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Many ecological populations can be interpreted as response surfaces; the spatial 

patterns of the population vary in response to changes in the spatial patterns of 

environmental explanatory variables. Collection of a probability sample from the 

population provides unbiased estimates of the population parameters using design 

based estimation. When information is available for the environmental 

explanatory variables, model based procedures are available that provide more 

precise estimates of population parameters in some cases. In practice, not all of 

these environmental explanatory variables will be known. When the spatial 

coordinates of the population units are available, a spatial model can be used as a 

surrogate for the unknown, spatially patterned explanatory variables. Design 

based and model based procedures will be compared for estimating parameters of 

the population of Acid Neutralizing Capacity (ANC) of lakes in the Adirondack 

Mountains in New York. Results from the analysis of this population will be used 

to elucidate some general principles for model based estimation of parameters of 

spatial populations. Results indicate that using model based estimates of 
population parameters provide more precise estimates than design based estimates 

in some cases. In addition, including spatial information as a surrogate for 

spatially patterned missing covariates improves the precision of the estimates in 

some cases, the degree to which depends upon the model chosen to represent the 

spatial pattern. 

When the probability sample is selected from the spatial population is a 

stratified sample, differences in stratum variances need to be accounted for when 

residual spatial covariance estimation is desired for the entire population. This 

can be accomplished by scaling residuals by their estimated stratum standard 
deviation functions, and calculating the residual covariance using these scaled 

residuals. Results here demonstrate that the form of scaling influences the 

estimated strength of the residual correlation and the estimated correlation range. 
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Model Based Estimation of Parameters
 
of Spatial Populations from Probability Samples.
 

1. Introduction. 

1.1 Overview. 

The main objective of this document is model-based estimation of the 
parameters of spatial populations. We assume that our data consists of a 
probability sample taken from a finite spatial population where there are 
covariates known for the entire population. A general protocol will be developed 
for the estimation of the distribution function (abbreviated as the cumulative 
distribution function, CDF) and other parameters from a probability sample using 
model based methodology. The protocol consists of four steps: (1) estimation of 
parameters of a statistical model using the sample data and known covariate 
information, (2) prediction of population values for the unsampled population 
units, (3) estimation of the population CDF using the sample data and predicted 
values for the unsampled population units, and (4) use the CDF from (3) to 
calculate estimates of other population parameters, such as the mean and 
standard deviation. Several issues will be addressed: the effect of a missing 
covariate on a model based analysis, the effect of stratified sampling on spatial 
covariance estimation and using spatial information to estimate the finite 
population CDF and other parameters. These issues will be investigated using 
simulated data as well as actual survey data. The hypothetical populations are 
patterned after the descriptions of the population sampled by the actual data. 
The remainder of this introduction describes the perspective of spatial populations 

to be used here and gives a brief overview of probability sampling, design based 
estimation and some basic regression analysis results that will be used, 
particularly relating to prediction. Chapter 2 begins with a discussion of 
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regression analysis of stratified sample data. It then gives an overview of spatial 
linear models, especially for the purpose of spatial prediction, and concludes with 
an investigation of the effect of stratification on spatial covariance estimation. 
Chapter 3 begins with a review of a model based CDF estimator to be considered 
here, and shows how it can be applied to spatial populations, and then its 
performance is assessed with some simulated populations. The chapter concludes 

with a discussion of the uses of spatial information for estimating parameters of 
finite, spatial populations. Chapter 4 applies the protocols assessed in chapters 2 

and 3 to an actual probability sample from the Eastern Lake Survey (USEPA). 
Chapter 5 contains an overall summary of these research results. 

1.2 Spatial Populations. 

A population Y is defined as a function on a Universe U = ucU} such 

that Y = {y(u):uEU }. A spatial population is then defined as any population that 
is 'geo-referenced', i.e. for each individual unit in the universe, the spatial location 

of the unit is known in some spatial coordinate system. In this document, the 
coordinate system will be based on Latitude and Longitude, which will be labeled 
as 11 and 12 respectively. When choosing a coordinate system for geo-referencing a 

spatial population, it is important to take into account the influence of the 
coordinate system on the representation of geographic distances between the 
population units. For latitude and longitude, there is a distortion of distances for 
different directional orientations, i.e. one degree of longitude doesn't correspond to 

the same geographic distance as one degree of latitude (unless the data are taken 
at the earth's equator). In particular, sample data combined by distance classes 
to estimate the covariance function will be incorrect. When latitude and 
longitude are used, the distance classes will be grouped incorrectly depending 

upon the directional orientation of the pair. Therefore, 11 and 12 will be 
transformed to a Cartesian coordinate system so that calculated distances and 
plotted maps will accurately represent geographic distances. We will label these 
transformed coordinates iu and j.,,, representing the spatial location of population 
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unit u. 

Additionally, spatial populations are interpreted here as varying in 

response to spatially patterned explanatory variables which, if known, could be 
used to predict the spatial pattern of the population. These variables are never 
completely known in practice, but some may be available from ecological surveys, 

geographic information system (GIS) data layers or from meteorological data. 
Because the spatial coordinates of the members of the universe are known, a 
spatial model can be used as a surrogate for the unknown spatially patterned 
explanatory variables. The perspective taken here can be referred to as a response 
surface perspective (Jager and Overton, 1991); the spatial patterns of the 
population vary in response to spatially patterned causal variables. Suppose the 

causal variables xu, zu are known and the spatial population of interest is yu. The 

model that we will use to express this response surface is: 

yu = y + xu0 + zua + eu, 
E(cu) = 0, (1) 

Var(eu) = 0-2, 

Cov(eu , eu,) = 0, u 0 u'. 
For some populations, we may also want to allow the residuals to be 

heteroscedastic: Var(eu) = g(E(yu);-y)a-2. In almost all cases, some of the 
covariates will be unknown. This perspective differs from thinking about spatial 
populations as spatially autocorrelated, where there is assumed to be some spatial 
connectivity or association between the population units that causes their response 

values to be similar. These two perspectives are quite different and are reflective 

of the way that researchers are thinking about the nature of the phenomenon 
under study. If the population units are functionally linked in some fashion, then 
we are using the spatial autocorrelation perspective. Examples of populations that 
fit into this framework are the distribution of water temperature in a lake, water 
chemistry samples from an aquifer or moisture content samples from a soil plot. 
The model that we will use to express this perspective is: 

Yu = P + xu# + iu01 + iu02 + cu,
 
E(eu) = 0, (2)
 

Var(eu) = a2,
 

Cov(eu , en') = cr(duu,; 0), u 0 u'.
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du,.\f(iuit,1)2+auJuo2 

In general, any function of the spatial coordinates could be included in the 
regression equation, but only linear functions will be considered here. Notice that 

this model still allows yu to depend upon a known covariate xu. Also, for some 

populations we may want to allow the variances of the residuals to be 
heteroscedastic; Var(Eu) = g(E(yu);-y)a-2. If one of the covariates, say zu is 
unknown but is spatially patterned, we will use the spatial information in model 
(2) as a surrogate for the spatially patterned, missing covariate. 

1.3 Missing Covariate Effect. 

To illustrate the effect of a missing covariate on residual spatial covariance, 

suppose a spatial population follows the linear model (1) but with some additional 
assumptions about the covariates: 

Yu = /1+ 3cui3 + Z? + Cu, 

E(u) = 0, 
Var(eu) = cr2 , 

Cov(eu , eu,) = 0, u 0 u'. 

(3) 
E(zu) = 8, 
V ar(zu) = T2,
 

Cov(zu , zu,) = T(duu,; 8), u 0 u'.
 

And assume that z and E are uncorrelated. The stated assumptions about zu are 
for mathematical convenience, the only necessary assumption is that zu is 
spatially patterned and that the model expression for the variance and covariance 

of zu provides an adequate approximation. Now suppose that zu is unknown, then 
we are actually analyzing the following population: 

Yu = Ii* + xu# + Eli*, (4) 



5 

p* = it + ab, 
E(4,) = 0, 
Var(cu*) = a27-2 +a2' 

Cov(eu*,eu*,) = a2r(duu, ; 0), u 0 u'. 

To see this, note that: 
a272+0.2, andVar(Eu*) = Var(azu + Eu) = Var(azu) + Var(eu) = 

e*,) = COV(Zua+ Eli , Zuia+Eui)Cov(f*U , u

= Cov(zua, zu,a) + Cov(zua, eu,) 

+ Cov(Eu, zu,a) + Cov(Eu, cul) 

= a2Cov(zu, zu,) + 0 + 0 + 0 

. a2r(duu'; 9). 
Notice that the missing covariate induces spatial covariance and increased 
variance in the residuals. If the missing covariates are not spatially patterned, 
they still induce increased variance in the residuals. In this latter case, the model 
that we will use to analyze the population is: 

Yu ---= it + xu0 + fu, (5) 
E(Eu) = 0, 

Var(eu) = 0-2, 

Cov(Eu ,eu, ) = 0, u 0 u'. 
Similarly to model (2) we will allow the variances to be heteroscedastic; Var(Eu) = 
g(E(yu);-y)o-2. For the spatial populations to be analyzed here, model (1) will be 
the model that motivates our thinking about the populations under study. 
Models (2) and (5) will be used as tools to analyze samples from these 
populations. In all the cases considered here, isotropic spatial covariance models 
will be used (i.e. the form of spatial covariance does not depend on the directional 

orientation of the distance between the pair). The procedures generalize to 
include anisotropic covariance models, but these will not be considered here 
explicitly. 
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1.4 Probability Samples and Design Based Estimation. 

