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STOCHASTIC AUTOMATA AND THE
PROBLEMS OF RELIABILITY
IN SEQUENTIAL MACHINES

I. INTRODUCTION

Stochastic sequential machine models have been used in the study

of finite-state communication channels, sequential switching networks

made of unreliable components, and learning systems. In this paper,

we will employ the stochastic machine model to investigate some of the

problems concerning the reliability of sequential machines. The pres-

ent chapter is devoted to the introduction of basic notions and models

in the theory of stochastic machines and to a survey of the literature

in this rapidly growing field. We shall describe basic models of sto-

chastic machines, and summarize the present state-of-the-art with re-

spect to machine equivalence, minimality, and so on.

Stochastic Sequential Machines

Stochastic sequential machines are generalizations of finite de-

terministic machines in which the present state and input determine

the next state and output in a probabilistic manner.

Definition 1. A stochastic sequential machine (SSM) is a qua-

druple S=(X,Y,Q,p), in which X, Y, and Q are finite sets of inputs,

outputs, and states, respectively, and p is a probability function.

Elements of X, Y, and Q will be denoted by x, y, and q, respectively.

The conditional probability density function p(cii,y/qi,x)=pii(y/x))0

is interpreted as the probability that the next state and output will



be q. and y, given that the present state is q, and the input is x.

Clearly, p must satisfy the following condition:

p. 1(3114=1 (1)

q.eQ yeY

As shown in Figure 1, stochastic sequential machines may be rep-

resented by state graphs similar to those for deterministic machines.

Each transition arrow is labeled with a pair of input and output sym-

bols and the probability of that transition. Arrows corresponding to

transitions with zero probability are eliminated. Thus, from the graph

point of view, the probability values (indicated in parentheses) are

associated strictly with the transition arrows in the graph. An ab-

sence of .a probability value is, in every case, interpreted as p=1.

0/0

1/0(0.7) 1/1(0.3)

0/1(0.5) 0/0(0.5

Figure 1. State graph of an SSM.

From the probabilities pij(y/x), we can define other probability

density functions. For instance



p(y/q.,x)=p.(y/x):=E p..(y/x)
gjew

(2)

3

is the probability that the machine will respond to the input x by pro-

ducing the output y if started in state qi. The probability function

pi(y/x) determines the input/output behaviour of state qi. On the

other hand, consider

p(q./q.,x)=p..(x) = , .(y/x) (3)
yeY

which is the probability that the next state will be q. given that
J'

the present state and input are qi and x, respectively.

Wecanregard.p.(y/x)and p. (x) as ij elements of nxn matrices
ij

M(y/x) and M(x), respectively, where n is the number of states in Q.

Then, (3) may be written as:

M(x) =:E M(Y/x)
yeY

(4)

Similarly, pi(y/x) can be viewed as the i-th element of a column vector

c(y/x). If en is a column vector of length n with each component equal

to one, then:

c(Y/x)=M(Y/x)en (5)

To clarify the above ideas, we give the matrices corresponding

to the SSM in

M(0/0-

Figure 1.

-1 0 0

0 0 0.5

0 1 0

M(0/1).=

-0

0

0

0.7

0

1

0-

0

0_



"0 0 0 0 0 0.3-

M(1/0)= 0 0.5 0 11(1/1)- 1 0 0

0 0 0_ 0 0 0

-1 0 0 -0 0.7 0.3-

M(0)= 0 0.5 0.5 M(1)= 1 0 0

JD 1 0_ _0 1 0 _

Now we consider D, the set of all probability distributions on Q,

as an extension to the state set Q. By a probability distribution on

Q, we mean a row vector d=(di,d2,...,dn) with d.)0 and d.=1, in

wilicild.istheprobability.bilattheinaddrieisinstate,This is

a natural generalization since a state qi can be considered as a state

distribution d with di l and d.=0 (jii). Note that although the autom-

aton is stochastic, the transitions between state distributions are

deterministic in the sense that the present state distribution d and

the input x uniquely determine the next state distribution I.

d t (d,x)=dM(x) (6)

The input/output behaviour of a state distribution d is determined by

the following function:

pd(y/x)=Zd.p(y/x)=dc(y/x)
i (7)

Now consider the input and output sequences u=xix2...xk and v=

yiy2...yk. We define p(qi,v/qi,u)=pij(v/u) as the probability that the

analstateand.outputsequencewillbe.
clJ

and v, given that the input
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and initial state are u and qi, respectively. Similarly, pii(u),

pi(v/u), M(v/u), M(u), and c(v/u) can be defined. The following rela-

tions are easily derived:

M(v/u)=M(y1 /x1)M(y2/x2)....M(ykiKk) (8)

M(u)-11(xl)M(x2)....M(xk) (9)

c(v/u)=M( /u)cn (10)

df(d,u)=dM(u) (11)

p
d
(v/u)=2;d.a.p..1 (v/u)=dc(v/u) (12)

Definition 2. State distributions d and d' of stochastic sequen-

tial machines S and SI are k-equivalent if their input/output behav-

iours, given by (12), are identical for all sequences of length k. If

d and df are k-equivalent for every k, they are equivalent and we de-

note this by (S,d),---,(Sf,df). Equivalence of states can be defined

analogously.

Carlyle (1963) proves that (n+nf-1)-equivalence of d and d' is

sufficient for their 'equivalence, where n and n' denote the number of

states of S and S', respectively. Definition 2 is valid for states

and state distributions of the same machine if we let S=S'. Then,

(n-1)-equivalence is needed for equivalence. This is the stochastic

generalization of the result previously obtained for deterministic ma-

chines.

At this point, we introduce a matrix H which will be of subse-

quent importance. Columns of H are thOse elements of the set



{c(v /u): veY
k
,ueX

k
,k=1,2,...1 which are linearly independent and any

other element of the set is a linear combination of them (Xk and Yk

are the sets of all input and output sequences of length k). It can

be shown (Carlyle, 1963) that equivalent states correspond to.identical

rows in H, and that state distributions d and d' are equivalent iff

dH=d'H.

