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A model of acute glutamate- and domoate-induced toxicity was developed and 

characterized in cultured rat cerebellar granule cells (CGCs) using experimental 

conditions which preserve the voltage-dependency of NMDA receptor function. 

Glutamate, which is normally non-toxic to CGCs in physiologic media (pH 7.4), 

was shown to induce a cytotoxic response after 2 hours when the exposure 

temperature was reduced from 37° to 22°. Pharmacological characterization of 

this response demonstrated that cytotoxicity is mediated by the activation of 

NMDA receptors, while non-NMDA receptors produce a depolarizing stimulus 

that enhances release of the voltage-dependent Mg2+ blockade of NMDA receptor 

ion channels. Reduced temperature was shown to facilitate NMDA receptor 

activation by compromising the ability of CGCs to maintain normal 

electrochemical gradients during glutamate-induced ion flux. When compared to 

glutamate, the non-NMDA receptor agonist, domoate, demonstrated an acute 

cytotoxic response in CGCs that was also mediated predominantly by NMDA 

receptors. NMDA receptor activation was produced secondary to a domoate

induced release of glutamate and aspartate from CGCs; therefore, domoate 

synergistically potentiates glutamate/aspartate-mediated neurotoxicity. Domoate
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induced excitatory amino acid (EAA) release was investigated and found to occur 

almost exclusively through reversal of the high affinity Na+-coupled glutamate 

transporter and by osmoregulatory mechanisms. CGCs also responded to 

domoate-induced depolarization by releasing adenosine which suppresses 

exocytotic EAA release through A 1 receptor activation. 

The functional and pharmacological characteristics of NMDA receptors 

were characterized in 12 DIC CGCs using the channel blocking compound 

[3H]MK -801 (dizocilpine). Kinetic analysis of [3H]MK -801 binding indicated the 

possible existence of at least two NMDA receptor populations on 12 DIC CGC 

membranes, and the equilibrium competition binding of MK-801 and other 

channel blocking compounds was consistent with the presence of high and low 

affinity binding sites. The neuroprotective potencies of NMDA receptor channel 

blockers correlated significantly with their affinities for the NMDA receptor 

derived from equilibrium competition analysis of [3H]MK -801 high-affinity 

binding. Thus, whereas 12 DIC CGCs express a pharmacologically heterogeneous 

population of NMDA receptors, it is the high-affinity component of 

[31-1]MK-801 binding that mediates glutamate toxicity. 
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Development and Characterization of a Model of Glutamate and
 
Domoate Toxicity in Cultured Rat Cerebellar Granule Neurons
 

Chapter 1
 
Introduction
 

L-glutamate is the primary excitatory neurotransmitter in the mammalian central 

nervous system (CNS). It excites virtually all central neurons and is present within 

neuronal synapses at millimolar concentrations (1). In addition to its involvement in rapid 

excitatory neurotransmission, glutamate plays a central role in synaptic plasticity, an 

activity-dependent process involved in synapse formation and memory aquisition (2,3), 

and in the neurodegeneration associated with a variety of acute and chronic neurological 

disorders (4). The neurotoxic potential of glutamate was first demonstrated in 1957 by 

Lucas and Newhouse (5), who showed that retinal neurons degenerate after prolonged 

periods of glutamate exposure. Subsequent experiments by Olney (6,7) established that 

this toxicity not only applied to glutamate (and retinal neurons), but was an effect 

common to the actions of a variety of excitatory amino acids on central neurons. This 

effect, which Olney called excitotoxicity, was postulated to be the cause of neuronal loss 

that occurs in a variety of neurological diseases (6). Indeed, with the ongoing elucidation 

of glutamate receptor structure and function, the development of a large pharmacopoeia 

of glutamate receptor agonist and antagonist drugs, and the establishment of numerous in 

vivo and in vitro experimental systems: this hypothesis has gained strong support (4). 

Moreover, the evidence increasingly suggests that glutamate neurotoxicity is involved in 

slowly progressive neurodegenerative diseases such as Huntington's, Alzheimer's and 

ALS (8). 
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Because glutamate has been implicated in a number of important CNS 

pathologies, the mechanisms by which it produces neurotoxicity have been extensively 

studied. Less well characterized, however, are the mechanisms associated with the 

toxicity of a variety of exogenous excitatory amino acids. One such toxin of recent 

importance to human health is domoic acid, a tricarboxylic amino acid produced by the 

red seaweed Chondria armata that is well known in the Japanese pharmacopoeia for its 

anthelmintic properties (9) (figure 1.1). In November/December, 1987. domoate was the 

agent responsible for an unusual intoxication, called amnesic shellfish poisoning (ASP). 

among people who had eaten mussels (Mitilus edulis) grown commercially off Prince 

Edward Island in Eastern Canada (10,11). In this outbreak, however, domoic acid was 

found to have been synthesized by the pennate diatom, Nitzschia pungens (12). The 

neurological symptoms of ASP included headache, confusion, nausea, disorientation, 

seizures, loss of memory, coma and death, with the most serious problems occurring in 

older patients (10). Autopsy of the brains from four people who died due to domoate 

toxicity revealed neuronal damage in the amygdala, hippocampus and other limbic areas 

(11) in a pattern similar to that observed experimentally in animals after the 

administration of the structurally related analog, kainic acid (figure 1.1) (13,14). Since its 

first documented appearance in seafood in 1987, domoate has continued to appear not 

only in cultured mussels, but in other filter feeding species such as clams, crabs and 

anchovies on both the east and west coasts of the US and Canada (15,16). Moreover, a 

number of other species of unicellular algae which synthesize domoate have been 

identified in recent seafood contaminations (17,18). 

In this thesis project, cultured rat cerebellar granule neurons were used as an in 

vitro model to study cellular mechanisms involved in domoate- and glutamate-mediated 

neurotoxicity. Given the increasing occurrence of domoic acid contamination in shellfish, 

knowledge of the cellular and biochemical pathways involved in domoate excitotoxicity 

would be extremely important to the development of therapeutic strategies for future 



human intoxications. Moreover, excitatory amino acids such as domoate may be useful 

tools for the modeling of siezure disorders, inasmuch as the glutamate receptor subtypes 

with which domoate interacts play an important role in epilepsy (19,20). Most 

importantly perhaps, an understanding of domoate excitotoxic mechanisms may broaden 

our understanding of the many neurological diseases thought to involve abnormal 

glutamate receptor function. The following sections will review glutamate receptor 

structure and function, the important cellular components involved in glutamate 

excitotoxicity, and the considerations in selecting cultured cerebellar granule neurons to 

model domoate and glutamate toxic mechanisms. 

COOH 

COOH 
H2N 

Glutamate 

H2C 

N
 

H
 

Kainic Acid Domoic Acid 

Fig. 1.1 Chemical structure of glutamate, domoate and kainate 
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1.1 Glutamate Receptors 

Glutamate interacts with two major receptor families: ionotropic, ligand gated ion 

channels and metabotropic G-protein coupled receptors (21). Ionotropic glutamate 

receptors have been classified pharmacologically into N-methyl-D-aspartate (NMDA) and 

non-NMDA receptors, with the latter being further differentiated pharmacologically into 

a-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) and kainate preferring 

subtypes (AMPA/kainate receptors) (21-23). Physiologically, rapid glutamatergic 

neurotransmission is mediated by non-NMDA receptors. which in general are selectively 

permeable to Na+ and K+ (24,25). NMDA receptors form Na- and Ca2+-permeable ion 

channels that are activated in both a voltage and ligand dependent manner (21.26,27). 

Because NMDA receptors are blocked by Mg2+ in a voltage dependent manner, calcium 

influx increases in response to increasing levels of membrane depolarization such as that 

which occurs during high frequency synaptic activity. In this context, calcium activates 

processes that are fundamental to long term changes in synaptic strength (2.3). 

Metabotropic glutamate receptors are coupled to the activation of phospholipase C (PLC) 

and release of Ca2 from intracellular stores, and to inhibition of adenylyl cyclase (28,29). 

Thus, metabotropic glutamate receptors can produce both prolonged excitatory and 

inhibitory effects in the CNS and are involved in numerous neuronal functions including 

synaptic plasticity and neuronal development (29, 30). 

1.1.1 Ionotropic Glutamate Receptors 

All ionotropic glutamate receptors exist as oligomeric proteins comprised of 

several subunits which coassemble to form functional cation channels (21-25). 

Glycosylation analysis and electrophysiological testing of mutant and chimeric receptors 

indicate that each subunit contains multiple membrane spanning domains (31-34). 



5 

General features of ionotropic glutamate receptor subunit structure include: (i) a large 

extracellular N-terminal domain comprising approximately one-half of the subunit 

(21,36-41); (ii) three membrane spanning domains (TM1, TM3 and TM4)(31 -35): (iii) a 

fourth channel-lining reentrant loop (TM2) that enters and exits the cell membrane from 

the intracellular side (31-35); and (iv) an intracellular C-terminal domain (31-35, 42-44). 

Other general features include: a Q/R/N site in TM2 which governs the ion permeability 

characteristics of all ionotropic glutamate receptors (23,24,45-51); amino acid sequences 

in the extracellular loop segment between TM3 and TM4 and in the N-terminus that share 

sequence homology with bacterial periplasmic amino acid-binding proteins and which 

together form the glutamate binding domain of the receptor (33.52); and intracellular 

phosphorylation consensus sequences (44.57-61). 

Non-NMDA receptors. Non-NMDA receptor subunits are encoded by nine 

different genes, and have been subclassified into three groups based on their sequence 

similarity and agonist selectivity (23,24). Sequence homology of subunits within each 

group generally exceeds 80 %, whereas inter-group similarity is low (40 %) (39.70). 

Thus. GluR1 through G1uR4 subunits comprise the AMPA-preferring receptors (62). 

AMPA receptor subunits have been shown to assemble into functional homomeric or 

heteromeric oligomers with different functional properties (21-24,46,62,63). GluR5 

through G1uR7 and KA- I/KA-2 subunits constitute low and high affinity kainate 

receptors, respectively (64-71). KA-1 and KA-2 subunits by themselves do not form 

functional receptors, but instead combine with G1uR5-7 to form high affinity kainate 

receptors (70,71). Evidence from in vitro studies indicates that both homooligomeric 

G1uR5-G1uR7 and heteromeric G1uR5-6/KA1-2 channels may exist in vivo, whereas 

kainate and AMPA subunits do not heterooligomerize (68,70,72,73) . 

Non-NMDA receptors display considerable diversity in activation and channel 

gating characteristics, due largely to the variety of possible receptor subunit combinations 
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that exist within the CNS: however, a greater level of molecular and functional diversity 

is created through non-NMDA receptor subunit pre-mRNA editing mechanisms (51). An 

early discovery was that the genomic sequences of all non-NMDA receptors encode for 

glutamine (Q) at the Q/R/N site of TM2, whereas arginine (R) is found in virtually all 

GluR2, and at varying developmentally controlled ratios in GluR5 and GluR6 subunit 

cDNAs (25,74-76). It is now known that pre-mRNA editing of glutamine codons (CAG) 

to arginine (CGG) codons occurs by a process of adenosine deamination in G1uR2, 

GluR5 and G1uR6 subunits (51,77). In general, it is the presence of this positively 

charged arginine residue in the channel lining domain that determines the selective 

permeability of non-NMDA receptors for monovalent cations (74). The absence of 

arginine renders non-NMDA receptors permeable to both mono- and di-valent cations. 

Thus, although non-NMDA receptors had originally been thought to selectively conduct 

monovalent cations, it has now been shown that glutamate can trigger Ca2±-dependent 

intracellular events directly through Ca2+-permeable AMPA/kainate receptors in some 

neuronal and glial cells (78,79). Because of the wide distribution of edited subunits, 

however, the vast majority of CNS neurons contain Na+/K+ permeable AMPA and 

kainate receptors (74). 

The molecular complexity of AMPA receptors is increased further by alternative 

splicing of a functional module of 38 amino acids in one of two sequence versions, 

termed flip and flop (80), located in the extracellular loop between TM3 and TM4. 

Coupled with this feature is the presence of an R/G site in GluR2, G1uR3 and GluR4, 

which directly precedes the flip/flop module, and is edited in similar fashion to the Q/R/N 

site of TM2 (81). Both of these post-transcriptional processing features appear to be 

active during CNS development for the fine tuning of the kinetic properties of AMPA 

receptors. Flip versions of AMPA receptor subunits with unedited R/G sites (R is present) 

are generally more numerous at earlier developmental stages (81). Functionally, 

homooligomeric AMPA receptors containing the flip module have been shown to 
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desensitize more slowly than flop-containing receptors (82). Moreover, the timecourse of 

recovery from desensitization is affected by R/G site editing such that R-containing 

AMPA receptors recover more rapidly. Thus, developmentally interrelated flip/flop 

splicing (83) and R/G site editing (81) affect the size and shape of the fast component of 

excitatory post-synaptic currents and control the ability of neurons to convey rapid trains 

of synaptic activity. 

Among the kainate-preferring non-NMDA receptors, the GIuR6 subunit displays 

additional unique sites for pre-mRNA editing. Two sites, both located in transmembrane 

segment TM1, are diversified by RNA editing to generate either isoleucine (I) or valine 

(V) in one and tyrosine (Y) or cysteine (C) in the other TM1 position (23,50). In contrast 

to AMPA receptor channels, the presence of Q in the TM2 Q/R/N site of GIuR6 results in 

channels with low Ca permeability, whereas an R residue produces a higher Ca 2+ 

permeability if the IN and Y/C sites of TM I are fully edited (V and C residues present). 

If the TM1 sites are unedited, Ca2+ permeability is less dependent on the presence of 

either Q or R in TM2 (23,50). Thus the Ca2+ permeability of kainate receptor channels 

can vary depending upon editing within both the TM I and TM2 domains. Moreover, the 

pairing of RNA editing with specific heteromeric subunit assemblies might be used to 

regulate and diversify Ca2+ permeability properties, since combinations of edited and 

unedited subunits expressed in vitro appear to create a wide spectrum of Ca2+ 

permeabilities among kainate receptors (23,50). 

Finally, alternatively spliced C-terminal sequences have been found in GluR2 and 

G1uR4 subunits (84,85). These long and short molecular forms have been demonstrated in 

murine brain, however their functional and developmental significance have not yet been 

studied. 

NMDA receptors. NMDA receptors are composed of two distinct types of 

subunits that are encoded by five separate genes; one type is termed NMDAR 1 (NR I) and 
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the other type is comprised of four subunits termed NMDAR2A to NMDAR2D (NR2A

D) (21,2124). The mouse homologues have been designated and £ for NR1 and NR2. 

respectively (36,39). NR1 is capable of assembling as a homooligomer that displays 

properties characteristic of native NMDA receptors when expressed in Xenopus oocytes 

(21,36). NR2 subunits, however, do not form functional receptors but instead potentiate 

NMDA receptor-gated currents and confer specific functional properties to NMDA 

receptors when in heteromeric assembly with NR1. (41,86). Because NR1 subunits are 

required for the formation of functional NMDA receptors, they are expressed in virtually 

all neurons of the CNS, whereas NR2 subunits display distinct regional and 

developmentally regulated expression patterns (38,87). Recent data suggest that NMDA 

receptors contain at least two different NR2 subunit types in combination with NR1 

(88,89). Thus, a large variety of possible NR1/NR2 subunit combinations would account 

for the regionally heterogenous functional and pharmacologic diversity of NMDA 

receptors in the CNS (90-93). 

The functional and molecular diversity of NMDA receptors is enhanced even 

further, in a fashion similar to non-NMDA glutamate receptors, by post-transcriptional 

RNA editing of the NR1 subunit. Differential splicing of three different exons generates 

eight possible isoforms, seven of which have been identified in vivo 

(21.40,43,86.94,103). Each isoform is expressed in a regionally and developmentally 

characteristic fashion (86). One alternatively spliced exon casette, located in the N-

terminal extracellular domain (NI), encodes a 21 amino acid sequence. while adjacent 37 

and 38 amino acid sequences (C1 and C2) exist in the C-terminus domain. Splicing out 

the distal C-terminal cassette removes a stop codon, which exposes a new open reading 

frame that encodes 22 amino acids (C2') before a second stop codon is encountered (43). 

Thus, NR1 subunit splice variants differ in two regions: the distal end of the amino-

terminus domain with two configurations; and the carboxy-terminus with four 

configurations. 
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The NMDA receptor-channel complex is distinct among glutamate receptors in 

that it is highly permeable to Ca2+ and blocked in a voltage-dependent manner by Mg2+ 

(21,26,27). These properties underlie the ability of NMDA receptors to mediate the 

induction of long-term potentiation of synaptic efficacy, a form of activity-dependent 

synaptic plasticity that underlies learning, memory and CNS development (2,3). The 

property of Ca2+ permeability is conferred to the NMDA receptor-channel complex by an 

asparagine (N) residue at the TM2 Q/R/N site, which is present in all NMDA receptor 

subunits (48,49,74). Mutations at the site of the conserved asparagine residue reduce or 

abolish Ca2+-permeability and have been shown to alter the sensitivity to channel 

blockade by Mg2+ and the prototypical channel blocking drug MK-801 (48,49,74). 

In addition to the fundamental properties of Ca2+ permeability and voltage-

dependent Mg2+ blockade, NMDA receptors are modulated by a variety of endogenous 

and exogenous inhibitory and potentiating agents. The presence of glycine, which binds 

to a distinct strychnine-insensitive coagonist site, is required for glutamate to activate 

NMDA receptors (95-98). The glycine binding site has been shown to exist within an 

extracellular domain that shares sequence similarity with a periplasmic amino acid-

binding protein from Salmonella typhimurium (33,52). Glutamate and glycine 

reciprocally enhance one another's affinity for binding to the NMDA receptor (99). 

NMDA receptors also possess a pharmacologically distinct modulatory site for the 

binding of Zn2+ (94,100). Zn2+ at high concentrations inhibits agonist-induced responses, 

whereas at low concentrations it potentiates responses at certain splice variants of the 

NMDA receptor (94). The Zn2+-induced potentiating responses appear to occur without 

increasing NMDA receptor agonist or glycine potency and are mimicked by several heavy 

metal cations (94). As many as three sites exist on NMDA receptors for the binding of 

polyamines (94,99,100). Polyamines exert multiple effects on the NMDA receptor, which 

include an increase in the magnitude of agonist-induced currents in the presence of 

saturating concentrations of glycine, an increase in the affinity of the receptor for glycine, 
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and voltage-dependent inhibition (101). These effects vary depending on the specific 

subunit composition of the NMDA receptor. Several extracellular redox-sensitive amino 

acid residues modulate receptor activation properties (53-56). Overlapping the polyamine 

sites within the lumen of the cation channel are sites for non-competitive NMDA receptor 

antagonist drugs such as phencyclidine (PCP), which block NMDA-induced currents in a 

voltage- and use-dependent manner (49,90-93). 

