

Title: RECOGNITION OF PRINTED CHINESE CHARACTERS
Abstract approved: _ Redacted for privacy
Harry E. Goheen

This method of character recognition is according to the topological features of a given character. First store the image of a Chinese character into the storage of the computer. Each image of the character appears as a 20×20 binary matrix. Each small square in the matrix is designated as one if the reflected light is more than 50% of that of a blank point, otherwise it is zero.

The encoding method is as follows:
(A) Preprocessor: This process includes three operations. These are Cleaning, Thinning and Connecting.
(B) Preliminary Classification: First of all count all the " 1 " points in each column of the binary matrix from left to right. This list of digits is named as the Original Digit Code (ODC). From the ODC curve, by recording the extreme points, we get a Modified Digit Code (MDC).
(C) Fundamental Classification: Choosing the longest line in each column of a binary matrix from left to right form the Longest Line Code (LLC). Plot the LLC against column number, to get the LLC curve. From the LLC curve, pick up the maximum points as the Largest Digit Code (LDC) and also record the number of digits between the two largest digits in LLC as the Distance Code (DC). In order to search easily for the English translation of a given character, the assigning of the order number to each digit in LDC is more important than the LDC itself. We call these digits as the Digit Order of LDC (DOL).

According to the $\mathrm{MDC}, \mathrm{DC}$ and DOL , the given character can be easily recognized by the computer.

Recognition of Printed Chinese Characters

by
Pat Jiun-Chang Lok

A THESIS

submitted to

Oregon State University

in partial fulfillment of the requirements for the
degree of
Master of Science
June 1971

Redacted for privacy

$\overline{\text { Professor }} \overline{\text { of }}$ Mathematics
in charge of major

Redacted for privacy

Acting Chajiman of Department of Mathematics

Redacted for privacy

Dean of Graduate School

Date thesis is presented

ACKNOWLEDGEMENTS

I wish to express my sincere appreciation to Professor Goheen for his help and patient guidance.

I certainly wish to thank my dear wife, Wea-lin, and my parents for their never-ending encouragements.

TABLE OF CONTENTS

I. INTR ODUCTION 1
Chinese Character Recognition 1
Chinese Character 2
II. INPUT CHARACTER 6
III. METHOD 8
Preprocessor 8
Preliminary Classification 12
Fundamental Classification 14
A MDC File 17
IV. DESCRIPTION OF THE PROGRAM 18
V. DISCUSSION 24
BIBLIOGRAPHY 27
APPENDIX: Lyapunov's Operator Scheme 28
Flowcharts 33
Program Listing 44

LIST OF FIGURES

Figure

1 The first column is the main forms of radical and the second column the variant forms corre－ sponding to the first column．

2 All the above characters have the same radical ＂心＂（or its variant form）。

3 Two pairs of characters．Each pair in the pairs has the same meaning．4

4 Two pairs of characters．Each pair in the pairs has a different meaning．4

5 Example of eight kinds of stroke． 4
6 Chinese character．This font style is commonly used in Taiwan，Hong Kong and the United States．7
7－A Lines before preprocess． 9
7－B Lines in Figure 7－A after first the thinning opera－ tion，then the connecting operation． 9
7－C Lines in Figure 7－A after first the connecting operation，then the thinning operation． 9
8
Badly quantized printed characters． 10
9 Characters in Figure 8 after cleaning． 11
10 Characters in Figure 8 after preprocessing． 11
11 ODC curve of $\frac{1}{5}$ ． 12
12LLC curve of 店16Figure
14 Same character 店 is located in the different location of a binary matrix. 17
15 NNL, LTP, NLTP in a partial binary matrix. 19
16-A Lines before thinning. 20
16-B Lines after thinning. 20
17-A Lines before thinning. 20
17-B Lines after thinning. 20
18-A Lines before thinning. 21
18-B Lines after thinning. 21
19 Analysis by rows of two characters which are indistinguishable by columns. 24

RECOGNITION OF PRINTED CHINESE CHARACTERS

I. INTR ODUCTION

Chinese Character Recognition

The rapid emergence of China as one of the leading producer of publications has fairly swamped United States translator monitoring Chinese activity. In nineteen hundred and sixty-two (1962) the level of Chinese to English translation was estimated at 3.5 million words per year [1]. In contrast the estimated need by the intelligence community alone is 34.4 million words per year. This requirement is expected to grow at the rate of about 25 million per year.

In 1960, machine translation of Chinese characters was first under taken at the University of Washington, the University of California and by the International Business Machine Corporation. So far, many methods have been used for recognizing printed Chinese characters, such as Casey and Nagy's method [2], Lam's method [3] and so on. Casey and Nagy's method uses two stages to recognize an unknown character. In the first stage, an unknown character is compared to all of the group masks ${ }^{l}$, and a preferred order of search through the groups is defined by the mismatch scores. In the second stage, the unknown is compared in this order to the individual masks until a
${ }^{1}$ Each group, containing masks for a number of similar character, is represented by a single group mask.
sufficiently good match is found．Lam＇s method classifies the different strokes of all Chinese characters into eight types．Each character is assigned one Eight－Digit Code and one Stroke Order Code． The method presented in here does not require a training set but needs instead only each size of a standard set of Chinese character as an input to create each corresponding Modified－Digit Code file．The Modified－Digit Code will be referred to as MDC from here on．