Definition 3. A stochastic sequential machine SI covers S if

for each state distribution d in S there exists d' in St such that

(S,d)e-d(S1,d1). We denote this by S' S. If S?-31?,.S, then S and S'

are equivalent. Two SSM's are state equivalent if each state in one

has at least one equivalent state in the other.

Definition 4. An SSM is reduced if it is not state equivalent

to another machine with fewer states. Any reduced SSM which is state

equivalent to S is a reduced form for it, An SSM is minimal-state if

no state qi is equivalent to a state distribution d with dim. Any

minimal-state SSM which is equivalent to S is a minimal form for it.

A reduced form for S may not be unique. In fact, an SSM may have

an infinite family of distinct reduced forms. By constructing a five-

state machine with two non-isomorphic minimal forms, Even (1965) proves

that minimal forms may not be unique either. Nieh (1970) gives a nec-

essary and sufficient condition in terms of the matrix H for the

minimal-state machine S to be unique. He proves that if S is not

unique, then an infinite number of distinct minimal forms exist.

Bacon (1964a) proves that all minimal forms of equivalent ma-

chines are state equivalent, have the same number of states, and are

not equivalent to any machine with fewer states. It can be shown
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(Even, 1965) that a reduced deterministic machine is minimal-state in

the stochastic sense.

Ott (1966) points out that a minimal-state machine may be covered

by another machine with fewer states. This suggests that the state

reduction of SSMts may be carried beyond the minimal forms; however no

effective procedure has been found for such reductions. Some further

results along this line are given by Paz (1968). It is interesting to

note that a reduced deterministic machine may not be covered by another

machine with fewer states (Ott, 1966). In view of the above statement,

it is easy to see why Bacon chose the term "minimal-state" for SSMIs

which are not equivalent to any machine with fewer states. For other

results on state reduction, see the papers by Paz (1967a) and Souza

(1969).

The following algorithm for finding a minimal form for S is based

on the work of Bacon (1964a) and Even (1965). First form the matrix H

for S and identify as many rows as possible which are not convex combi-

nations of the other rows. A row vector r is a covex combination of

r
1
,r

2
,...,rk, if r where r and rj: are the j -th components of

i
wiry,

r and r1, respectively, and w.;>0. Of the remaining rows, eliminate

those which can be obtained by convex combinations of the others, since

each such row corresponds to a state qi which is equivalent to a state

distribution d with dim. Finally, direct the transitions entering an

eliminated state to an equivalent state or state distribution.

We now turn to a different model for stochastic machines which

is due to Rabin (1963).
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Stochastic Acceptors

Stochastic acceptors are generalizations of finite deterministic

acceptors in which the present state and input determine the next state

in a probabilistic manner.

Definition 5. A stochastic acceptor is a quintuple A= (X,Q,p,d,F)

in which X and Q are finite sets of inputs and internal states, p is a

probability function, d is an initial state distribution, and FGQ is

a designated set of final states. The conditional probability density

function p(qiiqi,x)=pii(x):10 is interpreted as the probability of a

transitiontostateci.J' giventhatthepresentstateisand the in-

put is x.

Let p(u) denote the probability that after the application of an

input sequence u to A, the final state will be in F. To find p(u), we

sum those components of the final state distribution, given by (11),

which correspond to the states in F. Hence,

p(u)=dt(d,u)cn(F)=dM(u)cn(F) (a3)

where
en
(F) is a column vector of length n, with the k-th element equal

to one if qkeF and zero otherwise.

Associated with each stochastic acceptor is a set of stochastic

languages which we now proceed to define, since they reveal another

difference between stochastic and deterministic sequential machines.

Definition 6. A tape (input sequence) u is accepted by A with

cut-point C (041) if

p(u)> c (14)



The set U of all tapes which satisfy (14) is the set (language) ac-

cepted by A with cut-point C.

U(A,C) = {u: p(u)> (15)

A language U is accepted by A if (15) holds for some C. Hence, A sto-

chastic acceptor A orders the set of all tapes according to the value

of p(u), and C, the cut-point, indicates some point in this ordering

which separates the set of accepted tapes from those not accepted.

It can be shown that there exists a stochastic acceptor A and a

cut-point C such that U(A,C) is not a regular language, i.e. it cannot

be accepted by a deterministic acceptor. Rabin (1963) proves this by

constructing a two-state machine with two input symbols which accepts

a nondenumerable set of languages. The conclusion follows noting that

the set of regular languages is denumerable. Hence the set of regular

languages is a proper subset of the set of stochastic languages. How-

ever, if a cut-point C is isolated, i.e. if there exists e>0 such that

for any input sequence u

Ip(u)-C I > e (16)

then U(A,C) is a regular set accepted by a deterministic acceptor with

no more than (1+1/2e)
n-1

states.

A necessary and sufficient condition for a language to be accept-

ed by ,a stochastic acceptor and one which does not satisfy this crite-

rion are given by Bukharaev (1966). Other aspects of stochastic lan-

guages have been treated by Nasu and Honda (1968, 1969), Salomaa (1968,

1969b), Turakainen (1968, 1969), Knast (1970), and Paz (1970).



Alternate Models and Other Topics

The two models for stochastic sequential machines which we have

described so far are not exhaustive. Souza and Leake (1967, 1969) give

another model which is of special importance in the realization of

SSM's. This model consists of a state-assigned deterministic machine

whose behaviour is made stochastic by supplying some of its inputs from

random sources. Kelly and Schooley (1968) prove that any SSM can be

realized in terms of binary memory units, combinational logic, and bi-

nary white sources (history-independent sequential sources of binary

random digits with equal probability for the appearance of zeros and

ones). Other results on the synthesis of stochastic machines have been

obtained by Tsertsvadze (1963).