Electrophysiological experiments on recombinantly expressed NMDA receptors 

indicate that each of the NR1 splice variants is capable of assembling into functional 

homomeric channels (36,40,41,44,57,59.94,102), and each variant differs with respect to 

agonist affinity, current amplitude, modulation by Zn 2+, potentiation by polyamines and 

regulation by PKC. For example, NR1 homomers containing the N1 cassette 

(NR lixx)i generally produce larger mean current amplitudes but have a lower affinity for 

glutamate than do receptors without the Ni cassette (40,102). Moreover, Zn2+ and 

spermine potentiate responses at NR10xx but not NR 11 xx homomers (40,94.102) The 

potentiating effect of PKC phosphorylation appears to be modulated by both the N- and 

C-terminal cassettes (57.59). Interestingly, PKC phosphorylation has been shown to occur 

predominantly on serine residues located entirely within the C 1 cassette, which suggests 

that sensitivity of the NMDA receptor to phosphorylation can be regulated through 

alternative splicing of the C-terminal domain (44). 

Various binary combinations of NR1 and NR2 subunits have been recombinantly 

expressed and investigated for their functional properties as well. In general, many of the 

functional and pharmacologic characteristics of native NMDA receptors are reproduced 

by these combinations. For example, NMDA-activated currents in Xenopus oocytes 

'At this time, a unified nomenclature for the various NR1 isoforms has not been 
established. The eight splice variants have been denoted by Durand, et al. (1993) with 
subscripts which indicate the presence (1) or absence (0) of the three alternatively spliced 
exons from the 5' to 3' end. Thus. NR 1011 designates a subunit that lacks the Ni but has 
both Cl and C2 cassettes. An 'x' indicates that the presence of an exon is indeterminate. 



expressing NR1 and NR2B or NRI and NR2C subunits have been demonstrated to be 2 

to 25 times smaller than those produced by recombinantly expressed NR I-NR2A subunits 

(38,39), and the affect of Mg2+ to block inward currents is weaker in NR1-NR2C and 

NRI-NR2D as compared to NR1-NR2A and NRI-NR2B heteromers (103). Moreover, 

the rate of current decay is 3 to 30 times more rapid for NR1-NR2A receptors than for 

any of the other heteromeric subunit combinations (38.103). Regarding ligand affinities. 

NR1-NR2A and NR1-NR2B recombinants display a higher affinity for glutamate than 

NR1-NR2C recombinants, whereas the latter displays up to ten-fold higher glycine 

affinity (104). A similar profile exists for the channel blocking compound, MK-801, in 

which the affinity at NR1-NR2A and NR1-NR2B receptors has been demonstrated to be 

as much as thirty times higher than for NR1-NR2C recombinants (88.89.104). Thus, 

recombinant NMDA receptors reproduce many of the functional characteristics of native 

NMDA receptors found in brain regions where these subunits have been detected. 

1.1.2 Metabotropic glutamate receptors 

To date, eight different metabotropic glutamate receptors (mGluR 1-8) have been 

identified and numbered according to the order in which their cDNA's were cloned (28). 

mGluRs have been classified into 3 groups with approximately 70% intra-group and 45% 

inter-group sequence identity (21.28). Group I receptors, comprised of mGluR 1 and 

mGluR 5, are coupled through PLC to the hydrolysis of inositol phospholipids, yielding 

inositol triphosphate (IP3) and diacylglycerol (DAG). Thus Group I metabotropic 

glutamate receptors mobilize intracellular Ca- and stimulate protein kinase C activity 

(21,28,105). Group II (mGluR 2-3) and III (mGluR 4,6-8) metabotropic glutamate 

receptors are negatively coupled to adenylate cyclase through inhibitory G-proteins 

(28,105). Interestingly, although mGluRs couple to the same G-proteins as other members 

of the G-protein coupled receptor superfamily, they do not share sequence similarity with 



12 

other G-protein coupled receptors (106). Instead, mGluRs appear to be more closely 

related to a Ca2+-sensing receptor recently isolated from bovine parathyroid gland (107). 

Metabotropic glutamate receptors therefore define a new family of G-protein coupled 

receptors. 

1.2 Mechanisms of Neuronal Excitotoxicity 

1.2.1 Glutamate Toxicity 

Of all excitatory amino acids (EAAs) known to produce toxic effects in the central 

nervous system, the neurotransmitter glutamate has been the most extensively 

characterized because of its involvement in CNS pathologies associated with hypoxia, 

ischemia, trauma, hypoglycemia and epilepsy (4). As previously described, rapid 

glutamatergic neurotransmission is mediated by non-NMDA receptors (AMPA/kainate 

receptors) (1-3), whereas NMDA receptors serve as coincident detectors requiring 

concurrent depolarizing stimuli, such as that which occurs during high frequency synaptic 

activity, to relieve the voltage-dependent Mg2+ blockade of the ion channel (21,24). In 

this physiologic context, NMDA receptors increase cytoplasmic Ca2+ concentrations at 

discreet, active synapses, and thereby activate processes fundamental to long term 

changes in synaptic strength (2,3). In certain pathological conditions, however, excessive 

glutamate receptor stimulation induces large and sustained NMDA receptor-mediated 

increases in cytoplasmic Ca2+ concentration that ultimately cause neuronal death (108

110 ). 

Normally, extracellular glutamate concentrations rise to high levels only briefly, 

and in a spatially localized manner. This occurs because glutamate is rapidly removed 

from the extracellular space by a high affinity Na+-coupled glutamate transporter, which 

is present in both neurons and glia (111-114). Three Na+ are co-transported inward with 
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each glutamate molecule against one outwardly transported K+ for a net influx of one 

positive charge (114). Thus, the glutamate transporter is indirectly driven by Na+/K+ 

ATPase, which utilizes approximately 60% of available cellular ATP to maintain 

neuronal transmembrane electrochemical gradients (115). The efficiency of glutamate 

reuptake is high enough that extremely large doses of intracerebrally injected glutamate 

are required to induce CNS lesions (116). During acute CNS pathologies, however, 

disruptions in oxygen or glucose availability deprive neurons and glia of the energy 

required to sustain normal Na+/K+ ATPase activity (117-119). The resultant neuronal 

depolarization increases synaptic glutamate release and impairs or even induces a 

reversed mode of glutamate transporter function, with the consequence that neurons incur 

prolonged exposures to high concentrations of extracellular glutamate. (120-123). 

In neurotoxicological experiments utilizing dissociated hippocampal and cerebral 

cortical neuronal cultures, brief exposures to elevated glutamate concentrations have been 

shown to produce two distinct phases of neuronal injury (4.124). An early phase, 

mediated by the depolarization-dependent influx of Na+, and water, manifests as a 

rapidly developing neuronal swelling that is reversible if either glutamate concentration 

or exposure duration are limited (125,126). This early component has been linked to the 

activation of AMPA/kainate receptors, inasmuch as non-NMDA receptor antagonists are 

able to prevent this early phase of glutamate toxicity. A later phase of glutamate-induced 

excitotoxicity is associated with the excessive and unregulated influx of Na+ and Ca2+ 

through NMDA receptor ion channels, which also induces a mild early neuronal swelling 

(125-127), but is primarily characterized by a slowly developing neuronal degeneration 

that occurs within hours of glutamate exposure (108,119). This delayed component of 

glutamate-induced injury can be completely prevented by the presence of NMDA receptor 

antagonists or by the removal of extracellular Ca2+ from the exposure buffer (126). 

Subsequent experiments have directly linked 45Ca2+ accumulation to the resultant delayed 

neurodegeneration observed after glutamate exposure in cortical neurons (108). Thus, 
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these data show that glutamate-induced neurodegeneration is produced by prolonged, 

generalized increases in cytoplasmic calcium which accumulates subsequent to excessive 

NMDA receptor activation (117-119). 

Not all neurons undergo an excitotoxic response when exposed to exogenously 

applied glutamate, however. Experiments utilizing cultured cerebellar granule cells 

(CGCs) indicate that even high concentrations of glutamate are non-toxic when exposure 

occurs in a physiologic milieu. CGCs apparently have the ability to maintain ionic 

homeostasis in the face of ion flux induced by glutamate stimulation (118,128,129). Non-

physiologic conditions which simulate those occurring in CNS pathologies, such as 

depletion of neuronal energy reserves (117,118) or depolarization induced by K+ or 

veratridine (130-132), are therefore required to produce glutamate-induced 

neurodegeneration in CGCs. Glutamate toxicity is also facilitated in CGCs by the 

omission of Mg2+ from the exposure medium (133,134). Thus, a critical element in the 

transformation of glutamate from neurotransmitter to neurotoxin is the ability to produce 

a depolarizing stimulus of sufficient magnitude to induce release of the voltage-dependent 

Mg2+ blockade of NMDA receptor ion channels (117,118,129) The ability to maintain 

membrane potentials is therefore an important determinant of neuronal survival, for 

example, in the penumbra of a stroke focus where oxygen availability and neuronal 

energy reserves are partially compromised. 

As mentioned previously, the delayed neuronal degeneration that occurs 

subsequent to pathologic NMDA receptor activation is mediated by sustained increases in 

free cytosolic Ca2+ (108,126,132) Homeostatic mechanisms which normally control 

[Ca- ]j may therefore be overloaded or compromised during cerebral pathological states. 

These mechanisms include: Ca2+ extrusion by plasma membrane Ca2+-ATPase (135) and 

the NallCa2+ exchanger (136), Ca2+ buffering by Ca2+-binding proteins (137), and Ca2+ 

uptake into endoplasmic reticulum (138) and mitochondria (139-142). Of the Ca2+ 

extrusion mechanisms, Ca2+-ATPase is a high affinity, low capacity system (142), 
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whereas the Na+/Ca2+ exchanger manifests lower affinity but possesses a much higher 

capacity for Ca" extrusion (142). Therefore, the Na+/Ca2+ exchanger is likely the major 

route for extrusion of the micromolar levels of [Ca- that accumulate during intense 

glutamate receptor stimulation (143,144). In cultured cerebellar granule neurons, 

cytosolic Na+ concentrations have been estimated to increase to as high as 60-100 mM 

during excitotoxic glutamate exposures (144,145). Alterations of this magnitude in the 

Na l- gradient are known to impair or even reverse Na+/Ca2+ exchanger function (142): 

therefore, a net Ca2+ influx may actually occur through the Na+/Ca2+ exchanger during 

toxic glutamate exposures. With Ca2+ extrusion mechanisms impaired, cytosolic Ca2+ 

must instead be handled through buffering and sequestration mechanisms. Of these two 

mechanisms, mitochondrial Ca-7+ uptake has been shown to play a dominant role in 

calcium buffering during excitotoxic glutamate exposures (110,146). Although 

mitochondrial metabolism is stimulated by the physiological [Ca2+ increases 

encountered during normal cellular functioning, prolonged exposures to high [Ca2li are 

known to uncouple electron transfer from ATP synthesis (147,148) and induce free 

radical production (149). Ca2+-induced free radicals oxidatively damage mitochondria 

(and other cellular components), ultimately reducing neuronal energy reserves 

(109.110.150) and impairing active Ca2+ extrusion and sequestration mechanisms. Thus, 

early mitochondrial dysfunction plays a key role in glutamate neurotoxicity (110). 

In addition to inducing oxidative mitochondrial damage and inhibiting energy 

metabolism, sustained elevations in cytoplasmic Ca2+ are thought to produce cytotoxicity 

through mechanisms which reflect disruption of intracellular processes normally 

regulated by Ca2+ availability (151). Several simultaneous injury processes are therefore 

likely to occur. Among these processes, activation of catabolic enzymes may play a major 

role. For example calpain, a neutral protease, is involved in the enzymatic cleavage of 

several structural proteins including tubulin, microtubule-associated proteins, spectrin and 

neurofiliment polypeptides (152). Calpains have been shown to be involved in 
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postischemic neuronal degeneration in the hippocampus (153-155). Moreover, the 

involvement of proteases in excitotoxicity is supported by the suppressive effects of 

protease inhibitors, such as calpistatin, on postischemic hippocampal damage (156.157). 

Elevated cytosolic Ca2+ may also activate phospholipases, resulting in cell membrane 

degradation and liberation of arachidonic acid (158). Arachidonic acid metabolism by 

oxidases leads to the production of oxygen free radicals and peroxidative degradation of 

lipids and other cellular elements (159). Oxygen free radicals are also generated 

subsequent to the conversion of xanthine dehydrogenase to xanthine oxidase by a Ca2+

activated protease (109,160). Furthermore, sustained cytosolic Ca2+ elevations produce 

neurodegeneration through the activation of nitric oxide synthase (161). NO rapidly reacts 

with oxygen free radicals to form the peroxynitrite radical (ON00 ). Subsequent 

interaction with hydrogen peroxide, a product of superoxide dismutase activity, produces 

highly toxic hydroxyl radicals. The notion that NO mediates neuronal injury is supported 

by the recent finding that cortical neurons cultured from neuronal nitric oxide synthase

deficient mice are resistant to glutamate-induced cytotoxicity (162). 

A number of studies have shown that Ca2+ overload can trigger endonuclease 

activation. Endonucleases play a central role in programmed cell death, or apoptosis 

(163,164). Recent studies have shown that some neuronal subpopulations may die via 

apoptosis following activation of this endogenous cell death program by glutamate (165

169). Moreover, in cultured cerebellar granule neurons, neuronal death has been 

demonstrated to result from either apoptosis or necrosis, depending on the severity of 

neuronal injury and extent of mitochondria] dysfunction induced by excitotoxin exposure 

(170). 
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1.2.2 AMPA/kainate Receptor-Mediated Toxicity 

Some exogenous EAAs, such as kainate and domoic acid, interact specifically 

with non-NMDA receptors yet induce a calcium-dependent CNS toxicity similar to 

glutamate (171,172). The mechanisms by which these AMPA/kainate receptor agonists 

produce Ca2+-mediated neurotoxicity are as yet uncertain. In a number of vitro systems 

AMPA/kainate receptor-mediated neurotoxicity is largely dissociated from the 

involvement of NMDA receptors, since NMDA receptor antagonists fail to protect 

against non-NMDA receptor agonist challenge (173,174). Moreover, only a prolonged 

exposure to AMPA/kainate receptor agonists produces neuronal degeneration in some 

experimental systems (4,174), while acute exposures are sufficient to kill neurons in 

others (175-177). Thus, whereas the toxicity of glutamate can be clearly linked to NMDA 

receptor activation and subsequent calcium entry, the mechanisms underlying 

AMPA/kainate receptor-mediated, calcium-dependent neurodegeneration have not been 

well defined in cell culture systems. 

In contrast to the in vitro data, however, studies in animals indicate that 

AMPA/kainate receptor agonist-induced neurotoxicity is mediated by NMDA and non-

NMDA receptors. Furthermore, domoic acid administered systemically to rats and 

monkeys produces acute neurotoxicity and is rapidly cleared from the circulation 

(178,179). In the rat, kainic acid produces siezures followed by necrosis ofneurons in the 

hippocampus. amygdala, piriform cortex and other limbic areas (13.14.180). Several 

classes of competitive and non-competitive NMDA receptor antagonists have been shown 

to prevent the majority of this seizure related toxicity (14,180-182). Moreover, chemical 

denervation of hippocampal mossy fiber tracts from granule neurons of the dentate gyrus 

substantially attenuates domoate (182) and kainate-induced (183,184) toxicity in CA3 

neurons. These observations provide evidence consistent with the hypothesis that synaptic 
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activity and NMDA receptor activation play a role in non-NMDA receptor agonist-

mediated neurotoxicity. 

Given the discrepancies between the in vitro and in vivo data, it is probable that 

AMPA/kainate receptor agonists produce cytotoxicity through several possible 

mechanisms. One route by which AMPA/kainate receptors could elevate cytosolic Ca2+ to 

toxic levels is through a depolarization-dependent activation of voltage operated Ca2± 

channels (186). The involvement of voltage activated Ca2+ channels is supported by the 

finding that the dihydropyridine, nifedipine, substantially attenuates slow AMPA/kainate 

receptor-mediated neurotoxicity in cultured mouse cortical neurons (187), and 

nimodipine has been shown to significantly attenuate lesions produced by kainate injected 

intracerebrally in rats (188). Large cytosolic Na+ accumulations that occur subsequent to 

AMPA/kainate receptor agonist exposure may also induce a reversed mode of operation 

of the Na+ /Ca2+ exchanger (144). This route of Ca/-1- entry could be particularly important 

during kainate and domoate exposures, inasmuch as these agonists induce mostly non-

desensitizing electrical responses in neurons, depending on which non-NMDA receptor 

subunits are expressed (68). Recent reports have demonstrated the presence of Ca2+

permeable AMPA/kainate receptors in a subpopulation of neurons and glia (74,189). 

These neurons have been shown to be particularly vulnerable to non-NMDA agonist-

induced toxicity (189). Thus, although NMDA receptor-mediated increases in cytosolic 

Ca2+ concentration are a major cause of excitatory amino acid-induced injury and death in 

neurons, non-NMDA receptors alone may produce cytotoxic increases in intracellular 

Ca2+ concentration. 

As alluded to previously, one other potential route for AMPA/kainate receptor-

mediated Ca2+ entry into neurons is through the NMDA receptor ion channel. NMDA 

receptors would be activated subsequent to non-NMDA receptor agonist-induced 

glutamate release (190,191). Moreover, because some AMPA/kainate receptor agonists 

are capable of activating non-desensitizing currents in neurons, in contrast to the rapidly 
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desensitizing currents induced by glutamate. release of the Mg2+ blockade of NMDA 

receptor ion channels would be facilitated (68). In support of this notion. extracts from 

mussels contaminated with subtoxic concentrations of domoic acid have been shown to 

potentiate synergistically the excitotoxic effect of glutamate and aspartate in cultured 

cerebellar granule neurons (174). 

1.3 Development of an In Vitro Model of Glutamate- and Domoate-
Induced Toxicity Using Cultured Rat Cerebellar Granule Neurons 

Primary cultures of rat cerebellar granule neurons represent a valuable model for 

studying the physiology, biochemistry and toxicology of excitatory amino acids (EAAs) 

because they can be cultured as a relatively homogenous cell population of greater than 

90% purity (192), express both metabotropic (193) and ionotropic (194) glutamate 

receptors, and form an extensive network of neurites and synaptic contacts (192). 

Cerebellar granule neurons are also sensitive to EAA-mediated cytotoxicity (116

118,128). 

When grown in a serum-containing medium, cerebellar granule neurons develop a 

survival requirement for depolarizing conditions between two and four days in vitro 

which, if not met by elevated extracellular concentrations of K+ or NMDA. results in a 

significant cell loss by the end of one week in culture (192,195). Neuronal depolarization 

is believed to mimic the trophic influence of the first innervation received by post-

migratory granule cells from glutamatergic mossy fibers in vivo (195,196). Depolarizing 

conditions also affect the regulation and developmental timecourse of glutamate receptor 

expression (197-201) with the consequence that the pharmacology of agents acting on 

glutamate receptors changes both as a function of growth conditions and age of neurons 

in culture (197,198,200,202). In this thesis project, cerebellar granule neurons were 

utilized at a single age of 12 days in culture (DIC). Neurons at this age express both 
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NMDA and non-NMDA receptor subtypes and respond to excitatory amino acids in a 

characteristic and reproducible manner (203,204). In Chapter 5, the pharmacologic and 

toxicologic significance of NMDA receptors expressed in 12 DIC cerebellar granule 

neurons (CGCs) is investigated, and the effect of chronic depolarization on the 

developmental regulation of NMDA receptor subunit expression is discussed (204). 

