
AN ABSTRACT OF THE THESIS OF

Michael F. Miller for the degree of Masters of Science in Electrical and Computer Engi-

neering presented on July 17, 1997. Title: CounterDataFlow Architecture: Design and Per-

formance.

Abstract approved:

Shih-Lien Lu

The counterflow pipeline concept was originated by Sproull and Sutherland to demon-

strate the concept of asynchronous circuits. This architecture relies on distributed decision

making and localized clocking and data movement. We have taken these ideas and refor-

mulated them into a substantially faster more scalable architecture that has the same dis-

tributed decision making and locality for clocking and data, but adds very aggressive

speculation, no stalls, and other desirable characteristics. A high level Java simulator has

been built to explore the design tradeoffs and evaluate performance.

Redacted for Privacy

CounterDataFlow Architecture: Design and Performance

by

Michael F. Miller

A THESIS

submitted to

Oregon State University

in partial fulfillment of

the requirements for the

degree of

Masters of Science

Presented July 17, 1997

Commencement June 1998

Masters of Science thesis of Michael F. Miller presented on July 17, 1997

APPROVED:

Major Professor, representing Electrical and Computer Engineering

Chair of Department of Electri al and Computer Engineering

Dean of Graduat chool

I understand that my thesis will become part of the permanent collection of Oregon State

University libraries. My signature below authorizes release of my thesis to any reader

upon request.

Michael F. Miller, Author

Redacted for Privacy

Redacted for Privacy

Redacted for Privacy

Redacted for Privacy

CONTRIBUTION OF AUTHORS

Dr. Shih-Lien Lu was involved in the preliminary CounterDataFlow design con

cepts and early simulator design. Ken Janik was involved in the design of both Counter-

Data Flow and the simulator. Some of the simulator components were also written by Ken

Janik. Some of the non-CounterDataFlow specific data was collected by Ken Janik. Todd

Austin and Doug Berger are responsible for developing the Simple Scalar instruction set

and the Simple Scalar simulator which was used to generate input traces for the aBlocks

simulator.

TABLE OF CONTENTS

Page

1. Introduction 1

2. Previous Counterflow Designs 2

2.1 Basic Counterflow Principles 2

2.2 Original CFPP 4

2.3 Rough Draft: VRP 4

3. The Next Step: CDF 7

4. Simulations and Results 9

4.1 The Simulator 9

4.2 Simulation Results for CDF 11

5. Advanced Features of CDF 16

5.1 Segmented Reorder Buffer 16

5.2 Multithreading 17

5.3 Data Prediction 19

5.4 Complex Instruction Mapping 19

5.5 Multi-speed Clocking 20

6. Future Research 22

7. Conclusion 24

BIBLIOGRAPHY 25

LIST OF FIGURES

Figure Page

1 Basic CFPP Architecture 3

2 Basic VRP Architecture 5

3 Austin's Triangle 9

4 Layout of sidepanels 12

5 IPC for Selected Benchmarks 13

6 Graphs of Pipeline Utilization 15

7 Diagram of Segmented ROB 17

8 Diagram of a 2-thread CDF System 18

LIST OF TABLES

Table Page

1 CDF Pipe configurations 11

2 IPC for SPEC95 12

CounterDataFlow Architecture: Design and

Performance

1. Introduction

The current trend in microprocessors is to provide maximum speed by exploiting

instruction level parallelism (ILP) both to hide long latency operations like memory

accesses, and to execute multiple instructions at once. Currently the primary mechanism

for doing this is an out-of-order superscalar processor. This solution is usually constructed

with renaming registers, reservation stations, and reorder buffers which rely on multiple

content addressable memories (CAMs) that tend to be slow, area intensive, and expensive.

Such solutions also require accurate global timing and global communication between the

various structures across the entire chip. This is likely to become problematic since recent

technology advances provide very high clock rate logic. This will eventually result in it

being physically impossible to send signals from one side of the die to the other in a single

clock cycle.

Counted low processors are able to provide a competitive alternative to the super-

scalar approach by using highly localized communication to resolve the scheduling issues

and resolution of data dependencies. In this paper we will discuss the fundamental con

cepts behind counterflow pipelines, then briefly cover the development of counterflow

pipelines from the first design by Sun (CFPP), to Oregon State's conversion of the archi

tecture to the virtual register processor (VRP1) and it's powerful successor, counterdata

flow (CDF). We will also discuss the present findings that suggest that CDF can be used to

produce high performance processors with high parallelism, low inner-chip communica

tion cost and good latency hiding.

