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CounterDataFlow Architecture: Design and
 
Performance
 

1. Introduction
 

The current trend in microprocessors is to provide maximum speed by exploiting 

instruction level parallelism (ILP) both to hide long latency operations like memory 

accesses, and to execute multiple instructions at once. Currently the primary mechanism 

for doing this is an out-of-order superscalar processor. This solution is usually constructed 

with renaming registers, reservation stations, and reorder buffers which rely on multiple 

content addressable memories (CAMs) that tend to be slow, area intensive, and expensive. 

Such solutions also require accurate global timing and global communication between the 

various structures across the entire chip. This is likely to become problematic since recent 

technology advances provide very high clock rate logic. This will eventually result in it 

being physically impossible to send signals from one side of the die to the other in a single 

clock cycle. 

Counted low processors are able to provide a competitive alternative to the super-

scalar approach by using highly localized communication to resolve the scheduling issues 

and resolution of data dependencies. In this paper we will discuss the fundamental con

cepts behind counterflow pipelines, then briefly cover the development of counterflow 

pipelines from the first design by Sun (CFPP), to Oregon State's conversion of the archi

tecture to the virtual register processor (VRP1) and it's powerful successor, counterdata

flow (CDF). We will also discuss the present findings that suggest that CDF can be used to 

produce high performance processors with high parallelism, low inner-chip communica

tion cost and good latency hiding. 

1. Originally there were two VRP processors, VRP, and VRP+. In this paper we will be referring 
only to the latter of the designs as VRP 
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2. Previous Counterfiow Designs 

As mentioned in the abstract, there has been research in the field of counterflow 

microarchitecture since it's conception in 1994. To understand CounterDataFlow proces

sors, it is first important to understand the basic principles behind counterflow architecture 

and the early designs from Sun Microsystems and Oregon State University. 

2.1 Basic Counterfiow Principles 

The basic principle of counterflow pipelines is that there are two pipelines flowing 

in opposite directions, as shown in a block diagram of a CFPP pipeline in Fig. 1. One of 

the pipelines carries instructions up from the decode unit, while the other carries data 

down from either the register file or earlier instructions. The key concept is that as the 

instructions and data pass each other, they "look" at each other. The instruction checks to 

see if it needs the value(s) in the data pipe (read after write hazard resolution). If it does, it 

copies the piece(s) of data and continues along the pipe. The data values check the instruc

tions and mark themselves "invalid" if the instruction will update the register they will 

write to (write after write hazard resolution). Unlike other pipelines, the pipe stages do not 

perform the operations. The pipe stages merely resolve scheduling and data dependencies. 

To the sides of the pipelines are the execution units (called sidepanels) which execute the 

actual instructions. The stage that allows instructions to transition from the instruction 

pipe to a sidepanel is called the launch point for that sidepanel. The stage in which the 

instruction can transition from the sidepanel back to the instruction pipe is called the 

recovery point. 

When an instruction reaches a launch point where it can be executed, a check is 

made to see if it has all its operands. If it has all the operands, the instruction is sent into 

the sidepanel and executed. If not, it must either wait for the necessary operands to arrive 

from the data pipeline (a "last usable" sidepanel stall) or continue up the pipe if there is 

another sidepanel capable of executing the instruction further up in the pipeline. After an 
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Fig. 1. Basic CFPP Architecture 

instruction has completed execution, its result is copied into the data pipeline so that sub

sequent instructions will receive the value as soon as possible[1],[2]. 

