Variable target = r9 100. Variable bfpa = r16; where r16 was a random variable 

that took on real values between -8 and 8. Its density function was: 

1 
, 8 < x < 8
 

J rib (x) = 16
 

, otherwise 

Variable cairspeed = airspeed + r17; where r17 was a random variable that took on 

integer values between -25 and 25. Its density function was: 

1 
, x E { 25 , 24, ... 25}
 

p(ri, = x) ={51
 
0 , otherwise
 



82 

Variable caltitude = target + r18 10; where r18 was a random variable that with 

probability 0.5 took on integer values between -5 and 5 and with probability 0.5 took on 

integer values between -30 and 30. Its distribution was: 

1 
, x e {-30, 29, ..., 6} 

122 

36 
, X E {-5, 4,....5}

671
 
Arig = x)
 

1 
, x E {6,7,..., 30}


122
 

0 , otherwise 

6.3.2.2 Scenario Execution 

The scenarios were executed on a flight simulator, a modified version of 

NASA-Langley's Advanced Civil Transport Simulator (ACTS) (Cha, 1996). 

The following displays of the simulator are relevant to this study: 

thrust, and manual flight path angle settings of the mode control panel (MCP) 

artificial horizon, altitude tape, indicated airspeed tape, and vertical speed indicator of 

the ADI 
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Airspeed Tape Artificial Horizon 

Figure 6.8 ADI display 

Figure 6.8 shows the ADI representing the state of the aircraft at 250 knots, 1000 

ft. above sea level, level flight. The MCP display is depicted in Figure 6.9. Executing a 

scenario involved bringing the airplane into the initial state as described by variables 

altitude, fpa, and airspeed of vector S. Once the initial state was reached, the flight 

simulator was interrupted in order to input the control settings of vector C. Thereafter, 

the simulator resumed while for the following 7.5 seconds flight data was recorded. All 

hazard scenarios were flown by the autopilot, controlling pitch and airspeed, while the 

altitude capture scenarios were hand-flown with the autopilot controlling only airspeed. 

Manual pitch control for the capture altitude scenarios was necessary as the autopilot was 

unable to capture a commanded altitude accurately. A hazard scenario for instance, 

specified by S = (10000 feet, 5.1 degrees, 230 kts, 15000 feet) and C = (6.5 degrees, 130 

kts), was executed by flying the airplane to 10000 ft. at a flight path angle of 5.1 degrees 

and an airspeed of 230 kts. Once the state was reached the simulator was interrupted and 

the commanded flight path angle and the commanded airspeed were set in the MCP to 6.5 

degrees and 130 kts respectively. Then the autopilot was engaged, the simulation 

resumed, and data recorded for the next 7.5 seconds. Capture altitude scenarios were 



84 

executed similarly. For those scenarios pitch was controlled manually while airspeed 

was controlled by the autopilot. Manual pitch control was guided by variable bfpa and 

caltitude. Specifically, the pitch was controlled to capture altitude caltitude while 

making sure that the flight path angle would not violate the boundary specified by bfpa. 

Meanwhile, the autopilot tried to maintain the commanded airspeed cairspeed. 

ommanded
 
flight path angle
 

'0.29, 

ig t pat ang e t rust settingommanses
 
irspeed setting
 

Figure 6.9 MCP display 

The next section talks about how the simulator in combination with a 

computer-based questionnaire was used to collect assessments of human experts. 

6.3.3 Collecting Human Expert Assessment 

Any pilot with flight experience was accepted to serve as a member of the expert 

panel. No claim was made to represent a general population of pilots. The knowledge 

acquisition involved the following steps: 

1. let subject read task description (see appendix C) 

2. explain simulator interface 

3. explain assessment interface description 
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4. let subject fly sample tasks to become familiar with airplane 

5. have subject watch and rate 12 warm-up scenarios 

6. have subject watch and rate 104 scenarios in random order 

The subject analyzed the state dynamics of the simulated airplane with regards to the 

specified target altitude and rated how well the capture altitude function was performed 

with regards to the measures defined in table 6.2. The necessary information to carry out 

these assessments was located on the ADI, MCP, and a computer-based questionnaire. 

While the ADI and MCP indicated how the airplane was moving in space and time, the 

computer-based questionnaire displayed the target altitude and accepted ratings of the 

human experts. The assessment interface is depicted in figure 6.10. The target altitude 

for a given scenario was located on the upper left. By clicking on the "Run" button the 

scenario was replayed. A "ping" sound indicated whenever a scenario was over. The 

subjects were allowed to replay a scenario as many times as they wanted. Assessments 

with regards to terrain, stall, overspeed, and function performance were made in the right 

part of the interface. So-called "sliders" were used to specify the magnitude of a 

measure. The numeric assessment values were located at the far right. For example, 

subject 1 identified a relatively high overspeed hazard (7.1 out of 10). Subject 1 rated 

function performance, labeled as response accuracy on the interface, as moderately low 

(1.9 out of 10). 
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Development 

order 

Subject 11S1 

Figure 6.10 Computer-based questionnaire 

Once the assessments were made, the subject started the next scenario by clicking 

the "Next" button. Without much interference from the researcher, the subjects were able 

to navigate through all 104 scenarios that were presented to them in a random order. 

After 6 human experts had made their assessments, averages for each measure across the 

human experts were calculated. The fuzzy system inputs, calculated from the recorded 

flight memories, in combination with the average measures, collected from the human 

experts, formed the sample data used for training the FFA systems. The next section 

addresses what had to be done to train the initial FFA systems and how the parameters of 

the GA were set. 

6.4 Training of Initial FFA Systems 

This section gives a brief overview of how the sample data was divided into 

training, overtraining test, and validation test data and explains how the initial fuzzy 

systems were trained. Before any training took place the sample data (104 runs) was 

divided randomly into 40 training, 32 overtraining test, and 32 validation test data 
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samples as described in section 5.5. From each scenario group 10, 8, and 8 scenarios 

were randomly assigned to training, overtraining test, and validation test data set 

respectively. Appendix table B.1 shows the division of the scenarios into these three 

classes. Again, training was performed by the GA as described in chapter 5 and was 

facilitated by the genetic algorithm tool described in section 5.6. Training was performed 

on the fuzzy systems in order to improve their fitness or in other words to make them 

better conform to the average human expert assessment. There were two alternatives 

under consideration for each hazard system type. However, only one of each type was 

needed to supply hazard information to the FHEIS system. Therefore, a selection was 

made based on how well each alternative fit the union of overtraining and training data 

on average after the GA had performed its operations. The selected systems were then 

used to provide data to the FHEIS which was then trained also. 

Since the GA incorporated randomness in solution finding the results varied even 

with constant GA parameter settings. Therefore, in order to determine how good the 

results were on average, the training runs were replicated 5 and 4 times for the hazard 

systems and FHEIS respectively. So, each initial hazard system was trained five times 

and in each run the best resulting fuzzy system as defined in section 5.5 was saved. Thus, 

5 training runs would yield 5 fuzzy systems. Therefore, for each hazard, there were 10 

trained fuzzy hazard systems, 5 from each system alternative. A choice had to be made 

among 30 hazard systems to supply overspeed, stall, and terrain hazard values to the 

FHEIS. For each hazard, the fuzzy system out of the 10 final candidates was selected 

that minimized the MSE with regards to union of testing and overtraining test data. This 

selection of hazard systems is referred to as the selected hazard systems (SHS). The 

initial FHEIS, supplied with hazard measure values by the SHS, was then trained in 4 

runs and the system resulting in the smallest MSE regarding the union of training and 

overtraining test data was referred to as the selected FHEIS. 

Systems FTI-IS 1, FTHS 2, FSHS 1, FSHS 2, FOHS 1, and FOHS 2 were trained 

using a GA as described in chapter 5 and the parameters were set as follows: 
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Table 6.31 GA parameter settings for hazard systems 

Parameter Value 

population size 50 

initial mutation rate 0.2 

number of crossovers 5 

regular mutation rate 0.01 

maximum number of generations 100 

FHEIS was trained according to the GA with slightly different parameters as 

depicted in table 6.4. 

Table 6.42 GA parameter settings for FHEIS 

Parameter Value 

population size 50 

initial mutation rate 0.2 

number of crossovers 5 

regular mutation rate 0.005 

maximum number of generations 150 

The number of generations was higher for the FHEIS than for the hazard systems 

because of its greater size. 

I The if parts of the rules in systems FTHS 1, FTHS 2, FSHS 1, FSHS 2 were excluded from GA
 

manipulation, while the if parts of the rules of FOHS 1, and partially of 2 were included. Excluding the if
 

parts from manipulation decreases genome size and consequently computation time.
 

2 The if parts of the rules of the FHEIS were excluded from GA manipulation.
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The next chapter is dedicated to the results and their analysis. As noted in section 

5.5, the quality of the fuzzy systems was measured by exposing the fuzzy systems to the 

validation data they were not trained on. Beyond the MSE, other measures were taken 

into consideration to evaluate the applicability of these systems in a real environment. 
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7. Results and Analysis 

This chapter summarizes the results and provides an analysis of the scenarios and 

initial and trained FFA systems. In a questionnaire human experts were asked to rate 

how realistic they found the scenarios. This measure along with verbal explanations of 

what was unrealistic about the scenarios indicates a level of face fidelity associated with 

this study. Another important factor was how the human expert ratings were distributed 

across the scenarios. The question of whether the FFA systems matched human 

assessment was addressed by calculating performance measures indicating the degree of 

agreement between the FFA systems and the human expert panel. 

7.1 Scenarios 

The human experts rated the realism of the scenarios on a scale between 

0(unrealistic) and 10(realistic). The average response was 7.56. The individual ratings of 

the six human experts that participated in this study are graphed in Figure 7.1. 
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Figure 7.1 Scenario realism 
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Four out six subjects noted that the climb and descent rates were higher than 

would be observed in reality, especially in case of a civil commercial transport aircraft. 

Two out of six subjects complained about the thrust rate display that was considered to be 

too small. The distribution of human expert ratings across scenarios is described next. 

As can be seen from the histograms below (Figure 7.2), the human expert ratings were 

not evenly distributed. In fact over 50% of the scenarios obtained a function performance 

rating of 2.5 or lower. Similarly, over 80% of the scenarios were rated 2.5 or lower with 

regards to terrain, stall, and overspeed hazard. As there was an over proportionally large 

number of hazard-less scenarios, the fuzzy systems were trained in a way that overall 

would give more emphasis to hazard-free situations. 
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Figure 7.2 Distribution of measures within sample data. (a) function performance, (b) 
terrain hazard, (c) stall hazard, (d) overspeed hazard 

7.2 Pilot Assessments 

It is not surprising to see that human experts rated scenarios differently. The 

variation of ratings for each measure is depicted in the following histograms (Figure 7.3). 
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Figure 7.3 Distribution of measure standard deviation. (a) function performance, (b) 

terrain hazard, (c) stall hazard, (d) overspeed hazard 

As can be seen from the histograms above (Figures 7.3), in which the distribution 

of standard deviation of measures within the expert panel is exhibited, human experts 

disagreed more in their function performance ratings than in their hazard ratings. The 

highest agreement was with regards to the overspeed hazard measure. This finding is 

supported by the subjective ratings the human experts gave when asked how clearly they 

thought the measures had been defined. On the average, the function performance 

measure obtained the lowest clearness rating while the overspeed measure ranked highest 

(Figure 7.4). When asked what the difficulties were with understanding the measures, 
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three out of six subjects indicated problems with understanding the function performance 

measure. One subject stated that he/she "had a hard time determining [a] compromise 

between safety and target." Similarly, another subject noted that it was not easy to 

consider both goal compliance and safety when assessing function performance. Lastly, 

one subject said that the function performance measure was very subjective. 
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Figure 7.4 Measure clearness ratings 

7.3 Data Split 

As described earlier the sample data was divided into training, overtraining test, 

and validation test data. This section analyzes the distribution of the hazard measures 

within those data sets. Major differences in measure distributions between data sets are 

likely to reduce training effectiveness as the FFA systems are then trained and validated 

against dissimilar data. The following histograms depict the measure distributions within 

the data sets (Figure 7.5). 
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Figure 7.5 Distribution of measures within data sets (a-i) 

As can be seen from figure 7.5c, there were only very few scenarios associated 

with high stall hazards in the training data set; however there were comparatively many 

of them in the validation test data set (figure 7.5a). As is discussed in section 7.4.4, the 
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relatively mediocre training result for the stall hazard system was partly caused by the 

unfavorable data split. 

7.4 Fuzzy Systems 

FFA systems were evaluated as to how well they matched the average human 

expert assessment. In addition, the validity of fuzzy systems was examined for a few 

selective continuous value ranges. In total six performance measures were established to 

quantify how well the systems matched the average human expert assessment and are 

explained in the next section. The effectiveness of the training algorithm was assessed by 

comparing the fuzzy systems before and after training with regards to the performance 

measures. Finally, the best performing hazard system alternatives were identified. 

7.4.1 Performance Measures 

The six performance measures presented here are all based on the output data 

obtained from the FFA systems using the validation test data. 

7.4.1.1 Mean of Sum of Squared Error 

The mean of sum of squared error (MSE) expressed how well a fuzzy system fit 

data in this case the validation test data derived from 32 scenarios. MSE is the sum of 

squared errors (SQE) divided by the size of the data set. In order to demonstrate how 

well the GA was able to train a fuzzy system, an overspeed hazard system was trained on 

the whole sample data. Figure 7.6 below exhibits that after a total of 100 generations the 

MSE of the fittest individual was a mere 0.25. The untrained fuzzy system resulted in a 

MSE of 9.6! After 50 generations the MSE virtually remained constant the population 
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converged. The lower the MSE, the better the fuzzy system fit the data and thus; the 

closer it matched the average human expert assessment. 
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Figure 7.6 Training of FOHS 1 on sample data (104 scenarios) 

7.4.1.2 Correlation Coefficient 

The correlation coefficient is defined as: 

En
5c1 (y, 

n 1,1r= 
nI(X .77)2 E (y,

n n ,.1 

In the context of this study, x, was the actual fuzzy system output for scenario i, 

while y, was the average human expert assessment for the corresponding measure. 

Variable n = 32, since the FFA systems were evaluated using the validation test data set. 

Note that the correlation coefficient r takes on values between 1 and 1. It was used as 

another indicator expressing how well the fuzzy systems matched the human experts' 
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assessments. The closer r is to one the better the match between system and human 

expert panel. 

7.4.1.3 False Alarm Rate 

In context of this study the false alarm rate was defined for hazards and function 

performance as follows. Regarding hazards, the false alarm rate was defined as the 

relative frequency of cases in which the fuzzy system output a value greater than 5, while 

the corresponding average human expert assessment was equal or less than 5. Regarding 

function performance, it was defined as the relative frequency of cases in which the 

FHEIS output a value less than 5, while the corresponding average human expert 

assessment was equal or greater than 5. While the choice of cutoff value 5 was arbitrary, 

it was implied that hazard values greater than 5 represented hazards that were developed 

enough to issue a full alert. Similarly, function performance values less than 5 

represented cases with highly deteriorated function performance. 

7.4.1.4 Missed Alarm Rate 

Regarding the hazard systems, the missed alarm rate was defined as the relative 

frequency of cases in which the value provided by the fuzzy system was equal or less 

than 5, while according to the human expert panel the value should have been greater 

than 5. Regarding FHEIS, the missed alarm rate was defined as the relative frequency of 

cases in which the value provided by FHEIS was equal or greater than 5, while according 

to the human expert panel the value was rated less than 5. 
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7.4.1.5 Overestimation Percentage 

The performance metric overestimation percentage was defined as the relative 

frequency of cases in which the fuzzy systems output a value that was at least 2 units 

greater than the corresponding human expert assessment. 

7.4.1.6 Underestimation Percentage 

The underestimation percentage was defined as the percentage of cases in which 

the fuzzy system output a value that was at least 2 units smaller than the corresponding 

human expert assessment. 

7.4.2 Training Effectiveness 

This section focuses on the effectiveness of the training procedure. The quality of 

the FFA systems was measured before and after training in terms of the performance 

metrics described in section 7.4.1. Table 7.1 summarizes the performance metrics for 

trained and untrained systems. 

Table 7.1 Performance measures 

System Correlation MSE False Alarm Missed Over- Under-
Rate Alarm Estimation Estimation 

Rate 
Initial FTHS 1 0.754 1.900 0.000 0.500 0.000 0.031 
Trained FTHS 1 0.767 1.549 0.007 0.300 0.006 0.138 

p -Value 0.726 0.230 0.326 0.142 0.326 0.003 
Initial FTHS 2 0.539 4.150 0.000 1.000 0.313 0.063 
Trained FTHS 2 0.757 1.539 0.007 0.500 0.019 0.056 

p-Value 0.014 0.001 0.326 0.024 <0.001 0.720 
Initial FSHS 1 0.863 4.523 0.154 0.000 0.344 0.031 
Trained FSHS 1 0.799 4.719 0.046 0.567 0.050 0.150 

p-Value 0.141 0.765 0.001 0.018 <0.001 0.004 
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Table 7.1 (Continued) 

Initial FSHS 2 0.804 8.558 0.192 0.000 0.656 0.125 

Trained FSHS 2 0.720 5.567 0.054 0.567 0.044 0.131 

p-Value 0.071 0.006 0.001 <0.001 <0.001 0.776 

Initial FOHS 1 0.697 9.571 0.300 0.000 0.594 0.000 

Trained FOHS 1 0.910 0.932 0.000 0.800 0.006 0.069 

p-Value <0.001 <0.001 <0.001 0.002 <0.001 0.003 

Initial FOHS 2 0.669 20.519 0.533 0.000 0.906 0.000 

Trained FOHS 2 0.860 1.397 0.027 0.500 0.044 0.056 

p-Value 0.007 <0.001 <0.001 0.067 <0.001 0.066 

Initial FHEIS 0.561 2.370 0.733 0.059 0.375 0.313 

Trained FHEIS 0.704 2.528 0.467 0.118 0.250 0.242 

p-Value 0.084 0.632 0.011 0.018 0.002 0.018 

Entries regarding trained fuzzy systems represent averages calculated from 5 

training runs. As mentioned earlier the training results varied and therefore, it had to be 

determined if the difference between the trained systems and the initial system were 

significant. In table 7.1 significant differences are typed in bold face and are underlined, 

suggestive differences are typed in bold face. The following hypothesis test was 

conducted for each measure to determine if a difference was significant or suggestive or 

neither (Montgomery & Hines, 1980): 

Consider x is a normally distributed random variable denoting the performance 

measure regarding a trained fuzzy system. Its meanµ and standard deviation a are 

unknown. It is wished to test the hypothesis that .t equals the performance measure value 

of the corresponding untrained system. Given a random sample of n=5, the sample 

mean x and standard deviation S can be calculated. The two-sided alternative is tested as 

follows: 

Ho: x = xo 

HI: x xo 

The test statistic is: 

to = 
Sr 
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A p-value representing the significance level is calculated as p = P(ItI > to); where 

t follows the t distribution with n-1 degrees of freedom if the null hypothesis is true. For 

the purposes of this study a p-value of 0.1 or below was considered significant while a 

value of 0.2 or below was considered suggestive. 

Regarding FHTS 1, training increased correlation from 0.754 to 0.767 at p=0.73. 

Training reduced MSE from 1.9 to 1.549 at p=0.23. It increased false alarm rate from 0 

to 0.007 at p=0.33, reduced missed alarm rate from 0.5 to 0.3 at p=0.14, increased 

overestimation rate from 0 to 0.006 at p=0.33, and increased underestimation rate from 

0.031 to 0.138 at p=0.003. Overall, it is felt that the training procedure did little to 

improve system FHTS 1 performance. 

In case of FTHS 2, the training procedure increased correlation from 0.539 to 

0.757 at p=0.014 and reduced MSE from 4.15 to 1.539 at p=0.001. It increased false 

alarm rate from 0 to 0.007 at p=0.33, reduced the missed alarm rate from 1.0 to 0.5 at 

p=0.024, reduced overestimation rate from 0.313 to 0.019 at p-0, reduced 

underestimation rate from 0.063 to 0.056 at p= 0.72. 

Concerning FSHS 1, the training procedure decreased correlation from 0.863 to 

0.799 at p=0.14 and increased MSE from 4.523 to 4.719 at p=0.765. It reduced false 

alarm rate from 0.154 to 0.046 at p=0.001, increased missed alarm rate from 0 to 0.567 at 

p=0.018, reduced overestimation rate from 0.344 to 0.05 at and increased 

underestimation rate from 0.031 to 0.15 at p=0.004. In this case it is argued that training 

actually deteriorated system performance. 

In case of FSHS 2, the training procedure decreased correlation from 0.804 to 

0.72 at p=0.077 and decreased MSE from 8.558 to 5.567 at p=0.006. It reduced false 

alarm rate from 0.192 to 0.054 at p=0.001, increased missed alarm rate from 0 to 0.567 at 

p.-÷:0, reduced overestimation rate from 0.656 to 0.044 at p:=_O, and increased 

underestimation rate from 0.125 to 0.131 at p=0.776. 
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With regards to FOVS 1, the training procedure increased correlation from 0.697 

to ' at p2-:-0, decreased MSE from 9.571 to 0.932 at p-z-0. It reduced false alarm rate 

fr '-, to 0 at increased missed alarm rate from 0 to 0.8 at p=0.002, decreased 

,timatioii rate from 0.594 to 0.006 at and increased underestimation rate from 

0.069 at p=0.003. In CLL.,: ning procedure improved system 

performance. However, of great concern is that training so-nificantly increased the 

missed alarm rate. 

