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These equations are reduced further by considering a small



gap between the cylinders and by imposing some physically
reasonable mechanical and geometrical restrictions on the
flow. This results in a secular equation which forms a
characteristic value problem. The solution of the charac-
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classical viscous fluids under a similar situation. Com=-
paring this result with existing investigations in non-
Newtonian fluids we find that, like Bingham fluids, thermo-
viscoelastic fluids are mofe stable than viscous and

Reiner-Rivlin fluids.
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STABILITY OF FLOWS OF
THERMO-VISCOELASTIC FLUIDS BETWEZN
ROTATING COAXIAL CIRCULAR CYLINDERS.

I. INTRODUCTION

1.1 Hydrodynamic Stability

The equations of fluid dynamics, complex in nature
as they are, admit steady state solutions to some visco-
metric flow problems. Each of these flows is characterized
by a parameter involving the criterion for its stability
and it can only be realized for a certain range of values
of this parameter. Outside this range the original pattern
of the flow cannot be maintained. This is owing to its
inability to sustain itself in the presence of disturbances
to which any physical system may be subject. The influence
of disturbances superposed on a given steady laminar flow
might, in course of time, change it into a turbulent flow
or into another type of laminar flow. 1In both cases, the
original flow is said to be unstable with respect to the
superposed disturbances. This differentiation of stable
from unstable patterns of possible flows is what originates
the problems of hydrodynamical stability.

In considering the stability of a system, the questicn

that arises would be whether a disturbance superposed on



a steady laminar flow would gradually die down in time or
whether the amplitude of disturbances continue to grow
causing the system to depart from its initial state without
ever reverting to it. 1In the former case the flow is said
to be stable, while in the latter case it is said to be
unstable.

Clearly, a system is stable if it is stable with
respect to every mode of disturbance. The initial steady
flow is characterized by a set of fluid parameters such
as the channel geometry, velocity field, pressure gradient,
thermal or magnetic fields, etc. When small disturbances
are superposed on the flow, if instability sets in, the
state which separates the original stable state from the
final unstable stable state is known as the marginal state.
Thus the marginal state is a state of neutral stability.

Instability could occur in two ways depending on the
manner in which the disturbances are superposed. One, if
the disturbances are aperiodic and the resulting flow is
unstable, then this type of instability is known to set
through steady motions. This phenomenon is known as the
principle of exchange of stabilities. In the second type
of instability, if the disturbances introduced are periodic,
resulting in oscillatory motions in the fluid, then this

phenomenon is known as overstability, Chandrashaker (1961).



1.2 Stability Problems of Classical

Viscous Fluid Flows

Since the latter part of the nineteenth century, a
variety of stability problems of ideal and viscous fluids
have been attempted and solved. We give here a brief
account of the most important of these problems for pur-
poses of reference as well as our own investigations later

in this thesis.

The Bénard Problem

Although the phenomenon of thermal convection of a
viscous fluid was recognized as early as 1797 by Count
Rumford, it was not until 1900, an experimental study of
the stability of a horizontal fluid layer heated from
below was made by Bénard. Rayleigh (1916, 1920) considered
the same problem both experimentally and theoretically and
observed the flow taking cellular patterns. Taylor (1917,
1921, 1923) discussed the above stability problem under
the influence of rotation. He found theoretically that
the effect of rotation on the thermal convectional flow
was to stabilize it and confirmed this result by his own
experiments. Chandrashaker (1954, 1956, 1957) investigated
the stability of a viscous fluid layer heated from below
in the presence of a magnetic field and concluded that

the magnetic field inhibits the onset of instability in



the above problem.

The Stability of Couette Flow

In the Bénard and related problems, the instability
is caused by an outside adverse temperature gradient.
For the Couette Flow such as the flow between rotating
circular cylinders this is not the case. It is found
that instability is caused by a prevailing adverse gradient
of angular momentum. For this problem also, the effects
of a magnetic and thermal fields have been studied. In
addition, the effects of the presence of a pressure gra-
dient on the stability of a Couette Flow were studied by

Rayleigh (1920), Taylor (1923) and Lin (1955).

The Stability of General Flows in Curved Channels

The stability of viscous flows in curved channels
presents a wide variety of problems of which the stability

of couette flow is one, Dean (1928), Reid (1958) and DePrima.

The Stability of Superposed Fluids

In the case of superposed fluids, instability is caused
by a different means than in the problems already mentioned.
Two causes of instability exist in this case. One is the
presence of a density gradient and the other is the exist-
ance of relative horizontal motion between two layers of

fluids superposed over each other, Rayleigh (1900),



Taylor (1950), Chandrashaker (1955) and Reid (1959).

The Stability of Jets and Cylindrical Flows

The onset of instability in jets and cylindrical
flows is caused by surface tensions and the geometry of
the channel,[Rayleigh (1954), Chandrashaker and Fermi

(1953), Simon (1958) and Volkov (1959)].

1.3 Stability Problems of Non-Newtonian Fluid Flow

Non-Newtonian fluids such as high polymer solutions,
paints, condensed milk, etc., generally have a more complex
behavior than viscous fluids. These fluids require more
complex constitutive equations which complicate the
mathematical nature of the problem. Very few problems
for non-Newtonian fluids have been investigated. We
present in the following sections in brief some of the
investigations of stability of non-Newtonian fluids which

have appeared in recent years.

Stability of a Bingham Fluid in Couette Flow

Graebel (1962) by considering a constitutive equation
given by Oldroyd, eqg. (2.3.3), analyses the stability of
a Bingham fluid (Bingham plastic) between two co-rotating
circular cylinders. It was found that the non-Newtonian

nature of the fluid acts as a stabilizing agent.



Stabilitx of a Non-Newtonian Couette Flow

in the Presence of a Circular Magnetic Field

Using a Reiner-Rivlin model, (eq. 2.3.2), Narasimhan
(1963) investigated the stability of flow of a non-Newton-
ian liquid between two rotating cylinders in the presence
of a circular magnetic field. He found that the non-
Newtonian behavior of the fluid facilitates the onset of
instability and hence the non-Newtonian Couette flow is
less stable than the classical viscous Couette flow in

the presence of a circular magnetic field.

1.4 Purpose and Need for the Present Investigation

Although stability problems of a wide variety of
classical viscous flows have been investigated to date,
there is, as mentioned before, very little work done on
similar problems concerning varieties of non-Newtonian
or viscoelastic fluids under different mechanical or
electrical influences. Hence it seems reasonable and
important to investigate stability problems of viscoelastic
fluids in detail.

Since viscoelastic fluids exhibit many interesting
thermal properties, it seems important to consider the
thermal aspects of the stability as well. Hence, in the

present investigation, we consider the stability problem



of a thermo-viscoelastic fluid flow between two rotating
coaxial circular cylinders which are maintained at differ-

ent constant temperatures.

1.5 Plan of the Present Investigation

Chapter one is devoted to the introduction of
hydrodynamical stability problems and to familiarize the
reader with some of the existing investigations on the
subject. Since the non-linear constitutive equations of
thermo-viscoelasticity are relatively new, the second
chapter will present a brief account of their derivation
and of obtaining various approximations to suit different
situations. Chapter three will bring us into the heart
of the stability problem of a rotating circular annulus
of thermo-viscoelastic fluids. The fourth chapter presents
the solution of this stability problem in terms of a
criterion for stability. Finally, the last chapter sum-
marizes the method used and discusses the results and
compares them with existing work in stability of Newtonian
as well as non-Newtonian fluids. Further scope and

suggestions for future research in the field are also

given.



II. NON-LINEAR THERMO-VISCOELASTIC FLUIDS

2.1 Introduction

This chapter will be devoted to the foundations and
development of the non-linear constitutive equations
governing the behavior of thermo-viscoelastic fluids
following Eringen (1963). First, we discuss the limita-
tions of existing theories and methods used to handle
problems of thermo-viscoelastic nature. Secondly, we
give the foundations of the non-linear theory of thermo-
viscoelasticity. We close this chapter by giving an account
of the existing investigations of thermo-viscoelastic

fluid flow problems.