In addition to having a statistical model (1) that we are using to motivate 
our thinking about the populations under study, we assume that the data we have 
collected from the population is a probability sample, defined as follows: 

Definition: 

A probability sample, where 7ru is the inclusion probability of element u of 

the universe, will be defined according to the weak definition of Overton (1991) : 

"A probability sample is a subset of the universe 

selected by an explicit protocol so that iru is: 

a) Known for each element in the realized sample 

b) Positive for each element in the universe 
11c) 7r , is known on the sampleuu 

Given a probability sample 5, design based estimation proceeds according 
to the theorem of Horvitz and Thompson (1952): 

If S C U is selected such that 7r u>0 for all ueU, 

then T = Eyuhru is unbiased for Ty = E yu, and 
S U 

V(Ty) = E3Ti (1Zu) E E 3;+-, (ruu,- rurui)
uu-u u 

Here 7r , is the pairwise inclusion probability, the probability that elements u anduu
IL' are both in the sample. To obtain a design based estimator of the finite 
population CDF, replace I(yu < t) for yu in the HT theorem to obtain: 

I(377 t)F(t) t f T. 
S 

T is the set of population values over which the CDF is to be evaluated. Design 
based estimation will not be the focus of this paper, but it must be emphasized 
that given a probability sample, rigorous design based estimation methodology for 

population parameters is available and appropriate. 
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1.5 Regression Parameter Estimation. 

Suppose we are analyzing our data according to the missing covariate 
perspective, and our missing covariates are assumed or known not to be spatially 
patterned. Then we will use model (5) as our analytical tool for the sample data. 
Writing X as the matrix whose rows are the vectors of known covariates xt, (plus 
a column of ones for the intercept term), D=Diag[g(E(y,i);-y)o-2] as the diagonal 
matrix of variance functions for the vector of response values Y, the best linear 
unbiased estimate of the vector of regression parameters # is # = 
(X'D-1X)-1X'D-1Y. It is important to note that the ordinary least squares 
(OLS) estimator = (X/X)-1X'Y is also unbiased for /3, though less efficient than 

the former estimator when the matrix D is known. When D is unknown, the 
variance function g(E(y.);-y)o-2 is usually estimated by using a transformation of 
the OLS residuals and minimizing some goodness of fit criterion to obtain an 
estimate of -y. In particular, regressing the logarithm of the squared residuals on 
the logarithm of g(E(y,2);-y)o-2 is a commonly used method for the case where 
g(E(y,i);-y) = E(yi,)11 (Carroll and Ruppert 1988, Davidian and Carroll 1987): 

ln(d) = a + b ln(S)+c, 

is then estimated using the slope of this line, b. The implementation of this 
method involves estimation of /3, so an iterative method is required. This method 
will be briefly explored in the case study in chapter 4. Estimation of variance 
functions is a large literature unto itself (see also Welsh et al, 1994). Work done 
elsewhere has demonstrated the difficulty in estimating -y. In practice, it seems 
adequate to choose between -y=0, 1, 1.5, 2 in the model g(E(yu);-y) = E(y,,)7 and 

choose the value which is optimal according to some fitting criterion. The gains 

in efficiency in using 73 will be lessened when it is necessary to estimate the 
variance function g(E(yii);-y). Therefore, for cases considered here the easier to 
compute /3 will be used. However, the form of the variance function is an 
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important component of the model based CDF estimator to be considered here 
and the topic will be raised again in that context. 

1.6 Regression Prediction 

Given an unbiased estimate of 0 and the matrix X0 whose rows are the 
covariate values for the unsampled population units, the vector of best linear 
unbiased predictions of the response under population model (5) with 

heteroscedastic variances is V0=X074 . Note that .T0=X03 is also a linear 
unbiased predictor of Yo, though is less efficient than P0 when D is known. 
Under population model (5) for large samples, there is little difference in the 
result between using the unweighted least squares prediction .C70 and the weighted 

least squares prediction in any particular instance (Carrol and Ruppert 1988, p. 
52). When D must be estimated, the advantages of using weighted least squares 
estimates of 0 for making predictions are lessened and so weighting has even less 
value, especially for the large sample sizes to be considered here. Therefore, for 

obtaining predictions, the unweighted least squares predictions will be adequate as 
well as simpler to compute. It is important to point out that the predictions are 
biased with respect to the response surface model (1): 

E(Yo) = E(X0(X'D-1X)--1X/Dly) 

= X0(X/D-1X)-1X1D-1E(Y) 

XO(X/D-1X)-1A rrrs= -I-) 1(X,3 + Za) 

/= 1.)X0(X'Dlx)-1A ----1X/3 + Xo(X'D-1X)lx/Dlza 

= X0,3 + X0(X'D-1x)-1x/D-1za 

= E(Yo) + X0(X/D-1X)-1VD-1Za. 
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Adding the spatial coordinates to the regression equation and spatial covariance 
structure to the residuals will be used to account for this bias by modeling the 
pattern of Z with the spatial information known for the entire population. 

1.7 Summary. 

Given a probability sample, design based estimation of the parameters of 
the finite population are available using the Horvitz Thompson theorem and other 
design based methodology. In addition, as covariate and spatial information is 
made available for the finite population under study, statistical models can be 
used. Some of these procedures will be investigated in the subsequent chapters 
here. The primary tools for model based estimation of the population parameters 
will be obtaining predicted values of the response variable for the nonsample 
units, and a model based methodology to estimate the finite population 
distribution function. In terms of obtaining predicted values for the nonsample 
units, we are primarily interested in obtaining predictions that are unbiased with 
respect to the chosen model (used to analyze the data) and in simplicity of 
computation. In the missing covariate perspective, these predictions will be 
biased (for the population values) because of the model misspecification but 
adding spatial information to the model may reduce the bias in cases where the 
missing covariates are spatially patterned. In addition, using the known covariate 
and spatial information for the entire population may provide gains in efficiency 
in estimation of the parameters of the finite population relative to the design 
based estimates. 
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2. Estimation of Residual Spatial Covariance 
for Stratified Sample Data. 

2.1 Regression Analysis of Stratified Sample Data. 

Under simple random sampling in each stratum with adequate sample 
sizes, it is sufficient to fit the regression model separately for each stratum when it 
is assumed that the regression parameters Q differ between strata. It is intuitive 
to fit strata separately, since differences in the population Y and the covariate 
population X are the usual motivation for stratification. Design effects of 
stratification have been examined by several authors and cases do exist where this 
is not the analysis of interest (DuMouchel and Duncan 1983, Jewell 1985, 
Quesenberry and Jewell 1986), but these issues are restricted to the cases where 
estimation of a single 0 for the entire spatial population is desired, a restriction 
not necessary here for estimation of the regression parameters. For spatial 
covariance estimation of a single covariance model for all strata, the influence of 
stratification on the estimates does need to be considered, and this issue will be 
addressed here. 

2.2 Model Selection for Residual Covariance. 

As discussed earlier, the perspective in this document is that these spatial 
populations of concern vary in response to environmental causal variables. When 
some of these covariates are unknown but spatially patterned, we can attempt to 
represent these patterns of the spatial population through the spatial components 
of the linear model (2). The covariance is assumed ) depend upon the population 
units only through a vector of parameters 9 and the geographic distances between 

the population units dun,=-\1(iuiu,)2+(juju,)2, where i,j are the spatial 

coordinates of the units. The entire set of explanatory variables will seldom, if 
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ever be known in practice, so the spatial model (2) , which includes spatial 
coordinates in the regression equation and residual covariance can be used as a 
surrogate for spatially patterned missing covariates. The spatial covariance is 
modelled by a function that describes the covariance as a function of the distances 

between the population units. Many covariance models are available, three of the 
most commonly used are: 

a(d;8) = 00 + el d=0 
cr(d;O) = 01 * exp( 92d) d>0 

cr(d;O) = 90 + 91 d=0 
o-(d;8) = 01 * exp( -62d2) d>0 

a(d;8) = 80 + 01 d=0 
o-(d;0) = (1-1( dr) -F( d>0 

2d34) 

a(d;8) = 0 d>03 

These are often named the exponential model, the gaussian model and the 
spherical model respectively. The values of the parameters 00 and 01 determine 
the behavior of the covariance function near the origin and the parameter 62 
influences the distance at which the population units are correlated. In some 
situations the form of the covariance model can be chosen according to the nature 
of the phenomenon under study (see Matern, 1986). For this work the 
exponential model was selected because, 1) there is no theoretical form of the 
covariance function for the populations under study, 2) the exponential model 
does not have the multimodality problems in likelihood estimation encountered 
when using the spherical covariance model (Mardia and Watkins, 1989, Warnes 
and Ripley, 1987). A large literature exists regarding choosing and fitting the best 
covariance model and the consequences of model misspecification. The main 
result of interest here is that of Stein (1988) which states that predictions using a 
misspecified covariance model are asymptotically efficient (meaning as the sample 

size approaches the population size, or infill asymptotics in the geostatistical 
terminology) relative to predictions using the actual covariance function if the two 
covariance models are 'compatible'. Compatible essentially means that the two 
covariance functions have the same shape for small d. 
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2.3 Estimation of the Model Parameters. 

For estimation of the regression parameters in the spatial linear model with 
a general covariance matrix, the best linear unbiased estimator (BLUE) of 0 is 0

-..,

= (X'E-1X)-1X'E-1Y when E is known, here E=E(dute; 9). When E is unknown, 
in practice the BLUE is modified by using f =E(duu'(e) in place of E and fitting 
involves iterating between estimates of /9 and E until some stopping rule is 
achieved. When using an estimated E, the gains in efficiency may be lost 
depending upon how well E is estimated, and therefore the OLS estimate -# will be 
considered adequate. 