1. Originally there were two VRP processors, VRP, and VRP+. In this paper we will be referring
only to the latter of the designs as VRP

2

2. Previous Counterfiow Designs

As mentioned in the abstract, there has been research in the field of counterflow

microarchitecture since it's conception in 1994. To understand CounterDataFlow proces

sors, it is first important to understand the basic principles behind counterflow architecture

and the early designs from Sun Microsystems and Oregon State University.

2.1 Basic Counterfiow Principles

The basic principle of counterflow pipelines is that there are two pipelines flowing

in opposite directions, as shown in a block diagram of a CFPP pipeline in Fig. 1. One of

the pipelines carries instructions up from the decode unit, while the other carries data

down from either the register file or earlier instructions. The key concept is that as the

instructions and data pass each other, they "look" at each other. The instruction checks to

see if it needs the value(s) in the data pipe (read after write hazard resolution). If it does, it

copies the piece(s) of data and continues along the pipe. The data values check the instruc

tions and mark themselves "invalid" if the instruction will update the register they will

write to (write after write hazard resolution). Unlike other pipelines, the pipe stages do not

perform the operations. The pipe stages merely resolve scheduling and data dependencies.

To the sides of the pipelines are the execution units (called sidepanels) which execute the

actual instructions. The stage that allows instructions to transition from the instruction

pipe to a sidepanel is called the launch point for that sidepanel. The stage in which the

instruction can transition from the sidepanel back to the instruction pipe is called the

recovery point.

When an instruction reaches a launch point where it can be executed, a check is

made to see if it has all its operands. If it has all the operands, the instruction is sent into

the sidepanel and executed. If not, it must either wait for the necessary operands to arrive

from the data pipeline (a "last usable" sidepanel stall) or continue up the pipe if there is

another sidepanel capable of executing the instruction further up in the pipeline. After an

3

Register File

V

RESA I RESB
OP2Hilt! OP1CI!!

t
Stage;

RESA I RESB
OP1 OP2

0 -

RESA I RESBCStag:Ipil OP2C2M

Decode/Fetch Unit

Fig. 1. Basic CFPP Architecture

instruction has completed execution, its result is copied into the data pipeline so that sub

sequent instructions will receive the value as soon as possible[1],[2].

As a matter of terminology, we refer to both instructions and data in the pipeline as

tokens, borrowing these terms from dataflow. An instruction token carries with it an

opcode, an identification tag of some kind, a valid bit which indicates if the instruction is a

valid instruction, and a set of consumer and producer data tokens. The consumers are the

data tokens that the instruction will need to execute. The producers are the data tokens that

are the result of the instruction. In a similar way, the data tokens carry a value, an identifi

cation tag and a valid bit. Some architectures add additional bits to the token that are spe

cific to that architecture's needs.

4

2.2 Original CFPP

The original counterflow architecture proposed by Sproull et.al.[1] put the Register

File (RF) at the top of the pipeline and necessitated a global communication line from the

decode unit to the RF to communicate which registers should be put into the result pipe

line to satisfy the instruction's data dependencies. Instruction tokens would remain in the

instruction pipeline after executing to carry their results up to the register file. While some

instructions can be executed out of order, the instruction pipe does not allow passing, so

they are retired into the register file at the top of the pipeline in the same order they are

issued in.

This design has three significant problems. First, instructions requiring registers

that had not been used before, or recently, would be forced to travel up half of the pipeline

before meeting their operands traveling down from the register file. This problem, called

the half-pipe problem, results in relatively high startup cost, and adds to any branch

misprediction costs. The second problem is that instructions are forced to remain in the

instruction pipe until they reach the top of the pipe. This combined with the "last usable"

sidepanel rule, means that if any instruction stalls, usually every instruction following

must stall as well. This means that even if stalls are rare, they will have a very strong

impact on performance. Finally, in order to issue more than one instruction per cycle,

dependencies between the instructions being issued at the same time must be made to pre

vent deadlocks. The rules to prevent deadlock are relatively extensive and depend on the

configuration of the pipe.

2.3 Rough Draft: VRP

We originally concluded that there were two key aspects that needed to be

addressed with CFPP. First, the halfpipe problem is quite significant. Second, since

instructions remain in the pipeline, any stalls are detrimental to performance. Therefore,

we moved the register file to the bottom of the pipeline, where instruction are issued, as

shown in Fig. 2. This completely removes the halfpipe problem, and if there is a reorder

5

buffer (needed for precise interrupts) then instructions do not need to remain in the pipe

line after they have finished executing.

r 1
-.1H11...4.1 opcode opl op2 RESI I

L

r -+ i 1

.41I1 opcode opl op2 "4-10-1RES1 I

I-1111 opcode opl op2 HRESI
L -I

f'r --1

opcode opl op2 "44" RES 1 I.4.1

L - - ----I

Decode ROB

Fig. 2. Basic VRP Architecture

The addition of a reorder buffer has several pleasant effects. Instructions can now

be removed from the pipeline creating more bubbles so that the stalls that do occur won't

propagate as far, and also gives us perfect renaming since the tags are no longer the regis

ter tags, but are converted to be ROB entry numbers for the producers of the value. A large

disadvantage that remains in VRP is that constructing an instruction pipe wider than one

requires that either the instructions being issued at the same time be independent and

needing different execution units, or the pipe stages must be far more complex to support

moving only part of a pipestage at a time.

