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AN ECONOMIC ANALYSIS OF THE SHORT-RUN 
DEMAND FOR TIMELINESS WITH SPECIAL 

REFERENCE TO FARM MACHINERY PARTS 

I. INTRODUCTION 

The breakdown of farm machinery is not a new problem.    Nor 

is it a problem that is likely to go away.    Machinery breakdowns have 

been with the farmer since the very beginning of mechanization. 

An economic analysis of the repair and maintenance of farm 

machinery can take on many forms depending upon the issues ad- 

dressed.—     This study uses a microeconomic approach in construct- 

ing a model to derive and examine a hypothetical farmer's demand 

for timeliness of machinery re pair ST-' Though the problem developed 

and analyzed in this paper involves only the timing of the application 

— Two issues of the repair and maintenance situation which are 
not examined in this paper are: 

1. Determination of a maintenance policy 
2. The choice between repairing or replacing a broken 

machine 

Maintenance policies have been discussed in the literature 
for some time.    Jorgenson,   McCall and Radner (1967) provide a good 
summary of the theory in this area. 

The resolution of the choice between repair or replacement 
of a broken machine is a capital budgeting problem,   since most re- 
pairs would be expected to last longer than one production period. 

The problem of this thesis is a short-run problem,   whereas 
the two issues mentioned above are longer-run in nature. 

2/ — The timeliness referred to is the timeliness of the repair 
after a breakdown has occurred. 



of the repair input to the production process,   it is believed that the 

same general approach can be used to exanaine the short-run timing 

of the application of other inputs. 

When a farmer has a breakdown during a production period, 

there is an interruption in the production process.    The interruption 

3/ 
lasts until the equipment is repaired or replaced.—     The interruption 

itself is a short-run phenomenon since it affects only the inputs and 

output of the current production period.    The analysis of the interrup- 

tion would likewise be short-run. 

Since only the interruption is examined,   there is no need to be 

concerned about the particular part which has failed.    The effect of 

the interruption is the same no matter what particular part failed,   and 

it will continue until that part is repaired. 

This thesis is an attempt to develop a theoretical model which 

can be used to examine the short-run demand for the timeliness of 

farm machinery repairs.    The following is an outline of the remaining 

chapters: 

3/ —   Replacement may include the rental of equipment services. 
For the remainder of this thesis it will be assumed that the farmer 
chooses to repair the equipment.    This assumption is made in order 
to focus the analysis on the short-run interruption and not on the 
long-run choice of whether to repair or replace. 



II   Description of the model 

This chapter is devoted to the assumptions and the 

logical development necessary to derive a demand curve 

for the timeliness of machinery repairs. 

III Analytical Examination of the Model 

The conditions necessary for a negatively sloped 

demand curve are examined as its parameters are 

varied. 

IV Empirical Analyses 

Attempts to empiricize the model are discussed. 

V   Summary and Suggested Model Extensions 



II.    DEVELOPMENT OF THE MODEL 

Derivation of an Input Demand Curve 

An input demand curve is frequently referred to as a derived 

demand curve.    This is because the input demand is derived from 

(a) the demand for output faced by the firm and (b) the firm's produc- 

tion function on the assumption of profit maximization. 

For the case of a perfectly competitive firm producing one out- 

put with one variable input,   the demand curve for the input can be 

derived in the following manner! 

q is the quantity of output 
x is the quantity of the variable input 
p is the price of the output 
r is the price of the input 

q = f(x) is the production function 

The profit function for this firm is: 

TT    =   p f(x) - rx (2.1) 

The profit maximizing quantity of    x     may be calculated by setting 

dir/dx = 0     and solving for     x     (this assumes that the second-order 

condition for maximization is met,)- 



dir /dx   =   pfHx) - r 

du /dx   =   0     ,    for maximization 

r    =   pf'(x) (2.2) 

f'(x) is the marginal physical product of    x 

Equation(2.2)describes the firm's demand relationship for the 

•       * 4/ 
input,      x.— 

Problems with Using Traditional Production Theory 
to Examine the Timing of Repairs 

Carlson's  "Mono-periodic production" model provides a useful 

way of summarizing traditional production theory.    In his model 

The production activity starts at a given date and ends at 
another given date when the output of the production is 
sold on the market; the time interval between these two 
dates represents the period under consideration (Carlson, 
1969,   p.  4). 

The mono-periodic production function is a relationship between 

various quantities of resources used and the output those resources 

will generate.     The production function does not give all the levels of 

output possible from a given set of resources.    It gives only one level 

of output for each set of resources,   and the level of output given is 

4/ — Solving (2. 2) for     x    as a function of     r     will give the firm's 
derived demand function for the input     x. 



". . .the maximum product obtainable from the combination (of re- 

sources) at the existing state of technical knowledge" (Carlson,   1969, 

p.   14-15). 

The production function contains the implicit assumption that 

the resources are applied to the production process at the precise 

moment when they will generate maximum output.    Since the timing 

of resource application is not an explicit variable in the traditional 

production function,  the traditional production function cannot be 

directly used to examine the timing of resource application. 

Development of the Model 

Since traditional production theory is inadequate to examine the 

timing of machinery repairs,   a model will be presented which will 

allow the issues of timely machinery repairs to be examined.    It 

should be noted that the traditional production theory is not being dis- 

carded,   but only modified so that the timeliness of repair services 

will appear as an explicit input in a production function.    The model 

is constructed from the situation faced by a crop farmer who experi- 

ences an unexpected breakdown during harvest.     The model is essen- 

tially "short-run" in nature since it assumes that the decision involved 

does not (a) allow variation in variables determined prior to the har- 

vest season,   or (b) have any effect on decisions in subsequent produc- 

tion periods.     The model will allow a theoretical examination of the 



conceptualized situation. 

Assumptions 

The following assumptions are made to delimit the model and 

describe more specifically the situation under analysis. 

1. All inputs of the production process under the control of 

the farmer have been applied to the crop prior to the deci- 

sion period considered in this model except those associated 

with harvesting. 

2. The farmer produces only one crop and he sells his output 

at the end of the production period. 

3. The cost of labor for the production period has been fixed. 

4. The farmer does not anticipate any breakdowns,   and when 

he has completed the repair he does not expect any more 

breakdowns. 

5. All model variables are nonstochastic. 

The Yield Function 

The yield function relates the yield of the crop to two variables. 

The first variable is a time variable indicating dates during the har- 

vest season when harvesting could occur.    The second variable is a 

summary variable for all of the factors of production used prior to 

the harvest season and embodied in the standing crop. 



YA = y(t, Y) is the yield function 
(2.4) 

YA is the yield of the crop in bushels per acre. 

t is the continuous measure of calendar time during the 
harvest season.    The units are hours,    t = 0 occurs 
before harvesting begins and   t   increases continuously 
until the harvest season ends. 

Y is the variable summarizing all of the factors of produc- 
tion used prior to the harvest season.    These factors 
are embodied in the standing crop. 

As stated in the first assumption all of the inputs (machinery, 

fertilizer,   water,   labor,   weather during the growing season,   etc. ) 

used in growing the crop are committed and cannot be added to or sub- 

tracted from the standing crop at the beginning of the harvest season. 

Therefore,   for any given harvest season,    Y   is fixed. 

For a particular harvest season (this implies a fixed   Y),    what 

does the yield function give?    It says that if the total crop could be 

instantaneously harvested at   t.   the yield of the crop in bushels/acre 

would be    YA.[YA.  = y(t. |Y)].    However,   the total crop cannot be har- 

vested instantaneously.    Therefore,   the factors affecting the harvest- 

ing rate will need to be examined.    This will be done when the har- 

vesting function is examined.    The following notes should be kept in 

mind about the yield function: 

1.     The yield function is constructed on the assumption of nor- 
5/ mal weather—    during the harvest season. 

5/ 
— Normal weather is the average weather experience of several 

years. 



s 

2.    For the purposes of this model Y acts only as a shift 

variable,   shifting the relationship between YA and   t. 

( 

The Harvesting Function 

The harvesting function measures the capacity of the harvesting 

equipment in terms of the number of acres harvested per hour. 

C =   0        is the harvesting function (A. S. A. E. ,   1963,   p.   277) 

(2.5) 

C is the instantaneous rate of harvest in acres per hour. 

S  is the instantaneous rate of speed of the harvesting machine. 

6/ 
E is the field efficiency-   of the harvesting equipment in percent. 

W is the width of the harvesting machine in feet. 

The capacity of the harvesting equipment increases as any of the three 

variables--S,   W,  or E--increase. 

Once the harvest season starts it is assumed that the farmer 

— "Field efficiency includes the effects of overlap (failure to 
utilize full rated width of machine) and of time lost in the field as a 
result of: 

Turning and idle travel at ends 
Clogging of equipment 
Adding seed or fertilizer 
Unloading harvested products 
Machine adjustments and minor repairs 
Lubrication required in addition to daily servicing 
Other minor interruptions 

It does not include time losses due to daily servicing,  traveling to or 
from the field,  or major breakdowns" (A. S. A. E. ,   1963,   p.   227). 
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cannot alter his equipment.    This means that for a given harvest 

season     S,   W,   and E   are fixed. 

It is possible to use the harvesting function to calculate how 

many hours it will take to harvest a particular farmer's crop.    If the 

substitutions   H = hours and   A = acres are made,   the harvesting 

function can be written as: 

H   "   825 (2-6) 

H   -   A825 (2   7) H   "   SWE (2-7) 

This equation will give the number of hours required to harvest 

a particular farmer's crop once his acreage and equipment capacity 

in terms of   S,   W,   and E   are substituted into the function.    It should 

be noted that   H   is independent of any interruptions which might occur 

and of when the harvest starts; i.e.,  H   is independent of   t. 