In practice, the vector of spatial covariance parameters 9 are unknown and 
must be estimated from the data. There are three main issues in estimating the 
parameters of the covariance function: 1) obtaining an estimate of the empirical 
covariance, 2) choosing a covariance model (discussed in the previous section), 
and 3) choosing an algorithm for estimating the parameters 0. Many estimators of 

9 are available which consist of taking the residuals from an OLS fit for the 
regression parameters, "smoothing" the observed covariances and fitting a 

parametric covariance model. One particular estimator for the empirical 
covariance function is as follows: for a pair of residuals from the sample data, their 
observed covariance is iu * i u, and separation distance dun, = 

\j(iu+iu,)2 + (juju,)2, the method of moments estimator of the residual 
covariance is: 

C(d) = Nd E , (6)-etiui 
fu,te:duu,=d1 

where the sum is over all pairs Nd that are d units apart. In practice, the duu, are 

all unique and are aggregated into groups of approximately the same d. Of 

concern is the potential for bias when using this estimator with variable 
probability samples. We will return to this point in section 2.7. Using C(d) 
(which depends only on d) a parametric covariance function can be fit using a 
variety of methods, such as M-estimators or likelihood based estimators. 
Alternately, a model is fit to the semi-variogram: 1 7(d). C(0) C(d).

2 
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Zimmerman and Zimmerman (1991) compared two types of M-estimators and 
normal theory maximum likelihood (ML) and restricted (or residual) maximum 
likelihood (REML) and found that for normally distributed data and an 
exponential semi-variogram model, ML and REML performed slightly better in 
terms of the variances of the estimated 9 values over repeated samples. 

2.4 Spatial Prediction (Kriging). 

Under model (2) the predictions for the nonsample will be Y0 = X0,3 + 
E 1(YX74 ), here X0 is the matrix of known covariates and spatial coordinatesE0 

for the nonsample (with a column of ones for the intercept term), Ei0=E0(duu';9) is 

the transpose of the spatial covariance matrix between the sample units and 
nonsample population units, E is the (spatial) covariance matrix on the sample. E 
is a matrix whose elements are a(d.,;0) and o is a covariance function that 
insures that E is positive definite. Prediction with estimated covariance 
parameters is accomplished by plugging in the estimate E(duu,;W) for E in the 
prediction equation. When 9 is estimated, the predictions are unbiased with 
respect to the model if the distribution of f is symmetric and the estimator of 9 is 
even and translation invariant (Zimmerman and Harville, 1989, Christensen 1991, 

Zimmerman and Cressie, 1992), which is the case with most commonly used 
estimators. The precision of the predictions does depend upon the estimation of O. 
If these parameters are estimated poorly, the precision of predictions based on 
them may be worse than if just OLS predictions were used (Cordy and Griffith, 
1993). 
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2.5 Residual Spatial Covariance for Stratified Sample Data. 

Before proceeding with spatial covariance modelling and spatial prediction 
using data from a stratified sample, two issues need to be considered; the effect of 
stratum differences on the analysis, and the potential for bias. Suppose we are 
using the missing covariate model for a stratified population, and each stratum is 
assumed to follow the model: 

Yuh xuhPh zuhah Euh 

E(fuh) = 0,
 
V ar(fuh) = crh,
 

Cov(euh,Eu,h,) = 0, u u'. 

and the (unknown) zuh's can be approximated with the following second order 
properties: 

E(zuh) = 

Var(zuh) = 72 

Cov(zuh,zu,h,) = r(duu,; 0) u u'. 

Note that the properties of the zuh's are independent of the strata, but that the 
zuhah are dependent upon the strata. Using the same notation as in section 1.3, 
we are analyzing the residuals Eu*h for spatial covariance. 

Euh = zuhah Euh Sah, 

E(euh) = 0, 

Var(Euh ) = -h2 
, , , 

Cov(cu*h , eu*,h,) = Cov((zuoih+ fuh)(zu'ahr4-Eu'h0), 

= COV(Zuah, Zu Pahl) COV(Zuah, fully) 

COV(Euh, Zulaht) COV(Euh, 
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= ahah,Cov[zu,zud + 0 + 0 + 0, 

ah ah'T(duni; 0). 

If the residuals are in the same stratum, then this reduces to: 

= aFir(duu,; 0). 

When using the method of moments estimator of the residual covariance 
and fitting a parametric model to this estimator, the standard operating 
assumptions are that the residuals have a constant mean (this can be relaxed to 
be a function of the spatial coordinates), constant variance and a spatial 
covariance whose value depends on the data only through the geographic distance 

between the population units. This is not to be expected for stratified samples, 
simply because anticipated differences in mean and variance for subsets of the 
population are one of the reasons for stratification. Stratum differences in mean 
are already accounted for by fitting the regression models separately for each 
stratum. In the missing covariate perspective, we are also assuming that the 
distribution of the spatially patterned missing covariate is independent of stratum. 
The stratum differences in variance can be accounted for before the spatial 
analysis by scaling the stratum specific residuals by their respective standard 
deviation functions: En*h/N147-2+ cr2h 

Then Var(Eu*h/Nla2h-r2+ = 1, and: 

/.1N,h,da 272+ 2 * 2Cov(euh, h crh, 

= (1/Nja2h7-21- cr2h) (1/\14,72+ 4) Cov(44,), 

(ahiNiaii72+ u2h) ('911/N14.'72+ (711') r(dute; 0). 
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If the residuals are from the same stratum, this reduces to: 

= (a2h/a2r2+ crh) 7-(d.,,,; 0). 

Note that if a27-2 >> cr2 then the covariance is approximately equal to: 

'hahlT(duu1; 8)
 
Nja2h72\ja2h,72
 

ahahrr(d 0)uu 
3= ah T ah, T 

= P(d.u6 0), 
which is the spatial correlation function of the missing covariate. 

0.2If a21..2 
ahah'T(8;huk) 

crh'uh 

2ahah'T(duu1; 
= 61) 

72crie(rh

,2 
p(duu,; 61)*. « p(duu,; 9).

uh'crh 

For residuals from the same stratum, this reduces to: 

T2a2
h
 
P(duul; 8)* ir.2
 

In all cases, the spatial correlation of the scaled residuals is the spatial correlation 

of the missing covariate multiplied by a number that is less than one. Note that 
if ah=ah,= a (i.e. the relationship of y with the missing covariate is independent 
of stratum) then these results will be the same for pairs within the same stratum 
or from different strata. When the unexplained variability in the residuals is 

a272dominated by the missing covariate ( v.2) the covariance function of the 
scaled residuals will approximate the correlation function that describes the 

(a27.2 0.2\spatial pattern of the missing covariate. In the opposite case ) the 
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estimated spatial correlation will be less than the actual spatial correlation, 
possibly by a considerable amount. In this case spatial covariance estimation will 
be of less interest because the missing covariate constitutes a minor part of the 
unexplained population variability, and population model (5) is adequate. 

2.6 Residual Scaling. 

The results in the previous section were derived using the actual residuals 
et,* and variance functions +2 + o for each of the strata. In an actual data 
analysis setting, we will only have estimated residuals 'it and a hypothesized 
variance function, which we will write in general as Var(e*) = g(E(yi,);-y). The 

primary case where residual scaling is of interest is in stratified sampling where 
the variance functions differ between strata and it is desired to estimate residual 
spatial covariance for the entire population of residuals. When analyzing 
nonstratified populations or stratified populations where each stratum is analyzed 
separately, scaling may not be needed. Three types of residuals are identified for 
spatial covariance estimation: 

1) "it unscaled, 

2) homogeneously scaled, 

3) heterogeneously scaled.
g (E(yury) 

Case (1) analyzes unscaled residuals from an ordinary least squares regression 
model. Case (2) scales residuals by their estimated standard deviation, estimated 
separately for each stratum for stratified populations. In case (3), the scaling 
takes place in two steps, first the residuals are scaled by the square root of the 
variance function; 
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fu
 

,1E(E(Yu;7))
 

If a combined spatial covariance analysis is desired for a stratified population, 
then these residuals are additionally scaled by their stratum standard deviation; 

ti 
E 

.1Var(i' ). 

We wish to see if residual scaling followed by covariance estimation gives evidence 

of spatial correlation in the residuals that would otherwise have been undetected 
had scaling not been used. In practice, estimated residuals and estimated 
standard deviation functions must be used for this analysis, and so the utility of 
the concept of scaling may be diminished. The influence on residual spatial 
covariance estimation of scaling will be investigated in the simulation work to 
come. 

2.7 The Design Effect. 

The design effect is defined as the bias of any parameter estimate when 
analyzing the sample as an independent random sample when it is actually taken 
by a structured design. Accounting for the design effect in stratified samples is 
done in two ways; incorporation of the inclusion probabilities into the model based 
analysis (Little 1991, Skinner and Holt, 1989), or adding additional parameters to 

the model to account for the design effect (Scott and Holt, 1982, Christensen 
1987). Failing to account for the design effect can lead to inference about the 
wrong population (Overton, 1991). The design effect of stratified samples on 
spatial covariance estimation is only of concern when the data analysis uses 
combined strata. Because the shape of the covariance function at the shortest 
distances has the greatest affect on predictions (Stein, 1988), minimization of the 
design eifect at these short distances will be the most important. If the strata are 
highly fragmented or patchy, there will be many pairs of residuals separated by 
short distances that cross stratum boundaries. This is the case when the design 
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effect would be expected to be greatest. Under stratified random sampling with 
proportional allocation, there is essentially no bias because the pairwise inclusion 
probabilities will be approximately the same as if the entire sample were just SRS. 