With regards to FOVS 2, the training procedure increased con, ,.ition from 0.669 

to 0.86 at p=0.007 and reduced MSE from 20.519 to 1.397 at It reduced false alarm 

rate from 0.533 to 0.027 at increased missed alarm rate from 0 to 0.5 at p=0.067, 

reduced overestimation rate from 0.906 to 0.044 at and increased underestimation 

rate from 0 to 0.056 at p=0.066. 

With regard to FHEIS, the training procedure increased correlation from 0.561 to 

0.704 at p=0.084 and increased MSE from 2.37 to 2.528 at p=0.632. It reduced false 

alarm rate from 0.733 to 0.467 at p=0.011, increased missed alarm rate from 0.059 to 

0.118 at p=0.018, reduced overestimation rate from 0.375 to 0.25 at p----0.002, and 

reduced underestimation rate from 0.313 to 0.242 at p=0.018. The training procedure is 

felt to have improved system performance, however, I would call the performance level 

unacceptable as the false alarm rate was 11.8% and the missed alarm rate was 46.7%. 

The next section analyzes the effect of training on the performance measures in 

general. A nonparametric test, the Wilcoxon Signed-Rank Test (Hines and Montgomery, 

1980) was used to find out if testing significantly affected the performance measures 

across all training runs of all systems. As can be seen from Table 7.2, training on average 

increased correlation by 0.088, increased MSE by 4.911, reduced false alarm rate by 

0.184, increased missed alarm rate by 0.262, reduced overestimation rate by 0.403, and 

increased underestimation rate by 0.043. All observed differences were significant. 
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Table 7.2 Training effect on performance measures 

System ACorrelation AMSE AFalse AMissed A0ver- AUnder-
Alarm Rate Alarm Rate Estimation Estimation 

FTHS 1 0.013 -0.351 0.007 -0.200 0.006 0.106 
FTHS 2 0.219 -2.612 0.007 -0.500 -0.294 -0.006 
FSHS 1 -0.065 0.197 -0.108 0.567 -0.294 0.119 
FSHS 2 -0.084 -2.990 -0.138 0.567 -0.613 0.006 
FOHS 1 0.213 -8.639 -0.300 0.800 -0.588 0.069 

FOHS 2 0.191 -19.122 -0.507 0.500 -0.863 0.056 

FHEIS 0.142 0.158 -0.267 0.059 -0.125 -0.070 

Average over 0.090 -4.555 -0.173 0.256 -0.385 0.044 
System Averages 
Average over all 0.088 -4.911 -0.184 0.262 -0.403 0.043 
systems and runs 
Wilcoxon Signed significant significant significant significant significant signifcant 
Test Results 
(confidence level 
= 0.05) 

In addition to that, the training impact on selected fuzzy systems (SFS) and 

FHEIS is demonstrated by examining how they behaved over a continuous range of 

values. Some figures depict examples in which the initial systems were modified in a 

reasonable way, whereas, in others the systems output controversial values. Figure 7.7 

depicts how training improved the initial FHEIS in the special case (past altitude error = 

800, current altitude = 10000, current airspeed = 230, current airspeed acceleration = 0, 

current flight path angle = 3, current vertical speed = 1218, current vertical speed 

acceleration = 0, current thrust = 1, past vertical speed = 0). 
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Figure 7.7 FHEIS behavior intially and after training 

With decreasing positive current altitude error, the trained system increased the 

function performance rating while the initial system assigned a constant value of around 

5. In this case the training procedure improved the behavior of the fuzzy system. Figure 

7.8 demonstrates that the trained FTHS 2 behaved unreasonably compared with the initial 

version given the situation (current altitude = 1000, current flight path angle = -9, current 

thrust = 1, current altitude error = -20000). 
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Figure 7.8 FTHS 2 behavior intially and after training 
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-9 

With increasing airspeed the trained system did not increase terrain hazard. This 

was unreasonable since in this example the airplane headed towards the ground while the 

goal was to actually climb to 21000 ft. Figure 7.9 exhibits a situation at current airspeed 

= 121 kts. 

10 

Initial 
Trained 

-4 1 6 11 16 

Current Flight Path Angle 

Figure 7.9 FSHS 1 behavior initially and after training 

The trained FSHS 1 responded with significantly lower stall hazard values for 

negative large flight path angles compared with the initial system. This made sense, as a 

stall during rapid descent was unlikely. Figure 7.10 depicts the effect of training FOHS 1 

for the special case at which current airspeed acceleration = 2.2 kts/second. 
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Figure 7.10 FOHS 1 behavior initially and after training 

The trained system behaved strangely around 300 kts airspeed. As expected, the 

system increased overspeed hazard as airspeed increased up to around 300 kts. As 

airspeed increased beyond 300 kts, the system reduced terrain hazard unexpectedly until 

airspeed reached about 325 kts. From then on overspeed hazard increased sharply with 

increasing airspeed. 

The question whether the fuzzy systems worked better for certain situations than 

in others was addressed by examining the trained SHS as well as the trained selected 

FHEIS. The output of each system was compared with the corresponding average pilot 

score for all validation scenarios. Figure 7.11 depicts the plot of pilot terrain hazard 

score vs system terrain hazard score contained in the validation test data set. 
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Figure 7.11 Pilot score vs FTHS 2 score 

As can be seen from the plot, most pilot scores were made in the lower range 

between 0 and 3. Overall, the fuzzy system scored similarly. A perfect fuzzy system 

would match pilot scores exactly, in such a case all data points would be situated on the 

45° line. As can be seen from figure 7.12 and 7.13, the stall and overspeed hazard system 

fared well for scenarios involving low pilot scores, but missed to respond correctly in 

cases when a high hazard was present. For high pilot scores, the stall and overspeed 

system consistently output too low values, in other words the systems underestimated the 

hazard. 
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Figure 7.12 Pilot score vs FSHS score 
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Figure 7.13 Pilot score vs FOHS score 

With regards to the function performance measure, one can tell from figure 7.14, 

that the FHEIS overestimated for low pilot scores and underestimated for high ones. 
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Figure 7.14 Pilot score vs FHEIS score 

The next section deals with a comparison between trained systems. 

7.4.3 Comparison between Trained Hazard System Alternatives 

The question of which of the system alternatives adapted better to the validation 

test data set is addressed. Again, a t-test as described in section 7.4.2 was conducted to 

identify significant and suggestive differences. Table 7.3 summarizes the results. 

Table 7.3 Comparison between system altnernatives 

System Correlation MSE False Missed Over- Under-

Alarm Alarm Estimation Estimation 

Rate Rate Rate Rate 

Trained FTHS 1 0.767 1.549 0.007 0.300 0.006 0.138 

Trained FTHS 2 0.757 1.539 0.007 0.500 0.019 0.056 

p-Value 0.900 0.982 0.999 0.347 0.406 0.015 
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Table 7.3 (Continued) 

Trained FSHS 1 0.799 4.719 0.046 0.567 0.050 0.150 

Trained FSHS 2 0.720 5.567 0.054 0.567 0.044 0.131 

p-Value 0.200 0.388 0.724 0.999 0.683 0.580 

Trained FOHS 1 0.910 0.932 0.000 0.800 0.006 0.069 

Trained FOHS 2 0.860 1.397 0.027 0.500 0.044 0.056 

p-Value 0.330 0.260 0.099 0.284 0.08 0.667 

A comparison between trained FTHS 1 and 2 revealed that the only significant 

difference was observable with regards to the underestimation rate, which was higher for 

system 1. A comparison between trained FSHS 1 and 2 indicated that higher correlation 

for system 1 was suggestive. A comparison between FOSH 1 and 2 indicated that there 

were significant differences in false alarm rate, and overestimation rate. In both cases, 

FOSH 1 fared better. 

7.4.4 Effect of Scenario Split 

As noted before, the distribution of the average human expert assessment with 

regards to stall hazard was notably dissimilar across training, overtraining test, and 

validation test data set. Therefore, the sample data was resplit, and the initial FSHS 1 

was trained again. After resplit, the distribution of the stall hazard assessment was 

distributed similarly within each data set as can be seen from figure 7.15. 
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Figure 7.15 Distribution of stall hazard after resplit. (a) validation test, (b) overtraining 
test, (c) training data set 

As expected, training effectiveness improved under resplit conditions as can be 

seen from table 7.4. 

Table 7.4 Training effect on FSHS 1 under resplit and normal conditions 

System Correlation MSE False Alarm Missed Over- Under-
Rate Alarm Estimation Estimation 

Rate 
Initial FSHS 1 0.863 4.523 0.154 0.000 0.344 0.031 

Trained FSHS 1 0.799 4.719 0.046 0.567 0.050 0.150 

p-Value 0.141 0.765 0.001 0.018 <0.001 0.004 

Initial FSHS 1 Resplit 0.811 4.516 0.172 0.000 0.344 0.000 
Trained FSHS 1 Resplit 0.841 1.433 0.007 0.333 0.031 0.069 

p-Value 0.100 <0.001 <0.001 <0.001 <0.001 0.007 

Correlation increased from 0.811 to 0.841, MSE decreased from 4.516 to 1.433, 

false alarm rate decreased from 0.172 to 0.007, missed alarm rate increased from 0 to 

0.333, overestimation rate decreased from 0.34 to 0.031, and underestimation rate 

increased from 0 to 0.069. The observed differences were all significant. In addition, 

note that before data resplit, the trained FSHS 1 actually reduced correlation suggestively 
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and did not reduce MSE, whereas under resplit, the system increased correlation and 

reduced MSE significantly. Table 7.5 shows that FSHS 1 under resplit condition 

outperformed its counterpart under normal condition in the categoriesas MSE, false alarm 

rate, and underestimation rate significantly. 

Table 7.5 Comparison between trained FSHS 1 under resplit and normal conditions 

System Correlation MSE False Alarm 
Rate 

Missed 
Alarm 

Over-
Estimation 

Under-
Estimation 

Rate 
Trained Stall 1 0.799 4.719 0.046 0.567 0.050 0.150 

Trained Stall 1 Resplit 0.841 1.433 0.007 0.333 0.031 0.069 

p-Value 0.367 0.009 0.049 0.226 0.273 0.022 

7.5 Summary 

Overall, the quality of the resulting fuzzy systems was unacceptable for use in any 

real environment. For instance, in 50% of the validation scenarios the FHEIS deviated 

more than two units from the average human response. Also, a great concern is the high 

missed alarm rate for any of the trained systems. Five out of the seven system types 

listed in table 7.1 yielded missed alarm rates in excess of 50%. While on one hand the 

training procedure improved correlation, MSE, false alarm rate, and overestimation rate, 

it deteriorated missed alarm rate and underestimation rate significantly. Worrisome is the 

observation that the training procedure rendered the system controversial for certain input 

values. I believe that many of the above shortcomings are caused by insufficient sample 

data. As explained, FSHS 1 did not improve during training as the result of a detrimental 

division of the sample data into training, overtraining test, and validation test data. 

However, after resplitting the sample data, training significantly improved FSHS 1 

performance mainly because the resplit was more homogeneous than the split before. 

Thus, it was shown that the training algorithm was very sensitive to how the 104 data sets 

were split. This high degree of sensitivity was caused by a lack of medium to high 

hazard scenarios. As there were only a few high hazard scenarios, the probability of 
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distributing those unevenly across training, overtraining test, and validation test data set 

was not negligible. In addition, the lack of medium to high hazard scenarios biased the 

training procedure towards producing good results for low hazard scenarios and less so 

for high hazard ones. Ways to improve the results, practical relevance of this study, and 

major challenges faced in this study are described in the next chapter. 
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8. Conclusions and Recommendations 

This chapter presents some final thoughts about this study by mentioning its 

inherent limitations and highlighting general conclusions and research recommendations. 

8.1 Study Limitations 

Mainly three factors limit this study to be generalizable in a broad sense. First of 

all, scenarios were created using a flight simulator whose aerodynamic model did not 

match any real existing airplane and limiting assumptions were made regarding the 

scenarios (see section 6.3.2). Secondly, the scenarios were created by the researcher and 

were conceived unrealistic to a certain extent by the human expert panel. Thirdly, the 

panel by no means represented a set of best experts or a representative set of pilots. 

8.2 General Conclusions 

In this section conclusions are drawn with regards to the effectiveness of the 

employed methods and potentially useful applications are mentioned. Major challenges 

and problem areas of this approach are identified as well. 

As part of this thesis research, fuzzy systems were created to output values 

representing degrees of overspeed hazard, stall hazard, terrain hazards and function 

performance. The initial quality of these systems, as defined by the measures of section 

7.4.1, could be improved through the application of a genetic algorithm with respect to 

correlation, MSE, false alarm rate, and overestimation rate. Regarding these measures, 

the training method was successful in making the fuzzy systems better conform to human 

expert assessments. While the performance of trained systems was far from being good 

enough to be employed in a real environment, this study is a first step towards 
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implementing advisory systems indicating a degree of emergency and function 

performance. It is felt that fuzzy systems are very suitable for defining an "electronic 

cocoon" that would sense to what degree the pilot violated operational limits and safety 

constraints. While the underlying logic of current warning and alerting systems 

determines if a trigger condition is present or not, fuzzy systems are well suited to 

indicate to what degree the hazards are present and therefore allow for the identification 

of trends indicating ensuing problems as well as much more flexible alarm formats. 

There are instances in which an early indication of a hazard might have saved lives. For 

instance, the current form of the GPWS triggered an alarm too late for the aircrew of 

American Airlines, flight 965 to recover the airplane that was approaching a mountain 

rapidly (Aeronautica Civil of the Republic of Colombia, 1995). As the subjects of this 

study assessed hazards similarly and the fuzzy hazard systems could be trained to 

conform better to the average subject rating, it is believed that fuzzy logic may very well 

be a technology to be used for future GPWS, TCAS, and WSAS implementations. 

Modified and more accurate FFA systems may find application in pilot training 

operations where the task of evaluating pilot performance would be performed by fuzzy 

systems automatically assessing how well the pilot is performing the assigned tasks. 

However, there are a number of challenges to the approach taken in this study. 

First, the knowledge acquisition process took a lot of time and effort as scenarios had to 

be artificially created and rated by human experts. Designing scenarios to yield good 

data for training was an objective hard to meet. Second, as the number of variables that a 

fuzzy system had to handle increased, the size of its rule base increased almost 

exponentially. For example the FHEIS consisted of close to 500 rules; too many to 

debug the system with ease. Third, during training the genetic algorithm injected 

"errors" randomly into the rule base. Some of these errors were not revealed by the 

validation data. In other words, good results with regards to the performance measures of 

section 7.4.1 did not guarantee that the trained systems would behave reasonably over a 

wide range of inputs. Fourth, designing the fuzzy systems to perform FFA was an art 

more than anything else. Making the choice of which variables to use as input variables, 

selecting the number of linguistic terms, and designing the initial knowledge base were 
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guided mostly by intuition. Fifth, there are unresolved certification issues with respect to 

AI-based avionics systems (Harrison, Saunders, 1993). As the method to demonstrate 

that avionics software is compliant with FAA requirements was designed for 

conventional software, a clear guideline of how to obtain certification for AI-based 

systems is lacking. The question of how to verify and validate the knowledge base of 

AI-based systems has yet to be answered. Sixth, the results show that assessing function 

performance was a subjective process. For the subjects it was a lot easier to assess 

hazards that they understood. The meaning of function performance was not clearly 

defined. Seventh, the question remains how many and what kinds of experts should be 

used to train the fuzzy systems and gauge their goodness. 

8.3 Recommendations for Future Research 

It is believed that the amount and kind of training data available was not sufficient 

to train the fuzzy systems for medium and high hazard levels. Part of the problem was 

that the training data contained only a few cases in which medium and high hazard levels 

were present. Therefore, to create a more reliable FFA system more high-hazard level 

data should be collected. Also, the data should be clustered prior to being used for 

training in order to remove redundant and conflicting data. To make the fuzzy system 

easy to debug, it is essential to limit the size of the rule base to reasonable levels by 

keeping the number of variables to a bare minimum. Further research could concentrate 

on if gains in accuracy and user acceptance can be achieved by using fuzzy logic to drive 

GPWS, TCAS, and WSAS. If FFA is implemented in a real environment, designing its 

front end becomes an issue. In particular, ways to display and represent the outputs of 

FFA have to be found. With regards to auditory warnings, modulating the loudness of 

the warning message could facilitate the level of emergency. Warning messages 

displayed on a CRT could be changed in size, color, or form with varying degrees of 

emergency. Further studies could follow, testing whether alarms expressing a degree of 

emergency are preferable over ones that do not. 
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APPENDIX A Defintion of Fuzzy Systems 

Table A.1 Initial FOHS 1 

name: current airspeed (ca) 
type: input 

terms: verySlow, slow, medium, fast 
verySlow: type: #z typical: 120.0 right: 150.0 

slow: type: #lamda typical: 150.0 left: 120.0 right: 180.0 

medium: type: #lamda typical: 180 left: 150.0 right: 340.0 
fast: type: #s typical: 340.0 left: 180.0 

name: current airspeed acceleration (caa) 
type: input 

terms: negative, medium, positive 
negative: type. #z typical: -5.0 right: 0.0 
medium: type: #lamda typical: 0.0 left: -5.0 right: 5.0 

positive: type. #s typical: 5.0 left: 0.0 

name: overspeed hazard (oh) 
type: output 
terms: veryLow, low, high, veryHigh 

veryLow: type: #z typical: 0.1 right: 2.5 
low: type: #lamda typical: 2.5 left: 0.1 right: 6.0 
high: type: #lamda typical: 6 left: 2.5 right: 9.9 

veryHigh: type: #s typical: 9.9 left: 6.0 

Block: overspeed hazard 
Rule# ca caa oh gamma dos 

1 verySlow negative veryLow nil 0.5 

2 verySlow negative veryLow nil 0.5 

3 verySlow medium veryLow nil 0.5 

4 verySlow medium veryLow nil 0.5 

5 verySlow positive veryLow nil 0.5 

6 verySlow positive veryLow nil 0.5 

7 slow negative veryLow nil 0.5 

8 slow negative veryLow nil 0.5 

9 slow medium veryLow nil 0.5 

10 slow medium veryLow nil 0.5 

11 slow positive veryLow nil 0.5 

12 slow positive low nil 0.5 

13 medium negative veryLow nil 0.9 

14 medium negative low nil 0.1 

15 medium medium veryLow nil 0.2 

16 medium medium low nil 0.8 

17 medium positive low nil 0.5 

18 medium positive high nil 0.5 

19 fast negative low nil 0.9 

20 fast negative high nil 0.1 

21 fast medium high nil 0.5 

22 fast medium veryHigh nil 0.5 

23 fast positive veryHigh nil 0.9 

24 fast positive high nil 0.1 

Table A.2 Initial FOHS 2 

name: current airspeed (ca) 
type: input 

terms: verySlow, slow, medium, fast 
verySlow: type: #z typical: 120.0 right: 150.0 

slow: type: #lamda typical: 150.0 left: 120.0 right: 180.0 

medium: type. # lamda typical: 180 left: 150.0 right: 340.0 

fast: type. #s I typical: 340.0 left: 180.0 

name: current airspeed acceleration (caa) 
type: input 

terms: negative, medium, positive 
negative: type: #z ;typical -5.0 right: 0.0 
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Table A.2 (Continued) 

medium: type: #lamda typical: 0.0 left -5.0 right: 5.0 

positive: type s typical: 5.0 left: 0.0 

name: current thrust (ct) 
type: input 

terms: low, medium. nigh 

low: type: #z typical: 0.01 right: 0.5 

medium: type: # lamda typical: 0.5 left: 0,01 right 0.99 

high: type: #s typical: 0.99 left: 0.5 

name: future airspeed (fa) 
type: intermediate 

terms: verySlow, slow, medium, fast 

name: current flight path angle (cfpa) 
type: input 

terms: negative, negativeSmall, positiveSmall, positive 

negative: type: #z typical: -8 right: -2 

negativeSmall: type: #lamda typical: -2 left: -8.0 right: 2 

positiveSmall: type: #lamda typical: 2 left: -2.0 right: 20 

positive: type: #s typical: 20.0 left: 2.0 

name: overspeed hazard (oh) 
type: output 

terms: veryLow, low. high, veryHigh 

veryLow: type: #z typical: 0.1 right: 2.5 

low: type: #lamda typical: 2.5 left: 0.1 right: 6.0 

high: type: #lamda typical: 6 left: 2.5 right: 9.9 

veryHigh: type: #s typical: 9.9 left: 6.0 

Block: future airspeed
 

Rule# ca caa ct fa gamma
 dos 

1 verySlow negative low verySlow nil 1 

2 verySlow negative low verySlow nil 1 

3 verySlow negative medium verySlow nil 1 

4 verySlow negative medium verySlow nil 1 

15 verySlow negative high verySlow nil 

6 verySlow negative high slow nil 1 

7 verySlow medium low verySlow nil 1 

18 verySlow medium low slow nil 

19 verySlow medium medium slow nil 

10 verySlow medium medium medium nil 1 

11 verySlow medium high slow nil 1 

12 verySlow medium high medium nil 1 

13 verySlow positive low slow nil 1 

14 verySlow positive low verySlow nil 1 

15 verySlow positive medium slow nil 1 

116 verySlow positive medium slow nil 

117 verySlow positive high slow nil 

18 verySlow positive high medium nil 1 

19 slow negative low verySlow nil 1 

20 slow negative low verySlow nil 1 

121 slow negative medium slow nil 

122 slow negative medium verySlow nil 

123 slow negative high slow nil 

124 slow negative high verySlow nil 

25 slow medium low slow nil 1 

26 slow medium low verySlow nil 1 

27 slow medium medium slow nil 1 

128 slow medium medium slow nil 

129 slow medium high slow nil 

1medium nil30 slow high medium 
131 slow positive low medium nil 

32 slow positive low medium nil 1 

33 siow positive medium medium nil 1 

34 slow positive medium medium nil 1 

35 slow positive high medium nil 1 

136 slow positive high medium nil 

137 medium negative low slow nil 

138 medium negative low slow nil 

39 medium negative medium slow nil 1 

40 medium negative medium medium nil 1 
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Table A.2 (Continued) 

