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Inequality (3) is often called the Landau-Schnirelmann inequality,

DENSITY SPACE THEORY: DISCRETE SPACES

CHAPTER I

INTRODUCTION

In 1930, L. Schnirelmann [13,14] introduced the following den-

sity for a subset A of the non-negative integers. Let A(n) denote

the number of positive integers in the set A which do not exceed

n. Then the Schnirelmann density of A is given by

a = glb {A(n) I n > 1}.

Let A and B be two subsets of the non-negative integers. The

sum of A and B, denoted by A + B, is the set

{a + hi a E A, b E Now let a, p, and y denote the Schnirel-

mann densities of A, B, and C = A + B respectively. Suppose

0 E A B. Some of the results which have been obtained are:

If a + 13 > 1, then y = 1 (Schnirelmann [14]).

y> a + p _ aP (E. Landau [9] and Schnirelmann [14]).

If a + p < 1, then y> p/(1-a) (I. Schur [15]).

y > min {1, a+P} (H. Mann [10], F, Dyson [2], and B. Kvarda

Garrison [6]).
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(4) is called the Schur inequality, and (5) is the famous a + p

property.

In 1965, A. Freedman [3] generalized the concept of Schnirel-

mann density to arbitrary sets. Let S be an arbitrary set with a

special element called zero and denoted 0. For a subset X of

S, and a finite subset D of S, let X(D) denote the number of

non-zero elements in the set X D. Let 21 be any family of

finite subsets of S such that G E implies G\ {0} 4) Then

the density of a subset A of S with respect to ,AL is

a = glb { 'G

Freedman developed a general theory for density by introducing

two sets of axioms, one set giving structure to S and the other set

giving structure to ,gt . The set S is then called an s-set, the

family At a fundamental family on S, and the ordered pair

(S,,,a) a density space. Freedman, by introducing additional restric-

tions where necessary, has extended many of the results which have

been obtained for positive integers, including (2), (3), (4) and (5). In

fact, (2) is valid for all density spaces.

In this thesis we study a special class of density spaces called

discrete density spaces. We are primarily interested in knowing

when the a + 3 property holds, but in seeking such a result we also
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extend results (3) and (4). We have results for several types of dis-

crete density spaces. Freedman [3] has proved the a + p property

for discrete density spaces of order 1 and 2. We show that the a + f3

property holds for all purely discrete density spaces, for all singu-

larly discrete density spaces of order n <4, for all nested singu-

larly discrete density spaces of order n < 5, and for all nested

singularly discrete density spaces having two or less essential points.

We prove results (3) and (4) for all nested singularly discrete density

spaces (actually more generally for all T-spaces). We give exam-

ples where the a + p property and results (3) and (4) all fail for

discrete density spaces of order n> 3 and for singularly discrete

density spaces of order n > 5. We conjecture that the a + 13 prop-

erty holds for all nested singularly discrete density spaces. The

above theory is developed in Chapters III through VIII. In Chapter V

we obtain basic results which may be used to simplify the proofs of

certain density space theorems. These results allow us to replace

the density space by a simpler one. This chapter is of independent

interest.

In the last part of Chapter VIII and in the final three chapters

we look at several other interesting topics in discrete density space

theory and the more general density space theory of Freedman. These

topics include extensions of Mann's and Dyson's inequalities, Mann's

Second Theorem, mixed density theory, the relationship between
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c-density and k-density, and relationships between the transformation

properties of Freedman.

We use tne following numbering conventions in this thesis. All

definitions, lemmas, theorems, corollaries, and conjectures are

numbered consecutively in each section from x. y. 1, where

denotes the chapter and y denotes the section. Displayed material

which is referred to later is numbered consecutively from (1) within

each section.

We use the following notational conventions. Let A and B

be any sets. We write A C B if A is a proper subset of B.

We write A C B if A is a subset of B with equality allowed.

We use the symbol \ to denote set difference; that is,

A\ B = {xlx E A and x q B}. If {a1, a2, , ak, a} is a set of non-

negative integers, we denote by {al:az, , ak, a} the set

{a.11 < i < k} {mlm is an integer and m >

For any real numbers a and b such that a < b, we write

[a, b] = {xl a < x < b},

(a, = {x I a < x < b},

[a, b) {x I a < x < b},

(a, b) = {x I a < x < b}.



CHAPTER II

BACKGROUND

In this chapter we state those definitions and theorems from

Freedman's work which are used in the remainder of this thesis.

Proofs of the theorems are omitted and may be found in Freedman's

thesis [3] or in his article [4]. There is a significant difference in

convention between Freedman's thesis and his article. In his thesis

he requires the 0 element to be missing from all s-sets, while in

his article he requires the 0 element to be in all s-sets. We adopt

the convention of his article.

2.1. s-sets

5

Throughout this section S is a non-empty subset of an abelian

group G. The operation in G is denoted by + and the identity

element by 0. We also assume that 0 E S.

Definition 2. 1. 1. For x and y in G, we write x-< y

(or y >- x) whenever Y - xE S\{0}.

Definition 2. 1.2. For x E S {0}, let L(x) denote the set

of all y E S for which y-< x or y = x. We call L(x) the

lower set of x with respect to S.



Definition 2.1.3. The set S is called an s-set whenever the

following three axioms are satisfied:

Axiom s. I. s\{0} is closed under +.

Axiom s. 2. S contains at least one element in addition to 0.

Axiom s. 3. L(x) is finite for each x E S\ {0}.

Definition 2.1.4. Let I denote the set of all non-negative

integers.

Theorem 2.1.5. The set I is an s-set where + is the usual

6

addition for integers.

Theorem 2. 1.6. If S' is a closed subset of an s-set S,

0 E Si, and ST\ {0} 4, then S' is an s-set.

For example, the set of even non-negative integers is an s-set.

Definition 2.1.7. Let X be a subset of an s-set S. An

element x E X is called a minimal point of X if x = 0 or

Xrm L(x) = {x}. The set of all minimal points of X is denoted by

Min (X).

Definition 2.1.8. Let S be an s-set and x E S. Denote by

U(x) the set of all y E S such that x-.< y or x = y. We call

U(x) the upper set of x with respect to S.

Definition 2.1. 9. Let X be a subset of an s-set S. An



element x E X is called a maximal point of X if XrmU(x) = {x}.

The set of all maximal points of X is denoted by Max (X).

Theorem 2.1.10. An s-set S is isomorphic to I if and only

if Min (S\ {0}) reduces to a singleton {x}.

2. 2. Fundamental Families

7

Definition 2.2.1. For an arbitrary set S, let r) (S)

denote the family of all sets D C S with D finite, 0 E D, and

D \ {0} (1).

Definition 2. 2. 2. The ordered pair (S,1) is called a space

whenever S is an s-set and is a non-empty subfamily of D(S)

Definition 2. 2.3. Let be an arbitrary subfamily of

and let F be a set in *-5 . An element x E F is called a corner

point of F (with respect to GI) if F \ {x} E D-4 { { } } The set

of all corner points of F is denoted by F.

Definition 2. 2.4. Let S be an s-set. A non-empty family

D(s) is called a fundamental family on S if the following

four axioms are satisfied:

Axiom f. 1. S = {F1 F }

Axiom f. 2. If F E 15 and G E then F\JG E /
Axiom f. 3. If F E 7 and G E , then FnG E t'S o}



*
Axiom f. 4. If F E then Max (F) C F.

Definition 2. 2.5. The space (S,1) is called a density space

whenever el is a fundamental family on S.

The following theorem is useful in the actual construction of

fundamental families on s-sets.

Theorem 2. 2. 6. Let S be an arbitrary s-set. Correspond-

ing to each x E S\ {0), let H(x) be a subset of S satisfying

the following three conditions:

{0, x} C H(x),

H(x) C L(x),

If y E H(X) {0}, then H(y) C H(x).

Let = {FIF E n(s), x E F \ {0} implies H(x) C Then

P.5H
is a fundamental family on S. Conversely, given any funda-

mental family el on S, there exists a unique function H(x)

defined on S \ {0} satisfying c. 1, c. 2, and c. 3 such that DSH

Definition 2..2.7. For any s-set S and any function H(x)C S

defined on S \ {0}, we denote by *-SH the family

c'SH = {FIF E (S)) X E F \ {0} implies H(x) C

Definition 2. 2. 8. Let x E S \{0}. Denote by [x] the inter-

section of all F E al such that x E F. Then [x] is called the

8



Cheo set of °5 determined by x.

Theorem 2.2.9. Let S be an s-set and let H(x) satisfy

c. 1, c. 2, and c.3 of Theorem 2.2. 6 for each x E S\ {0}. Then

[x], the Cheo set of
6..-SH

determined by x, is equal to H(x).

Definition 2.2.10. A point x E S \ {0} is an essential point of

the density space (S,°;) if [x] = {0, x}. If [xi {0, x} then

is called a non-essential point.

We define a special fundamental family as follows:

Definition 2.2.11. Let S be an s-set. We denote by

= ( S) the fundamental family D-411 with H(x) = L(x) for each

x E S\ {0}.

Theorem 2.2.12. For any fundamental family °S on an s-set

we have X C *SC_

Theorem 2.2.13. For any s-set S, the spaces (S,X ) and

(S,) are density spaces.

Theorem 2.2.14. Let °S be a fundamental family. If F

G E and F C G, then F C G.

Theorem 2.2.15. Let (S,1) be a density space and X C S

where X is finite and X\ {0} Then the set

9



F = E \ {0} } is in °-.4 and furthermore F C X.

Theorem 2. 2. 16. Let be a fundamental family, If F EeS

then F = ){[x]ix E F \ {0} }.

2. 3. Density

In this section let (S,1) be an arbitrary density space.

Definition 2. 3.1. Let X be a subset of S. For any finite

(possibly empty) subset D of S we let X(D) be the number of

non-zero elements in the set Xr-,D. If D \ {0} is non-empty, let

q(X, D) be the quotient X(D)/S(D).

Definition 2. 3. 2. Let A be an arbitrary subset of S. The

k-density of A with respect to c'S is

d ( ,c-S) = gib { q(A,F)IF E 9S}

Definition 2. 3.3. Let A be an arbitrary subset of S. The

c-density of A with respect to c'S is

10

d (A,I) = gib {q(A,[x])lx E S \ {0}},

where [x] is the Cheo set of DI determined by x.

The k-density generalizes the density defined by B. Kvarda [8]

and the c-density generalizes the density used by L. Cheo [1] and
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F. Kasch [7]. Both of these densities reduce to Schnirelmann density

when the density space is (I,X).

For any density space (I, °S) we define two more counting

functions in addition to the one given by Definition 2.3.1.

Definition 2. 3.4. Let X be a subset of I and x E I. Then

X(x) denotes the number of positive integers in X which do not

exceed x. Let a E I, b E I, and a < b. Then X(a, b) denotes

the number of integers x E X such that a < x < b.

The function X(a,b) is the only counting function in this thesis

which can count 0. In particular, we have X(0, b) X(b) + 1 if

0 E X.

Definition 2. 3.5. Let A and B be subsets of S. The

sum A + B of A and B is the set {a + hi a E A, b E B).

Let C = A + B and set dk(A,°1) = ak = a, dk(B,1) pk = p,

cik(c) = -yk = y, dc(A,°S) = ac, d (B,°S) = pc, and dc(C,1) = -yc

If we refer to the density of a set we always mean k-density.

In the remainder of this chapter let A and B be subsets of

S with 0 E Ar, B

Theorem 2.3.6. We have 0 < a < a < 1. Furthermore,c-
a = ac = 1 if and only if A = S.

Theorem 2. 3. 7. y> max {a, 13}.



Theorem 2.3.8. If a + p > 1, then

Theorem 2.3.9. yc > max {ac, PC }.

Theorem 2.3.10. If *-1 = X(S) and a + p > 1, then
c c

= 1.

Definition 2.3.11. A fundamental family 1H is separated

if, whenever x and y are elements of 5\101 with x H(y)

and y 40/ H(x), then H(x) rmH(y) = {0}.

Theorem 2.3.12. If S is a separated fundamental family,

then k-density and c-density are identical; that is, a = ac for each

AC S.

Theorem 2.3.13. If S\ A is non-empty and the fundamental

family eS is separated, then ac = glb {q(A, [x]) E S \ A}.

Freedman [3, p. 43-4] defines two transformation properties,

trans-1 and trans-2.

Definition 2.3.14. Let F El, x E F, D = FrU(x), and

T1[D] = - xly E D}. Then es4 is trans-1 if Ti[D] {{o} }

for every F E 7 and x E F.

Definition 2.3.15. Let x E S \{0}, 4414-) 10} {1)},

D = H(x)\ F, and T2[D] = {x - yl y E D}. Then I'SH is trans-2

12

y = 1.



if T2[D] E GSH {{0}}., {4)} for every x E s\{0} and

F E °H{01

Theorem 2.3.16. The fundamental families X (S) and n (s)

are both trans-1 and trans-2.

Theorem 2.3.17. Suppose G4 is trans-1. Then for each

F E/ we have C(F) >A(F) + P(S\A)(F).

Theorem 2.3.18. If GS is trans-1, then y> a + p _ af3.

Theorem 2.3.19. If 1 is trans-1, then yc > ac + p _ acp .

Theorem 2.3.20. Suppose GY is trans-2. If S \ C

and F E / where F C S \ C, then C(F) > aC(F) + B(F).

Theorem 2.3.21. If GI is trans-2 and a +13 < 1, then

y >13/(1-a)

If S = I we have the following result.

Theorem 2.3.22. If n E I \C, then A(n) + B(n) < n.

13



CHAPTER III

DISCRETE, PURELY DISCRETE, AND SINGULARLY
DISCRETE DENSITY SPACES

In this chapter we begin the study of discrete density spaces.

We study discrete, purely discrete, and singularly discrete density

spaces. In particular we are interested in determining when the

a + p property holds for these density spaces.

3.1. Discrete Density Spaces in General

We define a discrete density space with the following definition

due essentially to Freedman [3, p. 101]:

Definition 3.1.1. A density space (S,1) is called a discrete

density space whenever 7 is separated. The order of the space is

given by

max {S([x])lx E s \

if this maximum exists. Otherwise, the space is said to be of infinite

order.

The density space (I,X) is an example of a discrete density

space of infinite order. The density space (S,30) is a discrete

density space of order 1.

Since °-4) is separated in a discrete density space we known,

14
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by Theorem 2.3.12, that the k-density and c-density of any subset of

S are identical. Therefore, whenever we are working with discrete

density spaces we can say that the set A has density a, knowing

that a is both the k-density and the c-density of A.

Freedman [3, p. 102-3] proves the following theorem whose

proof we give here for completeness:

Theorem 3.1.2. Let (S,6S) be any discrete density space

of order 1 or 2, let A, B, and C = A + B be subsets of S with

0 E ArB, and let the corresponding densities be a, p, and y.

Then > min {1,a +13}.

Proof: Suppose (S, GS) is discrete of order 1. Then the only

values possible for a, and are 0 and 1. If y = 1, then

y > min {1,a + p} . If y = 0, then by Theorem 2.3.7 we have

0 > max {a, p }, and so a + p = 0. Therefore, y > min {1,a + .

Suppose (s, 1) is discrete of order 2. Then the only

1

values possible for a, p, and y are 0, 7, and 1. If y = 0

or 1, then we argue as above to obtain y > min {1,a + 13}. If

1 1 1

y =7 and a + p < 7, then y > min {1,a + p} . If Y - 7 and

1a + p >-i, then a + 13 > 1 and so by Theorem 2. 3. 8 we have

y = 1, a contradiction. This completes the proof.

The following example shows that there is a discrete density



H(x) =

{ 0, 1,3) if x = 3,

{ 0, 1, 3, 4) if x = 4,

{ 0, 2, 5} if x = 5,

{ 0, 2, 5, 6} if x= 6,

{ 0,11,12, . .,10+n} if x = 10 +n,

{ 0,x} otherwise.

Now H(x) satisfies conditions c. 1, c. 2, and c.3 of Theorem 2.2.6,

so
H GHis a fundamental family on I. Also is separated.c/3

Furthermore, I([10+x-d) = n and I([x]) < n for all x E I \ {0}.

Therefore, by Definition 3.1.1, the space (I, III) is discrete of

order n. Let A = B = { 0, 1, 2,7}. Then C = { 0, 1, 2, 3, 4,7}.

16

space of any finite order greater than 2 for which the a + p

property fails. In fact, it shows that Theorem 2. 3.7, which is true

for all density spaces, gives in a sense the strongest result. Let n

be any positive integer greater than 2 and let S I. Define H(x)

for all x E I \ {0} as follows:

Now a = 1P=Y-7 Hence, Theorem 2.3.7 gives in a sense the

strongest result.

We obtain a space (I, 1H) which is discrete of infinite order

and for which the a + p property fails by replacing the fifth line in

the above definition for H(x) by



H(x) = { 0,11,12, . . . , 10+n} if x = 10 + n for all n > 3.

In the remainder of this chapter and in Chapter IV we place

various restrictions on our discrete density spaces so that we can

prove results stronger than that given by Theorem 2.3.7.

3.2. Purely Discrete Density Spaces

Definition 3.2.1. A density space (S,S) is purely discrete

if the following two conditions are satisfied:

(S, 1) is discrete,

If x E S \ {0) and y E [X] \ 0, then [y] = {0, y}.

Here we are able to obtain the a + p property.

Theorem 3.2.2. Let (S, ) be any purely discrete density

space, let A, B, and C = A + B be subsets of S with 0 E Arm B,

and let the corresponding densities be a, p, and y. Then

y > min {1, a + p}.

Proof: Suppose that (S,°S) is purely discrete of order n.

From condition (ii) of Definition 3.2.1, we conclude that for any

x E S\ {0}, either

(a) [X] = {0,x},

or

17

(b) Ix) = {0,x1
,x} where 2 <i <n and



[x.] = {0, x.} for j = 1, 2, . , i-1 .

In case (a), we have a = 0 if x I A. In case (b), we have a = 0

if x. IA for some j where 1 <5 <i-i. Therefore, if a 0,

we must have q(A, [x]) = 1 or q(A,[x]) =1-4 . Therefore, the
i- 1

only values a, p, and y can take on are 0, 1, or where

2 < i < n. If either a or 13 is 0, then by Theorem 2.3.7, we

have

y > max {a, p} = min {1,a + 3}.

If either a or 13 is 1, then by Theorem 2.3.8, we have

y = 1 = min {1, a + p} .