The effect of chronic depolarization on AMPA receptor subunit expression and 

the functional activity of AMPA receptors has also been investigated in CGCs (201). 

although not as rigorously as with NMDA receptors. In granule cells of the adult rat 

cerebellum, AMPA receptors have been shown to be composed primarily of GluR2 flip 

and G1uR4 flop subunits (23). When grown under standard culture conditions (with 25 

mM 1(±), however, CGCs have been shown to express high levels of GluR1 mRNA and 

protein in addition to G1uR2, G1uR3 and G1uR4 subunits (85,201). Therefore, AMPA 

receptors on CGCs may contain various combinations of all four AMPA receptor 

subunits. The effect of growth conditions on kainate receptor subunit expression in CGCs 

has not yet been characterized; however, GluR6 and KA2 subunits are known to be 

expressed in cerebellar granule neurons in vivo (23), and pharmacological studies show 

kainate receptors to be present in CGCs (194). Thus, CGCs express both AMPA and 

kainate receptor subtypes. 

An important consideration when using CGCs for toxicologic experimentation is 

that exposure conditions must be manipulated to overcome the inherent resistance that 

CGCs have to the cytotoxic effects of excitatory amino acids (EAAs) (117,118,129,133). 

Moreover, the specific experimental conditions employed may affect the intensity of 

neuronal injury induced by EAAs and the pathways through which the neuronal damage 

occurs (4,109,110,115,117,118). To induce glutamate toxicity, for example, non-

physiological exposure conditions have been employed which mimic those occurring in 

CNS pathologies. In this experimental context, CGCs provide an appropriate model for 

studying the cytopathologic mechanisms of such diseases as stroke, trauma and hypoxia 
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(117,118,129,133,144-146, i70,191,203). For non-NMDA receptor agonists such as 

domoate, however, an appropriate model should utilize a physiologic exposure milieu, 

inasmuch as domoate intoxications are known to occur in initially healthy individuals 

(10,11). A physiologic milieu would preserve both normal cell signaling mechanisms by 

maintaining the voltage-dependence of NMDA receptor currents, and the functional 

interrelationships that exist between NMDA and AMPA/kainate receptors. 

In the current project, it was intended that neurotoxicological experiments be 

designed so that NMDA and AMPA/kainate receptor agonist-induced toxicity occur 

under identical exposure conditions, thereby allowing direct comparisons to be made 

between domoate excitotoxic mechanisms and the well characterized mechanisms of 

glutamate-induced toxicity. This required that the resistance possessed by CGCs to 

glutamate challenge in a physiologic exposure milieu (i.e. non-depolarizing K+ 

concentration with Mg2+ and glucose present) be overcome by reducing the exposure 

temperature from 37° to 22°. The facilitation of acute glutamate toxicity in CGCs by 

reduced temperature is characterized in Chapter 2 of this manuscript (203). In Chapter 3, 

this characterization is extended by examining how reduced temperature affects CGC 

membrane potential during glutamate challenge. In Chapter 4, glutamate- and domoate

induced neurotoxicity are compared directly in CGCs using the previously defined 

exposure conditions, and the cellular mechanisms of domoate-induced cytotoxicity are 

addressed. 
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2.1 Abstract 

We have defined conditions whereby glutamate becomes toxic to isolated 

cerebellar granule neurons in a physiologic salt solution (pH 7.4). Under these conditions. 

acute glutamate excitotoxicity manifest only when the temperature was reduced from 37° 

C to 22°C. N-methyl-D-aspartate (NMDA) was non-toxic at either temperature at 

concentrations as high as 1 mM. Glycine strongly potentiated both the potency and 

efficacy of glutamate, but revealed only a modest NMDA response. The non-NMDA 

receptor antagonist, 6-cyano-7-nitroquinoxalinedione (CNQX), potently protected against 

glutamate challenge. although the contribution of antagonism at strychnine-insensitive 

glycine sites could not be excluded. To further characterize the non-NMDA receptor 

contribution to the excitotoxic response, the promiscuity of glutamate interaction with 

ionotropic receptors was simulated by exposing neurons to NMDA in the presence of 

non-NMDA receptor agonists. NMDA toxicity was potentiated four to seven fold when 

non-NMDA receptors were coactivated by a subtoxic concentration of AMPA. kainate or 

domoate. These results suggest that non-NMDA receptor activation participates in the 

mechanism of acute glutamate toxicity by producing neuronal depolarization (via sodium 

influx) which in turn promotes the release of the voltage-dependent magnesium blockade 

of NMDA receptor ion channels. 

2.2 Introduction 

The mechanisms responsible for the transition of glutamate from excitatory CNS 

neurotransmitter to neurotoxin have been studied extensively in various in vitro systems. 

In cultured murine cerebral cortical neurons, two distinct components of this glutamate-

induced excitotoxicity have been elucidated (1,2). An early component, mediated by the 

depolarization-dependent influx of Na+, Cl and water, manifests as a rapidly developing 
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neuronal swelling that is reversible if either glutamate concentration or exposure duration 

are limited (3,4). The early component has been linked to activation of non-N-methyl-D

aspartate (non-NMDA) receptors and can therefore be mimicked by non-NMDA receptor 

agonists such as kainate, domoate or AMPA; however, prolonged exposures are required 

for these compounds to induce significant lethality (2,5). The second component of 

glutamate-induced cytotoxicity has been associated with the excessive and unregulated 

influx of Ca-HE through NMDA receptor ion channels, which also induces a mild early 

neuronal swelling (3,4,6), but is primarily characterized by a slowly developing neuronal 

degeneration that occurs within hours of a brief (5 minute) exposure to high 

concentrations of glutamate or NMDA (7,8). 

Glutamate, which displays activity at all excitatory amino acid receptor subtypes, 

stimulates both the early and delayed components of the excitotoxic response. Non-

NMDA receptor antagonists confer protection against the majority of the early neuronal 

swelling but not the later neuronal degeneration (9). Conversely, NMDA receptor 

antagonists only partially reduce the acute neuronal swelling, yet protect against the 

delayed neuronal degeneration (5,10). 

In cultured rat cerebellar granule neurons, glutamate excitotoxicity is also 

mediated by Ca+ entry through NMDA receptors (11,12). However, cerebellar granule 

neurons differ in their relative resistance to these glutamate-induced effects. When 

cerebellar granule neurons are exposed in a physiologic milieu at 37°C, glutamate is non

toxic even at high concentrations, revealing an apparent ability of these neurons to 

maintain ionic homeostasis in the face of ion flux induced by agonist stimulation (13-15). 

Specific manipulations, such as the omission of Mg++ from the exposure medium, are 

therefore required for glutamate to induce toxicity (16,17). Excitotoxicity in cerebellar 

granule neurons is also facilitated by the depletion of neuronal energy reserves (14,18), or 

by depolarization induced by elevated K+ or exposure to veratradine (19-21). The 

neurons then undergo either rapid or delayed neuronal degeneration, depending upon the 



43 

duration and intensity of glutamate exposure. These data indicate that in a physiologic salt 

solution cerebellar granule cell excitotoxicity manifests only when presented in the 

context of an independent depolarizing stimulus sufficient to allow release of the voltage-

dependent Mg++ blockade of NMDA receptor ion channels, thereby resulting in 

excessive influx of Na+ and Ca++ (22-24). 

Questions remain however, as to how NMDA and non-NMDA receptor 

mechanisms might be functionally integrated in the excitotoxic response to glutamate and 

other excitotoxins, since exposure conditions utilized in studies involving cerebellar 

granule neurons are often permissive to the direct activation of NMDA receptors by 

excitatory amino acid agonists. In the present study, we define conditions that unmask 

glutamate toxicity in a physiologic salt solution, and in the absence of additional 

depolarizing stimuli. These conditions leave receptor and homeostatic regulatory 

functions intact. We report herein that glutamate becomes acutely toxic to cerebellar 

granule neurons when the exposure temperature is reduced. Moreover, we have 

delineated the NMDA and non-NMDA receptor mediated components of this acute 

glutamate-induced neurotoxicity. 

2.3 Materials and Methods 

2.3.1 Materials 

(RS)-alpha-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid (AMPA), D(-)

2-amino-5-phosphonopentanoic acid (D-AP5), 6-cyano-7-nitroquinoxaline-2,3-dione 

(CNQX), and domoic acid were purchased from Tocris Cookson (Bristol, U.K). 3-amino

l-hydroxy-2-pyrrolidone (HA-966) was purchased from Research Biochemicals Inc. 

(Natick, MA). L-glutamate, glycine, kainic acid, N-methyl-D-aspartic acid (NMDA), 
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bovine serum albumin (BSA). trypsin, DNAse and soybean trypsin inhibitor (SBTI) were 

purchased from Sigma (St. Louis, MO). Basal Eagle's Medium (BME) was purchased 

from Gibco Labs (Grand Island, N.Y.). 

2.3.2 Cell Culture 

Primary cultures of cerebellar granule neurons were obtained from 8 day old 

Sprague Dawley rats as described previously (18), with minor modifications. Cerebella 

were isolated and placed in Kreb's buffer containing 3 mg/ml bovine serum albumin and 

1.2 mM MgSO4 (KB/BSA), minced by mild trituration, washed once in KB/BSA and 

incubated with shaking for 15 minutes at 37°C in 30 ml KB/BSA containing 2200 U /mi 

trypsin. The digestion was terminated by addition of 15 ml KB/BSA containing 26 tg /ml 

DNAse, 166 .tg /ml soybean trypsin inhibitor (SBTI) and 1.7 mM MgSO4. Following low 

speed centrifugation for 1 minute, the tissue was resuspended in KB/BSA containing 80 1,1 

g/ml DNAse, 500 1.1g/m1 SBTI and 2.8 mM MgSO4, triturated with a Pasteur pipette and 

the suspension allowed to settle. The supernatant, containing dissociated cells, was 

transferred to another tube and the trituration repeated on the remaining undissociated 

tissue. The supernatants were combined, centrifuged at low speed for five minutes and the 

cell pellet resuspended in basal Eagle's medium containing 25 mM KC1, 2 mM glutamine, 

10% fetal calf serum and 100 4g/m1 gentamicin. The cells were seeded onto poly-l-lysine 

coated (5 tg /ml) 35mm polystyrene culture dishes (Corning) at a density of 2.5 x 105 

cells/cm2. Care was taken to ensure a uniform neuron distribution by thorough mixing of 

the suspension after addition to each plate. Cells were incubated at 37°C in a 5% CO2, 

95% humidity atmosphere. Cytosine arabinoside (10 1.1M) was added 18-24 hrs later to 

inhibit the replication of non-neuronal cells. At 8 days in culture, 100 ill of a 25 mg/ml D-

glucose solution was added to each plate to replenish energy resources and to compensate 

for growth media evaporative losses (25). 
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2.3.3 Excitotoxicity Assays 

Cerebellar granule neurons were utilized at 12 days in culture. Excitotoxicant 

exposure was conducted at a temperature of 22°C. Prior to agonist exposure, growth 

medium was removed and the cultures exposed for 5 minutes to 1 ml Locke's incubation 

buffer containing (in mM): 154 NaCI; 5.6 KC1; 1 Mg Cl; 2.3 CaCI; 5.6 glucose; 8.6 

HEPES; pH 7.4. The Locke's buffer was then replaced with 1 ml of fresh Locke's solution 

containing experimental compounds and the cultures were then incubated for 2 hrs. At the 

termination of the exposure, 0.6 ml of the incubation buffer was collected for analysis of 

LDH activity, and the neurons were washed three times in fresh Locke's solution. The 

neurons were then maintained for a one hour post-exposure incubation prior to a five 

minute staining with the vital dye fluorescein diacetate (5 µg /ml) (26). Ethidium bromide 

(10 41 of a 50 p.g/m1 solution) was added four minutes after the fluorescein diacetate to 

stain the nuclei of nonviable neurons. The dye solution was replaced with fresh Locke's 

and the neurons placed on an inverted microscope (Zeiss model 1M35) equipped with 

fluorescence optics. Under fluorescence, soma and neurites of live neurons appear bright 

green in color whereas dead neurons do not accumulate fluorescein. Nuclei of dead 

neurons, that are not washed away. appear red due to ethidium bromide staining. 

2.3.4 Assessment of Neuronal Viability 

Five to six randomly selected fields from each plate were photographed at 80x 

magnification. Live neurons were counted from the photographic slides and the results 

averaged for each concentration. Results were referenced to the average control culture 

populations processed in parallel to experimental plates. 

LDH activity of the incubation buffer was assayed as described previously (27). 

Aliquots (0.2 ml) of incubation buffer were added to 2.3 lirnol sodium pyruvate and 0.2 
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mg NADH, each in 0.5 ml of 0.1 M KHPO4 buffer (pH 7.5), for a total assay volume of 

1.2 ml. The change in absorbance at 340 nm was measured with a UV spectrophotometer 

and LDH activity calculated from the linear portion of the slope of the absorbance curve. 

LDH concentration was expressed in units/ml, where one unit is the amount of LDH that 

produces a decrease of 0.001 absorbance units per minute per ml of incubation medium. 

LDH efflux at each drug concentration was determined from triplicate plates and the 

results averaged. 

2.3.5 Data Analysis 

EC50 values and maximum responses for excitotoxicants were determined by 

nonlinear least squares fitting of a logistic equation to concentration response data. 

Nonlinear regression analysis was performed with Graphpad Inplot software (San Diego, 

CA). These data were analyzed according to the following equation where Y equals the 

response, C is the EC50, [X] is the agonist concentration, D the slope factor and A and B 

the minimum and maximum plateaus of the concentration-response curve: Y = A + (B

A)/1+(C/P(1)D 

2.4 Results 

Initial experiments confirmed that glutamate and NMDA are nontoxic even at 

millimolar concentrations when tested at 37°C in a physiologic salt solution (data not 

shown). In contrast, at 22°C glutamate induced a concentration dependent reduction in 

the number of viable neurons (EC50 = 84.2 1.LM), while NMDA remained non-toxic at 

concentrations as high as 1 mM (Fig. 2.1). The maximal neurotoxic response to glutamate 

represented a 50% reduction in the number of viable neurons. The initial cytotoxic 

response, as evidenced by neuronal swelling, could be visualized by light microscopy as 
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early as ten minutes after exposure to glutamate; however, the maximal excitotoxic 

response appeared only after a 90 to 120 minute incubation. A one hour incubation in 

fresh Locke's solution subsequent to glutamate exposure improved the ability of surviving 

neurons to be stained with fluorescein diacetate, thereby improving visualization and 

quantification of viable neurons. The results of LDH efflux assays correlated closely with 

data obtained by the direct counting method and provided independent confirmation of 

excitotoxic cell injury (fig.2.1) 
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Fig. 2.1 Comparison of the excitotoxic concentration-response relationship for glutamate 
(0) and NMDA (0)(0,0 = live count; , = LDH efflux) at 22°C. Incubations were 
carried out in Locke's buffer containing 5mM K+ without added glycine. Individual 
points represent mean ± SEM from a representative experiment for NMDA and three 
separate experiments for glutamate. Individual experiments were performed in triplicate. 

Inasmuch as glycine is known to be required as a coagonist for glutamate 

activation of the NMDA receptor, the effect of exogenous glycine on the response to 
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glutamate and NMDA was investigated. In the presence of 10 pM glycine, the potency of 

glutamate was increased approximately two-fold; from a control EC50 of 84.2 pM to a 

value of 43.4 pM in the presence of glycine. A maximal five-fold augmentation of 

glutamate potency occured when 100 pM glycine was included in the incubation buffer 

(glutamate EC50 = 17.9 pM). Glycine also increased modestly the efficacy of glutamate 

from a maximum neuronal loss of 50% to 65% (Table 2.1). Similarly. the toxicity of 

NMDA was enhanced in the presence of 100 p.M glycine, but remained at a much lower 

potency (EC50 = 354 1.1M) and efficacy (30% neuron loss) than glutamate (Fig.2.2a and 

2.2b). 

TABLE 2.1 The effect of glycine on the excitotoxic potency 
and efficacy of glutamate. 

Glycine Glutamate EC50 Efficacy 
(gm) (im)a (% neuron loss)b 

0 84.2 (75.8-93.5) 50 (47.8-52.4) 

10 43.4 (40.8-46.2) 55 (53.9-56.1) 

100 17.9 (15.8-20.4) 65 (59.1-70.3) 

aEC50 values are based upon direct neuron counts. bValues 
in parentheses represent 95% confidence intervals. Data 
represent the mean of 3-4 separate experiments performed 
in triplicate. 

To further the pharmacological characterization of glutamate toxicity in cerebellar 

granule neurons, the effects of NMDA and non-NMDA receptor antagonists against a 

maximal glutamate (300 gM) challenge were assessed (Fig. 2.3). The competitive NMDA 

receptor antagonist D-2-amino-5-phosphonopentanoic acid (D-AP5), completely and 

concentration dependently protected against glutamate toxicity (EC50 = 22.8 pM), thus 

demonstrating a requirement for NMDA receptor activation in the acute cytotoxic 

http:Fig.2.2a
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Fig. 2.2 (a) NMDA becomes toxic in the presence of 10011M glycine. Data points 
represent the mean ± SEM of three separate experiments performed in triplicate. 
EC50.3544M (202-62211M); (b) Comparative glutamate concentration-response (100gM 
glycine present) from a representative experiment performed in triplicate. EC50=17.9p.M 
(l5.8-20.4gM). The magnitude of LDH efflux corresponded to the maximum cell loss for 
each compound. Values in parentheses are 95% confidence intervals. 
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Fig. 2.3 Antagonist concentration-response against a 3001.IM L-glutamate challenge. The 
competitive NMDA receptor antagonist D-AP5 (o) and the strychnine insensitive glycine 
site antagonist HA-966 (A), were tested without the addition of glycine. CNQX was 
tested with (0) and without () the addition of 1001.tM glycine. Data points represent the 
mean ± SEM of at least three separate experiments performed in triplicate. 

response. In accordance with the neuroprotective actions of D-AP5, the strychnine-

insensitive glycine site antagonist HA-966 was fully protective (EC50 = 95.7 [(M). The 

addition of the non-NMDA receptor antagonist CNQX to cultures also afforded complete 

protection against glutamate challenge (EC50 = 9.1 iiM). The CNQX neuroprotection 

concentration-response curve could be shifted rightward by exogenous glycine (Fig. 2.3), 

indicating that CNQX neuroprotection may derive partially from its known ability to 

displace glycine from strychnine-insensitive binding sites on NMDA receptors. 

Since NMDA is a much less potent excitotoxin than glutamate under the 

conditions employed, we determined whether the toxicity of this selective agonist could 
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be enhanced in the presence of low concentrations of non-NMDA receptor agonists. in 

effect simulating the promiscuity of glutamate at NMDA and non-NMDA receptors. 