As a matter of terminology, we refer to both instructions and data in the pipeline as 

tokens, borrowing these terms from dataflow. An instruction token carries with it an 

opcode, an identification tag of some kind, a valid bit which indicates if the instruction is a 

valid instruction, and a set of consumer and producer data tokens. The consumers are the 

data tokens that the instruction will need to execute. The producers are the data tokens that 

are the result of the instruction. In a similar way, the data tokens carry a value, an identifi

cation tag and a valid bit. Some architectures add additional bits to the token that are spe

cific to that architecture's needs. 
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2.2 Original CFPP 

The original counterflow architecture proposed by Sproull et.al.[1] put the Register 

File (RF) at the top of the pipeline and necessitated a global communication line from the 

decode unit to the RF to communicate which registers should be put into the result pipe

line to satisfy the instruction's data dependencies. Instruction tokens would remain in the 

instruction pipeline after executing to carry their results up to the register file. While some 

instructions can be executed out of order, the instruction pipe does not allow passing, so 

they are retired into the register file at the top of the pipeline in the same order they are 

issued in. 

This design has three significant problems. First, instructions requiring registers 

that had not been used before, or recently, would be forced to travel up half of the pipeline 

before meeting their operands traveling down from the register file. This problem, called 

the half-pipe problem, results in relatively high startup cost, and adds to any branch 

misprediction costs. The second problem is that instructions are forced to remain in the 

instruction pipe until they reach the top of the pipe. This combined with the "last usable" 

sidepanel rule, means that if any instruction stalls, usually every instruction following 

must stall as well. This means that even if stalls are rare, they will have a very strong 

impact on performance. Finally, in order to issue more than one instruction per cycle, 

dependencies between the instructions being issued at the same time must be made to pre

vent deadlocks. The rules to prevent deadlock are relatively extensive and depend on the 

configuration of the pipe. 

2.3 Rough Draft: VRP 

We originally concluded that there were two key aspects that needed to be 

addressed with CFPP. First, the halfpipe problem is quite significant. Second, since 

instructions remain in the pipeline, any stalls are detrimental to performance. Therefore, 

we moved the register file to the bottom of the pipeline, where instruction are issued, as 

shown in Fig. 2. This completely removes the halfpipe problem, and if there is a reorder 
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buffer (needed for precise interrupts) then instructions do not need to remain in the pipe

line after they have finished executing. 
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Fig. 2. Basic VRP Architecture 

The addition of a reorder buffer has several pleasant effects. Instructions can now 

be removed from the pipeline creating more bubbles so that the stalls that do occur won't 

propagate as far, and also gives us perfect renaming since the tags are no longer the regis

ter tags, but are converted to be ROB entry numbers for the producers of the value. A large 

disadvantage that remains in VRP is that constructing an instruction pipe wider than one 

requires that either the instructions being issued at the same time be independent and 

needing different execution units, or the pipe stages must be far more complex to support 

moving only part of a pipestage at a time. 

The main problem besides the issue width limitation stalling is that while the stalls 

in the pipeline are less common than CFPP, the data dependencies and variable-latency 

instructions shift the work to the upper section of the pipe, where stalls are more common. 
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The stalls then propagate swiftly back down the pipe and have a strong impact on perfor

mance. 
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3. The Next Step: CDF
 

The fundamental problem with the VRP processor is that the instruction pipeline is 

allowed to stall. To fix this problem, we wrapped the instruction pipeline back onto itself 

through the decode unit. This greatly simplifies the individual pipe stages, now instruc

tions don't need to stall because there is always a sidepanel capable of executing them 

`further down' the pipeline. Additionally, the need to check for dependencies between 

instructions concurrently launched is eliminated as well since there is no 'last sidepanel' 

stall to deadlock the pipeline. 

The pipeline behaves almost identically to VRP but with three important differ

ences. First, as mentioned before, there is no concept of a 'last sidepanel' so there is no 

stalling in the instruction pipe. The instructions are merely reissued back into the bottom 

of the pipe if they reach the top of the instruction pipe without being executed. Second, 

after instructions are launched into a sidepanel, they are not required to remain in the pipe. 

This is important since the slots are needed to insert new instructions into the pipeline. 

Finally, results are recovered into the result pipe, not the instruction pipe, so that lockstep-

ping the sidepanels to the pipeline is unnecessary, and variable-length execution is no 

longer a problem. 