If a =-1 where 2 < i < n and p = where 2 j n,
3

then

i- 1 j - 1 1 1a + p = - + >- + - = 1.
1 j - 2 2

Therefore, by Theorem 2. 3. 8, we have y = 1 = min {1,a + 3}.

If (S, QS) is purely discrete of infinite order we replace

2 <i <n by 2 <i and we replace 2 <5 <n by 2 <j every-

where they occur in the proof for the finite case.

This completes the proof.

Although we are able to obtain the a + p property here, we

should note that to do so we have severely restricted the discrete

18
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density spaces involved. In the next section we introduce a different

restriction which allows us to obtain the a + p property for some

other discrete spaces.

3. 3. Singularly Discrete Density Spaces

Definition 3.3.1. A density space (S,1) is singularly dis-

crete if the following two conditions are satisfied:

(S, °T) is discrete,

For every integer i > 2 we have S([x]) = i for at most

one x E S\{0}.

Theorem 3. 3.2. Let (s,1) be any singularly discrete den-

sity space of order 3, let A, B, and C = A + B be subsets of

S with 0 E A nB, and let the corresponding densities be a, P,

and y. Then -y > min {1, a + p}.

Proof: There are three ways in which OH can be defined

so that cs, e'SH) is singularly discrete of order 3.

Space 1: Let H(x) be defined by

H(x) =
({ 0, , x2, x3} if x = x3'

{ 0,x} otherwise,

of order 3 and, by Theorem 3. 2.2, we have .y > min {1,a + 13} .

where 0 -< - x2-K x3. The space (S, 1H) is purely discrete



Space 2: Let H(x) be defined by

{ 0,x1,x2,x3) if X = X3,

H(x) = { 0, x4, x5} if x = x5'

{ 0,x} otherwise,

where 0 x x x and 0 -< x and where x. x. if
1 2 3 4 5 j

i j. The space (5, ) is purely discrete of order 3 and, by

Theorem 3. 2.2, we have y > min {1, a + 1-3}.

Space 3: Let H(x) be defined by

0,x1,x2,x3} if x x3

H(x) { 0, xi, x2} if x = x2,

{0,x} otherwise,

where 0 -<xi-< x2-< x3. The only values possible for a, p, and

1 1 2
y are 0, -3- , -2- -, and 1. If either a = 0 or p = 0, then by

Theorem 2. 3. 7, we have

y > max {a,} min {1,a + Pl.

If a + p > 1, then by Theorem 2. 3. 8, we have

= 1 = min {1,a + p}.
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We may select our notation so that a < I. Therefore, in the

remainder of the proof we may assume that 0 < a < 3 and a + 1 < 1.



Since 0 < a < p , we known that all of the essential points are in

ArB and hence in C; that is,

S\ {x2,x3}C ArmB C C.

We have two cases to consider.
1 2

Case 1 (a = 13 = We have a + p = -3- . We show that
3

1

> by showing that x2 E C. Since a -7- we have
3

and x3 V A. Sincex.< x-< x3, we have x2 x1
E S. Also

by

q'

x2 - x1< x2
x because

3 x2 - (x2-3(1) =
E The relation -<
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x2

is transitive and hence x2 - x1 x2 and x2 - x1 x3. Therefore,

x2 - x1 E A because all elements except x2 and x3 are in A.

Therefore, since x1
E B we have x2 = (x2-x1) + x1 E C.

1 5Case 2 (a = -1
3-, p = -i, ): Here a + p = We show that

6

5 1

-y = 1 > -6 - and x3 E C.by showing that x2 E C Since a - 3
1

we have x2 V A and x3 V A. Since P = -2- , we have x2 V B

and x3 E B. Now x2
E C exactly as in Case 1 and x3 E B C C.

This completes the proof.

We now show that the a + p property holds for all singularly

discrete density spaces of order 4. We begin with the following

lemma which is used in the proof for Space 5 of Theorem 3. 3.4.

Lemma 3.3.3. Let (S,1H) be the density space determined



{ 0, xi, x2, x3, x4} if x = x4,

{ 0, xi, x2, x3} if x x3,
H(x) =

{ 0, xi, x2} if x = x2,

{ 0,x} otherwise,

where 0 -< xi x2-< x3 -< x4. Let A, B, and C = A + B be sub-

sets of S with 0 E A (-NB and let a be the density of A.

(i) If a > 0 and Xi E B, then x2 E C.

(ii.) If a >0 and x E B and x E B, then x3 E C.
1 2

Proof of (i): Since xi.< x2 x3-< x4' we have x2 - Xi E S

and x2 - x x2 x3 x4. Therefore, x2 - x1 x2,

x2 - x1 x3, and x2 - xi x4. Since a > 0, only x2, x3, or

x4 could be missing from A. Therefore, x2 x1
E A. Now

x2 = (x2-3C1) +
E C.

Proof of (ii): Since x1 x2 x3-< x4' we have x3 - x2 E 5,

x3-x1 ES,x2- '
x ES x3 -x -<x3 -<x4, and x3- x1-.< x3--< x4.

1 2

Therefore, x3 - x2 i x3, x3 - x2 i x4, x3 - xi i x3, and

x3 - xi i x4. Also x3 - x2 -.< x3 - xi because

(x3-x1) - (x3-x2) = x2 - x1 E 5, and so x3 - x2 i x3 - x1. There-

22

x3 - x2 E A or x3 - x1 E A. Since
x1

E B and x2 E B, then in

fore, either x3 - x2 x2 or x3 - xi x2. Since a > 0, only

x2, x3, or x4 could be missing from A. Therefore, either



either case x3
E C.

This completes the proof of Lemma 3.3.3.

Theorem 3.3.4. Let (S,1) be any singularly discrete den-

sity space of order 4, let A, B, and C = A + B be subsets of

S with 0 E A rm B, and let the corresponding densities be a, p,

and y. Then y > min {1,a + 13).

Proof: There are fourteen ways in which 'S can be defined

so that (S, °SH) is singularly discrete of order 4. In the remain-

der of the proof we assume that x x. whenever i j.
i 3

Space 1: Let
e'SH

be defined by

H(x) =
{0,x1,x2,x3,x4) if x = x4,

{0,x} otherwise,

where 0 -< x1-< x2- x3-< x4. The space (S, 1H) is purely dis-

crete of order 4 and, by Theorem 3.2.2, we have

.y > min {1,a + 13).

Space 2: Let G'SH be defined by

H(x) =

{ 0, , x2, x3, x4}

{0,x5,x6}

{ 0, x} otherwise,

where 0 x1-< x2 x3-< x4 and O.< x5-< x6. The space

23



24

(S, °4'11) is purely discrete of order 4 and, by Theorem 3. 2.2,

we have y > min {1,a + p}.

Space 3: Let ()SH be defined by

{ 0, xi , x2, x3, x4} if x = x4,

H(x) { 0, x5, x6, x7} if x = x7,

{ 0,x} otherwise,

where 0 xr< x2-.< x3.< x4 and 0 -< x5- x6- x7. The space

(S, cv-SH) is purely discrete of order 4 and, by Theorem 3. 2. 2,

we have y > min {1,a + p}.

Space 4: Let 1H be defined by

{ 0, xi , x2, x3, x4} if x = x4,

H(x) =
{ 0, x5, x6, x7} if x =

x7,

{ x8, x9} if x = x9,

{ 0, x} otherwise,

where 0 -< xj.< x2-< x3.< x4 and O x6-< x7 and

0 -< x8.< x9. The space (S,;) is purely discrete of order 4

and, by Theorem 3. 2. 2, we have y > min {1,a + p}.

Space 5: Let c'SH be defined by



{ 0, , x2, x3, x4} if x = x4,

{ 0, xi, x2, x3} if x = x3,
H(x) =

{0,xi,x2} if x = x2,

{ 0, x} otherwise,

where 0
--<x1 x2 x3-< x4. The only values possible for a, 13,

1 1 1 2 3
and y, listed in increasing order, are 0

4 3 2 3 4

1. If either a = 0 or p = 0, then by Theorem 2.3.7, we have

> max {a, 13} = min {1, a + p} .

If a + p > 1, then by Theorem 2. 3. 8, we have

= 1 = min {1, a + f3}.

We may select our notation so that a < P. Therefore, in the re-

mainder of the proof for Space 5 we may assume that 0 < a < p

and a + 13 < 1. Since 0 < a < 13, we know that all of the essential

points are in A (mB and hence in C; that is,

S \ {x2, x3, x4} C A r. B C C.

By part (i) of Lemma 3. 3.3, we have x2 E C. Therefore, the only

elements which could be missing from C are x3 and x4. This

allows four possibilities for the set C. The following table lists

the eight ways in which the positive densities of Space 5 can be

and
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obtained. Those entries where x2 is in the set give the four pos-

sibilities for the set C.

We have six cases to consider. We make frequent use of

Lemma 3.3.3 and the above table of densities.
1 1Case 1 (a = p =
-4

): We have a + p
-2

. We know that ./ >

because x E C and x2 E C

1Case 2 (a = 74, p 4):: We have

by showing that x4 EC.

a + P Zi We show that

Now X4 E B C C.

3Case 3 (a = 1 1
p = ): We have a + (3 = . We show that

3
Y > 4

by showing that x3 E C.

Subcases 1 and 2 for P
1 Here x3 B C C.

Subcase 3 for p = 4: Here x3 E C by part (ii) of Lemma

3.3.3.

26

Density

1

4
1

3

Subcase

1

1

Non-Essential Points
x2 x3 x4

0 0 0

KEY

Not in the set
1

1 0 0 + In the set
2

2 0

3 0 0

2

-3-
1

3
1

4

1 1



1Case 4 (a = 4' 133= ): We have

11
y = 1 >

2
by showing that x3 E C and

y > max {a, (3) = min {1, a + 13).

1 1a + p = . We show that

X4 E C. Now x3 E C by

part (ii) of Lemma 3. 3.3 and x4 E B C C.

1 2
Case 5 (a = 13 = 7): We have a + 13 = -i . We show that

2
V2 by showing that x4 E C. Now x4 E B C C.

1 1 5Case 6 (a7= , p = ): We have a + 13 = z . We show that

5
V = 1 > -6- by showing that x3 E C and x4 E C.

1Subcases 1 and 2 for 13 = 7 : Here x3 E B C C and

X4 E A C C.

1Subcase 3 for p = 7 : Here x3 E C by part (ii) of Lemma

3. 3. 3 and x4 E A C C.

This completes the proof for Space 5.

Space 6: Let 'SH be defined by

{ 0, xi , x2, x3, x4} if x = x4'

{ 0, x5, x6, x7} if x = x7,
H(x) =

{ 0, x5, x6} if x = x6,

{ o, x} otherwise,

where 0-< x1 x2-.< x3-< x4 and 0 -<x5-< x6-< x7. The only

1123
values possible for a, 13, and y are 0,

and 1.

If either a = 0 or p = 0, then by Theorem 2.3.7, we have
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If a + p > 1, then by Theorem 2 3. 8, we have

y = 1 = min {1, a + p).

We may select our notation so that a < p . Therefore, in the

remainder of the proof for Space 6 we may assume that 0 < a < p

and a + p 1. Since 0 < a < 3, we know that all of the essential

points are in A n B and hence in C; that is,

S\ {x4,x6,x7}C AnB C C.

We have two cases to consider.
1 2

Case 1 (a = p = -3- ): We have a + p = . We show that

2 1y > 7 by showing that x6 E C. Since a = -, we have x6 11 A

and x7 ol A. Since x5-< x6-< x7, we havex6 - x5 E S and

x6 - x5- x6- x7. Therefore, x6- x5 i x6 and x6 - x_ i x7 . If
5

x6 - x5 x4 then x6 - x5 E A, and since x5 E B, we have

6 5x6 E G. If x - x = x then x1-4 x4.< x6' and so

x6 - x1 --< x6-e, x7.
Therefore, x6 - x1 E A, and since x1 E B,

x4

we have x6 E C.

1 1 5Case 2 (a = 13 = 7 We have a + p = -6- We show that

5y = 1 >x4 Eby showing that x6 E C, x7 E C, and C. Since
6

1
P = we have x6 1 B and x7

E B. Now x6 E C exactly as in

Case 1 and x7
E B C C. Since x1-< x2-< x3-4, x4, we have



x4 - x3- x4 - x2- x4 - xi.< x4'

and since x4
and x6

are the only elements which could be miss-

ing from B, we have at least two of the elements x4 - x3, x4 - x2,

and x4 - xi in B. Since x1, x2, and x3
are all in A, we

have x4 E C.

Spaces 7, 8, and 9: Let be defined by

H(x) =

{ 0, xi , x2, x3, x4} if x = x4,

{ 0, x., x.} if x = x,,
j

{ 0, x5, x6, x7} if x = x7,

{0,x} otherwise,

where 0 -< xi -..< x2-< x3 -< x4 and 0 -< x5-< x6-< x7, and i < j

where i,j E {1,2,3}. (Note: Spaces 7, 8, 9 refer respectively to

i = 1,j = 2; i = 1,j = 3; i = 2,j = 3.) The only values possible for
123a, p, and y are 0, 7, and 1. If either a = 0 or p = o,

then by Theorem 2. 3. 7, we have

> max {a, p} = min {1, a + (3} .

If both a and p are positive, then a + 13 > 1 and, by Theorem

2. 3. 8, we have

y = 1 = min {1, a + 13} .

Space 10: Let oy be defined by
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H(x) =
{ 0, x5, x6} if x x6'

{ 0,x} otherwise,

The only values possible for

f{

0, xi , x2, x3, x4} if x = x4'

{ 0, xi , x2, x3} if x = x3,

where 0 xr< x2-< x3-< x4 and 0-<x5-< x6. The only values
123possible for a, P, and y are 0, -2-, -3-, 7-4, and 1. If either

a = 0 or p = 0, then by Theorem 2.3.7, we have

> max {a, (3) = min {1, a + p} .

If both a and p are positive, then a + p > 1 and, by Theorem

2. 3. 8, we have

= 1 = min {1, a + p} .

Spaces 11, 12, and 13: Let GSH be defined by

{ 0, xi , x2, x3, x4} if x = x4,

H(x) = { 0, x., x.} if x = x.,13 3

{ O, x} otherwose,

where 0-< - x2"- x3-< x4' and i < j where i, j E {1, 2, 3}.

a, P, and

If either a = 0 or p = 0, then by Theorem 2.3.7, we have

> max {a, p}= min {1,a + p} .

13are 0,-2' 4, and 1.
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If both a and f3 are positive, then a + p 1 and, by Theorem

2.3.8, we have

y = 1 = min {1,a + 13}.

Space 14: Let be defined by

{ 0,xi,x2,x3,x4} if x = x4,

H(x) = {0,x1,x2,x3} if x = x3'

{0,x} otherwise,

where 0 -< x1-< x2-< x3- x4. The only values possible for a, p,

123
and y are 0, -if f -1 and 1. If either a = 0 or p = 0, then

by Theorem 2 3.7, we have

y > max {a, p} = min {1,a + P}.

If both a and p are positive, then a + 13 >1 and, by Theorem

2.3.8, we have

= 1 = min {1, a + 13} .

This completes the proof of Theorem 3.3.4.

The following examples show that there are singularly discrete

density spaces of all orders greater than 4 (and of infinite order)

for which the a + p property fails. The Landau-Schnirelmann

inequality and the Schur inequality also fail here.
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Let 1H be defined by

f

{ 0, 2, 3, 4} if x = 4,

{ 0, 2, 3, 4, 5} if x = 5,

H(x) = { 0, 2, 3, 4, 5, 6} if x = 6,

{ 0, 1,7)

{ 0, x}

if x = 7,

otherwise.

32

Then (I, 1 is a singularly discrete density space of order 5.

Let A = B = {0, 1, 2, 3, Then C = {0, 1, 2, 3, 4, 5, 6,-6}. Now

2 1 14
a = p = -5- while y =

-2.
Therefore, we have = < = min{1,a+P},

1 16 1 2we have y = < = a + -
af3, and we have y = -<- =

2 3

For any integer n > 5 we can modify the definition of H(x)

in the above example to make (S, eSH) singularly discrete of order

n. To do this we insert the following:

H(x) = {0, 11, 12, ... , 10+n} if x = 10 + n.

To make (S,H) singularly discrete of infinite order we insert:

H(x) = {0, 11, 12, ... , 10+n} if x = 10 + n for all n> 6.

These insertions do not change the values of a, (3, and y for the sets

A, B, and C in the above example. Therefore, the indicated prop-

erties still fail.

These failures motivate a further restriction on the discrete
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density spaces we wish to consider. We introduce such a restriction

in the next chapter.

We have just seen that there are 14 types of singularly discrete

density spaces of order 4. Similarly, it can be shown that there

are 99 types of order 5. Surprisingly, the a + p property is valid

for 98 of the 99 types of spaces. The only space where the a + p

property can fail is of the type (S, 1TH) where

f
{0,x1,x2,x3,x4,x5} if x

=

{0,x}

if x = x
x4',

if x = x

otherwise,

,
7

5

{ 0, xi , x2, x3, x4}

H(x) = { 0, xi, x2, x3} if x = x3,

{ 0, x6, 7

where 0 -<x1< x2-.< x3-{ x4-.< x5 and 0 -< x6-.< x7. Of course,

the example we used earlier to show that the a + p property fails

for some singularly discrete density spaces of order 5 is of this

type.



CHAPTER IV

NESTED SINGULARLY DISCRETE DENSITY SPACES
AND T-SPACES

In this chapter we introduce a special family of discrete den-

sity spaces called nested singularly discrete density spaces. We

also introduce a class of density spaces called T-spaces which gen-

eralizes the family of nested singularly discrete density spaces.

We show that both the Landau-Schnirelmann and Schur inequalities

hold for all T-spaces.

4.1 Basic Definitions and Representations for Nested
Singularly Discrete Density Spaces

Definition 4. 1.1. A density space (S,'S) is nested singularly

discrete if the following three conditions are satisfied:

(s, °S) is singularly discrete.

11 2 < S([x]) < S([y]), then Ix] C [y] where x E S \ f°1

and y E S \ {0}.

If y E S \ {0} and S([y]) i > 2, then for each integer

j (1 <j <i), there is an element x E S \ {0} such that

S({x]) = j.

Theorem 4.1. 2. A space (S,1) is a nested singularly dis-
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crete density space of order n > 1 if an only if where



H(x) is defined by

i{O}v{x.1 =1,2, ...,m} if x = x , for all m =
1

{0,x} otherwise,

where 0 xl x
2

. x .