As we mentioned earlier, stochastic sequential machines are gen-

eralizations of deterministic machines. Because of this generaliza-

tion, it is desirable to define various classes of stochastic machines

by placing restrictions on the general model in order to facilitate

further developments.

That all transitions between states for actual sequential ma-

chines have strictly positive (though sometimes very small) probabili-

ties, leads Rabin (1963) to define the class of actual automata. A

property which he investigates for machines of this class is their sta-

bility under slight changes in transition probabilities. More precise-

ly, for each actual automaton A with an isolated cut-point C, there

exists e>0 such that for every automaton A' with transition probabil-

ities differing from those of A by less than e, we have U(A,C)=U(A',C).
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Carlyle (1965) studies the characteristics of state-calculable

SSMts (SSM's for which the next state is uniquely determined from the

knowledge of present state, input, and output). Definite stochastic

automata (SSM's for which the final state distribution after the appli-

cation of an input sequence of length k or more is independent of the

initial state distribution) have been introduced by Paz (1965, 1966,

1967b) and further studied by Liu (1969), Chen and Sheng (1970), By

putting some restrictions on the probability function p, Knast (1969a)

introduces the class of linear probabilistic machines which are gener-

alizations of linear deterministic machines. The class of m-adic sto-

chastic automata (SSM's with two states and m input symbols) have been

studied by Paz (1966), Salomaa (1967), Yasui and Yajima (1970).

Some attempts have been made to generalize the class of stochas-

tic sequential machines. Varshayskii and Vorontsova (1963) study SSM

models in which the transition probabilities vary in time. Knast

(1969b) further generalizes this model by considering a continuous time

scale instead of a discrete one. Turakainen (1969) gives a generalized

model in which the components of cn(F), introduced in Equation (13),

are arbitrary real numbers. However, he proves that such machines ac-

cept a language iff it is accepted by an SSM.

Page (1966) considers state-assigned SSM's with numerical input

and output, an example of which is a slot-machine. He defines the ex-

pectation of output for an initial state distribution d and an input

sequence u by E(u,d)=dM(u)cn(Y), where cn(Y) is an n- component column

vector whose i-th element is the output corresponding to state qi.

Then, he defines the expectation-equivalence of two SSM's with initial
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state distributions d and d1 as the equality of E( d) and E(u,dt) for

every u. Nieh (1968) defines the expected pay-off for each initial

state distribution d and input sequence u=xix2...xk by

P(u,d)=Y dM(viu)cy(v/u)
ve4k

where Y is the set of all output sequences of length k, and V(v /u) is

defined asE (yi-xi), in which yi is the i-th element of v. The func-
i

tion P can be used to order SSM's with numerical input and output ac-

cording to their value to the experimenter.

Bacon (1964b) generalizes the decomposition theory for determin-

istic sequential machines to the stochastic case. Arbib (1967),

Carlyle and Paz (1969) study the realization of a given input/output

behaviour by an SSM. Nieh and Carlyle (1968) suggest that the number

of states should not be the only measure of complexity for SSMts, since

a given machine may have many corresponding realizations with the same

number of states and different logical complexities. Accordingly, they

introduce a measure of complexity which allows us to compare any pair

of SSM's. Some properties of sets of stochastic matrices have been

investigated by Paz (1965), Yasui and Yajima (1969).

We conclude this section by refering to several books which sup-

ply the basic theory of stochastic sequential machines. Carlyle (1968)

and Arbib (1969, p. 324-348) treat the general theory, the former em-

phasizing the input/output behaviour of machines. Salonaa (1969a, p.

71-113) treats the subject with a stress on stochastic languages.

Booth (1967, p. 505-541) deals mainly with random processes in probabi-

listic machines.
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Relevance To Reliability Considerations

The reliability of sequential machines is an important factor in

their design and implementation. Many authors have investigated dif-

ferent problems concerning the reliability of sequential machines. The

first major contribution to this area was made by von Neumann (1956).

A deterministic sequential machine (DSM) may be regarded as an

SSM for which pii(y/x) is either zero or one. Accordingly, the matri-

ces M(y/x) and M(x) for a DSM have only zeros and ones as their ele-

ments. When realized in terms of actual gates and flip-flops, of

course all sequential machines behave in a probabilistic manner. This

is due to the unreliability of the elements of which the machine is

constructed. As a result of this unreliability, the entries of M(y/x)

and M(x) will no longer be only zeros and ones. However, if the prob-

ability of failure for each component is sufficiently small, these en-

tries will be very close to their ideal values. The above argument

suggests that SSM models may be useful in studying the reliability of

sequential machines. Such studies have been made by Bruce and Fu

(1963), Tsertsvadze (1964a), and Tou (1968).

The problems of reliability for sequential machines, discussed in

subsequent chapters, can be divided into two major groups:

1. Finding the reliability of a given sequential machine.

2. Synthesizing a sequential machine with a given reliability.

Two different approaches for investigating these problems are presented

in Chapters Ii and III. The results given in Chapter II are original

while those given in Chapter III are based on the work by Tsertsvadze

(1964a). In Chapter V, these two approaches are compared and that of



Chapter II is found to be advantageous.

For synthesizing a sequential machine with a given overall reli-

ability, the procedures of Chapters II and III can be used to find the

reliability required of individual elements. However, elements with

this reliability may not be available or economical to use. The syn-

thesis procedure of Chapter IV has been developed to handle such

cases.
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II. AN SSM MODEL FOR SEQUENTIAL MACHINES
MADE OF UNRELIABLE COMPONENTS

In this chapter, we consider sequential machines which are syn-

thesized in terms of gates and flip-flops. Our object is to develop a

method for finding SSM's which can be used as models in studying the

reliability of such machines. In order to treat both synchronous and

asynchronous sequential machines with the same theory, we consider

their operation in terms of cycles. By a cycle of operation, we mean

the time interval between the application of two consecutive inputs

(clock pulses in synchronous sequential machines are considered as part

of the input).