The fact that a VRP pipeline has difficulties launching multiple instructions at once 

is surprisingly important; if you do not allow multiple instructions to be issued each clock 

cycle, your instructions per cycle (IPC) can never become greater than one. This was a sig

nificant restriction for all previous counterflow-based designs. The older designs either 

needed complex hardware to detect and prevent potential deadlocking pairs or some kind 

of VLIW support. CDF requires neither, the issues of data dependencies are completely 

resolved in the pipeline. 

In our simulations, we force all the data tokens to make at least one half complete 

trip around the data pipeline. While this seems like somewhat of a waste of resources since 

extra result pipelines will be needed, there are two compelling reasons for doing this. First, 

if we leave it to the ROB to fill in the consumers as instructions pass the ROB, then the 

ROB will be more complex, and associative searches to find the consumers will be needed 
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(recall that the tag on the incoming data token is for the producer instruction). We consider 

this to be bad, since the ROB needs to be both large and fast. If the data tokens are 

required to make at least a half circuit, then the ROB is not required to fill in values as 

instruction tokens go by. The second reason is that data dependencies actually get resolved 

faster. Because both the instruction pipeline and the data pipeline are moving in opposite 

directions, their relative speed is twice that of a pipeline versus the ROB. So forcing the 

data tokens to go through a minimum half loop resolves the data dependencies up to twice 

as fast as letting it stop in the ROB. 

This is implemented in a slightly unusual manner since all data tokens are required 

to finish their journey at the ROB. We have set up the simulation so that the data tokens 

that are recovered into the result pipe after the halfway point are marked as having not 

needing to pass the ROB, but those recovered before the halfway point are marked as 

needing to pass the ROB in order to make their half circuit. So the distance traveled for a 

token recovered in the first half of the pipe is greater than 1 length, but less than 1.5 pipe 

lengths. But a token recovered in the second half of the pipe travels greater than .5 lengths, 

but less than one length. Because recovery points usually are later in the pipe, and long 

latency instruction recover points like floating point and memory the latter timing is more 

common. 
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4. Simulations and Results 

To analyze the performance of a CDF processor (and 
Performance 

counterflow processors in general) it was necessary to con

struct a simulator. We felt that the previously existing simu

lator, VRPSim[5] was neither robust enough or well enough Detail Flexibility 

implemented to continue working with. We examined a 

number of simulators that were available at the time and Fig. 3. Austin's Triangle 

reached an interesting conclusion after conversing with Todd 

Austin. He characterized simulation design as having three 

design factors: performance, flexibility, and detail as shown in Fig. 3. To optimize for one, 

you must give up something else in one or both of the other categories[ 1 1]. Most of the 

simulators available have been optimized for either speed or detail. Very few put much 

consideration into flexibility. After creating the simulators, a number of simulations were 

run over the SPEC95 benchmarks with good results. 

4.1 The Simulator 

We decided that since we needed to simulate a family of processors, and also 

needed to make a large number of architectural tweaks and changes, we should construct a 

simulator family that was optimized for flexibility and visualization instead of simulation 

performance. The simulator family is now called architecture-blocks (aBlocks) and is 

written in Java. The goal of the aBlocks project is to provide a set of simulator objects that 

can be simply "plugged together" like Legos to simulate different processor architectures. 

At the time of writing, aBlocks is available only as a prerelease toolset. For up to date 

information about the status and availiblity of aBlocks please visit http: / /ece.orst.edu/ 

sllu/cfpp/java 

The current instruction set (ISA) is Todd Austin's Simple Scalar ISA[12] because it 

is a clean, simple ISA with good support for generating traces on multiple platforms. The 

simulators are currently trace-based, but the simulator components are written so that con

http:ece.orst.edu
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verting to an execution-based model would not be difficult. We did not write our simulator 

as part of the Simple Scalar simulator because our design goals of flexibility and visualiza

tion are not compatible with Simple Scalar. 