The magnitude of this effect will depend upon the difference in the first 
order inclusion probabilities among strata. In cases where allocation does not 
deviate greatly from proportional allocation and the strata are large and convex in 
shape, this design effect on the method of moments estimator C(d) for small d is 
expected to be small. If we select a simple random sample of size nh out of Nh 
from stratum h and a simple random sample of size nh, out of Nh, from stratum h' 

their inclusion probabilities respectively are nh/Nh and nh,/Nh,. For pairs of 
points in the same stratum, their pairwise inclusion probability is 

(nh(nh-1))/(Nh(Nh-1)) . The pairwise inclusion probability of a pair of points 
from different strata will be nhnh,/NhNie. Under proportional allocation, nh/Nh 

nh, /Nh, and the inclusion probabilities for all pairs will be approximately the 
same. When the allocation is not proportional, they are not. A modified 
estimation procedure analogous to the method of moments estimator is: 

The pairwise inclusion probability for units in the same stratum, say stratum H, 
will be: 

nh(nh-1)", = 
IN h(lN 

and for pairs in separate strata, say h and h', these will be: 

nhnh,
 
ir= N hN h'.
 

So, setting wute = 1/1-uu,, an estimator of the residual covariance function will be: 

1 E wu., u u , ( 7) 
wuu, 

where both summations are over the set: Itu,u1: duu' = d}. In practice, the 
weights will differ greatly in only the most extreme cases of nonproportional 
allocation. Additionally, since this empirical function is then smoothed with a 
fitted covariance model, the effect is further reduced. However, since the pairwise 

inclusion probabilities are known for probability samples, this design effect should 
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be investigated. A recommended procedure would be to calculate the method of 
moments estimator (6) and the weighted estimator (7) and fit the covariance 
model to each. If it is judged that the fitted models differ considerably, then the 
weighted estimator should be used. If not then the unweighted estimator will be 
adequate. 

2.8 Simulation Study. 

Several populations were generated to assess the influence of 

heteroscedasticity and residual scaling on spatial covariance function estimation. 
Comparative results were obtained for analysis of simple random samples and 
stratified random samples with proportional and nonproportional allocation. For 

both designs, populations with homogeneous error variance and heteroscedastic 
errors were analyzed. The populations were simulated using the fitted regression 
equations from the original Eastern Lake Survey data analyzed in chapter 4. 
Three nonstratified populations were created using the fitted regression equation 
for the first stratum of the original eastern lake survey, each population with 
increasing levels of residual variance and heteroscedasticity. Five stratified 
populations were created, four with stratum specific regression coefficients for the 

missing covariate, one where the regression coefficient for the missing covariate is 

the same for all strata. The simulated populations are as follows: 

Nonstratified Populations: 

Population N1 (Size=600): 

yu = 4900 0.49*xiu +1270*x2u + eu, eu --, N(0,1) 

Population N2 (Size=600): 

yu = 4900 0.49*xiu + 1270*x2u + eu, eu ,s-, N(0,25*E(yu)) 

Population N3 (Size=600): 

yu = 4900 0.49*xiu + 1270*x2u + eu, eu --, N(0,100*E(yu)) 
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Stratified Populations: 

Population S1 (Size=600, 200 in each stratum): Separate models for each stratum: 

Ylu = 4900 0.49*xiu +1270*x2u + elu, eiu N(0,1) 

7535 +.*xiu +1783*x2u + e2u0564
37 2u e2u N(°,1)
 
y3u = 17730 1.57*xiu 3833*x2u + e3u, e3u ti N(0,1)
 

Population S2 (Size=600, 200 in each stratum): Separate models for each stratum: 

Ylu = 4900 0.49*xiu +1270*x2u + elu, elu N(0,E(Yiu) ) 

372u 7535 +0.564*xiu +1783*x2u + e2u, e2u Ps, N(0,E(y2u) ) 

y3u = 17730 1.57*xiu 3833*x2u + e3u, e3u ^ N(0,E(y3u) ) 

Population S3 (Size=600, 200 in each stratum): Separate models for each stratum: 

Ylu = 400 0.49*xiu +50*x2u + eiu, elu N(0,E(Yiu) ) 
200 +0.564*xiu +50*x2 N(0,E(y2u) )Y2u e2u e2u
 

y3u = 2000 1.57*xiu +50*x2 + e3u, e3u N(0,E(y3u) )
 

Population S4 (Size=600, 200 in each stratum): Separate models for each 
stratum. 

Ylu = 4900 0.49*xiu +1270*x2u + eiu, N(0,4*E(yiu) )elu
 

Y2u ,7535 +0.564*xiu +1783*x2u + e2u, e2u ^ N(0,4*E(y2u) )
 

y3u = 17730 1.57*xiu 3833*x2u + e3u, e3u ^ N(0,4*E(y3u) )
 

Population S5 (Size=600, 200 in each stratum): Separate models for each stratum. 

Ylu = 4900 0.49*xiu +1270*x2u + elu, eiu ^ Unif(0.5,1.2) 

Y2u = 7535 +0.564*xiu +1783*x2u + e2u e2u Unif(0.5,1.2) 

y3u = 17730 1.57*xiu 3833*x2u + e3u, e3u Unif(0.5,1.2) 

For all populations, x1u is the elevation of the unit, x2u and is the pH of the unit 
and E(yu)>0. The spatially patterned pH variable was treated as unknown in 
order to induce spatial pattern in the residuals and the elevations and spatial 
coordinates were assumed known for the entire population. The nonsi ratified 

populations were sampled with size n=75, and residual covariance is estimated 
using no scaling, homogeneous scaling of residuals before spatial covariance 
estimation, and heterogeneous scaling of residuals before spatial covariance 
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estimation. For the stratified populations, all were sampled with proportional 
allocation and n=25 in each stratum, populations . To illustrate the influence of 
variable probabilities of selection on estimated covariance parameters, a subset of 

the stratified populations were sampled via stratified sampling with simple 
random sampling in each stratum but without proportional allocation. Only 
homogeneous scaling was used for these samples. For populations S1, S2, the 
stratum sample sizes are n1 =10, n2=25, n3=40. For populations S4 and S5, the 

sample sizes are: n1=15, n2=15, n3=40. 

The details of the parameter estimation protocol are as follows: Given the 
simple random sample, the regression model of yu on xiu is fit by OLS. In the 
case of the stratified populations, this is fit separately for each stratum. The 

residuals "Fu from this model are scaled by their estimated standard deviation, or 
estimated heteroscedastic standard deviation function. Again, for the stratified 
populations the residuals from each stratum are scaled separately: 

Kilt= iuhielz
 

Or 

71.th= i'llh/0717;
 

Heterogeneous scaling and homogeneous scaling will be used for these simulated 

populations to determine the influence of the form of scaling on covariance 
estimation. In addition to the results using scaled residuals, residual covariance 
for the nonstratified populations is estimated using unscaled residuals. Using 

these residuals, the parameters of the following model are estimated using the 
exponential covariance function: 

Euh = 77-1-iu01-1-i1202+ Euh,
 
E(su) = 0,
 
Var(eu) = a-2,
 

Cov(Eu , Eu,) = a(duu,; 0), u # u'.
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2.9 Results. 

The results for the estimated covariance parameters are summarized in 
several ways: the mean and standard deviation of the 100 estimates are calculated, 
the mean and median of a statistic estimating the distance at which the 
correlation between two population units is 0.05: 

d5 = ln[ 015*(60%1) ] /02, 

this is often called an estimate of the correlation range. The mean and median of 
a statistic that estimates the correlation of residuals that are close together 
(d 0) is also calculated: 

010 00 4_ 01 

The results for the mean and median of d5 and do are shown in table 2.1, 
means and standard deviations for the estimates of 0 are given in table 2.2 for 
each population and for the different forms of scaling. In addition, a column 
labeled 'reps' indicates the number of samples for which residual spatial 

covariance was estimated to be 0. All 100 estimates whether they were 0 or not 

are used in the calculation of the summary statistics. For the stratified 
populations, there are no results using no scaling because the REML algorithm did 

not converge to a single set of estimates for the 0's. For these populations, it was 
necessary to use some form of scaling in order to obtain estimates of residual 
spatial covariance. Examination of do in table 2.1 reveals that scaling the 
residuals before covariance estimation decreased the correlation of the residuals for 

small d. In addition, mean and median values of do using homogeneous scaling 
were smaller than when when using heterogeneous scaling except for three cases. 
This indicates that using homogeneously scaled residuals treats less of the 
unexplained residual variation as spatial correlation and treats more as random 
variation Using heterogeneously scaled residuals attributes more of the 
unexplained residual variation as spatial correlation and less as random variation. 

Cressie, (1991 p. 127-134) discusses the influence of this behavior at the 
origin in terms of the variogram. He mentions that the magnitude of the 
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difference is a measure of how much residual variability is random variation and 
how much is due to spatial correlation. The greater the discontinuity, the greater 
the amount of variation that is considered random. The simulated results here 
indicate that using homogeneous scaling decreases the estimated residual spatial 
correlation for small d. The three exceptions to this result are for populations N3, 
S3, and S4. These are the cases where the random variation in the residual is 
much larger than the variation due to the missing covariate, the estimated 
correlation for small d is less than 0.5, and the difference in do estimates between 
the different forms of scaling is small. 

The influence of scaling on the estimate of d5 is less clear. For the 
nonstratified populations, N1 and N2 have approximately the same median value 
of d5 when no scaling is used (98.4 Km and 110.9Km respectively), but d5 is 
increased when scaling is used for N1 and decreased when scaling is used for N2. 