41 medium negative high slow nil 1 

42 medium negative high medium nil 1 

43 medium medium low medium nil 1 

44 medium medium low slow nil 1 

45 medium medium medium medium nil 1 

46 medium medium medium medium nil 1 

47 medium medium high medium nil 1 

48 medium medium high fast nil 1 

49 medium positive low medium nil 1 

50 medium positive low medium nil 1 

51 medium positive medium fast nil 1 

52 medium positive medium medium nil 1 

53 medium positive high fast nil 1 

54 medium positive high medium nil 1 

55 fast negative low medium nil 1 

56 fast negative low medium nil 1 

57 fast negative medium medium nil 1 

58 fast negative medium fast nil 1 

59 fast negative high medium nil 1 

60 fast negative high fast nil 1 

61 fast medium low fast nil 1 

62 fast medium low medium nil 1 

63 fast medium medium fast nil 1 

64 fast medium medium fast nil 1 

65 fast medium high fast nil 1 

66 fast medium high fast nil 1 

67 fast positive low fast nil 1 

68 fast positive low fast nil 1 

69 fast positive medium fast nil 1 

70 fast positive medium fast nil 1 

71 fast positive high fast nil 1 

72 fast positive high fast nil 1 

Block: overspeed hazard 
Rule# fa cfpa oh gamma dos 

1 verySlow negative veryLow nil 0.9 

2 verySlow negative low nil 0.1 

3 verySlow negativeSmall veryLow nil 0.5 

4 verySlow negativeSmall veryLow nil 0.5 

5 verySlow positiveSmall veryLow nil 0.5 

6 verySlow positiveSmall veryLow nil 0.5 

7 verySlow positive veryLow nil 0.5 

8 verySlow positive veryLow nil 0.5 

9 slow negative low nil 0.7 

10 slow negative veryLow nil 0.3 

11 slow negativeSmall low nil 0.6 

12 slow negativeSmall veryLow nil 0.4 

13 slow positiveSmall low nil 0.5 
14 slow positiveSmall veryLow nil 0.5 
15 slow positive low nil 0.2 

16 slow positive veryLow nil 0.8 

17 medium negative low nil 0.2 
18 medium negative high nil 0.8 

19 medium negativeSmall low nil 0.3 

20 medium negativeSmall high nil 0.7 

21 medium positiveSmall low nil 0.5 

22 medium positiveSmall high nil 0.5 

23 medium positive low nil 0.6 

24 medium positive high nil 0.4 

25 fast negative veryHigh nil 0.9 

26 fast negative high nil 0.1 

27 fast negativeSmall veryHigh nil 0.8 

28 fast negativeSmall high nil 0.2 

29 fast positiveSmall veryHigh nil 0.7 

30 fast positiveSmall high nil 0.3 

31 fast positive veryHigh nil 0.5 

32 fast positive high nil 0.5 
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Table A.3 Initial FSHS 1 

name: current flight path angle (cfpa) 
type: input 

terms: negative, negativeSmall, positiveSmall, positive 
negative: type: #z typical: -8 right: -2 

negativeSmall: type: #lamda typical: -2 left: -8.0 right: 2 

positiveSmall: type: #lamda typical: 2 left: -2.0 right: 20 
positive: type: #s typical: 20.0 left: 2.0 

name: current airspeed (ca) 
type: input 
terms: verySlow, slow. medium, fast 

verySlow: type: #z typical: 120.0 right: 150.0 
slow: type: #lamda typical: 150.0 left: 120.0 right: 180.0 

medium: type: #lamda typical: 180 left: 150.0 right: 340.0 
fast: type: #s typical: 340.0 left: 180.0 

name: stall hazard (sh) 
type: output 
terms: veryLow, low, nigh, veryHigh 

veryLow: type: #z typical: 0.1 right: 2.5 
Ow: type: #lamda typical: 2.5 left: 0.1 right: 6.0 

high: type: #lamda typical: 6 left: 2.5 right: 9.9 
veryHigh: type: #s typical: 9.9 left: 6.0 

Block: stall hazard 
Rule# cfpa ca sh gamma dos 

1 negative verySlow high nil 1 

2 negative verySlow high nil 1 

3 negative slow high nil 1 

4 negative slow low nil 1 

5 negative medium low nil 1 

6 negative medium veryLow nil 1 

7 negative fast veryLow nil 1 

8 negative fast veryLow nil 1 

9 negativeSmail verySlow high nil 1 

10 negativeSmail verySlow veryHigh nil 1 

11 negativeSmall slow low nil 1 

12 negativeSmad slow high nil 1 

13 negativeSmad medium low nil 1 

14 negativeSmall medium low nil 1 

15 negativeSmall fast veryLow nil 1 

16 negativeSmail fast veryLow nil 1 

17 positiveSmall verySlow veryHigh nil 1 

18 positiveSmail verySlow low nil 1 

19 positiveSmall slow high nil 1 

20 positiveSmall slow low nil 1 

21 positiveSmall medium low nil 1 

22 positiveSmall medium low nil 1 

23 positiveSmail fast veryLow nil 1 

124 positiveSmail fast low nil 

25 positive verySlow veryHigh nil 1 

26 positive verySlow veryHigh nil 1 

27 positive slow veryHigh nil 1 

28 positive slow high nil 1 

29 positive medium high nil 1 

30 positive medium low nil 1 

31 positive fast low nil 1 

32 positive fast low nil 1 

Table A.4 Initial FSHS 2 

name: current flight path angle (cfpa) 
type: input 

terms: negative, negaweSmall, positiveSmall, positive 
negative: type: #z typical: -8 right: -2 

negativeSmall: type: # lamda typical: -2 left: -8.0 right: 2 

positiveSmall: type: # lamda typical: 2 left: -2.0 right: 20 

positive: type: #s typical: 20.0 left: 2.0 
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Table A.4 (Continued) 

name: current airspeed (Ca) 
type: input 

terms: verySlow, slow, medium, fast 
verySlow: type: #z typical: 120.0 right: 150.0 

slow: type # lamda typical: 150.0 left: 120.0 right: 180.0 

medium: type: #lamda typical 180 left: 150.0 right: 340.0 

fast: type: #s typical: 340.0 left: 180.0 

name: current airspeed acceleration (caa) 
type: input 

terms: negative, medium, positive 

negative: type: #z typical' -5.0 right: 0.0 

medium: type. # lamda typical: 0.0 left: -5.0 right: 5.0 

positive: type: #s typical: 5.0 left: 0.0 

name: current thrust (ct 
type: input 

terms: low, medium, high 

low: type: #z typical: 0.01 right: 0.5 

medium: type: #lamda typical: 0.5 left: 0.01 right: 0.99 

high: type. #s typical: 0.99 left: 0.5 

name: future airspeed (fa) 
type: intermediate 
terms: verySlow, slow, medium, fast 

name: stall hazard (sh) 
type: output 
terms: veryLow, low, high, veryHigh 

veryLow: type: #z typical: 0.1 right: 2.5 

low: type: #lamda typical: 2.5 left: 0.1 right: 6.0 

high: type. # lamda typical: 6 left: 2.5 right: 9.9 

veryHigh: type: #s typical: 9.9 left: 6.0 

Block: future airspeed 
Rule# ca caa ct fa gamma dos 

1 verySlow negative low verySlow nil 

2 verySlow negative low verySlow nil 1 

3 verySlow negative medium verySlow nil 1 

4 verySlow negative medium verySlow nil 1 

5 verySlow negative high verySlow nil 1 

6 verySlow negative high slow nil 1 

7 verySlow medium low verySlow nil 1 

8 verySlow medium low slow nil 1 

9 verySlow medium medium slow nil 1 

10 verySlow medium medium medium nil 

11 verySlow medium high slow nil 1 

12 verySlow medium high medium nil 1 

13 verySlow positive low slow nil 1 

14 verySlow positive low verySlow nil 1 

15 verySlow positive medium slow nil 1 

16 verySlow positive medium slow nil 1 

17 verySlow positive high slow nil 1 

18 verySlow positive high medium nil 1 

19 slow negative low verySlow nil 1 

20 slow negative low verySlow nil 1 

21 slow negative medium slow nil 1 

22 slow negative medium verySlow nil 1 

23 slow negative high slow nil 1 

24 slow negative high verySlow nil 1 

25 slow medium low slow nil 1 

26 slow medium low verySlow nil 1 

27 slow medium medium slow nil 1 

28 slow medium medium slow nil 1 

29 slow medium high slow nil 1 

30 slow medium high medium nil 1 

31 slow positive low medium nil 1 

32 slow positive low medium nil 1 

33 slow positive medium medium nil 1 

34 slow positive medium medium nil 1 

35 slow positive high medium nil 1 
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Table A.4 (Continued) 

36 slow positive high medium nil 1 

37 medium negative low slow nil 1 

38 medium negative low slow nil 1 

39 medium negative medium slow nil 1 

40 medium negative medium medium nil 1 

41 medium negative high slow nil 1 

42 medium negative high medium nil 1 

43 medium medium low medium nil 1 

44 medium medium low slow nil 1 

45 medium medium medium medium nil 1 

46 medium medium medium medium nil 1 

47 medium medium high medium nil 1 

48 medium medium high fast nil 1 

49 medium positive low medium nil 1 

50 medium positive low medium nil 1 

51 medium positive medium fast nil 1 

52 medium positive medium medium nil 1 

53 medium positive high fast nil 1 

54 medium positive high medium nil 1 

55 fast negative low medium nil 1 

56 fast negative low medium nil 1 

57 fast negative medium medium nil 1 

58 fast negative medium fast nil 1 

59 fast negative high medium nil 1 

60 fast negative high fast nil 1 

61 fast medium low fast nil 1 

62 fast medium low medium nil 1 

63 fast medium medium fast nil 1 

64 fast medium medium fast nil 1 

65 fast medium high fast nil 1 

66 fast medium high fast nil 1 

67 fast positive low fast nil 1 

68 fast positive low fast nil 1 

69 fast positive medium fast nil 1 

70 fast positive medium fast nil 1 

71 fast positive high fast nil 1 

72 fast positive high fast nil 1 

Block: current stall hazard 
Ruled cfpa fa sh gamma dos 

1 negative verySlow high nil 1 

2 negative verySlow veryHigh nil 1 

3 negative slow high nil 1 

4 negative slow low nil 1 

5 negative medium low nil 

6 negative medium veryLow nil 1 

7 negative fast low nil 1 

8 negative fast veryLow nil 1 

9 negativeSmall verySlow veryHigh nil 1 

10 negativeSmall verySlow high nil 1 

11 negativeSmall slow high nil 1 

12 negativeSmail slow high nil 1 

13 negativeSmall medium low nil 1 

14 negativeSmail medium high nil 1 

15 negativeSmall fast low nil 

16 negativeSmall fast veryLow nil 1 

17 positiveSmall verySlow veryHigh nil 1 

18 positiveSmall verySlow veryHigh nil 1 

19 positiveSmall slow veryHigh nil 1 

20 positiveSmall slow high nil 1 

21 positiveSmall medium low nil 1 

22 positiveSmall medium high nil 1 

23 positiveSmall fast veryLow nil 1 

24 positiveSmall fast low nil 1 

25 positive verySlow veryHigh nil 1 

26 positive verySlow veryHigh nil 1 

27 positive slow veryHigh nil 1 

28 positive slow high nil 1 

29 positive medium high nil 1 

30 positive medium low nil 1 
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Table A.4 (Continued) 

31 positive fast low nil 1 

32 positive fast veryLow nil 1 

Table A.5 Initial FTHS 1 

name: current vertical speed (cvs) 
type: input 

terms: veryNegative, negative, positive, veryPositive 
veryNegative: type: #z typical: -6000 right: -3000 

negative: type. #lamda typical: -3000 left: -6000 right: 3000 

positive: type: #lamda typical: 3000 left: -3000 right: 6000 

veryPositive: type: #s typical: 6000 left: 3000 

name: current altitude (calt) 
type: input 
terms: extremelyLow veryLow low medium 

extremelyLow: type: #z typical: 0.0 right: 500.0 

veryLow: type: #lamda typical: 500 left: 0 right: 1000 

low: type: #lamda typical: 1000 left: 500 right: 2500 

medium: type: #s typical: 2500 left: 1000 

name: terrain hazard (th) 
type: output 

terms: veryLow, low. high. veryHigh 
veryLow: type: #z typical: 0.1 right: 2.5 

low: type: #lamda typical: 2.5 left: 0.1 right: 6.0 

high: type: #lamda typical: 6 left: 2.5 right: 9.9 

veryHigh: type: #s typical: 9.9 left: 6.0 

Block: terrain hazard 
Rule# cvs calt th gamma dos 

1 veryNegative extremelyLow veryHigh nil 1 

2 veryNegative extremelyLow veryHigh nil 1 

3 veryNegative veryLow high nil 1 

4 veryNegative veryLow veryHigh nil 1 

5 veryNegative low high nil 1 

6 veryNegative low high nil 1 

7 veryNegative medium high nil 1 

8 veryNegative medium low nil 1 

9 negative extremelyLow high nil 1 

10 negative extremelyLow veryHigh nil 1 

11 negative veryLow high nil 1 

12 negative veryLow veryHigh nil 1 

13 negative low low nil 1 

14 negative low low nil 1 

15 negative medium low nil 1 

16 negative medium veryLow nil 

17 positive extremelyLow low nil 1 

18 positive extremelyLow high nil 1 

19 positive veryLow low nil 1 

20 positive veryLow veryLow nil 1 

121 positive low low nil 

122 positive low veryLow nil 

23 positive medium veryLow nil 1 

24 positive medium veryLow nil 1 

125 veryPositive extremelyLow high nil 

26 veryPositive extremelyLow high nil 1 

27 veryPositive veryLow high nil 1 

28 veryPositive veryLow veryHigh nil 1 

129 veryPositive low low nil 

130 veryPositive low high nil 

31 veryPositive medium low nil 1 

32 veryPositive medium low nil 1 
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Table A.6 Initial FTHS 2 

name: current flight path angle (cfpa) 
type: input 

terms: negative, negativeSmall, positiveSmall 
negative: type: #z typical: -8 right: -2 

negativeSmall: type. # lamda typical: -2 left: -8.0 right: 2 

positiveSmal): type: #lamda typical: 2 left: -2.0 right: 20 

positive: type: #s typical: 20.0 left: 2 0 

name: current airspeed (ca) 

type: input 

terms: verySlow, slow, medium, fast 

verySlow: type: #z typical: 120.0 right: 150.0 

slow: type # lamda typical: 150.0 left: 120.0 right: 180.0 

medium: type: # lamda typical: 180 left: 150.0 right: 340.0 

fast: type: #s typical: 340.0 left: 180.0 

name: current thrust (ct) 
type: input 

terms: low, medium. high 

low: type: #z typical: 0.01 right: 0.5 

medium: type: # lamda typical: 0.5 left: 0.01 right: 0.99 

high: type: #s typical: 0.99 left: 0.5 

name: attitude (at) 
type: intermediate 
terms: diving, descending, climbing, climbingExtreme 

name: current altitude (calt) 
type: input 

terms: extremelyLow. veryLow, low, medium 

extremelyLow: type: #z typical: 0.0 right: 500.0 

veryLow: type: #lamda typical: 500 left: 0 right: 1000 

low: type: #lamda typical: 1000 left: 500 right: 2500 

medium: type: #s typical: 2500 left: 1000 

name: terrain hazard (th) 
type: output 

terms: veryLow, low, high, veryHigh 

veryLow: type: #z typical: 0.1 right: 2.5 

low: type: # lamda typical: 2.5 left: 0.1 right: 6.0 

high: type: # lamda typical: 6 left: 2.5 right: 9.9 

veryHigh: type: #s typical: 9.9 left: 6.0 

name: current altitude error (cae) 

type: input 

terms: negative, negativeSmall, positiveSmall, positive 

negative: type: #z typical: -15000 right: -5000 

negativeSmall: type: #pi typical: -5000 typicalEnd: -100 left: -15000.0 right: 0 

positiveSmall: type: #lamda typical: 500 left: -100.0 right: 1000 

positive: type. #s typical: 1000.0 left 500.0 

Block: attitude 
Rule# cfpa ca ct at gamma dos 

1 negative verySlow low descending nil 0.5 

2 negative verySlow low descending nil 0.5 

3 negative verySlow medium descending nil 0.5 

4 negative verySlow medium descending nil 0.5 

5 negative verySlow high descending nil 0.5 

6 negative verySlow high descending nil 0.5 

7 negative slow low descending nil 0.5 

8 negative slow low descending nil 0.5 

9 negative slow medium descending nil 0.5 

10 negative slow medium descending nil 0.5 

11 negative slow high descending nil 0.5 

12 negative slow high descending nil 0.5 

13 negative medium low descending nil 0.5 

14 negative medium low descending nil 0.5 

15 negative medium medium descending nil 0.5 

16 negative medium medium descending nil 0.5 

17 negative medium high descending nil 0.8 

18 negative medium high diving nil 0.2 

19 negative fast low descending nil 0.5 

20 negative fast low diving nil 0.5 
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21 negative fast medium descending nil 0.1 

22 negative fast medium diving nil 0.9 

23 negative fast high diving nil 0.5 
24 negative fast high drying nil 0.5 

25 negativeSmall verySlow low descending nil 0.5 

26 negativeSmail verySlow low descending nil 0.5 

27 negativeSmail verySlow medium descending nil 0.5 

28 negativeSmall verySlow medium descending nil 0.5 

29 negativeSmall verySlow high descending nil 0.5 

30 negativeSmall verySlow high descending nil 0.5 

31 negativeSmall slow low descending nil 0.5 

32 negativeSmall slow low descending nil 0.5 

33 negativeSmail slow medium descending nil 0.5 

34 negativeSmall slow medium descending nil 0.5 

35 negativeSmall slow high descending nil 0.5 

36 negativeSmall slow high descending nil 0.5 

37 negativeSmall medium low descending nil 0.5 

38 negativeSmall medium low descending nil 0.5 

39 negativeSmall medium medium descending nil 0.5 

40 negativeSmall medium medium descending nil 0.5 

41 negativeSmall medium high descending nil 0.5 

42 negativeSmall medium high descending nil 0.5 

43 negativeSmall fast low descending nil 0.5 

44 negativeSmall fast low descending nil 0.5 

45 negativeSmall fast medium diving nil 0.5 

46 negativeSmall fast medium descending nil 0.5 

47 negativeSmail fast high diving nil 0.5 

48 negativeSmall fast high descending nil 0.5 

49 positiveSmall verySlow low climbing nil 0.5 

50 positiveSmall verySlow low climbingExtreme nil 0.5 

51 positiveSmall verySlow medium climbing nil 0.8 

52 positiveSmall verySlow medium climbingExtreme nil 0.2 

53 positiveSmall verySlow high climbing nil 0.5 

54 positiveSmall verySlow high climbing nil 0.5 

55 positiveSmall slow low climbing nil 0.5 

56 positiveSmall slow low climbing nil 0.5 

57 positiveSmall slow medium climbing nil 0.5 

58 positiveSmail slow medium climbing nil 0.5 

59 positiveSmall slow high climbing nil 0.5 

60 positiveSmall slow high climbing nil 0.5 

61 positiveSmall medium low climbing nil 0.5 

62 positiveSmall medium low climbing nil 0.5 

63 positiveSmall medium medium climbing nil 0.5 

64 positiveSmall medium medium climbing nil 0.5 

65 positiveSmall medium high climbing nil 0.5 

66 positiveSmall medium high climbing nil 0.5 

67 positiveSmall fast low climbing nil 0.5 

68 positiveSmall fast low climbing nil 0.5 

69 positiveSmall fast medium climbing nil 0.5 

70 positiveSmail fast medium climbing nil 0.5 

71 positiveSmail fast high climbing nil 0.5 

72 positiveSmall fast high climbing nil 0.5 

73 positive verySlow low climbingExtreme nil 0.5 

74 positive verySlow low climbingExtreme nil 0.5 

75 positive verySlow medium climbingExtreme nil 0.5 

76 positive verySlow medium climbing nil 0.5 

77 positive verySlow high climbingExtreme nil 0.2 

78 positive verySlow high climbing nil 0.8 

79 positive slow low climbing nil 0.9 

80 positive slow low climbingExtreme nil 0.1 

81 positive slow medium climbing nil 0.5 

82 positive slow medium climbing nil 0.5 

83 positive slow high climbing nil 0.5 

84 positive slow high climbing nil 0.5 

85 positive medium low climbing nil 0.5 

86 positive medium low climbing nit 0.5 

87 positive medium medium climbing nil 0.5 

88 positive medium medium climbing nil 0.5 

89 positive medium high climbing nil 0.5 

90 positive medium high climbing nil 0.5 
91 positive fast low climbing nil 0.5 
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Table A.6 (Continued) 