■ The Output Function 

So far this chapter has developed the yield function which,   for a 

given harvest season,   tells the yield in bushels per acre for all acres 

harvested in a particular instant of time and the harvesting function 

which tells how many acres the farmer's equipment will harvest in a 

particular instant of time.    By combining these two relationships a 

third relationship,   the output function,   can be generated. 
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SWE B    =   /(*» Y) TQTT Output function (2.8) 1825 
Harvesting function 

Yield function 

B is the instantaneous rate of output 
in bushels per hour 

Bushels        Acres Bushels 
B   =     •        =     Acre Hour Hour 

The output function is the product of the harvesting function and 

the yield function.    For a particular harvest season the output function 

is a linear transformation of the yield function.    Therefore,   in the 

short-run the shape of the output function is determined by the yield 

function. 

Relationship between the Timing of Repairs and Output 

To this point in the development of the model no mention has 

been made of when the harvesting occurs.    Equation (2. 7) gives the 

number of hours of machine operation required to harvest the crop, 

but it does not specify when during the harvest season these   H   hours 

occur.    If there are no breakdowns,   harvesting would continue uninter- 

rupted from the starting data until all H hours of machine operation 

are completed and,   thus,   the starting data would be sufficient to 

describe when the harvesting takes place.    However,   if a breakdown 

occurs additional variables are needed to describe when the harvesting 
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II takes place.—     These additional variables describe when the break- 

down occurs,   and when the equipment is repaired.    (Since this model 

is focusing on the timing of repairs,   an index of timeliness will be 

used to examine variations in when the repair is made.)    The follow- 

ing variables are used in the analysis of the harvesting operating. . 

T    is the specific value of   t,    a date,  when the harvest started 

T     is the specific value of   t,   a date,  when the breakdown 
occurred 

T     is the value of   t,   a date,  when the equipment could be re- 
paired at the minimum dollar outlay for the repair. 

T        is the variable representing dates of "speedier" repair 
service 

T   is the index of timeliness; it measures down time avoided by 
repairing at some    T    .    instead of   T   . 

The relationships between the time variables are given by the 

following equality and inequalities: 

0   <  Ts (2.9) 

Ts< TB <TS +H (2.10) 

TB<TF (2.11) 

TB<TFA<TF (2-12) 

T    =   TF-  FFA (2.13) 

0 < T    < T_ -  T (2. 14) 
F B 

Several of these relationships can be summarized in the follow- 

ing diagram: 

7/ 
~r As indicated on p.   10,  the value of   H   is unaffected by the 

occurrence or duration of any breakdown. 
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I 1 1 1 1 > 
0       TV     T T    A      T t 

S        B FA        F 

Verbally summarizing these relations: 

(2. 10)   States that the farmer's equipment will not break down 
until after he starts to use it,   and that the breakdown 
occurs before all of the crop is harvested. 

(2. 11)   States that the equipment will not be repaired until 
after it breaks down. 

(2. 12)   States that the date of "speedier" service must precede 
the date at which the equipment could have been repaired 
at minimum dollar outlay,   but it must occur after the 
equipment has broken down. 

(2. 13)   Defines an index of timeliness as the difference between 
the date the repair could be made at minimum outlay 
and the date of "speedier" repairs.    This index is the 
number of hours of down time avoided. 

(2. 14)   States that the number of hours of down time avoided 
must be between zero and the number of hours of down 
time which could be experienced. 

The only argument of the output function which varies during 

the harvest season is   t.    Since the output function gives an instan- 

taneous rate of output as a function of time,   the integral of the output 

function over an interval of time will give the bushels of crop harvested 

during that interval. 

The following integral gives the bushels of crop harvested 

prior to the breakdown. 

~TB 
Bushels of output harvested        " 
before breakdown   = „ 

TS 

J ^.lY^dt (2.15) 
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Since the timing of the repair has no effect on the quantity of output 

harvested prior to the breakdown,   this portion of the harvest season 

need not be considered when the timing of the repair is examined . 

The integral (2. 16) gives the bushels of crop harvested if the 

A825 
farmer waits until   T*       to have the repair made.  [———- -  (T„  - T„)l 

F * L SWE      v   B S/J 

represents the number of hours required to complete the harvest. 

Bushels of crop 
harvested after 
repair is made at   T    = 

^    , A825       /rn      „   . 
T    +  -  (T    -T   ) 

s-    F      SWE      v   B      S' 

J 
y(t|Y)^ dt       (2.16) 

TF 

The integral (2. 17) gives the bushels of crop harvested if the 

farmer has the equipment repaired at the "speedier" date    T       . 

, A825     /m      „,   . T       +  - (T    -T   ) 
S     FA    SWE      v   B     S' 

Bushels of crop 
harvested after I y(t | Y) ^~ dt       (2.17) 

y T 
FA 

repair is made at   T^ . 
^ FA 

The difference between these two integrals gives the increase 

in the total product attributable to speedier repairs. 

, A825     .m      m   . m    , A825       /PO      m   . 
T       +  - (T    -T   ) T    +  - (T    -T   ) 

x-     FA     SWE     V   B      S7 s-     F     SWE        V   B      S; 

rtt|Y^fdt 

T y   T 
FA F 

J 
y(t|Y)~fdt (2.18) 

Z is bushels of output 
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By substituting   T        = T     - T   the above equation can be rewritten as: 

z--= 825 

TF-T / 

T      .A825 (T        T    , 
/-     F   SWE        V   B      S' 

(2.19) 

Z   then can be written in general functional notation as: 

Z = z(T, S, W, E, Y, A, T, T   , T_) 
S      B      F 

(2.20) 

This function describes the output associated with various levels 

of timely repairs,   T .    In the short-run situation it has been argued ■ 

that all of the variables in the function except   T   are fixed.     There- 

fore,   it is argued that the above function is a short-run production 

function with the timing of repairs as an input,   and the increase in 

bushels of crop harvested as the output. 

Derivation of a Demand Curve for Timely Repairs 

Earlier in this chapter the derivation of an input demand rela- 

tionship was presented.     That derivation depended upon the price of 

the input,   the price of the output and the marginal physical product 

of the input.    Since equation (2.20) is a production function with only 

one variable input,  T ,   the same approach can be used to derive the 

demand relationship for   T .    The marginal physical product of   T   is 
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9Z/3T , and using the same definitions of r and p the profit maxi- 

mizing condition becomes 

r = paZ/9T (2.21) 

Thus equation (2. 21) describes the firm's short-run demand relation- 

ship for the input:   timely repairs. 
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III.    ANALYTICAL EXAMINATION OF THE MODEL 

This chapter deals with two main topics.    First,   the nature of 

the yield function is examined and second,   the demand curve for 

timely repairs is examined as parameters of the demand curve are 

changed. 

Nature of the Yield Function 

If the price of the input,    T ,     is nonnegative,   the economically 

interesting situation occurs when the use of the input,   T ,   produces a 

8/ positive quantity of output,     Z.—     Positive    Z   values will be given 

by the production function (2. 20) if   3Z/3T   is greater than zero when 

8/ 
—     The possible values of   Z    which can be given by (2.20)maybe 

separated into three groups.    The first two groups are trivial from 
an economic point of view,   if   T   has a nonnegative price.    The third 
group is extensively examined in the body of the thesis.    The groups 
are: 

1. Values of   Z    less than zero 
2. Values of   Z   equal to zero 
3. Values of   Z    greater than zero 

The production function (2.20) gives the quantity of output,     Z ,     gen- 
erated by various quantities of the input,   T .    There is no economic 
reason to use a quantity of   T   which yields no output,   or actually de- 
creases output.    A profit-maximizing farmer would only consider 
using quantities of  T   which yielded   Z    values in group #3. 
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...       9/ T   is positive.— 

|f = rttVniYjffS.^ITp-T+H-l^-T   )]..|Y)f^ (3.1) 

For   8Z/9T   to be greater than zero the following inequality must 

hold. 

y([TF-T]|Y)> y([TF-T+H-(TB-Ts)]|Y] (3.2) 

10/ 
Since    Y   is constant in this analysis—     the following substitution 

will be made 

y1(t) = y(t|Y) (3.3) 

where    y  (t)   is the general form of a yield function for a specific 

value of   Y.    Writing   (3.2) in this new fortn and substituting   T 

for   [T_-T] (from (2. 13)) yields 

yi<TFA)>yl{TFA+H-{TB-TS)) (3-4) 

as the condition to be  satisfied if   9Z/9T   is to be greater than zero. 

This must be true for all possible values of   T_A    and   [T^, . + H - r FA L   FA 

(TB-TS)]   given by (2.9 - 2.14). 

A condition such as (3.4) leads to an examination of the possible 

forms the yield function might have.    To examine this question all 

9/ —' From (2. 19) it can be seen that when   T   equals zero,   Z    will 
also be zero. This means that the production function (2.20) comes 
out of the (T, Z) origin. Thus if 9Z/9T>0 the values of Z will al- 
ways be greater than zero for positive   T. 

—   See Chapter II for determinates of   Y. 
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continuous,   differentiable functions with 

y  (t) > 0        for   t > 0 (3. 5) 

will be separated into six mutually exclusive groups.    Each group will 

be examined to see if it satisfies condition (3.4).    The groups are: 

1. Functions which are monotonically increasing 

2. Functions which are monotonically decreasing 

3. Functions which are constants 

4. Functions with one local maximum and no local minima 

5. Functions with one local minimum and no local maxima 

6. Functions with one or more local maxima and one or more 

local minima 

Group 1 

Monotonically increasing functions do not satisfy condition (3.4). 

For any function,    g(x),     to be monotonically increasing,   it is neces- 

sary that 

g(x) <   g(x + k) where    k>0 (3.6) 

Since    [H - (T   =TC)]   is greater than zero (from (2. 10)) any mono- 

tonically increasing yield function would violate (3. 4). 