Proof: Suppose (S,'S) is a nested singularly discrete den-

sity space of order n > 1. By Theorem 2. 2. 6, there is a function

H(x) such that = c'SH. Since the order is n, there is an ele-

ment x E 5 \ {0} such that S([x]) = n. Now by condition (iii) of

Definition 4.1.1, for each i = 1, 2, ...,n, there is an element

)x.E S\ {0} such that Sax.] = i. Since (S, °SH) is singularly

discrete by condition (i) of Definition 4.1.1, we know that for each

i = 2,3, ...,n there is only one element x. E S \ {0} such that

S([x]) = i. By condition (ii) of Definition 4.1.1, we know that

[xi] C [x31 C [xn].

The set [x2] contains one nonzero element of S different from

x2. Call it x1. Then S([xi]) = 1 and

[x C [x21C [xn]

Therefore, since [x] = H(x.) C L(x.) for each i = 1, 2, ,n by
1 - 1

condition c. 2 of Theorem 2.2. 6, we have
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H(xi) = {0, xi },

Hoy = {0, xi x2}

H(x ) = {0,x ,x , ...,x
1 2 n

where 0 < x1-< x2
xn.

For all x E S \ {0} where

S([x1) = 1, we have H(x) = {0,30. Therefore, by condition (i) of

Definition 4.1.1, we have formula (1).

Conversely, suppose H(x) is given by formula (1). Now

H(x) satisfies conditions c. 1, c. 2, and c. 3 of Theorem 2. 2. 6.

Therefore, (S, 1H) is a density space. We now confirm the three

conditions of Definition 4.1.1.

Condition (i) holds: If x H(y) and y H(x) for x E S\{0}

and y E S \{0}, then H(x) rH(y) = {0}. Therefore,isc4H

separated and hence (S, eSH) is discrete. Since Sdx1) =i, i > 2,

only if x = xi, we have that (S, .SH) is singularly discrete.

Condition (ii) holds: Suppose x E S {0}, y E S \{0}, and

2 < S([x]) = i <j = S([y]).

Then x = x. and y = x. and so
1

[x] [x.] = H(x.) 10, x , x , ,x.}
1 i

C {0,x1, x2, , x.} H(x.) = [x.] [yi.
3 3
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Condition (iii) holds: Suppose y E S\ {0} and

)Say])
= > 2. Then Sax.] = j for each j = 1, 2, ...

Therefore, (S, = (S, 9.SH) is a nested singularly discrete

density space of order n. This completes the proof.

Theorem 4. 1.3. A space (5, t'S) is a nested singularly dis-

crete density space of infinite order if and only if el=
c'SH

where

H(x) is defined by

(2)
H(x) =

{0}v {x. Ii = 1,2, ... , m} if x = x , for all integers m >1,
1

{o, x}

where 0 -4 xi-4 x2-

such that

Proof: Suppose (S7-4) is a nested singularly discrete density

space of infinite order. By Theorem 2.2. 6, there is a function H(x)

otherwise,

37

Since the order is infinite, for any integer N,

as large as we wish to choose, there is an integer n > N such that

S([x]) = n for some x E S \ {0}. The proof from this point on is

exactly like the proof of Theorem 4.1. 2, except we use formula (2) in

place of formula (1).

Theorems 4.1. 2 and 4.1.3 are easier to use than Definition

4. 1. 1 when we are actually constructing examples of nested singularly

discrete density spaces. This is particularly true of Theorem 4.1. 2

which we use in Chapter VII when we prove that the a + 3 property



holds for nested singularly discrete density spaces of order 5.

Definition 4. 1.4. The point x1 in formulas (1) and (2) is

called the nested essential point of the nested singularly discrete

density space (S, 1H).

It is clear that the nested essential point is an essential point.

The nested essential point will be of importance in the next section

and in Chapters VI through IX.

4. 2. General T-spaces

In this section we introduce a family of density spaces over the

s-set S which includes as a subfamily all nested singularly discrete

density spaces over S.

Definition 4. 2.1. Let S be any s-set and let T be any

proper subset of S \ {0}. Denote by (S, XT) the space (S, eTH)

where H(x) is defined by

{0,x} if x E T,
H(x) =

L(x) \ T if x E S \ {0} and x T.

Then (S, XT) is called a T-space over S.

The choice of the notation (S, is is motivated primarily

by the fact that when T = 4), we have (S, XT) = (S,X).

Theorem 4. 2. 2. (i) Every T-space over S is a density space.
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If S \T is linearly ordered by the partial ordering from

S, then (S, XT) is a nested singularly discrete density space.

For any nested singularly discrete density space there

is a set T C S \ {0} such that (S, X ) = (S,)11).

Proof of (i): To see that (S, )<T) is a density space, it suf-

fices to verify the three conditions from Theorem 2. 2. 6.

Condition c. 1 holds: Consider any x E S \{0}. If

10,x1C

x E T,

L(x) \ T = Hthen {0,x} = H(x). If x T, then (x).

Condition c. 2 holds: Consider any x E S \{0}. If x E T,

then H(x) = {0, x} C L(x). If x T, then H(x) L(x) \ T C L(x).

Condition c. 3 holds: Consider any x E S \ {o}. If x E T,

then H(x) = {0, x}. Therefore, y E H(x) \{0} implies y = x, and

hence H(y) = H(x). If x I T, then H(x) = L(x) \T. Therefore,

y E H(x) \ {0} implies y E L(x) and y I T {0}. Hence

H(y) = L(y) \T. Since y E L(x) implies L(Y) C L(x), we have

H(y) = L(y) \T C L(x) \ T H(x).

Proof of (ii): Suppose S \ (T v{0}) has n elements. (We

will handle the infinite case next. ) Since the elements of S \ T are

linearly ordered, we can write

S \(r V {0}) = {x1 xz, ,x}



where 0 -< x1 -< x2 . If x = xm for an integer

(1 < m < n), we have

H(x) = H(xm) = L(xm)\ T

= L(x (S \ T)

= {0,x x .. x }2m
= = 1,2,...,m}.

Otherwise, if x 0, then x E T, and so we have H(x) = {0,x}.

Therefore, by Theorem 4. 1. 2, the space (I, XT) is nested singu-

larly discrete of order n.

If S\ (T ..){0}) has infinitely many elements we can write

S \ (T_){0}) = {1,x2,...}

where 0 x1-< x2-.< . We consider x = x for each integer

m> 1 and proceed as above, except we apply Theorem 4.1. 3 in

place of Theorem 4. 1. 2 to conclude that (S, NT) is nested singu-

larly discrete of infinite order.

Proof of (iii): This part follows from the next theorem which

demonstrates a specific set C s \ {0} such that (S, )4) = (S,

Theorem 4. 2.3. Let (S,)4) be any nested singularly discrete

density space. Then (S, )11) = (S, XT) where
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if the order is n, then T = S\ {0,x1,

if the order is infinite, then T = S \

We are using the fact that (S,)cf) = (S, °SH,) where HI(x) is de-

fined as in formula (1) of Theorem 4.1.2 or formula (2) of Theorem

4. 1.3.

Proof: Let (S, )ct') be any nested singularly discrete density

space of order n >1. (We will handle the infinite case next.) By

Theorem 4. 1. 2, we have (S,)j = (S, c.511,) where H'(x) is de-

fined by

HI(x) =
({0}A_. {x. I i = 1,2,. . . ,m} for x = xm, for all m =

1

{0,x} otherwise,

where 0 -< xr< x2-< ...4x. Let T = S\{0,xi,x2,.. ,xn}.

Now x1 E S \ {0} and x1 V T, so T C S \ {0}. Also

x E S \ {0} and x V T if an only if x =x for some
1

m
1

1

1 m = 1, 2, ...,n. Therefore, if x E S\ {0} and x V T, we have

H(x) = H(xm) = L(xm)\ T

= L(xm) \ (S \ {0, xi, x2, . , xn}

= L(x )n{0'x1,xxn}
= {0,x1,x2,...,xm}

= HI(xm) = 1-11(x).
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Otherwise, if x 0, then x E T, and so we have

H(x) = {0,x} = H'(x). Therefore, since H(x) = HI(x) for all

x E S \ {0}, we have (S, XT) = (S,)4).

If (S, )i) is nested singularly discrete of infinite order we

apply Theorem 4. 1.3 in place of Theorem 4. 1. 2 and write

= 1, 2, ... in place of m = 1, 2, ... ,n, write 0 .< xl< x2<

in place of 0 -<x1-< x2 -< < x , and write {0,x1, x2, . }

in place of {0 x x2' xn}
in the proof for the finite case.

We now show that Theorem 4. 2.3 can be reworded in the fol-

lowing way:

Corollary 4.2.4. Let (S, )4) be any nested singularly dis-

crete density space. Then (S,)9) = (S, XT) where T is the set

of all essential points of (S,W) except the nested essential point.

Proof: Using the notation of Theorem 4. 2.3, we have that

x2 ,x3 ,
are all non-essential points and all other points of

S \{} are essential points. Let E be the set of essential points

of (S,H). Then, by Theorem 4. 2.3, we have

T = S \ {0, , x2, . . , xn} or S

= E \ {xi} .

This completes the proof.
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Proof of (ii): If x E T, then x I S\ (T v{0}) and so

43

Notice that we have been letting (S, )4) denote a nested

singularly discrete density space. From here on, if a density space

is denoted by (S, )21) it is understood to be nested singularly dis-

crete.

We conclude one additional theorem which relates the set T

to the set of essential points of a T-space (S, XT).

Theorem 4. 2. 5. Let (S, )T) be any T-space and let E be

the set of essential points of (S, ),1,). Let

V = {XI X E S \ (T {0}) and L(x) \ T = {0,x} }.

Then (i) E=TvV and (ii) T V =

Proof of (i): Suppose x E E, but x I T. Then [x] = {0,x}.

Since 0 is not an essential point, we have x E S \ (T \j{0}).

Therefore, by Definition 4. 2.1, we have

L(x) \T = H(x) = [x] = {0, x}.

Hence x E V. Therefore, E C TV.

Conversely, if x E T, then [x] = {0, x}. If x E V, then

x E S \ {0} and x IT, and so [x] = L(x) \T = {0, x}. Therefore,

TVC E.



x cl V. Therefore, T rm V = (j)

We are now ready to extend some results of Freedman for den-

sity spaces (5, x) to the more general T-spaces (S, Kr).

4.3. The Landau-Schnirelmann and Schur Inequalities
for T-spaces

Freedman [3,4] proved both the Landau-Schnirelmann and

Schur inequalities for all density spaces (S,X ); that is, for all

density spaces determined by H(x) L(x) for all x E S \{0}.

The next two theorems encompass both of these results as special

cases. They also provide new results for nested singularly discrete

density spaces. Their proofs are modifications of the proofs of

Freedman for (S, X. First, however, we prove three lemmas.

Lemma 4.3. 1. Let (S, XT) be any T-space. Then

FNT E {0}} for every F E X.

Proof: Consider any F E )<. Since (5,X ) (SH) where
H(x) = L(x) for all x E S {0}, we have, by Theorem 2.2.16, that

F = {L(x)lx E {0}}.

Therefore, since in (5, XT) we have [x] L(x)\T E XT for

each x E S\ (T_.){0}), it follows that
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F \ T = {L(x)lx E F \OD \T

= {L(X) \TIX E F\{0}}

= -){1.,(x) Tlx F L40})}-){0}.

Hence F \T EXT v{{0}}.

Lemma 4.3. 2. Let (S, XT) be any T-space. Then for every

set F' E XT there is a set F EX ..){{0}} and a set T' C T

such that

= (F\

Proof: Consider any F' E By Definition 4.2.1, we have

(S, XT) = (S, where H(x) is defined by

{0,x} if x E T,
H(x)
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L(x) \T if x E S \{0} and x T.

By Theorem 2.2.16, we have

= {H(x)Ix E \{0})
= v{H(x)lx E FIrmT}v(v{H(x)lx E F' \ (Tv {0})})

= {o}..)(1--"r-NT)v(v{L(x) \Tlx E FI\(T..){0})})

= {0}v (F1 T)v(v{L(x)lx E \(T {0})}\T).

If we let F = {L(x)ix E Ff\(T {0})}_) {0} and T' =

then F E X{{0}} and T' r- T. Substituting into the above

equality, we obtain



F'= (F\T)L./Tl.

Lemma 4. 3. 3. Let (S, XT) be any T-space. Let A be

any subset of S with 0 E A. Let a be the k-density of A in

(S, X) and let a' be the k-density of A in (S, XT) Then

a > a'.

Proof: If T / A, then a' = 0 and so a > a'. Suppose

T C A and consider any F E X. If F \T = {0}, then F C A

and so

A(FI) A(F)
S(FI) S(F)

for any F' E XT. If F \T lob then by Lemma 4.3.1 we have

F \ T E XT and

A(F \ T)= A(F)-T(F) A(F)
S(F \T) S(F)-T(F) S(F)

Therefore, for every F E X there is an F' E XT such that

A(FI)< A(F)
S(FI) S(F)

and so a > a'.

We are now ready to prove the Landau-Schnirelmann and Schur

inequalities for general T-spaces.
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Theorem 4.3.4. Let (S, XT) be any T-space. Let A, B, and
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C = A + B be subsets of S with 0 E A r\B, and let the corres-

ponding k-densities in (S, XT) be a', and y'. Then

.y? > al + pt atpt.

Proof: Let the k-densities of A, B, and C in (S,X) be

a, p, and Y. If any essential point in (S,X,r) is missing from

either A or B, then a' = 0 or p. = 0 and the theorem is

immediate. Therefore, suppose all essential points are in A rB

and hence in C. In particular, T C A and T C C. Consider

any E XT. By Lemma 4.3. 2, there is a set F E X { {0 }

and a set T' C T such that

F'= (F\T)..)TI.

If F \T = {0}, then since T' C T C C, we have

C(F') C((F \T)vT1)= C(TI)
S(F') SUF \ Tk..)TI) S(TI)

> al + pt atpt.

Suppose F \T {o}. Then by Lemma 4.3.1, we have F\T E XT.

Now since F \T and T' are disjoint and T' C T C C, we

have
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C(F CUF \ T)
S(F S((F \Tk..)T1)

C(F \ T)+C(TI)
S(F \ T)+S(V)

C(F \ T)+S(V)
S(F \ T)+S(TI)

C(F \ T)
S(F \T)

C(F)-T(F)
S(F)-T(F)

By Theorems 2. 3. 16, 2. 3. 17, Lemma 4. 3. 3, and the above

inequality, we have

C(F C(F)-T(F)
S(F S(F)-T(F)

A(F)-T(F)+13(S \ A)(F)
S(F)-T(F)

A(F)-T(F) S(F)-A(F)
pS(F)-T(F) + S(F)-T(F)

A(F)-T(F)+ S(F)-A(F)
- S(F)-T(F) S(F)-T(F)

A(F)-T(F) S(F)-T(F)+T(F)-A(F)
S(F)-T(F) + S(F)-T(F)

A(F)-T(F) (1-pi) +S(F)-T(F)

Since T C A and F \T E XT, we have, by the above

inequality, that



Now since

C(F1)
S(F')

and a set T' C T such that

C(FI) A(F)-T(F)
+

S(F') S(F)-T(F)

A(F \ T) (1-13') +S(F \ T)

a'(1-13') + 13'

= at pt alpt.

al pt atpl
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for every F' E 74' we have

gib rC(FI)s(F.,)r .x,r} pt
aa'13'.y1=

I

Theorem 4. 3. 5. Let (S, XT) be any T-space, Let A, B,

and C = A + B be subsets of S with 0 E A n B, and let the

corresponding k-densities in (5, XT) be a', 13' and y'. If

+ 13' < 1, then y' > /(1-a').

Proof: Let the k-densities of A, B, and C in (S, )') be

a, 13, and y. If any essential point in (S,XT) is missing from

either A or B, then a' = 0 or 13' = 0 and the theorem is

immediate. Therefore, suppose all essential points are in A r-N B

and hence in C. In particular, T C B and T C C. Consider

any F' E XT By Lemma 4.3. 2, there is a set F {{o}}



F'=(F\T)../TI.

If F \ T = {0}, then since T' CT CC and since 13'/(1-a') < 1,

we have

C(F') C((F \ T) ') C(T = 1 > (37(1-a').
S(FI) SUF S(TI)

Suppose F \ T {0}. Then by Lemma 4.3.1, we have

F \T E XT. Now since F \T and T' are disjoint and

TI C T C C, we have

C(Ft) C((F \ T) T1)
S(FI) S((F \T)vT')

C(F \T)+C(T')
S(F \T)+S(T')

C(F \ T)+S(T')
S(F \T)+S(TI)

C(F \T)
> S(F \T)

Also since F \T {0} and F E Xv{{0}}, we have F e X

If C(F \ T) = S(F \T), then by inequality (2) we have

C(F') C(F \ T) - 1 > 137(1-a').S(F') S(F \ T)

Suppose C(F \ T) < S(F T). Since T C C we have C(F) <S(F).

Therefore, Frm (S \C) = 4). Let
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G = E F r'N(S

where we recall that [x] is the Cheo set of x in (S,2). Then

by Theorem 2.2.15 we have GEX and G CFn (S \C).

Therefore, G CS \C, and also G C F which by Theorem

2.2.14 implies that G C F. Therefore,

F G v (F \G).

By the way we constructed G we have F \\G C C. Therefore,

F \T = (G \ T) (F \.(Gv T)),

and

C(F\ (Gv T)) = S(F \(GvT)).

Now by statements (2), (5), (4) and (6) are since G\ T 4), we

have

C(V) C(F \ T)
S(FI) S(F \T)

CUG \T)v(F\(GvT)))
SUG \ T)v (F \ (GvT)))

C(G\T)+C(F \(Gv T))
S(G \ T)+S(F \ (Gv T))

C(G \ T)+S(F \(G T))
S(G \ T)+S(F \(G T))

C(G \T)
S(G \T)
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Now since G EX and G C S \ C and since T C B and 

T C C, we have by Theorems 2.3.16 and 2.3.20 and by Lemma 

4. 3. 3 that 

C(G\T) C(G)-T(G) 
S(G\ T) S(G)-T(G) 

aC(G)+B(G)-T(G) 
S(G)-T(G) 

C(G) B(G)-T(G) a' S(G)-T(G) S(G)-T(G) 

, 

C(G)-T(G) B(G \ T) 
a S(G)-T(G) S(G \ T) 

C(G\T) 
a' + 

. S(G \T) 

Hence 

C(G \T) 
s(o \T) (1-a') >13,, 

and so 

C(G \ T) 
S(G \ T)>P7(1-0-'). 