92 positive fast low climbing nil 0.5 

93 positive fast medium climbing nil 0.5 

94 positive fast medium climbing nil 0.5 

95 positive fast high climbing nil 0.5 

96 positive fast high climbing nil 0.5 

Block: terrain hazard 
Rule# at ca cae th gamma dos 

1 diving extremelyLow negative veryHigh nil 0.5 

2 diving extremelyLow negative veryHigh nil 0.5 

3 diving extremelyLow negativeSmall veryHigh nil 0.5 

4 diving extremelyLow negativeSmall veryHigh nil 0.5 

5 drying extremelyLow positiveSmall veryHigh nil 0.5 

6 diving extremelyLow positiveSmall veryHigh nil 0.5 

7 diving extremelyLow positive veryHigh nil 0.5 

8 diving extremelyLow positive veryHigh nil 0.5 

9 diving veryLow negative veryHigh nil 0.5 

10 diving veryLow negative veryHigh nil 0.5 

11 diving veryLow negativeSmall veryHigh nil 0.5 

12 diving veryLow negativeSmall high nil 0.5 

13 diving veryLow positiveSmall high nil 0.5 

14 diving veryLow positiveSmall high nil 0.5 

15 diving veryLow positive high nil 0.5 

16 diving veryLow positive high nil 0.5 

17 diving low negative high nil 0.5 

18 diving low negative high nil 0.5 

19 diving low negativeSmall high nil 0.5 

20 diving low negativeSmall high nil 0.5 

21 diving low positiveSmall high nil 0.5 

22 diving low positiveSmall low nil 0.5 

23 diving low positive high nil 0.5 

24 diving low positive low nil 0.5 

25 diving medium negative high nil 0.5 

26 diving medium negative high nil 0.5 

27 diving medium negativeSmall high nil 0.5 

28 diving medium negativeSmall high nil 0.5 

29 diving medium positiveSmall high nil 0.5 

30 diving medium positiveSmall low nil 0.5 

31 diving medium positive high nil 0.5 

32 diving medium positive low nil 0.5 

33 descending extremelyLow negative high nil 0.5 

34 descending extremelyLow negative high nil 0.5 

35 descending extremelyLow negativeSmall high nil 0.8 

36 descending extremelyLow negativeSmall low nil 0.2 

37 descending extremelyLow positiveSmall low nil 0.7 

38 descending extremelyLow positiveSmall high nil 0.3 

39 descending extremelyLow positive low nil 0.5 

40 descending extremelyLow positive low nil 0.5 

41 descending veryLow negative low nil 0.8 

42 descending veryLow negative high nil 0.2 

43 descending veryLow negativeSmall low nil 0.9 

descending4'4 veryLow negativeSmall high nil 0.1 

45 descending veryLow positiveSmall low nil 0.5 

46 descending veryLow positiveSmall veryLow nil 0.5 

47 descending veryLow positive low nil 0.5 

48 descending veryLow positive veryLow nil 0.5 

49 descending low negative low nil 0.5 

50 descending low negative high nil 0.5 

51 descending low negativeSmall low nil 0.5 

52 descending low negativeSmall high nil 0.5 

53 descending low positiveSmall low nil 0.5 

54 descending low positiveSmall veryLow nit 0.5 

55 descending low positive low nil 0.5 

56 descending low positive veryLow nil 0.5 

57 descending medium negative low nil 0.5 

58 descending medium negative high nil 0.5 

59 descending medium negativeSmall low nil 0.5 

60 descending medium negativeSmall high nil 0.5 

61 descending medium positiveSmall low nil 0.5 

62 descending medium positiveSmall veryLow nil 0.5 

63 descending medium positive low nil 0.5 
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64 descending medium positive veryLow nil 0.5 

65 climbing extremelyLow negative veryLow nil 0.5 

66 climbing extremelyLow negative veryLow nil 0.5 

67 climbing extremelyLow negativeSmall veryLow nil 0.5 

68 climbing extremelyLow negativeSmall veryLow nil 0.5 

69 climbing extremelyLow positiveSmall veryLow nil 0.5 

70 climbing extremelyLow positiveSmall veryLow nil 0.5 

71 climbing extremelyLow positive veryLow nil 0.5 

72 climbing extremelyLow positive veryLow nil 0.5 

73 climbing veryLow negative veryLow nil 0.5 

74 climbing veryLow negative veryLow nil 0.5 

75 climbing veryLow negativeSmall veryLow nil 0.5 

76 climbing veryLow negativeSmall veryLow nil 0.5 

77 climbing veryLow positiveSmall veryLow nil 0.5 

78 climbing veryLow positiveSmall veryLow nil 0.5 

79 climbing veryLow positive veryLow nil 0.5 

80 climbing veryLow positive veryLow nil 0.5 

81 climbing low negative veryLow nil 0.5 

82 climbing low negative veryLow nil 0.5 

83 climbing low negativeSmall veryLow nil 0.5 

84 climbing low negativeSmall veryLow nil 0.5 

85 climbing low positiveSmall veryLow nil 0.5 

86 climbing low positiveSmall veryLow nil 0.5 

87 climbing low positive veryLow nil 0.5 

88 climbing low positive veryLow nil 0,5 

89 climbing medium negative veryLow nil 0.5 

90 climbing medium negative veryLow nil 0.5 

91 climbing medium negativeSmall veryLow nil 0.5 

92 climbing medium negativeSmall veryLow nil 0.5 

93 climbing medium positiveSmall veryLow nil 0.5 

94 climbing medium positiveSmall veryLow nil 0.5 

95 climbing medium positive veryLow nil 0.5 

96 climbing medium positive veryLow nil 0.5 

97 climbingExtreme extremelyLow negative high nil 0.5 

98 climbingExtreme extremelyLow negative veryHigh nil 0.5 

99 climbingExtreme extremelyLow negativeSmall high nil 0.5 

100 climbingExtreme extremelyLow negativeSmall veryHigh nil 0.5 

101 climbingExtreme extremelyLow positiveSmall high nil 0.5 

102 climbingExtreme extremelyLow positiveSmall veryHigh nil 0.5 

103 climbingExtreme extremelyLow positive high nil 0.5 

104 climbingExtreme extremelyLow positive veryHigh nil 0.5 

105 climbingExtreme veryLow negative high nil 0.5 

106 climbingExtreme veryLow negative high nil 0.5 

107 climbingExtreme veryLow negativeSmall high nil 0.5 

108 climbingExtreme veryLow negativeSmall high nil 0.5 

109 climbingExtreme veryLow positiveSmall high nil 0.5 

110 climbingExtreme veryLow positiveSmall high nil 0.5 

111 climbingExtreme veryLow positive high nil 0.5 

112 climbingExtreme veryLow positive high nil 0.5 

113 climbingExtreme low negative high nil 0.5 

114 climbingExtreme low negative high nil 0.5 

115 climbingExtreme low negativeSmall high nil 0.5 

116 climbingExtreme low negativeSmall high nil 0.5 

117 climbingExtreme low positiveSmall high nil 0.5 

118 climbingExtreme low positiveSmall high nil 0.5 

119 climbingExtreme low positive high nil 0.5 

120 climbingExtreme low positive high nil 0.5 

121 climbingExtreme medium negative high nil 0.5 

122 climbingExtreme medium negative high nil 0.5 

123 climbingExtreme medium negativeSmall high nil 0.5 

124 climbingExtreme medium negativeSmall high nil 0.5 

125 climbingExtreme medium positiveSmall high nil 0.5 

126 climbingExtreme medium positiveSmall high nil 0.5 

127 climbingExtreme medium positive high nil 0.5 

128 climbingExtreme medium positive high nil 0.5 
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name: stall hazard (sh) 
type intermediate 
terns veryLow, low, high, veryHigh 

name: current error (ce) 
type intermediate 

terms. negativeLarge. negative, zero, positive, positiveLarge 

name: past error (pe) 
type: intermediate 

terms- negativeLarge, negative, zero, positive, positiveLarge 

name: past error (pe) 
type. intermediate 

terms: negativeLarge, negative, zero, positive, positiveLarge 

name: past vertical speed (pvs) 
type' input 

terms: veryNegative, negative, positive, veryPositive 

veryNegative: type: #z typical: -6000 right: -3000 

negative: type: #lamda typical: -3000 left: -6000 right: 3000 

positive: type: #lamda typical: 3000 left: -3000 right: 6000 

veryPositive: type: #s typical: 6000 left: 3000 

name: current vertical speed (cvs) 
type: input 

terms: veryNegative, negative, positive, veryPositive 

veryNegative: type: #z typical: -6000 right: -3000 

negative: type: # lamda typical: -3000 left: -6000 right: 3000 

positive: type: # lamda typical: 3000 left: -3000 right: 6000 

veryPositive: type: #s typical: 6000 left: 3000 

name: past altitude error (pae) 
type: input 

terms: negative, negatNeSmall, zero, positiveSmall, positive 

negative: type: #z typical: -30000 right: -1000 

negativeSmall: type: #pi typical: -10000 typicalEnd: -1000 left: -30000.0 right: 0 

zero: type: # lamda typical: 0 left: -1000 right: 1000.0 

positiveSmall: type: #pi typical: 1000 typicalEnd: left: 0 right: 30000 
10000 

positive: type: #s typical: 30000.0 left: 1000.0 

name: overspeed hazard (oh) 
type: intermediate 

terms: veryLow, low, high, veryHigh 

name: current altitude error (cae) 
type. input 

terms: negative, negativeSmall, zero, positiveSmall, positive 

negative: type: #z typical: -30000 right: -1000 

negativeSmall: type: #pi typical: -10000 typicalEnd: -1000 left: - 30000.0 right: 0 

zero: type: # lamda typical: 0 left: -1000 right: 1000.0 

positiveSmall: type. #pi typical: 1000 typicalEnd: left: 0 right: 30000 
10000 

positive: type: #s typical: 30000.0 left: 1000.0 

name: current vertical speed acceleration (cvsa) 
type: input 

terms: veryNegative. negative, positive, veryPositive 

veryNegative: type: #z typical: -2000 right: -500 

negative: type: # lamda typical: -500 left: -2000 right: 100.0 

positive: type. # lamda typical: 100.0 left: -500.0 right: 450.0 

veryPositive: type: #s typical: 450 left: 100.0 

name: overall hazard (h) 
type: intermediate 

terms: veryLow, low, nigh, veryHigh 

name: terrainHazard (th) 
type: intermediate 

terms: veryLow, low, nigh, veryHigh 
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name: function performance (fp) 
type, output 
terms: veryLow, low, high, veryHigh 

veryLow: type: #z typical: 0.1 right: 2.5 

low: type: #lamda typical: 2.5 left: 0.1 right: 6.0 

high: 'type: #lamda typical: 6 left: 2.5 right: 9.9 

veryHigh: type #s typical: 9.9 left: 6.0 

Block: overall hazard 

Rule# sh oh th h gamma dos 

1 veryLow veryLow veryLow veryLow nil 1 

2 veryLow veryLow veryLow veryLow nil 1 

3 veryLow veryLow low veryLow nil 0.8 

4 veryLow veryLow low low nil 0.2 

5 veryLow veryLow high high nil 0.8 

6 veryLow veryLow high low nil 0.2 

7 veryLow veryLow veryHigh veryHigh nil 0.8 

8 veryLow veryLow veryHigh high nil 0.2 

9 veryLow low veryLow veryLow nil 0.9 

10 veryLow low veryLow low nil 0.1 

11 veryLow low low veryLow nil 0.8 

12 veryLow low low low nil 0.2 

13 veryLow low high low nil 0.1 

14 veryLow low high high nil 0.9 

15 veryLow low veryHigh veryHigh nil 0.9 

16 veryLow low veryHigh high nil 0.1 

17 veryLow high veryLow low nil 0.5 

18 veryLow high veryLow high nil 0.5 

19 veryLow high low low nil 0.4 

2C veryLow high low high nil 0.6 

21 veryLow high high veryHigh nil 0.2 

22 veryLow high high high nil 0.8 

23 veryLow high veryHigh veryHigh nil 0.7 

24 veryLow high veryHigh high nil 0.3 

25 veryLow veryHigh veryLow high nil 0.8 

26 veryLow veryHigh veryLow veryHigh nil 0.2 

27 veryLow veryHigh low high nil 0.7 

28 veryLow veryHigh low veryHigh nil 0.6 

29 veryLow veryHigh high high nil 0.5 

30 veryLow veryHigh high veryHigh nil 0.5 

31 veryLow veryHigh veryHigh veryHigh nil 0.5 

32 veryLow veryHigh veryHigh veryHigh nil 0.5 

33 low veryLow veryLow low nil 0.1 

34 low veryLow veryLow veryLow nil 0.9 

35 low veryLow low low nil 0.4 

36 low veryLow low veryLow nil 0.6 

37 low veryLow high low nil 0.1 

38 low veryLow high high nil 0.9 

39 low veryLow veryHigh veryHigh nil 0.9 

40 low veryLow veryHigh high nil 0.1 

41 low low veryLow veryLow nil 0.9 

42 low low veryLow low nil 0.1 

43 low low low low nil 0.5 

44 low low low low nil 0.5 

45 low low high high nil 0.9 

46 low low high low nil 0.1 

47 low low veryHigh veryHigh nil 0.9 

48 low low veryHigh high nil 0.1 

49 low high veryLow high nil 0.5 

50 low high veryLow low nil 0.5 

51 low high low high nil 0.6 

52 ww high low low nil 0.4 

53 low high high high nil 0.5 

54 low high high high nil 0.5 

55 low high veryHigh veryHigh nil 0.9 

56 low high veryHigh high nil 0.1 

57 low veryHigh veryLow high nil 0.4 

56 low veryHigh veryLow veryHigh nil 0.6 

59 low veryHigh low veryHigh nil 0.7 

60 low veryHigh low high nil 0.3 

61 low veryHigh high veryHigh nil 0.8 
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62 low veryHigh high high nil 0.2 

63 low veryHigh veryHigh veryHigh nil 0.5 

64 low veryHigh veryHigh veryHigh nil 0.5 

65 high veryLow veryLow low nil 0.2 

66 high veryLow veryLow high nil 0.8 

67 high veryLow low low nil 0.1 

68 high veryLow low high nil 0.9 

69 high veryLow high high nil a 5 

70 high veryLow high high nil 0.5 

71 high veryLow veryHigh veryHigh nil 0.5 

72 high veryLow veryHigh veryHigh nil 0.5 

73 high low veryLow high nil 0.7 

74 high low veryLow low nil 0.3 

75 high low low high nil 0.8 

76 high low low low nil 0.3 

77 high low high high nil 0.5 

78 high low high high nil 0.5 

79 high low veryHigh veryHigh nil 0.5 

80 high low veryHigh veryHigh nil 0.5 

81 veryHigh veryLow veryLow veryHigh nil 0.9 

82 veryHigh veryLow veryLow high nil 0.1 

83 veryHigh veryLow low veryHigh nil 0.9 

84 veryHigh veryLow low high nil 0.1 

85 veryHigh veryLow high veryHigh nil 0.5 

86 veryHigh veryLow high veryHigh nil 0.5 

87 veryHigh veryLow veryHigh veryHigh nil 0.5 

88 veryHigh veryLow veryHigh veryHigh nil 0.5 

89 veryHigh low veryLow veryHigh nil 0.6 

90 veryHigh low veryLow high nil 0.4 

91 veryHigh low low veryHigh nil 0.7 

92 veryHigh low low high nil 0.3 

93 veryHigh low high veryHigh nil 0.8 

94 veryHigh low high high nil 0.2 

95 veryHigh low veryHigh veryHigh nil 0.5 

96 veryHigh low veryHigh veryHigh nil 0.5 

Block: past error 

Rule# pae pvs pe gamma dos 

1 negative veryNegative negativeLarge nil 0.5 

2 negative veryNegative negativeLarge nil 0.5 

3 negative negative negativeLarge nil 0.5 

4 negative negative negativeLarge nil 0.5 

5 negative positive negativeLarge nil 0.7 

6 negative positive negative nil 0.3 

7 negative veryPositive negativeLarge nil 0.5 

8 negative veryPositive negative nil 0.5 

9 negativeSmail veryNegative negativeLarge nil 0.4 

10 negativeSmail veryNegative negative nil 0.6 

11 negativeSmail negative negativeLarge nil 0.3 

12 negativeSmail negative negative nil 0.7 

13 negativeSmail positive negative nil 0.2 

14 negativeSmail positive zero nil 0.8 

15 negativeSmail veryPositive zero nil 0.7 

16 negativeSmail veryPositive positive nil 0.3 

17 zero veryNegative negative nil 0.8 

18 zero veryNegative negativeLarge nil 0.2 

19 zero negative negative nil 0.7 

20 zero negative zero nil 0.3 

21 zero positive positive nil 0.7 

22 zero positive zero nil 0.3 

23 zero veryPositive positive nil 0.8 

24 zero veryPositive positivelarge nil 0.2 

25 positiveSmail veryNegative negative nil 0.3 

26 positiveSmail veryNegative zero nil 0.7 

27 positiveSmail negative zero nil 0.8 

28 positiveSmail negative positive nil 0.2 

29 positiveSm ail positive positive nil 0.8 

30 positiveSmail positive positiveLarge nil 0.2 

31 positiveSmal veryPositive positive nil 0.5 

32 positiveSmal veryPositive positiveLarge nil 0.5 

33 positive veryNegative positiveLarge nil 0.5 
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34 positive veryNegative positive nil 0.5 

35 positive negative positiveLarge nil 0.7 

36 positive negative positive nii 0.3 

37 positive positive negativeLarge nil 0.5 

38 positive positive negativeLarge nil 0.5 

39 positive veryPositive negativeLarge nil 0.5 

40 positive very Positive negativeLarge nil 0.5 

Block: current error 
Rule# cae cvs cvsa ce gamma dos 

1 negative veryNegative veryNegative negativeLarge nil 0.5 

2 negative veryNegative veryNegative negativeLarge nil 0.5 

3 negative veryNegative negative negativeLarge nil 0.5 

4 negative veryNegative negative negativeLarge nil 0.5 

5 negative veryNegative positive negativeLarge nil 0.9 

6 negative veryNegative positive negative nil 0.1 

negative veryNegative veryPositive negativeLarge nil 0.8 

8 negative veryNegative veryPositive negative nil 0.2 

9 negative negative veryNegative negativeLarge nil 0.5 

10 negative negative veryNegative negativeLarge nil 0.5 

11 negative negative negative negativeLarge nil 0.5 

12 negative negative negative negativeLarge nil 0.5 

13 negative negative positive negativeLarge nil 0.8 

14 negative negative positive negative nil 0.2 

15 negative negative veryPositive negativeLarge nil 0.7 

16 negative negative veryPositive negative nil 0.3 

17 negative positive veryNegative negative nil 0.4 

18 negative positive veryNegative negativeLarge nil 0.6 

19 negative positive negative negative nil 0.4 

20 negative positive negative negativeLarge nil 0.6 

21 negative positive positive negative nil 0.5 

22 negative positive positive negativeLarge nil 0.5 

23 negative positive veryPositive negative nil 0.5 

24 negative positive veryPositive negativeLarge nil 0.5 

25 negative veryPositive veryNegative negativeLarge nil 0.5 

26 negative veryPositive veryNegative negative nit 0.5 

27 negative veryPositive negative negativeLarge nil 0.4 

28 negative veryPositive negative negative nil 0.6 

29 negative veryPositive positive negativeLarge nil 0.4 

30 negative veryPositive positive negative nil 0.6 

31 negative veryPositive veryPositive negativeLarge nil 0.4 

32 negative veryPositive veryPositive negative nil 0.6 

33 negativeSmail veryNegative veryNegative negative nil 0.5 

34 negativeSmail veryNegative veryNegative negativeLarge nil 0.5 

35 negativeSmail veryNegative negative negative nil 0.6 

36 negativeSmail veryNegative negative negativeLarge nil 0.4 

37 negativeSmall veryNegative positive negative nil 0.6 

38 negativeSmail veryNegative positive negativeLarge nil 0.4 

39 negativeSmail veryNegative veryPositive negative nil 0.6 

40 negativeSmail veryNegative veryPositive negativeLarge nil 0.4 

41 negativeSmail negative veryNegative negative nil 0.6 

42 negativeSmail negative veryNegative negativeLarge nil 0.4 

43 negativeSmail negative negative negative nil 0.6 

44 negativeSmail negative negative negativeLarge nil 0.4 

45 negativeSmail negative positive negative nil 0.7 

46 negativeSmail negative positive negativeLarge nit 0.3 

47 negativeSmail negative veryPositive negative nil 0.7 

48 negativeSmail negative veryPositive negativeLarge nil 0.3 

49 negativeSmail positive veryNegative negative nil 0.4 

50 negativeSmail positive veryNegative zero nil 0.6 

51 negativeSmail positive negative negative nil 0.2 

52 negativeSmail positive negative zero nil 0.8 

53 negativeSmail positive positive positive nil 0.1 

54 negativeSmail positive positive zero nil 0.9 

55 negativeSmail positive veryPositive positive nil 0.2 

56 negativeSmail positive veryPositive zero nil 0.8 

57 negativeSmail veryPositive veryNegative zero nil 0.5 

58 negativeSmail veryPositive veryNegative zero nil 0.5 

59 negativeSmail veryPositive negative zero nil 0.9 

60 negativeSmail veryPositive negative positive nil 0.1 

61 negativeSmail veryPositive positive zero nil 0.7 
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62 negativeSmail veryPositive positive positive nil 0.3 