The simplicity of this method is that it does not require many calculations and is very efficient in locating the corresponding English translation．

Chinese Character

The structure of Chinese characters is usually within an imaging－ ary rectangular frame．Most of Chinese characters consist of two parts：the radical and the phonetic．The radical imparts the mean－ ing，while the phonetic carries the sound of the character．For ex－ ample，洲，＂continent＂consists the radical シ ，meaning＂water＂ and the phonetic 州，pronounced＂Chou＂．For example，＂首＂， ＂blind＂，consists of the radical 因，meaning＂eye＂and the phonetic $亡$ ，pronounced＂wong＂，meaning＂die＂．Some radicals themselves are characters，for example，水 is＂water＂，E is＂eye＂and 人 is＂person＂．

Scholars recognize two hundred and fourteen (214) radicals, but many of these have so-called "variant" forms which bear little resemblance to the "main" form. Twelve different kinds of radical in the main form and in the varient forms are given for contrast in Figure l.

Figure 1. The first column is the main forms of radical and the second column the variant forms corresponding to the first column.

The same radical may appear in various location in a character. This is illustrated in Figure 2.

Figure 2．All the above characters have the same radical＂心＂（or its vari－ ant form）．

For some characters，changing radical location will not change the meaning of the characters（see Figure 3）．

Figure 3．Two pairs of characters．Each pair in the pairs has the same meaning．

But for some other characters，changing radical location will change the meaning of the characters（see Figure 4）．
叻另 召叨

Figure 4．Two pairs of characters．Each pair in the pairs has a different meaning．

Character，radical and phonetic may be further analyzed in terms of＂strokes＂（see Figure 5）．

$$
-\jmath \supset\llcorner Z \backslash,
$$

Figure 5．Example of eight kinds of stroke．

According to the Kang Hsi Dictionary, there are 45, 000 Chinese characters. The Chinese typewriter contains 3,580 characters. The size of the "characters" and the difficulties encountered in assigning identities to each character preclude the widespread use of typewriters and simple coding devices such as the Flexowriters.

II. INPUT CHARACTER

For recognition of Chinese printed characters, it is necessary to have a method of reading the characters mechanically. A number of methods have been considered and are presently used [4,5]. They include optical method, such as the flying spot method, and the method of utilizing micropohones or photocell together with amplifiers, and magnetic methods such as writing with ink containing magnetic powder and using a magnetic head for reading.

The image of a Chinese character can be translated by the above mentioned methods into the storage of the computer. Each image of the character appears as a 20×20 binary matrix. Each small square in the matrix, which is a point, is designated as one if the reflected light is more than 50% of that of a blank point. Otherwise it is zero.

The input of printed character should be of a standard style but it is not necessarily in a fixed size, as the size can be adjusted by the amplifier. The position of a character in a binary matrix can be normalized by shifting the binary matrix through a shift register.

An example of Chinese print is shown in Figure 6.

七 成 選

Figure 6．Chinese character．This font style is commonly used in Taiwan，Hong Kong and the United States［2］．

Figures 8 and 9 show the＂binary＂representation of some char－ acters．

III. METHOD

Preprocessor

In order to increase the recognition rate and reduce the reject and error rate, it is necessary to have a preprocess before the classifying of a given character.

The function of the preprocessor is to make the input image be a more suitable representation. The flow of the operation is "cleaning", "thinning", "connecting". The program always does the thinning operation before the connecting operation. Otherwise the thickness of some lines can not be reduced easily. For example, there are two lines in Figure 7-A. The line in Figure 7-B is the lines in Figure 7-A after first processing the thinning operation, then the connecting operation. The line in Figure 7-C is the lines in Figure 7-A after first processing the connecting operation, then the thinning operation. A different order of operations get a different result (see Figure 7).

Cleaning. Eliminates " 1 " points without eight neighbors in a binary matrix. Such a point is called a stray point and would produce spikes and false connection during connect.

Thinning. The operation thinning reduces the thickness of the two ends of a horizontal line which consist of more than three " 1 "

B

A

C

Figure 7-A. Lines before preprocess.
7-B. Lines in Figure 7-A after first the thinning operation, then the connecting operation.
7-C. Lines in Figure 7-A after first the connecting operation, then the thinning operation.
points to make the whole line ${ }^{2}$ more homogeneous.
Connecting. The connecting operation replaces all connecting points ${ }^{3}$ by " 1 "points in the pattern so as to bridge the small gaps.

Figure 8. Badly quantized printed characters.

2
For convenience, line is defined as one or more than one consecutive " l "points in horizontal or vertical line.
${ }^{3}$ The " 0 "point between horizontal lines is defined as connecting point.

Figure 9. Characters in Figure 8 after cleaning.

Figure 10. Characters in Figure 8 after preprocessing.

Preliminary Classification

Recognition of Chinese character is one kind of pattern recognition. The structure of Chinese character is more complicated than the characters which are used in Europe or America. The method presented here is not devised for recognizing the English alphabet.