Combining inequalities (7) and (8), we obtain 

C(F1) 
S(FI) 

P'/(1--a'). 

By inequalities (1), (3), and (9) we have 

C(F1) 
S(F') P'/(1-al) 



for all F' E XT. Therefore,

-yr = glb {C(F') I ET}>137(1-a") .S(F')

This completes the proof.

If we let T = 43., Theorems 4.3.4 and 4.3.5 yield the Landau-

Schnirelmann and Schur inequalities for the density space (S,X).

Let (S,)#) be any nested singularly discrete density space.

By Theorem 4.2.2 part (iii), there is a set T C S \{0} such that

(S, )) (S, 2<r)- Therefore, by Theorems 4.3.4 and 4.3. 5 we have

the Landau-Schnirelmann and Schur inequalities for all nested singu-

larly discrete density spaces. In Chapter VI we obtain these in-

equalities by a different method of proof.
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CHAPTER V

REDUCTION FROM (5,)q) TO (I, )4) FOR NESTED
SINGULARLY DISCRETE DENSITY SPACES

In this chapter we present two theorems of independent interest

about nested singularly discrete density spaces (S, )4). The first

theorem shows that the verification of certain density inequalities in

(S,)4) can be reduced to their verification in (I,-)4). The only

applications we make of this theorem are in Chapter VI where we

obtain results which we proved in Chapter IV by different methods.

The second theorem shows that for certain nested singularly discrete

density spaces (5, )4) the verification of a density inequality can be

reduced to its verification in (I, )4). This theorem is used in Chap-

ter VIII.

5.1. Reduction from (S, )14) to (I,)4) for Admissible Inequalities

Definition 5. 1.1. An inequality * is admissible if for every

nested singularly discrete density space (S,)4) and all subsets

A, B, and C = A + B of S, with 0 E A nB and with densities

a, p, and y, the following three properties hold:

The only variables in * are a, p, and

If a = 0 or p = 0, then * holds.

If * holds for a, p, and .y, then * holds for all
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X, p., and v such that 0 < X < a, 0 < p. < p, and

< v < 1.

Theorem 5.1. 2. The following inequalities are admissible:

y > a + p - 43.

If a + p < 1, then y >

y > min {1, a + p}.

Proof: Property (i) is immediate for inequalities (1), (2), and

(3). Property (ii) follows from Theorem 2. 3.7. It remains to con-

firm property (iii).

Proof of property (iii) for inequality (1): Suppose

y > a + p - aP, 0 < X < a < 1, 0 < < < 1, and y < v < 1., Then

1 - y < 1 - 13 - a + al3= (1-a)(1-P)

< (1-X)(1-p.) = 1 - X - p. + X p.

and so v > y > + - Xp..

Proof of property (iii) for inequality (2): Suppose a + 13 < 1,

> P/(1-a), 0 < <a < 1, 0 < p. < < 1, and y <v <1. Then_

v >y >131(1-a) >p./(1-a) >p./(1-X) .

Proof of property (iii) for inequality (3): Suppose

y > min {1, a + 13) , 0 <X <a < 1, 0 < p. < P < 1, and y <v < 1.
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Then

v > y> min {1, a + p} > min {1, X +

Before stating and proving the main result of this chapter we

introduce four lemmas.

Lemma 5.1. 3. Let S be any s-set and consider any x E S

and y E S such that x y. Then y - x E Min(S \{0}) if and

only if there exists no Z E S such that x z y.

Proof: Suppose y - x E Min(S \ {0}) and there is an element

z E S such that x z Ky. Then y -zE S \{0} and

y- z-<y-x since

(y-x)-(y-z) =z - xE S \{0}.

This contradicts our assumption that y - x E Min (S \{0}).

On the otherhand, suppose y - x 1 Min (S \{0}). Then there

is an element w E S \{0} such that w y - x. Now since

w - x y, we have y -w E S \{0}. Moreover,

(y-w) - x = (y-x) - w E S MO},

so x<y w y. Therefore, there exists an element z E S such

that x -<z -<y; namely, z = y - w.

Lemma 5.1.4. Let S be any s-set and consider any
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x E S\ {0}. Then there exists a finite sequence

xo -< xi < ... .<xt

of elements in S such that x0
= 0, x = x, and

- x. E Min (S \{0}) for i = 0,1, 2,..., t-1.
i+1 1

Proof: Since L(x) is finite and since 0 E S and X E S,

there exists a sequence

0 = xo -<xt = x

of elements of S for which t is maximal. For this sequence and

for any integer i where 0 < i < t-1 there exists no element

Z E S such that x. z x. . Therefore, by Lemma 5. 1. 3, we
1 1+1

have x. x. E Mm (S \{0}) for i = 0,1, 2, ...,t-1.
1+1 1

Lemma 5.1.5. Let S be any s-set. Any sequence of ele-

ments of S of the form 0 = a0< al.< a2 ... is a subsequence

of some sequence of elements of S of the form

0 =
b0 2

<
b1

b-< ... where b - b E Min (S \ {Op for
i+1 i

i = 0, 1, 2, ...

Proof: We apply Lemma 5.1.4 by setting x ai+1 ai and

obtaining sequences

0x =
i

. = a - a.
0 .t i.+1

1
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for each i = 0, 1,2 The sequence

° 'oo x o " "< Xto0

< al +xl 1-n< al + x21 < +x1
1l

1

a. + a. +x2.<... a. + x .

1 ii 1
1

has the desired properties because a + x = a. for each.

ti i 1+1

= 0,1,2, ... .

Lemma 5.1. 6. Let (S, °111) be any nested singularly discrete

density space and consider any element al E Min (S \ 10)). Let

S' = {kailk = 0, 1, 2, . . . }. Let 1-11(x) = H(x)nS' for each

X E S' \{0}. Then (S', °S.H,) is a nested singularly discrete den-

sity space of order not exceeding the order of (S, 1H) and S'

is isomorphic to I.

Proof: Since S' is a closed subset of S such that 0 E S'

and S' \{0} (1), Theorem 2.1.6 assures us that S' is an s-set.

To show that (S', is a density space it suffices to show that

H'(x) satisfies conditions c. 1, c. 2, and c. 3 of Theorem 2.2.6 for

each x E 51 \M. Let L (x) and
Lsi(x)

denote the lower set

of x with respect to S and S' respectively.

Condition c. 1 holds: Consider any x E Si \{0}. Since S

we have x E S\{0}, and so by condition c. 1 for the function H(x)
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we have x E H(x). Therefore,

x E H(x) emS' = 111(x).

Condition c. 2 holds: Consider any x E s'\ {O}. By condition

c. 2 for the function H(x) and since SIC S, we have

H'(x) = H(x) rS' C Ls(x)rmS1 = Ls,(x).

Condition c.3 holds: Consider any x E S' \{0}. If

y E 141(X)\{0}, we have

y E I-11(X) \{0} =(H(x)rmSt)\{0} = (H(x) \{0})rmS' C H(x) {0}.

Therefore, by condition c. 3 for the function H(x) we have

H(y) C H(x) Hence

HI(y) = H(y) (ThSt C I-1(x) rThSt = Hi(x).

To show that (S',y ) is nested singularly discrete we pro-H'

ceed as follows: Since Hl(x) C H(x) for each x E S'\{0}, we

know that each element of S' which is an essential point in (S, III)

is also an essential point in (S', °SH,). Let E denote the set of

non-essentials in (S, DSH) together with the nested essential point

of (S, 1H). By Theorem 4. 1. 2 (or Theorem 4. 1. 3), for any x E E

we have



(4) H(x) {0}.) {y1 y E E and y x} C E {0}

Let E' = E nS'. Then El contains all of the non-essentials of

(S'° H,). Since S' is linearly ordered, we can write

= {e1,e2,...,en}

where e1 -< e2.< en
if E1 has n elements. We write

=

where e2 . . if El has infinitely many elements. Now

by statement (4) and since El = E nSl we have

= H(e1)(ThST = {0,e1},

HI(e2) = H(ez) (ThS' = {0, ei, ed,

HI(e.) = H(e.) n 5' = {0, e1, e . . . e.},
1 1 1 2'

and if x E SI \(E1 {0)), we have F1'(x) = {0,x}. Therefore, by

Theorem 4. 1. 2 (or Theorem 4. 1. 3), we have that (S', ) is

nested singularly discrete. Since Hl(x) C H(x) for each

x E S' \{0}, we know that the order of (S',) does not exceedH'

the order of (5, ). Clearly, S' is isomorphic to I.

We are now ready for the main result of this chapter.

Theorem 5.1.7. Let * be any admissible inequality and let

60



ments of S where a.+1 - ai E Min (S \{0}) for i 0,1, 2, ...
1
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(S,>?1) be any nested singularly discrete density space. If * holds

for all nested singularly discrete density spaces (I,"4S) of order

not exceeding the order of (S, 2'11), then * holds for (S,7).

Proof: Suppose (S, Y4) is nested singularly discrete of finite

order n. (We handle this infinite case next.) By Theorem 4. 1. 2,

we have
)1= )=1`1,

where

{O}v {x. I i 1,2,...,m} if x = xm for all m =
H(x) =

otherwise,

and where 0 -<xl-.< x2n. Let A, B, and C =- A + B be

subsets of S with 0 E A-B, and let the corresponding densities

be a, p, and y.

If either a = 0 or p = 0 then since is admissible we

know that * holds for (5, )11). Hence we may assume that a > 0

and p >0. Therefore, all essential points are in A1mB, and so

= 2,,n1C ArmB C C.

Let x0 = 0. By Lemma 5.1.5, we know that the sequence

x ,x ,x , ,x ,2x ,3x
0 1 2 n n n

is a subsequence of some sequence 0 = a0
-< a1-< a2 .- of ele-



any infinite sequence of elements yn+1' yn+2,
S where

xn--< yn+l<y n+-< .. . Now the sequence can be of

only two types.

Type 1: ak = ka1 for k = 0,1,2, .. . .

Type 2: ak = kal for k = 0,1, . . ,K, where K > 1.

aK+1 = aK+b where b E Min (S \{0}) and b al.

In either case let S' = {kailk = 0,1,2, . . . }. Let I-11(x) = H(x) ,mS'

for each x E S' \{0}. By Lemma 5. 1 . 6 we know that (S', 2:14 )H' is a

nested singularly discrete density space of order not exceeding the

order of (S, 2"/ ) and that S' is isomorphic to I. Therefore, by

hypothesis, inequality * holds for (S',I) . Also remember that
H

for nested singularly discrete density spaces k-density and c-density

are equal.

Suppose our sequence is of Type 1. Then

(7) {x.li = 1,2,... , n) C S'.

Let A' = A rmS', B' = B and C' = A' + B'. Then

C' C C Let a', p', and y' be the densities of A', B', and

C' for the space (S', )°tH,). Since is separable we have by

Theorem 2.3.13 and statements (5) and (7) that the densities a', (31,

and y' are determined on {xi' i = 1,2, , n}. By Theorem 2.3.13

and statement (5) the densities a, 19 and are also de-

termined on { x.1i = 1,2, . . . , n}. Now H(x.) C S' and so
1
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Note that the part of sequence (6) following xn
could just as well be
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Ht(x.) = H(x.) for i = 1, 2, ...,n. Therefore, a ' a', 13 = 13', and
1 1

since C' C Cr.St we have y' < y. Now since * holds for

(s., )411,) it holds for a', 13', and y'. Since is admissible

and since a = a', p = p', and y' < y we have by condition (iii) of

Definition 5. 1.1 that * holds for a, p, and y. Therefore,

holds for (S,

Suppose our sequence is of Type 2. First we show that

ak
E C for all k > K: Consider any aKti where j > 1. Then

since aK+17....<, alc+j we have aK+i - b E S \ {0} and

aK+i - al E S\ {0}. Now at least One Of the elements a" b and

aK+j - al is an essential point for if not then since (S,)14 ) is

nested singularly discrete we would have either aK+j - b a - a
K+j l

(hence al b) or a
K+j - a1 aK+j - b (hence b -<a1). But

since al, b E Min (S \{0}) this is impossible. Now since al, b,

and eithera . - a or aK+j - b are essential points, they are
K-1-3 l

in AB and hence aK+j
E C. Therefore, ak E C for all

k > K. Now let p = max {ilx. aK
}. Then by statement (5) and

1

since ak E C for all k > K, we have

S \{xili = 2,3,.. .,p} C.

Furthermore,

{xili = 1,2,...,p}C S'.



Define sets Ao, Bo, and Co by

Ao = (ArmS1)k...)(SI\{xili= 1,2,...,p1)

Bo = (BnS')v(S'\{xili = 1,2,...,0)

and C0 = A0 + B0. Now we show that C0 < C (--S'. Since

A0 v B0 C SI and S' is an s-set then C0 = A0 + B0 r SI. If
----

co E Co then
c0

= a0
+

b0
where a0 E A0 and b0 E B0. If

a0
E A and b0 E B then c0

E A + B = C. If ao L then by

statement (5) we have a0
E {X. 1 1 < i < n}. By statement (10) wehavepao{x.11 <i < 0. Hence ao E {x.1 +1 < i < n} and so

a0
x. Therefore, by statement (8) we have c0

E C. Simi-

larly if 130 I B then co E C. Let ao, po, and yo be the den-

sities of A , B , and C
0 0 0

for the space (SI, )21/H1)- By Theorem
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2.3.13, statements (9), (10), and (11), and the equation

C0 = A0 + B0, the densities , po, and are determined onao yo

{x.1i = 1,2, ... ,p}. By Theorem 2.3.13 and statement (8) the density
i

-y is determined on {x.1i = 1,2, , 0. Now by statement (9),

H(xi) S'

and so H'(x.) H(x.) for each i = 1,2, , p. Hence we have
1 1

a ao, p< po, and since
C0 C C we have

holds for (S', W) it holds for a0, 130 , and yo.
Since is

< y. Now since
0
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admissible and since a<a,p<p, and yo < -y we have by

condition (iii) of Definition 5.1.1 that holds for a, p, and y.

Therefore, * holds for (S, 74).

If (S,H) is nested singularly discrete of infinite order, we

use Theorem 4.1.3 in place of Theorem 4. 1. 2, we write m = 1,2,...

in place of m = 1,2, ...,n, we write 0 <xi -< x2--< ... in place

of 0 x1-< x2-.< -<xn, and we write i = 1,2, ... in place of

i = 1,2, ...,n in the above proof. We also replace sequence (6) by

x0x1,x2 ,

5.2. Another Reduction from (S,-)4) to (I,W)

The final theorem of this chapter is used to generalize an im-

portant result in Chapter VIII.

Theorem 5.2.1. Let (S, )4) be any nested singularly discrete

density space. If (S,W) has a finite number of essential points,

then S is isomorphic to I.

Proof: Suppose (S,)+) has a finite number of essential points

and S is not isomorphic to I. Then by Theorem 2. 1.10 the set

Min (S \{0}) has at least two members. Let a,b E Min (S \{0})

where a b. Now since S, being an s-set, has an infinite number

of elements, it must have an infinite number of non-essentials.

Moreover, since (S, )4) is nested singularly discrete these



non-essentials can be written as a countable partially ordered

sequence c1 c2-< (Theorem 4.1.3). We have two cases to

consider.

Case 1: Either a c. for all i = 1, 2, ... or b c.

for all i = 1, 2, .

Case 2: For some m and n we have a c and

b

Suppose we have Case 1. Assume without loss of generality

that a c. for all i = 1, 2, ... Suppose there is a positive

integer k such that ka is a non-essential. Then for some i

we must have a -4ka -= c., a contradiction. Therefore, the infinite
1

sequence a, 2a, 3a, ... consists entirely of essential points of S.

Suppose we have Case 2; that is, a--..4 cm and b-....,cn
for

s somem and n. Let N = max {m,n}. Then since the c.' are
i

partially ordered we have a - c. and b -.<c. for all i > N. Now

for all i > N let d = c. - a E S and e. = c. - b E S. For each
1 1 1

i > N, either d. or e. is an essential point: Suppose both d,

and e. are non-essentials. Then because all non-essentials are
I

elements of the sequence c1--< c2 -< c3-< ... we must have either

d. -< e. Or e.-<d.. Without loss of generality suppose d.< e..
1 1 1 1 1 i

Then c. - a -.< ci - b and hence b a. But a, b E Min (S \ {0})
1

and we have a contradiction. Therefore, at least one of the sequences

{dili > N} or { ie.1 >N} contains an infinite number of essential
1
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points.

In both cases we have obtained an infinite set of essential points

which contradicts our original hypothesis. Therefore, S must be

isomorphic to I and the proof is complete.



CHAPTER VI

AN APPLICATION

In this chapter we prove the Landau-Schnirelmann and Schur

inequalities for all nested singularly discrete density spaces (S,))

by proving them for the case S = I and using the results of Chapter

V. In Chapter IV we proved these inequalities by another method.

6. 1. Basic Theorems for (I,W)

Theorem 6. 1. 1. For any nested singularly discrete density

space (I, )1) let A be a subset of I with 0 E A. Consider

any set T C I \{0} such that ) = (I, XT). If

n E I \(r {0}), then A([ni) = (A \ T)(n).

Proof: We have (I, )4) = (I, XT) for some set T C I \{0}

by Theorem 4. 2. 2 part (iii). Now since n E I \(T {0}), we have

by Definition 4. 2. 1 that [n] = L(n) \T. Therefore,

A([n]) = A(L(n) \ T)

= (A \ T)(L(n))

= (A \ T)(n).
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Theorem 6. 1.2. For any nested singularly discrete density

space (I, )4) = (I, XT) let A, B, and C = A + B be subsets of I



with 0 E A nB. If n E I\C and TC An B, then

A([n]) +B({n]) < I([n]).

Proof: Since n E I C and T {0} C A nB C C we have

n E I \ (T ..1{0}). Therefore by Theorems 6.1.1 and 2.3.22 and

since T C A nB we have

A([r]) + B({n}) = (A \T)(n) + (B \T)(n)

= A(n) - T(n) + B(n) - T(n)

< A(n) + B(n) T(n)

<n - T(n) = I([n]).

Theorem 6.1.1 is particularly useful in the remainder of this

chapter. Both theorems are useful in Chapter VIII.