Group 2 

Monotonically decreasing yield functions satisfy (3.4).    For 
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Figures depicting examples of each of the six 
groups of yield functions 

y^t) 

Figure 3. 1. Monotonically increasing Figure 3. 2, Monotonically decreasing 

y^t) y^t) 

Figure 3. 3.    Constant Figure 3. 4.   One local maximum, 
no local minima 

Vjtt) y^t) 

Figure 3. 5.   One local minimum, 
no local maxima 

Figure 3. 6.   One or more local minima and 
one or more local maxima 
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any function, g(x), to be monotonically decreasing, it is necessary 

that 

g(x)  > g(x + k) where    k>0 (3.7) 

By inspection it can be concluded that any function satisfying (3. 7) will 

also satisfy (3. 4). 

Group 3 

Functions which are constants do not satisfy (3.4).    For any 

function,     g(x),    to be equal to a constant,   it is necessary that 

g(x)   =   g(x + k) (3.8) 

By inspection it can be concluded that any function satisfying (3. 8) 

will not satisfy (3.4). 

Group 4 

Functions with one local maximum and no local minima satisfy 

conditions (3.4) provided the following constraint is imposed: 

*    11/ 
Ts>   Ts    -^ (3.10) 

—'    To   is the variable constrained since it is the only short- 
run variable in (3.4) which can be directly controlled by the farmer. 
The other variable under the farmer's direct control is   H,   but its 
value is the result of long-run harvesting equipment decisions.    Since 
this analysis is focusing on the  short-run,     H   is assumed constant 
for any particular farmer. 
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The following argument is presented to demonstrate the neces- 

sity and logic of the constraint.    Functions of Group 4 have both a 

rising and a falling portion.    This leads to three possible relation- 

ships between   T„A    and FT^. + H - (T   -T)!   which will be examined. K FA L   FA B      S J 

Case I 

T        and   [T        + H - (T    -T   )] both occur on the rising por- 

tion of the function.    This case implies the following inequality: 

The inequality in (3. 11) is in the opposite direction of the 

inequality in (3. 4).    Therefore,   when   T and   [T        +H- 

(T   -T   )]   both occur on the rising portion of the function, 
B      S 

condition (3.4) is violated. 

Case II 

T
TTA    

and   [T^A
4

" 
H " (TTi-To)]   both occlir on the falling por- FA FA B      S 

tion of the function.    This case imples the following inequality: 

71(TFA)>yi(TFA+H.(TB-Ts)) (3.12) 

i.e.,   condition (3.4) is satisfied.    In fact,   the same arguments 

and conclusions which apply to monotonically decreasing func- 

tions apply to this case. 
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Case III 

T is on the rising portion of the function and   [T        + H - 

(T    =T_)1   is on the falling portion. 
B      S 

Even though   T and   [T        + H - (T   -T   )]   are on opposite 

sides of the local maximum, -it is possible for either   (3. 11) or (3. 12) 

to hold; i. e. ,   (3. 4) may or may not hold.    Which one is true depends 

upon the value of the arguments.    The critical values for determining 

whether (3.4) always holds are the minimum values of   T and 

[T        + H - (T   -T  )] .    If (3. 4) holds at some minimum values of the 

arguments,   (3. 4) will always hold for all values in excess of those 

minimums.    From (2. 10) and (2. 12) the following lower limits can 

be obtained for the arguments 

T >   T (3. 13) ±FA S \S'L3) 

[TFA + H - (TB - Tg)] > Ts + H (3.14) 

Combining the information in (3. 13) and (3. 14) with (3. 4),   equation 

(3. 1 5) is deduced. 

W    =   V^Tg+H) (3.15) 

* 
Let   T     be the value of   T     which satisfies (3. 15).    Equation (3. 15) 

o o 
12/ 

establishes a lower limit on   T   —'    which if satisfied will always 
o 

12/ «. J —' Ibid. 
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* 
make (3. 4) hold.    If   Tc   is greater than or equal to   T    (3. 10), 

condition (3. 4) will always hold for this case. 

From the three cases examined under Group 4,   it can be con- 

cluded that if (3. 10) holds,   condition (3. 4) will always be satisfied. 

The constraint (3. 10) rules out the occurrence of Case I and includes 

all of Case II and the portion of Case III which always satisfies (3. 4). 

Group 5 

Functions with one local minimum and  one local maximum do 

not always satisfy (3.4).    This can be demonstrated by the following 

example.    If   T„A    occurs at the local minimum then   rT„A   + H - 
^ FA L   FA 

(T     - T   )]   must occur on the rising portion of the function.    This 
B S 

violates (3.4) since 

^FA^   yi<TtA+H'{TB-TS)) 

Group 6 

Functions with one or more local maxima and one or more local 

minima do not always satisfy (3.4).    Since conditions (2.9 - 2. 14) 

provide no upper bound on   [T        + H - (T     - T   )],    there is no rea- 

son why the following could not occur. 

Y1WFA)<   VTFA + H - (TB " V 

Thus,   this group does not satisfy (3.4). 
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From the examination of the six groups,   two groups emerge as 

always satisfying (3.4).    They are: 

Functions which are monotonically decreasing 
(Group 2) 

Constrained functions with one local maximum 
and no local minima.   (Group 4) 

For analytical purposes,   constrained functions with one local maxi- 

mum and no local minima can be viewed as summarizing the other 

group,   since Case II of Group 4 is similar to Group 2.    Therefore, 

throughout the remainder of this chapter the constrained functions 

with one local maximum and no local minima will be used. 

A Profit-Maximizing Farmer's Choice of Tg "When Facing 
a Yield Function with One Local Maximum 

and No Local Minima 

A profit-maximizing farmer selling output    and buying inputs in 

competitive markets,   who anticipates no breakdowns,   will start his 

harvest on the date which will give him maximum output.    The date 

the farmer starts harvesting is   T  ,    and harvesting will end,   if 
o 

there are no breakdowns,   on [T    + H].   The integral of the output func- 
o 

tion between   Tc   and  [Tc + H] gives the bushels of output harvested. 

y(t|Y)f^pdt (3.16) 
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OP is the total bushels of output harvested between T    and [T   +H] 

The optimal starting date for the farmer must satisfy both the 

first and second order conditions for output maximization.    These 

conditions are,   respectively: 

9 OP/8Ts    =   0 (3. 17) 

2 2 
8   OP/3T    <   0 (3. 18) 

It should be noted that,   as the starting date of harvest,     T   ,   varies, 
o 

so does the output,   but the date which maximizes the output is the 

starting date the profit-maximizing farmer chooses. 

80P=   y(T q+H|Y,f^-,(T   .T)|2= ,3.,,, 
9T 'v   S '    ' 825       'l   S1    '825 

Setting this derivative equal to zero yields 

WVH|Y,f£   =   ,(TS|V,^ 

y(Ts+H|Y) = y(Ts|Y) (3.20) 

And the second order condition requires that 

^     y.(T.H|Y,^|-yMT S|Y,^<0 (3.», 9T '   v   S        '    '   825      '   v   S1    ' 825 

i. e. ,   that 
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SWE 
82 5 [y' (T   +H|Y) - y< (T   |Y)]  <   0 (3.22) 

The first order condition (3.20) states that the optimal   T      Ls 
o 

chosen such that the ordinate values at   T      and   [T    + H]   are equal. 

In order to satisfy the second order condition the slope of the yield 

function must be greater at the critical   T„   than at the critical 6 S 

[Tc + H}    For the yield functions under consideration,   those with one 

local maximum and no local minima,   the second order condition is 

always satisfied,   since, when the first order condition is satisfied, 

the slope at the critical   T      is always positive and the slope at the 

critical   [T    + H]   is always negative. 

It should be noted that the profit-maximizing value of   T      cal- 

culated in (3.20) is the same as the level of   T      calculated in (3. 15). 
o 

Thus,   a profit-maximizing farmer who faces a yield function with one 

local maximum and no local minima will always have a positively- 

sloped production function for   Z    with respect to the input,   timely 

repairs; i.e.,    3Z/3T > 0,    and the constraint (3.10) car} be viewed 

as coming from the profit maximizing assumption.    This result 

means the constraint (3. 10) can be derived from the assumptions 

given in Chapter II.    Thus,   (3. 10) is not just a side condition imposed 

so that the model " would work" . 
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The Demand Curve for a Limited-Quantity Input 

A firm's input demand curve relates all possible prices of an 

input to the quantity of that input demanded by the firm at those par- 

ticular prices.    For a perfectly competitive,   profit-maximizing firm 

using only one variable input,   the (short-run) demand curve for that 

input can be represented by the curve AB in Figure  3. 7 for prices 

between   O   and   C.    For prices above    C   the demand curve is identi- 

cal to the vertical axis.    The quantity of input used is dependent upon 

the price of the input,   the production function,   and the product price. 

However,   what does the demand curve look like when there is 

some maximum quantity of the input available to the firm?    The Con- 

strained Input Demand Curve (hereafter CIDC) may differ from the 

traditional input demand curve described above.    Three cases will be 

used to examine the effect of an input constraint on the demand curve. 

The cases are defined by the constraint's location in the three stages 

of production (Ferguson,   1966,   p.   122-123). 

Case I 

The input constraint occurs in stage I (for stage I the domain 

of the variable input lies between zero and the point at which 

13/ 
VAP—     curve is a maximum; i.e. , O to J    in Figure  3. 7). 

13/ —   VAP stands for value of the average product; i.e. ,   product 
price times average physical product. 
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Using a specific value for the constraint,     G,     (this implies 

that the firm may use any quantity of the input between   O   and 

G,  but the firm cannot use more than   G)   the CIDC becomes: 

a) for  prices between   O and   I,   the quantity of input used 

by the firm is described by the curve   GH,  , 

b) for prices above I the demand curve is identical to the 

vertical axis. 