2.2 Some Basic Concepts of

Continuum Mechanics and Thermodynamics

Before we proceed to develop a set of constitutive
equations for thermo-viscoelastic materials, it would be
helpful to briefly review some concepts of continuum
mechanics and thermodynamics and adapt them to the situ-
ation where we need them.

Consider a general coordinate system with X or

X to denote the undeformed state, x or Xx  to denote

L
the deformed state. Any material, regardless of its
mechanical and thermal properties, must satisfy certain

conservation principles. Following is a list of the



mathematical expressions of these principles.

Conservation of Mass

) L

s+ (v),, =0, (2.2.1)
where p 1is the mass density, t the time, and v2 = iz
is the velocity. A comma (,) preceeding a subscript

indicates covariant differentiation with respect to the
coordinates in the deformed state if the subscript is a
miniscule (e.g. &) or to that of the undeformed state
if the subscript is a majuscule (e.g. L). Diagonally

repeated indices imply summation over the range (1,2,3).

Conservation 9£ the Linear Momentum

™, o(f" - =0, (2.2.2)

Lm

where T, £

and a" are the contravariant 'components
of the stress tensor T, the body force £ and the

acceleration a = ¥.

Conservation of Angular Momentum

For a non-polar case (that is in the absence of
couple stresses and body couples),

W _ e (2.2.3)

which implies that the stress tensor is symmetric.

Conservation of Energy
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pE.: = Tm%d - q%ﬂ, + pQ, (2.2.4)

where ¢ 1is the time rate of change of the snecific

internal energv ¢, qk are the contravariant components
of the heat flux vector q9i Q is the supply of energy;
and d%m are the components of the deformation-rate
tensor d defined by

2 m

2dg =V, 0t Vo4 (2.2.5)

Lm

Bodies with the same geometry and mass but of differ-
ent materials generally react differently to similar
outside effects. This is owing to the fact that each
material has its own special internal constitution.
Mathematically, this is expressed by the so-called consti-
tutive equations. To be properly formulated, a constitutive
equation has to satisfy certain invariance principles. Of
these, the following three are of particular importance in
the course of this analysis.

(a) Principle of Determinism: For our purposes

this principle can be stated as: The stress T(x, t)

and the heat flux g(x, t) at the spatial point x and
time t are determined by the past history of the motion
of an arbitrarily small neighborhood of the material point
X and the past thermodynamic history of this neighborhood.

The stress T and the heat flux g are in general func-

tionals of certain kinematic and thermodynamic variables
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which both characterize materials with memory. However,
we should restrict our study only to the class of materials
that are conscious of an initial state X and a present
state x but oblivious to the intermediate configurations.

(b) Principle of Equipresence: Any independent

variable appearing in either the stress equation or the
heat flux equation--these equations make up a set of
thermomechanical constitutive relations--must also appear
in the other. In other words, this principle states that
T and q should be functions of the same kinematic and

thermodynamic variables.

(c) Principle of Material Objectivity: This prin-

ciple in effect states that the response of the material
to a given event must be independent of the observer, i.e.,
mathematically, constitutive equations must remain invar-
iant under any rigid motion of spatial coordinates.

We consider now the concepts of thermodynamics that
will be referred to later on. Consider a body B with
volume V and mass M and an internal total energy E.

In continuum mechanics we assume that the body possesses

a 'specific internal energy' such that

E = JredM = j,pedv, (2.2.6)
v \Y

we also assume that the caloric equation of state has

the form (Eringen 1961, 63)
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e = £(n, sz), (2.2.7)

where € 1s some prescribed function of the specific

entropy n and the Cauchy deformation tensor Com is

defined as:

L L

Com = X ' X 'm* (2.2.8)

By differentiating with respect to time, eq(2.2.7) we

obtain

_ [oe . o€ .
g = <§ﬁ) n + (TC- > Clm. (2.2.9)

[} 2m n

In analogy with classical thermodynamics we set
g = o€
~\9n/c '

(2.2.10)

N (aﬁ )
- N~ ’
. Bczm "

and call 6, 'temperature' and Y om’ the thermodynamic

tension.
We know &, = -(c_, v, + c_ v%,:) the proof of
Lm nt 'm nm’ '2°"'
this is simple and is found in Eringen (1961). With this

on hand we can rewrite eq. (2.2.9) as

m n Zm n
cngd m - 2y SV (2.2.12)

¢ = o - 2y*
where wnm is the spin tensor defined by

2wnm = Vn,m - Vm,n' (2.2.13)

Since the specific internal energy € 1is an object-

ive quantity we could show following Eringen (1961) that
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e, .3
Bckm mn Bcnm

c (2.2.14)

mk 3

The Cauchy deformation tensor ¢ is symmetric, which

km

implies that vy is also symmetric. Using the above

facts, in eq.(2.2.4) we obtain:

k

6
. 1 n mk Gx _ q 'k pQ
pn = §(Tkm + 207y cnm)d ) K e2 t 5.

’

(2.2.15)
Fq.(2.2.15) is known as the Entropy Production equation.

The total entropy of the body B is given by

H = /ﬂpndv.
\%

Eq. (2.2.15) can be rewritten as

Ak
ondv + j —) av = | eagv,
Vv Vv k \Y)

_ n mk
where 0A = (Tkm + 2ka cnm)d - 5 + pQ. (2.2.16)

’

Applying the Green-Gauss Theorem to eq.(2.2.16) we obtain

k
H + %%- ds, = feAdV ] (2.2.17)
] A\

Since 6 > 0, the Classius-Duhem inequality yields
6A > 0. (2.2.18)
This inequality provides some restrictive conditions on
the constitutive equations.
From the caloric equations of state, eq.(2.2.7) and

the definition of temperature eq.(2.2.10), we find that
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= (28 _
o = (sﬁ)c = £(n, ¢, (2.2.19)

~

which could be solved for rn giving
n="f(e, ¢. (2.2.19)
Substituting, eq.(2.2.19) in eq.(2.2.7) we obtain
e = £[n(6, ¢), ¢l = (8, <), (2.2.20)
where ¢ 1is some explicit function of 6 and g, which
is generally different from E.
From eq.(2.2.20) we obtain

(2.2.21)

are respectively the 'specific heat' and a 'modified
thermodynamic tension.' Substituting eq.(2.2.21) in

eq.(2.2.4) we obtain

n mk k
+ 2p)\k cnm)d - q’k

pk6 = (T + pQ. (2.2.22)

km
We now compare the thermodynamic coefficients «

kn with the corresponding coefficients in eq. (2.2.15).

and A
For this purpose we take the material derivative of
eqg.(2.2.21), obtaining:
i o= (%%) b+ (%% >ékm . (2.2.23)
c km
Substituting eq.(2.2.23) in eq.(2.2.9) we obtain the

following relations:
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= g2 _ 31

K = e(a—e-)c, }\km = 'Ykm + 9(-53 > (2.2.24)
~ \ e

with 6 and ¢, as independent variables. The heat

conduction eq.(2.2.22) can now be written as:

= n ofi mk k
pKe = [Tkm + 2p}\7, Cnm + ZpG(-rck > Cnm]d - q'k + pQ.
Mg
(2.2.25)
As a special case for Newtonian viscous fluids, the

caloric equation of state takes the form
1
e = e(n, 3) (2.2.26)

where % is the specific volume. In this case the

kn

thermodynamic tension Yy is identified as the 'thermo-

dynamic pressure' defined by:

- _ (o€
o= (-3-\7) , (2.2.27)
n
and the temperature
e (g_e) : (2.2.27a)
N7y

The specific enthropy given by the heat conduction equation

now becomes
s o mk _ _k
pk b6 _'{Tkm + p[% + e(ﬁ?);]dkm d q,k + pQ, (2.2.28)

where § is tne usual Kronecker delta. The equation of

km
. . . an _ om
continuity eq. (2.2.1) and the relation ~) =~ |37
e v

have been used to obtain eq.(2.2.27).