6.2. The Landau-Schnirelmann Inequality for (S,))

Theorem 6.2.1. Let (S,)) be any nested singularly discrete

density space, let A, B, and C = A + B be subsets of S with

0 E An B, and let the corresponding densities be a, p, and y.

Then y > a + p _ aP

Proof: By Theorems 5.1.2 and 5.1.7 it suffices to prove the

theorem for S = I. If A = I, then a = = 1 and the theorem

follows. Therefore, suppose A I. Let m be any positive integer

not in A. We construct integers a. and b. where
1 1
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and so

C(m)-T(m)
(1) m-T(m)

(2)

0 < a < bl <a
2

< b2 < <ak-1 < bk-1 <a
k

< m
1

as follows. Let al + I be the least positive integer missing from

A. Let b1 + 1 be the least integer greater than al + 1 which is

in A. In general, let a. + 1 be the least integer greater than

b. + 1 which is not in A and let b. + 1 be the least integer
1-1

greater than a. + 1 which is in A. This process terminates when

we reach ak
< m and find that either bk

does not exist or

bk m.

We can also assume that all essential points are in A n B and

hence in C. Otherwise, a = 0 or p = 0, and the theorem fol-

lows from Theorem 2.3.7. By Corollary 4.2.4, we have

(I, )4) = (I, )<'T) where T is the set of all essential points of

(I, )4) except the nested essential point. Therefore, T C A,

TCC, and m T.

Let 13' be the density of B in the space (1, X). We have

C(m) > A(m) + B(b1-a1) + . . . + B(bk- 1-ak- 1) + B(m- a ),

Since m T and T A, we have by Theorem 6. 1. 1 that

A([m]) (A \ T)(m)a <
Iamb (I \T)(m)

A(m)-T(m)
m-T(m)

70

A(m)-T(m)+B(b -a1)+. . . +B(bk_ 1- ak_ )+B(m-ak)

m-T(m)



By Lemma 4. 3. 3, we have

B(m-ak)
(3) P < P' <

rn-ak

and for i = 1, 2, ... , k-1, we have

(4)

(6)

B(b.-a.)
1 1

P < P' <- - b.-a.

Combining inequalities (1), (3), and (4), we obtain

A(m)-T(m)+13((b1 -a1)+. +(bk- 1-ak- 1)+(m-ak))
(5)

C(m)-T(m)
m-T(m) m-T(m)

Now A(m) = ak - (b1-a1) - - (bk-1-ak-1), so by inequalities

(5) and (2) and since 13 < 1, we have

C(m)-T(m) A(m)-T(m)+13(m-A(m))
m-T(m) m-T(m)

A(m)-T(m)+P(m-T(m)+T(m)-A(m))
m-T(m)

A(m)-T(m)
= 13 + (1-13) m-T(m)

> 13 + (1-13)a = a + 13 -

Therefore,

C(m)-T(m) -
m-T(m) > a, + 13 a13
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for all m E I\A Now since T C A, we have m E I\A implies



m 1 T. Therefore, by Theorem 6.1.1 and inequality (6), we have

C([m]) (C \T)(m) C(m)-T(m)
l([m]) (I \T)(m) m-T(m)(7)

for all m E I \A and hence for all m E I \C. If I \C = (I), then

y = 1 > a + p _ a. If I \C (I), then by Theorems 2.3.12, 2.3.13

and by inequality (7) we have

y = glb {cam]) E I \C} > a + p - a.Iamb

This completes the proof.

6.3. The Schur Inequality for (S, )4)

Theorem 6.3.1. Let (S, )i) be any nested singularly discrete

density space, let A, B, and C = A + B be subsets of S with

0 E A,-B, and let the corresponding densities be a, p, and y.

If a + p < 1, then y> p /(1-a).

Proof: By Theorems 5.1.2 and 5.1.7 it suffices to prove the

theorem for S = I. We can assume that all essential points are in

A rm B and hence in C. Otherwise, a = 0 or p 0, and the

theorem follows from Theorem 2.3.7. By Corollary 4.2.4, we have

(I, )4) = (I, XT) where T is the set of all essential points of

(L)) except the nested essential point. Therefore, T C A,
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T C B, and T C C. If y = 1, we have y > a + (3 + p, and

so y > p/(1-a). Hence we can assume that y < 1, and so at least

one positive integer is missing from C. Let x1, x2, ... be the

positive integers missing from C, listed in increasing order. Let

x0 = 0. First, we show that

+-x. - 1 > B(x ) - B(x. ) A(x.-x. -1)
1-1 i 1-1 1 1-1

for each i = 1, 2, ... .

Now B(x.) - B(x.1 ) is the number of integers in B which

lie in the interval (xi-1 ,x.]. Assume there are p such integers
i

b1,b2, ...,b . Since x. q' C, we know that x. - b. I A for each
P 1 1 J

j = 1, 2, ... ,p. We also know that

0<x -b <x
i j

for each j = 1, 2, - . , p. Therefore, A(xi-xi-1) < xi - xi_1 -1 - p.

Hence

x, x, - 1 = p + x. - x. - 1 - p > B(x.) - B(x. )+A(x.-x, -1).
1-1 1 1-1 1 1 1-1

For any h such that xh I C, we can sum inequality (1)

(1)

from 1 to h obtaining

(2) xh h > B(xh) +

i=1

A(x.-x, -1).
1 1-1



C(xh) > B(xh) +

(5)
(1 - a)C(xh)- T(xh)

xh-T(xh)

However 0 < 1-a < 1, so

i=1

= B(xh) + a(xh-h)

= B(xh) + aC(xh).

Hence

(4) (1-a)C(xh) > B(xh).

Since TC BC C and xhI C we have xh T' and so by

Theorem 6.1.1 and inequality (4), we have

x.-x. -1)
1 1-1

B(xh)-T(xh)

xh-T(xh)

(B \T)(xh)
(I \T)(xh)

B([xh])
>13

I({xh])
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Let a' be the density of A in the space (I, X). By Lemma

4. 3. 3, we have

(3) a < a <
A(m)

for every m E I \{0}. Therefore, by inequalities (2) and (3) and

since C(xh) = xh - h, we have



This completes the proof.

(1-a)T(xh) < T(x ).

Hence inequality (5) becomes

C(x
h )-T(xh )

(1-a) > p ,
xh

-T(x )

and so

C(m)-T(m)
(6) m-T(m)

3/(1-a)

for all m E I \C. Now since T C C, we have m si T. There-

fore, by Theorem 6.1.1 and inequality (6), we have

C([m])
-

(C \ T)(m) C(m)-T(m)
lam]) (I \T)(m) m-T(m)

> p /(1- a)

for all m E I\ C. Therefore, by Theorems 2. 3. 12, 2.3. 13, and

since we have assumed that I \C we have

gib { Cam])
Iamb I m 6 I \c} > /(1 -a) .
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CHAPTER VII

NESTED SINGULARLY DISCRETE DENSITY SPACES
OF ORDER 5

In this chapter we prove the a + p property for all nested

singularly discrete density spaces of order 5. We also make a

conjecture about the validity of the a + 13 property for orders

greater than 5.

7. 1. The a + p Property for Nested Singularly Discrete
Density Spaces of Order 5

In Chapter III we proved the a + 13 property for all singularly

discrete density spaces of order 4 or less. We also gave an ex-

ample of a singularly discrete density space of order 5 for which

the a + 13 property fails. However, in this section we show that the

a + 13 property holds for all nested singularly discrete density spaces

of order 5. We begin with the following lemma:

Lemma 7. 1. 1. Let (S, ) be the density space determined

by

H(x) {0,xi,x2,x3} if x = x3,

I.

{ o,x} otherwise,

{ 0, xi, x2, x3, x4} if x = x

{0,xi,x2} if x = x2,

{ 0, xi , x2, x3, x4, x5} if x = x5,

76



77

where 0 xi -< x2 -< x3 x4 -< x5. Let A, B, and C = A + B be

subsets of S with 0 E A nB and let a be the density of A.

If a >0 and
x1

E B, then x2 E C.

If a > 0 and x1 and x2 E B, then X3 E C.

If a > 0 and xi E B, x2
E B, and x3 E B, then x4 E C.

If a >0 and xi E B and x4 E A rm B, then x5
E C.

If a > 0 and x E B, x. E A and x. E B for some i
1 1

and j where i E {2, 3} and j E {2, 3 }, then x4
E C.

Proof of (i): Since xlxzx3x4.< x5' we have

x2 - x E S and x2 - x1-.< x2-.< x3-<x4-.< x5. Therefore
1

x2 - xi x2, x2 xi ix3' x2 -x1 4' and x2 - x1 x5. Since

a >0, only x2, x3, x4, or x5 could be missing from A. There-

fore, x2 - x1 E A. Now
x1

E B, so x2 = (x2-x1) + xi E C.

Proof of (ii): Since x2-.< x3-< x4-< x5, we have

x3 - X2 E S, x3 - XI E S, x2 - X1 E S, x3 - x2-.< x- x43< x5' and

x3
x1 x3 x4 -<x5. Therefore,- x3, x3 - x2 x4,

x3 X2

x3 - x2 x5, x3 - xi x3, x3 - xi x4, and x3 - x1 x5. Also

x3 - x2- x3 - xi because (x3-x1) - (x3-x2) = x2 - x1 E S. and so

x3 x2 i x3 - x1. Therefore, either x3 - X2 y x2
or x3 - x1 i x2.

Since a > 0, only x2, x3, x4, or
x5

could be missing from A.

Therefore, either x3 - x2 E A or x3 - x1 E A. Since
x1

E B

and x2 E B, then in either case x3 E C.
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Proof of (iii): Since xi -< x2-< x3-< x4 x5, we have

x4- x3 --<x4- x2-< x4- xi x4--< x5. Now at least one of x4- x3, x4 - x2,

x4 - x1 must be different from x2
and x3. Suppose it is x4 - x.,

j = 1, 2, or 3. Then x4 - xi x2, x4 - xi y x3, x4 - xi x4, and

x4 - x y x5. Since a > 0, only x2, x3, x4, or x5 could be missing

from A. Therefore, x4 - x. E A. Now x. E B, so x4 E C.

Proof of (iv): Suppose x5 C. Since xi x2-< x3<x4-<, x5,

we have x5 - x4 E S, x5 - x1 E S, and x5 - x4-< x5 x1< x5. Since

xi E B, x4 E B, and x5 V C, we have x5 - x4 A and x5 - xi A.

Since a > 0 and x4 E A, only x2, x3, or x5 could be missing

from A. Therefore, x5 - x4 = x2 and x5 - xi = x3. Hence

x2+ x4
=

x5 x1+ x3.
However, xi-< x2 and x3-< x4 SO X2- X1 E S,

x4 - x3 E S, (x2-xi) + (x4-x3) E 5, (x2+x4) - (x1+x3) E S and therefore

xl + x3 x2 + x4' a contradiction. Hence x5
E C.

Proof of (v): Suppose x4 I C. Since x1 -< x2-.< x3< x4-< x5,

we have x4 - x. E 5, X4 - x1 E S, and x4 - x.4- x1 x4. Since
1 1

x B, x. E B, and x4 C, we have x4 - x. if A and
1

x - x 41 A. Since a > 0 then x E A. Since also x. E A, at4 i i
1

most one element of S less thanx4 could be missing from A,

a contradiction. Hence
X4 E

Therefore, x4 - xi E A. Now

x. E B, so
x4

C.
This completes the proof of the lemma.
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Theorem 7. 1. 2. Let , ?#-) be any nested singularly discrete

density space of order 5, let A, B, and C = A + B be subsets

of S with 0 E A (m B, and let the corresponding densities be a,

I, and y. Then y > min {1, a + p}.

Proof: Since (S,-).t) is nested singularly discrete of order 5,

by Theorem 4. 1.2 we have (S,-.)=1) (S, e't) where H(x) is de-

fined by

{ 0,x1,x2, x3, x4, x5} if x = x5,

{0,x1,x2,x3,x4} if x= x4,

H(x) = { 0, xi, x2, x3} if x = x3,

{ 0,x1,x2} if x = xz,

{0, x} otherwise,

where 0-< x1- x2-< x3 x4- x5. The only values possible for
1 1 1 2 1

a, p, and y, listed in increasing order, are 0, 5 , , 3 , 5 , ,

3234
5' 3' 4' 5'
2. 3. 7, we have

y > max {a, p} = min {1,a + 13} .

If a + 13 > 1, then by Theorem 2.3. 8, we have

y = 1 = min {1, a + i3}.

We may select our notation so that a < 13. Therefore, in the re-_

and 1. If either a = 0 or 13 = 0, then by Theorem

mainder of the proof we may assume that 0 < a < 1 and a + p < 1.
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There are twenty cases to consider, but first we make a few observa-

tions. By Theorem 6. 2.1, we have y> a + P - a13. By Theorem

6.3. 1 and since a + p < 1, we have y > p (1 - a). Since

0 < a < 3, we know that all of the essential points are in A n B

and hence in C; that is,

S {x ,2 x3' x4' x5} C A nB C C.

By part (i) of Lemma 7.1.1, we have x2
E C. Therefore, the only

elements which could be missing from C are x3, x4, and x5.

This allows eight possibilities for the set C. The following table

lists the sixteen ways in which the positive densities of the space

(S,)4) can be obtained. Those entries where x2
is in the set

give the eight possibilities for the set C.

Density

1

5
1

4

Subcase

1

1

Non-Essential Points

x2 x3 x4
x5

0 0 0 0

KEY

Not in the set
1

1 0 0 0 + In the set
3

2 0 0

2
1 0 0 0

5

1
1 + 0 0 +

2
2 0 + 0 +

3 0 + + 0

4 0 + + +



Case 5 (a =5 2
p = 1 ): We have a + p =

10
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We now treat the twenty cases mentioned above. We make fre-

quent use of Lemma 7.1.1 and the above table of densities.

Case 1 (a = p =1): Since y > a + p _ a13, we have
5

1 1 1 91 9 2
y + since < < we can conclude that

5 5 25 25 3 25 5

2
y > . Therefore, -y > a +13.

1 9Case 2 (a = 1
, 13 = ): We havea + We show that

13

1 9

>
by showing that x5 E C. Now x5 E B C C.

Y->-

8
Case 3 (a = 1

p = 4): We have a + p . We show that

3 8
y > by showing that x4 E C. Now in both subcases for

1p = 7 we have x4 E B C C.
2Case 4 (a =1 p ): Since y >a + p _ a13, we have

1 2 2 13 1 13 3Now sincewe can conclude that
+ - 25 - 25 < 7 <

Therefore, y > a + p.
5

We show that

3 7

> >
by showing that x3 E C and either x4 E C or x5 E C.

Density Subcase Non-Essential Points

x2 x3 x4 x5
3

1 KEY
5

2

2
1

0 Not in the set
3

3
1 + + o +

+ In the set
4
4

1 + + + o
5

1 1 + + + +



1 3 4Case 6 (a = 13 - -; ): We have a +13 = . We show that

4
y by showing that x3 E C and x4 E C.

3Subcase 1 for p = Here x3EBCC and x4EC by

part (iii) of Lemma 7.1.1.
3Subcase 2 for p = -5- : Here x3 E C by part (ii) of Lemma 7.1.1

and x4 E B C C
1 5

Case 7 (a = p = -23 ): Since >13/(1-a), we have y > .

4 5Now since < -6- < 1 we can conclude that .y = 1. Therefore,

y > a + P.

Now since

> 7

1 3
Case 8 (a = 5, R =

4 15
-5- < < 1

Now since

Since > P/(1-a), we have

> a + 3.

Case 9 (a = p = ;Id): Since y > a + p - a3, we have

2 7 1

<16 <

15
--6-1

we can conclude that y = 1. Therefore,

we can conclude that

Therefore, y > a +P.

Case 10 (a = p =
-3

): We have a + p = -7
12 We show that1 1

82

2 7> > 12 by showing that x4 E C and x5 E C. Now x5 EAC C
1and in both subcases for 3 = -- have x4 E BC C.

1Subcase 1 for 13 = Here x3 E C by part (ii) of Lemma

7.1.1 and x5 E BC C.

1
Subcase 2 for p = -2- : Here x3EBCC and x5 E B C C.

1Subcase 3 for p = 7 : Here x3EBCC and E B C C.

1Subcase 4 for p = -2- : Here x3 E B C C and x4 E B C C.

1 1 1 7
> 4 +4 - 16 - 16

1



1 2 13
Case 11(a = T, 13 = We have a +13 = We show that

20
3 13

> 4 20
by showing that x3 E C and x5 E C.

2Subcase 1 for p = -5- : Here x3 E C by part (ii) of Lemma

7.1.1 and x5 E A C C.

3
Y >

2
Subcase 2 for 13 = -5- : Here x3EBCC and x5EACC.

1 1 3Case 12 (a = T, P = ): We have a +13 = T. . We show that

by showing that x3 E C and either x4 E C or x5 E C.
1Subcase 1 for p = : Here x3 E C by part (ii) of Lemma

7.1. 1 and x5 E A C C-
1In the remaining three subcases for i3 = "i we have

x3 E B C C and x5 E A C C
1 3 17

Case 13 (a = =13-): We have
a 4-1-1= *

We show that

17
>

by showing that x3 E C, X4 E C, and x5 E C.

3Subcase 1 for 13 = : Here we have x3 E B C C, x4 E C by

part (iii) of Lemma 7. 1.1, and X5 E A C C.

3Subcase 2 for 13 = . Here we have x3 E C by part (ii) of

Lemma 7.1.1, x4 E B C C, and x5 E A C C.

1 2Case 14 (a = p 7= : Since y >131(1-a), we have

4 8
Now since < < 1 we can conclude that y = 1. Therefore,

y > a + 13.

1 2Case 15 (a = p =
-3

): We have a + p = -3- . We show that

2y > by showing that x4 E C and
x5

E C.

= 1
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x4

1
Subcase 1 for a = 1 and Subcase 1 for p = -3- : Here we have

x4
EBCC and x5

E C by part (iv) of Lemma 7.1.1.

In the remaining three subcase combinations we have

x4
E B C C and x5EA'JBCC.

1 11
Case 16 (a-3=

'
p = -2 ): We have a + p = 5. We show that

5 1

4 11
> > by showing that x3 E C and x4 E C.

2Subcase 1 for p =
-5

Here we have x3 E C by part (ii) of

Lemma 7.1.1 and x4 E A C C for both subcases of a =
1

.