Case II 

The input constraint occurs in stage II (for stage II the domain 

of the variable input lies between the point at which the VAP 

14/ curve is a maximum and the point where the VMP—'    curve is 

zero; i.e.,   J to   B in Figure 3.7).   Using a specific value for 

the constraint,   E,   (this implies the firm may use any quantity 

of the input between O and E,  but the firm cannot use more 

than E) the CIDC becomes: 

a) for prices between   O and   F,   the quantity used by the 

firm is described by the curve ED, 

b) for prices between   F and   C,   the quantity used by the 

firm is described by the curve DA, 

c) for prices above    C   the demand curve is identical to the 

vertical axis. 

14/ 
—   VMP stands for value of the marginal product; i.e.,   product 

price times marginal physical product. 
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Figure 3. 7.   VAP and VMP curves 
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Case III 

The input constraint occurs in stage III (for stage III the do- 

main of the variable input lies to the right of the point at which 

the VMP curve is zero; i.e.,   to the right of B in Figure  3.7). 

In this case the constraint does not affect the traditional demand 

curve since the constraint is greater than the maximum quan- 

tity of input the firm would use at nonnegative prices. 

It can be seen from the examination of the CIDC that the natare 

of the curve depends upon the level of the input constraint.    When the 

quantity of input is unconstrained,   or the constraint occurs in stage 

III,   the CIDC becomes the traditional input demand curve. 

Microeconomic theory texts usually argue that a profit maxi- 

mizing producer will never operate in stage I of the production func- 

tion (for an example,   see Ferguson,   1966,   p.   122).    However,   the 

input   T   provides a contradiction to this argument.    T   is different 

than most inputs used by the firm since there is an absolute maximum 

quantity of   T   available to the firm.    This maximum quantity of   T   is 

given by (2. 14).    There is no particular reason why the maximum 

quantity of   T   given by (2. 14) should occur in any particular one of 

the three stages of production.    Thus,   it is possible that the maximum 

quantity of   T   will occur in stage I,   and,   depending upon the price of 

T,   the profit maximizing firm will choose to use either none of the 
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input or the maximum quantity of it. By using the CIDC, the demand 

for the input   T   can be examined. 

There are four characteristics of the CIDC which will be help- 

ful in determining how the CIDC shifts.    They are: 

1. Position of the constraint 

2. Position of the maximum of the VAP curve 

3. Height of the VAP curve 

4. Height of the VMP curve 

These are the same characteristics used to define and describe the 

CIDC in the three preceding cases. 

Shifts in the CIDC for   T 

This section is devoted to an analytical examination of various 

determinants of the CIDC (demand) for   T.    The ultimate purpose of 

this examination is the generation of testable hypotheses. 

The determinants of the CIDC for   T   are the variables of the 

VAP and VMP curves.    To this point these variables have been held 

constant in deriving the CIDC for   T.    Now,   some of the variables and 

relationships between variables will be allowed to change so that their 

effect on the CIDC for   T   can be examined.    To derive and describe 

what happens to the CIDC for   T   the four characteristics of the CIDC 

outlined above will be used. 
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In order to simplify the derivations and exposition in this sec- 

tion,   a specific functional form of the yield function will be used.    The 

yield function chosen is 

y.(t) = te^ "a        a> 1 (3.23) 

a is the parameter for this family of functions 

This particular function was chosen because it satisfies the require- 

ments of having one local maximum and no local minima and it is 

relatively easy to integrate.    Figure  3. 8 is a graph of (3.23).   This 

function begins at the origin,   reaches a maximum at   a,    has a point 

of inflection at   2a ,    and is asymptotic to the   t   axis. 

Though the results of this section are deduced from a particular 

functional form,   it is believed that they can be generalized to other 

yield functions with one local maximum and no local minima.    On 

substituting the yield function (3. 23) into (2. 19) and on performing 

the integration operation,   the production function for   Z   becomes 

TF-T+H-(TB-TS) TF-T 

SWE a a Z=825~'t"ae " (a+TF-T+H-(TB-Ts))+ae    "     (a+Tp-T) 

T
F

+H-(TB-TS) T^ 

+ ae "a (a+TF+HMTB-Ts))-ae °a (a+TF)]        (3.24) 

From (3.24) the value of the marginal product and value of the average 

product curves for   T   can be calculated.    Denoting the price of the 
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Figure 3. 8.    Yield function used in analysis 
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output by   P,    the value of the marginal product for   T   is 

VMP^ 

TF-T+H-(TB-TS) T
F-T~1 

■(TF-T+H-(TB-Ts))e ~a +(TF-T)e     "a 

(3.25) 

The value of the average product of   T   is 

T    -T+H-(T    -T   ) 
F v   B      S' 

P SWE =a VAP =T  Wj-" (a+VT+H-(TB-Ts) + 

TF-t TF+H-(TB-TS) 

ae    "a    (a+TF-T)+ae "a (a+TF+H-(TB-Ts)) 

-   ae°a   (a+TF)] (3.26) 

Equations (3.25) and (3. 26) are basic to the analysis of this 

section but,   because of their complexity,   only the results of the analy- 

15/ 
sis will be included in the text.—' 

16/ 
Figure 3. 9 presents  " standard"   VAP and VMP curves.' 

Figures 3. 10 to 3. 1 3 use comparisons with the standard as a way of 

graphically presenting many of the results of this section.    It should 

be noted that the graphs are merely a helpful tool in understanding the 

economic relationships. 

15/ 
—'   The more difficult derivations are outlined in the Appendix. 

—'    Specific parameter values of the output function were used 
to generate the " standard"   curves. 
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Figure 3. 9.   Standard VAP and VMP curves 
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What Happens to the CIDC for   T   as the Price 
of fehe Output Increases ? 

An increase in the price of the output has no effect on either the 

position of the constraint or the position where the VAP curve reaches 

a maximum (i.e.,   the value of   T).    But an increase in the price of 

the  output causes the height of both the VAP and VMP curves to in- 

crease. 

These results are presented in Figure  3. 10.    The CIDC before 

the increase in price is given by   cbq   (for prices above   c   none of 

the input   T   will be used).    After the increase in price the CIDC is 

feq   (for prices above   f   none of the input   T   will be used).    Since it 

is possible for a farmer to be constrained to operate in stage I,   the 

curve   nmh   shows the effects of a price increase on a farmer in 

stage I.    Before the price increase the farmer would purchase the 

quantity   oh   at any price between   h   and   m.    For prices higher than 

m   he would purchase no   T.    With the increase in price the farmer 

will now buy the quantity   oh   at any price between   h   and   n,     and he 

will purchase no   T   at prices greater than   n. 

Except for those situations where he uses the same quantity 

(i.e.,   either zero or that dictated by the constraint) the farmer (other 

things equal) will purchase a greater quantity of the input   T   at every 

price of   T   when the price of the output increases. 
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Figure 3.10.   Standard VAP and VMP curves; price increase VMP and VAP ciuves. 
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What Happens to the CIDC for   T   as the Acreage 
of the Crop Increases? 

It is known from (3. 20) and (2. 7) that the profit-maximizing 

farmer will change his starting date as his acreage changes.    In order 

to examine how an increase in acreage affects a profit-maximizing 

farmer's CIDC for   T ,    it will be necessary first to examine the 

>!< 
effects of a change in acreage on the optimal starting date,    T    . 

o 

Equation (2.7) reveals that as   A   increases,     H   increases.    As   H 

>!< 
increases the   T     calculated from (3.20) will decrease.    Thus,   as 

o 
* 

acreage increases the optimal starting date, T      ,    becomes smaller 

(the farmer starts harvest earlier in the  season).    Since acreage 

does affect   T    ,    this analysis will require that   Tc (the  starting 

* 
date of harvest) always equals T      (the optimal starting date). 

The effect of   A (acreage) on the four characteristics of the 

17/ 
CIDC are examined below:—' 

1.    Position of the constraint 

The position of the constraint is determined by the maxi- 

mum possible   T.    The maximum   T   is given by   (T     - T   ). 

Since the change in acreage does not affect   T_   or   T^.     the 
• F B 

constraint remains the same. 

17/ —    The more difficult derivations for the section are outlined 
in the Appendix,   equations (A. 18 to A. 27). 
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2. Position of the maximum VAP 

* 
The position of the maximum VAPj   given that   T    = T    , 

always shifts to the right as acreage increases. 

3. Height of the VAP curve 

The change in the height of the VAP curve at any particular 

9 VAP 
T   will be given by „ * .    This derivative is always 

X     = T 
S        S 

aA 

positive for positive values of   T.    Thus,   as acreage increases, 

* 
given   T    = T    ,   the VAP curve shifts up at every positive value 

of   T . 

4„    Height of the VMP curve 

The change in the height of the VMP curve at any particular 

aVMP T   will be given by „ *   .    This derivative is always 
T0 = T^ y 

S S 
9A 

positive (except at   H = o   when the derivative will be zero). 

Thus,   as acreage increases,   given that   T    = T    ,   the VMP 

curve shifts up at every value of   T . 

These results are presented graphically in Figure  3. 11.    The 

CIDC before the increase in acreage is given by   cbq   (for prices 

above    c   none of the input,    T ,     will be used).    After the increase 

in acreage the CIDC is   feq   (for prices above   f   none of the input,    T, 

will be used.    Since it is possible for a farmer to be constrained to 

operate in stage I,   the curve   nmh    shows the effect of a price in- 

crease on a farmer in stage I.    Before the price increase the farmer 

would purchase the quantity   oh   at any price between   h   and   m.   For 
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Figure 3.11.   Standard VMP and VAP curves; acreage increase VAP and VMP curves. 
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prices higher than   m   he would purchase no   T.    With an increase 

in acreage the farmer will now buy the quantity    oh    at any price be- 

tween   h   and   n,    and he will purchase no   T   at prices greater than 

n. 

For two farmers who are in identical circumstances except for 

their acreage,   the farmer with the larger acreage will purchase a 

greater quantity of the input   T   at every price of   T   than the farmer 

with the smaller acreage.    The only exception to this occurs when 

both farmers use the same quantity of   T(i. e. ,   either zero of that 

dictated by the constraint). 