The main problem besides the issue width limitation stalling is that while the stalls

in the pipeline are less common than CFPP, the data dependencies and variable-latency

instructions shift the work to the upper section of the pipe, where stalls are more common.

6

The stalls then propagate swiftly back down the pipe and have a strong impact on perfor

mance.

7

3. The Next Step: CDF

The fundamental problem with the VRP processor is that the instruction pipeline is

allowed to stall. To fix this problem, we wrapped the instruction pipeline back onto itself

through the decode unit. This greatly simplifies the individual pipe stages, now instruc

tions don't need to stall because there is always a sidepanel capable of executing them

`further down' the pipeline. Additionally, the need to check for dependencies between

instructions concurrently launched is eliminated as well since there is no 'last sidepanel'

stall to deadlock the pipeline.

The pipeline behaves almost identically to VRP but with three important differ

ences. First, as mentioned before, there is no concept of a 'last sidepanel' so there is no

stalling in the instruction pipe. The instructions are merely reissued back into the bottom

of the pipe if they reach the top of the instruction pipe without being executed. Second,

after instructions are launched into a sidepanel, they are not required to remain in the pipe.

This is important since the slots are needed to insert new instructions into the pipeline.

Finally, results are recovered into the result pipe, not the instruction pipe, so that lockstep-

ping the sidepanels to the pipeline is unnecessary, and variable-length execution is no

longer a problem.

The fact that a VRP pipeline has difficulties launching multiple instructions at once

is surprisingly important; if you do not allow multiple instructions to be issued each clock

cycle, your instructions per cycle (IPC) can never become greater than one. This was a sig

nificant restriction for all previous counterflow-based designs. The older designs either

needed complex hardware to detect and prevent potential deadlocking pairs or some kind

of VLIW support. CDF requires neither, the issues of data dependencies are completely

resolved in the pipeline.

In our simulations, we force all the data tokens to make at least one half complete

trip around the data pipeline. While this seems like somewhat of a waste of resources since

extra result pipelines will be needed, there are two compelling reasons for doing this. First,

if we leave it to the ROB to fill in the consumers as instructions pass the ROB, then the

ROB will be more complex, and associative searches to find the consumers will be needed

8

(recall that the tag on the incoming data token is for the producer instruction). We consider

this to be bad, since the ROB needs to be both large and fast. If the data tokens are

required to make at least a half circuit, then the ROB is not required to fill in values as

instruction tokens go by. The second reason is that data dependencies actually get resolved

faster. Because both the instruction pipeline and the data pipeline are moving in opposite

directions, their relative speed is twice that of a pipeline versus the ROB. So forcing the

data tokens to go through a minimum half loop resolves the data dependencies up to twice

as fast as letting it stop in the ROB.

This is implemented in a slightly unusual manner since all data tokens are required

to finish their journey at the ROB. We have set up the simulation so that the data tokens

that are recovered into the result pipe after the halfway point are marked as having not

needing to pass the ROB, but those recovered before the halfway point are marked as

needing to pass the ROB in order to make their half circuit. So the distance traveled for a

token recovered in the first half of the pipe is greater than 1 length, but less than 1.5 pipe

lengths. But a token recovered in the second half of the pipe travels greater than .5 lengths,

but less than one length. Because recovery points usually are later in the pipe, and long

latency instruction recover points like floating point and memory the latter timing is more

common.

9

4. Simulations and Results

To analyze the performance of a CDF processor (and
Performance

counterflow processors in general) it was necessary to con

struct a simulator. We felt that the previously existing simu

lator, VRPSim[5] was neither robust enough or well enough Detail Flexibility

implemented to continue working with. We examined a

number of simulators that were available at the time and Fig. 3. Austin's Triangle

reached an interesting conclusion after conversing with Todd

Austin. He characterized simulation design as having three

design factors: performance, flexibility, and detail as shown in Fig. 3. To optimize for one,

you must give up something else in one or both of the other categories[1 1]. Most of the

simulators available have been optimized for either speed or detail. Very few put much

consideration into flexibility. After creating the simulators, a number of simulations were

run over the SPEC95 benchmarks with good results.