2Subcase 2 for p = -5- : Here we have x3EBCC and

E AC C for both subcases of a -7-
1

3

,

5Case 17 (a = p = : We have a + p -6- . We show that

5
1 > -6- by showing that x3 E C, X4 E C,

1Subcase 1 for p =
2-

: Here we have x3 E C by part (ii) of
1Lemma 7.1.1, x4 E A C C for both subcases of a - 3, and

x5 E B C C.
1Subcase 2 for p =
2
_ Here we have x3EBCC,x4EACC

1for both subcases of a = , and
x5

E BC C.
1Subcase 3 for 13 =
2

: Here we have x3 E B C C, x4 E B C C,

and x5 E C by part (iv) of Lemma 7.1.1 for both subcases of a = 1

1

and x5
E C.

84

Subcase 4 for p

and x5 E B C C.

Case 18 (a = 1' p = -3 ):
3 5

Here we have X3 E B C C, X4 E
2

Since .y > p / ( 1 - a ) , we have

BCC,

9



4 9Now since 5 < < 1 we can conclude that .y = 1. Therefore,
10

4Case 19 (a = p = We have a + p = - . We show that
5 5

4
> by showing that x3 E C and x4 E C.

Subcase 1 for a = Here we have x3 E C by part (ii) of
5

Lemma 7.1.1 and x4 E C by part (v) of Lemma 7.1.1 for both sub-
2cases of p =
-5

.

2Subcase 2 for a = : Here we have x3 EACC and

x4 E C by part (v) of Lemma 7.1.1.
2 1

Case 20 (a = P = 7 ): Since Y > P1(1-a) we have

4 5Now since
-5- < < 1 we can conclude that y = 1. Therefore,

> a + P.

This completes the proof of Theorem 7.1.2.

7.2. A Conjecture

Conjecture 7.2.1. Let (S, )4) be any nested singularly dis-

crete density space, let A, B, and C = A + B be subsets of S

with 0 E A rm B, and let the corresponding densities be a, p, and

Y. Then y > min {1, a + p}.

Theorems 3.1.2, 3.3.2, 3.3.4, and 7.1.2 verify this conjec-

ture for nested singularly discrete density spaces of order n < 5.

However, the method of proof used in these theorems becomes un-

manageable for larger values of n. For example, when n = 5 we

85



86

needed to consider 20 cases, but if n = 6 the number of cases in-

creases to 30 and if n = 7 to 72. Moreover, as n increases

each case tends to have more subcases. We have attempted to extend

the proofs of Mann [10], Dyson [2], and Garrison [6] for the a + p

property in the space (I,X) to nested singularly discrete density

spaces. With the exception of Dyson's method, we have had no suc-

cess. We are able to apply Dyson's method to obtain the a + p

property for some nested singularly discrete density spaces of infinite

order. These and related density results are discussed in the next

chapter.



CHAPTER VIII

THEOREMS OF MANN AND DYSON

In this chapter we examine generalizations to nested singularly

discrete density spaces of some density related theorems of Mann

and Dyson for the space (I,X).

8.1. Mann's First Theorem

For the density space (I, X), B. Mann [10] proved the fol-

lowing theorem which yields the a + 13 property.

Theorem 8.1.1. Let A, B, and C = A + B be subsets of I

with 0 E A--) B. For any n E I \C, there exists an integer m

where 1 < m < n and m I C such that

C(n) A(m)+B(m)
n m

A natural extension of this theorem to nested singularly discrete

density spaces is the following: For any nested singularly discrete

density space (I, )41 let A, B, and C = A + B be subsets of I

with 0 E A rB. For any n E I \C, there exists an integer m

where 1 < m <n and m I C such that

C([n]) A([m])+B([m])
I([n]) Iamb
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This is clearly a generalization of Theorem 8.1.1, and hence

is true when (I, )4) has just the essential point I; that is, when

However, the following example shows that this extension

is not valid when (I, )4) has two essential points.

Let T = {2}. By Theorem 4. 2. 2 part (ii), the space

(I, )4) = (I, )?1,) is nested singularly discrete. The essential points

are {1, 2}. Let A = B = {0, 1,-4-}. Then C = {0,1,2,-4 Now

3 1 C and so the above extension, if valid, would claim that

C({3]) , A([3])+B([3])
i({3])i([3])

However, A([3]) = B([3]) = C([3]) = 1 and so the inequality fails.

In this example T C A and T ( B, so a = p = 0. However,

1 and so the a + P property holds. In fact, by Theorem 2. 3.7,

the a + P property holds whenever T C A cm B. Hence we modify

our generalization of Theorem 8.1.1 to the following which, if true,

would yield the a + p property for nested singularly discrete den-

sity spaces.

Conjecture 8. 1.2. For any nested singularly discrete density

space (I,)4) let A, B, and C = A + B be subsets of I with

T {0}C A nB. For any n E I \C, there exists an integer m

where 1 < m < n and m I C such that
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Can]) A([rrd)+B([nd)
Iamb

The author's efforts to prove this conjecture have been unsuc-

cessful. He has attempted to extend Mann's proof for (I, y) using

Mann's construction but has been unable to resolve certain difficulties.

8. 2. Dyson's Theorem

For the density space (I, X), F. Dyson [2] proved the follow-

ing theorem which, although weaker than Theorem 8.1.1, also yields

the a + 13 property.

Theorem 8. 2.1. Let A, B, and C = A + B be subsets of I

with 0 E A rB. For any n E I \C, there exists an integer

such that 1 < m < n and

C(n) A(m)+B(m)
n m

A natural extension of this theorem to nested singularly dis-

crete density spaces is the following: For any nested singularly dis-

crete density space (I, )11 let A, B, and C = A + B be subsets

of I with 0 E A(-'B. For any n E I \C, there exists an integer

I/1 such that 1 < m < n and

C([n]) A([m])+B([rni)
I([n]) I([m])
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This is clearly a generalization of Theorem 8.2.1, and hence is

true when (I, )4) has just the essential point 1; that is, when

It is also true when (I, )4-) has two essential points. We

state these results formally in the following theorem, the proof of

which is delayed until Section 8.3.

Theorem 8.3.2. For any nested singularly discrete density

space (I, )4) having two or less essential points let A, B, and

C = A + B be subsets of I with 0 E A n B. For any n E I \ C,

there exists an integer m such that 1 < m < n and

Card) AarrID+B([rni)
I([n]) '([m])

The following example shows that this extension is not valid

when (I, )4) has three essential points.

Let T = {7,9}. By Theorem 4.2.2 part (ii), the space

(L)') = (I, XT) is nested singularly discrete. The essential points

are {1,7,9}. Let A = {0,1,3,6,7,9,12} and B {0,6,12}.

Then C = {0,1,3,6,7,9,12}. Now 11 C and so the above ex-

tension, if valid, would claim that

C([11]) A({m])+B(Em1)
I([11]) I({m])

for some integer m where 1 <m < 11. However,



C([ll]) 3 1

I([n]) - 9 3

1

while the right side of the inequality always exceeds . Therefore,

the inequality fails. In this example
T

B, so 13 = 0. However,

91

and so the a + p property holds. In fact, by Theorem

2.3.7, the a + p property holds whenever TIA(mB. Hence we

modify our generalization of Theorem 8.2.1 to the following which, if

true, would yield the a + 13 property for nested singularly discrete

density spaces.

Conjecture 8.2.2. For any nested singularly discrete density

space (I, )4-) let A, B, and C = A + B be subsets of I with

T {0} C A n B. For any n E I \ C, there exists an integer m

such that 1 < m < n and

C([n]) A([m])+B([m])
I([n]) Wm])

By Theorem 8.3.2 of the next section, this conjecture is true

if (I, )°() has two or less essential points. However, the author's

efforts to prove this conjecture in general have been unsuccessful.

He has attempted to extend proofs using Dyson's transformation and

the recent non-transformation proof of B. Kvarda Garrison [6]. In

each case, he has been unable to resolve certain difficulties. With

Garrison's method he has been unable to extend the proof even when



(I, )4) has two essential points.

8.3. The a + p Property for Nested Singularly Discrete Density
Spaces Having Two or Less Essential Points

In this section we prove that the a + p property holds for all

nested singularly discrete density spaces having two or less essential

points.

Theorem 8.3.1. Let n be any positive integer and ii be

any real number such that 0 < ii < 1. Let A and B be subsets

of I,-{0,n] with 0 E A rmB, let C = A + B, and consider any

nested singularly discrete density space (L)) having two or less

essential points. Then

Proof: If B = {0}, then statement (1) implies statement (2)

because A C C.

Suppose the theorem fails for some ii and n. Choose A

and B in such a way that statement (1) is true, statement (2) is

false, and B(n) is minimal. Then

A([rrd) + B([nd) > I([m1), for m = 1, 2, . ,n,

C([m]) > Iamb, for m = 1, 2, . , n.
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Let

a = min {al a E A, {a} + B A}.

Now a* exists because by inequality (3) we have

max {al a E A} + max {13113 E B} > max {ala A}.

Let

B" {b"lb" E B, a*+b" I A}.

By equality (4), we have

B" .4)

Since a E A, we also have

0 1 B".

We define new sets A', B', and C' = A' + B' where

A' = A v (({a*} + B") n [0, n] )

and

B' = B \B"

Now 0 E B and hence by (7), we have

0 E B'.

Also, by equalities (5) and (9), we have

{a } + B'C A.



We now prove that

A'([rn]) + B'aml) > raam]), for M = 1, 2, ...

which makes up the major portion of the proof of Theorem 8. 3.1:

If a = 0, then by equalities (5), (8), and (9) and by state-

ment (1), we have

A am]) + B 'am]) > A([rril) + Barn])

> 11 Tarn])

for m = 1, 2, ...,n.

Suppose a > 0. By Corollary 4. 2.4 we have (I, )4) = (I, XT)

where T is the set of all essential points of (I, )4) except the

nested essential point. Consider any t E T (Th[1, n]. Suppose t IA.

If t B, then

A([t]) + Bat]) = 0,

and since statement (1) is true, we must have Ti = 0. However, if

11 = 0, then statement (2) is also true, a contradiction. If t E B,

then {0} + B A and so a = 0, a contradiction. Therefore,

we must have t E A and hence

(12) Tr41,n] C A.

Let m be any integer in [1,n]. If m E T, then by statement
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and the fact that A C A', which follows from equality (8), we

have

Alm]) + Blm]) > 1 >

= raarn]).

Suppose m I T. Let

B0 = B rm[m-a +1, m].

If
B0

(m) = 0; that is, if
B0

contains no positive integers, then

Bn(m) = ({a*)+B")(m).

By equality (5) we have

(m ({ a }+B") = (I)

and

B" C B.

Now by statements (12) and (16) and since m I T, we have

({a*}+B")([m]) = ({a*}+B")(m).

By statements (9) and (16) we have

B([rn]) B"([m]) + Blm]).

Therefore, by statements (8), (15), (17), and (14) we have



Alarn]) + B'aml) = A([ml) + ({a*}+B")([m]) + B'({rn])

= A([m]) + ({a*}+B")(m) + B'anal)

= A([m.]) + 13"(m) + Bram]).

Since B"(m) > 13"([m]) we have by the preceding equality and

statements (18) and (1) that

At([m]) + Bi([m]) > A([m]) + B"({rn]) + W([rn])

A({rn]) + B([rn])

> rliand)

Suppose Bo(m) > 0. Let

b1 = min {blb E B0
,b >1}.

Consider any integer r satisfying 0 < r < a. Then by equality

(4), we have

(An[0,d)+{b}C A

for every b E B. Therefore, A(r) + 1 < A(b,b+r) where we have

defined A(0, r) = A(r) + 1 (see Definition 2.3.4). Hence, we have

A(r) + 1 < A(b, b+r)

for every integer r satisfying 0 < r < a and for every b E B.

Let r1 m - b1. By equalities (13) and (19), we have

b1 E [m-a'+ 1, m]. Therefore,
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Therefore, suppose

becomes

0 < r < r . If

1 < + (1-1)T(b1,m),

and so

1 -i < (1-11)1(b1, m) < 1 -

a contradiction. Notice that we have used for the first time the fact

that (I, ).=71) has two or less essential points; that is, that T has

one or less members. Therefore, suppose r >1. Now by statement

(12), inequality (23), and since T(b1 ,m) < 1 and 0 < r < 1, we

have the following string of inequalities:

r = 0, then inequality (23)

97

0 r1 < a.

We now prove that the following inequality holds:

A(r1) + 1
Ti(r1+1) + (1-1)T(b1,m)

Suppose is the least integer satisfying 0 < r* < a* for

which

A(r ) + 1 < ri(r +1) + (1-r)T(b1,m).

If r does not exist of if r > r1 then inequality (22) holds.



(A \T)(r ) = A(r ) - T(r )

n(r +1) + (1-n)T(b m) - 1 - T(r )

*
n(r +1) + (1-n) - 1 - T(r )

= nr T(r )

nT(r )

= \T)(r ).

Hence, we have

(24) (A \ T)(r ) < 11(I \ T)(r ).

Consider any integer i where 1 < i < n. If i T, then

by Theorem 6.1.1 and statement (1), we have

(A \ T)(i) + (B \ T)(i) = A([il) + B([d)

> nI([i])

= \T)(i).

If i E T, let j be the largest integer such that j < i and j d T.

If j = 0, then

(A \ T)(i) + (B \T)(i) = 0 = \ T)(i).

If j > 0, then

(A \ T)(i) + (B\ T)(i) = (A\ T)(j) + (A \n(j)

A([ji) + B(M)

>111(0}) =
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= \T)(j)

= n(I \ T)(i).

Therefore, we have the following inequality which depends only on

statement (1):

(A \ T)(i) + (B \T)(i) > \T)(i)

for each integer i where 1 < i < n.

In particular, since 1 < r < n, we have by inequality (25)

that

(A \ T)(r) + (B \ T)(r ) >n(I \T)(r ).

Therefore, by inequality (24), there exists a positive integer

b0
E Br[1,r*].

By the definition of r we have

A(b0
-1) + 1 >

0 + (1-11)T(b1,m),

which combined with inequality (23) yields

A(b0 , r ) < ri(r -b +1).
0

Now since 0 < r < a and 1 <
b0

< r we have

< r - b0 < a .

99



Therefore, by inequalities (20) and (26), we have

A(r -b0 ) + 1 < A(b0 ,b0 +r -bo)

= A(bo, r)

< ri(r -b0+1)

<ri(r -b0+1) + (1-Ti)T(b ,m)

which contradicts the minimal property of r. Hence, inequality

(22) is valid.

Recall that we are in the process of proving that

Alm]) + Film]) > TlI([m]), for m = 1,2, ... ,n.

We are also under the assumptions that a > 0, m T, and

B0
(m) > 0. By statements (8), (15), and (17) we have that

Alm]) + W([rn]) >Alm]) + (131\T)(b1-1)

= A([m]) + ({a*}+B")([m]) + (B'\ T)(b1-1)

= A([m1) + ({a }+B")(m) + (B' \T)(b1 -1).

By statements (13), (19), (9), and the preceding inequality we have

Alm]) + W([rn]) >A([m]) + ({a*}+B")(m) + (B' \T)(b1-1)

> Aam]) + B"(m-a*) + (B' \T)(131-1)

= A([m]) + 13"(b1-1) + (B'\ T)(b1-1)

= Aam]) + 13'1(b1-1) + ((B\B") \T)(b1-1)
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= A([m]) + B"(b1-1) + ((B \ T)\ B")(b1-1)

A([m]) + B"(b1 -1) + (B \ T)(b1 -1) - B"(b1 -1)

= A([m]) + (B\ T)(b1-1).

This inequality together with Theorem 6.1. 1, the fact that m T,

and statements (25) and (12) yield the following string of inequalities.

Aram]) + B' ([ml) > A([m]) + (B \ T)(b1-1)

= \ T)(b1-1) + (A \ T)(bi, m) + (B\ T)(131-1)

Tl(I \ T)(b1-1) + (A \ T)(bi, m)

= n(I \ T)(bi -1) + A(bi, m) - T(bi, m).

By statements (21), (20), and (22) this inequality becomes

A '([m]) + B'([mi) > \ T)(b1-1) + A(r ) + 1 - T(bi, m)

11(I \T)(b1-1) + n(r1+1)+(l-n)T(bi,m)- T(bi,m)

= \T)(b1-1) +

Since r1 = m - b1 and m 1 T this inequality becomes

A'([m]) + W([rn]) > \T)(b1-1) + n(I(b1 m) - T(b1,m))

= \ T)(131-1) + \ T)(131, m)

= n(I \T)(m)

=
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We now continue with the proof of the main theorem. Consider any



element CI E C'. Then c' = a' + b' for some a' E A' and

b' E B'. If a' E A, then since B' C B we have

c' = a' + b' E A + B = C.

If a' A, then a' = a + b" for some b" E B". Therefore,

by statements (11) and (16), we have

= a' + = (a +b") +b'

= (a +131) + b" E A + B = C.

Hence, we have C' C C and since statement (2) fails to hold for

it also fails for C'. Moreover, by statements (16), (6), and

(7), we have 131(n) < B(n). By statements (8) and (10) and since

0 E A, we have 0 E A',,B'. Therefore, we have constructed sets

A' and B', with 0 E A',B', which are subsets of I rm[0,

and for which statement (1) holds, statement (2) fails, and

Bl(n) < B(n). This contradicts the minimality of B and completes

the proof of Theorem 8.3.1.

Theorem 8.3. 2. For any nested singularly discrete density

space (I, )91) having two or less essential points let A, B, and

C = A + B be any subsets of I with 0 E ArmB. For any n E

there exists an integer m such that 1 < m < n and
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Now

C([n]) >A([m])+B([m])
TT; ;IT 'am])

Proof: By Corollary 4.2.4, we have (I, )4) = (I, XT) where

T is the set of all essential points of (I, 71) except the nested

essential point. Also since (I, )16 has two or less essential

points, T has one or less members. Let

AapJ)+B(Ep1)
fl = min

V[p])<p n

Clearly, 1-1 > 0. We now show that ri < 1.

Consider any t E T (Th [1, n]. If t 1 A v B, then

Aat])+B(H) = 0 =
Idt])

Suppose t E AvB, and hence t E C. Since n 1 C, and since T

has one or less members, we have n I T. Therefore, by Theorems

6. 1. 1 and 2.3.22, and since T C AvB, we have

Aan])+Ban]) (A \T)(n)+(B \ T)(n)
I([n]) (I \T)(n)

A(n)+B(n)-T(n)
n-T(n)

n-T(n) = 1.n-T(n)

Therefore, 11 < 1.
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Aap])+Bapl)Aapi) + Bap]) = lap])
l([p])

>

for each p = 1,2, . . . n. Let A' = A n [0, n], B B [0, n], and

C' = A' + B'. Then the preceding inequality yields

A'([13]) + B'f[p]) > Ti l([p])

for each p = 1,2, ...,n, which is statement (1) of Theorem 8.3.1.