We are using three of the SPEC95 benchmarks as a general indicator of perfor

mance: gcc, compress and swim. We are running only the first 2 million instructions 

through our simulator. We believe that this provides a reasonably accurate indicator of 

overall performance for the core of the processor. Because we are not running very much 

of the actual program we have made some simplifications to the memory subsystem. We 

are approximating steady state behavior of the level 2 data cache and the level 1 instruc

tion cache as always containing the data requested. While this is somewhat imprecise, the 

extremely high hit rates over the SPEC95 benchmarks for a reasonably sized L2 data 

cache and L1 instruction cache[7] makes this a reasonable approximation. If we did not 

approximate this, our numbers would be heavily tainted by the compulsory misses that the 

caches would experience. 

The L1 data cache has a single cycle access time, and is a 4 way set associative 

16Kb cache with 32 bytes per line. The replacement policy is SLRU, similar to the mech

anism used in the Intel i486 [6]. The L2 cache (acting as main memory) has a constant 

pipelined access time of 10 cycles. The memory consistency model is relaxed so that 

loads can pass a limited number of stores, providing that they are accessing different loca

tions in memory. Fetching is restricted to contiguous access only in a single cycle. If a 

taken branch is encountered, then fetching stops after the taken branch and resumes on the 

next cycle. 

The branch prediction is simulated by randomly predicting incorrectly 5% of the 

time. While this is imprecise, we believe that it offers a reasonable approximation to an 

agressive speculation mechanism running in steady-state. When a misprediction occurs, 

the branch prediction unit queues up the instructions that are issued speculatively, and 

when the simulation "finds out" that the branch was wrong, there is a slight delay, and the 

queued instructions are reissued. While this is not as precise as traversing the incorrect 

branch path, we believe that it is sufficiently accurate to measure the effects of misspecula

tion pollution in the core of the processor. 
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Of course, all of these configuration choices can be modified in the simulator. For 

example, there are several prediction mechanisms and cache replacement policies. For the 

purposes of this paper, we are holding these choices constant so that comparing the archi

tectures will be easier. 

4.2 Simulation Results for CDF 

For describing the performance of the CDF processors, we have chosen to show 

five configurations that are very similar, but yet yield substantially different results. The 

number, type, and placement of the sidepanels is held constant, but we vary the width of 

the instruction and result pipes as well as the number of entries in the ROB. The first two, 

have one instruction pipe, 32 entries in the ROB, CDFO has one result pipe, CDF1 has 

two. The next two have two instruction pipes and 64 ROB entries. CDF2 has three result 

pipes and CDF3 has four. The final configuration has four instruction pipes, eight result 

pipes and 128 entries in the ROB. This final configuration (CDF4) is intended simply to 

show how scaling the width affects the performance and behavior. These values are sum

marized in Table 1 below. 

Table 1: CDF Pipe configurations 

Name Inst Pipes Result Pipes ROB Entries 

CDFO 1 1 32 

CDF1 1 2 32 

CDF2 2 3 64 

CDF3 2 4 64 

CDF4 4 8 128 

The sidepanel configuration as shown in Fig. 4 was designed to be conservative in 

the amount of hardware used. The only functional units that are replicated are the single-

cycle integer units. The pipeline is kept relatively short as well. More aggressive designs 

would include a second set of floating point units, a second or third branch execution unit, 
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several multicycle integer units, and many single-cycle integer units. The pipeline would 

probably be extended to allow for more instructions to be active in the pipeline. 
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Fig. 4. Layout of sidepanels 

While the performance of the single instruction pipelines seems to be disappoint

ing, the performance of the dual-instruction pipelines more than compensates. Below in 

Table 2 is the instructions per cycle (IPC) for each of the five models for several of the 

SPEC95 benchmarks. 