4.1 The Simulator

We decided that since we needed to simulate a family of processors, and also

needed to make a large number of architectural tweaks and changes, we should construct a

simulator family that was optimized for flexibility and visualization instead of simulation

performance. The simulator family is now called architecture-blocks (aBlocks) and is

written in Java. The goal of the aBlocks project is to provide a set of simulator objects that

can be simply "plugged together" like Legos to simulate different processor architectures.

At the time of writing, aBlocks is available only as a prerelease toolset. For up to date

information about the status and availiblity of aBlocks please visit http: / /ece.orst.edu/

sllu/cfpp/java

The current instruction set (ISA) is Todd Austin's Simple Scalar ISA[12] because it

is a clean, simple ISA with good support for generating traces on multiple platforms. The

simulators are currently trace-based, but the simulator components are written so that con

http:ece.orst.edu

10

verting to an execution-based model would not be difficult. We did not write our simulator

as part of the Simple Scalar simulator because our design goals of flexibility and visualiza

tion are not compatible with Simple Scalar.

We are using three of the SPEC95 benchmarks as a general indicator of perfor

mance: gcc, compress and swim. We are running only the first 2 million instructions

through our simulator. We believe that this provides a reasonably accurate indicator of

overall performance for the core of the processor. Because we are not running very much

of the actual program we have made some simplifications to the memory subsystem. We

are approximating steady state behavior of the level 2 data cache and the level 1 instruc

tion cache as always containing the data requested. While this is somewhat imprecise, the

extremely high hit rates over the SPEC95 benchmarks for a reasonably sized L2 data

cache and L1 instruction cache[7] makes this a reasonable approximation. If we did not

approximate this, our numbers would be heavily tainted by the compulsory misses that the

caches would experience.

The L1 data cache has a single cycle access time, and is a 4 way set associative

16Kb cache with 32 bytes per line. The replacement policy is SLRU, similar to the mech

anism used in the Intel i486 [6]. The L2 cache (acting as main memory) has a constant

pipelined access time of 10 cycles. The memory consistency model is relaxed so that

loads can pass a limited number of stores, providing that they are accessing different loca

tions in memory. Fetching is restricted to contiguous access only in a single cycle. If a

taken branch is encountered, then fetching stops after the taken branch and resumes on the

next cycle.

The branch prediction is simulated by randomly predicting incorrectly 5% of the

time. While this is imprecise, we believe that it offers a reasonable approximation to an

agressive speculation mechanism running in steady-state. When a misprediction occurs,

the branch prediction unit queues up the instructions that are issued speculatively, and

when the simulation "finds out" that the branch was wrong, there is a slight delay, and the

queued instructions are reissued. While this is not as precise as traversing the incorrect

branch path, we believe that it is sufficiently accurate to measure the effects of misspecula

tion pollution in the core of the processor.

11

Of course, all of these configuration choices can be modified in the simulator. For

example, there are several prediction mechanisms and cache replacement policies. For the

purposes of this paper, we are holding these choices constant so that comparing the archi

tectures will be easier.

4.2 Simulation Results for CDF

For describing the performance of the CDF processors, we have chosen to show

five configurations that are very similar, but yet yield substantially different results. The

number, type, and placement of the sidepanels is held constant, but we vary the width of

the instruction and result pipes as well as the number of entries in the ROB. The first two,

have one instruction pipe, 32 entries in the ROB, CDFO has one result pipe, CDF1 has

two. The next two have two instruction pipes and 64 ROB entries. CDF2 has three result

pipes and CDF3 has four. The final configuration has four instruction pipes, eight result

pipes and 128 entries in the ROB. This final configuration (CDF4) is intended simply to

show how scaling the width affects the performance and behavior. These values are sum

marized in Table 1 below.

Table 1: CDF Pipe configurations

Name Inst Pipes Result Pipes ROB Entries

CDFO 1 1 32

CDF1 1 2 32

CDF2 2 3 64

CDF3 2 4 64

CDF4 4 8 128

The sidepanel configuration as shown in Fig. 4 was designed to be conservative in

the amount of hardware used. The only functional units that are replicated are the single-

cycle integer units. The pipeline is kept relatively short as well. More aggressive designs

would include a second set of floating point units, a second or third branch execution unit,

12

several multicycle integer units, and many single-cycle integer units. The pipeline would

probably be extended to allow for more instructions to be active in the pipeline.

N
OA

0
in

4.

O
E

4a'

CM

ROB

Fig. 4. Layout of sidepanels

While the performance of the single instruction pipelines seems to be disappoint

ing, the performance of the dual-instruction pipelines more than compensates. Below in

Table 2 is the instructions per cycle (IPC) for each of the five models for several of the

SPEC95 benchmarks.