63 negativeSm ail veryPositive veryPositive zero nil 0.6 

64 negativeSm ail veryPositive veryPositive positive nil 0.4 

65 zero veryNegative veryNegative zero nil 0.1 

66 zero veryNegative veryNegative negative nil 0.9 

67 zero veryNegative negative zero nil 0.2 

68 zero veryNegative negative negative nil 0.8 

69 zero veryNegative positive zero nil 0.3 

70 zero veryNegative positive negative nil 0.7 

71 zero veryNegative veryPositive zero nil 0.5 

72 zero veryNegative veryPositive negative nil 0.5 

73 zero negative veryNegative zero nil 0.3 

74 zero negative veryNegative negative nil 0.7 

75 zero negative negative zero nil 0.4 

76 zero negative negative negative nil 0.6 

77 zero negative positive zero nil 0.6 

78 zero negative positive negative nil 0.4 

79 zero negative veryPositive zero nil 0.7 

80 zero negative veryPositive negative nil 0.3 

81 zero positive veryNegative zero nil 0.8 

82 zero positive veryNegative positive nil 0.2 

83 zero positive negative zero nil 0.7 

84 zero positive negative positive nil 0.3 

85 zero positive positive zero nil 0.5 

86 zero positive positive positive nil 0.5 

87 zero positive veryPositive zero nil 0.3 

88 zero positive veryPositive positive nil 0.7 

89 zero veryPositive veryNegative zero nil 0.5 

90 zero veryPositive veryNegative positive nil a 5 

91 zero veryPositive negative zero nil 0.4 

92 zero veryPositive negative positive nil 0.6 

93 zero veryPositive positive zero nil 0.3 

94 zero veryPositive positive positive nil 0.7 

95 zero veryPositive veryPositive zero nil 0.1 

96 zero veryPositive veryPositive positive nil 0.9 

97 positiveSmall veryNegative veryNegative zero nil 0.6 

98 positiveSmall veryNegative veryNegative negative nil 0.4 

99 positiveSmall veryNegative negative zero nil 0.7 

100 positiveSmail veryNegative negative negative nil a 3 

101 positiveSmall veryNegative positive zero nil 0.9 

102 positiveSmall veryNegative positive negative nil 0.1 

103 positiveSmall veryNegative veryPositive zero nil 0.5 

104 positiveSmail veryNegative veryPositive zero nil 0.5 

105 positiveSmail negative veryNegative zero nil 0.8 

106 positiveSmail negative veryNegative negative nil 0.2 

107 positiveSmall negative negative zero nil 0.9 

108 positiveSmall negative negative negative nil 0.1 

109 positiveSmall negative positive zero nil 0.8 

110 positiveSmall negative positive positive nil 0.2 

111 positiveSmall negative veryPositive zero nil 0.7 

112 positiveSmail negative veryPositive positive nil 0.3 

113 positiveSmall positive veryNegative positive nil 0.7 

114 positiveSmall positive veryNegative positiveLarge nil 0.3 

115 positiveSmall positive negative positive nil 0.7 

116 positiveSmail positive negative positiveLarge nil 0.3 

117 positiveSmail positive positive positive nil 0.6 

118 positiveSmail positive positive positiveLarge nil 0.4 

119 positiveSmail positive veryPositive positive nil 0.6 

120 positiveSmail positive veryPositive positiveLarge nil 0.4 

121 positiveSmail veryPositive veryNegative positive nil 0.6 

122 positiveSmail veryPositive veryNegative positiveLarge nil 0.4 

123 positiveSmail veryPositive negative positive nil 0.6 

124 positiveSmall veryPositive negative positiveLarge nil 0.4 

125 positiveSmail veryPositive positive positive nil 0.5 

126 positiveSmail veryPositive positive positiveLarge nil 0.5 

127 positiveSmail veryPositive veryPositive positive nil 0.4 

128 positiveSmail veryPositive veryPositive positiveLarge nil 0.6 

129 positive veryNegative veryNegative positive nil 0.6 

130 positive veryNegative veryNegative positiveLarge nil 0.4 

131 positive veryNegative negative positive nil 0.6 

132 positive veryNegative negative positiveLarge nil 0.4 
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133 positive veryNegative positive positive nil 0.6 

134 positive veryNegative positive positiveLarge nil 0.4 

135 positive veryNegative veryPositive positive nil 0.5 

136 positive veryNegative veryPositive positiveLarge nil 0.5 

137 positive negative veryNegative positive nil 0.5 

138 positive negative veryNegative positiveLarge nil 0.5 

139 positive negative negative positive nil 0.5 

140 positive negative negative positiveLarge nil 0.5 

141 positive negative positive positive nil 0.4 

142 positive negative positive positiveLarge nil 0.6 

143 positive negative veryPositive positive nil 0.4 

144 positive negative veryPositive positiveLarge nil 0.6 

145 positive positive veryNegative positive nil 0.3 

146 positive positive veryNegative positiveLarge nil 0.7 

147 positive positive negative positive nil 0.2 

148 positive positive negative positiveLarge nil 0.8 

149 positive positive positive positiveLarge nil 0.5 

150 positive positive positive positiveLarge nil 0 5 

151 positive positive veryPositive positiveLarge nil 0.5 

152 positive positive veryPositive positiveLarge nil 0.5 

153 positive veryPositive veryNegative positive nil 0.2 

154 positive veryPositive veryNegative positiveLarge nil 0.8 

155 positive veryPositive negative positive nil 0.1 

156 positive veryPositive negative positiveLarge nil 0.9 

157 positive veryPositive positive positiveLarge nil 0.5 

158 positive veryPositive positive positiveLarge nil 0.5 

159 positive veryPositive veryPositive positiveLarge nil 0.5 

160 positive veryPositive veryPositive positiveLarge nil 0.5 

Block: function performance 
Rule# pe ce high fp gamma dos 

1 negativeLarge negativeLarge veryLow low nil 0.6 

2 negativeLarge negativeLarge veryLow high nil 0.4 

3 negativeLarge negativeLarge low low nil 0.7 

4 negativeLarge negativeLarge low high nil 0.3 

5 negativeLarge negativeLarge high low nil 0.8 

6 negativeLarge negativeLarge high veryLow nil 0.2 

7 negativeLarge negativeLarge veryHigh low nil 0.1 

8 negativeLarge negativeLarge veryHigh veryLow nil 0.9 

9 negativeLarge negative veryLow veryHign nil 0.8 

10 negativeLarge negative veryLow high nil 0.2 

11 negativeLarge negative low high nil 0.8 

12 negativeLarge negative low veryHigh nil 0.2 

13 negativeLarge negative high low nil 0.8 

14 negativeLarge negative high veryLow nil 0.2 

15 negativeLarge negative veryHigh low nil 0.2 

16 negativeLarge negative veryHigh veryLow nil 0.8 

17 negativeLarge zero veryLow veryHigh nil 0.9 
18 negativeLarge zero veryLow high nil 0.1 

19 negativeLarge zero low veryHigh nil 0.3 

20 negativeLarge zero low high nil 0.7 

21 negativeLarge zero high low nil 0.5 

22 negativeLarge zero high veryLow nil 0.5 

23 negativeLarge zero veryHigh veryLow nil 0.8 

24 negativeLarge zero veryHigh low nil 0.2 

25 negativeLarge positive veryLow high nil 0.5 

26 negativeLarge positive veryLow veryHigh nil 0.5 

27 negativeLarge positive low high nil 0.9 

28 negativeLarge positive low veryHigh nil 0.1 

29 negativeLarge positive high low nil 0.5 

30 negativeLarge positive high veryLow nil 0.5 

31 negativeLarge positive veryHigh veryLow nil 0.9 

32 negativeLarge positive veryHigh low nil 0.1 

33 negativeLarge positiveLarge veryLow veryLow nil 0.5 

34 negativeLarge positiveLarge veryLow low nil 0.5 

35 negativeLarge positiveLarge low veryLow nil 0.6 

36 negativeLarge positiveLarge low low nil 0.4 

37 negativeLarge positiveLarge high veryLow nil 0.7 

38 negativeLar a positiveLarge high low nil 0.3 

39 negativeLarge positiveLarge veryHigh veryLow nil 0.5 

40 negativeLarge positiveLarge veryHigh veryLow nil 0.5 
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41 negative negativeLarge veryLow veryLow nil 0.5 

42 negative negativeLarge veryLow low nil 0.5 

43 negative negativeLarge low veryLow nil 0.6 

44 negative negativeLarge low low nil 0.4 

45 negative negativeLarge high veryLow nil 0.7 

46 negative negativeLarge high low nil 0.3 

47 negative negativeLarge veryHigh veryLow nil 0.5 

48 negative negativeLarge veryHigh veryLow nil 0.5 

49 negative negative veryLow low nil 0.5 

50 negative negative veryLow high nil 0.5 

51 negative negative low low nil 0.6 

52 negative negative low high nil 0.4 

53 negative negative high low nil 0.5 

54 negative negative high veryLow nil 0.5 

55 negative negative veryHigh veryLow nil 0.8 

56 negative negative veryHigh low nil 0.2 

57 negative zero veryLow veryHigh nil 0.9 

58 negative zero veryLow high nil 0.1 

59 negative zero low veryHigh nil 0.6 

60 negative zero low high nil 0.4 

61 negative zero high low nil 0.5 

62 negative zero high veryLow nil 0.5 

63 negative zero veryHigh veryLow nil 0.7 

64 negative zero veryHigh low nil 0.3 

65 negative positive veryLow high nil 0.5 

66 negative positive veryLow low nil 0.5 

67 negative positive low high nii 0.2 

68 negative positive low low nil 0.8 

69 negative positive high low nil 0.4 

70 negative positive high veryLow nil 0.6 

71 negative positive veryHigh veryLow nil 0.9 

72 negative positive veryHigh low nil 0.1 

73 negative positiveLarge veryLow low nil 0.6 

74 negative positiveLarge veryLow veryLow nil 0.4 

75 negative positiveLarge low low nil 0.4 

76 negative positiveLarge low veryLow nil 0.6 

77 negative positiveLarge high veryLow nil 0.7 

78 negative positiveLarge high low nil 0.3 

79 negative positiveLarge veryHigh veryLow nil 0.9 

80 negative positiveLarge veryHigh low nil 0.1 

81 zero negativeLarge veryLow veryLow nil 0.6 

82 zero negativeLarge veryLow low nil 0.4 

83 zero negativeLarge low veryLow nil 0.7 

84 zero negativeLarge low low nil 0.3 

85 zero negativeLarge high veryLow nil 0.9 

86 zero negativeLarge high low nil 0.1 

87 zero negativeLarge veryHigh veryLow nil 0.5 

88 zero negativeLarge veryHigh veryLow nil 0.5 

89 zero negative veryLow veryLow nil 0.5 

90 zero negative veryLow low nil 0.5 

91 zero negative low veryLow nil 0.6 

92 zero negative low low nil 0.4 

93 zero negative high veryLow nil 0.7 

94 zero negative high low nil 0.3 

95 zero negative veryHigh veryLow nil 0.9 

96 zero negative veryHigh low nil 0.1 

97 zero zero veryLow veryHigh nil 0.7 

98 zero zero veryLow high nil 0.3 

99 zero zero low veryHigh nil 0.3 

100 zero zero low high nil 0.7 

101 zero zero high low nil 0.6 

102 zero zero high veryLow nil 0.4 

103 zero zero veryHigh veryLow nil 0.7 

104 zero zero veryHigh low nil 0.3 

105 zero positive veryLow low nil 0.6 

106 zero positive veryLow high nil 0.4 

107 zero positive low veryLow nil 0.6 

108 zero positive low low nil 0.4 

109 zero positive high veryLow nil 0.7 

110 zero positive high low nil 0.3 

111 zero positive veryHigh veryLow nil 0.5 
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112 zero positive veryHigh veryLow nil 0.5 

113 zero positiveLarge veryLow low nil 0.7 

114 zero positiveLarge veryLow high nil 0.3 

115 zero positiveLarge low low nil 0.9 

116 zero positiveLarge low veryLow nil 0.1 

117 zero positiveLarge high low nil 0.5 

118 zero positiveLarge high veryLow nil 0.5 

119 zero posaiveLarge veryHigh veryLow nil 0.9 

120 zero positiveLarge veryHigh low nil 0.1 

121 positive negativeLarge veryLow veryLow nil 0.2 

122 positive negativeLarge veryLow low nil 0.8 

123 positive negativeLarge low verylow nil 0.8 

124 positive negativeLarge low low nil 0.2 

125 positive negativeLarge high veryLow nil 0.9 

126 positive negativeLarge high low nil 0.1 

127 positive negativeLarge veryHigh veryLow nil 0.5 

128 positive negativeLarge veryHigh veryLow nil 0.5 

129 positive negative veryLow low nil 0.6 

130 positive negative veryLow veryLow nil 0.4 

131 positive negative low low nil 0.4 

132 positive negative low veryLow nil 0.6 

133 positive negative high veryLow nil 0.8 

134 positive negative high low nil 0.2 

135 positive negative veryHigh veryLow nil 0.5 

136 positive negative veryHigh verylow nil 0.5 

137 positive zero veryLow veryHigh nil 0.9 
7 138 positive zero veryLow high nil 0.1 

139 positive zero low veryHigh nil 0.5 

140 positive zero low high nil 0.5 

141 positive zero high low nil 0.9 

142 positive zero high veryLow nil 0.1 

143 positive zero veryHigh veryLow nil 0.7 

144 positive zero veryHigh low nil 0.3 

145 positive positive veryLow low nil 0.3 

146 positive positive veryLow high nil 0.7 

147 positive positive low low nil 0.9 

148 positive positive low veryLow nil 0.1 

149 positive positive high veryLow nil 0.8 

150 positive positive high low nil 0.2 

151 positive positive veryHigh veryLow nil 0.5 

152 positive positive veryHigh veryLow nil 0.5 

153 positive positiveLarge veryLow veryLow nil 0.5 

154 positive positiveLarge veryLow low nil 0.5 

155 positive positiveLarge low veryLow nil 0.6 

156 positive positiveLarge low low nil 0.4 

157 positive positiveLarge high veryLow nil 0.7 

158 positive positiveLarge high low nil 0.3 

159 positive positiveLarge veryHigh veryLow nil 0.5 

160 positive positiveLarge veryHigh verylow nil 0.5 

161 positiveLarge negativeLarge veryLow low nil 0.5 

162 positiveLarge negativeLarge veryLow low nil 0.5 

163 positiveLarge negativeLarge low low nil 0.4 

164 positiveLarge negativeLarge low veryLow nil 0.6 

165 positiveLarge negativeLarge high low nil 0.3 

166 positiveLarge negativeLarge high veryLow nil 0.7 

167 positiveLarge negativeLarge veryHigh veryLow nil 0.9 

168 positiveLarge negativeLarge veryHigh low nil 0.1 

169 positiveLarge negative veryLow low nil 0.4 

170 positiveLarge negative veryLow high nil 0.6 

171 positiveLarge negative low low nil 0.8 

172 positiveLarge negative low high nil 0.2 

173 positiveLarge negative high low nil 0.4 

174 positiveLarge negative high veryLow nil 0.6 

175 positiveLarge negative veryHigh veryLow nil 0.8 

176 positiveLarge negative veryHigh low nil 0.2 

177 positiveLarge zero veryLow veryHigh nil 0.9 

178 positiveLarge zero veryLow high nil 0.1 

179 positiveLarge zero low veryHigh nil 0.5 

180 positiveLarge zero low high nil 0.5 

181 positiveLarge zero high low nil 0.5 

182 positiveLarge zero high low nil 0.5 
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Table A.7 (Continued) 

183 positiveLarge zero veryHigh veryLow nil 0.8 

184 positiveLarge zero veryHigh low nil 0.2 

185 positiveLarge positive veryLow veryHigh nil 0.9 

186 positiveLarge positive veryLow high nil 0.1 

187 positiveLarge positive low veryHigh nil 0.4 

188 positiveLarge positive low high nil 0.6 

189 positiveLarge positive high low nil 0.9 

190 positiveLarge positive high high nil 0.1 

191 positiveLarge positive veryHigh veryLow nit 0.9 

192 positiveLarge positive veryHigh low nil 0.1 

193 positiveLarge positiveLarge veryLow high nil 0.5 

194 positiveLarge positiveLarge veryLow low nil 0.5 

195 positiveLarge positiveLarge low low nil 0.8 

196 positiveLarge positiveLarge low high nil 0.2 

197 positiveLarge positiveLarge high veryLow nil 0.6 

198 positiveLarge positiveLarge high low nil 0.4 

199 positiveLarge positiveLarge veryHigh veryLow nil a 5 

200 positiveLarge positiveLarge veryHigh veryLow nil 0.5 

Table A.8 Trained Selected FOSH 1 

name: current airspeed (cal 
type: input 

terms: verySlow, slow, medium, fast 
verySlow: type: #z typical: 262.581 right: 292.713 

slow: type: # lamda typical: 292.713 left: 262.581 right: 324.164 

medium: type: #lamda typical: 324.164 left: 292.713 right: 340 

fast: type #s typical: 340 left: 324.164 

name: current airspeed acceleration (caa) 

type: input 

terms: negative, medium, positive 

negative: type: #z typical: -1.16813 right: 0.68915 

medium: type: # lamda typical: 0.68915 left: -1.16813 right: 4.91202 

positive: type #s typical: 4.91202 left: 0.68915 

name: overspeed hazard (oh) 
type: output 

terms: veryLow, low, high, veryHigh 
veryLow: type: #z typical: 0.136852 right: 0.782014 

low: type: #lamda typical: 0.782014 left: 0.136852 right: 6.19746 

high: type: # lamda typical: 6.19746 left: 0.782014 right: 9.58944 

veryHigh: type: #s typical: 9.58944 left: 6.19746 

Block: overspeed hazard 
Rule* ca caa oh gamma dos 

1 verySlow negative nil nil a535433 

2 verySlow nil veryLow nil 0.566929 

3 verySlow medium veryLow 0 0.795276 

4 nil positive high nil 0.535433 

5 verySlow medium veryLow 0.0787402 0.574803 

6 verySlow positive nil 0.125984 0.574803 

7 medium negative nil nil 0.503937 

8 verySlow negative nil nil 0.692913 

9 nil medium nil nil 0.637795 

10 slow positive nil nil 0.787402 

11 nil positive veryLow 0.251969 0 

12 medium medium veryHigh 0 0.212598 

13 medium nil veryLow nil 0.393701 

14 verySlow nil nil 0.283465 0.354331 

15 nil negative veryLow nil 0.188976 

16 medium positive nil nil 0.677165 

17 medium negative low nil 0.582677 

18 medium negative nil nil 0.629921 

19 fast nil nil nil 0.401575 

20 fast positive high nil 0.212598 

21 slow negative veryLow nil 0.503937 

22 fast nil veryHigh 0.535433 0.732283 
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Table A.8 (Continued) 

nil nil 0.267717 

24 fast nil nil 
23 fast positive 

0 0.102362 

Table A.9 Trained Selected FSHS 1 

name: current flight path angle (cfpa) 
type: input 

terms: negative, negativeSmall, positiveSmall, positive 

negative: type: #z typical: -1.9912 right: 1.38123 

negativeSmall: type: #lamda typical: 1.38123 left: -1.9912 right: 13.5806 

positiveSmall: type. # lamda typical: 13.5806 left: 1.38123 right: 19.8856 

positive: type #s typical: 19.8856 left: 13.5806 

name: current airspeed (Ca) 

type: input 

terms: verySlow, slow, medium, fast 

verySlow: type: #z typical: 120.059 right: 146.232 

slow: type: #lamda typical: 146.232 left: 120.059 right: 180.103 

medium: type: # lamda typical: 180.103 left: 146.232 right: 336.481 

fast: type: #s typical: 336.481 left: 180.103 

name: stall hazard (sh) 
type: output 

terms: veryLow, low. high, veryHigh 

veryLow: type. # lamda typical: 0.107527 left: 0.0700028 right: 0.762463 

low: type: # lamda typical: 0.762463 left: 0.107527 right: 4.69208 

high: type: #lamda typical: 4.69208 left: 0.762463 right: 9.90225 

veryHigh: type #s typical: 9.90225 left: 4.69208 

Block: stall hazard 

Rule# cfpa ca sh gamma dos 

1 negative verySlow low 0.133858 0.68504 

2 negative verySlow nil 0.283465 0.48819 

3 negative slow high nil 0.74803 

4 negative slow low nil 0.9685 

5 negative medium low nil 0.82677 

6 negative medium veryLow nil 1 

17 negative fast nil nil 

18 negative fast veryLow nil 

nil 0.98425 

10 negativeSmall verySlow nil nil 
9 negativeSmall verySlow nil 

1 

111 negativeSmall slow low nil 

12 negativeSmall slow high nil 1 

13 negativeSmall medium low nil 0.49606 

14 negativeSmall medium low nil 0.93701 

15 negativeSmall fast nil nil 0.93701 

16 negativeSmall fast veryLow nil 1 

17 positiveSmall verySlow veryHigh nil 0.98425 

18 positiveSmall verySlow nil nil 1 

19 positiveSmall slow high nil 0.99213 

20 positiveSmall slow high nil 1 

21 positiveSmall medium low nil 0.88976 

22 positiveSmall medium low nil 0.88976 

23 positiveSmail fast nil 0.606299 0.99213 

24 positiveSmall fast nil nil 0.28347 

25 positive verySlow veryHigh nil 0.74016 

26 positive verySlow nil nil 0.68504 

27 positive slow nil nil 0.99213 

28 positive slow nil 0.031496 0.11811 

29 positive medium low 0.031496 0.2126 

30 positive medium high nil 0.47244 

31 positive fast low 0.007874 0.92913 

32 positive fast veryLow 0.503937 0.68504 
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Table A.10 Trained Selected FTHS 2 