What Happens to the CIDC for   T   as 
Equipment Capacity Increases? 

The model variables   which measure equipment capacity are 

S,   W,   and E (speed,   width,   and field efficiency).    All three are posi- 

tive,   and an examination of equation (2.5) indicates that equipment 

capacity increases as any one of the three increase.    Since it does 

not matter which one of the three model variables is used to examine 

the effects of an increase in equipment capacity,    S   has been arbi- 

trarily chosen.    Equations (3.20) and (2.7) reveal that the profit- 

maximizing farmer will change his starting date as his equipment 

capacity changes.    In order to examine how an increase in equipment 

capacity affects a profit maximizing farmer's CIDC for   T,   it will 
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be necessary for the farmer's   T      to change.    The farmer's   T      will 

always be equal to the    T      appropriate to the various equipment capa- 

cities.    It should be noted that the effect of a change in equipment 

capacity is the most complex relationship which will be examined. 

None of the other variables which have been or will be examined af- 

fects the output function (2. 8).    However,     S   does affect the output 

function (as do   W   and   E),  and this complexity makes the analysis 

more difficult. 

The effects of   S   on the four characteristics of the CIDC are 

18/ 
examined below: — 

1. Position of the constraint 

The position of the constraint is determined by the maxi- 

mum possible   T.    The maximum   T   is given by   (T    -   T    ). 
F B 

Since it is assumed that a change in   S   (equipment capacity) 

does not affect   T_   or   T      the constraint remains the same. 
F B 

2. Position of maximum VAP 

* 
The position of the maximum VAP,   given   T    = T    , 

always shifts to the left as   S (equipment capacity) increases. 

3. Height of the VAP curve 

The change in the height of the VAP curve at any particular 

3VAP 
T   will be given by 

3S 
^ *   .    A positive value of 
X    = T ^ 

S        S 

18/ 
The more difficult derivations of this section are outlined 

in equations (A. 28 - A. 32) of the Appendix. 
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9VAP   I 
3S |T    = T       ,   when evaluated at a particular value of   T , 

means that an increase in   S (equipment capacity) will shift the 

VAP curve up at that point. 

aVAP 
Likewise,   if _     *     is negative,   it means that 

S ~     S 
9S 

an increase in   S (equipment capacity) will shift the VAP curve 

down at that point.    Since a change in   S (equipment capacity) 

9VAP 
T     = T 

S S 
affects the harvesting function the sign of 

9S 

may be either positive or negative. 

4.    Height of the VMP curve 

The change in the height of the VMP curve at any particular 

9 VMP 
T   will be given by 

9S 
9 VMP 

9S 

sign as did the VAP curve. 

m * .     The derivative, 
S S 

_     * ,    has the same ambiguities with respect to 
S "     S 

From the above direct analysis only two things are clear about 

how   S (equipment capacity) affects the CIDC.     The constraint remains 

unchanged and the position of the maximum VAP shifts to the left. 

Thus the analysis does not present an unambiguous conclusion about 

the CIDC as   S (equipment capacity) increases. 

In order to obtain a better understanding of these complex 

relationships,   it was decided to evaluate the expressions, 

9 VAP 
9S 

, avMP 
„, *     and ——— 
T„ = T„ 9S 

S         S 

19/ 
_     *   ,     at selected points.—' 

S S 

19/ 
—'   The yield function,   acreage,   and the price of the output were 

held constant.    For each set of   H,   T     and   K   values (since acreage 
13 
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Figure 3. 12 depicts an example of an increase in equipment? 

capacity.    The GIDC before the increase in equipment capacity is 

given by   cbq     (for prices above    c   none of the input   T   will be used). 

After an increase in equipment capacity the CIDC is     feq     (for prices 

above   f   none of the input   T   will be used).    Since it is possible for a 

farmer to be constrained in stage I,   the curve   mnh   shows the effects 

of an increase in capacity on a farmer in stage I.    Before the increase 

in equipment capacity the farmer would purchase the quantity   oh   at 

any price between   h   and   m.    For prices higher than   m   he would 

purchase no   T.    With the increase in equipment capacity the farmer 

now purchases the quantity   oh   at any price between   h   and   n,    and 

he will purchase no   T   at prices greater than   n. 

Figure 3. 12 represents only one of several possible shifts in 

the VAP and VMP curves.    The analytical results indicate that the 

11 old"   VMP curve and the " new"   VMP curves may intersect.    An 

is constant   H   and   S   vary inversely; Tp = Tg + K) the expressions 
were evaluated at 20 different values of   T   from zero to the maximum 
T   (i.e, K).    The yield function parameter used was,   a = 10.    The 
value of   H,   T   ,   and   K   used were: 

B 

H = 5, 10, 20;        T_  = 7.8, 10, 12; K=5, 10, 25 
B 

This gave 27 sets of   H, Tg,    and   K   values.    The values of   H   were 
chosen to depict a small,   medium,   and large harvesting capacity 
relative to the yield function.    The values of   Tg were chosen to cover 
as wide a range as possible and still be within the interval   Tg   to 
(Tg + H) for all the sets.    The values of   K   were chosen to depict 
short,   medium and long intervals between T       and   T    . 

B x 
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Figure 3. 12.    Standard VAP and VMP; equipment capacity increase VAP and VMP 
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intersection will occur if point   f   is above point   c.    This leads to 

ambiguities as to what happens to the CIDC. 

However,   certain tentative conclusions about the effect of an 

increase in equipment capacity of the CIDC for   T   can be drawn from 

20/ 
the combined analytic and numeric results,.—'      In general,   for two 

farmers who are in identical circumstances except for equipment 

capacity,   the farmer with the smaller equipment capacity will pur- 

chase a greater quantity of the input   T   at every price of   T   than the 

farmer with the larger equipment.    The exceptions to this general 

conclusion appear to occur over a narrow range of   T   when   T       is 
B 

less than   a ,     and   T       is greater than   a.     Over this range of   T   the 
F 

increase in the height of the output function caused by the increase in 

equipment capacity causes the area between the limits of integration 

to increase,   even though the interval between the limits has de- 

21/ creased. 

What Happens to the CIDC for   T   as the 
Date of Breakdown Varies? 

From (2. 14) it can be seen that the upper limit of   T   depends 

upon both   T       and   T    .     The maximum amount of   T   is given by 
F -D 

20/ 
— These conclusions do not have the same rigor as those de- 

rived without the aid of numeric examination. 

21/ 
— The limits of integration referred to are those used in 

equation (2. 19). 
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(T„- T^).    Since both the magnitude of   T       and the difference be- 
F       B " B 

tween   T      and   T      are involved in the CIDC for   T,    the following 

substitution is made: 

TF    =   TB +K (3.27) 

By utilizing this substitution it will be possible to examine the effects 

of varying   T       while the interval between   T       and   T_    remains 
B B F 

constant,     K. 

The effects of   T   ,   given that   (T     - T    ) is constant,   on the 
B F B 

22/ four characteristics of the CIDC are examined below:—' 

1. Position of the constraint 

The position of the constraint is determined by the maxi- 

mum possible   T.    Since the interval   (T     - T    )   is set equal 
F B 

to   K   and held constant in this analysis,   the position of the con- 

straint is independent of the value of   T    . 

2. Position of the maximum VAP 

The position of the maximum VAP,   given that [T   -T_=K1, 
F      B 

always shifts to the right as   T       increases. 
B 

3. Height of the VAP curve 

The change in the height of the VAP curve at any particular 

aVAP T   till be given by 
9TB 

T^ = T^  + K 
F B 

22/ 
—'    The derivations of this section are outlined in equation 

(A. 33) to (A. 43) in the Appendix. 



If   T^ < a(i.e.)   T^+K) then 
F  — B 

49 

9VAP 
dT 

B 
TF = TB+K 

> 0   for all   T 
(3.28) 

T     > a   then 

9VAP 
aT„ TF = TB + K 

<    0   for all   T 
(3.29) 

For those cases which satisfy neither of these conditions 

9VAP 
the sign of 

8T 
B 

T     = T    +K 
F B 

depends upon   T . 

4.    Height of the VMP curve 

The change in the height of the VMP curve at any particular 

8VMP 
T   will be given by 

8T, TF=TB+K 

If   T„ < a   (i.e   ,   T+K)   then 
F — B 

9VMP 
9T_ T     = T+K       > 0 for all T 

F B - 
(3. 30) 

T     > a       then 
B — 

9VMP 
9T T     = T+K      < 0   for all T 

F B — 
(3.31) 

For those cases which satisfy neither of these conditions the 

9VMP 
sign of 

9T 
B 

T     = T 
F B + K 

depends upon   T 

Figure 3. 13 shows an increase in   T       when   T       is greater than 
B B 

or equal to     a.     The   CIDC before the increase in T       is given by 

cbq     (for prices above    c   none of the input   T   will be used).    After 
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$/T 

Standard VAP 

Standard VMP 

T   Increase 

T   Increase 
B 

T 

Figure 3.13.   Standard VAP and VMP; T     increase VAP and VMP 
B 
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the increase in   T   ,     the CIDC is     feq     (for prices above   f   none of 

the input   T   will be used).    Since it is possible for a farmer to be 

constrained to operated in stage I,   the curve    mnh   shows the effects 

of a price increase on a farmer in stage I.    Before the increase in 

T       the farmer would purchase the quantity   oh   at any price between 
B 

h   and   m.    For prices higher than   m   he would purchase no   T.    With 

an increase in   T      the farmer will now buy the quantity   oh    at any 

price between   h   and   n,     and he will purchase no   T   at prices greater 

than   n.    A similar unambiguous relationship could be depicted when 

T_   is less than   a   but the curves for an increase in   T„    would lie 
F B 

above rather than below the standard. 