Table 2: IPC for SPEC95

Benchmark CDFO CDF1 CDF2 CDF3 CDF4

Compress 0.522 0.699 1.040 1.080 1.456

gcc 0.651 0.752 1.106 1.120 1.330

swim 0.651 0.799 1.351 1.406 , 2.191

13

Of the SPEC95 set of benchmarks we chose three that we believe are representa

tive of the entire group to show graphically the performance improvements and other fea

tures. These are compress, gcc and swim. There are two important trends to note from the

graph showing the IPC of the processors. First, adding more pipes generally improves the

performance significantly. This is a clear indication that neither the functional units nor the

ROB are bottlenecks when there is one or two instruction pipes. This is due largely to the

fact that we put very large ROBs on the simulated processors and the number of functional

units is relatively high for a processor with a fetch bandwidth of one or two.

2.5

0.5

II II 1 I I II

0 1 2 3 4

Processor Number

Fig. 5. IPC for Selected Benchmarks

There is also a trend that swim does better than gcc and gcc does better than com

press. This is due in a large part to the data dependencies within the programs. To measure

14

these data dependancies, we wrote a small metricing program with aBlocks to measure the

distances between data dependancies. Compress has a very tight chain of data dependen

cies. On average, instructions are dependent on the instruction 1.3 instructions in front of

them (average RAW hazard distance). This tight data chaining is not only the worst of the

SPEC95 set, but it means that there is not very much instruction level parallelism available

to exploit.

On the other end of the spectrum, swim's instructions are on average dependent on

an instruction 13 instructions in front of them. This allows for a great deal more computa

tion to be done in parallel. As can be seen in Fig. 5, as the effective instruction window

increases, swim is able to run more in parallel, and therefore in much fewer cycles. Also of

note is that in gcc the average RAW hazard distance is 3, so it does not benefit as much as

swim from the hardware additions in CDF4. Fortunately there are ways of improving per

formance in spite of tight data dependence chaining. Some of these methods, like data

speculation and multithreading, will be discussed relative to CDF in Section 5.

The utilization of the pipelines is one of the most important factors in counterflow

designs. It gives an image of what is happening inside the processor, and is one of the key

tools for identifying and removing bottlenecks by repositioning sidepanels. To keep the

graphs simple, only processors 1,3 and 4 will be displayed (shown in dashed, dot-dashed,

and connected), and only gcc and swim will be used. The graphs show on average how

many slots in a pipe are being used for each stage of both the instruction pipe and data

pipe. The launch numbers do not include instructions that were launched at that particular

stage, but the recover numbers include recovers that occurred at that stage.

From these graphs, several things become obvious. The upper half of the pipeline

isn't used much for execution, but mostly as a waiting period for long-latency operations.

Also, the profiles are similar for each width, because these graphs are dependent on the

sidepanel placement. Also of note is the amount of wrapping taking place. Whatever is

furthest from the ROB will be wrapped around (or has been wrapped in the case of result

tokens). As a general rule, we have found that if you cannot achieve less than half wrap

ping, you will wrap too much material and prevent fetching from taking place, which will

cripple performance as can be seen with CDF4 running gcc.

15

0.
b.. 3

0

2

rn
R1

oo

3.5

Co 3
0.

2.5

t 2
2
Co

1.5

Eis 1

>
a 0.5

oo

2 4 6
Stages from ROB w/ gcc

2 4 6 8
Stages from ROB w/ swim

1.6

cc
a) 0.8
rn
Co

o 0.6>

0.4 .

0.2
0

3.5

3

a2.5.

Co 2

a) 1.5

ca

1

0.5

0
0

2 4 6 8
Stages from ROB w/ gcc

2 4 6 8
Stages from ROB w/ swim

Fig. 6. Graphs of Pipeline Utilization

The misspeculation issue is quite important since we have a relatively high cost of

misspeculation. Fortunately misspeculation only represents adding at most an additional

10% of invalid instructions into the processor. Even better is that unlike VRP, CDF is not

required to execute these misspeculated instructions. If the instruction is known by the

ROB/BPU to be invalid when it wraps by the ROB it is removed from the pipeline.

16

5. Advanced Features of CDF

The distributed architecture of CDF lends itself well to allowing a number of inter

esting features and modifications that can improve performance with minimal area addi

tions. In this section we will discuss some of these features but not the actual performance

benefits as aBlocks is not yet advanced enough to support simulating these ideas. First

we'll examine what can be done about the ROB in terms of making it a non-associative

structure to reduce the die area and decrease access time. Second, we'll examine how mul

tithreading can be very beneficial because of the way the instruction pipeline is utilized.