Analysis of a character by columns in a binary matrix can be more reliable than by rows. This is because the width of a vertical stroke of Chinese character is more than three times the width of a horizontal stroke.

First of all, count all the " 1 " points in each column of the binary matrix from left to right. This list of digits is named as the Original Digit Code (ODC). ODC of 店 (right character in Figure 10) is

Figure 11. ODC curve of 店 .

From ODC curve（in Figure 11），by recording the extreme points，we get a Modified－Digit Code（MDC），for example， 1926312471 as the MDC of $\frac{1}{5}$ ．There are nine digits in the MDC of the example．The first digit of MDC in this example is less than the second digit．So the character $\frac{1}{5}$ belongs to a nine digits group with 1 st digit less than 2 nd digit．

Figure 12．ODC character 唃 is 2997797126671476711 ， MDC of character 桷 is 2979712614611 ．

If ND （the number of digits in MDC）of a given character is equal 3，it is better to recalculate $O D C$ by rows instead of by columns． Otherwise the program will have a difficult time to distinguish such characters 末 and 末．．It is because that both of them have same ND，LDC， DC and MDC．The meaning of LDC and DC will be explained in later sections．The MDC also shall be changed
according to the new ODC but ND will still be 3 ．

Fundamental Classification

If ND is not equal three，choose the longest line in each column of a binary matrix from left to right to form the Longest－Line Code （LLC）．Otherwise choose the longest line in each row of a binary matrix from top to bottom to form LLC．From LLC curve（in Figure 13），pick up the maximum points as the Largest－Digit Code（LDC）and also record the number of digits between the two largest digits in LLC as the Distance Code（DC）．If two consecutive points in LLC curve are the maximum points，take the later point as a maximum point． Examples：

LLC of 立 is 15991551111111551
LDC of $\frac{1}{5}$ is 95115
DC of 店 is 224
LLC of 桷 is 1552255112251422211
LDC of 部 is 5111411
DC of 桷 is 433

In order to search easily for the English translation of a given character，the assigning of the order number to each digit in LDC is more important than the LDC itself．

The following steps form a procedures to assign the order num－ ber to each digit in LDC．

1．Rearrange the digits in $L D C$ in ascending order．
2．If the difference between two adjacent digits is less than two， the larger digit shall be replaced by the smaller one from left to right．

3．Then assign the order number to each digit．If two or three digits are the same number，they shall be assigned the same order number．The rest of the digits shall be assigned the order number according to the digit number in the rearrang－ ed list．

4．Finally，the corresponding digits in LDC are replaced by the order number and named the Digit－Order of LDC（DOL）．

For example：

| LDC of | 店 | is 95115 |
| :--- | :--- | :--- | :--- |
| DOL of | $\frac{1}{5}$ | is 3141 |

LDC of 部 is 5111411
DOL of 桷 is 1242

The location of a given character in the binary matrix is insub－ stantial as the number of digits in LDC and the digits in DC of the given character should always be the same（Figure 14）．

If only the MDC and ND of the given character are computed by the computer, the computer may require a very long time to search the for corresponding English translation. This is because the MDC of the given character may be only of slight difference from the MT^{4} of this character in the MDC table.

Figure 13. LLC curve of $\frac{1}{5}$
${ }^{4}$ MT represents the MDC of a character in MDC table.

Figure 14. Same character $\sqrt{5}$ is located in the different location of a binary matrix.

A MDC File

A MDC file contains four tables (ND table, DOL table, DC
table and MDC table) and subroutines which are designed to search the tables.

The way to create the tables in the MDC file is as follows:
(1) Calculate ND, MDC, DOL, and DC of each character in the set of characters which are going to be recognized.
(2) Store all the ND numbers in the ND table in ascending order of ND.
(3) Store all DOL of characters which have the same ND in the DOL table in ascending order of DOL of these characters. Then store the entry address of the DOL table and the number of these characters in the ND table.
(4) Store all DC of characters which have the same ND, DOL in the DC table in ascending order of DC of these characters. Then store the entry address of the DC table and the number of these characters in the DOL table.
(5) Store all MDC of characters which have the same ND, DOL, and $D C$ in the $M D C$ table and store the entry address of the MDC table in the DC table.
(6) Store the address of the corresponding translation in the MDC table.

The entrance of DOL table can be achieved by using the ND of a given character to search ND table.

Using the same technique, the entrance of $D C$ table and MDC table can also be achieved.

Two adjacent MT in MDC table may be the same.

IV. DESCRIPTION OF THE PROGRAM

When a scanner is available, Chinese characters will be individually presented to the scanner connected to a CDC 3300 computer. However, at present, a binary matrix (20×20) is introduced manually to the computer.

The computer goes through the whole binary matrix thrice. The first time is for the preprocessor. The second time is for calculating ND, MDC. The third time is for DOL and DC.

During the preprocessor, the program is searching for lines, row by row. If a line is only a " l"point, and its eight neighbor points all are " 0 "points, the program is going to change this " 1 " point to be a " 0 "point.

If a line consists of more than three " l "points, the program is going to do a thinning process.