Table 2: IPC for SPEC95 

Benchmark CDFO CDF1 CDF2 CDF3 CDF4 

Compress 0.522 0.699 1.040 1.080 1.456 

gcc 0.651 0.752 1.106 1.120 1.330 

swim 0.651 0.799 1.351 1.406 , 2.191 
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Of the SPEC95 set of benchmarks we chose three that we believe are representa

tive of the entire group to show graphically the performance improvements and other fea

tures. These are compress, gcc and swim. There are two important trends to note from the 

graph showing the IPC of the processors. First, adding more pipes generally improves the 

performance significantly. This is a clear indication that neither the functional units nor the 

ROB are bottlenecks when there is one or two instruction pipes. This is due largely to the 

fact that we put very large ROBs on the simulated processors and the number of functional 

units is relatively high for a processor with a fetch bandwidth of one or two. 

2.5 

0.5 

II II 1 I I II
 
0 1 2 3 4 

Processor Number 

Fig. 5. IPC for Selected Benchmarks 

There is also a trend that swim does better than gcc and gcc does better than com

press. This is due in a large part to the data dependencies within the programs. To measure 
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these data dependancies, we wrote a small metricing program with aBlocks to measure the 

distances between data dependancies. Compress has a very tight chain of data dependen

cies. On average, instructions are dependent on the instruction 1.3 instructions in front of 

them (average RAW hazard distance). This tight data chaining is not only the worst of the 

SPEC95 set, but it means that there is not very much instruction level parallelism available 

to exploit. 

On the other end of the spectrum, swim's instructions are on average dependent on 

an instruction 13 instructions in front of them. This allows for a great deal more computa

tion to be done in parallel. As can be seen in Fig. 5, as the effective instruction window 

increases, swim is able to run more in parallel, and therefore in much fewer cycles. Also of 

note is that in gcc the average RAW hazard distance is 3, so it does not benefit as much as 

swim from the hardware additions in CDF4. Fortunately there are ways of improving per

formance in spite of tight data dependence chaining. Some of these methods, like data 

speculation and multithreading, will be discussed relative to CDF in Section 5. 

The utilization of the pipelines is one of the most important factors in counterflow 

designs. It gives an image of what is happening inside the processor, and is one of the key 

tools for identifying and removing bottlenecks by repositioning sidepanels. To keep the 

graphs simple, only processors 1,3 and 4 will be displayed (shown in dashed, dot-dashed, 

and connected), and only gcc and swim will be used. The graphs show on average how 

many slots in a pipe are being used for each stage of both the instruction pipe and data 

pipe. The launch numbers do not include instructions that were launched at that particular 

stage, but the recover numbers include recovers that occurred at that stage. 

From these graphs, several things become obvious. The upper half of the pipeline 

isn't used much for execution, but mostly as a waiting period for long-latency operations. 

Also, the profiles are similar for each width, because these graphs are dependent on the 

sidepanel placement. Also of note is the amount of wrapping taking place. Whatever is 

furthest from the ROB will be wrapped around (or has been wrapped in the case of result 

tokens). As a general rule, we have found that if you cannot achieve less than half wrap

ping, you will wrap too much material and prevent fetching from taking place, which will 

cripple performance as can be seen with CDF4 running gcc. 
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Fig. 6. Graphs of Pipeline Utilization 

The misspeculation issue is quite important since we have a relatively high cost of 

misspeculation. Fortunately misspeculation only represents adding at most an additional 

10% of invalid instructions into the processor. Even better is that unlike VRP, CDF is not 

required to execute these misspeculated instructions. If the instruction is known by the 

ROB/BPU to be invalid when it wraps by the ROB it is removed from the pipeline. 
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5. Advanced Features of CDF
 

The distributed architecture of CDF lends itself well to allowing a number of inter

esting features and modifications that can improve performance with minimal area addi

tions. In this section we will discuss some of these features but not the actual performance 

benefits as aBlocks is not yet advanced enough to support simulating these ideas. First 

we'll examine what can be done about the ROB in terms of making it a non-associative 

structure to reduce the die area and decrease access time. Second, we'll examine how mul

tithreading can be very beneficial because of the way the instruction pipeline is utilized. 