Third, we'll discuss the ability of CDF to manage data prediction in a very efficient man

ner. Next, we'll look at how complex instructions can be mapped onto this RISC style

architecture. Finally, we'll conclude with multi-clocked CDF.

5.1 Segmented Reorder Buffer

Currently, out-of-order processors tend to have some kind of reorder mechanism to

support precise interrupts. In both superscalar designs, VRP and CDF, this usually takes

the form of content addressable memories (CAMs) to determine the data dependencies.

Ideally, these structures should be as large as possible, as they usually determine the

instruction window size, but being CAMs, they tend to be both expensive and slow. The

CDF's ROB can be constructed with non-associative memory. When the instruction pipe

width is greater than one, then the ROB can be divided into as many sections as there are

horizontal entries in the instruction pipeline. Then, the actions taken by the ROB can be

done exclusively by indexing and "last modified by" tags for the register file as shown in

Fig. 7. This also helps reduce the number of read and write ports required on the ROB.

The penalty for creating a non-associative ROB is that when a branch mispredic

tion occurs, the table containing the ROB entries for instructions writing to the RF must be

reconstructed. While instructions can be allowed to continue to execute during this recon

struction time, no new instructions can be issued. We believe that the penalty is some

where in the neighborhood of 4-32 cycles, depending on the size of the ROB and the

17

I-Pipes D-Pipes

Decode 4 4
I I I

Reg. P-3

ROB

File ao

I I I

D-Pipes

I-Pipes

Fig. 7. Diagram of Segmented ROB

degree of segmentation. This is acceptable if the branch prediction rate is sufficiently high,

similar to the Intel Pentium Pro design which compensates for a high mispredict cost with

excellent branch prediction [7].

5.2 Multithreading

One of the problems facing high performance processor architects is that there is a

limited amount of IPC available in programs. To increase the amount of parallelism avail

able, many groups have turned to hardware mulithreading to hide latency of memory and

provide additional parallelism since the threads have very little interaction between each

other [8]. There are a variety of ways to add mulithreading to a CDF architecture, but one

particular way takes advantage of the properties of CDF.

Since the instruction pipeline utilization drops off the further away one gets from

the fetch/decode area as seen in Fig. 6, letting each thread have it's own ROB/Fetch/

Decode (or perhaps a multiplexed fetch/decode) spaced evenly around the pipe should

provide excellent performance over more traditional designs. The reason is that the

instructions that can be executed quickly (like ones based on immedates or values com

puted far in the past) will be executed by the first execution unit encountered, leaving

18

holes in the pipeline for the thread to use. Functional units close to a thread's ROB will be

used more by that thread than the other threads. This means that while the threads still

compete for resources in the processor, the 'prime resources' (resources close to the ROB)

are not the same for all the threads, each has it's own set. This is very different from a

superscalar design where all threads are constantly competing for exactly the same

resources so there is less competition.

I-Pipes

D-Pipes-oc

ROB ROB
1

D-Pipes

I-Pipes

Fig. 8. Diagram of a 2-thread CDF System

The real benefit of multithreading in CDF is that more parallelism is available to

the scheduling core. Because the threads are independent, there are no data dependencies

between them. This means that there will be more instructions available for execution at

any point in time. This is very beneficial, since otherwise execution units might be idle

waiting for data dependencies to be resolved.

The resource contention that remains could be managed more efficiently by assign

ing a priority to the instructions. For example if one thread was speculating, it might mark

its instructions as being a lower priority than usual to allow non-speculative instructions

(even from another thread) to be executed first. Each time a instruction makes a loop

around the processor its priority could be increased to indicate that it should be executed

soon since there are probably a number of other instructions waiting for it to complete.

19

One might even go so far as to have the compiler add 'hints' to the processor indicating

which instructions are in the critical path of a computation, or have a large number of

instructions dependent on them.

5.3 Data Prediction

An interesting benefit of the pipeline is that instruction reuse becomes straightfor

ward. For example, if you wanted to do value prediction, simply make the prediction at

some point, and allow instructions with predicted operands to execute (except for stores of

course) but not leave the pipeline. They can even put their results in the result pipeline as

long as they are marked as speculative data. Then, when the actual value of the operand

passes the instruction with a speculated consumer, check to see if they are the same. This

comparison can be done right there in the pipe and the instruction can then issue a pro

ducer that is not speculative if the speculation was correct, or take the correct value of the

consumer and get reexecuted. Deep speculation and recovery from misspeculation is sim

ple and elegant.