Residual covariance was estimated to be 0 when no scaling was used for 
population N3, but d5 was about the same for both types of scaling (23 km and 30 

km). This is likely due to the residual variance being much greater than the 
variance due to the missing covariate. There was not a consistent affect of scaling 

on the d5 values for the stratified populations. For population S2, heterogeneous 
scaling resulted in a larger median d5 than for homogeneous scaling( 47.98 km and 

6.3 km respectively). The opposite was true for populations S3, S4, S5 though 
the median d5 values were not drastically different. 
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Table 2.1 Means and Medians of d5 and do. 

d5 do 

Pop/scale mean median mean median reps 

N1 /none 169.9 98.4 0.96 0.999 7 

N1 /hom 3716.4 254.6 0.491 0.409 98 

N1 /het 2906.6 544.3 0.804 .811 55 

N2/none 3898.1 110.9 0.521 0.511 39 

N2/hom 4071.5 34.12 0.412 0.345 98 

N2/het 2301.2 47.8 0.472 0.380 97 

N3/hom 5298.6 22.99 0.472 0.312 33 

N3/het 6727.3 30.7 0.381 0.232 38 

S1 /hom 37.63 11.17 0.73 0.400 78 

S2/hom 13.85 6.31 0.549 0.475 60 

S2/het 138.1 47.7 0.814 0.84 90 

S3/hom 14.12 8.49 0.372 0.032 22 

S3/het 27.6 6.59 0.334 0.00 29 

S4/hom 5422.6 16.32 0.324 0.273. 21 

S4/het 16.96 11.08 0.308 0.102 29 

S5/hom 361.3 158.5 0.926 0.979 85 

S5/het 334.7 143.3 0.931 0.998 93 
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In terms of the covariance parameter estimates, the form of residual scaling 

prior to fitting influences the estimate of TheThe means and standard deviations 
of the 00, 01 are changed little between the two forms of scaling, but the mean of 

the estimated 02 increases when using heterogeneous scaling relative to 

homogeneous scaling (see table 2.1 and compare the solid and dashed pairs of lines 

for N1 and N2 in figure 2.1(a) and for S3, S4 in figure 2.1(b)). This result doesn't 
hold for population N3 which represents a case where cr2>>a27-2 and the form of 

scaling has little affect on the estimated covariance function (see table 2.1 and 
figure 2.1) and for population S2, where the form of scaling has little effect on the 

parameter estimates. 

Table 2.2 Statistics for Estimated Covariance Parameters. 
Values are: mean (sd) for the 100 samples. 

Pop/scale 00 91 92 

N1 /none 5976(2888) 165.8(504.7) 128.4(754.7) 

N1 /hom .6622(.4302) .2282(.7518) .0145(.0645) 

N1 /het .3265(.2944) 2.902(5.3592) .8546(1.5192) 

N2/none 11346(4902) 43199(12559) 9.1633(66.52) 

N2/hom .8400(.2670) 3.820(11.145) .0276(.0644) 

N2/het .8725(.2295) 5.322(14.296) .0404(.0727) 

N3/hom .8382(.2647) 23.94(141.462) .0207(.0639) 

N3/het .8690(.2379) 22.46(141.245) .0277(.0672) 

S1 /hom .1447(.0185) 2.6508(.3977) 3.783(1.3184) 

S2/hom .2846(.02461) 2.6465(.9815) 4.0377(1.4238) 

S2/het .2702(.2462) 1.972(3.598) 3.796(14.859) 

S3/hom .8823(.2581) .1187(.2619) .0424(.1306) 

53/het .8760(.2762) .1217(.2738) .0645(.1910) 

S4/hom .9231(.1785) 2.643(11.05) .0242(.0705) 

S4/het .8961(.2511) 1.821(9.281) .0441(.0948) 

S5/hom .1350(.1668) 2.4703(3.93) 3.299(12.20) 

55/het .1248(.1634) 2.433(3.76) 3.799(12.45) 
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Figure 2.1 Estimated Residual Covariance Functions. a) Nonstratified 
Populations. Functions are plotted using the mean estimates of 9, solid lines are 
from heterogeneous scaling, dashed are from homogeneous scaling. Top pair is for 
population N3, middle pair for N2, bottom pair for N1. b) Stratified Populations. 
Top pair is population S4, middle pair is population S3, the bottom curve is the 
superposition of populations S1 and S2. 
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Results for the stratified samples without proportional allocation are given 

in table 2.3. Results for the mean of the parameter estimates are also included 
from table 2.2. The results for proportional allocation are included for comparison 
(these are the same as the results in table 2.1). The populations were analyzed 

with homogeneous scaling. For populations Si, S2, the stratum sample sizes are 
n1=10, n2=25, n3=40. For populations S4 and S5, the sample sizes are: n1 =15, 
n2=15, n3 =40. Examination of the estimates indicates that the type of allocation 
primarily influences the estimates of 02, decreasing the average estimated value 
for populations Si, S2, (equivalent to stronger estimated spatial dependence) and 
increasing it for populations S4 and S5 (equivalent to decreasing the estimated 
spatial dependence). These results serve to illustrate the potential for the design 
affect, the results using the weighted estimator (7) are not included and still need 
to be investigated to see if the differences are accounted for by weighting. 

Table 2.3. Means of Estimated Covariance Parameters 
with Nonproportional Allocation. 

Pop 90 el °2 
S1 /prop .1447 2.6508 3.783 

S1 /non .1770 .9722 1.833 

S2/prop .2846 2.6465 4.0377 

S2/non .2089 1.2601 1.6207 

S4/prop .9231 2.643 .0242 

S4/non .5880 2.420 .5035 

S5/prop .1350 2.4703 3.299 

S5/non .1713 2.053 26.165 
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2.10 Conclusions. 

Residual scaling before spatial covariance estimation influenced the 

estimated residual correlation at small distances and the correlation range. Using 
homogeneously scaled residuals for covariance estimation yielded a weaker 
estimated correlation than using heterogeneously scaled residuals. The strength of 
the estimated spatial correlation is related to the amount of residual variation 
that is considered random. The form of scaling sets aside a portion of the 
variability that is considered to be purely random spatially. Heterogeneous 

scaling attributes part of the residual spatial pattern to the spatial pattern of the 
E(y), with large residuals being associated with large values of E(yu) for the 
variance functions considered here. This puts more of the residual variation into 
the spatial correlation model than homogeneous scaling, which treats more of the 
residual variation as spatially unpatterned. Using no scaling for the nonstratified 
populations gave the strongest estimated correlation of the residual spatial pattern 

and gave approximately the same representation of the patterns for both 
populations N1 and N2 (i.e. similar median values for do and d5, recall that the 
missing covariate and its regression coefficient is the same for these two 
populations, so their estimated residual spatial patterns should be the same). 
This is evidence that using no scaling is the preferred option in these cases. 

Work with the stratified populations considered here has shown that it was 
not possible to estimate residual spatial covariance without some form of scaling 
when the covariance is estimated using combined strata. Again, the estimated 
correlation was greater when using heterogeneous scaling. The estimated 
correlation range (d5) of the residuals for the different forms of scaling is less 
clear. In some cases it is greater for homogeneous scaling and in some cases it is 
less. In terms of prediction we expect spatial predictions to differ the most from 
OLS predictions when the spatial correlation is strong and the correlation range is 

large. We expect little difference when the spatial correlation is weak and the 
correlation range is small. Pc oulations S3, S4 are the latter case, the median 
estimated correlations were less than 0.032 and 0.273 respectively for both forms 

of scaling and the median estimated ranges were less than 9 Km and 16 Km. We 

would expect little difference between OLS prediction and spatial predictions in 
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these cases. Populations N1, N2, Si, S2, S5 have higher correlations and in some 
cases large ranges so we expect spatial predictions to differ the most from OLS 
predictions for these populations. Nonproportional allocation affected the 
estimation of the 6's, the increase or decrease in the average estimated value 
depending upon the nature of the nonproportional allocation and the population 
under study. For populations S1 and S2, the average estimated 62 decreased 
under the nonproportional allocation, for populations S4 and S5, it increased. The 
investigation of residual scaling examined here assumed the form of the variance 
function is known and only the components a and yu needed to be estimated from 

the data. In some cases, this may be possible based upon understanding of the 
variance structure of the population under study. In other cases, even the form of 
the variance function to be used for scaling must be estimated from the data. 
Based upon this work it seems the primary issue in choosing the type of scaling 
(when it is needed) is to choose between a standard deviation or a heterogeneous 
variance function for scaling. 
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3. Model Based Estimation of Distribution Functions and other Parameters. 

3.1 The Chambers and Dunstan Estimator 

Discussion of model based CDF estimation begins with the design based 
estimator. For equal probability sampling it is: 

Fd(t) = i EI(37, < t) (8) 
ucS 

The first modification that can be made in the direction we are headed is to obtain 
model based predictions for the nonsample units and add an additional component 

to (8) based upon these: 

Fm(t) = ri\-i[ E I(yu < t) + E I(5,- <01 (9) 
ucs uf U-S 

We will call this the naive model based estimator because it makes no 
distributional assumptions about the residuals and does not account for it in the 
estimated CDF. It is necessary to put the regression residuals back into the CDF; 
one estimator that does this is modified from Chambers and Dunstan (1986): 

P (t) k [ EI(37,2 5_ t) + E (D-1((t-sr--uva-u;;06-)1 (10)= 
uS uEU-S 

The second summation is an estimate of the sum of P(yu < t) for the nonsample 
population units. By noting that yu = Sr-su + cu it is apparant that (9) does not 
account for the component of the F(t) due to the distribution of the residuals. 
Suppose the residuals have distribution N(0,g(E(yu);-y). Then 

.­E13(Yu_t) = > P(Y + Eu t), 
U-S uEU-S 

. E P(Eut-s,), 
ufu-s 
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et, t-Yu<= E P(
uEU -S g(E(Yu);7)°-- "(Yu") cr)' 

4,-1( t-k-ti \ 

uftS g(E(3ruh) crj. 

This is estimated by using model based estimates of the unknown quantities: 

E f(yu 5_ t) = E 4)-1( t-s"-u 

nEu_s ufu-s g(E(ku);1') 6). 