Therefore, by Theorem 8.3.1, and since C'n[0,n] = C,-'[0,n], we

have

C([n]) = Cl([n])

> Ian]),

and so

C([n])Aapl)+Bapi)
Ian])

> min- lap])1 < p <n

Hence there exists an integer m such that 1 < m < n and

C([n]) A([m])+B([m])
I([n]) I([m])

Theorem 8.3.3. For any nested singularly discrete density

space (I, )4) having two or less essential points let A, B, and

C = A + B be any subsets of I with 0 E A nB and let the cor-

responding densities be a, p, and N. Then y > min {1,a + 13 }.
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Proof: If C = I, then y = 1 and the theorem follows.

Therefore, suppose I \C 4). If n E I \ C, then by Theorem

8.3.2 there exists an integer m such that 1 < m < n and

Can]) A([m])+B([m])
I([n]) I([m])

Now C([n])
Ian]) > a + p for all n Ei C. The fundamental family )4 is

separated because (I, )4) is discrete. Hence we have by Theorems

2.3. 12 and 2.3. 13 that

C([n])= glb > a + p .
nC Ian])

Therefore, y > min {1, a + p).

We may now use Theorem 5.2.1 to extend this result to the

following:

Theorem 8.3.4. Let (S, )4) be any nested singularly discrete

density space having two or less essential points, let A, B, and

C = A + B be any subsets of S with 0 E A rm B, and let the cor-

responding densities be a, p, and -y. Then y > min {1,a + p }.

Proof: Since (S, )4) has two or less essential points, we

have, by Theorem 5.2.1, that S is isomorphic to I. Therefore,

Theorem 8.3.4 follows immediately from Theorem 8. 3.3.
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8.4. An Extension of Mann's First Theorem

Consider the following statement: For any nested singularly

discrete density space (I, )4) = (I, )(T) let A, B, and C = A + B

be subsets of I with T {0} C A n B. Let h be a real number.

For any n E I \ C, there exists an integer m where 1 < m < n

and m C such that

C([n])+h Aam])+B([m])+h
Ian])+h I([m])+h

For what values of h is the above statement valid? When

h = 0, the above statement reduces to Conjecture 8.1.2. R. Stalley

[16] has shown that for the space (I, X) the above statement is

valid if and only if -1 < h < 1. Let K be any integer such that

K> 2. In this section we show, by example, that there is a space

(I, ).4) with K essential points for which the above statement (1)

(1)

1is invalid when h > .

Let (I, )4) = (I, )4,)
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where

T = {15+9kik 1,2,...,K-1}.

By Corollary 4. 2.4, there are K essential points; namely, Tv {1}.

Let A and B be defined as follows:



K-1
A = {0,1,3,4,5,6}v {9+9k,10+9k,12+9k,13+9k,14+9k,15+9k}v {9+9K},

k=0

K-1
B = {0,1, 6}v v {9+9k, 10+9k, 15+9k}.../ {9+9K}.

k=0

Then
K-1

C {0,1,2,3,4,5,6,7}v {9+9k,10+9k,11+9k,12+9k,13+9k,14+9k,
k=0

15+9k, 16+910 v{9+9K}.

The integers missing from C are { 8+9k I k = 0,1, , K}.

Now

and

and

A([8+9k])+([8+9k])+h
I([8+9k])+h

(7+h
8+h

16+7(k-1)+h
16+8(k-1)+h

C([8+9K])+h 15+7(K-1)+h
I([8+9K])+h 17+8(K-1)+h

1To show that statement (1) fails for h > ° it suffices to show that

7+h 15+7(K-1)+h
> for h >

8+h 17+8(K-1)+h K

is k = 0

if k 1, 2, ,K
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16+7(k-1)+h 15+7(K-1)+h
17+8(k-1)+h 17+8(K-1)+h

for k = 1, 2, . . ,K and h>

1Proof of (i): Suppose h > iz and



< (17+8(k-1)+h)(15+7(K-1)+h)

7+h 15+7(K-1)+h
8+h 17+8(K-1)+h

then (7+h)(17+8(K-1)+h) < (8+h)(15+7(K-1)+h), and so

119 + 56(K-1) + 7h + 17h + 8(K-1)h + h

< 120 + 56(K-1) + 8h + 15h + 7(K-1)h + h2.

Simplifying we obtain Kh < 1, which contradicts our assumption

1
that h > .

1
Proof of (ii): Suppose h >-R and

16+7(k-1)+h 15+7(K-1)+h
17+8(k-1)+h 17+8(K-1)+h

for some k = 1,2, ...,K. Then

Simplifying we obtain 9 + 9K - k + h(l+K-k) < 0. However,

K >k > 1 and h >0, and hence

9 + 9K - k + h(l+K-k) > 0,
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(16+7(k-1)+h)(17+8(K-1)+h)

and so

272 + 128(K-1) + 16h + 119(k-1) + 56(k-1)(K-1) + 7(k-1)h

+ 17h + 8(K-1)h + h2

< 255 + 119(K-1) + 17h + 120(k-1) + 56(k-1)(K-1) + 8(k-1)h

+ 15h + 7(K-1)h + h2.



a contradiction. Therefore,

16+7(k-1)+h 15+7(K-1)+h
17+8(k-1)+h 17+8(K-1)+h

for k= 1,2, ...,K.

8.5. An Extension of Dyson's Theorem

Consider the following statement: For any nested singularly

discrete density space (L)) = (I, ),T) let A, B, and C = A + B

be subsets of I with T {0}C A rB. Let h be a real number.

For any n E I \C, there exists an integer m such that

1 < m < n and

C([n])+h A([m])+B([m])+h
Ian])+h I([m])+h

For what values of h is the above statement valid? When

h = 0, the above statement reduces to Conjecture 8.2.2 which by

Theorem 8.3.2 is valid when (I, H") has two or less essential

points. R. Stalley [16] has shown that for the space (I,X) the

above statement is valid if and only if -1 < h < 1. Let K be any

integer such that K > 2. We now show that the space (I, )=.f ) with

K essential points which we introduced in the previous section is a

space for which statement (1) is invalid when h

(1)
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By straightforward computation and by Theorem 6. 1.2 we have



for each i = 1,2, ... , 6 and k = 0,1,2, . , K that

A([8+9k+i])+B([8+9k+a+h A([8+91d)+B([8+91d)+h+i
I([8+9k+i])+h I([8+91d)+h+i

A([8+91(])+B([8+9k])+h

for all m = 1,2, ... 8+9K.

I([8+91d)+h

and for i = 8 and k = 0,1,2, ... ,K we have

A([8+9k+i])+B([8+9k+i])+h A([8+91(])+B([8+910+h+7
I([8+9k+i])+h I([8+91d)+h+7

A([8+91d)+B([8+91d+h
I([8+91d)+h

For i = 1,2, ,7 we have

A([i])+B(H)+h i+h
I([i])+h i+h

In the previous section we proved that for k = 0,1,2, ... , K we have

A([8+91d)+B([8+90+h C([8+9K])+h
I([8+91d+h > I([8+910+h

Combining results (2), (3), (4), and (5), and using T C A cm B, we

have

A([m])+Bamp+hC([8+910+h
Iam])+h I([8+9K])+h
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8. 6. Mann's Second Theorem

Definition 8. 6. 1. Consider any nested singularly discrete den

Theorem 8. 6.3. For any nested singularly discrete density

111

sity space (I, )) and any proper subset A of I. The Erd6s

density of A with respect to )4 is

A([n])
A, )'=.6 gib{I([n])+1

> 0, A([n]) < I([n]) }.

Paul Erdos introduced the density di(A, X ) for the density

space (I, X). H. Mann [11] proved the following theorem for the

space (I, )<') where A and B are subsets of I.

Theorem 8. 6. 2 (Mann's Second Theorem). If 0 E A rml3 and

C = A + B, then C(n) > d1(A,)<)(n+1) + B(n) for every n E I C.

We now look at the following generalization of Mann's Second

Theorem to the nested singularly discrete density space (I, )4)

where A and B are subsets of I and where a 1 = d (A , )4) :

If 0 E A rm B and C A + B, then for every n E I \C we have

(1) C([n]) > a (I([n])+1) + B([n]) .

We show that this generalization does not hold for all nested

singularly discrete density spaces (I, )41, but that it does hold

under special conditions which include the result for (I,)<').
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space (I, )11-) = (I, XT) with nested essential point e, let A, B,

and C = A + B be subsets of I with 0 E A (--NB and let

al = di(A, )41. Then inequality (1) holds for every n E I \ C if

either of the following hold:

T v{e} A,

T C B.

Proof for (i): By Corollary 4.2.4, the set T v{e} is the set

of all essential points of (I, )11). If T {e}/ A, then al

and since C([n]) > B([n]) for all n, inequality (1) follows.

Proof for (ii): If T j {e}1Z A, the inequality (1) follows by

part (i). Therefore, suppose T {e} C A. Hence for every n >0

such that A([n]) < I([n]), we have by Theorem 6. 1. 1 that

Aan]) = A(n) - T(n) and so

A([n]) A(n)-T(n)A(n)
Ian])+1 n+l-T(n) 5- n+1

Therefore,
a1

< d1 (A,X). Consider any n E I \ C. Since

TCBCC, we have n E I\ B, B([n]) B(n) - T(n), and

C([n]) = C(n) - T(n). Therefore, by Mann's Second Theorem for

(I, X), we have



C([n]) = C(n) - T(n) = d1(A,X)(n+1) + B(n) - T(n)

= d1(A,X)(n+1) + B([rd)

ai(n+1) + B([n])

(n-T(n)+1) + B({n])

=a (I([n])+1) + B([rd).

This completes the proof.

The following example shows that inequality (1) does not always

hold when (I, )1) = (I, XT) is a nested singularly discrete density

space, { e } C A, and T ict B. Let T {7}. Let

A = {0,1, 2, 5, 6,7, 10,11, 12,15) and B = {0,1, 5, 6,10,11,15}. Then

C = {0, 1, 2, 3, 5, 6, 7, 8, 10, 11, 12, 13,15}. Straightforward calculations
2

show that al = , C([14]) 10, B([14]) = 5, and Ia 14 j) 13,

where al = d
I
(A, )it). Therefore,

2C([14]) = 10 <14 + 5 = a1 (Ia14])+1) + B([14])..
5

Since 14 C, inequality (1) fails.

We do have the following corollary to Theorem 8. 6. 3:

Corollary 8. 6. 4. For any nested singularly discrete density

space (I, )4) let A, B, and C = A + B be subsets of I with

0 E A n B. If n E I \C, at least one of the following inequalities

holds:
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C({n]) > a (I([n])+1) + B([n]),

Can]) > A({n]) + Pla([n])+1),

where
a1

= d(A,)='/--) and p1=

Proof: By Corollary 4.2.4, we have (I, )4) --,- (I, XT). If

T C B, then by Theorem 8. 6.3 we have inequality (2). If T B,

then T i {e}/ B, where e is the nested essential point of

(I, )i). Therefore, by Theorem 8.6.3 we have inequality (3).

We also obtain the following important result.

Corollary 8. 6. 5. For any nested singularly discrete density

space (I, )4) let A, B, and C = A + B be proper subsets of I

with 0 E A r- B. Then we have the following two inequalities:

)/1 + P1'

y> min {a1 + 13,a + pi},

where a, 13, and y are the k-densities (hence also c-densities) and

al, i3 are the Erdos densities of A, B, and G in (I, )4).

Proof of (i): For any n E I \C we have n cl A and n I/ B.

Now by Corollary 8. 6.4 we have either inequality (2) or (3). If

inequality (2) holds then

c([n])> Bran])
I([n])+1 1 I(Ln])+1
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If inequality (3) holds then

Hence in either case

C([n])
I([n])+1 al + Pl.

Consider any m E I \{0} such that C([m]) < Iamb. Then there

is an n E [111] \{0} such that n 1 C and i E C for all i E [m]

such that n < i < m. Hence by inequality (4) we have_

C([m]) C([n])+Cam]\[n])
Iam])+1 I([n])+Iam] \[n])+1

C([n])+Iam] \bib
I([n])+1+Iam] \[n])

C([n])
Ian])+1> a1 + pi

Therefore, we have > al + p .

Proof of (ii): For any n E I \C we have n I A and

n I B. Now by Corollary 8. 6.4 we have either inequality (2) or (3).

If inequality (2) holds then

C([n]) Ian])+1 B([n])
I([n]) al I([n]) + I([n])

+ 13.

(4)

C([n]) Aan])
rn])+1 131Ian])+1 I(L
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In inequality (3) holds then

Can]) A([n]) Ian])+1
Ian]) Ian]) + pl I([n])

a +

Hence by Theorem 2. 3.13 we have

,Can])
Iy = glb

I({n])
In E I \C} > min {al + p, a + 1311 .

This completes the proof.
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CHAPTER IX

MIXED DENSITY THEOREMS

In this chapter we briefly consider some density inequalities

involving more than one density space.

9. 1. General Discussion

Let S be an s-set and consider a collection of density spaces

{(S, °.)i 1,2, ... } . A mixed density theorem is a theorem which

relates densities from more than one such density space. A typical

mixed density question is the following: If A, B, and C = A + B

are subsets of S with 0 E A,-B, then is it true that

> min {1 dk (A ) +
dk

(B, D-4 )1?
1 ,12

(1)

is just the a + f3 property proved for the space (I, 9). This

question and many others could be studied in detail. However, we do

not attempt to do so here. Rather, we restrict our attention to a very

special result for nested singularly discrete density spaces.

9. 2. Mixed Density Inequalities for Nested Singularly
Discrete Density Spaces

Recall that for discrete density spaces k-density and c-density
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Of course, if S = I and usi - = °s3 = x then inequality (1)



are equal.

Theorem 9. 2. 1. Let t E I with t > 2. Let (I, )01) = (I, XT)

where T = {t}. Let A, B, and C = A + B be subsets of I

with 0 E AnB and let the densities of A, B, and C be a, p,

and y for (I, X) and a', pi, and y' for (I,)4) respectively.

Then

y > min {1,a + p},

y > min {1, a + pi}

-y > min {1, a' + p},

y> min {1, a' + ,

-yl > min {1, at + 1,

there are examples for which y < min {1, a + p},

there are examples for which y' < min {1, a' + p},

there are examples for which y < min {1, a + 13'}.

Proof: Note that by part (ii) of Theox em 4. 2. 2 the space

(I, )06 is nested singularly discrete. We first show that a > a'.

If t I A, then a' = 0 and hence a > a'. Suppose t E A. Since

T = {t}, we have T(m) < 1 for every m E I \{0,t.

by Theorem 6.1.1 and since t > 2 and T C A, we have

A(m) A(m)-T(m) (A \ T)(m) A.([m]')
m m-T(m) (I \ T)(m) I([rriP)
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for every m E 1\10,0 where {MP denotes the Cheo set of Trl

in the space (I, )11). Since t E A, we have

a gib { A(m) I m E \{0,t}}
ril

A ([ml')> gib {
IIdrnP) m E I \{0,t}}

= a'.

Therefore, a> a'. Likewise, 13 >13'.

Proof of (i): This is the a + 13 property for the space (I,)?)

which was proved by Mann [10], Dyson [2], and Garrison [6].

Proof of (ii): By part (i) and since P > 13', we have

-y > min {1,a + 13) > min {1,a + IV) .

Proof of (iii): By part (i) and since a > a', we have

> min {1,a + 13) > min {1,a' + PI.

Proof of (iv): By part (iii) and since P > 13', we have

> min D., a' + f3} > min {13 a' + 13'1

Proof of (v): By Corollary 4.2.4, the space has two

essential points. Therefore, by Theorem 8.3.4, we have

> min {1, a'+13'}.



Proof of (vi): Let A = {0, t+1} and B = {0, 1, t+1}. Then

1
C = {0, 1, t+1}, a = 0, p = y = , and a' = 13 = 0. Therefore,

o = y < min {1, a + P} = -It

Proof of (vii): Use the same example as in part (vi). We have

0 = < min {1,a' + 3} = .

Proof of (viii.): Use the same example as in part (vi), except

interchange sets A and B. We have

0 = < min {1, a + P'} = It

This completes the proof.
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CHAPTER X

COMPARISON OF c-DENSITY AND k-DENSITY

In this chapter we compare c-density with k-density, In

particular, we answer two questions posed by Freedman [4].

10.1. Fundamental Results

Let (S, °I) be any density space and let A be a subset of

S with 0 E A. Recall (by Theorem 2.3.12) that for discrete den-

sity spaces the c-density and k-density of A are always equal.

This is not true for density spaces in general. For general density

spaces we have the following two results of Freedman [3,4] (see

Theorem 2.3.6). We include proofs for completeness.

Proof: We know that

{q(A,F)IF ETD {c1(A, [x]) lx E S OH"

Therefore,

a = glb {q(A,F)IF E °-J }

< glb {q(A,[x])lx E S {0}}

Also for each F E °I, we have 0 < A(F) < S(F) and so both
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Theorem 10.1.1. We have 0 < a < a < I.



0 < a < 1 and 0 < a <1.
c

Theorem 10.1.2. The following three conditions are equivalent:

(i) a = 1, (ii) ac = 1, and (iii) A = S.

Proof that condition (i) implies condition (ii): Suppose a = 1.

By Theorem 10.1.1, we have a < a < 1. Therefore, a 1.c c

Proof that condition (ii) implies condition (iii): Suppose there

is an x E S \ A. Then we have A([x]) < S([x]) and so

a < q(A,[x]) < 1. Therefore, if a = 1, we have A S.c c

Proof that condition (iii) implies condition (i): Suppose A = S.

Then q(A,F) = 1 for each F E and so a = 1.

This completes the proof.

For the remainder of this chapter we suppose ac
< 1.

Freedman [4] poses the following question: Does there exist a den-

sity space (S, .5) and a subset A of S such that ac >0 and

a = 0? The answer is yes, as we show in the next section.

10.2. An Example for which ac
> 0 and a = 0

Let d be any positive integer and let (I, elH) be the density

space determined by
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C = {0,1,2, 2d}. Therefore,
2da +13> 1, whereas

C c d+1

10.3. A General Example

Theorem 10.3.1. Let
p1

and p2
be any two real numbers

such that 0 < p, < p, < 1 Then there exists a density space

°1H) and a set A C I such that a = p1 and ac

{0,1,2, ...,d}v{x} if x >d+i,
H(x) =

{ 0, x} otherwise.