Entire data dependency trees can be speculated and reexecuted multiple times

without expensive customized hardware to recover from misprediction. It is somewhat

similar to the way branch prediction occurs, except that we are able to reuse the instruc

tions, similar to a trace cache [9]. There is, however, a risk of overspeculation if you com

bine this technique with mulithreading or some other mechanism where the speculated

instructions could prevent other instructions that are more likely to be useful not to be

issued or executed. However, if you only allow data-speculated instructions to be executed

when there is nothing else to be done in a pipelined execution unit, then all you lose is

some of the result pipe bandwidth, a relatively inexpensive resource.

5.4 Complex Instruction Mapping

Even though RISC seems to have been declared the winner in the instruction set

wars, more complex instructions keep getting added to the relatively large existing instruc

20

tion sets. Sparc's V9 adds SIMD instructions to the ISA as does Intel's MMX. In general,

these more complex instructions are either dealt with by custom hardware or by breaking

the instruction into RISC-like microops and then executing the sequence of microops

There are three ways to deal with instructions that can be broken down into smaller

components in a CDF architecture. The first is simply to devote dedicated execution hard

ware in a sidepanel. This can be expensive if the instruction is complex and cannot share

it's functionality with other instructions. The other two options rely on the characteristics

of a CDF pipeline to operate.

One alternative is to actually issue the micro-ops separately into the pipeline. Care

ful choice of tags can allow all the micro-ops in an instruction to share the same ROB

entry. If there is any parallelism in the instruction itself, it can easily be exploited, and the

execution units can be kept very simple, as all they need to execute are simple micro-ops.

On the down side, a substantial amount of the pipe itself will be taken up by the instruc

tion's micro-ops and communication within the instruction. If there is little or no parallel

ism within the instructions, then the best that can be hoped for is that the parallelism

between instructions will be improved by having more, smaller operations active in the

pipeline at once.

The other alternative to dedicated hardware is to have the instruction execute in

multiple sidepanels. For example, a Multiply-Add would first execute the multiply in a

multi-cycle integer unit to perform the multiplication. Then the result would be placed in

the consumers array of the instruction and it would then be launched into an single-cycle

integer unit to execute the add. This has the advantage of not polluting the pipe with extra

microops, but it means that if there is any parallelism within the instruction, it cannot be

used.

5.5 Multi-speed Clocking

Finally, there is the issue of ultra-high speed clocking of the pipeline. There has

been some research into running different segments of a processor at different speeds to

get performance gains[10]. For example, it may not be feasible to run an entire chip at the

21

technologies fastest available speed due to power or heat reasons. Also, from an architec

tural standpoint it doesn't make sense to run the fetch unit at 600Mhz if you can only pull

in instructions from the cache at a rate of 300Mhz. But it does make sense to run the exe

cution core at 600Mhz even if the cache can only sustain 300Mhz because it usually takes

more than one cycle to complete an instruction due to data dependencies and hazards.

CDF designs lend themselves very well to a multi-clocked scheme because the

execution core has only a few links to the "outside world". Also the communication within

the pipe is all localized, so it can support very high clock speeds because there is no need

to transmit any information in the core a significant distance between clock cycles. More

over, because the pipe stages are all the same, they can be carefully optimized for excellent

performance.

Consider the case where fetch/decode is running at half the speed of the CDF core

pipeline. Every other pipeline clock, new instructions are added into the core. If the num

ber of stages in the pipeline is relatively prime to the number of cycles it takes to fetch

(one fetch per 2 pipeline cycles and 9 pipe stages for example) then the pipestage that the

fetched tokens will be going into will be the least recently fetched to location in the pipe,

and thus the most probable to have places to accept the new instructions. This concept can

also be extended to Globally Asynchronous Locally Synchronous (GALS) systems with

localized, independent clocks.

So now that you have seen a overview of some of the things that CDF pipelines can

do because of their unique structure. The direction of at least part of our future research

should be obvious, but there are some specific things that we believe are important to look

at.

22

6. Future Research

The research at OSU is at the point where we believe we have shown that counter-

flow pipelines like CDF can be effectively used as general purpose processors if they are

properly constructed. We also believe that there is a great deal of additional work that can

be done in showing that the advanced features of CDF, as mentioned in this paper, are via

ble and provide improved performance. This would help show that CDF processors are a

reasonable alternative to modern superscalar designs given the new constraints of higher

clockspeeds and longer memory latencies.

We fully intend to continue developing aBlocks not just for use in counterflow

research but as a platform for prototyping and visualizing new processors, and better

understanding existing processors. Some additions on the horizon include execution-based

simulation, a 5-stage pipeline and a generic superscalar processor, along with more

advanced bus models supporting SMP. We also intend to take advantage of the Java Beans

API in the hopes that aBlocks will eventually develop to the point where generating or

modifying a existing processor simulator can be done with a few mouseclicks instead of

hours of tedious programming.