name: current flight path angle (cfpa) 
type: input 

terms: negative, negativeSmall, positiveSamll, positive 
negative: type: #z typical: -8.00293 right: 2.17302 

negativeSmall: type: #lamda typical: 2.17302 left: -8.00293 right: 12.9648 

positiveSmall: type. # lamda typical: 12.9648 left: 2.17302 right: 12.9648 

positive: type s typical: 12.9648 left: 12.9648 

name: current airspeed ca) 
type: input 

terms: verySlow, slow, medium, fast 

verySlow: type: #z typical: 127.097 right: 148.211 

slow: type: #lamda typical: 148.211 left: 127.097 right: 175.044 

medium: type: # lamda typical: 175.044 left: 148.211 right: 180.323 

fast: type: #s typical: 180.323 left: 175.044 

name: current thrust (ct) 
type: input 

terms: low, medium, high 
low: type: #z typical: 0.504399 right: 0.565005 

medium: type: #lamda typical: 0.565005 left: 0.504399 right: 0.73998 

high: type: #s typical: 0.73998 left: 0.565005 

name: attitude (at) 
type: intermediate 

terms: diving, climbing, descending, climbingExtreme 

name: current altitude (calt) 
type: input 

terms: extremelyLow, veryLow, low, medium 

extremelyLow: type: #z typical: 732.16 right: 1067.45 

veryLow: type # lamda typical: 1067.45 left: 732.16 right: 5474.1 

ow: type: #lamda typical: 5474.1 left: 1067.45 right: 5905.18 

medium: type: #s typical: 5905.18 left: 5474.1 

name: terrain hazard (th) 
type: output 

terms: veryLow, low, high, veryHigh 
veryLow: type: #lamda typical: 0.0782014 left: 0.0418909 right: 0.332356 

low: type: #lamda typical: 0.332356 left: 0.0782014 right: 2.36559 

high: type: #lamda typical: 2.36559 left: 0.332356 right: 9.26686 

veryHigh: type: #s typical: 9.26686 left: 2.36559 

name: current altitude error (cae) 
type: input 

terms: negative, negativeSmall, positiveSmall, positive 

negative: type: #z typical: -8739.0 right: -4985.34 

negativeSmall: type: #pi typical: -4985.34 typicalEnd: 467.354 left: -8739.0 right: 488.758 

positiveSmall: type: #lamda typical: 488.758 left -4985.34 right: 723.361 

positive: type: #s typical: 723.361 left: 488.758 

Block: attitude 
Rule# cfpa ca ct at gamma dos 

1 negative verySlow low descending nil 0.377953 

2 negative verySlow low climbing nil 0.535433 

3 negative verySlow medium descending 0.409449 0.535433 

4 negative verySlow medium climbing nil 0.574803 

5 negative verySlow high climbing nil 0.787402 

6 negative verySlow high descending 0.811024 0.527559 

7 negative slow low descending 0.125984 0.188976 

8 negative slow low diving nil 0.503937 

9 negative slow medium climbing nil 0.220472 

10 negative slow medium climbingExtreme 0.299213 0.566929 

11 negative slow high nil nil 0.527559 

12 negative slow high nil nil 0.503937 

13 negative medium low nil nil 0.267717 

14 negative medium low descending nil 0.0629921 

15 negative medium medium nil nil 0.511811 

16 negative medium medium climbingExtreme nil 0.755905 

17 negative medium high descending nil 0.795276 

18 negative medium high diving nil 0.606299 

19 negative fast low diving 0.0393701 0.149606 
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2C negative fast low diving 0 0.503937 

21 negative fast medium nil nil 0.0393701 

22 negative fast medium nil nil 0.88189 

23 negative fast high climbing 0.0708661 0.622047 

24 negative fast high descending nil 0.188976 

25 negativeSmail verySlow low descending nil 0.944882 

25 negativeSmail verySlow low descending nil 0.503937 

27 negativeSmail verySlow medium descending nil 0.535433 

28 negativeSmail verySlow medium descending nil 0.629921 

29 negativeSmail verySlow high descending nil 0.755905 

30 negativeSmail verySlow high nil nil 0 

31 negativeSmail slow low nil nil 0.535433 

32 negativeSmail slow low climbing 0.125984 0.511811 

33 negativeSmail slow medium nil nil 0.519685 

34 negativeSmail slow medium descending nil 0.503937 

35 negativeSmail slow high descending nil 0.566929 

36 negativeSmail slow high nil nil 0.755905 

37 negativeSmail medium low nil nil 0.566929 

38 negativeSmail medium low descending nil 0.503937 

39 negativeSmail medium medium descending nil 0.503937 

40 negativeSmail medium medium descending nil 0.503937 

41 negativeSmail medium high descending 0 

42 negativeSmail medium high nil 0.535433 0.535433 

43 negativeSmail fast low descending nil 0.503937 

44 negativeSmail fast low descending nil 0.535433 

45 negativeSmail fast medium climbing nil 0.511811 

46 negativeSmail fast medium nil nil 0.00787402 

47 negativeSmail fast high climbing nil 0.755905 

48 negativeSmail fast high descending nil 0 

49 positiveSmail verySlow low descending 0.629921 0.740157 

50 positiveSmail verySlow low nil nil 0.637795 

51 positiveSmail verySlow medium climbing nil 0.929134 

52 positiveSmail verySlow medium nil nil 0.188976 

53 positiveSmail verySlow high diving nil 0 

54 positiveSmall verySlow high descending nil 0 

55 positiveSmail slow low nil nil 0.629921 

56 positiveSmall slow low nil 0.0393701 0.535433 

57 positiveSmall slow medium nil 0.125984 0.535433 

58 positiveSmail slow medium climbing nil 0.527559 

59 positiveSmail slow high climbing nil 0.0314961 

60 positiveSmall slow high climbing nil 0.00787402 

51 positiveSmail medium low descending nil 0.503937 

62 positiveSmail medium low climbing nil 0.519685 

63 positiveSmail medium medium descending nil 0.251969 

64 positiveSmail medium medium climbing 0.551181 0.503937 

65 positiveSmail medium high climbing nil 0.0787402 

66 positiveSmait medium high climbing nil 0.755905 

67 positiveSmall fast low descending nil 0.519685 

68 positiveSmail fast low climbing nil 0.88189 

69 positiveSmait fast medium descending nil 0.511811 

70 positiveSmail fast medium climbing nil 0.519685 

71 positiveSmall fast high climbing nil 0.566929 

72 positiveSmail fast high climbing 0.598425 0.645669 

73 positive verySlow low climbingExtreme nil 0.133858 

74 positive verySlow low nil 0.251969 0.511811 

75 positive verySlow medium nil nil 0.818898 

76 positive verySlow medium climbing 0.0787402 0.503937 

77 positive verySlow high diving nil 0.0393701 

78 positive verySlow high descending nil 0.779527 

79 positive slow low nil nil 0.968504 

80 positive slow low nil nil 0.354331 

81 positive slow medium climbing nil 0.566929 

82 positive slow medium diving nil 0.692913 

83 positive slow high climbing nil 0.503937 

84 positive slow high diving nil 0.015748 

8.5 positive medium low climbing nil 0.527559 

86 positive medium low climbing nil 0.598425 

87 positive medium medium climbing nil 0.125984 

88 positive medium medium descending nil 0.637795 

89 positive medium high nil nil 0.566929 

9C positive medium high nil nil 0.503937 
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91 positive fast low nil nil 0.503937 

92 positive fast low climbing nil 0.598425 

93 positive fast medium climbing nil 0.503937 

94 positive fast medium climbing nil 0.125984 

95 positive fast high climbing nil 0.629921 

96 positive fast high climbing nil 0.692913 

Block: terrain hazard 

Rule# at calt cae th gamma dos 

1 diving extremelyLow negative veryHigh nil 0.503937 

2 diving extremelyLow negative nil nil 0 

3 diving extremelyLow negativeSmall veryHigh nil 0.889764 

4 diving extremelyLow negativeSmall veryHigh nil 0.661417 

5 diving extremelyLow positiveSmall veryHigh nil 0.503937 

6 diving extremelyLow positiveSmall veryHigh nil 0.503937 

7 diving extremelyLow positive veryHigh nil 0.0629921 

8 diving extremelyLow positive veryHigh nil 0.503937 

9 diving veryLow negative veryHigh nil 0.543307 

10 diving veryLow negative veryHigh nil 0.503937 

11 diving veryLow negativeSmall nil nil 0.503937 

12 diving veryLow negativeSmall low nil 0.503937 

13 diving veryLow positiveSmall low nil 0.519685 

14 diving veryLow positiveSmall high nil 0.503937 

15 diving veryLow positive high nil 0.968504 

16 diving veryLow positive nil nil 0.692913 

17 diving low negative low nil 0.527559 

18 diving low negative nil nil 0.755905 

19 diving low negativeSmall high 0.015748 0.661417 

20 diving low negativeSmall high nil 0.0629921 

21 diving low positiveSmall low nil 0.535433 

22 diving low positiveSmall low 0.251969 0.551181 

23 diving low positive nil nil 0.818898 

24 diving low positive nil nil 0.251969 

25 diving medium negative high nil 0.503937 

26 diving medium negative low nil 0.566929 

27 diving medium negativeSmall nil nil 0.527559 

28 diving medium negativeSmall veryHigh 0 0.0787402 

29 diving medium positiveSmall veryLow 0.0393701 0.88189 

30 diving medium positiveSmall veryLow nil 0.645669 

31 diving medium positive veryLow nil 0.133858 

32 diving medium positive low nil 0.763779 

33 descending extremelyLow negative nil nil 0.015748 

34 descending extremelyLow negative veryLow nil 0.637795 

35 descending extremelyLow negativeSmall high nil 0.850394 

36 descending extremelyLow negativeSmall nil nil 0.732283 

37 descending extremelyLow positiveSmall nil nil 0.700787 

38 descending extremelyLow positiveSmall low nil 0.0314961 

39 descending extremelyLow positive low nil 0.519685 

40 descending extremelyLow positive low nil 0.755905 

41 descending veryLow negative low nil 0.80315 

42 descending veryLow negative high 0.0787402 0.700787 

43 descending veryLow negativeSmall low nil 0.913386 

44 descending veryLow negativeSmall high nil 0.0708661 

45 descending veryLow positiveSmall low nil 0.629921 

46 descending veryLow positiveSmall high 0 0 

47 descending veryLow positive low 0 0.645669 

48 descending veryLow positive nil nil 0.503937 

49 descending low negative low 0.913386 0.787402 

50 descending low negative hign nil 0.637795 

51 descending low negativeSmall nil nil 0.834646 

52 descending low negativeSmall veryLow nil 0.677165 

53 descending low positiveSmall nil nil 0.519685 

54 descending low positiveSmall nil nil 0.598425 

55 descending low positive low nil 0.755905 

56 descending low positive nil nil 0.519685 

57 descending medium negative low nil 0.897638 

58 descending medium negative nil nil 0.133858 

59 descending medium negativeSmall low 0.283465 0.228346 

60 descending medium negativeSmall low 0.251969 0.692913 

61 descending medium positiveSmall nil 0.314961 0.645669 

62 descending medium positiveSmall veryLow nil 0.771653 
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63 descending medium positive nil nil 0.645669 

64 descending medium positive veryLow nil 0.251969 

65 climbing extremelyLow negative veryLow nil 0.629921 

66 climbing extremelyLow negative nil 0.0787402 0.519685 

67 climbing extremelyLow negativeSmall veryLow 0.251969 0.755905 

68 climbing extremelyLow negativeSmall veryLow 0 0.511811 

69 climbing extremelyLow positiveSmall veryLow nil 0.677165 

70 climbing extremelyLow positiveSmall veryLow 0 0.19685 

climbing extremelyLow positive veryHigh nil 0.259843 

72 climbing extremelyLow positive nil 0 0.818898 

73 climbing veryLow negative nil nil 0.511811 

74 climbing veryLow negative veryLow nil 0.543307 

75 climbing veryLow negativeSmall veryLow nil 0.519685 

76 climbing veryLow negativeSmall veryLow 0.503937 0.511811 

77 climbing veryLow positiveSmall veryLow nil 0.102362 

78 climbing veryLow positiveSmall nil nil 0.251969 

79 climbing veryLow positive high nil 0.503937 

80 climbing veryLow positive veryLow nil 0.787402 

81 climbing low negative veryLow nil 0.551181 

82 climbing low negative nil nil 0 

83 climbing low negativeSmall veryLow nil 0.629921 

84 climbing low negativeSmall veryLow nil 0.88189 

85 climbing low positiveSmall nil nil 0 

86 climbing low positiveSmall veryLow 0.314961 0.763779 

87 climbing low positive veryHigh nil 0.566929 

88 climbing low positive veryLow 0 0.771653 

89 climbing medium negative veryLow nil 0.141732 

90 climbing medium negative nil nil 0.0314961 

91 climbing medium negativeSmall veryLow 0 0.692913 

92 climbing medium negativeSmall veryLow 0.0629921 0.377953 

93 climbing medium positiveSmall nil nil 0.503937 

94 climbing medium positiveSmall veryLow nil 0.535433 

95 climbing medium positive veryLow nil 0.598425 

96 climbing medium positive veryLow 0.125984 0.0708661 

97 climbingExtreme extremelyLow negative high nil 0.125984 

98 climbingExtreme extremelyLow negative veryHigh nil 0.787402 

99 climbingExtreme extremelyLow negativeSmall high 0 0.527559 

100 climbingExtreme extremelyLow negativeSmall veryHigh nil 0 503937 

101 climbingExtreme extremelyLow positiveSmall high nil 0.661417 

102 climbingExtreme extremelyLow positiveSmall nil nil 0.755905 

103 climbingExtreme extremelyLow positive high nil 0.535433 

104 climbingExtreme extremelyLow positive veryHigh nil 0.503937 

105 climbingExtreme veryLow negative high nil 0.582677 

106 climbingExtreme veryLow negative high nil 0.826772 

107 climbingExtreme veryLow negativeSmall high nil 0.503937 

108 climbingExtreme veryLow negativeSmall high nil 0.582677 

109 dimbingExtreme veryLow positiveSmall low 0.0314961 0,00787402 

110 climbingExtreme veryLow positiveSmall nil 0,023622 0.377953 

111 climbingExtreme veryLow positive nil nil 0.0314961 

112 climbingExtreme veryLow positive high nil 0.535433 

113 climbingExtreme low negative high 0 0.913386 

114 climbingExtreme low negative high 0.503937 0 

115 climbingExtreme low negativeSmall high nil 0.732283 

116 climbingExtreme low negativeSmall low nil 0.811024 

117 climbingExtreme low positiveSmall low nil 0.00787402 

118 climbingExtreme tow positiveSmall low 0 0 

119 dimbingExtrerre low positive high nil 0.535433 

12C climbingExtreme low positive high nil 0.519685 

121 climbingExtreme medium negative veryLow nil 0.133858 

122 climbingExtreme medium negative nil nil 0.787402 

123 climbingExtreme medium negativeSmall high nil 0.511811 

124 climbingExtreme medium negativeSmall nil nil a 0629921 

125 ciimbingExtreme medium positiveSmall high nil 0 559055 

126 climbingExtreme medium positiveSmall nil 0.0629921 0.755905 

127 climbingExtreme medium positive high nil 0.015748 

128 climbingExtreme medium positive nil nil I 0 
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Table A.11 Trained Selected FHEIS 

name: stall hazard (sh) 
type: intermediate 

terms: veryHigh, veryLow, low, high 

name: current error (ce) 
type: intermediate 

terms: negativeLarge, negative, positiveLarge, positive, zero 

name: past error (pe) 
type: intermediate 

terms: negativeLarge, negative, positiveLarge, positive, zero 

name: past vertical speed (pvs) 
type: input 

terms: veryNegative. negative, postive, veryPositive 

veryNegative: type: ttz typical: -5953.08 right: -1307.92 

negative: type: #lamda typical: -1307.92 left: -5953.08 right: 2997.07 

positive: type: #pi typical: 2997.07 typicalEnd: 4604.76 left: -1307.92 right: 5976.54 

veryPositive: type: #s typical: 5976.54 left: 2997.07 

name: current vertical speed (cvs) 
type: input 

terms: veryNegative, negative, positive, veryPositive 

veryNegative: type: #z typical: -3325.51 right: -557.185 

negative: type: #pi typical: -557.185 typicalEnd: -469.122 left: -3325.51 right: -381.232 

positive: type: # lamda typical: -381.232 left: 557.185 right: 5155.42 

veryPositive: type: #s typical: 5155.42 left 381.232 

name: past altitude error (pae) 
type: input 

terms: negative, negativeSmall, zero, positiveSmall, positive 

negative: type: #z typical: -20425.2 right: -10024.4 

negativeSmall: type: #lamda typical: -10024.4 left: -20425.2 right: 1197.46 

zero: type: #lamda typical: 1197.46 left: -10024.4 right: 26720.4 

positiveSmall: type: #pi typical: 26720.4 typicalEnd: 31220.6 left: 1197.46 right: 32194.5 

positive: type: #s typical: 32194.5 left: 26720.4 

name: overspeed hazard (oh) 
type: intermediate 

terms: veryHigh, veryLow, low, high 

name: current altitude error (cae) 
type: input 

terms: negative, negativeSmall, zero, postiveSmall, positive 

negative: type: #2 typical: -27541.5 right: -1676.44 

negativeSmall: type: #pi typical: -1676.44 typicalEnd: -235.009 left -27541.5 right: 34.2148 

zero: type: #pi typical: 34.2148 typicalEnd: 498.148 left: -1676.44 right: 855.328 

positiveSmall: type: #pi typical: 855.328 typicalEnd: 7094.22 left: 34.2148 right: 21246.3 

positive: type. #s typical: 21246.3 left: 855.328 

name: current vertical speed acceleration 
(cvsa) 

type: input 

terms: veryNegative, negative, positive, veryPositive 
veryNegative: type: rtz typical: -2010.26 right: 101.173 

negative: type: #lamda typical: 101.173 left: - 2010.26 right: 156.891 

positive: type: #lamda typical: 156.891 left: 101.173 right: 362.17 

veryPositive: type. #s typical: 362.17 left: 156.891 

name: overall hazard (h) 
intermediate 

terms: veryHigh, veryLow, low, high 
tYPe: 

name: terrain hazard (th) 
type: intermediate 

terms: veryHigh, veryLow, low, high 
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name: function performance (fp) 
type. output 

terms: veryLow, low, high, veryHigh 
veryLow: type. #z typical: 0.234604 right: 0.997067 

low: type: # lamda typical: 0.997067 left: 0.234604 right: 2.50244 

high: type: #lamda typical: 2.50244 left: 0.997067 right: 9.98045 

veryHigh: type: #s typical: 9.98045 left: 2.50244 

Block: overall hazard 

Rule# sh oh th h gamma dos 

1 veryLow veryLow veryLow veryLow nil 1 

2 veryLow veryLow veryLow nil nil 0.496063 

3 veryLow veryLow low veryLow nil 0.80315 

4 veryLow veryLow low veryLow nil 0.448819 

5 veryLow veryLow high low nil 0.425197 

6 veryLow veryLow high nil nil 0.19685 

7 veryLow veryLow veryHigh nil nil 0.338583 

8 veryLow veryLow veryHigh high 0.88189 0.19685 

9 veryLow low veryLow veryLow nil 0.779527 

10 veryLow low veryLow low nil 0.228346 

11 veryLow low low veryLow nil 0.0472441 

12 veryLow low low low 0.0629921 0.968504 

13 veryLow low high nil nil 0.102362 

14 veryLow low high veryLow nil 0.377953 

15 veryLow low veryHigh veryHigh nil 0.929134 

16 veryLow low veryHigh veryLow nil 0.102362 

17 veryLow high veryLow nil 0 0.125984 

18 veryLow high veryLow veryLow nil 0.566929 

19 veryLow high low high 0.0944882 0.488189 

20 veryLow high low high nil 0.850394 

21 veryLow high high low nil 0.102362 

22 veryLow high high nil 0.133858 0.866142 

23 veryLow high veryHigh low nil 0.700787 

24 veryLow high veryHigh high nil 0.299213 

25 veryLow veryHigh verylow high nil 0.299213 

26 veryLow veryHigh veryLow veryHigh nil 0.700787 

27 veryLow veryHigh low high nil 0.133858 

28 veryLow veryHigh low nil nil 0.598425 

29 veryLow veryHigh high high 0.0787402 0.503937 

30 veryLow veryHigh high nil nil 0.535433 

31 veryLow veryHigh veryHigh nil nil 0.535433 

32 veryLow veryHigh veryHigh veryHigh nil 0.787402 

33 low veryLow veryLow high nil 0.0629921 

34 low veryLow veryLow veryLow nil 0.992126 

35 low veryLow low nil nil 0.401575 

36 low veryLow low veryLow nil 0.362205 

37 low veryLow high low nil 0.102362 

38 low veryLow high high nil 0.897638 

39 low veryLow veryHigh veryHigh nil 0.889764 

40 low veryLow veryHigh high nil 0.992126 

41 low low verylow veryLow nil 0.897638 

42 low low veryLow nil nil 0.00787402 

43 low low low nil nil 0.503937 

44 low low low low nil 0.0787402 

45 low low high nil nil 0.96063 

46 low low high high nil 0.622047 

47 low low veryHigh nil 0 0.897638 

48 low low veryHigh low 0 0.0708661 

49 low high veryLow high nil 0.661417 

50 low high veryLow nil nil 0.645669 

51 low high low low 0 0.818898 

52 low high low nil nil 0.401575 

53 low high high high nil 0.88189 

54 low high high nil nil 0.755905 

55 low high veryHigh veryHigh 0.755905 0.645669 

56 low high veryHigh low nil 0.00787402 

57 low veryHigh veryLow high nil 0.338583 

58 low veryHigh veryLow nil nil 0.614173 

59 low veryHigh low nil nil 0.708661 

60 low veryHigh low high 0.015748 0.267717 

61 low veryHigh high veryLow nil 0.645669 
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62 low veryHigh high high nil 0.464567 