Finding the SSM Model

The output y of an ideal element, gate or flip-flop, can be writ-

ten in the form y=f(x,z), where x is the input to the element, and z is

the internal variable (z is a constant for elements without internal

variables). For actual elements, the output is not always given by the

above equation. In other words, with a probability p, which in general

depends on .x and z, a failure occurs and as a result yf(x,z). Such a

failure is caused by a temporary or permanent breakdown of the element.

In what follows, we assume that failures are caused only by temporary

breakdowns of elements. We will also assume that p does not deped on

x or z. The case where p is a function of x and z can be handled simi-

larly if we choose p9riax p(x,z), This value of p will result in a mod-
x,z

el which represents an even less reliable machine than the original
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one. Hence if the model satisfies a certain reliability criterion,

then so does the original machine.

Now consider an arbitrary sequential machine realized by a set of

elements El,E2,...,Ek. We assume that the probability of failure for

each of these elements is sufficiently small such that the probability

of two or more failures occuring at the same cycle is negligible. It

is also convenient to assume that the probability of failure for each

element is the same at different cycles of operation and does not de-

PerldwatheoPerationofotherelements.Let.denote the probabilitypl

of failure for E.. Then, the probability of having no failures in one

cycleisequalto11(1-p) andtheprobabilityofonlyE.being faulty
i

is pAi 1 (1-pi). Using linear approximations, we will have:

lj

k k
11 (1-pi)=1-
i=1 i=1

p. II (1-P)..1).
J

i/j

(17)

(la)

We study the behaviour of this sequential machine when its input

is x. For each state q we can find the joint probability density func

tion of the next state q' and the output y in the following way:

1. For all the cases in which no gate is faulty or only one is,

find the next state and output as well as the probability of

occurrence for that particular case.

2. The probability that the next state and output are q' and y

is equal to the sum of the probabilities of all cases in step

1 which result in qt and y as the next state and output.
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Example 1. Consider the three-state machine whose state table is

given below. Figure 2 shows a realization for this machine which will

be used as an example to illustrate and clarify the above procedure.

The following encoding has been used for this realization.

Inputs Internal
variables

States 1 States z2

q1
q
1

0
q2 q

1
0 0

q2
q
1

0 q3 0 q2
0 1

q3 ql q3 1
q3

1 0

State table Encoding table

NOT

A

AND

E
6

AND

OR

E7

AND

OR

E8

AND

5

AND

Clock
pulse

Trigger
flip-

flop

zE10 i

Trigger
flip-

flop

Ell
z2

Figure 2. The sequential machine of Example 1.
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We shall assume in this case that the probability of failure for

each element is equal to p. This assumption will simplify the example

and is sufficient to illustrate the process. When numerical values are

used, a different probability of failure for each element can be easily

handled. Furthermore, if we choose p=max(pl,pt,.. ), then the mod-

el will represent an even less reliable machine than the original one.

Hence, if the model satisfies a certain reliability criterion, then so

does the original machine.

Consider the case when the machine is in state q1 and receives

the input x=0. If all the elements function properly, the next state

will be q1 and the output will be y=0. This event has the probability

(l_p)111-
11p. If E2 fails to function properly, the next state and

output will be q3 and zero, respectively. In the same way, we can find

all the entries of Table 1.

From Table 1, we can deduce the probability of having qj and y as

the next state and output, given that the present state and input are

qi and x, respectively. We simply look for the entries qty in the row

corresponding to qi and x and sum their probabilities. This will re-

sult in Table 2.

From. Table 2, different matrices corresponding to the machine of

Figure 2 can be found. Remember that the ij entry of M(y/x) is the

probability of a transition from q. to qj with input x and output y.

Similarly, the ij element of M(x) is the probability of a transition

from q. to q. with input x.
j
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1-10p 4p 5p 0 4p 1-10p 0 5p

1-9p 3p 5p 0 4p 0 1-8p 3p
m(o/o) M(0/1)=

1-10p 4p 5p 0 0 0 p 0

1-9p 3p 5p 0 p 0 0 0

p 0 0 0 0 p 0 0

0 0 0 0 p 0
m(l/o) M(1/1)

0 0 6p 0 1-11p 4p

0 0 0 1-8p 3p 4p 0

1-9p 4p 5p 0 4p 1-9p 0 5p

1-8p 3p 5p 0 4p 0 1-7p 3p
M(0) M(1)=

1-9p 4p 5p 0 6p 0 1-10p 4p

1-8p 3p 5p 0 1-7p 3p 4p 0

Examples of Applications

We illustrate the applications of the matrices M(y/x) and M(x)

for a sequential machine in the following examples.

Example 2. Consider the three-state sequential machine of Exam-

ple 1. It is clear that u=0 is a synchronizing sequence for this ma-

chine; that is u will take the machine into state q
1

regardless of the

initial state. Figure 2 shows a realization for this machine. Suppose

that we have no knowledge about the initial state. Hence we can assume

that the machine is started with the state distribution d=(1/4 1/4 1/4

1/4). Using (11) and the results of Example 1, the state distribution

after the application of u can be found.
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dl(d,0)=dM(0)=(1-8.5p 3.5p 5p 0)

Hence, the final state is ql with probability 1-8.5p.

For homing experiments (those in which the knowledge of u and v,

the input and output sequences, is sufficient to determine the final

state), a similar method can be used. The probability of ending up in

the correct state can be found from the corresponding entry in the fi-

nal state distribution which is given by:

d,(d,u,v)=dM( /u) (19)

Example 3. The sequential machine of Example 1 accepts an input

sequence u (produces y=1 as the last output) if u ends in a block of

three or more consecutive ones. The initial state is assumed to be ql.

Consider the input sequence u=10111. The probability that u is accept-

ed by the unreliable version, can be found by using (12), (10), and

(8).

p(u)=7,(1 0 0 0)11( 1/10111)cn

=(1 0 0 0) m(v/1011))m(1/1)en

0 0 o )14(ion )11 ( ) en= 1-i4p

Hence, u is accepted with probability 1-14p or more.