For convenience of describing a thinning process, we define LTP to be the line which thinned down. NLTP are lists of points which are immediately above and below the LTP line. NNL are lists of points which are immediately above the upper NLTP and immediately below the lower NLTP. The length of NLTP is the same as the length of LTP. That is, if LTP has ten points in its length, then NLTP also has ten points in its length. The length of NNL is the same as that of NLTP.

0	0	0	0	0	0	0	0	0	0	\leftarrow	NNL
0	0	0	0	0	0	0	0	0	0	\leftarrow	$\leftarrow N L T P$
0	0	0	0	0	0	0	0	0	0	\leftarrow	$\leftarrow T P$
0	0	0	0	0	0	0	0	0	0	\leftarrow	\leftarrow NLTP
0	0	0	0	0	0	0	0	0	0	\leftarrow NNL	

Figure 15. NNL, LTP, NLTP in a partial binary matrix.

The first three points of NLTP are called Check Points. The fourth point of NLTP is called Important Point ${ }^{5}$. The point directly above or below a Check Point in NNL is the Corresponding Dicision Point of that Check Point. Each Check Point has one and only one Corresponding Decision Point.

Thinning Process. There are exclusively three cases which can occur. They are the following:

1. A "0 " Important Point precedes one or more " l "Check Points and the Corresponding Decision Points are all "0" points. In this case, all "l "Check Points are changed to be " 0 "points.

5 Counting starts at both ends of the range of LTP, etc. For example by the fourth point of NLTP, it means this:

Figure 16-A. Lines before thinning.
16-B. Lines after thinning.
2. A " l " Important Points precedes all "l " Check Points. In this case, nothing is changed.

A

B

Figure l7-A. Lines before thinning.
17-B. Lines after thinning.
3. The Important Point is "l " point followed by one or more " 0 " Check Points and finally by one or more " l "Check Points. In this case, the Corresponding Decision Points or Point are checked. If the Corresponding Decision Point is a "l" point, nothing is changed. If the Corresponding Decision Point is a "0 " point, the Check Point is changed to be a "0 " point.

A

B

Figure 18-A. Lines before thinning.
18-B. Lines after thinning.

All the connecting points will be changed to "l " points. During the classification, the programis searching for " l ." points column by column. At the end of a search, the ODC of a given character are obtained. Then call MD subroutine, so that MDC and ND can be achieved.

In FC subroutine, first calculate the length of lines in a column (if ND is equal 3, a row shall be used instead of a column) to store these lines in TLC (i) ${ }^{6}$, then pick up the largest digit from TLC (i) to store it in LLC (i). Repeat this process until the lengths of lines of all columns (or rows) have been calculated. From DOC subroutine, we will get DOL.

At this time, MDC, ND, DOL, and DC are printed by the computer. According to the features of a given character, such as ND, DC, DOL, the program should be able to find a very small group of MT in MDC table. The difference between the first digit of MDC (MDC (1)) of a given character and the first character of all MT(MT (1)) in this small group is less than two.

Call MT subroutine to search MDC Table, a measure of the similarity between the MDC of a given character and the MT in MDC Table is the function.

$$
\operatorname{SSR}(j)=\sum_{i=1}^{\operatorname{ND}}(\operatorname{MT}(i)-\operatorname{MDC}(i))^{2} \quad j=1 \text { to } K
$$

Where ND is the number of digits in MDC, i and j both are index. i is the digit position in MDC and the character position in MT. For example, MDC (2) is the second digit in MDC. K is the number of $M T$ in this small group. $S S R$ is the sum of square of
${ }^{6}$ TLC (i) are temporary storage location. i is index.
residual. The program is not going to calculate $\operatorname{SSR}(j)$ if the difference between $M T(i)$ and $M D C(i)$ is larger than two.

The MT which has the lowest value of $\operatorname{SSR}(\mathrm{j})$ is similar to the given character. If two SSR have the same lowest value, then set D equal to three, call FC and DOC subroutine to calculate LLC by rows and DOL. Finally go to search LCT table ${ }^{7}$ to print cut the corresponding English.

7 Every item in LCT table has three words -- the first word contains DC, the second word contains DOL, the third word contains the corresponding English address.

V．DISCUSSION

In this chapter，the author would like to discuss the following： （1）why the analysis of a given character whose ND is equal to 3 is by rows instead of by columns；（2）why the sum of the squares of residuals is used to identify a given character；（3）what is the comparison of the author＇s method with the others mentioned in Chapter I；and（4）how good are the results of test cases．

It is very difficult to distinguish between certain characters in certain pairs by the column analysis．Examples of such complica－ tions are the pairs \pm and 士，$上$ and $T, ~ 末$ and $末$ 。 Using the column analysis，two characters in the above pairs have the same ND，DOL，DC and MDC．Analyzing these characters by rows， they have different DOL，DC and MDC．

DOL 12
DC 7
MDC 111115

DOL 21
DC 7
MDC 115111

Figure 19．Analysis by rows of two characters which are indis－ tinguishable by columns．

Using the sum of squares of residuals，one can make the differ－ ence between two different characters more pronounced．For example， the MDC of 他 is 53735 and the MDC of 覀 is 43934 ． If the MDC of a given character is 43734 ，it seems more reason－ able to say that the given character is closer to 自 than to 本。 It is because the length of strokes（especially for the long strokes） among each other in a printed character have a roughly the same ratio． The third digit in MDC of \ddagger is one and a half times larger than the first digit．But for \oint ，the third digit of its MDC is twice as large as the first digit．The SSR of $申$ and the given character is 4 but the SSR of 我 and the given character is 2 ．So the program is going to decide that the given character is closer to \neq（with a smaller value of $S S R$ ）than to半

By using the sum of the absolute value of the difference（SAD） between MDC and MT ，the program can not decide that the given character is closer to 国 than to \oint because they have the same value of $S A D$ ．In this example，the $S A D$ is 2.