For incompressible fluids where the equation of



16
continuity becomes akk = 0 the heat conduction equation

takes the final form:

pkb = T 4 - q + pQ. (2.2.29)

Now that we have developed all the necessary fundamental
concepts we pass on to the development of a non-linear

constitutive theory for thermo-viscoelastic materials.

2.3 Non-Linear Constitutive

Theory of Thermo-viscoelasticity

In the last century, viscoelastic behavior of mater-
ials has been the subject of extensive studies by a number
of workers. But it was not until the last two decades
that these studies entered the non-linear realm. Although
the desire for rigor motivated this extension, the failure
of linear theories to explain such phenomena as the
Poynting and Kelvin effects in elasticity was an important
force which has brought accelerated developments in this
field.

Before going into the basic concepts of thermo-

viscoelasticity we give a brief account of existing
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constitutive equations of viscoelastic or general Maxwell-
Voigt materials. Each of these theories has its own
limitations. However, we discuss here only their limita-
tions when used in problems involving thermal fields.

For a detailed discussion of the limitations of these
theories we refer the reader to Eringen (1962).

In the next paragraph, we list, for the sake of
future reference, various phases of development of consti-

tutive equations for non-linear materials.

Newtonian Fluids

|
]

(-p + A6)L + 2uD, (2.3.1)

where I = Identity tensor,

T = Stress tensor,
Hedy = Coefficients of viscosity,
D = Deformation-rate matrix,

6 = Dilatation
p = Hydrostatic pressure.

Eq. (2.3.1) successfully explains the behavior of
some fluids, such as certain gases, water, alcohol and
other similar fluids. But it fails to explain phenomena
like the Merrington effect (the swelling of a fluid at
the exit of a tube) Merrington(1943), and the Weissenberg
effect (the climbing of a fluid on a rotating rod) Weis-

senberg (1947), both very common among industrial fluids
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such as high polymer solutions, pastes, paints, colloidal
solutions, paper pulp, etc. These limitations give rise
to the constitutive equations which follow, Coleman, Noll,

and Markowitz (1965).

Reiner (1945) and Rivlin (1948) Fluids

T = -PL + a;R + a,D°, (2.3.2)

where a, = Coefficient of viscosity,

a, = Coefficient of cross-viscosity,
T = Stress tensor,

D = Deformation-rate tensor,

P = hydrostatic pressure.

The above constitutive equation for the fluid is

found to explain the normal stress effects mentioned

above.
Oldroyd Fluids (1950)
2_ ' - I 0
(1 + Xl Dt)tij 2kl(dimtj djmti )
= 0 _ m
where Xl = relaxation-time constant
D _ 9 m m
ot 2i5 T 35T Aig tt Big,n” Y AngV,i t Bim,y
(2.3.4)
A.,. being a given tensor,
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tij = deviatoric part of the stress tensor,
kl and k2 = arbitrary scalar constants,
AZ = retardation time constant.

Rivlin-Ericksen Fluids (1955)

N
T = agl + ZE: ak(Trk + nﬁ), (2.3.5)
k=1
where ay (k =0, 1, ..., N) are unknown functions of
the invariants of the kinematic tensors Q(l), 9(2), ceey
Q(n) which are defined as follows:
D(r) _ HdéF)H
~ J
(1) _
dlj 7(v .3 + v i) , and
aE) =3z alD) 4 omafrD) (el
ij ot "ij ij,m im ']
valIm s 2) (2.3.5a)
, Z

and T, are certain tensor products formed from the k

kinematic matrices Q(l), D(Z), ceey Q(n); ﬂ; is the

~S

transpose of T+

Green-Rivlin Fluids (1957)

t t

R

= L LI} t T e o o T)
:E; gljplql---quN( R " N
N= 0

- OO

(Tl)...g (TN)dTl...dTN, (2.3.6)

X
g PNy

P19,

where
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the kernels Qij -+« Pydy are continuous functions

of the indicated arguments and also of Dgg), Dé;),

éé), defined in Rivlin-Ericksen's +heory,

e o o p

D

k ,
g (1) = x (t)yx . &%)
Pq kep' 7704 (2.3.7)
tij = stress tensor.

Noll Fluids (1958)

oo}

t =j(g(s))p (2.3.8)

s=0

where
<§; is the constitutive functional and g(s) is the

history of the relative deformation gradient.

Clearly these theories were not made to account for
any thermal properties. So, when & problem involves a
thermal gradient, the classical heat conduction eguation
has to be used. This leads to inaccuracies because there
is no account of any interactions between the thermal
field and other mechanical fields.

Some workers have given non-linear theories of
thermoelasticity, Green and Adkins (1961), Green, England
and Flavin, (1961l). Earlier, Truesdell (1951), had given
a theory of thermoviscous materials. But no work on a
non-linear theory of thermo-viscoelasticity has appeared
in the literature until 1963 when Eringen and Koh published

their general non-linear theory of thermo-viscoelasticity,
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[Eringen, Koh (1%263)].

If a viscoelastic material is characterized by an
expression of the stress components Tij as a polynomial
in the gradients of the displacement, velocity, acceleration,
«es, (n=1)th acceleration, then according to Rivlin and
Ericksen (1955), each of these stress components can be
expressed as a polynomial in the components of the kine-
matic tensors:

-1 _ K

i3 = %, X5k v (2.3.9)

-1 . ; :
where ¢ is known as Finger's deformation tensor, and

the Rivlin-Ericksen tensors:

53 (£~1)
alf) = 1] ; gl gm (=l om
ij ot ij,m mi v J
m
+ a_.v. , n>r>2. (2.3.10)
mj ", i =~
Furthermore, the stress matrix T = HTin is a matrix
polynomial in the matrix variables
-1 -1 1) 1 n n),
Sl Ko T PR RS 1) PP S Y
(2.3.11)

with coefficients that are scalar polynomials in the
simultaneous invariants of these matrix variables.
Following Eringen (1963) we consider that a viscoelastic
material in a thermal state is characterized by two sets
of constitutive equations, one for stress and one for

heat flux. The stress tensor T and the heat flux
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bi-vector h are polynomial functiong of the kinematic

~

tensors gfl, d, the thermal gradiant bi-vector b, the

N'

density p, and the temperature 6 where g;l

and d
~~
are respectively defined by eq.(2.3.9) and eq.(2.3.10)

and the following:
ijk

b = “bij” = e 6wl (2.3.12)
n o=l = et gl (2.3.13)
where eijk is the permutation symbol.
So in effect we have:
T =it g b 0,0, (2.3.14)
and
h=fct g b 0,0). (2.3.15)

Note that this satisfies the principles of determinism
and equipresence discussed in section 2 of this chapter.
As for the axiom of material objectivity, it can be easily
shown that gfl, d and b are all objective. This
implies that T and h are invariant for every rigid
motion of the spatial frame, i.e., Tij and hij are
both hemitropic functions of their arguments, whence T
and h are objective.

The details for the reduction of the matrix polyno-
mials in two symmetric matrices (gfl and d) and one

antisymmetric matrix Db to represent a symmetric matrix

T and an antisymmetric matrix h are lengthy and will
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be given here but we refer the reader to Lringen (1963)

them.

The final results are:

a L + azgfl + a,d + a4g72 + a5d2 +agh

+oy(c7ha + ™) + ag(db - bd) + ag(eTe - be™h
vayg(eta? 4 aleh) b oay (ac? 4 g’zgy';

+ o, (@2 + B2 + apg(cTi? + p2eTh 4o, 7% - %)
t oy Rd? - a%R) +oog(cTld? ¢ a?TH) 4o a?p? ¢ pPd)
bay 2?4 B2 ¢ a (b ? - e 2pe )

+ ap0(dd” - a%bd) + gy (beTR® - BYeTR)

* oy, (0E2 - BI@) + ay3(e ?p? - BT

+ 0y, (4% - B%a%R) + ayg(eT A - bacTh

*ape @R - BN+ ayy (@7 - ¢Tpd)

+ azg(gfzgg’— 9@9?) + a29(c bd - dbc 2)

+ agg(@BeT - ¢TMpa?) + 0y (@®cTTD - beTha?)

*ag g+ dTe?) ¢ agy i ¢ ¢Tian?)