Third, we'll discuss the ability of CDF to manage data prediction in a very efficient man

ner. Next, we'll look at how complex instructions can be mapped onto this RISC style 

architecture. Finally, we'll conclude with multi-clocked CDF. 

5.1 Segmented Reorder Buffer 

Currently, out-of-order processors tend to have some kind of reorder mechanism to 

support precise interrupts. In both superscalar designs, VRP and CDF, this usually takes 

the form of content addressable memories (CAMs) to determine the data dependencies. 

Ideally, these structures should be as large as possible, as they usually determine the 

instruction window size, but being CAMs, they tend to be both expensive and slow. The 

CDF's ROB can be constructed with non-associative memory. When the instruction pipe 

width is greater than one, then the ROB can be divided into as many sections as there are 

horizontal entries in the instruction pipeline. Then, the actions taken by the ROB can be 

done exclusively by indexing and "last modified by" tags for the register file as shown in 

Fig. 7. This also helps reduce the number of read and write ports required on the ROB. 

The penalty for creating a non-associative ROB is that when a branch mispredic

tion occurs, the table containing the ROB entries for instructions writing to the RF must be 

reconstructed. While instructions can be allowed to continue to execute during this recon

struction time, no new instructions can be issued. We believe that the penalty is some

where in the neighborhood of 4-32 cycles, depending on the size of the ROB and the 
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degree of segmentation. This is acceptable if the branch prediction rate is sufficiently high, 

similar to the Intel Pentium Pro design which compensates for a high mispredict cost with 

excellent branch prediction [7]. 

5.2 Multithreading 

One of the problems facing high performance processor architects is that there is a 

limited amount of IPC available in programs. To increase the amount of parallelism avail

able, many groups have turned to hardware mulithreading to hide latency of memory and 

provide additional parallelism since the threads have very little interaction between each 

other [8]. There are a variety of ways to add mulithreading to a CDF architecture, but one 

particular way takes advantage of the properties of CDF. 

Since the instruction pipeline utilization drops off the further away one gets from 

the fetch/decode area as seen in Fig. 6, letting each thread have it's own ROB/Fetch/ 

Decode (or perhaps a multiplexed fetch/decode) spaced evenly around the pipe should 

provide excellent performance over more traditional designs. The reason is that the 

instructions that can be executed quickly (like ones based on immedates or values com

puted far in the past) will be executed by the first execution unit encountered, leaving 
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holes in the pipeline for the thread to use. Functional units close to a thread's ROB will be 

used more by that thread than the other threads. This means that while the threads still 

compete for resources in the processor, the 'prime resources' (resources close to the ROB) 

are not the same for all the threads, each has it's own set. This is very different from a 

superscalar design where all threads are constantly competing for exactly the same 

resources so there is less competition. 

I-Pipes 

D-Pipes-oc 

ROB ROB 
1 

D-Pipes
 

I-Pipes
 

Fig. 8. Diagram of a 2-thread CDF System 

The real benefit of multithreading in CDF is that more parallelism is available to 

the scheduling core. Because the threads are independent, there are no data dependencies 

between them. This means that there will be more instructions available for execution at 

any point in time. This is very beneficial, since otherwise execution units might be idle 

waiting for data dependencies to be resolved. 

The resource contention that remains could be managed more efficiently by assign

ing a priority to the instructions. For example if one thread was speculating, it might mark 

its instructions as being a lower priority than usual to allow non-speculative instructions 

(even from another thread) to be executed first. Each time a instruction makes a loop 

around the processor its priority could be increased to indicate that it should be executed 

soon since there are probably a number of other instructions waiting for it to complete. 
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One might even go so far as to have the compiler add 'hints' to the processor indicating 

which instructions are in the critical path of a computation, or have a large number of 

instructions dependent on them. 