A more interesting problem is the following: given the matrices

of a sequential machine S, find a number m such that if we apply an in-

put sequence of length k or less to 3, with a probability of at least

1-p a majority of the final outputs will be correct. A possible solu-

tion is given by the following algorithm.
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1. Use the above procedure to find the probability of a correct

final output for all sequences of length k or less.

2. Denote the smallest probability obtained in step 1 by 1-p

3. Use the following inequality to find m:

j =( +1)/2

Although the above procedure is an algorithm, it is very tedious to

carry out even for relatively small values of k. I believe that a more

efficient solution to this problem can be found.

The Reliability Required of Individual Elements

In this section, we introduce a method for finding the reliabil-

ity required of individual elements of a sequential machine for a given

overall reliability.

Definition 7. An entry in M(x) is a principal entry if it is

greater than 1/2. We assume that the probabilities of failure are suf-

ficiently small such that principal entries appear in locations where

there are ones for the corresponding ideal sequential machine.

Theorem 1. Let ph denote the smallest principal entry in an nxn

stochastic matrix Mh which has a principal entry in every row (h=1,2,..

.m). If (1-ph)<: 1/2, then the smallest principal entry in M=M1M2

...M satisfies the following inequality:

P P1P2". *Pm
(20)

Proof. We prove this statement for m=2. A simple induction on m
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will then establish the theorem. Let the principal entry of the i-th

row of MI be in the k-th place. There is one, and only one, column in

M
2
whose k-th element is a principal entry. Let this be the j-th col-

umn. Then the ij entry of M=M1M2 satisfies the inequality pii;op p .

From the relation (l-p1)(1-p2):0, we can conclude that:

pap2> pid-p2-1=1-((1-pi)+(1-p2))> 1/2

Hence., p . is .a principal entry. This is the only principal entry in

the i-th row since M is stochastic. Obviously, this argument is valid

for all the rows in andand hence the theorem is proved.

Example 4. A sequential machine must function reliably over a

preselected time interval. Consider the operation of the machine in

Example 1 for a sequence .0 of length k or less. The smallest principal

entries in M(0) and M(I) are 1-9p and 1-10p, respectively. If lOpk<

1/2, the conditions for Theorem 1 are satisfied and therefore the worst

principal entry in M(u) is greater than or equal to (1- 10p) k. Hence,

with a probability of at least (1-10p)k the machine will end up in the

correct state after the application of u. If k is relatively small,

the linear approximation given by (17) can be used.

Suppose we want to determine an upper bound for p such that the

machine of Example I will end up in the correct state with a probabili_

ty of at least 0.9 after the application of an input sequence of length

20 or less. Using Theorem 1 and the linear approximation given by (17)

we find the following condition which is sufficient for the required

reliability:

1-10pk > 0 . 9 p < 0 . 01/1) .0005
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The above method is also useful in estimating the reliability re-

quired of individual elements without finding the matrices M(x). The

only thing needed is a lower bound for the worst principal entry. Such

a bound can be easily obtained from (17). Using this method, we find

the following condition which is sufficient for the required reliabili-

ty:

1-11pk > 0.9 p<0.009/1.00045
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III, ENTROPY ESTIMATES FOR RELIABILITY

In this chapter, we introduce the notion of entropy for SSM's and

give its applications in estimating the reliability of sequential ma-

chines, The results given in this chapter have been obtained by

Tsertsvadze (1964a).

Definition 8. We say that a sequential machine functions with

reliability R for k cycles if its probability of being in the correct

state after the application of an input sequence of length k or less is

at least R. Obviously, for a machine which is intended to be determin-

istic, R must be very close to one.

Basic Definitions and Theorems

We first introduce the notion of entropy for stochastic row vec-

tors and matrices,

Definition 9. The entropy of a stochastic row vector r=
1 2

..,rk) ) is defined by

e(r)= rilog ri (21)

The entropy of a stochastic matrix M, e(M), is the maximum of the en-

tropies of its rows.

Theorem 2. The entropy of a stochastic row vector r=(r ,r
1 2

rk), in which some of the elements are fixed, is maximum if the remain-

ing elements are equal.
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Proof. without loss of generality, we can assume that the first

j elements of r are fixed (j1;k-2). Since E r.=1, we can write:
i

k-1 j k-1

ri=1-2-2 ri- rh
i=1 i=1 h=j+1

Equation (21) may be written as:

j k-1
e(r) = r.log r.- r log r -r log r

1=1 1 I h=j+1 hhkk

(22)

(23)

We can find the maximum of e(r) by differentiating (23) with respect to

r
h

(j<h<k) and equating the result to zero.

de(r)/drh= -log rh-1-(drk/drh)log rk-drk/drh=0 (24)

Differentiating (22) with respect to rh, we obtain drk/drh= -1. Then

Equation (24) results in r
h
=r

k
which proves the theorem since the sec-

ond derivative of e(r) with respect to rh is always negative. The max-

imum value of e(r) can be easily found from (23) and (22).

max e( -E r.log r. -(1 r. )log((1 -E r)/(k-j)) (25)

i=1 1 1 11 - 1= 1=1

Lemma 1. If r= (rl,r2,...,rk) is a stochastic row vector and M is

a stochastic matrix with k rows, then the entropy of the product rM

satisfies the following inequality:

e(rM) 4 e(r)+e(M) (26)



27

Proof. The proof is rather straightforward and can be found in

the paper by Tsertsvadze (1964a).

Theorem 3. If M are arbitrary stochastic matrices
m

and if M1112...Min is defined, then

e(mim2...cT, (m.) (27)

Proof. We prove this statement for m=2. A simple induction on m

will then establish the theorem. Let Ml be a stochastic matrix with

rows r
1
,r

2
,..., and r

k
. Then the j-th row of MA will be equal to

r3M2. Hence, by definition

e(M1M2)=niax e(riM2)

Using (26), we can write:

e(MiM,)max(e(rj)+e(M0))=max. e + (M2)=e(M1)+e(M2)

Definition 10. The entropy of ,a stochastic automaton at any in-

stant is defined as the entropy of its state distribution d=(di,d2,...,

dn).