+ 0‘34(0“1‘1213 - QQZ l) + “35(§Ef29 - 99?29)
+ag.(c%a% - pa%e™?) + oy (@%b - poTia?)



2,2 -1 -1, 2.2 2 -1 -1.2
t ajg(d"b7c 7 + b“d®) 39 (0 +c
2 -2 -2.2 2 -
+a40(bc d+dc b)+a4l(c 12,9,"'99,9,
-1, -2 -2, . -1 -1, . -2 -
Toogyle "de & = ¢ Thde T) 4 ay4(c Thde T - ¢
+ o, (dbc Ta? - a%c7lbd) + o, (ac”1ba? - a?pe
44'R% £ T L& RY 45 %L 2~ T = =%
-1.,2 2. -1 -1, 2 2
+ o, (be” "db? b“dc "b) + o, (bde b - b
and
-1

a4 - ac™h + B;(ed + db) + B, (b

+85(c1a? - @’ + B (® - B + B (T
+ BgbcT? + ¢7%p) + By (bd® + a®p) + B, (dc
N Bll(g—zgg P2c?) + BIZ(Q?Q? _ p2a?)

+ 613(0 222 b222) + 514(2 lgq:Z - c 2(1:1

¢ B (acta? - Pl + 8, (e la?e? - g2
v oy (ac?a? - a2g2a) + 8 (e tn2e? - g 2plen
+ B g(ab%a® - a®p®d) + B,o(¢ tah + bdcTh)

+ 8,,(dc D + bl + B,y5(cTdb + bacT )

+ 8y3(a° e + b7l + 8, (0% M - g

+ Bys (b2ac”t - ¢Ttab?) + 8, (c7ta%p + ba’ct
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2 -2 1.2 2 -1

t Ba7(de "B+ be Td) + Byglc TbTd - dbTc )
+ B.o(c 2a% + ba%c™?) + B, (a%c%b + bc~2d?)

29 ~ ~ At 30 o A [a Xatd ~
+ B (@%p%ct - c1p24%) 4 8. 2a2c7l - cm1g2p2)

2 -2, . -2 -2, 2 2 -2

* By3(Re 7d - de BT + By,(c Tb7d - dbTe )
+ B.o (e thdac™® + ¢ 2abe™l) + B, (ac™1ba? + a2bela)

35 ~s N A A ~ A e A 36 ~ A ~ s e A e ~s
+ By (bdc 'b? + pPc lap). (2.3.17)

The constitutive coefficients a; and R. are

polynomials of the following invariants:

tr ¢ b, tr 4, tr ¢ 1g,

tr 9_2, tr Q?, tr gf3, tr QB,

tr g:¥§?, tr gjlbz, tr dc ©, tr ggz,

er o 22, e @%p%, tr p2c7,

tr ggjlg?, tr c_lgq?, tr gggjz, tr ﬁflgqj

er bo 22, tr ¢ a%?, tr aplc 2,

tr Qc{lgciz, tr g:lg_lldj, tr dlg_:192,

tr ¢ be%p?, tr bap®a®, tr bacT?d?,

tr ¢ 1ba’b?, tr beTla’c?, tr abcT%? . (2.3.18)

With secondary coefficients in general being functions

of p and 6.

From these general results the constitutive equations
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for a large class of special materials can be obtained.

The constitutive equations for thermo-viscous aﬁd
thermoelastic fluids are derivable without -much difficulty.
But these two fluids are limiting cases of a large class
of fluids characterized by equations (2.3.16) and (2.3.17).
Between these two cases, there lies a wide spectrum of
materials which exhibit both elastic and dissipative
(viscous) characteristics. One may classify these thermo-
viscoelastic materials into different groups in various
manners of classification depending on the extent of
fluidity or elasticity of the material.

A method of defining special thermo-viscoelastic
materials may be achieved by classifying the materials
according to the combined degree of the independent vari-

ables g_l, d and b appearing in each term of the

constitutive equations. Let the degrees of gfl, d and

~

b appearing in a term be denoted respectively by M, N

and P; then the combined degrees of that term is

IM + N + P

To illustrate this, let's consider the case of the

zero order theory.

Zero Order Theory: For this case M =N =P = 0.

Therefore, all the constitutive coefficients, with the
exception of a;r are equal to zero. The constitutive

equations are then:
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T=o,I
h=0

where is a function of p and 6. Clearly the materials

%1
characterized by these two equations are the ideal or non-
viscous fluids, where oy is equal to the negative of the

hydrostatic pressure.

Second Order Theory for the Rivlin-Ericksen Visco-

elastic Materials: This is a class of materials which

has been studied in recent years. We have mentioned about
this class of materials in section 2 of this chapter. The
stress tensor is assumed to.be a matrix polynomial in the
kinematic acceleration matrices Qy¢ Bor ceeq . However,
for large n's the constitutive equations become too
unwieldy. To avoid this we. will make the assumption that
T = g(gl, gz). A strong motive for this assumption is
that for viscometric flows, quite accidentally, the Rivlin-
Ericksen tensors vanish for n > 3.

Generalization of the Rivlin--Ericksen viscoelastic
theory into the thermo-viscoelastic theory following

Eringen (1963) gives us the following modification:

IHh>

T = (gl, as, b; o, 8). (2.3.19)

Since T 1is a hemitropic function of the symmetric tensors

a1 2y and one anti-symmetric tensor b we simply apply

the results given by egs.(2.3.16) and (2.3.17) by changing

c into 2, and d into a,. Then we apply the
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'combined degrees' approximation technique to it with
max |M + N + P| = 2. We obtain the second order approxi-
mation of the constitutive equations of the general
Rivlin-Ericksen fluid in viscometric flows exhibiting

thermal effects. These equations are:
T=aqa,L -~ 0,a, +a,a, + a,(a )2 + a.(a )2 + o, b
~ 1~ 2<1 3=2 4*=~1 52 6~
*oag(a12; + 2y31) * og(@R - bay) + ag(ayb - bay),

(2.3.20)

and

l{oy
[

Bk + B2, - 2,8) + B3(ba, + a,k)

+ B,(Ra; + a4B), (2.3.21)

where the coefficients a, and Bi are polynomials in
the invariants:

2
tr a,, tr a,, tr a;a,, tr (gl)

tr (§2)2, tr Q?.

These coefficients can be explicitly expressed as follows:

ay; = 01990 ¥ 1100 tF 21 * %3010 T R

*
+toy710 B 218 * of110 T 3 Y Y
+ o tr (a )2 + o¥ tr (a )2 + o tr (a )2
1200 3] 1200 31 1020 2,
+ a* tr (a )2 + o tr b2
1020 a, 1002 tr kR

a, = G100 ¥ @00 Y 31 * %170 tF R
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@3 = %3010 * %3020 ¥ 3 * %3139 T 2y, (2.3.22)
tr a, +

By = Bioo1 ¥ Brio1 ®F 21 * Bio11 BT Ry
with all the remaining coefficients a, and Bi and all

the secondary coefficients a. and Bir

irst being in

st
general functions of P and ©.

The notations are explained as follows:

“irst’ Birst
the first index i =1, 2, ... 1in these cocefficients
corresponds to the subscript of the primary coefficient
Gi or Bi and the succeeding three indexes r, s, t =
0, 1, 2, ... denote respectively the partial degrees of
ayr 8y b, of the pafticular terms (matrix products)

3 i ci is o, r
whose coefficient irst © B

irst’

Using the above constitutive theory, Eringen (1963)
solved the problem of a simple shearing flow of a thermo-
viscoelastic fluid.

In the next chapter, we apply this constitutive

theory for the study of stability of thermoviscoelastic

fluid flows between two rotating coaxial circular cylinders.
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ITI. STABILITY OF THERMO-VISCOELASTIC FLUID

FLOWS BETWEEN TWO ROTATING COAXIAL CYLINDERS

3.1 Introduction

In this chapter we formulate the stability problem
physically and mathematically. In the course of solving
the stability problem, we solve the steady state Couette
flow for incompressible thermo-viscoelastic fluids. Also,
we present the general equations in the non-dimensional
form for the perturbed Couette flow. Before we pass on
to the final solution of the stability problem in Chapter
IV we present the plane layer approximation technique
which is commonly used in the case of a narrow gap between

two cylinders.