Concentration-response curves were generated for kainate, domoate and AMPA, and 

subtoxic concentrations for each compound were determined from these curves (Fig. 2.4). 
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Fig. 2.4 Concentration-response relationships of non-NMDA receptor agonists. (0) 
Domoate EC50.1.5104 (1.31-1.74i,tM); (o) Kainate EC50=20.2pM (16.1-25.411M); (A) 
AMPA. Experiments were carried out in the presence of 100p,M glycine. Values in 
parentheses represent 95% confidence intervals. 

The subthreshold concentrations chosen for kainate and domoate were 7 pM and 0.2 pM 

respectively. AMPA had no effect on neuron viability or LDH efflux at concentrations as 

high as 300 pM, however somal swelling was observed at concentrations of 100 pM or 
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Fig. 2.5 NMDA concentration-responses in the presence of non-NMDA receptor agonists. 
Non-NMDA agonist concentrations were those for which little or no effect was observed 
alone: (a) 71.1M kainate(A); (b) 0.2pM domoate(0); (c) 301IM AMPA(o). Data points 
represent mean ± SEM of three separate experiments. LDH efflux performed in triplicate 
for each experiment. 
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greater. An AMPA concentration of 30 pIVI was therefore chosen for the NMDA 

interaction experiments. 

NMDA-induced cytotoxicity, as measured by LDH efflux, was enhanced in the 

presence of these non-NMDA receptor agonists (Fig. 2.5a-c and Table 2.2).Kainate and 

domoate potentiated the EC50 values for NMDA cytotoxicity from a control value of 354 

pM to EC50 values of 106 pM and 105 pM respectively. Kainate and domoate 

potentiated the EC50 values for NMDA cytotoxicity from a AMPA also increased the 

potency of NMDA, reducing the EC50 to 125 pM. When assessed by direct counting of 

fluorecsein stained neurons, the potentiation of NMDA-induced neurotoxicity by non-

NMDA receptor agonists manifested as a four to seven-fold leftward shift in the 

TABLE 2.2 The effect of non-NMDA receptor agonists on 
the excitotoxic potency and efficacy of NMDA. 

Non-NMDA NMDA EC50 Efficacy 
Agonista (% neuron loss)c(,tM)b 

Control 354.0 (201.5-621.8) 30 (_30) 

Kainate 105.5 (71.6-155.5) 36 (28-44) 
(71.IM) 

Domoate 104.7 (80.4-136.4) 45 (38-52) 
(0.2pM) 

AMPA 124.7 (104.9-148.3) 37 (31-43) 
(30W) 

allon-NMDA receptor agonists were present at 
concentrations that cause no loss of neurons. bEC50 values 
are based upon LDH efflux data. cValues within 
parentheses represent 95% confidence intervals. Data 
represent the mean of 3 experiments performed in triplicate. 
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concentration-response curve. Moreover, the efficacy of NMDA was also increased. 

although remaining somewhat lower than the maximal level of neuron loss occuring in 

response to glutamate. 

2.5 Discussion 

Previous reports have shown that cultured cerebellar granule neurons are 

completely resistant to high concentrations of glutamate when exposure occurs in a 

physiologic salt solution, but sensitive to low glutamate concentrations upon glucose 

deprivation or removal of Mg++ from the exposure medium. Thus a pivotal event in the 

induction of glutamate toxicity appears to be the release of the voltage-dependent Mg++ 

blockade of NMDA receptor ion channels (14-16). In agreement with these reports, we 

have confirmed that cerebellar granule neurons are resistant to glutamate when exposed 

in a physiologic salt solution at 37°C. In contrast, we have shown that toxicity to 

glutamate can be unmasked in a physiologic salt solution when the exposure temperature 

is reduced from 37° to 22°. Low temperature potentiation of glutamate excitotoxicity in 

cultured cerebellar granule neurons has been previously noted (28). In the present report, 

we have confirmed and extended these findings through a delineation of the roles of both 

NMDA and non-NMDA receptors in glutamate-induced neuronal death in a physiologic 

salt milieu. 

Several mechanisms may account for the facilitation of excitatory amino acid 

toxicity by low temperature. One possibility is that a reduction in the rate of glutamate 

uptake, coupled with a reduction in the rate of enzyme activities involved in the 

maintenance of energy charge or ion homeostasis, would impair both the ability of the 

neurons to limit glutamatergic stimulation and to sustain a transmembrane 

electrochemical potential of sufficient magnitude to preserve the voltage-dependent Mg+ 
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+ block. High affinity L-glutamate uptake in brain slices and synaptosomes is temperature 

sensitive (29). Inasmuch as the rate of enzyme catalyzed reactions generally decreases 

with reduced temperature, it is reasonable to propose that the observed sensitivity to 

glutamate may be caused primarily by a reduction in the activity of Na+/K+ ATPases, 

since the maintenance of Na+ and K+ gradients and therefore the neuronal resting 

potential is known to be a primary function of these enzymes. In sheep cardiac Purkinje 

fibers, the Q10 for Na+/K+ ATPase current transients has been shown to be between 1.6 

and 2.3 over the temperature range of 26-46°C (30). Moreover, electrophysiological 

experiments in cultured rat skeletal myotubes demonstrated that Na+/K+-ATPase activity 

accounts for about 30% of the resting membrane potential (31). This component of the 

resting potential in skeletal muscle myotubes could be completely and reversibly 

eliminated by reducing the temperature from 35°C to 10°C, an effect equivalent to that 

observed when the myotubes were treated with ouabain. In hippocampal CA 1 neurons, 

the sodium pump has been shown to contribute significantly to the hyperpolarization that 

occurs subsequent to glutamate-induced depolarizations (32). This hyperpolarization 

following glutamate challenge was inhibited to the same degree by ouabain or low 

temperature. Na+/K+ ATPase inhibition has also been shown to enhance excitotoxic 

responses in a variety of experimental systems. For instance, inhibition of the sodium 

pump by ouabain resulted in a >95% loss of cerebellar granule cells when challenged 

with either glutamate or NMDA in a physiologic medium containing Mg++ (18). This 

effect was also observed in rat cortical neurons whereby the degree of toxicity to 

glutamate varied inversely with the degree of chemical inhibition of Na+/K+-ATPase 

(33). We therefore propose that susceptibility to glutamate challenge in a balanced salt 

solution at 22°C is most likely due to an impaired ability of neurons to respond to 

disturbances in ion gradients, primarily as a result of the temperature-dependent reduction 

in Na+/K+-ATPase activity. The ensuing neuronal depolarization following glutamate 

exposure would facilitate release of the voltage-dependent Mg++ blockade of NMDA 
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receptor channels, permitting the excessive influx of Ca++ and Na+ with attendant 

excitotoxic cell injury. 

Our initial experiments indicated that a significant neurotoxic response to 

glutamate required a 90 to 120 minute exposure duration and that NMDA was nontoxic 

under these conditions. Addition of glycine increased both the potency and efficacy of 

glutamate and enabled NMDA to evoke a neurotoxic response. These data may be 

compared to those of Novel li, et al. (18), in which virtually all cerebellar granule neurons 

displayed excitotoxic injury after a 30 minute exposure to either glutamate or NMDA at 

37°C when Mg++ or glucose were omitted from the incubation medium. Complete 

inhibition of the sodium pump by ouabain similarly facilitated the loss of virtually all 

neurons by exposure to either glutamate or NMDA. Our results differ from these previous 

reports in that we observed NMDA to be substantially less effective than glutamate as an 

excitotoxin in a physiologic salt solution. This difference in efficacy between glutamate 

and NMDA suggests that agonist binding to NMDA receptors may be necessary but not 

sufficient to induce substantial cytotoxicity in the presence of Mg++. The excitotoxic 

response to glutamate appears to require the concurrent activation of both NMDA and 

non-NMDA receptors. 

The involvement of non-NMDA receptors in glutamate-induced neurotoxicity was 

explored by assessing the ability of the non-NMDA receptor antagonist CNQX to inhibit 

glutamate toxicity. CNQX afforded potent neuroprotectant effects in response to 

glutamate challenge. Interpretation of this effect of CNQX is complicated somewhat by 

the ability of this compound to act as an antagonist at the strychnine-insensitive glycine 

site on NMDA receptors (34-36). Thus in addition to acting as a non-NMDA receptor 

antagonist, CNQX is nearly equipotent as HA-966 in displacing [3H]glycine from the 

strychnine-insensitive site of the NMDA receptor (37). CNQX was however 

approximately ten times more potent than HA-966 in attenuating neurotoxicity (fig. 2.3). 

This difference in the relative potency of CNQX and HA-966 as neuroprotectants as 
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compared to their affinity for the [3H]glycine site may indicate that the observed 

neuroprotection is due, at least in part, to antagonism of glutamate at non-NMDA 

receptors. Similary, the glycine-induced rightward shift in the CNQX concentration-

response relationship may be related to the ability of glycine to enhance the affinity of 

glutamate for NMDA receptors (38-41). The observation that glycine enhanced the 

excitotoxic potency of glutamate and NMDA provides evidence that the sensitivity of 

NMDA receptors to agonist activation was indeed augmented by this coagonist (fig. 2.2). 

This positive heterotropic effect of glycine on the interaction of glutamate with the 

NMDA receptor may underlie the glycine-induced rightward shift in the CNQX 

concentration-response relationship. 

Another approach to assess the participation of non-NMDA receptors in the acute 

neurotoxic response to glutamate was to ascertain the influence of concurrent non-NMDA 

receptor activation on the response to NMDA, thereby simulating the promiscuity of 

glutamate at both classes of receptor. Although the subtoxic concentrations of non-

NMDA receptor agonists employed produced only minor somal swelling in the absence 

of NMDA, they reduced NMDA LC50 values by more than three fold and increased 

neuronal cell loss 20 to 50 percent. Thus concurrent non-NMDA receptor activation 

enables NMDA receptor stimulation capable of producing a neurotoxic response. 

It is noteworthy that AMPA alone did not cause neuronal death, but rather 

produced only mild neuronal swelling at high concentrations. Expression of AMPA 

receptor subunits has been shown in cultured rat cerebellar granule neurons by Northern 

and Western blotting techniques (42). Therefore, we conclude that either (a) the level of 

AMPA receptor expression is insufficient for AMPA to cause significant toxicity, or (b) 

rapid desensitization of AMPA receptors precludes production of significant toxicity 

under the conditions of these experiments when AMPA is used alone (43,44). Neither of 

these two possibilities necessarily precludes the potentiation of NMDA toxicity by 

AMPA receptor activation. Nonetheless, AMPA also exhibits a low affinity for kainate 
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receptors (45,46) and elicits small currents in certain heteromeric assemblies of kainate 

receptors (47,48). Thus, interaction with kainate receptors may also contribute to the 

observed effect of AMPA on NMDA-induced neurotoxicity. 

The results described herein emphasize the influence of non-NMDA receptors on 

the excitotoxicity induced by glutamate. This influence is relevant to neuropathologies 

which result from the excessive activation of glutamate receptors. Activation of non-

NMDA receptors would be expected to produce neuronal depolarization, which would 

facilitate cation influx through NMDA receptor ion channels due to relief of the Mg++ 

blockade. Such a depolarizing influence may be particularly detrimental when neuronal 

function has been compromised by hypoxia or hypoglycemia. Non-NMDA receptor 

antagonists may therefore provide valuable therapeutic benefits against neuropathology 

induced by such neuronal compromise, a notion supported by in vivo studies. Thus, the 

AMPA receptor antagonist, 2,3- dihydroxy -6- nitro- 7- sulfamoylbenzo(f)quinoxaline 

(NBQX), produced a protective effect against post-ischemic behavioral pathology and 

hippocampal damage in gerbils when administered as late as one hour after the onset of 

global ischemia (49,50). NBQX was also protective against damage to hippocampal CAI 

pyrimidal neurons (51) and cerebellar purkinje cells (52) in a rat model of ischemia. 

Striatal and cortical injury after insulin-induced hypoglycemic coma in rats was also 

found to be due to stimulation of both AMPA and NMDA receptors (53). The data 

presented in this report provide in vitro results which support the conclusions of in vivo 

studies. 

In conclusion, our results document the effect of reduced temperature to augment 

excitatory amino acid mediated toxicity in cultured cerebellar granule neurons when 

exposure occurs in a physiologic milieu. Moreover, this has allowed us to clearly 

demonstrate that glutamate-induced excitotoxicity is dependent on the functional 

integration of non-NMDA and NMDA receptor activation. These findings suggest a 

mechanism by which non-NMDA receptors contribute to glutamate-induced toxicity and 
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are consonant with the results of in vivo studies detailing the neuroprotective effect of 

non-NMDA receptor antagonists against CNS pathology induced by ischemia and 

hypoglycemia. 
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3.1 Introduction 

The membrane potential of cells that are too small to be measured with a 

microelectrode can be determined by methods that use lipophilic ions such as 

tetraphenylphosphonium (TPP +) (1). These compounds permeate freely through 

biological membranes, have the propensity for charge delocalization, and therefore 

passively equilibrate with electric potential (2). TPP+ has been used for measuring 

membrane potentials (NY) in neural preparations such as neuroblastoma cells (3), 

neuroblastoma-glioma hybrid cells (4), and in synaptosomes (5-8). In the present study, 

we have estimated AT in cultured rat cerebellar granule neurons (CGCs) in physiologic 

media at 37° and 22° using a variation of the method of Lichtshtein, et al. (4). Inasmuch 

as CGCs are known to be resistant to the toxic effects of glutamate in physiologic media 

at 37° (9-11) but vulnerable at 22° (12), we have investigated whether reduced 

temperature undermines the ability of cultured neurons to maintain normal resting 

membrane potential during glutamate exposure. Large decreases in Atli would have 

several deleterious effects, including a reduction of the voltage-dependent Mg2+ blockade 

of NMDA receptor ion channels with attendant passage of toxic quantities of Ca- into 

the neurons (13,14). 

3.2 Materials and Methods 

3.2.1 Materials. 

Tetraphenylphosphonium bromide (TPP+) was purchased from Acros Organics 

(Geel, Belgium). [3H]TPP+ (34 Ci/mmol), [14C]D-sorbitol (217 mCi/mmol) and [3H]H20 

(1 mCi/m1) were purchased from Dupont NEN (Boston, MA). All other chemicals were 

purchased from Sigma (St. Louis, MO). 
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3.2.2 Uptake of [3H]TPP+ 

CGC cultures at 12 DIC were divided into two treatment groups: one was 

maintained throughout the experiment at 37° and the other at 22° C. The culture plates 

were washed three times with 1.0 ml Locke's buffer containing (in mM): 154 NaCl; 5.6 

KC1; 1 Mg Cl; 2.3 Ca Cl; 5.6 glucose; 8.6 HEPES; pH 7.4. To prevent depolarization

induced cell volume changes from occurring, 100 mM sucrose was included in all 

buffers. The neurons were incubated for 5 min., after which the wash buffer was aspirated 

completely and replaced with 500 pl Locke's exposure buffer containing 5-10 .tM [3H] 

TPP+ (0.01 0.03 Ci/mmol). High K+ Locke's buffer containing 40mM NaC1 and 

120mM KCl was used to maximally depolarize neurons and determine AT-independent [ 
3
I-IJTPP+ uptake. After a 60 min incubation during which the radiolabel was allowed to 

equilibrate between intra- and extracellular compartments, 5 pl of either L-glutamate (300 

p.M final concentration) or vehicle were added and the cells incubated for a period of 5 or 

20 min. The exposure buffer was then aspirated completely from the culture plates and 

analyzed for extracellular [3H]TPP+ content. Intracellular [3H]TPP+ content was 

determined after solubilization of the neurons in 500 p.1 1% Triton X-100. All assays were 

performed in triplicate. 

3.2.3 Determination of Intracellular Space. 

Intracellular volume (ICV) was determined in both non-depolarized and K +

depolarized neurons. Growth media was aspirated from the culture plates and the neurons 

washed three times in 22° C Locke's buffer containing 100 mM sucrose. The wash buffer 

was aspirated completely and replaced with 500 pl (4°C) Locke's containing [3H]f120 

and [14C]D-sorbitol. After gentle agitation for 1 min, 100 p.1 of the supernatant was 

removed and the volume of distribution of [3H]H20 (total intra- and extracellular space) 
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and [14C]D-sorbitol (extracellular space) determined. ICV was taken as the difference 

between total and extracellular spaces. 

3.2.4 Determination of AT. 

For each condition, intracellular TPP+ concentration was calculated from 

intracellular volume and [3H]TPP+ determinations. The TPP+ distribution ratio (Rrpp+) 

was determined from the following equation: 

RTPP+ = ([1PP11".1C+ -[TP P+] hil(+)1[TP P+], 

RTpp+ was inserted into the Nernst equation to obtain AT as follows: 

RT 
AT = log R

nF TPP 

RT 
where -61 at 37° and -58 at 22°

nF 

3.3 Results 

In the present study, 100 mM sucrose was present in all exposure buffers to 

prevent glutamate- and K+- induced neuronal swelling, which would otherwise confound 

the ability to determine [3H]TPP+ concentrations in CGCs. Under these hyperosmotic 

conditions, the intracellular volume was calculated to be 2.71 ± 0.13 gl/106 cells and 2.68 

± 0.84 gl/106 cells in low and high K+ media, respectively. 

As shown in figure 3.1, neuronal membrane potential did not change significantly 

when CGCs maintained at 37° were exposed to 300 !AM glutamate. AT at 37° was 

http:1PP11".1C
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Fig. 3.1 Change in the membrane potential of 12 DIC cerebellar granule neurons exposed 
to 300 tM glutamate in physiologic media. Neurons were incubated in the presence of 
[3H]TPP+ for one hr at the indicated temperatures before the addition of glutamate. 
Neurons and media were analyzed for [3H]TPP+ content at the indicated times after 
glutamate addition. Determination of membrane potentials was performed as described in 
Materials and Methods. Values represent the mean ± SEM from two experiments 
performed in triplicate. ** P < 0.003 

-65.6 ± 4.5 mV in control neurons, and -59.9 ± 5.2 and -57.3 ± 5.4 mV in glutamate-

exposed neurons after 5 and 20 min, respectively. In contrast, CGCs maintained at 22° 

were unable to sustain normal resting membrane potentials when exposed to 300 [IM 

glutamate. Although Atli in 22° control neurons (-64.1 ± 4.8 mV) was not significantly 
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different from controls at 37°, membrane potentials were reduced by 300 µM glutamate 

exposure to -57 ± 7.4 and -35.8 ± 6.3 mV after 5 and 20 min, respectively (fig. 3.1). 

3.4 Discussion 

The present results show that CGCs are able to maintain their membrane potentials close 

to resting levels when exposed to glutamate in physiologic media at 37°, but not when 

exposure occurs at 22°. These results are consonant with a previous report demonstrating 

that glutamate only induces excitotoxicity in rat CGCs in physiologic media when the 

temperature is reduced from 37° to 22° C (12). This inherent resistance of CGCs to 

acute glutamate-induced toxicity under physiologic conditions was thought to be due to 

their ability to maintain transmembrane electrochemical gradients at levels sufficient to 

preserve the voltage-dependent Mg2+ blockade of NMDA receptor ion channels. 