Ifthestateofamssmiskriatantobeci.,Le.ffd.=land d.=-0
1

(j/i), then its entropy is equal to zero. This is always true for a

DSM. On the other hand, if we have no knowledge about the state of an

SSM, i.e. if d.=d
j
(1,jn), then by Theorem 2, its entropy is max-

i

imum. Hence, the entropy of an SSM can be used as a measure of the in-

determinacy of its present state.
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The Entropy of an SSM after k Cycles

If an SSM is started with state distribution d and supplied with

the input sequence u=x1x2...xk, the final state distribution can be

found from (11). Using (26), (9), and (27), we can write:

e(d'(d,u)) e(d)+e(M(u)) < e(d)+7,e(M(xi) ) (28)

Obviously, e(M(x. e(M(x)). Hence,
I xeX

e (df (d, u) ) e (d )+k max e (M(x) )

xeX
(29)

which is useful if only the length k of the input sequence u is known.

Let 1-pw be the smallest principal entry in the set of matrices

{M(x): xeX}. Using (25), we can write

max e(M(4) . -(1-
P
w)log(1-p

w w
)-p log(p /(n-1))

xeX
(30)

where n is the number of states. Let the function g(t) be defined by

g(t)= -t log t-(1-Olog(1-t)

Then, Equation (30) may be written as

max e(M(x)) g(p
w
)+p

w
log(n-1

xeX

Combining (29) and (32), we obtain:

(31)

(32)

e(dt(d,u)),;e(d)+k(g(pw)+pwlog(n-1)) (33)
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Inequality (33) gives an upper bound for the entropy after the applica-

tion of an input sequence u of length k.

g(t)

0.14

0.12

0.10

0.08

0.06

0.04

0.02

0.00
0 0.02 0.04 0.06 0.08 0.1

Figure 3. The curve representing g(t).

The Relation Between Entropy and Reliability

t

Definition 8 gives us a measure for the reliability of sequential

machines. Suppose that a given sequential machine is supplied with an

arbitrary, input sequence u of length k or less, starting in state q.

We assume that the probability of failure for the elements of which the

machine is built is sufficiently small such that the final state dis-

tribution has a principal entry, 1-pu. Then, by definition, the reli-

ability of the machine for k cycles is

R=min (1-pu)
ueUk

(34)
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where Uk is the set of all input sequences of length k or less.

From (33), we have an upper bound for the entropy after the ap-

plication of u which is a monotone increasing function of k. Hence:

max e(df (d,u)) k(g(pw)+pwlog(n-1))
ueUk

(35)

The entropy of d is zero since we assume that the machine starts in a

known state. Now, we can find a lower bound for R. Consider a state

distribution d" whose entropy is equal to k(g(pw)+pwlog(n-1)). If d"

has a principal entry 1-pm and if all other entries are equal, Theorem

2 assures us that:

1-pm min (1-pu)
ueUk

On the other hand, we have by definition

e(d")=(1-pm)log(1-pid+pmlog(pm/(n-1))

Hence, pm can be found from the following equation:

(36)

g(p
m m

log(n-1)=k(g(p
w
)+p

w
log(n-1)) (37)

If we disregard the term pmlog(n-1), we obtain the result given by

Tsertsvadze (1964a).

g(pm).4k(g(pw)+pwlog(n-1)) (3d)

Since g(t) is a monotone increasing function for t<C1/2, Inequality

(3d) may be written as

pin g [k(g(pw.)+pwlog(n.--1)
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where g
-1

(s) denotes the smaller root of g(t)=s. Using (36) and (34),

we find:

R?,. 1-g
-1

[k(g(p
w

)--Fp

w
log(n-1))] (39)

Inequality (39) is useful for finding a lower bound for the reliability

R when pw is known.

We now prove that

g(pw)+pwlog(n-1) .<.g(R)/k (40)

is a sufficient condition for the reliability to be at least R. Com-

bining (40) and (38), we obtain g(pm)g(R)=g(1-R). Since g(t) is

monotone increasing for t< 1/2, we can write pm< 1-R or 1-pm).R. Using

(36), we obtain 1-pu:,R which proves that the reliability is at least

R.

Inequality (40) can be used to obtain an upper bound for pw for a

given reliability R. Figure 4 shows a graphical method for solving In-

equality (40) using the curve of Figure 3. The inequality is satisfied

for tto.

{g(R)/k

tan llog n-1 g(t)

Figure 4. Graphical method for solving Inequality (40).
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Example 5. Consider the four-state machine, given in Example 1,

for which pw=l0p. Suppose we want the reliability of this machine to

be at least 0.9 for input sequences of length k=20 or less. Substitut-

ing the known values in (40), we obtain

g ( pw )-K) 477Pw (0.0071

Solving this inequality by the graphical method of Figure 4 yields

pw 0.002. Hence, if io0.0002, the reliability will be 0.9 or more

for 20 cycles.
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IV. RELIABLE SYNTHESIS OF SEQUENTIAL MACHINES

In the previous chapters, we developed two methods for estimating

the reliability 1-p of individual elements of a sequential machine for

a given overall reliability R. If 1-p is less than the reliability of

available elements, and if these elements can be used economically, we

can synthesize the given machine with these elements. However, if ele-

ments with higher reliability than 1-p are not available or are not

economical to use, other methods for synthesis must be employed. One

such method, which we will describe in this chapter, is simple redun-

dancy at the element level. In this method, we first synthesize the

machine in the usual way, assuming perfect reliability for the ele-

ments. Then, we substitute for each element a set of elements which

perform the same function with the required reliability.