We are also concerned with the amount of ILP currently available in modern pro

grams. The basic block size for Simple Scalar binaries is around 4-5, and the average num

ber of instructions between data-dependent instructions is around 3 for the SPEC95

benchmarks. Research into more aggressive compiler techniques to increase available ILP

will benefit not only CDF processors but other out-of-order processors like superscalar

designs. Some preliminary examinations of the gcc compiler for the simplescalar ISA

indicate that the code structure can be improved, enhancing performance. We would also

like to explore alternative instruction sets like the Java bytecodes to see if their CISC-like

structure would allow us to reveal more parallelism within and between instructions while

reducing memory bandwidth.

Finally, there is the issue of sidepanel placement. While it is impossible to achieve

an optimum choice of sidepanels, pipewidths, and placements, careful choices can make

the difference between poor performance and excellent performance. We have developed

23

some rules of thumb by trial and error while simulating various counterflow pipelines.

These need to be reexamined and performance tradeoffs quantified for number, type and

placement of sidepanels, pipe widths and reorder buffer sizes.

24

7. Conclusion

Our research has shown that the original counterfiow designs had fundamental lim

itations on performance for general purpose computing. We have developed solutions for

most of these limitations and, given the current trends towards high internal clock speeds,

high memory latencies, multithreading and value prediction, the CDF processor will be a

viable, scalable alternative to traditional superscalar designs in the near future. The distrib

uted scheduling mechanism and localized clock and data transfers makes it ideal for ultra

high clock speed implementations. The current simulation results show that good perfor

mance with reasonable hardware can be achieved if care is taken in designing the layout of

the sidepanels. To see the simulators yourself or take a look at a more complete set of sim

ulation data, please visit our web page at http://ece.orst.eduisllu/cfpp

http://ece.orst.eduisllu/cfpp

BIBLIOGRAPHY

1.	 R.F. Sproull and I.E. Sutherland and C.E. Molnar, "The Counterflow Pipeline Pro
cessor Architecture" IEEE Design and Test of Computers, pp. 48-59, Vol.11, No.
3, Fall 1994.

2.	 K.J. Janik and S. Lu, "Synchronous Implementation of a Counterflow Pipeline
Processor" http://www.ece.orst.edu/janikk/iscas96.ps

3.	 M.D. Jones, "A New Approach to Microprocessors", Nov. 1996. http://
lal.cs.byu.edu/people/jones/latex/sproull.html/sproull.html.html

4.	 M.B. Josephs and P.G. Lucassen and J.T. Udding and T. Verhoeff, "Formal Design
of an Asynchronous DSP Counterflow Pipeline: A Case Study in Handshake Alge
bra", Proc. Intl Sym. on Advanced Research in Async. Circuits and Systems, pp.
206-215, November 1994.

5.	 R. Carlson and M.F. Miller, "VRP Simulator" Apr. 1996. http: / /www.ece.orst.edu/
sllu/cfpp/vrpsim/docs/vrpsim.html

6.	 Intel Corp., i486 Microprocessor Databook (240440-001), Santa Clara, CA, April
1989.

7.	 Dileep Bhandarkar and Jason Ding, "Performance Charaterization of the Pen
tium(R) Pro Processor," Proceedings of the 3rd International Symp. on High Per
formance Computer Architecture, Feb. 1997, San Antonio, TX, pp. 288-297.

8.	 J.L. Lo, S.J. Eggers, J.S. Emer, H.M. Levy, R.L. Stamm, and D.M. Tullsen, "Con
verting Thread-Level Parallelism into Instruction-Level Parallelism via Simulta
neous Multithreading,"Transactions on Computer Systems (August, 1997).

9.	 E. Rotenberg, S. Bennett, J.E. Smith. Trace Cache: A Low Latency Approach to
High Bandwidth Instruction Fetching. Proceedings of the International Sympo
sium on Microarchitecture, pages 24-34, December 1996.

10.	 P. P. Vaidyanathan, "Multirate digital filters, filter banks, polyphase networks, and
applications: A tutorial," Proceedings of IEEE, Vol. 78, No. 1, pp. 56-93, 1990.

11.	 Todd Austin, "Simple Scalar Tools Hacker's Guide," talk given at Dept. of ECE
Oregon State Unviersity, 1996.

12.	 D.C. Burger and T. M. Austin. "The Simple Scalar Tool Set, Version 2.0," Univer
sity of Wisconsin Computer Sciences Technical Report #1342, June, 1997.

http:www.ece.orst.edu
http://www.ece.orst.edu/janikk/iscas96.ps