Excessive NMDA receptor activation would otherwise permit large amounts of Ca2+ and 

Na+ to enter the neurons, producing neuronal depolarization and Ca 2+ -mediated delayed 

neurotoxicity (15). Moreover, the ability to maintain resting membrane potential would 

limit the duration of glutamate exposures by preserving glutamate transport function, 

inasmuch as the glutamate transporter is driven by the co-transport of Na+ down its 

concentration gradient (16-18). Large reductions in the Na+ gradient can induce a 

reversed mode of glutamate transporter operation, thus increasing extracellular glutamate 

concentrations (17,18). Furthermore, maintenance of low intracellular Na+ concentrations 

would promote optimal functioning of the high capacity, low affinity Na + /Ca 2+ 

exchanger, the activation of which becomes critical for limiting intracellular Ca2+ 
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concentrations during intense glutamate exposures (19-21). Loss of the ability to 

extrude intracellular Ca2+ would promote mitochondrial Ca2+ sequestration and toxicity, 

thereby reducing neuronal energy levels (22). The current results therefore support the 

notion that reduced temperature facilitates the induction of glutamate neurotoxicity in 

CGCs by compromising their ability to maintain normal electrochemical gradients during 

glutamate-induced ion flux. 
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4.1 Abstract 

The participation of NMDA and non-NMDA receptors in domoic acid-induced 

neurotoxicity was investigated in cultured rat cerebellar granule cells (CGCs). Neurons 

were exposed to 300 1.1.M L-glutamate or 10 [tM domoate for two hours in physiologic 

buffer at 22° followed by a 22 hr incubation in 37° conditioned growth media. 

Excitotoxic injury was monitored as a function of time by measurement of lactate 

dehydrogenase (LDH) activity in both the exposure buffer and conditioned media. 

Glutamate and domoate evoked respectively, 50% and 65% of the total 24 hr increment in 

LDH efflux after 2 hrs. Hyperosmolar conditions prevented this early response, but did 

not significantly alter the extent of neuronal injury observed at 24 hrs. The competitive 

NMDA receptor antagonist, D(-)-2-amino-5-phosphonopentanoic acid (D-AP5), and the 

non-NMDA receptor antagonist, 2,3-dihydroxy-6-nitro-7-sulfamoyl-benzo(F)quinoxaline 

(NBQX), reduced glutamate-induced LDH efflux totals by 73% and 27%, respectively, 

whereas together, these glutamate receptor antagonists completely prevented neuronal 

injury. Domoate toxicity was reduced 65-77% when CGCs were treated with competitive 

and non-competitive NMDA receptor antagonists. Unlike the effect on glutamate toxicity, 

NBQX completely prevented domoate-mediated injury. HPLC analysis of the exposure 

buffer revealed that domoate stimulates the release of excitatory amino acids (EAAs) and 

adenosine from neurons. Domoate-stimulated EAA release occured almost exclusively 

through mechanisms related to cell swelling and reversal of the glutamate transporter. 

Thus, while glutamate-induced injury is mediated primarily through NMDA receptors, 

the full extent of neurodegeneration is produced by the coactivation of both NMDA and 

non-NMDA receptors. Domoate-induced neuronal injury is also mediated primarily 

through NMDA receptors, which are activated secondarily as a consequence of 

AMPA/kainate receptor-mediated stimulation of EAA efflux. 
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4.2 Introduction 

Among the excitatory amino acids (EAAs) known to produce toxic effects in the 

central nervous system, the neurotransmitter glutamate has been the most extensively 

characterized because of its involvement in CNS pathologies such as ischemia, 

hypoglycemia, trauma and epilepsy (1). Physiologically, rapid glutamatergic 

neurotransmission is mediated by non-N-methyl-D-aspartate (non-NMDA) receptors 

(AMPA/kainate receptors), which are sodium-permeable ligand gated ion channels (2). 

Glutamate also interacts with NMDA receptors, which form calcium and sodium-

permeable ion channels that are activated in both a voltage and ligand dependent manner 

(3). NMDA receptors serve as coincidence detectors requiring concurrent depolarizing 

stimuli, such as occurs during high frequency synaptic activity, to relieve the voltage-

dependent Mg2+ block of the channel. In this context, NMDA receptor signaling 

produces incremental increases in cytoplasmic calcium which activates processes that are 

fundamental to long term changes in synaptic strength (4,5). In certain pathological 

conditions, however, neurons possess insufficient metabolic energy to sustain normal 

resting transmembrane electrochemical gradients, and NMDA receptors are excessively 

activated. This produces large sustained increases in cytoplasmic calcium that ultimately 

cause neurodegeneration (6-8). 

In dissociated hippocampal and cortical cultures, glutamate-mediated injury has 

been shown to progress through two distinct phases: an early neuronal swelling that is 

dependent on extracellular sodium and appears to be mediated by AMPA/kainate 

receptors, and an NMDA receptor-mediated delayed neurodegeneration that is dependent 

on extracellular calcium (1). Naturally occuring excitotoxic compounds, such as kainate 

and domoic acid, are known to interact specifically with AMPA/kainate receptors yet 

induce a calcium-dependent CNS toxicity similar to glutamate (9,10). The mechanisms 

by which AMPA/kainate receptor agonists cause neurotoxicity remain uncertain. In a 
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number of vitro systems AMPA/kainate receptor-mediated neurotoxicity is largely 

dissociated from the involvement of NMDA receptors, since NMDA receptor antagonists 

fail to protect against non-NMDA receptor agonist challenge (11,12). Moreover, only a 

prolonged exposure to AMPA/kainate receptor agonists produces neuronal degeneration 

in some experimental systems (1.12), while acute exposures are sufficient to kill neurons 

in others (13-15). Thus, whereas the toxicity of glutamate can be clearly linked to NMDA 

receptor activation and subsequent calcium entry, the mechanisms underlying 

AMPA/kainate receptor-mediated, calcium-dependent neurodegeneration have not been 

well defined in cell culture systems. 

Studies in the adult animal show that AMPA/kainate receptor agonist-induced 

neurotoxicity is mediated by both NMDA and non-NMDA receptors. In the rat 

systemically administered kainic acid produces siezures followed by necrosis of neurons 

in the hippocampus, amygdala, piriform cortex and other limbic areas (16-18). Both 

competitive and non-competitive NMDA receptor antagonists have been shown to 

prevent the majority of this seizure related toxicity (16,17,19,20). These observations 

provide evidence consistent with the hypothesis that NMDA receptor activation plays a 

central role in neurotoxicity resulting from activation of AMPA/kainate receptors. It is 

also apparent from studies documenting the neuroprotective effects of non-NMDA 

receptor antagonists in animal models of focal and global ischemia, that both classes of 

receptor play important roles in glutamate-induced neurotoxicity (21-27). 

In the present work, we have compared the mechanisms underlying glutamate-

and domoate-induced neurotoxicity in cultured rat cerebellar granule cells (CGCs). 

Domoic acid was chosen as a model AMPA/kainate receptor agonist because it is a 

potential seafood contaminant with excitotoxic properties similar to kainate (28). 

Glutamate was studied for comparison because of its well documented ability to induce 

NMDA receptor-mediated toxicity in a number of in vitro systems. CGCs are a useful 
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system for this study because they express both NMDA and non-NMDA receptors (29) 

and can be grown in > 90% pure culture (30). 

An important consideration when using CGC's for toxicologic experimentation is 

that exposure conditions must be manipulated to overcome the inherent resistance CGCs 

have to the cytotoxic effects of excitatory amino acids (EAA) (6,7,31,32). Thus. the 

specific experimental conditions employed affect both the intensity and pathways by 

which EAA-induced neuronal damage occurs (1,33-35). For agonists such as domoate, an 

appropriate model should utilize a physiologic medium, inasmuch as domoate 

intoxications are known to occur in initially healthy individuals (36,37). A physiologic 

medium preserves normal cell signaling mechanisms by maintaining the voltage-

dependence of NMDA receptor activation and thus any functional interrelationships that 

exist between NMDA and AMPA/kainate receptors. 

In the present report, CGCs were exposed to glutamate and domoate in 

physiologic medium at a temperature of 22°. Reduced temperature conditions have 

previously been shown to increase the neurotoxic potency of glutamate in cultured 

neurons (13,38). This has allowed us to directly compare glutamate and domoate

mediated toxicity under identical conditions and in the same temporal context (38). The 

present results confirm that glutamate and domoate toxicity are mediated by both NMDA 

and AMPA/kainate receptors. Moreover, we have shown in dissociated neuron cultures 

that acute domoate-induced neurotoxicity is largely mediated through NMDA receptors, 

which are activated by endogenous EAAs released into the media. This domoate

stimulated EAA efflux was pharmacologically characterized and shown to occur by 

mechanisms other than the vesicular release of excitatory neurotransmitter stores. 
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4.3 Materials and Methods 

4.3.1 Materials 

D(-)-2-amino-5-phosphonopentanoic acid (D-AP5), L-trans-pyrrolidine-2,4

dicarboxylic acid (PDA), 2,3-dihydroxy-6-nitro-7-sulfamoyl-benzo(F)quinoxaline 

(NBQX), and domoic acid were purchased from Tocris Cookson (Bristol, U.K). N6

cyclopentyladenosine (CPA), 8-(p-sulfophenyl)theophylline (8-pSPT), 3-[(R)-2

carboxypiperazin-4-yl]propy1-1-phosphonic acid (CPP), N-(1- [2-thienyl] 

cyclohexyl)piperidine (TCP), (+)-5-methy1-10,11-dihydro-5H-dibenzo[a,d]cyclohepten

5,10-imine maleate(MK-801), dextrorphan (DX) and dextromethorphan (DXM) were 

purchased from Research Biochemicals Inc. (Natick, MA). Tetrodotoxin (TTX) was 

purchased from Sankyo Co. LTD. (Tokyo). Acetonitrile, L-glutamate, glycine. N-methyl

D-aspartic acid (NMDA), bovine serum albumin (BSA), trypsin, DNAse, poly-l-lysine 

(M.W. 393,000), cytosine arabinoside and o-phthaldialdehyde (OPT), soybean trypsin 

inhibitor (SBTI) were purchased from Sigma (St. Louis, MO). Basal Eagle's Medium 

(BME) was purchased from Gibco Labs (Grand Island, N.Y.). Chloracetaldehyde was 

purchased from Fluka Chemicals (Switzerland). 

4.3.2 Cell Culture 

Primary cultures of cerebellar neurons were obtained from 8 day old Sprague 

Dawley rats as described by Novel li et. al. (6), with minor variations. In brief, cerebella 

were dissected and the cells dissociated and suspended in basal Eagle's medium 

supplemented with 25 mM KC1, 2mM glutamine, 10 % fetal calf serum, and 100 tg /m1 

gentamicin. Cells were seeded onto poly-l-lysine coated (5 Kg/m1) 6-well (35 mm dia.) 

culture dishes at a density of 2.5-3.5 x 105 cells/cm2. Care was taken to ensure a uniform 

plating density. The neurons were incubated at 37° in a 5 % CO2, 95 % humidity 
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atmosphere. Cytosine arabinoside (10 j.tM) was added after 18-24 hours to inhibit the 

replication of non-neuronal cells. At 8 days in culture, 100 1.1.1 of a 25 mg/ml D-glucose 

solution was added to each plate to replenish energy resources and compensate for 

evaporative losses (6). 

4.3.3 Excitotoxicity Assays 

Neurons were utilized for toxicological assays at 12 days in culture. Growth 

medium was collected and saved, and the neurons washed twice in ml Locke's1 

incubation buffer containing (in mM): 154 NaCI; 5.6 KCI; 1.0 MgC12; 2.3 Ca C12; 5.6 

glucose; 8.6 HEPES; 0.1 glycine; pH 7.4. For experiments in which a hyperosmolar 

medium was used to inhibit neuronal swelling, 100 mM sucrose was added. 1.0 ml of 

fresh Locke's buffer containing the various test compounds was added to cultures 

followed by an incubation at 22° for 2 hrs. Control sister cultures were run in parallel 

with each treatment group. At the termination of incubation, the exposure buffer was 

collected and saved for later analysis of lactate dehydrogenase (LDH) activity and the 

cultures washed twice in 1 ml fresh Locke's followed by replacement with 2.0 ml of the 

previously collected and saved growth medium which was supplemented with 2.5 mg/ml 

D-glucose. Neurons treated for 2 hrs in the presence of 100 mM sucrose were maintained 

with the same concentration of sucrose in the conditioned growth medium. The cell 

cultures were returned to the 37° incubator. At 4, 8 and 24 hours after the beginning of 

the 2hr exposure, 0.25 ml aliquots of growth medium were collected and saved for 

analysis of LDH activity. LDH activity was assayed as described by Koh and Choi (39). 
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4.3.4 Measurement of Excitatory Amino Acids and Adenosine Release 

Exposure conditions in release studies were identical to those used in 

excitotoxicity assays. Exposure buffer was collected at various timepoints and assayed for 

excitatory amino acid (EAA) content by HPLC after precolumn derivitization with o

phthaldialdehyde (OPT) (40). In general, 40 41 borate buffer (saturated solution, pH 9.5), 

20 p1 of an OPT solution (50 mg in 4.5 ml 100% methanol, 0.5 ml borate buffer, 50 111 

ethanethiol) and 100 tl 100% methanol were added to a 40 111 aliquot of exposure buffer. 

Twenty microliters of the derivatized sample was applied to the column 2 min after the 

addition of OPT. A reverse phase column (Supelco LC-18 250 x 4.5 mm i.d.) was 

employed with a guard column (15 x 4.6 mm i.d.), both packed with 5 1.tm dia. particles. 

The effluent was monitored fluorimetrically using a model FS-970 Kratos fluorometer 

with the following settings for detection: excitation monochronometer 229 nm. a 470 nm 

cutoff filter for emission measurement, a 1.0 .tA full scale range setting with a time 

constant of 0.5 s, and a sensitivity setting of 5.42 units. The mobile phase was 0.0125 M 

Na-,HPO4 (pH 7.2) and acetonitrile in a gradient from 9 to 17 percent over 8 minutes 

followed by an increase to 49 % over 2 min, a hold for 3 min, and reduction to 9 % over 2 

min to purge the column. Aspartate and glutamate were detected at retention times of 4.9 

and 6.9 minutes, respectively. 

Adenosine was measured fluorometrically after precolumn conversion to the N6

etheno derivative (41). Equal volumes of chloracetaldehyde and exposure buffer were 

mixed (0.675 % final chloracetaldehyde concentration) and placed in a boiling water bath 

for 20 min. After cooling, 20 ill of the extract was injected onto the column using the 

same HPLC apparatus as for EAA measurement but with a 50 mM acetate (pH 4.5) and 

6.5 % acetonitrile mobile phase (2 ml/min). For adenosine detection, the excitation 

monochronometer was set to 280 nm with a 418 nm emission cutoff filter, a 0.05 to 

range setting with 5 s time constant, and sensitivity setting of 5.80 units. 
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4.4 Quantification of Results 

4.4.1 Excitotoxicity assays 

For each timepoint, total LDH activity in triplicate plates was calculated, the 

results averaged and LDH efflux in excess of control sister cultures run in parallel 

determined. The LDH efflux value obtained from exposure buffer at 2 hours was added to 

the 4, 8, and 24 hour growth medium LDH efflux values to give the total A LDH 

EI-PLUX, which is a measure of the cumulative change in LDH activity over time. 

Results were normalized to the 24 hour LDH activity induced by either 300 jiM L-

glutamate or 10 1.1M domoic acid. Nonlinear regrassion analysis and graphs were made 

using Graphpad Prism software (San Diego, CA.). 

4.4.2 Excitatory Amino Acid and Adenosine Efflux. 

The fluorescent detection of adenosine, glutamate and aspartate derivatives was 

recorded on a Linear model 585 chart recorder. Peaks were excised and weighed, and the 

quantity of extract determined by comparison with external standards. External standards 

were expressed as a measurement of the area under the peak in picomoles. The quantity 

of amino acids or adenosine in sample extracts were then converted into units of 

concentration in the exposure buffer. 

4.5 Results 

In a previous report, we demonstrated that a 2 hr exposure to 300 JIM L-glutamate 

or 101.1M domoate produced maximal neuronal losses of 65 and 79 %, respectively, in 12 

DIC cerebellar granule neurons in a physiologic buffer at 22° (38). Moreover, this level of 
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EAA-induced neuronal injury was associated with a five- to eight-fold increase in lactate 

dehydrogenase (LDH) activity in the exposure buffer after two hours. Control neurons 

remained unaffected by these experimental manipulations. In the present experiments. 

identical exposure conditions were utilized and neuronal injury assessed by measuring 

LDH activity in the exposure buffer after 2 hrs and in conditioned growth media at 2. 4 

and 22 hrs after the termination of excitotoxin exposure. A 24 hr profile of progressive 

neuronal injury was therefore derived from this cumulative change in LDH activity. 

As shown in figure 4.1a, 50 ± 1.6 % of the 24 hr cumulative LDH efflux occured 

during the 2 hr glutamate exposure. Similarly, 64 ± 6.0 % of the domoate-stimulated 

LDH efflux was induced acutely (fig. 4.1b). Inasmuch as significant neuronal swelling 

was apparent within the first five minutes of EAA exposure, we investigated the extent to 

which osmotically driven swelling produced neuronal injury and LDH efflux. EAA-

induced neuronal swelling was inhibited completely when 100 mM sucrose was added to 

both the exposure buffer and conditioned growth media. Moreover, LDH efflux at the 2 

hr timepoint was reduced to 2.5 ± 0.8 % and 2.7 ± 0.7 % of 24 hr totals for glutamate and 

domoate, respectively. Therefore, the early leakage of LDH from neurons was generated 

by osmotic swelling (fig. 4.1a and 4.1b). After 24 hrs, however, there was no significant 

difference in total LDH activity in media from neurons exposed to EAAs under 

hyperosmolar as compared to isosmolar conditions (fig. 4.1a and 4.1b). Neuronal damage, 

which comprised a loss of approximately 70 % of the neurons with the disappearance of 

the majority of neurites, was virtually identical at 24 hrs under control and hyperosmolar 

conditions. This finding suggested that swelling by itself did not directly induce neuronal 

injury, but instead unmasked early damage to membranes and/or cytoskeletal elements. 