Redundancy ut, Elements

Consider the configuration of Figure 5, in which M is a majority

element with an odd number m of binary inputs and one binary output,

and E1,E2,...,Em are identical elements. The output y is, by defini-

tion, the same as the majority of yi,y2,...,ym. Let pe and pc) be the

probabilities of error for E. and M, respectively, subject to the con-

ditions given in the first part of Chapter II. Tsertsvadze (1964b)

considers the more general case in which the probability of failure for

a majority element depends on the number of its inputs which are equal

to one.



x
1

a

y

Figure 5. Redundancy of single-output elements.
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Let p be the probability that a majority of yi,y2,...,ym be erro-

neous. Then:

17- (:)1:
k=(m+1)/2

10

_p)m-k
(41)

Figure 6 shows p as a function of p
e

for different values of m. The

overall probability of failure p for the circuit of Figure 5 can be

easily found.

10--13 (1-1)+(l-p
0 0

(42)

Since for any fixed pe<1/2, p is a decreasing function of m,

Equation (42) suggests that for sufficiently large 111, we can make p ar-

bitrarily close to po. However, practical limitations on the number of

inputs to a majority element makes this impossible. Verbeek (1962)

notes that for a fixed m, we can usually reduce p by using several lev-

els of majority elements.
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0.0001

0.00001.

0.0001

1- S
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Figure 6. Probability of failure for a majority of m elements.
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From Equation (42), we conclude that p=p0+(1-2130)p >P0, since po

is very small. Hence, for a given reliability l-p, we can use the con-

figuration of Figure 5 if majority elements with po < p are available.

This is also obvious from the fact that no circuit can be more reliable

than the element which produces the final output. In what follows, we

assume that this is always the case. Then, using (42), we obtain:

P-(10-100)/(1-2p0) (43)

After finding p from (43), we use the following procedure to find

the redundancy required. Let the reliability of each element be pe.

We find the point with coordinates p
e

and p on Figure 6, If this point

lies on one of the curves, the corresponding m indicates the required

redundancy. If this point lies between two curves, the redundancy is

obtained from the one with larger m.

The configuration of Figure 5, and hence Equations (42) and (43),

can be used for gates and those memory elements with a single output

line whose next states depend only on the input (delay flip-flops, for

example).

Redundancy Required for Two-Output Elements

For memory elements with two output lines, the configuration of

Figure 7 may be used. Then, the circuit functions properly if both of

its outputs are correct. If the next state of each flip-flop depends

only on its inputs, as is the case for flip-flops, we have the fol-

lowing equations which correspond to (42) and (43):

10=(40-6(1.:17;)+(1 -p(2))p (44)



p=(p -2poi-p20)/(1-2p0) (45)
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Hence, this configuration can be used if majority elements with p
o
<1-

(1-p)
1/2

are available.

z

zj
1

z
2

z

z
m

z1

M

Figure 7. Redundancy of two-output elements.

zi

For flip-flops whose next state depends on the present state,

(trigger, J-K, and R-S-T flip-flops), Equation (41) is not valid. As

an illustration, consider a set of m trigger flip-flops in a circuit

similar to that of Figure 7. Let z
1
=z

2
=

x1F-1
=1 while zill=0 because

of an error in the previous cycle. Suppose that the input x=1 is ap-

plied to these flip-flops. Then the probability that a majority of

them produce an output of zero is not given by (41), since the m-th

flip-flop produces a zero with probability 1-pe instead of pe.

The following method can be used to handle this case. Since the

operation of such flip-flops in one cycle is not independent of their
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operation in preceeding cycles, the length of the input sequence will

appear in our equations. Hence, we consider the operation of such

flip-flops for input sequences of length k or less. If we assume that

the probability of two or more failures for each element in k cycles is

neglegible, the following inequality gives an upper bound for the prob-

ability that a flip-flop is in a different state than a majority of the

flip-flops:

petkPe(3:1De)k4d_F(1...p )k ;I/ (9(4 )j(1.4.(13 111-i

e j-=(m+1)/2 e

kP (11.1)(4 )j
e j= (m +l)/2 3 e

(46)

The probability that it produces an erroneous output is, therefore,

less than

P =PL(1-Pe)±(1-PL)Pe (47)

By using p instead of p in our calculations, the methods described

earlier remain valid in this case.

For (m+1)/2j.m, we have max(3)=((m+T)/2). Hence:

p I < kpe+ (
m+1)/2 j=(m+1)/2

(kp

e

)

kp
( +1)/2

)(kip
e

)

(m+1)/2
/(1-4

e
)

e

The second term in the right hand side of (48) is a function of

f(m). We can write:

(48)
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f (m+2 ) /f (m)=4kpe (m+2)/ (m+3 )

Hence, for 4kpe 1, f(m) is a monotone decreasing function of m. Then:

ip..kpe+kpe/(1-kpe)

Substituting this upper bound for pe, in Equation (47), we obtain

p
e
<:p

e e
+kp (1-2p

e
)(2-kp

e
)/(1-kp

e
)

Finally, we find the following upper bound for 1e:

pe Ig pe+2kpe/(1-kpe) (49)

Example 6. In Example 4, we found that for the machine of Figure

2 to function with a reliability of at least 0.9 for 20 cycles, the

probability of failure of individual elements, p, should not exceed

0.0005. Suppose we want to synthesize this machine with elements whose

reliability is 0.998, using majority elements with p0=0.0002. From

(43) we obtain:

1D--(0.0005-0.0002)/(1-0.0004) -2 0.0003

Using Figure 6, we find that the required redundancy for gates is m =3.

To find the redundancy required for the flip-flops, we first use

(45) to obtain

p = (0.0005-0.0004)/(1,0.0004) =1-= 0.0001

Then, from (49), we find p .4.0.085. From Figure 6, the required redun-
e

dancy for flip-flops is mf=13.
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V. SUMMARY AND CONCLUSIONS

In this thesis, we have developed techniques for estimating the

reliability of sequential machines and for their reliable synthesis.