In comparison，with Mr．Lam＇s method，mentioned in Chapter I， the EDC method can not distinguish pairs of characters，such as \pm and $\pm, ~ 末$ and 末，\triangleq and $日$ ．His method did not handle the problem of the preprocessor．Also it would take much computer time to determine Mr．Lam＇s Eight Digit Code，since the recognition of the code for each stroke may be difficult．

Casey＇s method［2］does not mention how to do the preprocessing． Designing good and effective group and individual masks are a tremend－ ous and difficult job．It will take a very long time first to compare a given character with each group mask then to compare a given charac－ ter with each individual mask in a certain group．

The author＇s method is hard to compare with Groner＇s method ［6］．This is because his method as an aid to using a Chine se dictionary is designed for cataloging and retrieving related groups of Chinese characters having a certain given common feature．

One hundred characters have been randomly selected from the set of characters used in a Chinese typewriter．The one hundred characters each has a unique set of $N D, M D C, D O L$ and $D C$ codes． Also eight special pairs of characters have been selected and studied． Each member of the following five pairs can be distinguished from the other member in the pair by the row analysis of the computer program： \pm versus 土，未versus末，日versus日，千versus， ∇ versus $力$ ．Each member of the following two pairs can be dis－ tinguished from the other member in the pairs by column analysis of the computer program：已versus 已，韦 versus \ddagger 。It will take more time to distinguish 木干 from 社，because the ND of the se char－ acters are not equal to three．Not having ND equal to three，the com－ puter program calculates ND，DOL，DC，and MDC by column analysis． They have the same ND，DOL，DC and MDC codes．In this case，the
same alarm is set as for the case ND equal to three．Using row analysis to recalculate $D O L$ and $D C$ of the se characters，this time the program can easily distinguish 大干 from 木土 because they have different DOL and DC codes．

To save expense while the method is under consideration，the author has performed the algorithm by hand on the se hundred char－ acters．The resulting independence of location in the scanning frame of the code for each character has been gratifying．

The program will print an error message if，after a character has been preprocessed，it can not be reconciled with anything in the computer memory．

More than ten characters have been tested by this method on the machine．Average recognition time for each of the se characters with the system programmed on the CDC 3300 computer was 1.8 seconds which included print out of the map of the character，the ODC， $\mathrm{MDC}, \mathrm{LDC}, \mathrm{DC}, \mathrm{DOL}$ of the character and the corresponding trans－ lation．However，time may be reduced with modification of the pro－ gram，in particularly reprogramming in machine language．

BIBLIOGRAPHY

1. Survey of the need for language translation, Planning Research Corp., IBM Survey Rept. RC-634, March 12, 1962.
2. Casey, R. and G. Nagy, Recognition of printed Chinese characters. IEEE. Vol. EC 15, No. 1, pp 91-101. February 1966.
3. Lam, P. C. M. Location and description of strokes in Chinese character by digital computer methods as part of an automatic translation of Chinese to English. O. S. U. Master Thesis, March, 1970.
4. Duff, Michael, J. B. Parallel computation in pattern recognition. Methodologies of Pattern Recognition. p. 133. 1968.
5. Tomita, Shings, Shoichi Nogvchi and Juro Oizumi. Recognition of handwritten Katakana characters. Research Institute of Electrical Communication, Tohoku University. Electronics and Communications in Japañ. Vol. 50, No. 47, p. 174-182. 1967.
6. Gabriel F. Groner, J. F. Heafner and T. W. Robinson. OnLine Computer Classification of Handprinted Chinese Characters as a Translation Aid. IEEE. Vol. EC 16, No. 6, pp 856-860. December 1967.

APPENDIX

Lyapunov's Operator Scheme

```
II-1 Hl A2 A3 P4 A5 A6 AT A8 H9 Hl0 Hll Hl2 Pl3 Al4 Al5 Al6
        IIl7 Rl8
II-1 = Read data into memory
Hl = Clean, thin, connect
A2 = Calculate ODC
A3 = Calculate MDC and ND
P4 = If ND # 3 go to A6
A5 = Calculate MDC by rows
A6 = Set ND = 3
A7 = Calculate LDC and DC
A8 = Calculate DOL
H9 = Search ND table
H10 = Search DC table
Hll = Search DOL table
H12 = Search MDC table
Pl3 = If match in one MT then go to IIl7
Al4 = Set ND = 3
A15 = Calculate DOL and DC
Al6 = Search DOL and DC table
IIl7 = Print output
R18 = Stop
```

The detailed flowchart of the main program is followed by flowcharts of subroutines which have been arranged in alphabetical order. The program flow is following the direction of Arrows.