Therefore the Chambers and Dunstan estimator can be represented by the naive 
with a bias correction term over the nonsample B(t) = E f(S, + Eu < t) 
I& < t) to account for the missing component due to the distribution of the 
residuals: 

l''' (t) = fm(t) + g(t), 

1 r x--, --1( t-Yu )Pd (t) . fm(t) + E i(sr-u_ t)].N 1-2--, g(E(Yti);7) 6uEU -S ueU-S 

The original Chambers and Dunstan estimator has been evaluated by 
several authors as an estimator of F(t). When the model is specified correctly, 
Chambers and Dunstan (1986) showed that their model based estimator has 
greater precision than the design based estimator when model (5) holds, at the 
cost of slight design bias. Rao, Kovar and Mantel (1990) showed that under 
model misspecification, the CD estimator can have considerable bias and can be 
less efficient than other estimators, especially for large samples. Chambers, et al 
(1992) showed that it is possible, for large n, for other estimators to be more 
efficient than CD even when the model is correct. Dorfman (1993) reiterated that 
other model based estimators (and sometimes even the standard design based 
estimator) can have smaller bias and greater precision than CD in the presence of 
model misspecification. He also showed that if the model is specified correctly, 
considerable gains in precision are possible with the CD estimator. 
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Specification of the residual variance structure g(E(yu;-y)a) is an important 
component of the CD model based estimator. The form of the function g 
influences how the residual distribution is put back into the estimated 
distribution. Figure 3.1 illustrates this influence, the solid curve is F(t) = 
EI(37,, < t) for a random sample from a N(10,5) distribution. The three dashed 
lines represent the curves P (t) = E I(yu 5_ t) + E4)-1( t 

for 
`g(E(yu)yu;-y)o-)

different combinations of g() and a. As g changes from 1 to yu , we see that the 
lower tail of the CDF is increasingly shortened while the upper tail flattens out. 
As the heteroscedasticity specified by g increases, more probability is put in the 
tails of the distribution. 
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Figure 3.1 Illustratipn of the 1 afluence of the chosen Variance Function on the 
Estimated CDF. F (t) for different combinations of g() and a-. For the short 
dashed curve, go = 1 and a = Var(y), for the medium dashed curve, g() = 

and a = NjVar(y0.5), and for the large dashed curve g() = ye, and a = 1. 
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3.2 The Chambers and Dunstan Estimator for Spatial Populations. 

We will consider here the Chambers and Dunstan estimator with several 
different model based predictions for the nonsample population units to be used in 
the bias correction term. The two simplest will be predictions from an OLS 
regression model, and 'spatial' predictions from a kriging model: 

Yu = xu-g , Q = (XX)-1XT 

Yu = xug + EpE-1(Y X14 ), Q = 
V U E U-S 

xu is the vector of covariates (with a 1 for the intercept) for a nonsample 
population unit, X is the matrix of covariates (and a column of ones) for the 
sample units, Y is the vector of yu values for the sample units, E0 is the spatial 
covariance matrix between the sample units and the nonsample units and E is the 
spatial covariance among the sample units. A third set of predictions is 

constructed to exploit the results from using scaled residuals to estimate spatial 
residual covariance as discussed in the previous chapter. Recall that given a set of 
OLS residuals Fu, these are scaled by the square root of the variance function 
gOcr2 to obtain the scaled set E , before estimating the covariance function. Given 
this estimated residual spatial covariance function, predicted residuals are 

obtained for the nonsample population units: 

jo(rf-1 j)-1jrf-1 Dot-1(I j(J/f-1 3)-1 rf-1) 

Where Jo is the (N-n) x 3 matrix of spatial locations (with a column of ones for 
the intercept term) of the nonsampled population units, J is the matrix for the 
sampled population units. The covariance matrices E E0 are estimated using the 
exponential covariance model and REML (Christensen, 1991). These predicted 
residuals on the nonsample are then rescaled according to the same variance 
function used for scaling the iu, and added to the OLS predictions. 

3/u = xu0 g UEU 
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As stated in the previous chapter, residual scaling is of interest primarily when 
estimation of residual spatial covariance from a stratified sample for the entire 
population of residuals is required. For nonstratified populations, or when 
analyzing strata separately, scaling is not necessarily needed. In the previous 
chapter residual scaling was shown to influence the strength of the estimated 
correlation of the residual spatial pattern and the estimated range over which the 
residuals are spatially correlated. In this chapter we seek to determine if the 
inclusion of spatial information as a surrogate for a spatially patterned missing 
covariate improves the prediction of the nonsample values and model based 
estimates of the finite population CDF and other parameters. 

3.3 Simulation Study. 

Several nonstratified and stratified populations were generated to assess the 

performance of the Chambers and Dunstan estimator using the various model 
based predictions discussed in the previous section. The populations were 
simulated using the fitted regression equations from the original Eastern Lake 
Survey data to be analyzed in chapter 4. The nonstratified populations were 
created using the fitted regression equation for the first stratum of this original 
survey. The first two stratified populations have stratum specific regression 
coefficients for the missing covariate. A third stratified population was 
constructed where the regression coefficient for the missing covariate was the same 
for all strata. The simulated populations are as follows: 

Nonstratified Populations: 

Population N1 (Size=600): 

yu = 4900 0.49*xiu +1270*x2u + eu, eu --, N(0,1) 

Population N2 (Size=600): 

yu = 4900 0.49*xiu + 1270*x2u + eu, eu ,,, N(0,25*E(yu)) 
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Stratified Populations: 

Population Si (Size=600, 200 in each stratum): Separate models for each stratum: 

Ylu = 4900 0.49*xiu +1270*x2u + elu, e N(0,1)elu 
7535 +0.564*xiu +1783*x2u + e2u N(0,1)Y2u = e2u
 

y3u = 17730 1.57*xiu 3833*x2u + e3u, e3u ^ N(0,1)
 

Population S2 (Size=600, 200 in each stratum): Separate models for each stratum: 

Yiu = 4900 0.49*xiu +1270*x2u + eiu, elu N(0,E(y1u) ) 
7535 +0.564*xiu +1783*x2u + e2u,Y2u = e2u N(0,E(Y2u) )
 

y3u = 17730 1.57*xiu 3833*x2u + e3u, e3u N(0,E(y3u) )
 

Population S3 (Size=600, 200 in each stratum): Separate models for each stratum: 

yiu = 400 0.49*xiu +50 *x2u + elu, eiu N(0,E(Yiu) )
 
Y2u = 200 +0.564*xiu +50*x2
 E2u e2u N(0,E(Y2u) )
 
y3u = 2000 1.57*xiu +50*x2 + e3u, e3u N(0,E(y3u) )
 

For all populations, x1u is the elevation of the unit, x2u and is the pH of the unit. 
The pH variable was treated as unknown in the data analysis and CDF estimation 
procedure for these populations in order to induce the missing covariate effect. 
The pH variable has a simple spatial pattern and induces spatial correlation in the 
residuals in addition to increased residual variance. For each design the sample 
consists of yu, elevation, latitude, longitude (transformed to accurately represent 
geographic distances) known on the sample units, and elevation, latitude, 
longitude known on the nonsample units. For all populations, four models were 
used to analyze the sample data and for making predictions for the nonsample 
units: 

REG1: yu = 00 + 0ielevationu + eu 
Var(eu) = cr2 

Cov(eu , eu,) = 0. 

REG2: Yu = 0o 0ielevationu + iu + /33 .iu fu 
Var(Eu) = cr2 

Cov(eu , eu,) = 0. 
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UK1: Yu = 00 + /31elevationu + 02 iu + Q3 Ju 6u 

Var(eu) = cr2 

Cov(Eu , = cr(dute; 9) 

UK2: This model is fit in two stages, yu = /30 + flielevationu ful 

Var(eu) = cr2 , (or Var(fu) = cr2Yu), 

Cov(eu , eu/) = 0. 

Fitted by OLS , and 

E(Eu I juju) = aiju +a2 Ju
 
Var(Eu) = c-2,
 

Cov(eu , eu,) = u(duu,; 9)
 

Fitted by REML. 

Predictions from this model are the sum of the predicted values from the two 
stages. The residuals from the first stage are scaled by a standard deviation 
function (either heterogeneous or homogeneous) before estimating /Jo, al, a2 and 
O. 

The nonstratified populations were sampled with simple random samples of 
size n=75. All four models (REG 1, REG 2, UK 1, UK 2) were used to analyze 
the samples. The regression parameters for REG 1 and REG 2 are unweighted 
least squares estimates (OLS). The model parameters for UK 1 are estimated 
using REML. For UK2, /30 and /31 are estimated using OLS and the spatial 
parameters kt, al and a2 are estimated using REML. Homogeneous residual 

scaling was used between the two stages of estimation in model UK 2 for all 
populations and heterogeneous scaling was used in addition for population S3. For 
population S1 an additional model was fit: 

UK 3: yu = /30 + Oielevationu Eu 

Var(Eu) = cr2 

Cov(eu , eu/) '(dwe; 9) 

This differs from UK 1 because the spatial coordinates are not included in the 
regression equation. We wish to investigate the difference in results between 
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including the spatial information via the spatial coordinates, spatial covariance or 
both. 

The predicted values for the nonsample are the sum of the OLS predictions 
from stage 1 and the predicted residuals from stage two. For each set of model 
based predictions, the Chambers and Dunstan estimator was used with both 
variance function g=1 and g=E(yig). 

The stratified populations were sampled with a simple random sample of 
n=25 in each of the three strata. Each stratum CDF was estimated using the 
within stratum OLS predictions for the the regression model REG 1 and REG 2 as 
described above for a simple random sample. In addition, estimation using a 
spatial analysis of the entire set of residuals across strata using model UK 2 was 
used with homogeneous scaling and heterogeneous scaling of the OLS residuals 
between the two stages. The predicted values for the nonsample units are then 
the sum of the OLS predictions from the stratum specific regression equations and 

the spatially predicted residuals. For each set of model based predictions, the 
Chambers and Dunstan estimator was used with both variance functions g=1 and 

g=E(y,i). 