63 :cw veryHigh veryHigh veryHigh 0.771653 0.929134 

64 Ow veryHigh veryHigh nil nil 0.787402 

65 high veryLow veryLow high nil 0.19685 

66 high veryLow veryLow iew nil 0.80315 

67 high veryLow low high 0 0.228346 

68 high veryLow low Ow nil 0.897638 

69 nigh veryLow hign hign nil 0.503937 

70 high veryLow high nil nil 0.566929 

71 high veryLow veryHigh veryHigh nil 0.503937 

72 high veryLow veryHigh nil nil 0.503937 

73 high low veryLow veryLow nil 0.889764 

74 high low veryLow low 0.015748 0.0314961 

75 high low low nil nil 0.755905 

76 high low low low nil 0.0472441 

77 high low high high nil 0.125984 

78 high low high high nil 0.818898 

79 high low veryHigh veryHigh nil 0.645669 

80 high low veryHigh veryHigh 0.535433 0.543307 

81 veryHigh veryLow veryLow veryHigh 0.0708661 0.708661 

82 veryHigh veryLow veryLow veryLow nil 0.622047 

83 veryHigh veryLow low nil nil 0.393701 

84 veryHigh veryLow low high nil 0.0314961 

85 veryHigh veryLow high veryHigh nil 0.811024 

86 veryHigh veryLow high veryHigh nil 0.763779 

87 veryHigh veryLow veryHigh veryHigh nil 0.125984 

88 veryHigh veryLow veryHigh veryHigh nil 0.566929 

89 veryHigh low veryLow nil nil 0.0629921 

90 veryHigh low veryLow high nil 0.393701 

91 veryHigh low Ow veryHigh nil 0.700787 

92 veryHigh low low high 0 0.299213 

93 veryHigh low high nil nil 0.929134 

94 veryHigh low high high nil 0.19685 

95 veryHigh low veryHigh veryHigh nil 0.503937 

96 veryHigh low veryHigh veryHigh nil 0.503937 

Block: past error 

Rule# pae pvs pe gamma dos 

1 negative veryNegative negativeLarge 0.0944882 0.503937 

2 negative veryNegative negativeLarge nil 0.661417 

3 negative negative nil nil 0.0944882 

4 negative negative zero nil 0.015748 

5 negative positive negativeLarge nil 0.700787 

6 negative positive nil nil 0.80315 

7 negative veryPositive negativeLarge nil 0.677165 

8 negative veryPositive nil nil 0.503937 

9 negativeSmail veryNegative negativeLarge nil 0.133858 

10 negativeSmail veryNegative negative 0.125984 0.598425 

11 negativeSmail negative nil 0.0472441 0.11811 

12 negativeSmail negative negative nil 0.653543 

13 negativeSmail positive negative 0.409449 0 228346 

14 negativeSmail positive nil nil 0.80315 

15 negativeSmail veryPositive negativeLarge nil 0.692913 

16 negativeSmail veryPositive zero nil 0.267717 

17 zero veryNegative negative nil 0.299213 

18 zero veryNegative nil nil 0.716535 

19 zero negative negative 0.519685 0.850394 

20 zero negative negativeLarge nil 0.614173 

21 zero positive positive nil 0.606299 

22 zero positive negative nil 0.299213 

23 zero veryPositive nil nil 0.606299 

24 zero veryPositive negativeLarge nil 0.212598 

25 positiveSmail veryNegative negative 0.00787402 0.0314961 

26 positiveSmail veryNegative nil nil 0.629921 

27 positiveSmail negative zero nil 0.535433 

28 positiveSmail negative positive nil 0.19685 

29 positiveSmail positive negativeLarge nil 0.551181 

30 positiveSmail positive positiveLarge nil 0.11811 

31 positiveSmail veryPositive positiveLarge nil 0.251969 

32 positiveSmail veryPositive nil nil 0.590551 

33 positive veryNegative positiveLarge nil 0.125984 
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34 positive veryNegative nil nil 0.755905 

35 positive negative positiveLarge nil 0.88189 

36 positive negative positiveLarge nil 0.259843 

37 positive positive zero nil 0.755905 

38 positive positive negativeLarge nil 0 503937 

39 positive veryPositive nil 0.503937 0 

40 positive veryPositive negativeLarge nil 0 

Block: current error 

Rule# cae cvs cvsa ce gamma dos 

1 negative veryNegative veryNegative negativeLarge nil 0.787402 

2 negative veryNegative veryNegative nil nil 0.566929 

3 negative veryNegative negative negativeLarge nil 0.503937 

4 negative veryNegative negative nil nil 0.503937 

5 negative veryNegative positive zero 0.0629921 0 937008 

6 negative veryNegative positive negative nil 0 102362 

7 negative veryNegative veryPositive negativeLarge nil 0.80315 

8 negative veryNegative veryPositive zero nil 0.19685 

9 negative negative veryNegative nil 0.519685 0.566929 

10 negative negative veryNegative zero nil 0.511811 

11 negative negative negative negativeLarge nil 0.629921 

12 negative negative negative positive nil 0.629921 

13 negative negative positive negativeLarge 0 0.661417 

14 negative negative positive nil 0.0629921 0.448819 

15 negative negative veryPositive negativeLarge nil 0.574803 

16 negative negative veryPositive negative nil 0.811024 

17 negative positive veryNegative zero nil 0.401575 

18 negative positive veryNegative negativeLarge nil 0.566929 

19 negative positive negative negative nil 0.448819 

20 negative positive negative negativeLarge nil 0 724409 

21 negative positive positive nil nil 0.503937 

22 negative positive positive negativeLarge nil 0.535433 

23 negative positive veryPositive zero nil 0.0708661 

24 negative positive veryPositive negativeLarge nil 0.527559 

25 negative veryPositive veryNegative nil nil 0.755905 

26 negative veryPositive veryNegative nil nil 0.535433 

27 negative veryPositive negative negativeLarge nil 0.889764 

28 negative veryPositive negative negative nil 0.598425 

29 negative veryPositive positive negativeLarge nil 0.464567 

30 negative veryPositive positive nil nil 0.535433 

31 negative veryPositive veryPositive negativeLarge nil 0.905512 

32 negative veryPositive veryPositive negative nil 0.598425 

33 negativeSmall veryNegative veryNegative nil nil 0.622047 

34 negativeSmall veryNegative veryNegative negativeLarge a 80315 0 590551 

35 negativeSmail veryNegative negative negative nil 0.614173 

36 negativeSmail veryNegative negative negativeLarge nil 0.401575 

37 negativeSmall veryNegative positive negative nil 0.598425 

38 negativeSmall veryNegative positive negativeLarge nil 0.401575 

39 negativeSmall veryNegative veryPositive negativeLarge 0 0.09449E2 

40 negativeSmall veryNegative veryPositive negativeLarge nil 0.259843 

41 negativeSmall negative veryNegative negative nil 0 598425 

42 negativeSmall negative veryNegative negativeLarge nil 0.401575 

43 negativeSmall negative negative negative nil 0.850394 

44 negativeSmall negative negative nil nil 0.393701 

45 negativeSmall negative positive negative nil 0.700787 

46 negativeSmall negative positive negativeLarge nil 0.0472441 

47 negativeSmail negative veryPositive negative nil 0.732283 

48 negativeSmall negative veryPositive negative nil 0.771653 

49 negativeSmall positive veryNegative negative nil 0.401575 

50 negativeSmall positive veryNegative zero nil 0.598425 

51 negativeSmall positive negative negativeLarge nil 0.19685 

52 negativeSmall positive negative nil nil 0.811024 

53 negativeSmail positive positive positiveLarge 0 0.0866142 

4 negativeSmall positive positive zero nil 0.88189 

55 negativeSmall positive veryPositive positive nil 0.19685 

56 negativeSmall positive veryPositive zero nil 0.866142 

57 negativeSmall veryPositive veryNegative zero nil 0.771653 

58 negativeSmall veryPositive veryNegative zero nil 0.503937 

59 negativeSmall veryPositive negative zero nil 0.944882 

60 negativeSmall veryPositive negative positive 0.503937 0.102362 

61 negativeSmail veryPositive positive zero nil 0.700787 
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62 negativeSmail veryPositive positive positive nil 0.299213 

63 negativeSmail veryPositive veryPositive zero nil 0.0314961 

64 negativeSmall veryPositive veryPositive positive 0 503937 0.393701 

65 zero veryNegative veryNegative zero nil 0.11811 

66 zero veryNegative veryNegative negative nil 0.897638 

67 zero veryNegative negative zero nil 0.228346 

68 zero veryNegative negative negative 0.503937 0.551181 

69 zero veryNegative positive zero nil 0.299213 

70 zero veryNegative positive nil nil 0.692913 

71 zero veryNegative veryPositive zero nil 0.566929 

72 zero veryNegative veryPositive negative nil 0 

73 zero negative veryNegative zero nil 0.307087 

74 zero negative veryNegative nil nil 0.503937 

75 zero negative negative nil nil 0.417323 

76 zero negative negative nil nil 0.535433 

zero negative positive zero nil 0.598425 

78 zero negative positive nil nil 0.275591 

79 zero negative veryPositive zero nil 0.700787 

80 zero negative veryPositive negative nil 0.362205 

81 zero positive veryNegative zero nil 0.535433 

82 zero positive veryNegative positive 0 0.0708661 

83 zero positive negative zero nil 0.716535 

84 zero positive negative zero nil 0.0472441 

85 zero positive positive zero nil 0.503937 

86 zero positive positive positiveLarge nil 0.503937 

87 zero positive veryPositive zero nil 0.299213 

88 zero positive veryPositive positive nil 0.700787 

89 zero veryPositive veryNegative zero nil 0.519685 

90 zero veryPositive veryNegative positive nil 0 

91 zero veryPositive negative zero nil 0.401575 

92 zero veryPositive negative positive nil 0.598425 

93 zero veryPositive positive zero nil 0.307087 

94 zero veryPositive positive positive nil 0.732283 

95 zero veryPositive veryPositive zero nil 0.102362 

96 zero veryPositive veryPositive nil 0 503937 0.897638 

97 positiveSmall veryNegative veryNegative zero nil 0.8.50394 

98 positiveSmall veryNegative veryNegative nil nil 0.401575 

99 positiveSmall 

100 positiveSmail 

veryNegative 
veryNegative 

negative 

negative 

zero 

zero 

nil 

nil 

0.700787 
0.417323 

101 positiveSmall veryNegative positive negativeLarge nil 0.897638 

102 positiveSmall veryNegative positive negative nil 0.102362 

103 positiveSmall veryNegative veryPositive negative nil 0.677165 

104 positiveSmall veryNegative veryPositive zero 0.503937 0.503937 

105 positiveSmall negative veryNegative nil nil 0.771653 

106 positiveSmail negative veryNegative nil nil 0.19685 

107 positiveSmail negative negative zero nil 0.771653 

108 positiveSmall negative negative nil nil 0.0944882 

109 positiveSmall 
110 positiveSmall 

negative 
negative 

positive 

positive 

zero 
positive 

nil 

0.00787402 
0.787402 
0.188976 

111 positiveSmail negative veryPositive zero nil 0.700787 

112 positiveSmall negative veryPositive nil nil 0.425197 

113 positiveSmail positive veryNegative positive nil 0.826772 

114 positiveSmall positive veryNegative negativeLarge nil 0.307087 

115 positiveSmail 

116 positiveSmail 

positive 
1positive 

negative 

negative 

positive 

positiveLarge 

nil 

nil 

0.637795 
0.299213 

117 positiveSmail 

118 positiveSmail 

positive 

positive 

positive 

positive 

positive 
positiveLarge 

nil 

nil 

0.598425 

0.401575 

119 positiveSmail positive veryPositive positive nil 0.598425 

120 positiveSmail positive veryPositive positiveLarge nil 0.401575 

121 positiveSmail veryPositive veryNegative positive nil 0.110236 

122 positiveSmall veryPositive veryNegative positiveLarge nil 0.401575 

123 positiveSmall veryPositive negative positive nil 0.598425 

124 positiveSmail veryPositive negative positiveLarge nil 0.889764 

125 positiveSmall veryPositive positive positive nil 0.503937 

126 positiveSmail veryPositive positive nil nil 0.629921 

127 positiveSmail veryPositive veryPositive positive nil 0.401575 

128 positiveSmail veryPositive veryPositive positiveLarge nil 0.598425 

129 positive veryNegative veryNegative positive nil 0.614173 

130 positive veryNegative veryNegative positive nil 0.401575 

131 positive 

132 positive 

veryNegative 

veryNegative 

negative 

negative 

positive 
positiveLarge 

nil 

nil 

0.566929 
0.385827 
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133 positive veryNegative positive nil nil 0.724409 

134 positive veryNegative positive positiveLarge 0.0944882 0.401575 

135 positive veryNegative veryPositive positive nil 0.645669 

136 positive veryNegative veryPositive negativeLarge nil 0.566929 

137 positive negative veryNegative positiveLarge nil 0,622047 

138 positive negative veryNegative positiveLarge nil 0.511811 

139 positive negative negative positive nil 0.503937 

140 positive negative negative positiveLarge nil 0.637795 

141 positive negative positive nil nil 0.96063 

142 positive negative positive positive nil 0.574803 

143 positive negative veryPositive positive nil 0.244094 

144 positive negative veryPositive negativeLarge nil 0.692913 

145 positive positive veryNegative nil nil 0.80315 

146 positive positive veryNegative positiveLarge 0.0393701 0.732283 

147 positive positive negative positive nil 0.188976 

148 positive positive negative positiveLarge nil 0.80315 

149 positive positive positive positiveLarge nil 0.275591 

150 positive positive positive negativeLarge 0.0314961 0.905512 

151 positive positive veryPositive positive nil 0.503937 

152 positive positive veryPositive nil nil 0.535433 

153 positive veryPositive veryNegative positive nil 0.0708661 

154 positive veryPositive veryNegative positiveLarge 0.763779 0.944882 

155 positive veryPositive negative nil nil 0.763779 

156 positive veryPositive negative nil nil 0.897638 

157 positive veryPositive positive negativeLarge nil 0.897638 

158 positive veryPositive positive positiveLarge nil 0.527559 

159 positive veryPositive veryPositive positiveLarge nil 0.503937 

160 positive veryPositive veryPositive nil nil 0.503937 

Block: function performance 

Rule# pe ce h fp gamma dos 

1 negativeLarge negativeLarge verylow nil nil 0.598425 

2 negativeLarge negativeLarge veryLow high 0 0.401575 

3 negativeLarge negativelarge low low nil 0.566929 

4 negativeLarge negativeLarge low high nil 0.307087 

5 negativeLarge negativeLarge high low 0 0.80315 

6 negativeLarge negativeLarge high nil nil 0.188976 

7 negativeLarge negativeLarge veryHigh low nil 0.11811 

8 negativeLarge negativeLarge veryHigh veryLow nil 0.88189 

9 negativeLarge negative veryLow veryHigh nil 0.0472441 

10 negativeLarge negative veryLow nil nil 0.188976 

11 negativeLarge negative low high nil 0.80315 

12 negativeLarge negative low veryHigh nil 0.19685 

13 negativeLarge negative high low nil 0.850394 

14 negativeLarge negative high verylow 0 0.448819 

15 negativeLarge negative veryHigh nil nil 0.19685 

16 negativeLarge negative veryHigh veryLow nil 0.80315 

17 negativeLarge zero veryLow veryHigh nil 0.889764 

18 negativeLarge zero veryLow low nil 0.102362 

19 negativeLarge zero low veryHigh 0.527559 0.173228 

20 negativeLarge Zara low high 0.535433 0.19685 

21 negativeLarge zero high low 0.015748 0.645669 

22 negativeLarge zero high nil nil 0.629921 

23 negativeLarge zero veryHigh nil nil 0,330709 

24 negativeLarge zero veryHigh high 0 0.692913 

25 negativelarge positive veryLow high 0.338583 0.503937 

26 negativeLarge positive veryLow nil 0.598425 0.0314961 

27 negativeLarge positive low low nil 0.897638 

28 negativeLarge positive low low nil 0.811024 

29 negativeLarge positive high nil nil 0.897638 

30 negativeLarge positive high nil nil 0.637795 

31 negativeLarge positive veryHigh high nil 0.393701 

32 negativeLarge positive veryHigh low nil 0.220472 

33 negativeLarge positiveLarge veryLow veryLow nil 0 

34 negativeLarge posrtiveLarge veryLow low nil 0.818898 

35 negativeLarge positiveLarge low veryLow 0.11811 0.346457 

36 negativeLarge positiveLarge low nil nil 0.409449 

37 negativelarge positiveLarge high nil 0.133858 0.96063 

38 negativelarge positiveLarge high nil nil 0.307087 

39 negativeLarge positiveLarge veryHigh nil nil 0,566929 

40 negativeLarge positiveLarge veryHigh nil 0.00787402 0.763779 
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41 negative negativeLarge veryLow high nil 0.574803 

42 negative negativeLarge veryLow low nil 0.503937 

43 negative negativeLarge low veryLow nil 0.535433 

44 negative negativeLarge low low nil 0.905512 

45 negative negativeLarge high nil nil 0.669291 

46 negative negativeLarge high low nil 0.267717 

47 negative negativeLarge veryHigh nil nil 0.503937 

48 negative negativeLarge veryHigh veryLow nil 0.503937 

49 negative negative veryLow low nil 0.629921 

50 negative negative veryLow high nil 0.511811 

51 negative negative low low nil 0.598425 

52 negative negative low high nil 0.385827 

53 negative negative high low nil 0.503937 

54 negative negative high nil nil 0.503937 

55 negative negative veryHigh veryLow nil 0.929134 

56 negative negative veryHigh low nil 0.19685 

57 negative zero veryLow veryHigh nil 0.929134 

58 negative zero veryLow high nil 0.102362 

59 negative zero low veryHigh nil 0.598425 

60 negative zero low high nil 0.401575 

61 negative zero high low nil 0.503937 

62 negative zero high veryLow nil 0 

63 negative zero veryHigh veryLow nil 0.700787 

64 negative zero veryHigh low nil 0.362205 

65 negative positive veryLow high nil 0.519685 

66 negative positive veryLow low 0.251969 0.755905 

67 negative positive low high 0.125984 0.19685 

68 negative positive low low nil 0.80315 

69 negative positive high low nil 0.433071 

70 negative positive high nil nil 0.0944882 

71 negative positive veryHigh veryLow nil 0.96063 

72 negative positive veryHigh low nil 0.11811 

73 negative positiveLarge veryLow low 0.0314961 0.598425 

74 negative positiveLarge veryLow veryLow nil 0.968504 

75 negative positiveLarge low low nil 0.716535 

76 negative positivelarge low veryLow nil 0.535433 

77 negative positiveLarge high veryLow 0.0787402 0.84252 

78 negative positiveLarge high low nil 0.401575 

79 negative positiveLarge veryHigh high 0.0393701 0.204724 

80 negative positiveLarge veryHigh low nil 0.102362 

81 zero negativeLarge veryLow low nil 0 228346 

82 zero negativeLarge veryLow nil nil 0.141732 

83 zero negativeLarge low nil 0.314961 0.228346 

84 zero negativeLarge low nil nil 0.346457 

85 zero negativeLarge high veryLow nil 0.968504 

86 zero negativeLarge high nil nil 0.0708661 

87 zero negativeLarge veryHigh veryLow nil 0.535433 

88 zero negativeLarge veryHigh veryLow nil 0.00787402 

89 zero negative veryLow veryLow 0 0.283465 

90 zero negative veryLow low 0.629921 0.629921 

91 zero negative low high nil 0.724409 

92 zero negative low high nil 0.401575 

93 zero negative high high nil 0.700787 

94 zero negative high low 0.125984 0.267717 

95 zero negative veryHigh veryLow 0 0.96063 

96 zero negative veryHigh low nil 0.0393701 

97 zero zero veryLow nil nil 0.700787 

98 zero zero veryLow high nil 0.299213 

99 zero zero low nil nil 0.267717 

100 zero zero low high nil 0.244094 

101 zero zero high low 0 0.582677 

102 zero zero high veryLow nil 0.692913 

103 zero zero veryHigh nil nil 0.19685 

104 zero zero veryHigh low 0.88189 0.425197 

105 zero positive veryLow high nil 0.614173 

106 zero positive veryLow low 0.133858 0.84252 

107 zero positive low high nil 0.661417 

108 zero positive low nil nil 0.92126 

109 zero positive high nil nil 0.574803 

110 zero positive high low nil 0.0393701 

111 zero positive veryHigh high 0.574803 0.582677 
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112 zero positive veryHigh veryLow 0.409449 0.582677 