Neurons exposed to sucrose alone for 24 hrs were unaffected by the hyperosmolar 

conditions. 
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Fig. 4.1 A LDH efflux from 12 DIC rat cerebellar granule neurons exposed to 300 tM L-
glutamate (a) or 10 1.1.M domoate (b). Neurons were exposed to excitotoxins in 1 ml 
Locke's buffer for 2 hrs. At the termination of excitotoxin exposure, the Locke's buffer 
was replaced with 2 ml conditioned growth media supplemented with glucose and the 
neurons placed in the 37° / 5% CO2 incubator. Aliquots of growth media were collected 
at the indicated times after excitotoxin exposure and the units of LDH activity 
determined. Values represent LDH activity in excess of non-intoxicated controls that 
were run in parallel with treated neurons. Slash marks indicate the change from exposure 
buffer to conditioned growth media. Each growth media LDH activity value was added to 
that determined from the exposure buffer to obtain a 24 hr profile of neuronal injury. 
Values are means ± SEM from at least 7 experiments run in triplicate. ** P < 0.001 as
compared to controls. 
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In order to characterize NMDA and non-NMDA receptor contributions to 

glutamate- and domoate-induced cytotoxicity, the neuroprotective capacity of glutamate 

receptor antagonists was investigated. When glutamate receptor antagonists were utilized 

only during the 22 hr post-exposure period, no neuroprotection was afforded (results not 

shown). Moreover, EAA receptor antagonist neuroprotection was not significantly 

different between neurons treated with EAA receptor antagonists during the 

excitotoxicant exposure only or for the entire 24 hrs. Furthermore, cumulative 24 hr LDH 

activity was not significantly different between neurons treated in the presence or absence 

of 100 mM sucrose. Therefore, neurons were treated with glutamate receptor antagonists 

during EAA exposures only, and in the absence of sucrose. 

Figure 4.2a shows the 24 hr cumulative LDH efflux levels in media from neurons 

exposed 2 hrs to 300 pM glutamate. In the presence of 10 i.tM NBQX, a concentration 

which would prevent the activation of AMPA and kainate receptors (24), glutamate-

induced cytotoxicity was reduced modestly to 73 ± 10 % of control. Moreover, neurons 

exposed to glutamate in the presence of NBQX appeared as swollen after 2 hrs as neurons 

exposed to glutamate alone. By 24 hrs. neurite thinning and membrane blebbing were 

apparent and absolute neuron loss appeared somewhat reduced as compared to control. 

The competitive NMDA receptor antagonist D-AP5 reduced glutamate-induced LDH 

efflux more substantially, to 27 ± 3 % of control, and completely prevented neuronal 

swelling. Furthermore, little neuronal loss was apparent and neurites showed only minor 

thinning. When both EAA receptor antagonists were included in the exposure buffer, 

cerebellar granule neurons were afforded complete protection from neurotoxic injury 

(LDH efflux = -0.4 ± 3.1 % of control). As depicted in fig. 4.2a, NMDA was tested and 

found to produce only 21 ± 3 % of control glutamate cytotoxicity. 

The EAA receptor antagonist neuroprotection profile against domate-exposed 

neurons contrasted sharply with that of glutamate. The non-NMDA receptor antagonist 
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4.2 Glutamate receptor antagonist neuroprotection profile in 12 DIC cerebellar granule 
neurons challenged with 3001AM L-glutamate (a) and 101.tM domoate (b). Bars represent 
the sum of the LDH activity, in excess of parallel-run controls, measured in the exposure 
buffer at 2 hrs and conditioned media at 24 hrs after initiation of glutamate exposure. 
Values are means ± SEM for at least 3 experiments run in triplicate. ** P < 0.001 as 
compared to glutamate control. 
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NBQX completely protected neurons from domoate-induced swelling and injury. 

Surprisingly, NMDA receptor antagonists also provided substantial neuroprotection 

against domoate-induced toxicity (figure 4.2b). The competitive NMDA receptor 

antagonists D-AP5 and CPP reduced domoate toxicity to 34 ± 3 and 23 ± 2 % of controls. 

respectively. Similarly, non-competitive NMDA receptor antagonists provided substantial 

neuroprotection. MK-801 reduced domoate toxicity to 25 ± 6 % of control, while 

dextrorphan, dextromethorphan and TCP reduced domoate-induced toxicity to 35 ± 4. 35 

± 5 and 26 ± 2 % of control LDH efflux, respectively. Although NMDA receptor 

antagonists afforded substantial neuroprotection after a 2 hr domoate exposure. it was 

noted that neurons appeared swollen to the same degree as glutamate control neurons yet 

underwent rapid recovery after replacement of the 37° conditioned growth media. By 24 

hrs, neurites showed evidence of membrane blebbing and appeared thinner while the 

somata were unaffected by domoate treatment in the presence of NMDA receptor 

antagonists. 

These results suggest that the majority of domoate-induced neurotoxicity is 

mediated by NMDA receptors, which may be activated as a consequence of domoate

stimulated release of endogenous EAAs. To test this hypothesis, cultures were exposed 

to10 [IM domoate for 20 min and the incubation buffers assayed for the presence of 

glutamate and aspartate. The resultant EAA concentrations in exposure buffers from 

cultures containing approximately 2.5 x 106 neurons per plate were 10.0 ± 0.9 I.J.M and 5.3 

± 0.76 gIVI for glutamate and aspartate, respectively. Although neuron densities were 

invariant between plates within a given culture, populations between cultures varied from 

2.5 3.5 x 106 neurons per plate; therefore, results of EAA measurements were 

normalized to account for inter-experimental variability in amino acid concentrations 

resulting from neuron density variations. Figure 4.3 shows the concentrations of 

glutamate and aspartate in 1 ml of buffer after a 20 minute domoate exposure. NBQX 

completely prevented EAA efflux from neurons exposed to domoate. The competitive 
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NMDA receptor antagonist CPP reduced glutamate and aspartate efflux, respectively, to 

45 ± 7 % and 15 ± 1 % of glutamate control. Similarly, the non-competitive NMDA 

receptor antagonists MK-801, dextromethorphan and dextrorphan reduced domoate

stimulated EAA efflux to 23 ± 8, 21 ± 3 and 29 % for glutamate and 9 ± 4, 15 ± 7 and 19 

% for aspartate, respectively. These findings indicate that domoate, through the activation 

of non-NMDA receptors, induces the release of glutamate and aspartate from cultured 

cerebellar granule neurons. Glutamate and aspartate in turn activate NMDA receptors, 

which appear to promote further increases in EAA efflux into the exposure buffer. 
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Fig. 4.3 Efflux of L-glutamate and L-aspartate from 12 DIC cerebellar granule neurons 
exposed to 10 [IM domoate for 20 min. Neurons were exposed to domoate in 1 ml of 
Locke's buffer at 22° and aliquots analyzed for glutamate and aspartate by HPLC. Results 
were normalized to control L-glutamate concentrations. Values for all treatments except 
DX (N=1) represent means ± SEM from at least 3 experiments. CPP. 3-(R-2
carboxypiperazin-4-y1)-propy1-1-phosphonic acid; DXM, dextromethorphan; DX, 
dextrorphan; Mk-801, methyl -10,11-dihydro-5-H-dibenzocyclohepten-5,10-imine NBQX, 
2,3-dihydroxy-6-nitro-7-sulfamoyl-benzo(F)quinoxaline .* P < 0.005 
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To characterize the mechanism(s) of domoate-stimulated EAA release. cerebellar 

granule neurons were exposed to 10 j.tM domoate in a 1.0 ml volume and the buffer 

assayed for glutamate and aspartate at specific timepoints during the 20 minute exposure 

(figure 4.4). After a lag of 1 to 2 minutes, glutamate and aspartate concentrations 

increased biphasically up to the 15 minute timepoint, after which time EAA 

concentrations plateaued. When neurons were pre-incubated for 1 hr with 200 .t.Y1 L

trans-pyrrolidine-2,4 dicarboxylic acid (PDA), a competitive and transportable inhibitor 

of the high affinity glutamate transporter, glutamate and aspartate concentrations were 

reduced by 47 ± 10 and 55 ± 15 %, respectively, at the 15 minute timepoint. Glutamate 

and aspartate efflux were reduced even further, by 90 ± 4 and 94 ± 5 % respectively, 

when swelling of PDA pre-exposed neurons was prevented with 100 mM sucrose. In this 

case, the EAA efflux profile appeared monophasic. The presence of sucrose alone 

reduced domoate-stimulated glutamate and aspartate efflux by 61 ± 3 and 80 ± 1 %, 

respectively. 

From these results, it appears that domoate-exposed cultured cerebellar granule 

neurons release EAAs by two primary routes: reversal of the sodium-dependent glutamate 

transporter and via osmotically driven swelling with attendant EAA efflux. Further 

investigations were performed to ascertain whether a vesicular component of EAA 

release was also present. Tetrodotoxin (TTX) was utilized to inhibit neuronal 

depolarization resulting from Na+ influx through voltage-dependent sodium channels. 

Neurons treated with 3 1.1M TTX showed a slight but significant reduction in the rapid 

phase of domoate-induced EAA efflux, but without a corresponding reduction in 

maximum EAA concentration (figure 4.5). When 10 1,1M CPA was used to activate A1 

adenosine receptors. and thereby inhibit vesicular release of EAAs, no change in 
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Fig. 4.4 EAA efflux from 12 DIC cerebellar granule neurons exposed to domoate. 
Cerebellar granule neurons were exposed to 10 1.tM domoate in a 1.0 ml volume and the 
buffer assayed for glutamate (a) and aspartate (b) at specific timepoints during the 20 
minute exposure. Results were normalized to the maximum control value attained during 
the domoate exposure. Values represent means ± SEM from at least 3 experiments. * P < 
0.05 ** P < 0.005 *** P < 0.001 
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Fig. 4.5 EAA efflux from 12 DIC cerebellar granule neurons exposed to 10 µM domoate. 
Neurons were exposed to domoate in a 1.0 ml volume and the buffer assayed for 
glutamate (a) and aspartate (b) at specific timepoints during the 20 minute exposure. 
Results were normalized to the maximum control value attained during the domoate 
exposure. Values represent means ± SEM from at least 3 experiments. * P < 0.05 ** P < 
0.005 *** P < 0.001 
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domoate-induced EAA efflux occured. The adenosine receptor antagonist 8-(p

sulphophenyl)theophylline (8- pSPT), however, elicited an increase in the rapid phase of 

domoate-induced glutamate efflux and elevated the maxumum glutamate concentration to 

136 ± 4 % of domoate-stimulated controls (figure 4.5a). This 8-pSPT-induced increase in 

glutamate efflux was completely prevented by 3 i_tM TTX. 8-pSPT, however, was without 

effect on aspartate efflux (figure 4.5b). These results suggest that a small vesicular 

component of domoate-stimulated glutamate release is prevented by tonic adenosine 

receptor activation. The exposure buffer was therefore examined for the presence of 

adenosine. As shown in figure 4.6, 10 p.M domoate caused the cerebellar granule neurons 

to release adenosine monophasically into the buffer. In three separate experiments 

(approx. 2.5 x 106 neurons/plate) the adenosine concentration in exposure buffer at 20 

min reached a level of 1.25 ± 0.1 JIM (fig. 4.6). 

4.6 Discussion 

A primary aim of this study was to characterize domoic acid-induced 

neurotoxicity in cultured cerebellar granule neurons under experimental conditions which 

simulate the neuronal milieu present in human intoxications. Inasmuch as the CNS 

pathology resulting from domoic acid intoxication occurs in normal healthy subjects, the 

model described herein employs a physiologic media which preserves normal cell 

signaling mechanisms. In a previous report, glutamate excitotoxicity was characterized in 

CGCs under identical exposure conditions (38). The present study extends those previous 

findings and directly compares glutamate- and domoate-induced neurotoxic processe 

An initial concern was that the duration of excitotoxin exposure might induce an 

ion influx of sufficient magnitude to cause osmotic rupture of the neurons. Prevention of 

acute swelling with a hyperosmolar medium did prevent leakage of LDH from the 
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Fig. 4.6 Adenosine efflux from 12 DIC cerebellar granule neurons exposed to 10 !AM 
domoate. Neurons were exposed to domoate in a 1.0 ml volume and the buffer assayed 
for adenosine at specific timepoints during the 20 minute exposure. Results represent 
means ± SEM from 3 experiments. 

neurons. These findings are similar to those of Goldberg and Choi (8), who have shown 

that inhibition of swelling in cortical neuron cultures during oxygen-glucose deprivation 

protects against acute injury but not delayed neurodegeneration. In the present report, 

hyperosmotic conditions were expected to reduce total LDH accumulation by an amount 

equivalent to that released directly by osmotic rupture; however, this was not the case. 

We suggest that swelling produces acute neuronal injury only when membrane or 

cytoskeletal elements are damaged by processes related to NMDA receptor activation and 

Ca2+ entry into neurons. This conclusion is supported by the observation that neurons 

exposed to domoate in the presence of NMDA receptor antagonists appeared swollen to 



94 

the same extent as domoate-exposed controls after 2 hours, but recovered and were 

protected from subsequent neurodegeneration. 

The present results indicate that NMDA and non-NMDA receptors functionally 

interact to produce acute glutamate- and domoate-induced excitotoxic responses, and 

both excitotoxins produce a primarily NMDA receptor-mediated cytotoxicity when 

exposed in a physiologic medium at 22°. These results differ from those previously 

reported by Kato et al. (15), who investigated kainate toxicity in CGCs. In their report. 

kainate-induced LDH release occurred within 30 minutes in 8 DIC and older CGCs, 

whereas glutamate was non-toxic at any age in culture. Moreover, neither acute nor 

delayed kainate toxicity appeared to involve the activation of NMDA receptors. There are 

several possible explanations which may account for these differences. First and 

foremost, 100 p.M glycine was included in all exposure buffers in the present study. We 

have found that glycine enhances both the excitotoxic potency and efficacy of glutamate 

and augments NMDA-induced toxicity in this system (38). The inclusion of glycine 

renders this CGC medium physiologic inasmuch as glycine is present at micromolar 

levels in cerebrospinal fluid (41) and is required as a coagonist for NMDA receptor 

activation (42). The absence of glycine therefore will bias results away from the 

involvement of NMDA receptors. Second, neurons were subjected to a longer excitotoxin 

exposure period in the present study than in the report of Kato, et al. A longer excitotoxin 

exposure in conjunction with conditions that permit NMDA receptor signaling may 

explain why glutamate produced significant toxicity in this study. Third, kainate and 

domoate may not act in an identical manner to cause toxicity in CGCs. Domoate has been 

shown to induce larger currents through G1uR5 homomeric receptors than kainate (43); 

therefore, differences in the ability to activate native AMPA/kainate receptors are likely 

to contribute to differences observed between kainate- and domoate-induced 

excitotoxicity. Moreover, the mechanisms of kainate- and domoate-induced EAA release 

from synaptosomes appear to be distinct (44). The presence of glycine in the exposure 
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buffer and distinct patterns of EAA release are therefore the most parsimonius 

explanations for the differences in the results with domoate, reported herein, and the 

previously described effect of kainate in CGCs (15). 

Pharmacologic studies have shown that NMDA receptor-mediated increases in 

intracellular Ca2+ concentration are a major cause of excitatory amino acid-induced injury 

and death in neurons (1). Non-NMDA receptors, however, can also produce increases in 

intracellular Ca2+ by depolarizing neuronal membranes and activating voltage operated 

Ca2+ channels (45). AMPA/kainate receptor-mediated accumulation of intracellular Na+ 

may also allow Ca2+ entry through the Na+/Ca2+ exchanger, which can operate in a 

reverse mode when the cell is depolarized (46). These mechanisms may account for the 

mild injury to CGCs induced by glutamate and domoate when NMDA receptor activation 

is blocked. Recent reports have also demonstrated the presence of Ca2+-permeable 

AMPA/kainate receptors in specific neuronal and glial populations within the CNS: 

however, their existence on cerebellar granule neurons has not been reported (47). 

AMPA/kainate receptor-mediated depolarization may also increase free cytoplasmic Ca2+ 

by facilitating release of the Mg2+ blockade of NMDA receptor ion channels. This 

mechanism would explain why the AMPA/kainate receptor antagonist, NBQX, reduced 

the neurotoxic efficacy of glutamate in this study. Moreover, the absence of 

AMPA/kainate receptor involvement would partially account for the relatively mild 

injury incurred by CGCs during NMDA exposure. The lower efficacy of NMDA, as 

compared to glutamate in the presence of NBQX, may be explained by the partial agonist 

profile of NMDA at NMDA receptors (48,49). 

An interesting finding was that domoate excitotoxicity is mediated predominantly 

by NMDA receptors under the conditions employed. This finding is in agreement with 

those of Favaron, et al. (13) and Manev, et al. (14), who demonstrated that kainate 

toxicity in CGCs could be reduced significantly by non-competitive NMDA receptor 

antagonists. Moreover, these findings agree with in vivo studies demonstrating that brain 
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damage induced subsequent to kainic acid-induced seizures is mediated by NMDA 

receptors (16-19). Novel li et al. (12) demonstrated that domoate-containing toxic mussels 

produce neurotoxicity in neuronal cultures through a synergism between excitatory amino 

acids. Their data show that subtoxic concentrations of domoic acid potentiate the 

excitotoxic effect of glutamate and aspartate, and that this neurotoxic synergism may 

occur through a reduction of the Mg2+ block at the NMDA receptor ion channel. Our data 

confirm and extend this earlier study by showing that the direct non-NMDA receptor-

mediated effect of domoate produces only mild injury after a 2 hour exposure, whereas 

severe excitotoxicity results from the ability of domoate. through AMPA/kainate 

receptors, to stimulate the release of endogenous EAAs and effect a NMDA receptor-

mediated neurotoxicity. 

Competitive and non-competitive NMDA receptor antagonists reduced domoate

stimulated EAA release by 55 to 80 percent (fig. 3). Therefore. NMDA receptors mediate 

not only the majority of domoate-induced neuronal injury, but also a major component of 

EAA efflux. Kiedrowski et al., (50), demonstrated in cultured cerebellar granule neurons 

that transient applications of glutamate cause NMDA receptor-mediated increases in 

intracellular Na+ that often exceed 60 mM. These large reductions in the Na+ gradient 

were shown to impair the ability of neurons to extrude and/or buffer cytoplasmic Ca2+, 

presumably due to a decrease in the efficiency of the Na+/Ca2+ exchanger (50,51). We 

propose that, in addition to compromising the Nal-/Ca2+ exchanger, large NMDA 

receptor-mediated reductions in the Na+ gradient inhibit or reverse the operation of the 

Na+-dependent glutamate transporter. This possibility was investigated pharmacologically 

using PDA, a transportable, competitive inhibitor of the Na+-dependent glutamate 

transporter (52). Indeed, when the reversed mode of glutamate transporter operation was 

inhibited by preloading neurons with PDA (53), domoate-stimulated glutamate and 

aspartate efflux were reduced by 50% (fig. 4). The remainder of non-vesicular EAA 

release evoked by domoate was almost completely accounted for by mechanisms related 
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to cell swelling. Neurons and astrocytes have been shown to counteract hyposmolarity

induced increases in cell volume by releasing taurine (54-58). Moreover, these regulatory 

volume decreases appear to involve chloride channels (59,60) with a molecular size 

exclusion limit of approximately the size of glutamine (61). Glutamate and aspartate are 

also released in response to cell swelling, and by a mechnism that has been shown to be 

inhibited by hyperosmotic sucrose (55). Sucrose alone in the present experiments 

prevented 61 and 80 percent of domoate-induced glutamate and aspartate release. 

respectively. The combination of sucrose and PDA reduced glutamate and aspartate 

efflux by 90 and 94 percent, respectively, indicating that domoate-stimulated EAA 

release occurs almost exclusively through mechanisms related to cell swelling and 

reversal of glutamate transport (fig. 4). 