The results obtained are in perfectly general form and can be applied

to any sequential machine.

To summarize, in Chapter II, we introduced an SSM model for se-

quential machines made of unreliable components and showed its useful-

ness in estimating the reliability of such machines. Theorem 1 provid-

ed a simple method for estimating the reliability required of individ-

ual elements fora given overall reliability. Using the notation in-

troduced in Chapter III the results given in Example 4 may be written

as:

R (1-pw)

Therfore, the inequality

1/k
pw 1-R

(50)

(51)

can be used to find an upper bound for pw if the reliability is to be

at least R for k cycles. All the results obtained in Chapter II are

original with this thesis.

In Chapter III, we introduced the notion of entropy for SSMts and

its applications in estimating the reliability of sequential machines.

The results given in Chapter III are due to Tsertsvadze (1964a).

In Chapter IV, we developed a method for reliable synthesis of

sequential machines. The first part of this chapter is based on the
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works by von Neumann (1956), Verbeek (1962), and Tsertsvadze (1964b).

The results obtained in the second part of this chapter, i.e. those

concerning the redundancy required for memory elements, are original.

A camparison between the results of Examples 4 and 5, which rep-

resent the solution to the same problem using the methods of Chapters

II and III, respectively, suggests that the method of Chapter II may

be advantageous. The following argument shows that this is indeed the

case.

Let p' and p" denote the bounds obtained for p from (51) and
w w

(40), respectively. We want to prove that 101,:owP"' It is obvious that

if p1:14* then pt:i yields a larger value for p (the probability of

failure for each element) than p" and hence allows the use of less re-
w

liable elements.

To prove the above statement, we first note that

1/k
pv!"--=1-R

h(p;)=g(R)/k

where h(t)=g(t)+t log(n-1). Using (52), we can write:

h(pp) g(pt)-g(1-Ri/k)

On the other hand

1/k l/k
1-R =1-(1(1-R))

=141-(1-R)/k+(l/k-1) (1-R)2/( 21k )- (1/k-1) (1/k-2 )

(1 -R)
3
/(3!k) +.....]

(52)

(53)

(54)



=(1-R)/k+(1-1/k)(1 -R)2/(2Y.k)+(1 -1/k)(2 -1/k)

(1-R)
3
/(31k)+..... > (1 -R) /k (55)

Since g(t) is a monotone increasing function of t, we conclude from

(54) and (55) that:

h(pf ),>, g(1-R
1./k

)?-g((l-R)/k) (56)

From Figure 3, it is obvious that g((1-R)/k);',:g(1-R)/k. Hence,

(56) may be written as

h(pi)g(1-R)/k--8(R)/k (57)

Comparing (57) and (53), we obtain h(pi:r)). h(pw"). Since h(t) is a mono-

tone increasing function of t, the above inequality implies that pw'

p" which concludes the proof.
w

The following algorithms are direct consequences of the results

obtained in preceeding chapters and the above comparison.

To find the reliability R of a given sequential machine for k

cycles:

1. Use (17) to obtain a lower bound for the smallest principal

entry in M(x).

2. Substitute this lower bound for 1-pw in (50).

To synthesize a sequential machine with a given reliability R for

k cycles:

1. Synthesize the machine in the usual way, assuming perfect re-

liability for the elements.

2. Use (52) and (17) to obtain two lower bounds for the smallest
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principal entry in M(x).

3. By equating the results of Step 2, find the reliability re-

quired of individual elements.

4. If elements of higher reliability than the result of Step 3

are available, the synthesis of Step 1 provides the required

reliability. Otherwise, go to Step 5.

5. Use the methods of Chapter IV to find the redundancy for each

element which assures the given overall reliability, and rep.

licate the original element in a majority scheme to achieve

the required element reliability.

An example illustrating the use of these algorithms is given in

the appendix.

The above procedures deal only with the number of elements in a

sequential machine and do not use its concrete structure. As can be

seen from Example 4, SSM models which use the concrete automaton struc-

ture may not give much better bounds. Furthermore, the procedure for

finding such models is very tedious if the machine has a large number

of elements. On the other hand, we know that sequential machines may

be designed to have some error-correcting capabilities. Obviously, in

such cases, the use of concrete structure of the machine will yield

much better bounds for the reliability required of individual elements.

Hence, further research in this area may be directed to special classes

of sequential machines in order to obtain sharper bounds for reliabili-

ty values.
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APPENDIX

We illustrate the applications of the algorithms given in Chapter

V in the following example.

Example. Suppose that for the synthesis of a sequential machine,

60 NAND gates and 15 R-S flip-flops are needed. Find a lower bound for

the reliability of this machine for 10 cycles if it is synthesized with

gates and flip-flops whose reliabilities are 0.9998 and 0.9995, respec-

tively. Suppose that we want to use gates and flip-flops with reli-

abilities 0.99 and 0.97, respectively, and majority elements with po=

0 000002. Find the redundancy required for each element if the overall

reliability is to be at least 0.99 for 10 cycles.

Solution. From (17), we have

1-pv?(0.9998)
60

(0.9995)
15

=" 0.9802

Then a lower bound for the reliability of this machine for 10 cycles

can be obtained from (50).

R.?;(0.9802)10 le0.819

For the second part of the problem, we first use (52) to find:

1-p' =(0.99)1
/10 0.999

Denoting the reliability required of each gate and flip-flop by 1-pg

and 1-pf, respectively, we obtain from (17):

1-pw 1-60pg-15pf
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Hence, the following condition is sufficient for the required reliabil-

ity:

60p
g
+15p

f
=0.001

We choose p =0.000012 and p
f
=0.000019, since our flip-flops are less

g

reliable than the gates. From (43) and (45), we obtain p =-! 0.00001 for

gates and p 0.000015 for flip-flops. Hence, from Figure 6, the re-

dundancies required for gates and flip-flops are m
g
=5 and m =7, respec-

tively.