The point   a,   the position of the relative maximum of that yield 

function,   plays an important role in the conclusion about the effects 

of increasing   T    .    For two farmers who are in identical situations 
B 

(including the same interval between   T       and   T    )   except for the 
B F 

time of breakdown,   the farmer whose breakdown occurs earlier-- 

provided both of the breakdowns occur after   a--will purchase a 

greater quantity of the input   T   at every price of   T   than the farmer 

who breaks down later.     The only exception to this occurs when both 

farmers use the same quantity of   T (i.e.,   either zero or that dictated 

by a constraint). 

For two farmers who are in identical situations (including the 

same interval between   T       and   T   )   except for the time of breakdown, 
B F 
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the farmer whose breakdown occurs later — provided both   T   'soccur 
 j 

before    a --will purchase a greater quantity of the input   T   at every 

price of   T   than the farmer with the earlier breakdown.    The only 

exception to this occurs when both farmers use the same quantity of 

T   (i.e.,   either zero or that dictated by the constraint). 

What Happens to the CIDC for   T   as   T        Varies? 

This analysis is the companion of the preceding one.    Here,   the 

effects of changing the    (T     - T    ) interval will be examined,   since 

T       will be held constant and   T       will be allowed to vary. 
B F 

The effects of   T       on the four characteristics of the CIDC 
F 

•     A u  i        23/ curve are examined below:—' 

1. Position of the constraint 

The position of the constraint is determed by the maximum 

possible   T.    The maximum   T   is given by   (T     - T   ).    As   T„ 
F B F 

increase the maximum value of   T   increases.    Thus ,    the 

position of the constraint    shifts to the right. 

2. Position of the maximum VAP 

The position of the maximum VAP always shifts to the 

right as   T      increases. 
F 

2 3/ 
—'   The derivations for this section are outlined in equations 

(A. 44) to (A. 5 3). 
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3.    Height of VAP curve 

The change in the height of the VAP curve at any particular 

a-      -n u u     9VAP T   will be given by —T-=;— . 
9T

F 

If   T_ <   2a + T     - H - T0   then 

8VAP 
^^     > 0 for all   T (3. 32) 

9T
F       - 

For those cases which do not satisfy this condition the sign of 

9 VAP 
9TF 

depends upon   T. 

4.    Height of the VMP curve 

The change in the height of the VMP curve at any particular 

9VMP T   will be given by 
8TF 

If   T^ <   2a + T^ - H - T      then 

^^    >   0   for allT (3.33) 
9T

F       " 

For those cases which do not satisfy this condition the sign of 

aVMP 
9TF 

depends upon   T . 

Figure 3. 14 depicts an increase in   T   .    The   T   's   of both the 
F F 

standard and the increase are less than (2a + T     - H - T   ).    The 
B S 

standard used for this graph differs from the standard used in figures 

3. 9  to   3. 13.    It should be noted that neighter the standard or the in- 

crease have a stage I (when   T      is less than   [2a + T     - H - T   ] 

there will be no stage I).    The CIDC before the increase in   T      is 
F 
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TF   Increase VAP 

Tp Increase VMP 

T„ Standard VAP 
F 

< \— TF Standard VMP 

q q' 

Figure 3.14.   T   standard VAP and VMP;   T   increase VAP and VMP 
F F 
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given by   cbq   (for prices above    c   none of the input   T   will be used). 

After the increase in   T       the CIDC is   feq'     (for prices above   f 

none of the input   T   will be used). 

For two farmers who are in identical situations except for the 

date of   T.J-, ,     the farmer with the later   T     -- provided bothe    T   's 

are less than (2a + T     - H - T   ) --will purchase a greater quantity of 
B S 

the input   T   at every price below   f   than the farmer with the earlier 

T    .    At prices above   f,     no   T   will be used by either farmer. 
F 

A Comment on the Conditions Used 

The conditions imposed to remove ambiguities in the CIDC were 

in terms of   a,    the local maximum of the yield function,   and   2a, 

the point of inflection of the yield function.    As the variables being 

examined are allowed to change,   the limits of the integrals in equa- 

tion (2. 19) (the VAP and VMP curves come from (2. 19)) change.     The 

conditions imposed are actually conditions on the   limits of integration. 

The position of the limits of integration relative to the position of 

the local maximum and point of inflection may cause ambiguities if 

the critical points   (a   and/or   2a)   are sometimes included within 

the limits of integration and other times are excluded (the inclusion 

or exclusion depends upon how the variable being examined affects 

the limits of integration). 
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Summary of Selected Results 

The demand for the timeliness of machinery repairs was ex- 

amined by using the four characteristics of the CIDC. The results 

for selected variables are given below: 

For other things equal 

1. As the price of the output increases the demand curve 

shifts to the right. 

2. As acreage increases the demand curve shifts to the 

right. 

3. As equipment capacity increases the demand curve will 

generally shift to the left. 
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IV.    EMPIRICAL ANALYSES 

Chapters II and III were devoted to the theoretical development 

of an economic model and an examination of some of its implications. 

This chapter discusses empirical aspects of the model.    The areas 

covered are: 

1. Data on one of the key model com- 
ponents,   the yield function 

2. An attempted test of the model 

3. Other possible tests of the model 

Yield Function Data 

The number of sources for secondary data on the yield function 

24/ 
was quite limited.—      The only available study examined the yield 

functions for several grass seeds in the Willamette Valley of Oregon 

(Klein,   1967).    In this study the time-of-harvest was varied and the 

resulting effect on yield per acre was measured.    Figure 4. 1  is a 

reproduction of the yield function for orchard grass.    The yield func- 

tion for the other grass seeds had this same general form:    One local 

maximum and no local minima. 

The yield functions presented by Klein (1967) provide supportive 

evidence for the theoretically derived yield functions of Chapter III. 

24/ — Further work in the estimation of yield functions would pro- 
vide data helpful in testing the model. 
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Figure 4.1.   Yield function for orchard grass (Klein, 1967, p.  17) 
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25/ 
Attempted Test of the Model—' 

The results deduced from the model in the latter part of Chapter 

III are really predictions generated by the model.    These predictions 

form, hypotheses which can be used to test the model. 

One of the clearest hypotheses coming from the model is the one 

concerning acreage. The hypothesis is: other things equal, a farmer 

with a large acreage would be willing to pay a higher maximum price 

for any given decrease in the length of interruption caused by a break- 

26/ 
down than would a farmer with a smaller acreage.—' 

There are several alternative ways to test this hypothesis.    An 

attempt was made to use one of these alternatives.    The approach 

used will be discussed in this section.    Other possible procedures 

will be suggested in the following section. 

25/ 
—'    Though no actual test of the hypothesis resulted from this 

attempt,   discussing it may provide a better understanding of how the 
model might be tested. 

26/ —   This hypothesis reverses the traditional direction of de- 
pendence between price and the quantity.    The reversal was made in 
order to simplify the testing procedure.    From Figure 3. 11  it can 
be seen that an increase in acreage shifts both the VAP and VMP 
curves up at every (nonzero) value of   T.    This consistent upward 
shift allows an arbitrary selection of the intervals used in the ques- 
tionnaire. 
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27/ 
The approach chosen was a mail survey—    of rye grass grow- 

ers in the Willamette Valley of Oregon.    This population was chosen 

because: 

1. The number of rye grass growers was large. 

2. All of the growers face approximately the same 

yield function. 

3. There was variation in the number of acres per farm. 

4. Many of the growers used the same make and model 

of harvesting equipment. 

28/ 
The purpose of the questionnaire—    was the collection of data 

which could be used to test the hypothesis about the effect of acreage 

on the willingness to pay for timeliness (i.e.,   reduction in the inter- 

val between breakdown and repair).    The hypothesis specified " all 

other things equal."     In the questionnaire this was accomplished by 

1. Selecting a population with approximately the same 

yield function. 

2. Specifying in the hypothetical situation all of the model 

variables except acreage and equipment capacity. 

3. Stratifying the returned questionnaires on the basis of 

harvesting equipment capacity. 

27/ 
— By using a mail survey it was felt that the identification 

problem which can occur when estimating demand relationships from 
market data could be avoided. 

28/ 
    A copy of the questionnaire is in the Appendix. 
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The hypothetical situation to which the farmers were asked to respond 

was constructed to be as similar as possible to actual situations the 

29/ 
farmers might have faced.—     The hypothetical situation was indivi- 

dualized to each farmer since it required him to use his own acreage 

and equipment.    The farmer recorded his response to the situation 

by assigning dollar values to three different alternative reductions in 

the interval between breakdown and repair. 

It was planned that the questionnaire data would be stratified on 

the basis of equipment capacity and used to fit simple linear regresr- 

sion equations with acreage as the independent variable and the dollars 

extra (willingness to pay indicated by the farmer) as the dependent 

variable.    A separate regression equation would   have been needed 

for each of the three intervals between breakdown and parts delivery. 

Examining the slopes of these equations would have provided a test of 

the hypothesis.    A positive slope would have supported the hypothesis. 

A pretest of the questionnaire was conducted with a small group 

of rye grass growers.    The pretest indicated a general willingness on 

the part of these farmers to pay something extra in order to reduce 

the interval between breakdown and the delivery of parts.    Howevers 

it also revealed some weakness in the questionnaire.     Frequently the 

29/     By casting the questions in a familiar setting it was hoped 
that the farmers'   responses would indicate their actual behavior if 
faced with such a situation. 
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farmers'   responses were not in terms of the number of dollars they 

would be willing to pay but in terms such as " whatever it costs"   or 

" I would trade machines immediately."     It was also apparent that 

several of the farmers who were responding in dollars were giving 

their estimate of how much they would be charged by the dealer for 

the faster service rather than how much they would be willing to pay. 

Since there appeared to be no way of avoiding these two difficulties, 

this approach was abandoned.— 

Other Possible Tests 

If a high degree of dealer and/or manufacturer cooperation 

could be secured,   the collection of primary data would be possible. 