The name of a quantity or its symbol are used interchangeably throughout the flowcharts. The following abbreviations were used:
$B(i, j)=$ An element of the binary matrix B, where $0<i \leq 25$, $0<j \leq 25$

C $\quad=$ The length of a line
$C P \quad=$ Index or the number of connecting points in a row
D1 $=$ The number of digits in LDC
D2 = The distance between two adjacent points in LDC which come from LLC curve

DC = The distance code

DC(i) = The ith digit in DC
DCT $=\mathrm{DC}$ table
DOLT $=$ DOL table
$F L=1$, when the first digit of ODC is larger than the second digit
$=2$, when the first digit of ODC is less than the second digit

II = Index or character address
IN $\quad=$ Index or word address

```
IX = Index or character address
IY \(\quad=\) Index or word address
ID \(\quad=\) The number of digits have been stored in MDC
MDC = Modified Digit Code
\(\operatorname{MDC}(\mathrm{i})=\) The ith digit in MDC
\(\operatorname{MDCT}=\mathrm{MDC}\) table
MIN1 \(=\) The minimum number
MIN2 = The address of the minimum number
MT = An item in MDC table
MT(i) = The ith "character" of MT
MTL = The difference between two corresponding digits in MDC and MT
ND = The number of digits in MDC
NDT = ND table
NL = The number of digitis in LLC
ODC = Original Digit Code
ODC(i) \(=\) The ith digit in ODC
\(\mathrm{S}=0\), there is one minimum number
\(\mathrm{S}=1\), there are two minimum numbers
Sl \(=0\), while searching forward in MDC table from the entrance
Sl = l, while searching backward in MDC table from the entrance
```

```
SS = The total of "1 " points in a colum or a row
    Tj = The temporary store for j
    TLC = Temporary store
    TLC(i) = The ith digit in TLC
```

The function of subroutines are listed as following:

DOC = Calculate DOL
FC = Calculate TLC, LLC and LDC
$\mathrm{MD}=$ Calculate MDC and ND
MT = Search MDC table to measure a similarity between the MDC of a given character and $M T$ in MDC table and print the corresponding English or print error message, or return with the entrance address of LCT table

SEARCH $=$ Search ND table, DC table and DOL table, return with the entrance address (stored in IN) of next table or error message

SRLCT = Search LCT table and print the corresponding English Tables:

IN = Index, 15 bits
NI $\quad=\quad$ Number of items in a group, 9 bits

ND Table
1 word per item
First 9 bits contain NI
Next 15 bit for IN

DOL Table
2 words per item
First word for DOL

DC Table
2 words per item
First word for DC

LCT Table
3 words per item
First word for DC
Second word for DOL

Third word for IN

MDC Table

3 word per item
First two words for the first eight digits of MDC
15 bits for address

PROGRAM RPCHINESE
ITMENSION OC(10),OOL(10), MOC(15),OOC(20)
IMENSION TJ (20),LOC(20), BA (25,25)
NTEGER B, OC, OOL, LOC, MOC
INTEGER B,OC,OOL,LOC,MOC,OOC,O1,IO
COMAON OC,OOL, MOC,O1,IO,MINZ,S,OOC,LOC,
$*$ INPUT OATA
00
$096 \mathrm{~J}=3,22$
$00996 J=3$
$3(2, J)=0$
$B(23, J)=0$
$9968(23, J)=0$
$999 \operatorname{REAO}(6,100)((B(I, J), J=3,22), 1=3,22)$ IF (EOF (6)) Go to 101
WRITE $(61,98)((B(1, J), J * 3,22), I=3,22)$
FORMAT $(1 H, 20(I 2,2 X))$
FORMAT $(1 \mathrm{H}, 20(12,2 \mathrm{x}))$
$\mathrm{DOL} \mathrm{I}=3,22$ $\log _{j=2} 1 \quad I=3,22$
2 IF (JJ.GE. 23) Go ro 10

C 25 F.* IF THERE IS A NOISE, GET RIO OF IT***
$25 \quad \begin{aligned} & 11=1-1 \\ & 12=1+1\end{aligned}$ $\begin{aligned} & 1=J-1 \\ & J_{1}=J-2\end{aligned}$
$I S P=B(I 1, J 2)+B(I 1, J 1)+B(I 1, J)+B(12, J 2)$ IF (ISP
$\mathrm{B}(1, \mathrm{Jl})=0$
c 3 G\# TO 2 CECK CONNECTING POIMT:*:
 $1 F P=C+1$
$T J\left(P^{+}\right)=J$
$5 \quad \begin{gathered}60 \text { GO } \\ \mathrm{C}=\mathrm{C}+1\end{gathered}$
$\mathrm{J}=\mathrm{J}+1$

$100012 M=1$, C
$12 \begin{aligned} & J=1 J(N) \\ & g(I, J)=1\end{aligned}$

$99 \begin{aligned} & I 1=I+1 \\ & I 3=1+\end{aligned}$
$13=1+2$
$J 1=\mathrm{J}-1$
$J 2=J-2$
$J 3=J-3$
$J=J-4$
$L 2=0$
16