113 zero positiveLarge veryLow nil 0 0314961 0.748031 

114 zero positiveLarge verylow veryLow nil 0 0472441 

115 zero positiveLarge low low nil 0.929134 

116 zero positiveLarge low veryLow nil 0.102362 

117 zero positiveLarge high low nil 0.566929 

118 zero positiveLarge high veryLow nil 0.629921 

119 zero positiveLarge veryHigh veryLow nil 0.897638 

120 zero positiveLarge veryHigh low nil 0.228346 

121 positive negativeLarge veryLow high nil 0.464567 

122 positive negativeLarge veryLow nil nil 0.354331 

123 positive negativeLarge low veryLow nil 0.92126 

124 positive negativeLarge low nil 0173228 0.952756 

125 positive negativeLarge high nil nil 0.866142 

126 positive negativeLarge high low nil 0.102362 

127 positive negativeLarge veryHigh veryLow nil 0.511811 

128 positive negativeLarge veryHigh nil nil 0.503937 

129 positive negative veryLow nil nil 0.0629921 

130 positive negative veryLow high 0.559055 0.0551181 

131 positive negative low nil 0 535433 0.401575 

132 positive negative low veryLow 0.125984 0.724409 

133 positive negative high veryLow nil 0.866142 

134 positive negative high nil nil 0 

135 positive negative veryHigh veryLow 0.125984 0.015748 

136 positive negative veryHigh veryLow nil 0.251969 

137 positive zero veryLow nil nil 0.23622 

138 positive zero veryLow nil nil 0.244094 

139 positive zero low nil nil 0.00787402 

140 positive zero low high 0.488189 0.88189 

141 positive zero high low nil 0.937008 

142 positive zero high nil nil 0.346457 

143 positive zero veryHigh nil 0.535433 0.692913 

144 positive zero veryHigh high 0.188976 0.299213 

145 positive positive veryLow low nil 0.417323 

146 positive positive veryLow high 0.283465 0.23622 

147 positive positive low low 0 0.88189 

148 positive positive low nil nil 0.220472 

149 positive positive high veryLow nil 0.80315 

150 positive positive high nil nil 0.637795 

151 positive positive veryHigh verylow nil 0.566929 

152 positive positive veryHigh veryLow nil 0.0393701 

153 positive positiveLarge veryLow veryLow nil 0.503937 

154 positive positiveLarge veryLow low nil 0 

155 positive positiveLarge low veryLow nil 0.598425 

156 positive positiveLarge low nil nil 0.401575 

157 positive positiveLarge high veryLow nil 0.944882 

158 positive positiveLarge high veryLow nil 0.299213 

159 positive positiveLarge veryHigh nil nil 0.818898 

160 positive positiveLarge veryHigh nil nil 0.850394 

161 positiveLarge negativeLarge veryLow high nil 0.629921 

162 positiveLarge negativeLarge veryLow nil nil 0.629921 

163 positiveLarge negativeLarge low high nil 0.307087 

164 positiveLarge negativeLarge low veryLow nil 0.0393701 

165 positivelarge negativeLarge high tow nil 0.307087 

166 positiveLarge negativeLarge high veryLow nil 0.968504 

167 positiveLarge negativeLarge veryHigh nil 0 889764 0.488189 

168 positiveLarge negativeLarge veryHigh nil nil 0.0944882 

169 positiveLarge negative veryLow nil nil 0.645669 

170 positiveLarge negative veryLow high nil 0.220472 

171 positiveLarge negative low nil nil 0.80315 

172 positiveLarge negative low nil nil 0.125984 

173 positiveLarge negative high low nil 0.401575 

174 positiveLarge negative high low nil 0.15748 

175 positiveLarge negative veryHigh high nil 0.0314961 

176 positiveLarge negative veryHigh low nil 0.133858 

177 positiveLarge zero veryLow nil nil 0.992126 

178 positiveLarge zero veryLow nil nil 0.574803 

179 positiveLarge zero low low nil 0.503937 

180 positiveLarge zero low high nil 0.834646 

181 positiveLarge zero high nil nil 0.559055 

182 positiveLarge zero high nil nil 0.850394 
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183 positiveLarge zero veryHigh veryLow 0.0314961 0.574803 

184 positiveLarge zero veryHigh nil 0.251969 0.204724 

185 positiveLarge positive veryLow nil nil 0.929134 

186 positiveLarge positive veryLow low 0.629921 0.732283 

187 positiveLarge positive low veryHigh 0.125984 0.897638 

188 positiveLarge positive low nil 0.346457 0.598425 

189 positiveLarge positive high low nil 0.259843 

190 positiveLarge positive high nil nil 0.102362 

191 positiveLarge positive veryHigh veryHigh nil 0.377953 

192 positiveLarge positive veryHigh low nil 0.590551 

193 positiveLarge positiveLarge veryLow high nil 0,503937 

194 positiveLarge positiveLarge veryLow low nil 0.283465 

195 positiveLarge positiveLarge low high 0.188976 0,866142 

196 positiveLarge positiveLarge low high nil 0.188976 

197 positiveLarge positiveLarge high nil 0.141732 0.15748 

198 positiveLarge positiveLarge high low 0.283465 0.779527 

199 positiveLarge positiveLarge veryHigh veryHigh nil 0.519685 

200 positiveLarge positiveLarge veryHigh high nil 0.503937 



158 

APPENDIX B Fuzzy System Inputs and Data Split 



159 

Appendix B Fuzzy System Inputs and Data Split 

Table B.11 Fuzzy System Inputs and Data Split 

x8 x9 x10 z1 z2 z3 z4 

split 
scenario normal resplit xl x2 x3 x4 x5 x6 x7 

0.001 validating training -67.83 90.78 32693.00 -7.00 1.00 0.10 321.37 -0.34 -16.00 -2137.15 2.03 0.00 0.00 8.07 

0002 validating overtraining -1374.99 -3698.89 32819.00 379.00 1.00 -4.43 290.45 1.71 -133.00 11681.10 2.35 0.00 0.00 5.25 

*003 overtraining training -19.04 25.55 31137 00 7.00 1.00 0.03 310.12 0.21 -33.00 -1035.54 2.00 0.00 0.00 8.85 

100 4.28 217.67 -0.41 -307.00 -4265.35 0.00 0.00 0.00 7.12 

0005 training training - 50.66 66.60 32214.00 254.00 
0004 training overtraining -1077.84 2654.25 30969.00 -131.00 

0.00 0.08 283.56 -1.17 742.00 2056.31 0.00 0.00 0.00 6.50 

0006 validating overtraining -91.49 230.40 32535.00 235.00 1.00 0.37 215.30 0.55 93.00 1251.55 0.00 0.00 0.00 4.52 

validating - 150.37 198.98 28064.00 -66 00 0.00 0.26 289.09 -1.15 -30.00 -3822.61 0.00 0.00 000 747 

0008 overtraining validating 
c007 overtraining 

388.03 -1469.79 26028 00 -182.00 0.00 -2.36 237.73 -0.27 3.00 1354.73 0.00 0.00 0.00 1.83 

0.009 validating validating 95.41 -290.90 29356.00 116.00 0.72 -0.76 135.61 0.26 262.00 -2262.17 0.00 1.23 0.00 6,98 

0010 validating training 216.56 -634.66 24621.00 121.00 1.00 -1.05 235.52 1.36 187.00 8016.36 0.00 0.00 0.00 7.25 

0011 validating overtraining - 366.46 -675.92 26877.00 307.00 1.00 -1.24 204.64 1.37 27 00 7301.80 0 22 0.00 0.00 8,15 

0512 training validating 167 29 155.09 25899 00 69.00 0.00 0.39 148.33 -1.11 170.00 - 2123.96 0.00 4.97 0.00 3.00 

0.69 274.76 -1.30 -269.00 -365569 0.00 0.00 0.00 7.47 

0014 validating validating 176.29 -621.81 27688.00 -2.00 0.00 -1.34 158.62 
0013 training training -109.64 451.57 20274.00 -86.00 0.00 

-0.65 202.00 -2042.75 0.00 0.20 0.00 9.13 

overtraining 93.38 158.47 19122.00 -58.00 0.54 0.46 146.79 0.10 16.00 -1729,02 0.00 1.50 0.00 7.230015 overtraining 
tranng -101.02 17328 15892.00 -38.00 0.92 0.43 180.24 1.50 -61.00 -1757.76 0.00 0.00 0.00 9.65 

0017 training validating 
0016 training 

-156.19 52164 11886.00 56.00 0.48 0.53 301.48 -0.21 -35.00 -3515.54 0.03 0.00 0.00 8.32 

0018 overtraining training 33.46 - 156.23 944200 -18.00 0.49 -024 324.93 0.03 49.00 588.22 0.55 0.00 0.00 9.08 

0019 overtraining overtraming -96.29 76.56 4510.00 140.00 0.39 0.14 299.22 -009 30.00 3184.52 0.00 0.00 0.00 5,13 

*020 overtraining training 37.00 1432.57 8794.00 14.00 0.00 3.79 188.02 -225 -19.00 -1831.52 0.00 0.85 0.22 4.50 

c021 training overtraining -57.62 62.28 5429.00 139.00 0.28 0.14 232.11 -0.04 199.00 -2907.45 0.00 0.18 0.00 3.28 

0022 training validating 52.45 1684.02 7201.00 -189.00 0.61 6.38 134.21 -0.12 -294.00 -1873.81 0.00 3.10 0.00 8.30 

training training 79.08 1453.63 7151.00 51.00 1.00 5.14 143.89 1.02 0.00 -1862.59 0.00 1.50 0.00 4.83 

0024 overtraining training -60.53 -839.22 3684.00 -116.00 1.00 1.89 238.73 3.57 
0023 

-289.00 6435.99 2.73 0.00 0.73 2.32 

0025 training validating 138.36 -516.76 3654.00 -106.00 0.00 -1.81 153.01 -0.80 36.00 -1902.18 0.00 2/3 0.65 3.92 

*026 validating overtraining -150.53 541.11 3195.00 55.00 0.24 2.35 124.08 -0.95 -39.00 2.82 0.00 8.88 2.18 1.23 

3648.03 3121.00 -29879.00 0.92 6.89 286.63 -0.33 -30237.00 -4033.23 0.00 0.00 0.00 9.37 

0002 overtraining validating 4.63 1485.74 3041.00 -13059.00 0.84 2.50 322.65 0.70 -13202.00 -1381.57 3.48 0.00 0.00 7.15 

0003 training validating 0.45 -1867.48 3023.00 -11177.00 0.17 -3.20 316.69 0.15 -10907.00 -3589.76 3.18 0.00 2.85 1.75 

0004 overtraining training -5.00 -4233.64 2867.00 -23733.00 0.00 -6 90 333.87 

0001 validating training 2,59 

0.72 -23202.00 -2487.09 8.80 0.00 3.62 142 

0005 validating training -707.79 -3767.61 4382.00 -3818.00 0.00 -8.20 323.48 0.57 -4204.00 10575.50 4.97 0.00 1.70 2.03 

o006 training training -50.90 -3190.30 4671.00 571.00 0.00 -5,14 329.30 0.09 530.00 7025.46 320 0.05 0.98 7.53 

0.23 779.65 5305.00 -8795.00 0.66 1.20 341.90 0.05 -8899.00 964.97 8.77 0.00 0.68 1.30 

0008 training validating -31.06 -518.04 7277,00 5277.00 0.56 -0.86 307.45 0.83 5026.00 7851.11 2.00 0.00 0.00 6.58 

0009 training training -8.99 -5400.61 6896.00 -22104.00 0.00 -8.00 347.62 1.04 -21412.00 -4688.22 10.00 0.00 1.63 1.07 

0010 overtraining overtraining -7.42 -1119.28 7543.00 22357.00 

0007 training training 

1.00 1.70 335.77 2.38 -22212.00 -124/.93 9.53 0.00 1.17 0.32 

0011 overtraining training - 457.38 -1994.83 9112.00 -15188.00 1.00 -3.39 293.10 3.33 -15699.00 11480.30 4.75 0.00 1.13 0.20 

0012 training overtraining -20.84 -3739.44 10092.00 1792.00 0.00 -5.58 329.77 0.33 1993.00 4227.61 4.98 0.00 0.00 5.83 

0013 validating training -14.38 -2274.24 12661.00 10061.00 1.00 -3.30 326.44 265 10391.00 -4430.82 7.93 0.00 0.87 1.73 

0014 overtraining training -87.57 -3972.32 13019.00 3319.00 1.00 -6.14 304.50 3.73 3507.00 4372.98 6.15 0.00 0,00 2.22 

0015 validating validating -48.92 -926.53 18551.00 -12749.00 1.00 -1.33 301.25 1.61 -12914.00 6850.45 3.22 0.00 0.00 0.00 

0016 validating validating -2115.70 -1816.15 22303.00 9503.00 1.00 -2.35 318.25 1.54 8707.00 73905,30 4.60 0.00 0,00 5.62 

0017 training validating 4.38 -245.35 21680.00 -4620.00 1 00 -0.31 333,58 0.79 -4534.00 -2835.31 7.23 0.00 0.00 1.47 

0018 validatIng overtranng 16.00 4571.93 24037.00 -2063.00 1 00 6.55 277,44 -1.12 -2499.00 -2289.73 0.00 0.00 0.00 8.85 

0019 training overtraming 15.81 4553.19 24403.00 21303.00 1.00 6.55 274.62 -1.12 20860.00 -1697.45 0.83 0.82 0.00 0.00 

0020 validating overtrain:rig -1.76 -1356.37 24161.00 -839.00 1.00 -1.70 318.45 1.25 -645.00 -2173.81 5.50 0.00 0.00 0.22 

0021 overtraining overtraining -1720.57 -2055.39 25588.00 13488 00 1.00 -2.73 293.09 1.83 12782.00 13146.50 4.37 0.00 0.00 4.22 

0022 overtraimg training -15.46 -4840.93 28289.00 16389.00 1.00 -540 338.66 1.89 17061.00 - 5545,48 9.52 0.00 0.00 1.80 

0023 validating validating 4.28 5134.19 29639.00 8239,00 1.00 6.27 300.19 -1.59 5669.00 -601.88 0.00 0.00 0.00 0.00 

0024 training validating 12.39 143.50 30293.00 1893.00 0.77 0,18 288.89 0.09 1929.00 -1873.03 0.00 0.00 0.00 1.27 

0025 overtraining overtranng -360.29 -1771.31 32781,00 13181.00 1.00 -2.15 286.25 1.09 12759.00 10460.30 3,75 0.00 0.00 6.48 

0026 training overtraining -40.13 388.55 33322.00 -1178.00 0.77 0.48 281.11 -0.09 -1383.00 5323.36 0.00 0.00 0.00 6.05 

$001 validating training 1 48 -449.02 2634.00 -1466.00 0.00 -1.99 123.03 -0.79 -1408.00 -379.37 0.00 8.95 1.72 0.00 

S002 validating training -38.05 3307.65 3903.00 -17897.00 7.00 12.79 138.24 -1.20 -18394.00 4710,47 0.00 4.37 0.28 317 

$003 validating overtraming 1.89 -544.78 4124.00 -8176.00 0.12 -242 120.07 -0.04 -5100.00 -842.04 0.00 9.22 2.77 0.10 

*004 validating overtraining 3.32 -1627.88 8243.00 -16057.00 0.00 -3.71 226.98 0.17 -18809.00 -3094.33 0.00 0.00 2.57 0.00 

s005 validating validating 55.83 3143.70 7842.00 12958.00 1.00 12,91 122.66 -1.73 -13211.00 -2027.26 0.00 8.87 0.18 1.95 

*006 training validating 17.59 - 1148.58 8913.00 -3987.00 0.05 -4.02 14163 0.21 -3796.00 -2063.71 0.00 3.53 1.83 1.05 

$007 training training -22.47 750.68 9705.00 1305.00 0.49 2.07 178.19 -0.05 1100.00 4586.47 0.00 1.15 0.00 3.17 

$008 training overtraining 14.10 2193.07 9896.00 - 20604.00 0.79 5 16 208.10 -0.06 -20823.00 -822.92 0.00 0.00 0.00 8.37 

Variables xl to x10 relate to variables defined in table 6.1 and represent numerical 
inputs to the fuzzy systems. Variables zl to z4 relate to variables yl to y4 of table 6.2 
and represent the average human assessment for the corresponding measure. Scenario 
starting with character c, o, s, t belong to the capture altitude, overspeed hazard, stall 
hazard, and terrain hazard scenario group respectively. Column 2 and 3 indicate how the 
scenarios were split under normal and resplit conditions. 
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APPENDIX C Questionnaires and Task Description 
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APPENDIX C Questionnaire and Task Description 

Pre-Test Questionnaire 

Subject # 

1.	 Current seat 
captain 

7 first officer 
7 flight engineer 
L; other (e.g., check pilot, instructor): 

2. flying experience 
List all aircraft you have flown: 

Current aircraft: 

Total flying time: hours 

3.	 Certificates/Ratings 
student 

private 

instrument 

multi-engine 

commercial 

CFI 

ATP 

F/E 

other: 

4. Caffeine and medications 
How many cups of coffee, tea, or other caffeine-
containing beverage have you had today? 

Are you taking any medication that is likely to
 
affect your flying and decision making skills?
 

yes 

no 

Date: 

5. Other conditions
 
Did you get adequate sleep last night?
 

yes
 

no
 

Do you have a cold or other illness that might 
affect your performance today? 

E yes
 
no
 

I.	 Are there any other factors that might affect 
your performance today? 
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Post-Test Questionnaire 

Subject # Date: 

6.	 Did you receive adequate training to 
serve the purpose of this experiment, 
as you understand it? 

yes 

E no 

Explain: 

7.	 Rate how realistic you found the 
scenarios according to the scale 
below. 

Unrealistic Somewhat Realistic Realistic 

0	 5 10 

Your rating: 

8. What factors made the scenarios 
unrealistic? 

9.	 Rate how clearly the metrics were 
defined according to the scale below. 

Unclear Moderately Clear Clear 

0	 5 

Terrain Hazard. 
Stall Hazard: 
Overspeed Hazard:
 
Pilot Response Accuracy:
 

10. What were the difficulties you had 
with understanding any of the above 
metrics? 

11. What other comments, criticisms, and 
suggestions do you have concerning 
the research or your experience with 
the experiment? 

10 
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Task Description
 
In a number of scenarios you are going to see how a pilot is performing the task of ensuring flight safety and
 
capturing a target altitude. Based on the control actions of the pilot, state information displayed on the primary
 
flight display, and the target altitude, you are to rate the pilot's activities and assess potential hazards that may be
 
present at the end of the scenario.
 

Assumptions and Constraints
 
The employed simulator models a two jet engine civil transport airplane.
 

Speeds
 

Assume the following speeds:
 
Stall speed: 120 knots indicated airspeed
 
Overspeed: 340 knots indicated airspeed
 

Environment
 

Assume the following environment conditions:
 
No winds
 
No mountains
 
Ground impact occurs at sea level (0 ft on altitude tape)
 

Priorities 

Assume the following priorities: 
1) Safety 
2) Target 
Note: Some scenarios may require the pilot to respond to a hazardous situation. In those cases 
deviation from the target may be acceptable. 

Explanation of Assessment Metrics 

Terrain Hazard
 
Terrain hazard quantifies the danger of fatal ground impact you think is present at the end of the
 
scenario. Note: A low altitude stall condition may pose a terrain hazard.
 

Stall Hazard
 
Stall hazard quantifies the danger of stall you think is present at the end of the scenario.
 

Overspeed Hazard
 
Overspeed hazard quantifies the danger of overspeed you think is present at the end of the scenario.
 

Pilot Response Accuracy
 
Pilot response accuracy quantifies how accurate the pilot is responding to a given target altitude and
 
initial situation. Consider the following points:
 

General:
 
To what degree is the pilot doing the right thing?
 

Hazard specific:
 
Does the initial situation pose any hazards to be resolved and is the pilot acting accordingly?
 
Is the pilot creating a hazardous situation?
 
If the initial situation is hazardous is the pilot deviating from the target and is this deviation
 
justified? 

Target specific:
 
Is the airplane heading in the right or wrong direction?
 
Is the airplane progressing towards the target in a timely manner?
 
How accurately is the pilot capturing the target altitude?
 