In a number of reports, the neuronal release of glutamate resulting from 

depolarization or ischemia has been shown to occur by two primary mechanisms: Cat+

dependent vesicular release (62) or, in pathological conditions, by reversal of the high 

affinity Nat-coupled glutamate transporter (53,62). The extent to which either mechanism 

predominates depends upon factors that affect neuronal energetics and ion homeostasis 

(62,63). Thus, experiments in cerebellar granule neurons show that the majority of EAA 

release induced by elevated K+ or veratridine originates from vesicular pools (64-66), 

whereas ischemia-induced EAA release has variably been shown to arise from vesicular 

(67), non-vesicular (68,69) or both vesicular and non-vesicular pools (70,71). In the 

present study little if any of the domoate-stimulated EAA accumulations could be 

accounted for by exocytotic mechanisms. Instead, we found that vesicular release of 

EAAs was inhibited by the concurrent release of endogenous adenosine from the neurons 

(fig. 6). Thus, a tonic inhibition of exocytotic EAA release was revealed by the adenosine 

receptor antagonist 8-pSPT (fig. 5a). 8-pSPT potentiated domoate-induced glutamate 

release in a TTX-sensitive manner, whereas aspartate accumulations were unaffected by 

this adenosine receptor antagonist (fig. 5b). This finding suggests that aspartate is not 
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contained in synaptic vesicles, a notion that is supported by a number of other in vitro 

studies (for review, see 72), including those on synaptosomes (63,73) and CGCs (74). 

The demonstration that exocytotic glutamate release is inhibited by endogenous 

adenosine during domoate exposure is compatible with the results of Heron and Seylaz 

(75), who monitored the effects of veratradine and ischemia on intrahippocampal amino 

acid concentrations in rats by microdialysis. Under ischemic conditions. adenosine 

receptor agonists failed to modify EAA release, whereas theophylline significantly 

potentiated glutamate efflux, thus, indicating the presence of tonic adenosine receptor 

activation. Conversely, during veratridine-induced depolarization, adenosine receptor 

agonists reduced EAA release while theophylline was without effect. Thus, under the 

present conditions, cerebellar granule neurons appear to respond to domoate in a manner 

similar to ischemic neurons in vivo. Moreover, the present results are consonant with data 

showing that, not only is adenosine released in response to stimulation by NMDA and 

non-NMDA receptor agonists (76,77), but adenosine and its analogues also inhibit EAA 

release in a manner that is reversed by adenosine A1 receptor antagonists (78.-80). 

Recently, Tasker et al. (81), demonstrated that the competitive NMDA receptor 

antagonist CPP significantly attenuates CNS neurotoxicity when administered prior to 

domoate in rats, whereas MK-801 alone produced deleterious effects and AP5 was 

marginally protective. It was suggested that the failure to demonstrate a convinving 

neuroprotective response to AP5 is related to the poor bioavailability of this compound. 

In accordance with this interpretation our results with the direct application of NMDA 

receptor antagonists in vitro demonstrated an attenuation of domoate-induced 

neurotoxicity. Certainly, more detailed investigations will be required to ascertain the 

effectiveness of NMDA receptor antagonists against domoate neurotoxicity in vivo. 

In conclusion, this report demonstrates that cultured cerebellar granule neurons in 

a physiologic milieu respond to NMDA and non-NMDA receptor agonists in a manner 

consistent with that reported in vivo. We have shown that the acute excitotoxic response 
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to both glutamate and domoate is predominantly mediated by NMDA receptors. NMDA 

receptors have been shown to be expressed in CGCs in primary culture (82). Glutamate 

activates NMDA receptors directly to produce a neurotoxic response. Concurrent non-

NMDA receptor activation by glutamate produces an additional depolarizing stimulus 

which in turn potentiates excitotoxicity, either by increasing intracellular Ca2+ 

concentrations through voltage-sensitive Ca2+ channels, modulation of the Na +ICa2+ 

exchanger, or by reduction of the voltage-dependent Mg2+ blockade of NMDA receptor 

ion channels. In contrast, domoic acid produces a NMDA receptor-mediated 

excitotoxicity indirectly through the AMPA/kainate receptor-activated release of 

glutamate and aspartate into the medium. Domoate, therefore, synergistically potentiates 

glutamate/aspartate-mediated neurotoxicity. Cultured cerebellar granule neurons also 

respond to domoate-induced depolarization by releasing adenosine, which acts to 

suppress exocytotic release of glutamate; however, this compensatory response is offset 

by severe alterations in ion gradients which cause non-vesicular EAA release through 

both a reversal of high affinity glutamate transport and osmotically driven mechanisms. 
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5.1 Abstract 

The conditions required for growth and survival of cerebellar granule neurons in 

vitro are known to alter the developmental regulation of NMDA receptor subunit mRNA. 

In the present report, we have examined the functional and pharmacological 

characteristics of NMDA receptors on cerebellar granule neurons at 12 days in culture (12 

DIC). Under open-channel conditions in extensively washed membranes, [31-1]MK-801 

labeled a uniform population of sites (Kd = 3.2 ± 0.3 nM) in a saturable manner (Bmax = 

416 ± 18 fmol/mg); however, biexponential association and dissociation kinetics 

indicated the possible existence of at least two NMDA receptor populations which differ 

in pharmacological properties. The kinetically derived equilibrium dissociation constants 

for the high and low affinity binding components were 0.56 and 771 nM, respectively. 

The equilibrium competition analysis of MK-801 and other channel blocking compounds 

as displacers of [3H]MK -801 revealed the presence of high and low affinity binding sites 

with relative apportionments of 70% and 30% respectively. The rank order potency 

profile of competitor binding at the high affinity site was (+)-MK-801 > TCP > 

dextrorphan > dextromethorphan > (+)-ketamine. When tested for the ability to protect 12 

DIC cerebellar granule neurons from acute glutamate-induced toxicity. the 

neuroprotective rank order potency of these compounds was MK-801 > TCP > 

dextrorphan > (+)-ketamine > dextromethorphan, which correlated significantly with the 

high affinity competition binding profile and thus established the role of NMDA 

receptors in glutamate toxicity. The findings of these experiments indicate that NMDA 

receptors on 12 DIC cerebellar granule neurons are a heterogenous population that 

functionally mediate glutamate-induced neurotoxicity. The heterogenous [3H]MK -801 

binding sites may represent NMDA receptor channels composed of different subunits. 



110 

5.2 Introduction 

Glutamate is believed to be the primary excitatory neurotransmitter in the 

mammalian central nervous system. It produces its actions through ionotropic NMDA, 

AMPA and kainate receptor subtypes and G-protein coupled metabotropic receptors, with 

each receptor subtype having a characteristic pharmacological profile and distinct 

physiological properties (1,2). Unique among ionotropic glutamate receptors is the 

NMDA receptor because of its high ca++ permeability and involvement in synaptic 

plasticity, long term potentiation, learning and memory, and neurodegeneration. 

Regulation of NMDA receptor activity is complex. In addition to the binding of 

glutamate, NMDA receptor activation requires the binding of glycine at a distinct 

strychnine-insensitive coagonist site (3-6). The NMDA receptor ion channel is blocked in 

a voltage-dependent fashion by Mg++, thus a concurrent depolarizing stimulus is required 

for the passage of ions to occur (7,8). In addition, pharmacologically distinct modulatory 

sites exist for the binding of Zn++ (9) and polyamines (10-12). 

NMDA receptors have been characterized pharmacologically using a variety of 

compounds, among which are the dissociative anesthetics phencyclidine (PCP) and 

ketamine. The most potent of these channel blocking agents is the prototypical drug 

dizocilpine maleate (MK-801). These and related compounds are non-competitive 

NMDA receptor antagonists which act by binding to sites within the NMDA receptor ion 

channel in a voltage- and use-dependent manner. Their utilization in electrophysiologic 

and radioligand binding studies has revealed that NMDA receptor pharmacology is 

regionally heterogeneous within the CNS (13-17). The basis for this pharmacological 

heterogeneity has recently been confirmed by cloning studies showing that the NMDA 

receptor is composed of two distinct types of subunit encoded by five separate genes, one 

termed NMDAR1 (NR1) and four others termed NMDAR2A to NMDAR2D (NR2A-D) 

(18-20). Eight isoforms of NR1 cDNA generated by alternative mRNA splicing have also 



been identified (9,21-23). NR1 is capable of assembling as a homooligomer that 

possesses many of the properties of the NMDA receptor. NR2 subunits however, do not 

form functional receptors but instead potentiate NMDA receptor activity when in 

heteromeric assembly with NR1. NR2 subunits also confer a functional variability to 

NMDA receptor channel complexes that is dependent upon specific NR1-NR2 

heteromeric combinations (20.24). Because the NR1 subunit is essential to the formation 

of functional NMDA receptors. it is expressed in virtually all neurons of the CNS, 

whereas NR2 subunits display distinct heterogenous expression patterns (19,25). 

NMDA receptor diversity is especially evident in the cerebellum, where studies 

have shown [3H]MK-801 binding to be of lower affinity than in other brain areas (26-28). 

Earlier reports revealed either no detectable binding of [314]1\4K-801 to adult rat cerebellar 

membrane homogenates (29.30), or low levels of [3H]MK -801 binding in extensively 

washed membranes (27). A unique cerebellar NMDA receptor pharmacology has also 

been demonstrated with the channel blocking compounds [3H]dextrorphan (16) and [3H] 

TCP (14,31). It is now known that cerebellar granule neurons are unique in that they 

express high levels of the NR2C subunit, thus contributing to the distinct pharmacology 

of cerebellar NMDA receptor channels and distinguishing cerebellar NMDA receptors 

from those in forebrain regions, which contain an abundance of NR1. NR2A and NR2B 

subunits but no NR2C expression (18-20,25). 

Cerebellar granule neurons have been used extensively for studying the 

neurophysiology and neurotoxicology of glutamate receptors. In vitro growth and survival 

of cerebellar granule neurons requires the presence of high KC1 concentrations or NMDA 

treatment. Prolonged K+ depolarization specifically upregulates the expression of NR2A 

mRNA through an increase in resting intracellular calcium concentration (32,33). In 

addition, these treatments permit developmental changes in NR2B and NR2C mRNA 

expression that are normally observed during in vivo cerebellar granule neuron 

development, namely the disappearance of NR2B and increase in NR2C mRNAs (33,34). 
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The precise NR2 subunit stoichiometry of NMDA receptors in cultured cerebellar 

neurons is however uncertain and appears to vary with age in culture. Thus, agents acting 

on NMDA receptors may display a changing pharmacology as a function of age of 

cerebellar granule neurons in vitro. 

In light of these recent findings, it is noteworthy that channel blocking 

radioligands have not been utilized in a rigorous examination of the pharmacology 

NMDA receptors in cultured cerebellar granule neurons. Such a characterization may 

provide further insight into the pharmacologic and functional characteristics of the 

endogenous cerebellar NMDA receptor phenotype. To address this issue, we have used 

[3H]MK -801 to investigate the pharmacology of NMDA receptors in membranes derived 

from cerebellar granule neurons at 12 days in culture. Cerebellar neurons at this age have 

been shown to maximally express NMDA receptors and to be most sensitive to 

glutamate-induced toxicity (35). We have also assessed the potency of MK-801 and 

several other channel blocking agents to exert neuroprotective action against a maximally 

toxic glutamate challenge in cerebellar granule neurons. 

5.3 Materials and Methods 

5.3.1 Materials 

L-glutamate, glycine, trypsin, cytosine arabinoside and fluorescein diacetate were 

purchased from Sigma (St. Louis, MO). N-(1- [2-thienyl]cyclohexyl)piperidine (TCP), 

(+)-5-methy1-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine maleate (MK-801), 

dextrorphan (DX), dextromethorphan (DXM) and (+)-ketamine were purchased from 

Research Biochemicals Inc. (Natick, MA). Ethidium bromide was obtained from Bio Rad 

(Hercules, CA), and ( +)- [3H]MK -801 was purchased from New England Nuclear 
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(Boston, MA). Basal Eagle's medium was purchased from Gibco Labs (Grand Island. 

N.Y.). 

5.3.2 Cerebellar Granule Cell Culture 

Primary cultures of cerebellar granule neurons were obtained from 8 day old 

Sprague Dawley rats by a previously described method (36). Briefly, isolated cerebella 

were stripped of their meninges and minced by mild trituration with a Pasteur pipette. 

Cerebella were then treated with 2200 U/ml trypsin (Sigma cat. no. T-8918) for 15 min. 

at 37°C, and the granule cells dissociated by two successive trituration and sedimentation 

steps. Cells were suspended in Dulbecco's basal Eagle's medium containing 10% fetal 

bovine serum, 2 mM glutamine, 25 mM KC1 and 100 lg/m1 gentamicin, and plated onto 

poly-l-lysine (M.W. = 393,000) coated polystyrene culture dishes at a density of 2.5 x 105 

cells/cm2. Care was taken to ensure a uniform neuron distribution by thorough mixing of 

the suspension after addition to each plate. For excitotoxicity assays, neurons were plated 

onto 6-well 35 mm culture dishes (Fisher) whereas cells harvested for [3H]MK -801 

binding assays were plated onto single 100 mm plates. Cells were incubated at 37°C in a 

5% CO-), 95% humidity atmosphere. Cytosine arabinoside (10 11.M) was added 18-24 hrs 

later to inhibit replication of non-neuronal cells. At 8 days in culture, 50 tL/ml of a 25 

mg/ml D-glucose solution was added to replenish energy resources and to compensate for 

growth media evaporative losses. 

5.3.3 Excitotoxicity Assays 

Cerebellar granule neurons were exposed to L-glutamate and non-competitive 

NMDA receptor antagonists at 12 days in culture at a temperature of 22°C. Prior to 

glutamate exposure, growth medium was removed and the cultures exposed for 5 minutes 
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to 1 ml Locke's incubation buffer containing (in mM): 154 NaCI; 5.6 KC1; 1 Mg Cl; 2.3 

CaCI; 5.6 glucose; 0.1 glycine; 8.6 HEPES; pH 7.4. The buffer was then replaced with 1 

ml of fresh Locke's containing 300 tM L-glutamate with or without NMDA receptor 

antagonists and the cultures incubated for 2 hrs. Glutamate exposure was terminated by 

washing the neurons three times in fresh Locke's solution. The neurons were then 

maintained for a one hour post-exposure incubation in fresh Locke's prior to a five minute 

staining with the vital dye fluorescein diacetate (5µg /ml). Ethidium bromide (10 p.1 of a 

50 pl/m1 solution) was added four minutes after the fluorescein diacetate to stain the 

nuclei of nonviable neurons. The dye solution was replaced with fresh Locke's and the 

neurons placed on an inverted microscope (Zeiss model 1M35) equipped with 

fluorescence optics. Soma and neurites of live neurons appear bright green in color 

whereas dead neurons do not accumulate fluorescein. Nuclei of dead neurons, that are not 

washed away, appear red due to ethidium bromide staining. 

5.3.4 Assessment of Neuronal Viability 

Five to six randomly selected fields from each plate were photographed at 80X 

magnification. Live neurons were counted from the photographic slides and the results 

averaged for each concentration of noncompetitive NMDA receptor antagonist. Results 

were referenced to the average control culture populations processed in parallel to 

experimental plates. 

5.3.5 Preparation of Cerebellar Granule Cell Membranes 

Membranes were prepared from neurons at 12 days in culture. Growth media was 

replaced with 2 ml of cold (4°C) 5 mM HEPES buffer (pH 7.4) containing 10 mM 

EDTA, the neurons scraped and collected in a 40 ml Dounce, homogenized, and then 
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centrifuged 10 minutes at 18000 rpm. The supernatant was discarded and the pellet 

resuspended with 20 ml HEPES/EDTA and recentrifuged. This last step was repeated in 5 

mM HEPES without EDTA and the pellet was frozen for at least 30 min at -70° C. 

Membrane pellets could be stored frozen for up to one month with no loss in binding 

sites. Pellets were then thawed for 30 min, resuspended in 20 ml HEPES without EDTA. 

and centrifuged. This final pellet was resuspended in an appropriate volume of 5 mM 

HEPES for use in radioligand binding assays. Membrane protein content was determined 

by the method of Lowry (37). 

5.3.6 Radioligand Binding 

[3H]MK -801 binding was determined in a reaction mixture containing 75-100 1..tg 

of cerebellar granule cell membrane protein, 10 1.04 glutamate, 10 1.tM glycine, H10 or 

competitor and 10 1.1.M EDTA in 5 mM HEPES pH 7.4 at 22°C, for a final volume of 1 

ml. Non-specific binding is defined as that occurring in the presence of 10 1.1M (+)-MK

801. Under these conditions at 22°C, the (+)-PHJMK-801 association reaction progresses 

to >97% completion by 5 hr. After an incubation of 5 hr at 22°C, the reaction was 

terminated by rapid filtration over Whatman GF/B glass fiber fliters in a Brandel M48-R 

cell harvester. Filter strips were presoaked in 0.5% polyetheleneimine for a minimum of 2 

hr to reduce binding of ligand to the filters. Filter discs were allowed to elute for at least 9 

hr in Cytoscint liquid scintillation cocktail and then counted on a Beckman LS 6000SC 

scintillation counter. 

5.3.7 Data Analysis 

Nonlinear regression analysis was performed with Graphpad Inplot software (San 

Diego, CA). EC50 values for neuroprotection against exposure to glutamate and [I-I]MK
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801 competition binding to membranes were determined by nonlinear least squares fitting 

of a logistic equation to concentration response data. These data were analyzed according 

to the following equation: 
(B A)

Y = A + 
1+(C/[X])49 

where Y equals the response, C is the ED50, [X] the antagonist concentration. D the slope 

factor and A and B the minimum and maximum plateaus of the concentration-response 

curve. Saturation isotherms were similarly parameterized through non-linear regression 

analysis-based fitting of a hyperbolic equation to the data. 

The parameters of [31-1]MK-801 association and dissociation kinetics were 

determined by fitting the following exponential equations: 

RB t =1[RBetil E- e 
1=1 

RBI =I[RBo] e 
t=1 

where, for site i of n total sites, RBt is the amount of bound radioligand at time t. RBeq is 

the amount of radioligand bound at equilibrium, 'cob, is the apparent association rate 

constant, RBo is the amount of bound radioligand at t = 0, and k_1 is the dissociation rate 

constant. 