15 IF ($\mathrm{B}(\mathrm{I} 1, \mathrm{J4})$.EQ. 1) GO TO 17 IF ($\mathrm{B}(11, \mathrm{J3})$ - NE. 1 ; 60 TO 18 $81(1, J(3)=0$
$G 0$
TO 18
17 IF ${ }^{G 0}$ TO $18(18, J 3)$.EQ. 1) GO TO 19
 IF 1 B(I3,
G(II, J2)

13 IF (L1 UE. O) GO TO 22
$\mathrm{I} 1=\mathrm{I}-1$
$\mathrm{I} 3=\mathrm{I}-2$.

$13=1-$

$\begin{array}{ll}L 1=1 \\ 60 & 10\end{array}$
 $\begin{array}{cc}\mathrm{G}=\mathrm{O} \text { TO } & 3\end{array}$
C 23 ; to to check the left hano eno of a line *
$23 \begin{aligned} & \mathrm{TI}=\mathrm{J} \\ & 24 \\ & \mathrm{~J}=\mathrm{J}=1\end{aligned}$
IF(B(I,J).EQ. 1) GO TO 24
$J 1=J+1$
$J 2=J+2$
$J=j=j+3$
$J 4=1$
して $2=1$
$\left.1 \begin{aligned} & 1=1+1 \\ & 13=1+2\end{aligned} \right\rvert\,$
c^{1}
GOTO 16
GONTINUE
1 GN+PRELIMINARY CLASSIFICATION***
$0030 \mathrm{~J}=3,22$
$S S=0$
$30 \quad 31=3,22$
$S S=S S+B(I, J)$
$30 \begin{aligned} & J J=J-2 \\ & 00 c(J J)=5 s\end{aligned}$
HRITE (61,44) (OODC(J), $J=1,20)$
44 FORMAT $(1 \mathrm{H}, \mathrm{tOOC}=t, 20(12,1 \times 1)$

$55 \quad 0054 \quad \mathrm{I}=3,22$
$5 S=0$
0053
$5=3,22$
53

54 Joc(II) =SS
WRITE $(61,44)$ tOOC(J), J=1,20)
call
$10=3$
66
call ooc

46 CALL FC
GALL $O D C$ GALL ODC
GALL
SRLCT
45 GO TO
101 STOP

SUgroutine f
STMENSINN MC(10), OnL (10), MOC(15), ORE (20)

INTEGER T,DC, NOL,LDC,MGG, ODR, O_{1}, ID

c *STORE
if if Mit Linfs iv each columa in tle *

$\begin{array}{lll}1 & \mathrm{~J}=1 \\ ? & 003 \\ & \mathrm{~S}=3 \\ \mathrm{~J}=3,2\end{array}$
$5 \quad \begin{aligned} & \mathrm{T}=2 \\ & \mathrm{I}=\mathrm{T}+1\end{aligned}$

17 IF ($3(\mathrm{~J}, \mathrm{~T})) \mathrm{F}, 5$

$\begin{array}{ll}6 & \begin{array}{ll}k & =0 \\ 3 & k \\ k & =k 1+1\end{array}\end{array}$
IF (T, GF, 23) fo to 11
\Rightarrow IF (Js) 17,78,77

100 TO 5
30
$11 \begin{array}{ll}4 \Delta x= \\ I=0\end{array}$

${ }_{3}^{13} \quad \begin{aligned} & \text { LLe. } \\ & \text { SONTINUF }\end{aligned}$
$61 \quad j=J-1$

WRITE (f1,5n) (LLC(JJ),JJ=?,J)

***CALCULATE LOO AVO DC ***

$\mathrm{J}=\mathrm{I}+1$
TF (LCO(T)-LLC(J) $21,21,2 n$

(2) $\begin{aligned} & 11=01+1 \\ & 2=0 \\ & 2=0\end{aligned}$

LフO(O1) $=$ LLCG
? $5 \begin{gathered}\boldsymbol{I}=\mathrm{T}+1 \\ \mathrm{j}=\mathrm{I}+1\end{gathered}$
surroutine dos
IMENSION DC(10), DOL(10), MAC(15), ORT(?O)
TIMENSION LחC (30$), 8(25,25)$
INTEGEQ \circ, Or, OLL, LOC, MOS, CDC, O1,S

20L(I) $\quad=0$
$\mathrm{K} 1=71+1$
$\operatorname{LC}(\mathrm{~K} 1)=-$
2n (K1) $=-1$
$30, ~$
$41 \mathrm{~N}=20$
$\mathrm{~K}=0$

sonttinue
IF (1 •GE. TL) 50 TO 5
TOL (K)
$\mathrm{IF}=0$

37 RRTE (61,37) (nOL(I), $I=1,01)$ RERMAT
RETURY
subroutine mo
OIMENSION OC(10), DOL(10), MOC(15), OOC (20)
OIMENSION LOC(20)
INTEGER B, OC,OOL,LOC,MDC,

50
$1 \begin{aligned} & j=8 \\ & j=j+1 \\ & j=1\end{aligned}$
IF ($00 \mathrm{C}(\mathrm{J})$. NE. 0$)$ GO TO 2