For comparison, results for the design based estimator (8) and the model 
based estimator (9) are included. An estimate of the population mean and 
standard deviation are computed for each estimated CDF by first computing 
estimates of the first two population moments. Ai is the estimated population 
mean and the estimated population standard deviation is a. The values of pi are 
obtained from the estimated CDF by taking the step height that leads up to the 
value yi (figure 3.2). 

N N 
(12)ill = D'iYi 172 = EPin 

i=1 i=1 

(13)-6 = \1112 1-11 
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In addition to being of interest in their own right, estimating the population mean 
and standard deviation in this manner provide a measure of the overall goodness 
of fit of the estimated CDF to the actual finite population CDF. Given a set of 
estimated CDFs for a set of samples, the average bias and root mean square error 
for the estimated mean and standard deviation are also calculated and the average 
bias and root mean square error of F(t) where the values of t are the true 
population values of F-1(p) for p e {0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 
0.95}. The means and standard deviations for the simulation study are estimated 
using F-1(p) for these 11 lattice points. In this context, the mean and sd are 
also a measure of how well the estimated CDF fits the true CDF at these 
population points. 

BIAs.-k-4 E(li ii) 

RMSE =NI 4 EG,--,1 /2)2 

BIAS=4 E (e. a) 

RMSE =NI 4 E(d .7)2 

Bus---.4 E(f(t) F(t)) 

RMSE =NI 4 E(f(t) F(0)2 
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Figure 3.2 Example: Calculation of an Individual Probability. The probability 
associated with each yi is the height of the step in the estimated CDF. 
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M is the number of replications of the sampling/estimation strategy and the 
summation is over all M replications. 100 samples were drawn from each of the 
populations, and the Chambers and Dunstan estimator is used with the various 
model based predictions and the two standard deviation functions described 
above. The results for the bias and rmse of the estimated means, standard 
deviations and CDFs are summarized below. 

3.4 Results: Estimation of Means and Standard Deviations. 

Tables showing the bias and root mean square error for the estimated 
population means and standard deviations are shown in the tables in Appendix 1. 
The design based estimators (labeled hte for Horvitz Thompson Estimation) are 
unbiased for the population parameters according to the theorem in Chapter 1, 
therefore the bias in hte is indicative of the representativeness of the 100 samples 
used in the simulations. 100 replications is a very low number and more will be 
used in future investigations of this work. The greatest anticipated gains from 
using model based estimators will be increased accuracy relative to hte or to each 

other. Though both the naive and the CD estimator are biased we expect the bias 
of CD to be less because it puts more of the distribution of the residuals back into 
the estimate, which the naive estimator does not. The model based means and 
standard deviations were estimated as in equations (12) and (13) using the 
estimated CDFs. 

For the nonstratified population N1, the naive estimator using predictions 
from REG2 had better precision than the design based estimator for the mean. 
The CD estimators gave additional improvements in bias and precision over the 
naive estimator for the mean. For the population standard deviation we see the 
same pattern of improvements when predictions from UK 1 are used. In Chapter 
2 we saw that only seven samples from N1 had significant spatial covariance, 
though the spatial correlation at short distances was strong (median value of 0.99) 

and the correlation range was large (median value of 98.5 km). Therefore this 

improvement in estimation of the standard deviation is due to these samples. 
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For population N2 the naive estimator using REG 2 predictions did not 
improve precision over the design based estimator but the CD estimator did 
improve the bias for both the estimated population mean and standard deviation 
and improved the precision for the mean. For the estimated population standard 
deviation, the CD estimators have slight improvements over the design based 
estimator but not large. Using predictions from UK1 did not improve over REG 1 
prediction in the model based estimators. Chapter 2 found that the correlation 
for small distances was moderate (median value of 0.511) and the range was large 

(median value of 110.9 km). The lack of additional gains when including the 
residual covariance seems to be due to the lack of strong residual correlation. 
Recall that the only difference between populations N1 and N2 is the variance 
structure of the residual distribution, the increased variance of N2 reduced the 
estimated residual correlation from a median value of 0.99 to 0.511. Put another 
way, the increased residual variation decreased the missing covariate effect, 
because the missing covariate was a smaller part of the unexplained population 
variability for N2. 

For the stratified populations, the naive estimator using REG 2 predictions 

improved the precision over the design based estimator for Stratum 1 of S1. The 
CD estimators reduced the bias and also improved the precision slightly for the 
mean, improved the bias for the stratum standard deviation but worsened the 
precision slightly. Adding residual covariance through UK 2 predictions improved 
the precision and bias for the mean, but gave similar results for the stratum 
standard deviation. From Chapter 2 the short range correlation was moderate to 
weak (mean value of 0.73, median value of 0.4) and the range was short (mean 
value of 37.63 km, median value of 11.7 km), therefore the residual covariance was 

not strong or spatially extensive when the spatial coordinates are already included 
in the model. For Stratum 2, of S1 both the naive and CD estimators have better 
precision than the design based estimator. The CD estimator gives essentially the 
same answer as the naive with a slight worsening in bias and improvement in 
precision (remember that the residual variance is small, therefore the residuals are 

a small component of the population variability here) using UK 2 predictions 
reduced bias and improved precision slightly for both the stratum mean and 
standard deviation. For Stratum 3, the naive estimator using REG 2 predictions 
improves the precision over the design based estimator. The CD estimators are 
worse than the naive estimators for both the mean and standard deviation. 
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For population S2, the naive estimator had better precision than the design 
based estimator for the stratum mean but not for the stratum standard deviation. 
The CD estimators improved the bias for the mean but worsened the precision. 
For the standard deviation, the CD estimators worsened the bias and the precision 

relative to the naive estimator. For Stratum 2, the naive estimator improved the 
precision for the mean and standard deviation over the design based estimator. 
CD estimators improved precision and worsened bias for the mean, and improved 
both for the standard deviation. For stratum 3, the naive again improved the 
precision over the design based estimator, the CD estimators worsened the bias 
and the precision for the stratum mean, but improved bias and precision for the 
stratum standard deviation. For this population the correlation at short distances 
was weak (mean value of 0.549, median value of 0.475) and the range was short 
(mean value of 13.85 km, median value of 6.31 km) and so the model based 
estimators using UK 2 predictions did not have great improvements over those 
using REG 2 predictions. 

For population S3, the naive estimator improved the precision over the 
design based estimator for all strata, the CD estimators improved precision and 
bias for strata 1 and 2 and all model based estimators are the same for stratum 3. 
Short range correlation was weak (median value of 0.032) and the correlation 
range was short (median value of 8.49 km), therefore adding residual covariance 
did not improve the results when the spatial coordinates were already in the 
regression equation. 

In general the anticipated behavior was realized, for a given set of model 
based predictions, the naive estimator had better precision than the design based 
based estimator but was considerably biased in some cases. The CD estimator 
using the same model based predictions generally reduced the bias and in some 
cases improved the precision as well. There were some exceptions to this general 
result. For the populations where the residual variance was largest, the naive 
estimator did not improve the precision over the design based estimator. For the 
populations where the residual variance was small, the CD estimator did not 
always improve the bias of the naive estimator for estimating the population 
mean. This makes sense because the model based predictions used in the 
estimators are predicting E[YIX] and are optimal for the mean, regardless of the 
magnitude of the residual variation. The CD estimators did improve the results 
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for the estimated standard deviation in these cases, because putting the residual 
distribution back in reflects the true population variability. 

Using spatial information as a surrogate for the spatially patterned missing 
covariate improved the estimation of the means and standard deviations. For 

population N1 including the spatial coordinates in the regression model improved 
the precision of estimates of the mean and standard deviation. Adding residual 
spatial covariance to the model improved the precision of the estimated standard 
deviation only. Using residual covariance in the model but not the spatial 
coordinates (model UK 3) improved the precision over REG 1 (which uses no 
spatial information at all) but the improvement is not as great as when using 
spatial coordinates. For population N2 adding the spatial coordinates did not 
improve the precision of the parameter estimates when using the naive estimator, 
but did improve the precision when the CD estimator was used. Adding spatial 
covariance to these actually worsened the precision. 

For the stratified populations S1 and S2, including the spatial coordinates 
in the regression equation improved the precision of the estimated mean and 
standard deviation. Additionally, adding residual spatial covariance improved the 
precision slightly more. For population S1 the parameter estimates obtained by 
using residual spatial covariance without the spatial coordinates in the regression 
equation (model UK 3) gave less precise estimates than using no spatial 
information at all. For this model the short range correlation had a median value 
of 1 over the samples and the correlation range had a median value of 29.8 km 
which is an increase in strength and spatial extent over the model with the spatial 
coordinates ( which had median values 0.4 and 11.7 respectively). With this 
strong residual spatial covariance the lack of improvement is surprising, but seems 
to be due to the fact that the planar missing covariate is more accurately 
modelled by the spatial coordinates than by a residual spatial covariance function 
alone. In addition, the residual spatial covariance for the stratified populations is 
estimated using scaled residuals where the scaling function is estimated from the 
sample. The increased variability due to estimating the scaling function seems to 
explain why the the model using residual covariana only improves the results 
over using no spatial information for the nonstratified population but doesn't for 
the stratified one. For population S3, adding spatial information gave essentially 

the same results as including only the known covariates. The spatially patterned 
missing covariate was a small part of the unexplained population variability. 
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3.5 Results: CDF Estimation. 

Figures 3.3 3.16 show the superimposed estimated distribution functions 
for the 100 replications for each of the populations using the design based 
estimator and the naive and Chambers and Dunstan estimators using predicted 
values from REG 2. In addition, results for the bias and root mean square error 
for the estimated percentiles are shown in Appendix 2. 