3.2 Formulation of the Problem

We consider the stability of incompressible laminar
flow of a thermo-viscoelastic flow between two rotating
coaxial cylinders with radii R, and R, (R2 > Rl)’
The inner and outer cylinders are maintained at constant
temperature 61 and 62 respectively (92 > 91)' We
first investigate a steady state flow under the above
conditions. Next, we investigate the influence of small

periodic disturbances superposed on the steady flow.
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We introduce a cylindrical coordinate system (r, ¢, z)
where 2z 1is chosen along the common axis of the cylinders,
and r and ¢ are chosen as the radial and azimuthal
coordinates respectively. The velocity components are
u, v and w, along the radial, tangential and axial
directions respectively.

The fluid dynamical equations of incompressible

thermo-viscoelastic liquids are:

i .
Dv: _p 1]

+ pft (3.2.1)

° Bt v 3
and

p(vi)'i - o, (3.2.2)

and the equation of heat conduction is:

s .Am _ i
pkd = T dmg q,i + 0Q,

where p and k are the mass density and the specific
heat respectively. The external forces are represented

by £ and the energy supply by Q and

_ 1
43 = 2Wi,5 T V5,400
We will adopt the following constitutive equations

for the stress tensor T and the heat flux bi-vector L

respectively:

1

2 1 2 2
+ 038 + a,b + ag(ab - ba) + ag(dh - b

8,

-

z = al£>+ a2

(3.2.3)
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where

1 2
By + B,(BE + 2B) + By(0d +

&b

~ AL

k
b = Heijke, I

les e |

)

)

(3.2.4)

are temperature gradient bivector and heat flux bivector

respectively and

where a is the

i, = 24..,

1] 1]

2. . -a, . +a..

ij i,j j,i
acceleration vector.

The Equations of Motion

+ 2

m
,m

v .

The equations of motion can be written in physical

components in cylindrical coordinates:

2
Ju au v ou au v
Sttt Wrtrse T Yz TT
_ 1 3Trr + 1 3Trcp + 0Ty Trr—T¢¢ + £
T p| or r 9¢ 9z r r’
(3.2.5)
oV oV v oV av uv
U T T YT T
=1 " xg + 1 Y + "oz + 20 + f
p| or r 3¢ 0z r “¢r ¢’
(3.2.6)
aw oW vV oW oW
FE TR T T
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The heat conduction equation is:
km k
ng_i=kad - gt eQ (3.2.15)
where
mk _ ou 1 ov u ow
T dkm_zTrrTf+2T¢¢[f'§$+'r']+2TzzTZ
1 oJu oV v Ju ow
+2Tr¢[r'5$ E‘?]J’ZTrz[a—z*H}
oV 1 3w
+2T¢Z[_Z+FT]'
Trr' ceey Tzz have been defined in equations 2.3.8 through
2.3.13,
9q 9q
k . 13
g, div g =F3= (rq) + 2 =L+ =2, (3.2.16)
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2 2
av), (aw)\)| , g | 120 (av, 1oaw)_, 28 (2w
02 z 3l r 3z \93z r 9 ) 92z
éz>+.£ze.|i.8.z+az-2_ , (3.2.19)
T r 9ar | T Jr r r

! (32)2 + Y 52y s 1w _ u 32y L u_3v
;7 a¢ r2 8¢2 r 3¢ 92 r 9¢o0 r2 3
2 2
vy du,ldu udu v du, wdiu_ vy 1 (ou
2 9 r ot r dr r 9¢ r 9z r2 r2 3¢
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Since the cylinders are concentric, we have a symmetry
about their common axis. This implies that the physical
properties of the problem do not depend on the azimuthal
coordinate, i.e., %$ = 0 throughout the whole system.
This simplifies the foregoing equations considerably.
Boundary conditions:

We assume that the inner and outer cylinders revolve
with constant angular velocities Ql and Qz respectively.
The no-slip boundary conditions imply that at the boundar-
ies

u=0=w (3.2.21)

and

V(Rl) = -QlRl V(Rz) = Q2R2 . (3.2.22)

The heat resevoir situation implies that

G(Rl) = 61, 6(R2) = 92. (3.2.23)

3.3 Steady State Flow of Thermoviscoelastic

Fluids Through Rotating Coaxial Cylinders

We consider the problem which was formulated in
section 3.2, and assume we have a fully developed flow
in the annulus formed by two infinite rotating coaxial
cylinders. This assumption relieves the mathematical
system formed by this problem of its dependence on 2z,

SO we have:
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o _

e 0 (steady flow),

%$ =0 (axial symmetry),
and %E =0 (infinite channel).

Also, we assume that there does not exist any outside
forces imposed on the system and there is no outside supply
of energy into the system. This means that |
f=0,
and Q = 0. (3.3.1)
By comparison with Newtonian fluids, o, is the

negative of the hydrostatic pressure, i.e.,

a, = - P. (3.3.2)

and o, is the coefficient of viscosity.

Let the temperature at any point inside the annulus ke

represented by ¢ such that:

6 =6, + y(r, ¢, z, t), (3.3.3)

which for the steady state case reduces to:

6 =06, + y(r). (3.3.3a)

For the steady state flow, the physical components

of the stress matrix become:

sw\2 5 [v?
L= P+ a2 (,5_5> ‘ﬁ(?‘) , (3.3.4)

3 v
o = % [r L ('f)] , (3.3.5)

T

=
|
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~ 5 (v\ oy
T, = -ap o (f)'a‘f ] (3.3.6)
a2
T¢¢ = =P + 0.4 <8r> ’ (3.3.7)
T, =0 (3.3.8)
2
_ p -1 [y
Tpe = P T 5 (5?) . (3.3.9)

The equations of motion become:

oY, gL, vl (YA, 2 (av)?
P T or 31 9r r or \r r \or
2 o 2
159 4
-1 ‘F(%‘”) -4 (2—%’—) , (3.3.10)
_ 0 0 v 0 \'4
0-—0t2 —g;(l‘-?(-r—)>+23—f<?) ’ (3.3.11)

(3.3.12)

The unknowns are p, v, and Y, so we do not need
the heat conduction equation to solve the system. But it
provides us with a means of checking for the correctness
of solutions obtained. The boundary conditions are:

r = Rl' u=0=w, V= Rl 1 6 = 61 i (3.3.13)

r=R,, us= 0=w, v= RZQZ’ b = 62 . (3.3.14)

. The steady state solutions of the equations (3.3.10) to

(3.3.14) are:
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v = % + Br, (3.3.15)
v = % < an(r? + £ + 0D, (3.3.16)
A = Q0RIRS / (R3- RD), (3.3.17)
RS - (a+1)R
B =0 —, (3.3.18)
(Rl - R2)
4
o =52 -1, (3.3.19)
1
2B(8, - 98,)
¢ = ,
A + BR
2
in| ———5
A + BRl
2
(6,-6) n (A+BRS)
D = 2 ’ (3.3-20)
A + BR2
in | ——2
A + BRl

Now to obtain an expression for the pressure gradient, we
substitute egs. (3.3.15) and (3.3.16) into eq. (3.3.10) znd
the result is:
dp _ p (A 2 AB _ ,2 (12 2 2

= = <_ + Br) + oy 4;§ A (- + —i) + 2B

dr r 5 4
r r

o c2
(3.3.21)

-4
(A + Br)?

A notably interesting result comes out of the solution
of the steady state problem, namely, the velocity field is

the same as that of a similar problem for Newtonian fluids,
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while the thermal and the pressure gradient field are

different.