The cooperation which would be needed from the dealers is the offer- 

ing of various delivery dates and prices for parts which the dealer 

must order for the farmer.     The differences in the delivery dates 

would measure the reduction in the interval between breakdown and 

repair,   and the price difference would measure the premium for the 

31/ reduction.—     The data collected would include not only the choice 

30/ 
     In general the difficulty was similar to that encountered 

whenever a researcher asks a respondent to indicate how he would be- 
have under certain conditions.    There is no guarantee that the respon- 
dents' belief of how he would behave and his actual behavior will be 
the same. 

31/ 
    A careful design of the alternative premiums and reductions 

would be needed in order to generate the data necessary for a test. 
(For example if all farmers chose the same alternative and are charged 
the same premium it would be impoosible to use these data for tests. ) 
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the farmer actually makes,   but a description of his situation and the 

delivery alternatives available to him.    Though many of the difficulties 

encountered with the questionnaire could be avoided,   other problems 

present themselves.    Examples of these problems are: 

1. It may not be easy to locate a cooperative dealer or 

manufacturer . 

2. The number of observations collected from any particular 

dealer during a season may be small. 

3. There is no way of isolating the alternatives available to 

the farmer (i.e.,   he may have nondealer sources for re- 

ducing the interval such as custom-made parts,   etc. ). 

Another hypothesis suggested by the model involves the Level of 

32/ 
parts inventory maintained by machinery dealers.—     The suggested 

hypothesis is:    as the farmers'   ratio of acreage to equipment capacity 

increases in a region,   the level of parts inventory held by dealers in 

that region would be expected to increase. 

Since currently there is little data on yield functions available the 

identification of comparable regions for a cross-sectional study would 

be difficult. 

32/ 
     The interval between breakdown and repair can be reduced 

if the needed parts are in the dealer's inventory.    As the level of in- 
ventory is increased the cost of providing parts from the inventory 
would be expected to increase,   but the probability of the needed part 
being in inventory would also be increased.    Thus,   the dealers would 
be supplying a greater number of interval reductions with the larger 
inventory (i.e.,   providing a greater quantity of timeliness). 



64 

V.    SUMMARY AND SUGGESTED MODEL EXTENSIONS 

Summary 

The purpose of this thesis,   as set out in Chapter I,   was the 

development of a theoretical economic model which could be used to 

examine a farmer's short-run demand for timeliness of farm machin- 

ery repairs.    Chapter II presented such a model.    In Chapter III the 

model was extensively explored.    Particular attention was focused 

upon the effects of several variables on the demand curve for timeli- 

ness of farm machinery repairs.    Some of the testable hypotheses 

generated by the model were outlined in Chapter IV. 

Generalizing the Model to Other Inputs 

The thesis examined the timing of the application of the repair 

input.    This was done by using a production function which was de- 

rived in such a way that the timing of the input (repairs) application 

became an explicit variable of the production function.    The same 

method of analysis seems appropriate for any input which can be ap- 

plied at various times during the production period.    Examples of 

inputs whose timing (various dates) of application could be examined 

are irrigation water,   cultivation of a crop,   and planting of a crop. 
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Possible Model Extensions Suggested for Further Research 

One of the model assumptions is that the price of the output is 

constant throughout the harvesting season.    However,   for nnany crops 

there is a variation in price during the harvest season (i.e. ,   usually 

the early harvest brings a higher price).    This price variation can 

be introduced into the model by multiplying the output function by a 

time-dependent price function.    The resulting revenue function (it 

would give the instantaneous rate of total revenue in dollars per hour) 

33 / could be  used in place of the output function.-^-' 

It is also possible to modify the model to allow labor costs to 

vary during the harvest season.    This is done through the introduction 

of a cost function which describes the instantaneous rate of labor 

costs in dollars per hour as a function of   t.    By subtracting the cost 

function from the revenue function,   a net revenue function (it would 

give the instantaneous rate of [total revenue - labor costs] in dollars 

per hour) is obtained.     This net revenue function could then be used in 

34/ 
place of the output function.— 

Though the model of this thesis is nonstochastic,   it does provide 

33/ — The model of this thesis used a constant price and it was 
introduced by multiplying the average and marginal productivities by 
the price of the output.    With the above modification the price of the 
output is entered at an earlier step in the derivation. 

34/ TK-^      Ibid. 
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the basic structure from which a stochastic simulation model could 

be built.    With a simulation model it would be possible to examine 

the vaiue of timely repairs as it is affected by the degree of weather 

o 
uncertainty and the probability of breakdown.    Also,   uncertainty 

could be introduced with respect to the  repair dates. 

The simulation approach would facilitate the extension of the 

model into a longer-run analysis.    Through the simulation approach 

the effect of equipment age on the probability of breakdown and the 

resulting demand for timely repairs could be examined.    The pur- 

chase of new equipment may be one way of avoiding the need for time- 

ly machinery repairs. 

Implications for Research on the Supply Sid6 

Work on the supply side introduces difficulties not found on the 

demand side.    In this study it was possible to ignore the particular 

part which had broken.    The model was only concerned with the inter- 

ruption itself and not with its cause.    However,   to supply a reduction 

in the length of the interval,   the particular part needed must be pro- 

vidBd in a speedier way.    Since the supply side is part-specific (where- 

as the demand side is not) the analysis must include the identification 

of the needed part.    One possible method of analysis which could allow 

the building of a part-specific model is simulation. 
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QUESTIONNAIRE 

1. How many years have you, yourself,. operated a farm ?         Years 

2. How many years have you been growing grass seed?  Years 

3. How many acres of the following crops'did you (or your partnership) farm last year, and 
what were their yields ? 

CROP ACRES YIELD 

68 

Ryegrass (all varieties)    lbs/acre 

Orchardgrass    lbs/acre 

Bentgrass    lbs/acre 

Bluegrass    lbs/acre 

Fine Fescue    lbs/acre 

Tall Fescue    lbs/acre 

Other grass seeds (specify): 

Other crops (specify): 

lbs/acre 

lbs/acre 

4. During last year's harvest season, how many hours per day did you generally spend combiningZ 

 Hours/day 

5. How many acres, if any, did you custom combine last year? Acres 

6. How many acres, of the total acres listed in Question 3, did you have custom-combined 
by someone else last year? 

Acres 

7.        Some farmers whose combines have broken down during harvest have had to wait for parts. 
Have you ever had to wait for parts during harvest? 

Yes No 

8. If you ever had to wait, in what year did your most recent wait occur? 

 Year 

9. If you ever had to wait, how long was your most recent wait?      Days 

(PLEASE TURN PAGE) 
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10.      Listed below are some self-propelled combines, by make and model.   Please indicate the 
machine or machines you (or your partnership) own, by writing the model year of your 
combine(s) on the appropriate line(s).   If your make or model is not listed, please specify 
it under "OTHER". 

YEAR MODEL MAKE YEAR MODEL MAKE 

G A-C Gleaner 503 I-H 

F A-C Gleaner 403 I-H 

E A-C Gleaner 181 I-H 

C A-C Gleaner 151 I-H 

105 John Deere                _ 

John Deere                _ 

John Deere 

510 Massey-Ferguson 

95 410 Massey- Ferguson 

55 Super 92 Massey- Fe rguson 

1660 Case 

Case 

Case 

Case 

545 Oliver 

1060 542 Oliver 

1010 431 Oliver 

1000 40 Oliver 

OTHERS (Please specify): 

(PLEASE TURN PAGE) 
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IF YOU GROW RYEGRASS, PLEASE ANSWER QUESTIONS 11 THROUGH 14.   IF YOU DO 
NOT GROW RYEGRASS, SKIP QUESTIONS 11 THROUGH 14. 

11. Please put YOURSELF in the following situation, and respond as you believe you would if 
this actually occurred during harvest on YOUR FARM: 

You start combining your ryegrass on July 1.   The windrowed crop at the beginning of 
harvest has a potential yield of 1400 lbs/acre, and the price is expected to be 6. Si /lb. 
Everything proceeds well, until your biggest capacity combine unexpectedly breaks 
down on July 5.   The combine cannot be operated without the replacement of the broken 
part.   Your local dealer does not have the necessary part in stock, and will not have it 
until July 12,   None of the surrounding dealers have the part either.   It is not raining 
now, but you have no way of being certain what the weather will be. 

If it were possible for you to speed up the delivery of the part by paying something extra, 
how many dollars extra would you be willing to pay? 

(a) To get the parts by July 5,    I would be willing to pay $ extra. 

(b) To get the parts by July 7,    I would be willing to pay $ extra. 

(c) To get the parts by July 10, I would be willing to pay $ extra. 

12. Please comment on the reasoning behind your answer to Question 11: 

13.      Would your response to Question 11 be the same, or different (please check one) if the 
question had specified the particular part that had broken? 

Same Different 

14.      Please comment on the reasoning behind your answer to Question 13; 



71 

Equations (A. 1) to (A. 20) are intermediate results used in the later 
derivations. 

Calculation of   T^   for the Yield Function (3. 23) 

From (3. 15) y^Tg)   =   y^Tg+H) 

S S 

Tse"a   = (Ts + H)e 

H 

Ts   -     He^ =   T* (A.1) 

(l-e-a) 

Determination of the Position of the Maximum of the VAP Curve 

The maximum of the VAP curve occurs where VAP is equal to 

VMP (Ferguson,   1966,   p.   114). 

T/a Setting (3.25) equal to (3.26)and solving for   e 
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a 

H-(TB-TS) 

ae (a+TF+H-(TB-Ts))+a(a+TF) 

ae 

H-<TB-TS) 

-a 
(a+TF+H-(TB-Ts))+a(a+TF) + 

H-<TB-TS), 

Tl-a- T_+(a+T_+H - (T„-T^))e v F F B      S 

H-(TB-TS) 

T      1 - e (A. 2) 

A direct analytic solution of this equation for   T   is impossible.    How- 

ever,   an indirect approach can be used to determine how the position 

(i.e. ,   value of   T) at which the VAP curve is a maximum changes. 