Let A = {0,1,2, , Since A has finite cardinalAy, we have

a = 0. However, a = >
c d+1

This example does more than show that we can have ac > 0

and a = O. Since d is any positive integer we can, for any E

such that 0 <E < 1, choose d sufficiently large to have

ac > 1-s and a = 0. Of course, by Theorem 10.1. 2 we can never

have a = 0 and ac
= 1.

This example also shows that 0 E A and ac > 0 does not

imply that A is a basis for I. This question was also posed by

Freedman [4]. The set A is not a basis because it has finite

cardinality.

The space can also be used to show that Theorem 2. 3 10 fails

for general density spaces. Let A = B = {0, 1, 2, .. d). Then

ac = Pc = = - and so
c d+1

d <1.
.YC d+1
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Proof: Let p1 and p2 satisfy the hypotheses of the the-

orem. Let {u. Ii = 1,2, . . . and {v. I = 1,2, .} be strictly

decreasing sequences of positive rational numbers less than 1 such

that p = gib {tail i = 1,2, . . . }, p2 = gib {vi I i = 1,2, .}, and

u. < v. for each i = 1,2, ... .
1

Now since u. and v. are positive rationals, there exist
1 1

ai
positive integers

1 1 1 i bdi
Since 0 < u. < v. < 1, we have 1 < a. < d. < b..

1 1 1

Let (I, `-"SH) be the space determined by H(x) where

(1) {0,1,2,...,x}

{0,1,2,...,d1-1,x}

{0,131+1,b1+2,. ..,x}

{0,b1+1,b1+2,...,b1+d2-1,x}
H(x)=

if 1 <x <
d1

-1,

if d1 L:x

if b +1 <x < b +d -1,
1 2

if b1+d2 x 131-1-b2,

j j j j
{0, Eb.+1, E b.+2,...,x} if Z b.+1 < x < E13.-Fd. -1,

i=11 i=1 1 i=1 1 i=1 1 3+1

j j j j j+1
{0, Zb.+1, Eb.+2,..., Eb.+d -1,x} if Eb.+d., < x < Zb.,

1 j+1
i=11 i=11 i=1

i. ,11 3-r1 i=1 1

By Theorem 2.2. 6, the space (I, °Iii) is a density space. Now let
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A = {0,1, 2, , v{b1+1,b1+2,

j j
v.... v { E b.+1, E .b.+2, .... L.; b.+a. }v...

1
i=1 i=1 i,,1

We now show that for the space (I, 1H) and the set A we have

ac . = p2 and a = pl. Recall that H(x) and [x] are identical

and that they both denote the Cheo set of x for the space (I, 9111).

For each integer j > 0, we have

A([ Eb.+d. 1)

i.11 3+1 a .

d.
I([ Eb.+d. 1) 3+1

i=11 3+1

vj+1.

Since p2 = glb {vi I i = 1, 2, . .. } = gib {vi+1 Ii = 0, 1 2, . . . }, we have

a < p. Also for any positive integer m there is an integer j > 0

such that Ei b +1 < m < Ej+1 b . Hence we have
i=1 i i=1 i

j
A([ E b.+d. 1)

Aa im]) =1 1 3+1
a

j+1
Iamb j d.1 .

v3+1
3+1

.

I([ E b+d. 1)

i=1
i 3+1

Therefore,

Aam])ac = glb { lam]) I m 1,2,... } > glb {v.+1 Ii = } p2.
3
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Hence we have a =p2

It is more difficult to show that a = pl. For each integer

j > 0, define the set F. by

j+1
F. = {0, E b.+1, E b.+2,..., E b.}.

1=1 1 i=1 1 i=1 1

By formula (1) we have

where

2.2.15 we have F. EH. Now

A(F.) a
j+1

(2) I(F.) b 11.+1
3 j+1 3

Since p1 glb {ui Ii 1, 2, . } = glb {ui+i Ii = 0, 1, 2, .

m2(i)
F.= Ern],

m=m1(j)

m1 (j)(j) = bi+1 and m2(j) = Ei.+1 b
1= 1=1

Hence by Theorem

we have

a < p1 . Now consider any F E 1 For each integer j > 0, let

G. = F nF.. Now since F /H and E (1.-SH, we have
J J

G. 1 Hv{{0}}. Now i i j implies F.,--\F.. = {0} and hence
J 1 i

G.rG. = {0}. Also F is finite. Hence there is a finite integer
1 3

J max {jIG.\ {0}

Now if G.\ {0} then G. E .
H

If G.\ A 4), then
3
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(3)

A(F)a = gib { 1(r) F E e.SH > glb {ui.+11i = 0,1,2, .

Hence we have a = p1.
1

This completes the proof.

{ E b.+1, E b.+2, , E b.+a. }C G.
1

i=1 1 i=1 1=1
1 3+1 3

and so

A(G.) A(F.)
>

I(G.) I(F.)
3

If G.\ A = 4), then A(G.) = I(G.) and inequality (3) still holds.
3

Therefore, by statements (3) and (2) and since {o} for
1 j

i j, we have

A( G.) E A(G.)
A(F) j=1 3 j=1 3

I(F) J
I( v G.) E I(G.)

j=1 j_1

A(G.) A(F.)
1 1

I(G.) > I(F.) =u
i+1

1

for some i (1 < < J). Therefore,

= p1.
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CHAPTER XI

FREEDMAN'S TRANSFORMATION PROPERTIES

In this chapter we study some relationships between three trans-

formation properties of Freedman and the Landau-Schnirelmann and

Schur inequalities. Two of these transformation properties, trans-1

and trans-2, were introduced by Freedman in his Ph.D. thesis [3]

and later in his article [4]. The third transformation property, which

we call trans-3, was also introduced by Freedman but does not

appear in the literature [5]. The relationships are summarized in

Section 5 of this chapter.

11.1. The Landau-Schnirelmann Inequality and Trans-1

Let (S,Q1) be any density space where c'S is trans-1 (see

Definition 2. 3.14). By Theorem 2.3. 18, the Landau-Schnirelmann

inequality holds; that is, > a + P - a. In this section we show

that y >a + p - ap does not imply that 41 is trans-1. In order

to show this result we prove the following theorem which is of inde-

pendent interest.

Theorem 11.1.1. Consider any discrete density space (I, eS)

of finite order n. Then is trans-1 if and only if I=
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where H(x) = {0,x} for all x E I \{0}; that is, if and only if n =1.



X E I\ {0}. By Theorem 2.2.6, we have

is trans-1 by Theorem 2.3.16.

Now suppose GI=

41 11 =I) and so
.111

where °T is trans-1 but °SH is

not defined by H(x) = {0,x} for all x IVO. Then there exists

an integer k > 2 and an integer i where 1 < i < k-1 such that

H(x) = {0,x} for all x = 1,2, ... ,k-1 and {0, H(k).

Suppose H(k+1) = {0, k+1}. Using the notation of Definition

2.3.14 and choosing x = 1 and F = {0,1, k+1}, we have

F H(1) vH(k+1) E

D = {1, k+1}, and TI[D] = {0, k}. Since H(k) {o, we have

H(k) j 10,14 Therefore, by Theorem 2.2.6, we have

T1
[D] aSHv {{0}}. Hence `1H is not trans-1, a contradiction.

Therefore, k+1 is not an essential point.

As our induction step we assume that k+j is not an essential

point for some integer j > 1. Suppose H(k+j+1) {0, k+j+1}.

Choosing x 1 and F = {0,1, k+j+1}, we have

F = H(1) vH(k+j+1) E

D = {1,k+j+1}, and Ti[D] = {0,k+il. Since k+j is not an essen-

tial point, we have H(k+j) {0, k+j}. Therefore, by Theorem 2.2.6,

we have Ti[D] Ipliiv{{0}}. Hence is not trans-1, a
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contradition. Therefore, k+j+1 is not an essential point. We have

shown by induction that only the first k-1 positive integers are

essential points.

By conditions c. 1 and c. 3 of Theorem 2.2.6, each H(x) must

contain at least one essential point; namely, the least positive integer

in H(x). Therefore, at least one of the first k-I positive integers,

say y, must occur in H(x) for infinitely many x I\ {0};
oo

that is, y E (Th H(x.) for some strictly increasing infinite sequence
i=1

of positive integers x1x2 Since (I, 1H) is discrete, .1H

must be separated. Hence, since

y E H(C.) (Th FI(X. )
1 1+1

.and

x. < x , we must have H(x.) C H(x. ) Therefore
i+1 1+1

H(x1)
C H(x2

) C

which contradicts the fact that (I,
°SH)

is discrete of finite order n.

Therefore, at is determined by H(x) = {0,x} for all x E I\{0}.

Also (I, is is discrete of order n = 1 if and only if

H(x) = {0,x} for all x E {0}. This completes the proof.

Consider any nested singularly discrete density space

of order n > 2. By Theorem 6. 2.1 we have -y > a + p a. By
Theorem 11.1.1 we have that c'S is not trans-1. Therefore,
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y > a + p _ aP does not imply that e'S is trans-1.

11.2. The Schur Inequality and Trans-2

Let (S,`Y) be any density space where °S is trans-2 (see

Definition 2.3.15). By Theorem 2.3.21, the Schur inequality holds;

that is, if a + p < 1, then y > p/(i-a). In this section we show

that the Schur inequality does not imply that *4 is trans-2.

Let (I, aSH) be the density space determined by

f.{0,2,4} if x = 4,

H(x) = {0,1,5} if x = 5,

{0, x} otherwise.

If, using the notation of Definition 2.3.15, we let x ---5 and F {0},

then D = {1,5} and T2[D] = {0,4}. Now H(4) {0, 4). There-

fore, by Theorem 2. L 6, we have

T2[D] 61}i{{o}},{4)}.

Hence
°-SH

is not trans-2. However, since (I, °SH is discrete

of order 2, we have by Theorem 3.1.2 that

y > min {1, a + p} = a+ p >a± p

whenever a +13 < 1. Therefore, y - ay > p and so y > P/(1-a).

Hence the Schur inequality does not imply that "PSH is trans-2.



11.3. The Correspondence Between Trans-1 and Trans-2

In this section we show that the two transformati Or, properties,

trans-1 and trans-2, are incomparable. We begin by showing that

trans-1 does not imply trans-2.

Let (I,H) be the density space determined by

If, using the notation of Definition 2.3.15, we let x = 4 and

F = {0,2), then D = {1,3,4} and T2[D] = {0,1,3). Now

H(3) {0,1,3). Therefore, by Theorem 2.2.6, we have

T2 [E] I7/71v{{0}}v{(01. Hence °IH is not trans-2. To show

that is trans-1, consider any F E and X E F. Then

either

F {0,1,2, .. n} for some n > 1

or

F = {0,2}.

In case (i) we have

D = F rmU(x) = {x, x+1,. . . ,n}

where 0 <x < n. Therefore,

T1
[1:311 = {0,1, ... ,n-x} E -Ho).

H(x) =

if x = 1,

if x = 2,

otherwiF;e.
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In case (ii) if x = 0, we have D = {0, 21, and so

T1[D] = {0,21 EH. If x 2, we have D = {2}, and so

Ti[D] = {0} {{0}1. Therefore, is trans-1.

Now we show that trans-2 does not imply trans-1. Let (I,

be the density space determined by

{0,1,2} if x= 2
H(x) =

{0, x/ otherwise.

Now (I, *SH) is discrete of order 2 and hence, by Theorem

11.1.1, it is not trans-1. To show that 1H is trans-2, consider

any x E \ {0/ and any FE 7 {{0}}{.0}. Now D = H(x)\ F.

If x = 2, the only choices possible for D are 4), {2}, {1,2},

and {0,1,21, and so the only possibilities for T2[1D] are 4), {0},

{0,1}, and {0,1,2} which are all in G'SH j{{o}}_,{.4)}. If x 2,

the only choices possible for D are 4), {x}, and {0, and so

the only possibilities for T2[D] are 4), {0/, and {0,x} which

are all in {{o}},_) {4)1. Therefore, °-SH
is trans-2.

11.4. Transformation Property Trans-3

In Section 11.1 we saw that y > a + 13 - a13 does not imply that

is trans-1. A logical question to consider is whether there is a

weaker property than trans-1 which still implies that y > a + p _ al3 .

Freedman [5] has recently found such a property which we call trans-3.
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Definition 11.4. 1 (Freedman). The fundamental family **-S is

called trans-3 if for each F E and x E F there exists a set

G E { {0}} satisfying the following two properties:

x + G {x+glg G} C F,

F (x+G) E {(0}.

Theorem 11.4.2 (Freedman). Property trans-3 is weaker than

property trans-1.

Proof that trans-1 implies trans-3: Let F E / and x E F.

For G choose

G = T1
[ID] = {y-xly E D}

where D = F rThU(x). Since ...I is trans-1 we have

G E al{{0}} and x + G D . If

Z E F \(x+G) = F \D,

z 0, and y E [z], then y E D implies y E U(X). Hence

y tr_<,z and so Z E D, a contradiction. Therefore, y D and

SO

[z] C F \D = F (x+G)

and by Theorem 2. 2. 6, we have

F \ (x+G) E {{0}}_){(1)}



Proof that trans-3 does not imply trans-1: Let (I, ) be

the density space determined by

{ ,x} if x is odd,
H(x) =

{ ,x-1,x} if x is even,

for all x E I \ {0 }. Then (I, G'SH) is discrete of order 2. There-

fore, by Theorem 11.1.1,is not trans-1. Now let F E
47THc.4'H

and x E F. If x = 0, choose G = F. Then x + G = F and

F \ (x+G) = F \ F = 4).

If x 0, there are three possibilities. If x is even, then

x-1 E F. Choose G = {0}. Then x + G = {x} C F and

F \(x+G) = F \{x}= (F\ {x-1,x})v{0,x-1}

If x is odd and x + 1 E F, choose G = {0,1}. Then

x + G = {x, x+1} C F and

F \(x+G) =F \{x,x+1}E 44iiv{{0}}.

If x is odd and x + 1 1 F, choose G = {0}. Then

x + G = {x} C F and

F\(x+G) = F\{x} E H{{0}}.
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This completes the proof.

For the next two theorems let (S, °I) be any density space

and let A, B, and C = A + B be subsets of S with 0 E A r\B

and hence in C.

Theorem 11.4.3 (Freedman). Suppose is trans-3. Then for

each F E we have

C(F) > A(F) + P(S\A)(F).

Proof: If A nF {0}, then A(F) = 0 and (S\A)(F) = S(F).

Therefore, since

C(F) > y >
S(F)

by Theorem 2.3.7, we have

C(F) > PS(F) = A(F) + P(S\A)(F).

Suppose (ArThF) \{0} (1). Let the set

AnF = {0,a1,...,an}

be indexed in such a way that

(1) a. a. implies i < j.
1 j

We can satisfy statement (1) by taking an E Min (F \ {0}),
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an-1 E Min (F \{0,an}), an-2 E Min (F \ {0, an-1, an}, and so on.

Since (7 is trans-3 there exists a set G1 E °S\J {0}) such

that al + Gi F and

F1 = F \(al+Gi) E 6-4v {{0}}v {4)}.

Now if a2
E al + GI then a2 al which contradicts statement

(1). Therefore, a2 E F1 and since a2 0 we have F1 E

Again since °S is trans-3 there exists a set G2 E { {0} } such

that a2 + G2 C Fl and

F2 = F1\ (a2+G2) E T..){{0}}-.) {4)1.

We can continue this process until finally we obtain a set

GnE
0j {{O}} such that a +G CF andn n n-1

Fn = Fn-1\ (a +G ) E c'S{{°})-){(1)}-n n

Now the sets F have been constructed so that a + G
n l

a2 + G2, ... , an + Gn, and Fn are pairwise disjoint and

F=F v(v (a.+G.) ).
n . 1 1

1=1

Therefore, since 0 E G., for each i = 1,2, ...,n, we have
1
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(2) C(F) = C(F ) + E C(a.+G.)
n . 1 1

1=1

= C(F) + C(Ar\F) + E C(a.+G.\ {0)-n 1 1
i=1

Now since B Cl C, A C C, and a. E A, which implies

C(a.+G.\ {O}) >B(G.), equality (2) yields

C(F) >B(F ) + A(F) + B(G.)n1
i=1

> A(F) +pS(Fn) + p S(G.)
1

i=1

= A(F) + P(S(F ) + E S(G.)
n i=1 1

= A(F) + P(S(F ) + E S(a.+G.\ {O}) )
n 1 1i=1

= A(F) + P(S(F)-n)

A(F) + p(S(F )-S(F A) )

= A(F) + P(S(F)-A(F) )

= A(F) + P(S\A)(F).

This completes the proof.

Theorem 11.4.4 (Freedman). If °S is trans-3, then

y > a + p - aP.
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Proof: By Theorem 11.4.3, we have

C(F) > A(F) + p(s A)(F)

= A(F) + PS(F) - PA(F)

= A(F)(1-P) + PS(F)

>o. (1-P)S(F) + PS(F)

= (a+P-aP)S(F).

Dividing by S(F) we obtain

q(C, F) > a + p _ aP

for each F E and, therefore, y > a + p _ a13. This completes

the proof.

We now show, by example, that y > a + p _ aP does not imply

trans-3.

Let (I,H) be the density space determined by

{0,1,5} if x= 5,

H(x) = {0,1,5,6} if x = 6,

{0, x} otherwise,

for all x E I \{0}. Then (I, 714) is nested singularly discrete of

order 3 and so, by Theorem 6.2.1, y > a + p _ a. We proceed

to show that 1H is not trans-3.
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Let F = {0,1,5,6} and x = 1. We now look for all sets

111{{0}} for which (x+G) C F. Since x 1, we must

have GC {-1,0,4,5}, and since GE \--){{0}}, we know that

0 E G and -1 1 G. Also 5 1 G because, by the way °SH is

defined, 5 E G only if 1 E G. Therefore, the only two possibili-

ties for G are G = {0} and G = {0,4}. If G {0}, then

F \ (x+G) = {0,5,6}, and if G = {0,4), then F\ (x+G) = {0,6}.

In either case we have H(6) F \(x+G) and so

F \(x+G) I°Sliv {{0}}v {(1)}.

Therefore, is not trans-3.

11.5. Summary

The following chart summarizes the relationships discussed in

this chapter. No transformation property is known which is weaker

than the trans-Z property but stronger than the Schur inequality.

trans-1 trans-2

y > a + p - aP
V

If a + P< i, then y > p / ( 1 - a)
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