3.4 Non-dimensional Form of the Perturbed Prcblem

We assume a steady state flow and superpose small

disturbances on the system such that

xp =y' + A v'' = (u', v', w'), (3.4.1)

P, = P' * Pgr (3.4.2)

ep = 0' + es, (3.4.3)
where vVv', p', 6' are small perturbations in the velocity

field, the pressure field and the thermal field respec-
tively; the subscript s indicates the steady state fields
while the subscript p indicates the final perturbed
fields. All perturbations are assumed to be functions of
the coordinates r, ¢ and 2z and of the time t. We

recall that

¥g = ¥ (), vg = (0, v, 0), (3.4.4)
Py = Pgl(r), (3.4.5)
b = 05(x). (3.4.6)

A very helpful and physically realistic assumption to

make is to take the disturbances as infinitesimal and

axisymmetric. Thus %5 = 0 and quadratic terms and higher

order terms in disturbances should be negligible. The

assumption that the disturbances are infinitesimal allows
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us to write the following expressions for the perturba-

tions.
u' = et £(r) cos Az, (3.4.7)
v' = eth g(r) cos )z, (3.4.8)
w' = e™Eh () sin 2z, (3.4.9)
g' = eth ql(r) cos Az, (3.4.10)
p' = ™t 1(x) cos Az, (3.4.11)

where £, g, hl, q, and T are the amplitudes of the
corresponding disturbances; w 1is a constant which can

be complex, A is the wave number of the disturbance.

It is simple to see that for damped disturbances the real
part of w has to be zero. With these assumptions on
hand, and making use of equations (3.3.10), (3.3.1l1),
(3.3.12), (3.4.7), (3.4.8), (3.4.10) and (3.4.11) in the
equations of motion (3.2.7), (3.2.7a) and the heat conduc-
tion equation (2.3.13a) we obtain in non-dimensional form

for steady disturbances (w = 0):

2
2 2 2 1/3 2a
l+(DD*—a)g+Gl<D +ED+—(_4-+_;2->>fl

- f
z
G,

+ —2% - DD* £, = 0, (3.4.12)

1 - kg™

2 (1 2\ 2 2 5 2
Ta" { = - y]g + (DD* - a f, + G,a Yy + =)D

-2 1 3 22

+ 2 (23 + 3 >] g + G [ Y < L - {) D
- L@ - vodH \1 - v22



2
. a ] a, | = o, (3.4.13)

- —57 (D - F)g = ¢, (B)E] + 6, (D)D*E; - 4,(8)g

+ G5(D*D - az)ql + ¢4(C)Dfl + ¢5(C)fl - ¢6(C)D*

2 2 2 _
+ a ¢>7(C)fl + a ¢8(C)g - a ¢9(C)ql =0, (3.4.14)
where
_r_ = D_ + =D 1
“TERy PO Mot
a = ARZ,
ZBRgp
f, = £, (3.4.15)
1 Oy
—4ABR§p
T = — ——, (Taylor number)
%2
B _2
Y =" & Ry
2
Gy = a3 | eRs
Gy, = 05C | PABRS,
G3 = GlT' (Modified Taylor number)
4o, cB2R2p
4 2
G4 =

52



4, (2)

6, (1)

¢3(§)

4 (2)

b5 (2)

b6 (2)

¢7(c)

¢8(c)
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2
_ 8BRS
2 2
= "%E 2ABR,4ng - —-§-§ + % BzRgcz + oy A lZ
P 2R5C 2R, ¢
2 AB 1 c
- 2B°R,4ng - 2 ] - a [
2 Eg‘zf 4 2A(A+B§2R§)
2 BR2;2 ]
- _C_ in #
[
2a° A+BR§§2
I s
20 a3 (1-y¢%)?
2.2
4a3 c R2

- 4

%t a1 - yz?)?

_ S2 c
- - ’
P 2a%B(1 - y¢2)
_ Eg 1 + 2Ccyg ,
P AZBC(l - Ycz) A2B(l - YEZ)ZJ
- -2 2 -~ 2.7 2 2oy’ 72|
P |a*B(1 - yz%) A"B(1 - vz*) 7]

B2 (o]4

= — ’

P 2a%B(1 - y§2)

883c

’

a,A0(1 - y£?)



54

/.2
AP B3BR; ° %2, unB
9 4,00, - 6 |\ & R

Equations (3.4.12), (3.4.13) and (3.4.14) define in
non-dimensional form of the general perturked probler where

the perturbations are steady.

Non-dimensional Form of the Boundary Conditions

The walls of the cylinders are rigid:, vwhich implies:

R

1
£=0=g9g, hy =0 at ¢ =z, L
2
The equation of continuity is:
D*f + hl =0,
R
which implies that D*f = 0 at [ = &=, 1.
2
Using eq. (3.4.14) we get
Ry
— — * - E e—
fl =0=0D fl' a 0 at ¢ R2' 1.

The heat reservoir situation gives:

9, = 62 at =1

3.5 The Plane Layer Approximation

Solving egs. (3.4.12), (3.4.13) and (3.4.14) proves

to be a very difficult matter. Hence we consider the
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case of a narrow gap between the cylinders. In this case
we find that we can apply the plane layer approximation
technique. This changes the geometry of the problem from
cylindrical to planar, which could be fairly well approxi-
mated when:

1 Ry
(R2 - Rl) << 5 (R2 + Rl) = 5 . (3.5.1)

This assumption introduces the following simplifications

in the derivatives:

2
’ DD* = D*D = D2 = g_f .
dr

D* = D = (3.5.2)

Q-IQJ
a}

Also from eq. (3.5.1) it follows that we may neglect

(R2 - Ry) 2
terms of order 2 —— and smaller in all of

Ry

our equations. As an illustration of this technique we

consider
2
B+ 2. - g {¢1- 2R | )
r2 1 R2 + Rl (Rl - R2)Rl
Set X where x << 1.
R, + R
1 2
R
1 2 - X
Then = = 3 < °
2
2
2R 2
. 2 _ 4+ 4dx + x0 _ 1 2
Consider Rl(Rl T R27 =S I -=x2r " 1 (4 + 4x + x7)

X 3x

2 ~
(1+ 5+ §—+ ced) = 1455
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1+ 3221+ Ry~ R
2 R, + R,
_(, . R 2
R \T+F R /R,

R - R
- 1 1
= 0 1 + 02 - — || —au .
! ( R2><R2 . Rl>

The equations of the perturbed problem in dimensional

form can be written as (for steady disturbances):

o (03
-2 B+2 g+ 2L oopr - aH3|+ 2 (28
2 p 2 p
r A
_10a\ 2,23 _ 8B 42 , 122
2 =3 ) ) )
r r r
o 529 36 2 30
L 4 < s _ s> D 4+ 2X s }q - 0
_4 i _ s _3 _s 2A_ s =0,
o r2 ar2 r3 or r2 r 1

[0 a
2me + 2 [(DD* ) mg] LB <2BD2 I

1
N
‘w
=]
+
N
=
>§
N—
Fh
+
DI Q
u
N
Qo
@
n
lw]
o
*
H
I
o
©
w
[1=N

r4 r2 r or
%21 a 1 2 ) 2aBAnr A2 1.2
and—8...__D-_g—_ - + = B°r
) r2 r p r 2r3 2
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2

@ [gA 2B22nr_2§§ %4 c
312 r t r 2Ar (A + Br23

2 2 o 2
czzn( Br 2) £ o+ = <4éz-2ﬁ;13
YA A + Br P r r
2

2
g2 J o (_2_ (aes> bep L 4 (% .
B 0 2 h¥a ;? or

- =
B B 30 30
1 s 12 F212 %s 2 s
+ o [(D D A7) qqf + T Df + = 3 f
or
520 56 36 ' B 2 36
-2 —2+2 S prr+ a2 S g| 4 3| g s
2 r or or 0 2 9r
or r
2 . 4a?)\ 2
- <B + —rz A qq | = 0. (3.5.5)

If we apply the plane layer approximation technique to

egs. (3.5.3), (3.5.4) and (3.5.5), and non-dimensionalize

we obtain:

2 2,2 1 2
(D° - a“)“f +[? (N} + N,€)D° + (N; + N,£)D
Ng Ng
+ <—5 + M +<—§-+ Mzg g + (N7 + N8£)D
a a
+ a2(N9 + N8| q =0, (3.5.6)