Equation (A. 2) can be rewritten in the following form. 

T 
a -ab 

■ ab + bT + dT 
(A. 3) 

where 
H-(TB-TS) 

b    =   e (a+TF+H-(TB-Ts))-(a+TF) (A. 4) 

H-(TB-TS) 

d   =   1  - e (A. 5) 
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To examine what happens at the intersection of 

T 
a 

and 

-ab 

,   2 
-ab + bT + dT 

(A. 7)    will be examined first.    Let 

(A. 6) 

(A. 7) 

q   =   H - (TB - Tg) (A. 8) 

q*    =   H -  (TB - Tg) (A. 9) 

(A. 7) will have a local maximum at 

_£L 
T -a 

*      -b a F qe ..    . .. 
T    =2d    =   2    +T--        ^   _^ (A10) 

2(l-e'a ) 

T   is the value of   T where (A. 7) has a local maximum 

if _SL 
-a 

TF<   3a +      qe (A. 11) 

(l-e^) 

It will be assumed that   (A. 11) always holds. 

* 
Substituting     -b = 2dT    (from (A. 10)) into (A. 7) yields 
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L   =  (A. 12) 
T        T 

1   - - +——r 
2aT 

2 
T 

3L, 2aT 

«   * / 2 

BT .   _ .    T 
(A. 13) 

1-T + 
2aT I 

Equation (A. 12) will always be nonnegative since   T     is positive and 

it will be positive for   T > 0. 

Since   e is an increasing function of   T 

I T 

* 
and    L   increases as   T     increases, the point of intersection between 

T/ a * * 
e and   L    shifts to the right as   T     increases.    Thus,    T      can be 

used to determine the direction of any shifts in the position of the 

maximum VAP. 

How Does   q   Affect   T 

_a. _SL 
* 2e"a [-1  +a + e"al 

9T L a J 

(A. 15) 
9<i r    -i\ 2 

G-.-) 



75 

The sign of   9T / 9q   depends upon the sign of the numerator. 

Q / - a * 
Since the sign of   2e ^ is always positive the sign of   3T / 9q 

depends upon the term in brackets.    The term in brackets is zero 

when   q   is equal to zero.    Differentiating the term in brackets with 

respect to   q   yields 

JL 
SL 9[-l +^ +e      ] 
a, 

9^ (A. 16) 

This is always positive,   thus 

9T 
9q 

>   0 (A. 17) 

From (A. 1) and (A. 8) 

q = H- 

H 

TB- 
He""      ' 

H 

l-e-a 

(A. 18) 

9S 
9H 

* 
T • =T 

S      S 

l-e-a(l+f )  a 
(A. .19) 

Using an argument similar to that used in (A. 15-A. 17) it can 

be concluded that 

3H 
*   >   0 

T   =T     — 
S      S 

(A. 20) 
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8T 
BA 

S      S ^ 
*)( —) T^=T   M9A ' 

S     S 
(A.21) 

3H       825 
9A     SWE 

(A. 22) 

Since all terms of   (A. 20) are positive then 

9T 
BA 

*   > 0 
X   =T     — 

S     S 
(A. 23) 

This means as acreage increases the position of the maximum   VMP 

shifts to the right. 

Differentiating (3. 26) with respect to   A 'given   T   =T      yields 
* S     S 

T    +q 
F  4 T T 

*)e   "a      [(T   +q*)(ea-l)-Tea] 
avAP 
aA 

* -SWE  P    8a 
T   =T 825    T VaA s   s 

(A. 24) 

Using an argument similar to that used in (A. 15-A. 17) is can be con- 

cluded that 

aVAP 
aA * > o 

T   =T„ - 
S      S 

(A. 25) 

Differentiating (3.25) with respect to   A   given   T   =T      yields 
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9VMP 
aA 

* = pswE.ia 
T   =T0        825    X3A 

S     S 

T
F-T+q 

T        *)e       "a        [-l+r^-T+q*)] 
s   s a v   F 

(A 26) 

Since    (T   +H)   is greater than or equal to   a   and   (T   -T   -T)   is 
S F      B 

always nonnegative 

9VMP 
8A 

*   > 0 
T   =T     — 

S     S 
(A. 27) 

Effects of   S   Given   T„=T„ 
  S— S 

From (A. 17) and (A. 19) 

8T 
8S 

* = (in_)(9q 
S     S ^ 

*)( —) T   =T   M8S ; (A. 28) 

dH 
as 

A825 

S2WE 
<   0 (A. 29) 

Since one of the terms of (A. 28) is negative and the other two 

terms are nonnegative the product is negative. 

9T 
as *   <     0 

T   =T     — 
S      S 

(A. 30) 

Differentiating (3. 26) with respect to   S   given   T   =T      yields 
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9VAP 
3S T   =T 

S     S 

P _WE 
T   825 

TF-T+q 

ae (a+TF-T+q   ) 

TF-T TF+<1 

+ ae    "a     (a+T    -T) + ae    "a.. (a+T    +€[*) 
F F 

■ ae"    (a+TF) 
P SWE    9q 
T    825    (aH T   =T   )( ) 

S     SM3S y 

TF-T+q TF+<1 
- a * a * 

e (T    -T+q   )-e (T^+q   ) (A.31) 

The  sign of the first term is always positive and the sign of the second 

term is always negative.    The sign of the derivative may be either 

positive or negative. 

* 
Differentiating (3. 25) with repsect to   S   given   T   =T      yields 

* S      S 

avMP * = PWE 
95 |T   =T 825 

TF-T+q TF-T- 

■ (T    -T+q*)e     '*        +(T   -T)e     "a 

r   T
F-T+q 

PSWE    .8q 
825       ^aH * ) (— ) Ts''zTs 

TF-T+q 

+ ^TF-T+q*)e (A. 32) 
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The sign of the first term is always positive and the sign of the 

second term is always negative.    The sign of the derivative may be 

either positive or negative. 

Effects of   T       Given   T     = T    +K 

From (A. 10) substituting   T_ = T_  + K 
F B 

9T 
8T, 

(e     -  1) - ■* e 
= 1 +  ±  

T„=T„+K       2 .,£       .   2 
F     B 

^..) 

(A. 33) 

Using an argument similar to that used in (A. 15-A. 16) it can be con- 

cluded that 

ar 
9T 

* 

B 
>    0 (A. 34) 

Differentiating (3.26) with respect to   T       given that   T    =T    +K 
B F      B 

9VAP 
BT 

B 

TB+K 

_ SWE  P        -a 

VTB + K" 825 ^ 

T 

ea(-T^-K+T)+TT3 + K 
r> B 

(A. 35) 

The sign of (A. 35) depends upon the sign of the term in brackets 

since all the other terms are positive. At T = 0 the term in brackets 

is equal to zero.    Differentiating it with respect to   T 
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8[e    (-TB-K + T)+TB+K] 

9T 
iea   [-TB-K+T+a] (A. 36) 

If 

TB^   a (A. 37) 

then (A. 36) will always be negative.    If (A. 36) is always negative then 

(A. 35) will always be negative. 

9VAP 
9T„ 

<    0 
T    =T+K   — 

F      B 
(A. 38) 

if   T     > 0 

If 

T     + K < a (A. 39) 

then (A. 36) will always be positive.    If (A. 36) is always positive then 

(A. 35) will always be positive. 

9VAP > 0 
TF=TB+K   - 

(A. 40) 

if   TB+K<a 

For values of   T      and   K   which do not satisfy either (A. 37) or 
B 

(A. 39) the sign of (A. 35) depends upon the value of   T. 

It should be remembered that   a   is the point where the yield 

function reaches its local maximum. 
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Differentiating (3.25) with respect to   T       given that   T    =T_+K 

B F      B 
T    +K-T B 

avMP 
ST 

B 

_ PSWE    _!_ 
T    =T    +K       825      (a , e 

F      B 
[a-(TB+K-T)]   (A. 41) 

The sign of (A. 41) depends upon the sign of the term in brackets 

since all of the other terms are positive. 

9VMP 
9TB 

T    =T    +K    <    0 
F      B          - 

if   TB±a       ■ 

avMP 
9TB TF=TB+K -   C 

if r rB+K<a 

(A. 42) 

(A. 43) 

For values of   T      and   K   between these intervals the sign of (A. 41) 
B 

depends upon the value of   T . 

Effects of   T 

Differentiating (A. 10) with respect to   T 

ar 
aTT 2 

(A. 44) 

Differentiating (3.26) with respect to   T 

aVAP=P  SWE       -a 
aT^     T    825     e 

-T+q T 3^ 
e    "a      (T    -T+q)-ea (T^-T)-e"a (T^ + q) + T 

F 

(A. 45) 
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At   T = 0   the term in brackets is zero differentiating with 

respect to   T   yields 

e    -a    [(l-e-a)-^(T   -T)(l-e-a)+^ e"a] 
ex J? cL 

(A. 46) 

At   q = 0   the term in brackets is equal to zero.    Differentiating 

with respect to   q   and substituting for   q   yields 

-1 

^-e-a[2a-TF+T-H-Ts+TB] (A. 47) 

This will be positive for all values of   T   if 

TF<   2a+TB-H-TS 
(A. 48) 

If   T_    satisfies (A. 48) then 
F 

avAP 
8T 

>   0 (A. 49) 

Differentiating (3.25)  with respect to   T 

PSWE 
825 

TF-T 

9VMP 
8T_ 

-a 
e {l"e"a)-(i)(TF"T){1"e"a)+qe"! (A. 50) 

At   q = 0   the term in brackets is equal to z6ro.    Differentiating with 

respect to   q   and substituting for   q   yields 

a 
(A. 51) 
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This will be positive for all values of   T   if 

TF<   2a + TB - H- Ts (A. 52) 

If   T^   satisfies   (A. 52) then 

™>0 (A. 5 3) 8TF   - 