5.3 Data Prediction 

An interesting benefit of the pipeline is that instruction reuse becomes straightfor

ward. For example, if you wanted to do value prediction, simply make the prediction at 

some point, and allow instructions with predicted operands to execute (except for stores of 

course) but not leave the pipeline. They can even put their results in the result pipeline as 

long as they are marked as speculative data. Then, when the actual value of the operand 

passes the instruction with a speculated consumer, check to see if they are the same. This 

comparison can be done right there in the pipe and the instruction can then issue a pro

ducer that is not speculative if the speculation was correct, or take the correct value of the 

consumer and get reexecuted. Deep speculation and recovery from misspeculation is sim

ple and elegant. 

Entire data dependency trees can be speculated and reexecuted multiple times 

without expensive customized hardware to recover from misprediction. It is somewhat 

similar to the way branch prediction occurs, except that we are able to reuse the instruc

tions, similar to a trace cache [9]. There is, however, a risk of overspeculation if you com

bine this technique with mulithreading or some other mechanism where the speculated 

instructions could prevent other instructions that are more likely to be useful not to be 

issued or executed. However, if you only allow data-speculated instructions to be executed 

when there is nothing else to be done in a pipelined execution unit, then all you lose is 

some of the result pipe bandwidth, a relatively inexpensive resource. 

5.4 Complex Instruction Mapping 

Even though RISC seems to have been declared the winner in the instruction set 

wars, more complex instructions keep getting added to the relatively large existing instruc
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tion sets. Sparc's V9 adds SIMD instructions to the ISA as does Intel's MMX. In general, 

these more complex instructions are either dealt with by custom hardware or by breaking 

the instruction into RISC-like microops and then executing the sequence of microops 

There are three ways to deal with instructions that can be broken down into smaller 

components in a CDF architecture. The first is simply to devote dedicated execution hard

ware in a sidepanel. This can be expensive if the instruction is complex and cannot share 

it's functionality with other instructions. The other two options rely on the characteristics 

of a CDF pipeline to operate. 

One alternative is to actually issue the micro-ops separately into the pipeline. Care

ful choice of tags can allow all the micro-ops in an instruction to share the same ROB 

entry. If there is any parallelism in the instruction itself, it can easily be exploited, and the 

execution units can be kept very simple, as all they need to execute are simple micro-ops. 

On the down side, a substantial amount of the pipe itself will be taken up by the instruc

tion's micro-ops and communication within the instruction. If there is little or no parallel

ism within the instructions, then the best that can be hoped for is that the parallelism 

between instructions will be improved by having more, smaller operations active in the 

pipeline at once. 

The other alternative to dedicated hardware is to have the instruction execute in 

multiple sidepanels. For example, a Multiply-Add would first execute the multiply in a 

multi-cycle integer unit to perform the multiplication. Then the result would be placed in 

the consumers array of the instruction and it would then be launched into an single-cycle 

integer unit to execute the add. This has the advantage of not polluting the pipe with extra 

microops, but it means that if there is any parallelism within the instruction, it cannot be 

used. 

5.5 Multi-speed Clocking 

Finally, there is the issue of ultra-high speed clocking of the pipeline. There has 

been some research into running different segments of a processor at different speeds to 

get performance gains[10]. For example, it may not be feasible to run an entire chip at the 
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technologies fastest available speed due to power or heat reasons. Also, from an architec

tural standpoint it doesn't make sense to run the fetch unit at 600Mhz if you can only pull 

in instructions from the cache at a rate of 300Mhz. But it does make sense to run the exe

cution core at 600Mhz even if the cache can only sustain 300Mhz because it usually takes 

more than one cycle to complete an instruction due to data dependencies and hazards. 