14. IF ($\operatorname{DOC(J)-00C(1))~} 12,14,5$

14 GO	JENO

$12 \mathrm{FL}=0$
$5 \mathrm{FLOTO}_{6}^{\mathrm{FL}}$
$\begin{array}{ll}5 & \mathrm{FL=1} \\ 6 & \mathrm{IO}=\mathrm{IDO+1}\end{array}$

- $\operatorname{MDC}(10)=00 C(J)$

IFIJ.GE. J1 J go ro 10 $\underset{F}{1=J+1}$

$9 \begin{aligned} & 10=10+1 \\ & M 0 C(10)=00 C(1)\end{aligned}$
13
F (J .GE. J1) GD TO 10
$\mathrm{I}=\mathrm{J}+1$
IF (FL) $17,11,17$

17 IF ($O D C(J)-D O C(I)) 13,13,6$
MOC 1010$)=00 C(J)$
60 FORMAT (1 H), 60 , MOC (I), $I=1, I 0$)
$\begin{array}{ll}60 & \text { FORMAT } \\ 40 & \text { RETURN }\end{array}$

ERH	SEARCH ENTRY EXT BCO	SEARCH,SRLCT Mi 4, INPUT ERROR
TR8	9CD	t,
tra	BCo	2,
ocl	bss	2
OOLL	mss	2
IN	bss	1
No	bSS	1
lct	OCT	04000000,01020000,00000000
	oct	01040000,02010300,00000002
traa	bco	2,stick
	bco	2, ou
${ }_{11}$	bss	1
ta	bSS	2
not	OCT	00000000,00000000
	OCT	00000000,01000000
	Oct	00000000,03000002
	oct	00000000,03000010
	OCT	01000016,01000020
	oct	03000022,02000030
OCT	$\begin{aligned} & \text { OTt } \\ & 0 \subset \end{aligned}$	01000034 07000000,01000000
	oct	02000000,01000002
	OCT	05000000,01000004
	oct	06000000,01000006
	OCT	04040000,01000010
	OCT	05010000,01000012
	OGT	01010500,01000014
	OCT	03010400,01000016

	SEARGH OCT	02030600,01000020
	ост	02040400,01000022
	oct	02030303,01000024
	oct	04030102,01000026
	OCt	03020202,01000030
	OCT	02040200,01000032
	OCt	04010201,01000034
OOLT	ост	01020000,01000000
	OCT	02010000,01000003
	OCT	01020000,01000006
	OCT	01010000,01000011
	OCT	02020100,01000014
	OCT	02010200,01000017
	OCT	02010204,01000022
	oct	01030203,01000025
	OCT	02030301,01000030
	oct	02020201,01000033
	oct	01040301,01000036
	oct	02020502,01000041
	oct	04010104,01000044
	oct	01040203,01000047
	Oct	01040106,01000052
	common	
${ }_{00 \mathrm{~L}}^{0}$	BSS	10 10
mac	ess	15
01	BSS	1
${ }_{\text {IV }}$	BSS	1
$\mathrm{S}^{\text {MIN2 }}$	BSS	1
	PRG	
SEargh	uJP	**

number of lines hitm oiagnostics

ERH	nt ENTRY BCO	4, input error		$\begin{aligned} & \mathrm{MI} \\ & \mathrm{OCT} \end{aligned}$	04110611,07110611,00000022
				OCT	03060220,02110405,00000024
OCL	BSS	1			
OOLL	BSS	1		oct	03130215,04120704,00000026
NO	OCT	00000007		ocr	03130215,04120704,00000026
IN	BSS	1			
${ }_{\text {IX }}^{\text {IT }}$	BSS	1			
Mit	BSS	1		oct	01161112,04110517,00000030
TA	bss	2			
SSR	BSS	20		ocr	03050221,03050310,00000032
IS	bSS	1			
SI	8SS	1		OCT	04071704,05021203,00000034
Inh	BSS	1			04071704,05021203,00000034
11	BSS	1			
Ir	bSs	1	trat	BCo	2,Lano
MIN1	BSS	1		BCO	2,balas
four	OEC	4			
trb	всо	1.		BCO	2,Stop
tra	aco	2,		BCO	2,COMPARE
HOCT	OCT	01130117,00000000,00000000		BCO	2, HAPPY
				bco	2,currence
	OCT	01170305,01000000,00000002		BCO	2,WANT
	oct	01120117,01000000,00000004		BCO	2.hiss
				BCO	2,MERE
	oct	01160217,01000000,00000006		BCO	2,AGE
	0ct	02130213,03100100,00000010		BCD	2,thing
				BCO	2,Now
	OCT	02150210,04070100,00000012		BCO	2,SPECIAL
	oct	$01100307,04970200,00000014$		BCO	2,SHAPE
				common	
	OCT	04050116,05110314,00000016	${ }_{\text {OOL }}^{\text {O }}$	BSS	10 10
			moc	BSS	15
	oct	11011702,17320301,00000020	01	ass	1
			10	BSS	1
			${ }_{s}$	\%ss	1

LOAD THE IST CHAR DF
THE HORD GEF THE ENTRTHE HORD QEF THE ENTR-

[^0]number df lines hith diagnostics

[^0]:

 ALTQ
 SED