The criterion for assigning a multiple site model to equilibrium and kinetic ligand 

binding analyses is the F statistic: 

(SS 1 SS 2)1 (df df 2)F = 
(SS 21 df 

where SSI and SS2 are the sum of squares of the residuals for the one-and two-site fits. 

respectively, and dfi and df2 are the degrees of freedom for one- and two-site fits. 
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5.4 Results 

Non-competitive NMDA receptor antagonist binding is known to be selectively 

stimulated by the NMDA receptor coagonists L-glutamate and glycine in extensively 

washed, divalent cation depleted rat brain membranes under low ionic strength conditions 

(30,38). Initial experiments revealed that concentrations of 100p.M glutamate and glycine 

were required to maximally stimulate [3H]MK -801 binding. When such conditions were 

utilized in equilibrium binding studies using membrane preparations from 12 DIC 

cerebellar granule neurons, [3H]MK -801 labeled high affinity sites in a saturable manner 
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Fig. 5.1 Saturation analysis of 0.1-10 nM (3H)MK-801 binding to extensively washed 12 
DIC cerebellar granule neuron membranes. Membranes were incubated for 5 hrs at 22° in 
the presence of 1001.tM L-glutamate and glycine. Scatchard plot (inset) of the data yielded 
a Kd of 3.2 ± 0.3 nM and a Bmax of 416 ± 18 fmol/mg protein in this preparation. Data is 
from one of three similar experiments. 

(Fig. 5.1). Using 101.IM unlabeled MK-801 to define non-specific binding, specific 

binding accounted for > 60% of the total binding at a [31-1JMK-801 concentration of 1.5 

nM. Nonlinear regression analysis of the saturation data averaged from three experiments 
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indicated the presence of a uniform population of sites with apparent affinity (Kd) and site 

density (Bmax) values of 3.2 ± 0.3 nM and 416 ± 18 fmol/mg protein, respectively (Fig. 

5.1). The inset depicts the linear Scatchard replot of these data. 

The association of [3H]MK -801 with its recognition site on 12 DIC cerebellar 

granule cell membranes, in the presence of 10011M L-glutamate and glycine at 22° and at 

a radioligand concentration of 1.5 nM, progressed with a t05 of 41.5 minutes (Fig. 5.2). 

Equilibrium was not attained under these conditions until after 300 min., at which time 

binding was > 97% complete. Non-linear regression analysis of the kinetics of association 

of [3H]MK -801 indicated, however, that a simple bimolecular reaction model could not 

adequately account for the observed binding data. The fit was significantly improved by 

60 120 180 240 300 360 
TIME (min) 

Fig. 5.2 Association kinetics of (3H)MK -80l binding to extensively washed 12 DIC 
cerebellar granule cell membranes. Binding was initiated at 22° by addition of 1.5 nM 
(3H)MK-801 to membrane preparations at specific time intervals in the presence of 100 
M L-glutamate and glycine. Termination of the binding reaction was achieved by 
simultaneous filtration using a Brandel 48-well cell harvester as described in Materials 
and Methods. Normalized binding values represent the average of three experiments. 
Error bars were removed for clarity, but were no greater than 10% SEM. Inset: Kobs vs 
(3H)MK-801 concentration for the fast and slow components of radioligand binding.
Plots are from a single experiment using (3H)MK-801 concentrations of 2.5, 5.0 and 7.5 
nM. 
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acceptance of a more complex biexponential binding model (F = 70.6, p < 0.0001) which 

resolved [31-I]MK-801 binding into two kinetic components (kobsi = 88.2 ± 12 x 10-3 min-' 

and kobs, = 10.1 ± 0.44 x 10-3 min-1), with 35% of the total in the fast phase (t112 = 8 min) 

and 65% in the slow (tu, = 69 min). The kinetics of [3H]MK -801 dissociation (Fig. 5.3), 

initiated by addition of 101N MK-801, was similarly described by a more complex 

biexponential binding model (F = 97.5, p < 0.0001), while the t0.5 for the overall 
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Fig. 5.3 Dissociation kinetics of (3H)MK-801 binding to 12 DIC cerebellar granule cell 
membranes. After incubation of 1.5 nM (3H)MK-801 with membranes for 5-6 hrs at 22° 
and in the presence of 100 IN L-glutamate and glycine. 10 tM MK-801 was added at 
specific time intervals and the binding terminated by rapid filtration. Normalized binding 
values represent the average of three experiments. SEM for each time point was no 
greater than 10%. 

dissociation process was 54.2 min. The dissociation rate constants for the two 

components derived from non-linear regression analysis were: Li, = 83.3 ± 13 x 10-' 

min-1 and k_12 = 4.25 ± 0.48 x 10-3 min-1, with 45% of the total in the fast phase (t112 = 8 

min) and 55% in the slow (t11, = 172 min). 
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Association (1c1) constants for the fast and slow components of [3H]MK -801 

binding were ascertained by determining the kobs values for the fast and slow components 

of binding as a function of [3H]MK -801 concentration. The kinetics of both components 

of [311]MK-801 association followed a pseudo-first order pattern as demonstrated by the 

kobs values varying linearly as a function of ligand concentration (Fig. 5.2 insets). The 

rate constants (k+1) derived from this kinetic analysis were respectively 7.53 ± 0.25 x 106 

M-1 min-1 and 0.108 ± 0.013 x 106 M-1 min-1 for the fast and slow components. The 

ratios of dissociation and association rate constants, k_1/k+1, were used to calculate 

dissociation constants (KD) for high and low affinity binding sites. The resultant 

kinetically derived KD values for PI-INK-801 were 0.56 and 771 nM. 

NMDA receptor pharmacology was examined further by ascertaining the affinity 

of MK-801 and other channel blocking compounds as displacers of [3H]MK -801 from 12 

DIC cerebellar granule cell membranes. For all compounds except ketamine. competition 

TABLE 5.1 

Neuroprotective potencies in live neurons and competition potencies for (31-1)MK-801 
binding in membranes prepared from 12 DIC cerebellar granule cells. In vitro 
neuroprotection and (3H)MK-801 binding assays were performed as described in 
Materials and Methods. Data were fit to a logistic equation by nonlinear regression 
analysis using Graphpad Inplot software as described in Materials and Methods. 

Compound Neuroprotective 
EC50 (nM) 

Competition 
High affinity (nM) % 

Binding IC50 
Low affinity (.tM) 9

95% CI 
(high) 

MK-801 8.28 (8.0-9.0) 3.3 73 4.18 27 

TCP 165 (115-236) 14.9 73 38.3 27 10-22 

Dextrorphan 1427 (1260-1620) 147 71 313 29 111-194 

Ketamine 7022 (4400-11000) 1074 100 820
1400 

Dextrometh 14820 (13000-16900) 402 69 26.8 31 241-672 
orphan 
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Fig. 5.4 (3H)MK-801 competition binding in 12 DIC cerebellar granule cell membranes. 
Assay was performed as described in Materials and Methods, using washed membranes 
in the presence of 100 1,tM glycine and L-glutamate. Values for each point are the means 
± SEM of data from at least three experiments. Non-specific binding was defined by 10 
M MK-801. 

curves were best described by a two site model (p < 0.0001), with 69-73% of the total 

being high affinity sites (Fig. 5.4 and Table 5.1). The rank order potency profile of 

competitor binding at the high affinity site was (+)-MK-801 (IC50H = 3.3 nM) > TCP 

(IC50H = 14.9 nM) > dextrorphan (IC50H = 147 nM) > dextromethorphan (IC50H = 402 

nM) > (+)-ketamine (IC50 = 1074 nM). For the low affinity site, the rank order of 

potency was (+)-MK-801 (IC50L = 4.18 [tM) > dextromethorphanrphan (IC50L = 26.8 p. 

M) > TCP (IC50L = 38.311M) > dextrorphan (IC50L = 313 liM). 

In order to determine the relative potencies of noncompetitive antagonists as 

neuroprotectants, these compounds were tested for their ability to block glutamate-

induced neurotoxicity in cerebellar granule cells. In the absence of non-competitive 
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antagonists, viable neurons were reduced by 65% when exposed for 2 hrs to 3001..tM L-

glutamate in physiological buffer at 22° C (data not shown). As shown in figure 5.5, 

NMDA receptor noncompetitive antagonists potently and completely protected against 

glutamate-induced toxicity with a rank order potency profile of (+)-MK-801 (EC50 = 8.28 

nM) > TCP (EC50 = 165 nM) > dextrorphan (EC50 = 1.43 1.1M) > (+)-ketamine (EC50 = 

7.02 p.M) > dextromethorphan (EC50 = 14.8 p.M). This rank order potency profile was 

significantly correlated with the affinities of these compounds for the high affinity 

[3H]MK -801 binding sites (Fig. 5.6; r = 0.96, p = 0.008). 

120 Mk-801 
z O TCP 

100 6 Dx 
0 o Dxm 

0a 
80 Ketamine 
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Fig. 5.5 Concentration response curves for non-competitive NMDA receptor antagonist 
neuroprotection of cerebellar granule neurons at 12 days in culture. Neuron cultures were 
exposed to 300 1.tM L-glutamate for 2 hr at 22° in the presence of 100 p.M glycine. 
Quantitation of the neurotoxic response was performed as described in Materials and 
Methods. Results represent the average ± SEM of at least three separate experiments. 



123 

5.5 Discussion 

A requirement for the growth and survival of cerebellar granule neurons in vitro is 

the presence of depolarizing conditions, which are thought to mimic the influence of tonic 

physiological activation in immature neurons during cerebellar development (39.40). An 

advantage of the use of primary cultures of neurons is the presence of native receptor 
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Fig. 5.6 Correlation between the potencies of compounds to compete for high affinity 
(3H)MK-801 binding in 12 DIC cerebellar granule neuron membranes and their 
neuroprotective potencies against a 300 1..tM L-glutamate challenge (r = 0.96, p = 0.008). 
The significance of the correlation was evaluated by two-tailed t test of the probability 
that r = 0. 

ensembles and signal transduction elements. These preparations afford the opportunity to 

explore the pharmacologic properties of cells expressing distinct heteromeric forms of 

NMDA receptors. It has been shown that depolarizing conditions induce the up-

regulation of NR2A subunit mRNA and down-regulate NR2B mRNA followed by a 

gradual upregulation of NR2C subunit mRNA in cerebellar granule cells (32-34). These 
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changes in NMDA receptor subunit mRNA expression in cultured cerebellar granule cells 

parallels in vivo granule cell maturation. which is associated with down-regulation of 

NR2B and upregulation of NR2A and NR2C expression (41-43). In cerebellar granule 

cell cultures at 12-14 days in vitro the levels of NR2A and NR2C are comparable. 

whereas NR2B is undetectable (34). One maturational trend which is not preserved in 

culture is the developmental increase in the ratio of the NR1b splice variant compared 

with NR1a, which lacks an N-terminal insertion encoded by exon 5. Thus, in cerebellar 

granule cell cultures grown in depolarizing conditions the NR subunit mRNA 

predominates, whereas in vivo the adult cerebellum displays a ratio of NR1b/NR1a of 

approximately 5:1 (34). In the present report we investigated the pharmacologic and 

toxicologic significance of the NMDA receptor subunit composition of 12 day in culture 

cerebellar granule neurons. 

The affinities of NMDA receptor ligands for heterologously expressed 

recombinant homomeric and heteromeric NMDA receptors have been measured and 

compared to those found in situ in rodent brain. Heteromeric NMDA receptors consisting 

of NR1-NR2A or NR1-NR2B have been shown to have [3H]MK -801 affinities that are 

consonant with those found in native forebrain membranes (24,44-46). The [3H]MK -801 

binding affinity observed in the present study (Kd = 3.2 nM) suggests that NMDA 

receptors labelled by this radioligand in membranes derived from 12 DIC cerebellar 

granule neurons resemble that of assemblies of NR1 and either NR2A or NR2B subunits. 

Thus, the reported absence of NR2B mRNA in 12 DIC cerebellar granule cells suggests 

that the observed high-affinity binding of [3H]MK -801 represents the labeling of NR1

NR2A complexes. This KD value for [3HJMK-801 is consonant with the values (4.0-7.3 

nM) reported for the labeling of NMDA receptors in membranes prepared from 10 day in 

culture murine cerebellar granule cells (35). The affinity of [3H]MK -801 for 

heterologously expressed heteromeric NR1-NR2C receptors has been demonstrated to be 
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substantially lower than that measured in adult murine cerebellum, which expresses high 

levels of NR2C subunit mRNA (24,44). 

Recent studies using heterologously expressed NMDA receptor subunits suggest 

that NMDA receptor assemblies may be composed of three rather than two subunit types 

(44,45). Thus, Chazot, et. al. (1994) found that transfection of HEK 293 cells with 

varying ratios of NR1, NR2A and NR2C DNA resulted in expressed receptors that 

displayed an affinity for [3H]MK -801 which was identical to that measured in membranes 

from mouse cerebellum, but four-fold lower than that in mouse forebrain. Interestingly. 

when the level of transfected NR2A DNA was increased relative to NR2C, the resultant 

affinity for [3H]MK -801 tended to increase (lower KD values) as well. Thus. the 

characteristic affinity of [3H]MK -801 for mature granule cell NMDA receptors most 

closely parallels that of recombinantly expressed NMDA receptors containing NR1 and 

NR2A (and NR2C) subunits (44). It may therefore be inferred that the observed [3H]MK

801 binding affinity on 12 DIC cerebellar granule cell membranes is due to an interaction 

with NMDA receptors containing primarily NR1-NR2A subunits with lesser amounts of 

NR2C. The use of a maximal [3H]MK -801 concentration of 10 nM in these equilibrium 

saturation studies precluded labeling of the lower affinity [3H]MK -801 binding sites 

associated with either NR1-NR2A-NR2C or NRI-NR2C assemblies. 

Membranes from 12 DIC cerebellar granule neurons were further distinguished by 

the apparent biexponential kinetics of [3H]MK -801 association and dissociation. 

Biexponential association and dissociation kinetics have similarly been reported for [3H] 

MK-801 (47), [3H]dextrorphan (16) and [3H]TCP (48,49) binding to membranes derived 

from cerebral cortex and hippocampus. Although speculative, the most parsimonious 

interpretation of the biexponential kinetics of [3H]MK -801 binding is that this represents 

binding to distinct NMDA receptor complexes with differing affinities. Consonant with 

this interpretation, the ratios of dissociation and association rate constants yielded 

kinetically derived KD values of 0.56 and 771 nM which are in reasonable agreement 
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with the affinities of [3H]MK -801 for recombinant NMDA receptors composed of NR1

NR2A and NR1-NR2C, respectively (44). 

The notion that a heterogenous population of NMDA receptor channels exists on 

developing cerebellar granule neurons is further supported by the electrophysiologic 

studies of Farrant, et al. (50), who recorded single channel currents on cerebellar neurons 

during the period of migration from the external germinal layer to the inner granular layer 

of the cerebellum in rats from postnatal days 7 through 14. NMDA receptors on 

premigratory and early postmigratory neurons were shown to possess high conductance 

channels whereas low conductance channels appear at later postnatal stages and 

eventually predominate with age. These low conductance channels are characterized by 

much shorter (< 1 ms) mean open times and burst lengths than the higher conductance 

channels, which is a characteristic shared by recombinant NMDA receptor channels 

consisting of NR1-NR2C heteromers (51). Moreover, the electrophysiologic 

characteristics of the high conductance channels measured in premigratory cerebellar 

granule neurons (50) are similar to those reported for cloned NMDA receptors consisting 

of NR1-NR2A or NR1-NR2B subunits (51). These findings have been extended by 

Ebralidze, et al. (52), who compared NMDA receptor channel conductances in cerebellar 

granule neurons from wild type mice and from mutant mice carrying a deletion of the 

gene encoding the NR2C subunit. In the mutants, spontaneous channel openings in 

whole-cell recordings and NMDA-activated single-channel currents from outside-out 

patches revealed the presence of an exclusively large conductance channel. In contrast, 

wild type mice possesed NMDA receptors with a wide range of single-channel 

conductances, which strikingly implies that individual channels in vivo are made up of 

different combinations of all three subunits. Thus, rather than two distinct populations of 

channels made up of only two subunit types (eg NR1-NR2A or NR1-NR2C), NMDA 

receptors in mature granule cells appear to exist as multimeric complexes with varying 

stoichiomeric ratios of NR2A and NR2C subunits in combination with NR 1 (52). The 
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existence of NMDA receptor channels in cerebellar granule cells with differing 

proportions of NR2A and NR2C is consistent with the observed complexities of [3H]MK

801 binding in the present study. 

In equilibrium competition experiments, [3H]MK -801 binding was displaced by a 

variety of non-competitive NMDA receptor antagonists. The rank order potency profile of 

these competitors was in general agreement with descriptions of the competitive 

displacement of [3H]MK -801 in human (26) and rat (15,27,28,53) cerebral cortex and 

cerebellum. Moreover, these affinities for [31-I]MK-801 binding sites are well correlated 

with anticonvulsant potencies measured in rat (54) and mouse (55) experimental seizure 

models, and with the in vitro neuroprotection assay described in this report. The 

equlibrium competition binding data was best described by an interaction with both high 

and low affinity sites. The inability to adequately describe competition data with a one-

site model has similarly been described for [31-1]MK-801 binding sites in human frontal 

cortex (56), [3H]TCP sites in rat brain homogenates (38), and for [3H]clextrorphan sites in 

rat forebrain and cerebellar membranes (16). All three radioligands label NMDA receptor 

channels, and the heterogeniety of the [3H]MK -801 binding sites in membranes derived 

from 12 DIC cerebellar granule cells is again consistent with the existence of NMDA 

receptor channels with distinct assemblies of NR2 subunit forms. 

Regarding the relationship between multiple [3H]MK -801 affinity sites and 

neuroprotection, the non-competitive NMDA receptor antagonist rank order potency 

profile for neuroprotection reported here was highly correlated with the rank order profile 

for competition at high affinity [3H]MK -801 binding sites. These high affinity sites 

comprised approximately 70% of total displaceable [3H]MK -801 binding. These data 

suggest that the preponderance of NMDA receptor channels in 12 DIC cerebellar granule 

cells are composed of NR1-NR2A complexes and these channels mediate the 

neuroprotective effects of noncompetitive antagonists. The NR1-NR2A NMDA receptor 

channels in cerebellar granule cells are responsible for the large-amplitude conductances 
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and longer open time (40-52) properties and appear to mediate the neurotoxic effects of 

glutamate in these neurons. In contrast to NR1-NR2A channels, NMDA receptor 

channels composed of NR1-NR2C subunits display smaller-conductance levels and 

shorter open time (51). These channels are also less sensitive to Mg2+ and more sensitive 

to glycine than NR2A-containing complexes and therefore may be more likely to pass 

current in a given physiological situation (52). 

In conclusion, the observed characteristics of [3H]MK -801 binding provide 

pharmacological evidence that NMDA receptors on 12 DIC cerebellar granule neuron 

membranes are composed of at least two populations of channels with distinct subunit 

composition. One population of native NMDA receptor channels appears to be composed 

of NR1-NR2A subunits which constitute the high affinity binding site for [I-I]MK-801 

and the target for the neuroprotective actions of MK-801 and related non-competitive 

antagonists of the NMDA receptor. These data also suggest that glutamate induced 

excitotoxicity in 12 DIC cerebellar granule cells is related to the activation of NR1-NR2A 

heteromeric NMDA receptor channels. 
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