CDF designs lend themselves very well to a multi-clocked scheme because the 

execution core has only a few links to the "outside world". Also the communication within 

the pipe is all localized, so it can support very high clock speeds because there is no need 

to transmit any information in the core a significant distance between clock cycles. More

over, because the pipe stages are all the same, they can be carefully optimized for excellent 

performance. 

Consider the case where fetch/decode is running at half the speed of the CDF core 

pipeline. Every other pipeline clock, new instructions are added into the core. If the num

ber of stages in the pipeline is relatively prime to the number of cycles it takes to fetch 

(one fetch per 2 pipeline cycles and 9 pipe stages for example) then the pipestage that the 

fetched tokens will be going into will be the least recently fetched to location in the pipe, 

and thus the most probable to have places to accept the new instructions. This concept can 

also be extended to Globally Asynchronous Locally Synchronous (GALS) systems with 

localized, independent clocks. 

So now that you have seen a overview of some of the things that CDF pipelines can 

do because of their unique structure. The direction of at least part of our future research 

should be obvious, but there are some specific things that we believe are important to look 

at. 
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6. Future Research
 

The research at OSU is at the point where we believe we have shown that counter-

flow pipelines like CDF can be effectively used as general purpose processors if they are 

properly constructed. We also believe that there is a great deal of additional work that can 

be done in showing that the advanced features of CDF, as mentioned in this paper, are via

ble and provide improved performance. This would help show that CDF processors are a 

reasonable alternative to modern superscalar designs given the new constraints of higher 

clockspeeds and longer memory latencies. 

We fully intend to continue developing aBlocks not just for use in counterflow 

research but as a platform for prototyping and visualizing new processors, and better 

understanding existing processors. Some additions on the horizon include execution-based 

simulation, a 5-stage pipeline and a generic superscalar processor, along with more 

advanced bus models supporting SMP. We also intend to take advantage of the Java Beans 

API in the hopes that aBlocks will eventually develop to the point where generating or 

modifying a existing processor simulator can be done with a few mouseclicks instead of 

hours of tedious programming. 

We are also concerned with the amount of ILP currently available in modern pro

grams. The basic block size for Simple Scalar binaries is around 4-5, and the average num

ber of instructions between data-dependent instructions is around 3 for the SPEC95 

benchmarks. Research into more aggressive compiler techniques to increase available ILP 

will benefit not only CDF processors but other out-of-order processors like superscalar 

designs. Some preliminary examinations of the gcc compiler for the simplescalar ISA 

indicate that the code structure can be improved, enhancing performance. We would also 

like to explore alternative instruction sets like the Java bytecodes to see if their CISC-like 

structure would allow us to reveal more parallelism within and between instructions while 

reducing memory bandwidth. 

Finally, there is the issue of sidepanel placement. While it is impossible to achieve 

an optimum choice of sidepanels, pipewidths, and placements, careful choices can make 

the difference between poor performance and excellent performance. We have developed 
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some rules of thumb by trial and error while simulating various counterflow pipelines. 

These need to be reexamined and performance tradeoffs quantified for number, type and 

placement of sidepanels, pipe widths and reorder buffer sizes. 
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7. Conclusion
 

Our research has shown that the original counterfiow designs had fundamental lim

itations on performance for general purpose computing. We have developed solutions for 

most of these limitations and, given the current trends towards high internal clock speeds, 

high memory latencies, multithreading and value prediction, the CDF processor will be a 

viable, scalable alternative to traditional superscalar designs in the near future. The distrib

uted scheduling mechanism and localized clock and data transfers makes it ideal for ultra

high clock speed implementations. The current simulation results show that good perfor

mance with reasonable hardware can be achieved if care is taken in designing the layout of 

the sidepanels. To see the simulators yourself or take a look at a more complete set of sim

ulation data, please visit our web page at http://ece.orst.eduisllu/cfpp 

http://ece.orst.eduisllu/cfpp
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