2

2 2 2 2
a’Tf + (D" - a")g + [a (Nll + N16 + Nl7£)D

2 (] 2 —_—
+ (le + Nl3g)D + (a Nl4 + Nl4 + (a le + Nis)é}if— 0,

(3.5.7)



2 2
and [(M3 + M4£)D + (M5 + a N36) + Mo+ a N37)€] g

2 2 ‘ 2.,
i—[(a (N27 + N32) + a (N28 + N33)§I)+-(M7 + a N34

2.0 2 2 _
+ (M8 + a N35)§ :E%—[N31D + a M9 + N39£} dy = 0,

(3.5.8)
where g, N.» and Mj are non-dimensional quantities

defined as:

€= (r-R)/(Ry-R), 0<&<1, D= d/de.
d=R, - R, Ry=R;+R,,
1 ma + 2y *7F 1 '

R
1
Yo = a2 - g
- o - %)

Yo = 1
- r
3 Rl + R2
Y, - Rl
— 4
4 R2 Rl
1
YS - '—Y"Z [
Y, = R2
6 Rl + R2 !
Y, = “2
V2 - R ’

58
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3 _ s .
— [2 + 7 y7} , V= az/a = kinematic

viscosity,

Yo
40.a°r. 2
1 1
.V
3 a
- — ]2y, (1+v.) +3vy.y. 8 ,
100, a? 5 5 2's R,

_ %10 7 %) faa | (o + 16
7,33 IR, 32 '

2 2 "2 2

d3Ri 32 RldR0

agyq (6, = 67) ay 4

’



10

11

12

13

14

NI

14

15

1
Nis

16

17

18

19

2.3.3 R
8p0°a R] 0
40.,d%02
3 1 (1 + o )
YeY7/ ¢
pV
8a dZQZ

20U1Yg
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Ny = @ * 3vavse

2
2 10,2 2,2 2/, a
a4 Ql <30cde(ul 3)=18a (ulRl) o de—Bd <l+-&-8-))
Nyp = 702 N
v 3d
02-4(y.)%enR, [1+4—2 2-4 o _
0,02 ’ Ye 1 (yq) 2 s E
31 Yg
+
0 2
de(Ys)
20 .2 Y3
OL4Y1 Rl(OL-Y8)+4R0d£n(—8-—>
+ 5 2 '
o 4R1R0d
N.. = _EL. aly. = 3y.)d - 302U R, (1 - 2nR.)
22 J2 Y6 Y3 H1%1 1

2
ad o
e 1+—s>
Y
2 2 o 2 a7
g2 |9a“a+rR, (vg) Qﬁ?—> —24R1y867—-1>
1 8 8 ,
2

2
o 'Y2 (O
+ -—5—%—5 8@R§d<% - 2n<—§§> + R2R 0(rg - )2
8poLR1RO
2 2 2

4R10L d(Y8-oc) - 20LRR (Y8-oc)> ’
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24

25

26

27

28

29

30

31

32

33

128pv

Y3)

a0, [

3%1 2 2
Tov (1 + o )(3Y3 - Y6) + 3o Yo |
a3y [
5oy 307 (Tyy = 4y,) - alye -
_3h o2 a

gp\) a Y3 RO ’
8pv R, !
2
%gY1 52
14
32pV2Rg
No7
2. %
a4y§ a2
~ 32pv0 2. !
1 RyR5d
2
_ %4Y1 oc2 _ oc3>
320V 2.2 3 '
1 \R{R;  Ryd
r
1 8pv9id2 >
B2Y1 | wa 2
14
Z;:f 2R,
B,y
2¥1 2 3
- - (20 'Y5 + a7) ,

2

2

14
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N35

36

37

38

39

Ba¥y (%75 V-
32pv2 o 5 R0 '
BaYy
- > a,
32pv
2 2 2
811 [a3 0, 32097 e0rpla
092 | 32 By 37 7R
B2Yl ad + az
V- = [4
12| Ry T 32
_ B3Yl az y
v ’
tpvd® Yg 3
B3v1 o’a o3
14
320va® | YsRo g
" 8ovd vs
_ B3(8, - 8y) ,2 | 10062
7
2pva > | (yg)?
N -1,
Né + Yo o
Nig ¥ Ny3
Nig * Noy
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5 24 29’
6 20 25 30’

7 21 34"

Mg = Ny + Ngg,

M, = N38 - N

Equations (3.5.6), (3.5.7) and (3.5.8) will be used
in the next chapter to establish the characteristic value
problem the solution of which will yield the stability
criterion for thermo-viscoelastic fluids between two
corotating cylinders. The boundary conditions for this
problem are:

f =0 = Df at E=0,1 (3.5.9)
g=20 at &£ =0, 1 (3.5.10)
qa; = 61,62 at g = 0, 1 respectively.

(3.5.11)
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IV. CHARACTERISTIC VALUE PROBLEM

OF THE STABILITY ANALYSIS

4.1 Introduction

Having deduced the non-dimensional equations which
govern the flow of thermo-viscoelastic fluids between two
concentric cylinders, we shall use them to reduce the
stability problem into a characteristic value problem.
This is done by expanding one of the unknowns involved
by an infinite series of a set of orthogonal, complete
functions, Chandrashaker, (1961). An infinite order
secular equation results from this analysis involving T, the
Taylor's number. We solve for T from this equation for
each non-dimemsional wave number a by a suitable approx-
imation technique. The least positive T we find is the
critical Taylor's number which yields the criterion for

stability.

4.2 Reduction of the Stability Problem

to a Characteristic Value Problem

Our starting point in the analysis of reducing the
stability problem to a characteristic value problem is
egs. (3.5.6), (3.5.7) and (3.5.8). Let's represent f by

a doubly infinite series of the form:
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th
|

= Z Z Cin sin mr§¢ sin nmg . (4.2.1)

where Coy 2Yre unknown coefficients and which satisfies
the boundary conditions given by eg. (3.5.9). Substituting
eq. (4.2.1) in eg. (3.5.7) and sclving for g we get:

m#n

a>

g = whare

v
g m=n,

A _ l [a3 el s .
9 =3 ZE: EZ Crn Zamn cosha ¢ + Zan sinha £

m=1 n=1
2 2.2 2 2
+ la (Nll + N16)(m + n)°1° - (a N14 + Ni4 + a®T)
2 2.2 2
+ a Nl7(m + n)“T°E - (a Njg + Nis)i
2 2
+ 2(m + n)"w Ni3 cos(m + n)n§
a2 + (m + n)27r2 a2 + (m+n)27r2
2 2 2 2 2
+ (a N14 + Ni4 + a“T) - a (Nll + N16)(m - n)°mw
2 2
2 2 2 2 (m-n) “7°N
- aN..77(m - n)“g - 13 2
17 5 575 + (a N15 + NiS)E
a®“ + (m-n)°m
2 2.2 2. ?
x cos(m - n)7Tg/a” + [(m - n)“71°a (hll + NlG)
2 2 3
(a Nl7(m - n)"(m + n)n”)

+ (m+ n)7n(N + N..) +
12 13 a“ + (m + n)21r2
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2 sin(m + n)7g

a®N - N! + | (m+ n)n(N - N.,)
15 15| 22 4 (mem) 202 12 13
2 2 3
a N17(m + n)(m-n)m ) a2N . sin(m - n)nE
r
224 o 22 15 15| 2. (mom) 242
(4.2.2)
— v v . 2
= ZE: cmn{:“mn cosha ¢ + Brn sinhat + (a Nijg + NiS
m=1
2.2 2 £ (ales + Npg) sin 2mm
2a’m N, o) A 4 - mNy 418 S
a 2mm (a®+4m~ 1)
2.2
(a2N + N )< 2 + 1 > _ dm=m Nl3 cos 2mT§
15 1N\a? + am?r? amln (a2+4m? 12y (a2+4m?7?)
(a®N., + N!, + a’T) - m?m?(a®N., + N, )| 2{sin m7E)
a N4 14 11 16 )
a“+4m-m
mry, . Sin 2m7é ) (4.2.3)

12 a2 + 4m2ﬂ2

where g indicates g when m# n and ¢ indicates g

when m = n, and, for m # n:

[o0] oo
1 2 2 2
=- 3 ZE: zz cmn a (Nll + Nl6)(m + n)°w
m=1 n=1

2(m+n)2n2N m+n

13 (-1)
a +(m+n)21T2 a2+(m+n)21r2

2 . 2
+ Nl4 + a"T) +
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2 . 2 2 2 2
+ | (a N14 + N14 + a“T) a (N11 + le)(m - n)g
2(m - n)znzN m-n
13 (-1)
- 2 2 2 ) > D ’ (4.2.4)
a“ + (m~n)°7 a® + (m-n)“m
A %mn 2 2.2 2
an = - 3SThha cosha +| a N17(m + n) 1" - (a le + NiS) X
m+n
o | @+ N - Ny (e )Pl
a®“ + (m+tn)“m
m-n
, (-1) ) (4.2.5)
a~ + (m+ n)°m
for m = n:
2.2 2 .
_im TNy @Nps tNig) )y 2
- 14
mn (a2+4m2ﬂ2) (a2 + 4m2ﬂ2) 4m27r2 (a2+4m2ﬂ2)
(4.2.6)
2
o 1 (a N;g + NlS)(cosha - 1) 1 5
= — +
mn sinha (a2 + 4m2ﬂ2) 4m2ﬂ2 (a2+4m2W2)
2 2.2 2
(a”N + N!_.) - 2m“1m°a®N
2
a
Eg. (3.5.8) can be written as:
M N
2 9 39 1 2
D + =—— + = E|q; = - =— (M, + MJE)D + (M. + a“N,.)
N31 N31 1 N3l [ 3 4 5 36

2
+ (M6 + a N37)£]g - a [ ((N27 + N32) + N28 + N33)§) D
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+ (M, + N3,) o+ (Mg o+ N35)£} f:}. (4.2.8)

In order to illustrate the present stability analysis,
we consider certain types of thermo-viscoelastic fluids
governed by the following relations:

M, = 0. This reduces the

We set N = N 9

38 31 i.e.

above differential equations into the following form:

2 39
D° + === g, = Q(g), (4.2.9)
N31 1

where Q(&) 1is the right hand side of eq. (4.2.8).

Eq. (4.2.9) is a non-homogeneous Airy's equation. Airy's

3 3
functions Ai (Vv N397N31£) and Bi(¢N397N3l£) are solutions

of the homogeneous equation and are defined by

.3 3k
N &k (1| AL(N39/Nq ) 2 k(2
i=2¢ L3 (3 - < 33
<o k 3k 1 k=0 k

3
AL (W3g/N318)
(3k + 1)!

X

3 3k
) Bi( N,o/N ) o
Bi = /3|c 3k<l) 397 31 + c, Z Bk(—g->
0 k 3k! k=0 k

3
B (N5o/N37e)

14

(3k + 1)!
1 k
where <§ + %) 3= (300 + 1)(3a0 + 4)...(30 + 3k - 2) for
k

arbitrary o and k =1, 2, 3..., where c and c, are
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Airy's constants, Abramowitz (1967). Hence the solution of
eq. (4.2.9) is:
q, (&) = pmnAi(?}WE) + qui(mi) + q, (8),
(4.2.12)
where Pun and d,, are determined by the boundary condi-
tions and qp is the particular integral of eq. (4.2.9)
and can be readily obtained by the method of variation of
parameters involving the Wronskian of Ai(§ﬁ§;7ﬁgzg) and
Bi(3ﬁ§;7ﬁgzg), [Elementary differential equations, Boyce
and DePrimal. Egs. (4.2.12), (4.2.13), and (4.2.14) act-
ually stand for two separate sets of equations, one for
the case m = n, the other for the case m # n. Finally,
to obtain the characteristic value problem, we substitute
egs. (4.3.1), (4.3.2), (4.3.3) and (4.3.12) in eq. (3.5.6)
and then integrate between 0 and 1 obtaining:

[eo] o0}
Y. e F (@ T, N, &)l =0,i=1 to 39, (4.2.15)
m=1 m=1

where an is defined by:

1 1
4
an(a, T, Ni’ a) = a JE f + (Nl + N2£)Dg |0

1 1 1
+(N5—N4—l)fog+(N6—\¥2) jgl -[fg ,0
1 1 2 1

+ Noq, |0 + Ng (ql' + (a Ng - Ng) ‘[0 dq

2wy, (Jay |- Sy |
+ a’N, qll - JJa; ,0 ’ (4.2.16)

where q; and g and f are known.
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Egs.(4.2.15) form a set of linear houogeneous equa-
tions which can be solved for the coefficients Cmn
provided there exist nontrivial solutions of

“an(a, T, Ny, a)|] = 0 (4.2.17)

m,n=1,2, ..., i=1 to 39.

The solving of eqg. (4.2.17) for a minimum positive

real value of T constitutes the charactaristic value
problem. For given values of Ni’ i=1, 39, R2/Rl and
(62 - 91) a value of a is chosen and eg. (4.2.17)
is solved for the lowest positive value of T. This
procedure is repeated for different values of a until
the minimum lowest value of T 1is found. The solving
of the infinite order characteristic ec. f4.2.l7) is
accomplished by the approximate method of setting the
finite determinant made up of the first k rows and
columns equal to zero and solving for T. The usefulness
of this method is determined by how rapidly the lowest
positive value of T approaches its limit as k - «.
For the classical viscous fluid case, Chandrashaker (1954)
has found that a very rapid convergence is expected. For
non-Newtonian fluids, Narasimhan (1963) and Graebel (1962)
have independently shown that this holds true also. In

our present investigation also the above procedure has

been found to be rapidly convergent.
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4.3 Solution of the Characteristic Value

Problem and Critical Taylor Numbers

As an illustration of the above stability investiga-

tion, we choose the following set of data:

Rl = 1.0 cm ,
R2 = 1.03 cm ,
04V
3 7z = 1.0,
4led
16a°03 X
3 = 1.0 x 10 .

= 2.0
2_6 Ut
4leRl
aSYld
= 2.0 ,
2
pv R0
B,y
2 % = 5.0 ,
4ov
B.Y
22 - 5.0,
4pvd

and 0.5 < N, < 1.

The relation for N31 was chosen to facilitate comparison
with the stability analysis of other workers in the case

of classical viscous fluids.



+3

Q.

.5 4.2 1.785 x 10
1. 4.5 1.868 x 10
1.25 5.3 2.365 x 10
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V. SUMMARY, DISCUSSION AND SCOPE OF FURTHER WORK

5.1 Summary and Discussion

In the previous chapters we have presented Eringen's
theory of thermo-viscoelasticity and applied it to the
problem of stability of couette flow between two heat
reservoirs. In the course of this application we have
solved the steady state problem and reduced the stability
problem into a characteristic value problem and obtained
the solution for it. Comparing the results given in Table
I with the existing stability investigations, we find that
thermo-viscoelastic fluids in a couette flow in the absence
of a magnetic field are more stable than classical viscous
fluids in the same situation. In the non-Newtonian realm,
the results obtained physically indicate that thermo-
viscoelastic fluids, like Bingham plastics, are more stable
than viscous fluids under similar conditions, unlike Reiner-
Rivlin fluids which have been found to be less stable than
viscous fluids. .This behavior of the flow is essentially
due to the viscoelastic nature of the fluid under thermal

as well as rotation effects.

5.2 Scope of Further Work

The present investigation of stability of thermo-
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viscoelastic fluid flow between two rotating coaxial
cylinders maintained at constant temperatures has been
restricted to narrow gap width between the cylinders in
order to simplify the complex nature of the problem.

But, it should be definitely possible to extend this
problem to the wide gap case. Further, it should be
interesting to consider the influence of a superposed
electromagnetic field or density gradient field on the
stability of the flow, in the case of conducting fluids.
Also, further investigations into the interactions of
thermo-viscoelastic character of the fluid with a variety
of different combinations of rotational, thermal, magnetic
and density fields should prove to be of great interest in
technological as well as theoretical studies of stability

of non-Newtonian fluids in general.
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