Figure 3.3 shows the estimated distribution functions for the nonstratified 
population N1, the improvement in precision from the model based estimators is 
highly visible. Examination of the tables in Appendix 2 show that UK 1 
predictions with a homogeneous variance model and REG 2 predictions with a 
heterogeneous variance model had similar precision for the estimated percentiles, 
with a slight edge to UK 1. Thus, including the spatial coordinates in the 
regression model improved the estimation of the CDF. Including the estimated 
residual covariance in the prediction improved the results slightly more. As noted 
earlier, this population had only 7 samples with significant spatial covariance, so 
the gains were only made for those samples. For population N2, figure 3.4 shows 

the improvement in precision when the model based estimates are used. The bias 
correction of the CD can be seen relative to the naive estimator. The naive 
estimator puts more of the probability in the middle of the distribution giving it 
an 'S' shape, the CD estimators give the distribution a straighter look, more like 
the design based estimators. Using kriging predictions from UK 1 led to gains in 
precision for the estimated percentiles, except for in the upper tail of the 
distribution. 

For the stratified populations S1-S3, the distribution function estimates are 
estimated separately for each stratum. The most obvious result is the 
improvement in precision of the model based estimators over the design based 
estimators (figures 3.5, 3.7, 3.9, 3.11-3.16). The figures shown use REG 2 
predicted values. The distribution function estimates using UK 3 predictions are 
shown for the three strata of population S1 in figures 3.6, 3.8, and 3.10. 
Improvement in precision over the design based estimator can be seen in all cases, 

but the improvement is not as great as when predictions from REG 2 are used. 
This shows that the spatial coordinates in the regression equation are a better 

http:3.11-3.16
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model for the missing covariate than the residual spatial covariance function 
alone. Looking at the estimated percentiles in Appendix 2, the CD estimators 
with REG2 predictions led to improvements in precision over REG 1 for some 
percentiles. Adding residual covariance using UK2 did not lead to further 
improvements. For S3 CD estimators with REG 1 predictions had the best 
precision. 

3.6 Conclusions. 

Greatest gains in precision over the design based estimates of population 
parameters from model based estimators were realized by including the known 
explanatory variable elevation and the spatial coordinates in the regression model. 
Including residual spatial covariance to the prediction model lead to small 
additional gains in some cases, especially for estimating the population (or 
stratum) standard deviation. The spatial pattern of the missing covariate 
influences the best way that spatial information should be included. Even though 
residual spatial correlation was stronger when spatial coordinates were not 
included in the regression equation the estimation of population parameters was 
poorer than when spatial coordinates were used in the regression equation. The 
missing covariate in these simulated data is a planar surface and so it was 
anticipated that the coordinates alone would be adequate, however for other 
populations where the missing covariates are highly spatially patterned, the 
spatial covariance component is likely to lead to larger gains than realized here. 
Therefore the planar component in the model is a better surrogate than a spatial 
residual covariance function. Using both spatial components together was a better 
surrogate. In general, the nature of the spatially patterned missing covariates will 
determine the best way to include spatial information. 
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Figure 3.3. Estimated CDFs for Population N1 for the 100 replications. Design 
based (upper left), naive (upper right), CD with a homogeneous variance function 
(lower left) and CD with a heterogeneous variance function (lower right). Model 
based estimators use predictions from model REG 2. 
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Figure 3.4. Estimated CDFs for Population N2 for the 100 replications. Design 
based (upper left), naive (upper right), CD with a homogeneous variance function 
(lower left) and CD with a heterogeneous variance function (lower right). Model 
based estimators use predictions from model REG 2. 
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Figure 3.5. Estimated CDFs for Population S1 Stratum 1 for the 100 replications. 
Design based (upper left), naive (upper right), CD with a homogeneous variance 
function (lower left) and CD with a heterogeneous variance function (lower right). 
Model based estimators use predictions from model REG 2. 
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Figure 3.6. Estimated CDFs for Population S1 Stratum 1 for the 100 replications. 
Design based (upper left), naive (upper right), CD with a homogeneous variance 
function (lower left) and CD with a heterogeneous variance function (lower right). 
Model based estimators use predictions from model UK 3. 
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Figure 3.7. Estimated CDFs for Population S1 Stratum 2 for the 100 replications.
Design based (upper left), naive (upper right), CD with a homogeneous variance
function (lower left) and CD with a heterogeneous variance function (lower right). 
Model based estimators use predictions from model REG 2. 
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Figure 3.8. Estimated CDFs for Population S1 Stratum 2 for the 100 replications. 
Design based (upper left), naive (upper right), CD with a homogeneous variance 
function (lower left) and CD with a heterogeneous variance function (lower right). 
Model based estimators use predictions from model UK 3. 
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Figure 3.9. Estimated CDFs for Population S1 Stratum 3 for the 100 replications. 
Design based (upper left), naive (upper right), CD with a homogeneous variance 
function (lower left) and CD with a heterogeneous variance function (lower right). 
Model based estimators use predictions from model REG 2. 
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Figure 3.10. Estimated CDFs for Population S1 Stratum 3 for the 100 
replications. Design based (upper left), naive (upper right), CD with a 
homogeneous variance function (lower left) and CD with a heterogeneous variance 
function (lower right). Model based estimators use predictions from model UK 3. 
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Figure 3.11. Estimated CDFs for Population S2 Stratum 1 for the 100 replications. 
Design based (upper left), naive (upper right), CD with a homogeneous variance 
function (lower left) and CD with a heterogeneous variance function (lower right). 
Model based estimators use predictions from model REG 2. 
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Figure 3.12. Estimated CDFs for Population S2 Stratum 2 for the 100 replications. 
Design based (upper left), naive (upper right), CD with a homogeneous variance 
function (lower left) and CD with a heterogeneous variance function (lower right). 
Model based estimators use predictions from model REG 2. 
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Figure 3.13. Estimated CDFs for Population S2 Stratum 3 for the 100 replications. 
Design based (upper left), naive (upper right), CD with a homogeneous variance 
function (lower left) and CD with a heterogeneous variance function (lower right). 
Model based estimators use predictions from model REG 2. 
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Figure 3.14. Estimated CDFs for Population S3 Stratum 1 for the 100 replications. 
Design based (upper left), naive (upper right), CD with a homogeneous variance 
function (lower left) and CD with a heterogeneous variance function (lower right). 
Model based estimators use predictions from model REG 2. 
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Figure 3.15. Estimated CDFs for Population S3 Stratum 2 for the 100 replications. 
Design based (upper left), naive (upper right), CD with a homogeneous variance 
function (lower left) and CD with a heterogeneous variance function (lower right). 
Model based estimators use predictions from model REG 2. 
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Figure 3.16. Estimated CDFs for Population S3 Stratum 3 for the 100 replications. 
Design based (upper left), naive (upper right), CD with a homogeneous variance 
function (lower left) and CD with a heterogeneous variance function (lower right). 
Model based estimators use predictions from model REG 2. 
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4. Model Based Estimation of Population Parameters: 
Case Study from the Eastern Lake Survey. 

4.1 Introduction. 

The estimator of Chambers and Dunstan (1986) is used for model based 
estimation of the cumulative distribution function (CDF) and other parameters 
for acid neutralizing capacity (ANC) for the universe of lakes in region 1A 
(Adirondack Mountains) of the Eastern Lake Survey (USEPA). The data consist 
of a simple random sample from each of three strata (alkalinity classes) with 
different sampling probabilities among strata. Design based methods provide one 

estimate of the CDF using the inclusion probabilities. With the existence of 
covariate information on the entire population (sample and nonsample) model 
based estimation of parameters of the population is also possible. This example 
has been investigated in Jager and Overton (1991); this document represents an 
extension and refinement of their results, and additional work on the spatial 
analysis of the residuals from regression models under stratified sampling. The 

lakes data set consists of a sample of 155 lakes (simple random samples of 57, 51 
47 from each of the three strata respectively) taken from a frame population of 
1293 lakes (548, 430 and 315 in each stratum). Acid Neutralizing Capacity 
(ANC) was measured on the sample lakes from field sampling and elevation and 
rainfall pH were obtained for all lakes in the frame using Geographic Information 
System (GIS) data. The pH variable is a planar interpolated surface from rain 
gauge data. The basic data set was provided by Henrietta Jager; the explanatory 
variables were not includeed in the original EPA data set. 
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4.2 Model Based Estimation. 

Interest is in estimation of the finite population distribution function 
(CDF) and associated parameters (population mean, population standard 
deviation) for the ANC of the lakes: F(t) = 

N 
[ E i(yu < t)]. Where I(B) is the 

indicator function taking on the value 1 if B is trle, 0 if B is false. Since we are 

interested in the finite universe of lakes, the CDF will be estimated for a finite set 
of units in the population, where the number of units, N, is the known lake 
population size. 

The model based estimator that will be used here is modified from 
Chambers and Dunstan (1986): 

F(t) = [ Ei(yu < t) + E4.-1((t-sr-u)/srsua) (1) 
ucS 

1(B) is the indicator function of the set B, U-S is the set of unit labels in the 
nonsample and 37-u is the ordinary least squares (OLS) prediction for unit u. This 

estimator has been shown to provide considerable gains in efficiency and reduction 

in bias over the design based estimator when the model is fit correctly (Chambers 
and Dunstan 1986, Dorfman 1993). This estimator is a model based estimator due 
to the use of predicted values Sr'u, an estimated standard deviation Q from a 
statistical model for the data, and a n assumed distribution for the residuals, in 
this case the normal distribution. We will consider two statistical models for the 
sample data. The following regression model for the ANC values in each stratum: 

Yu -= /1+ 3cuig ± 6u, (2) 

E(Eu) = 0, 

Var(eu) = E(yu) o2, 
Cov(eu,eu,) = 0, u # u', 

and a linear model of which (2) is a special case: 

Yu = + xu0 Eu, 

E(Eu) = 0, 

Var(eu) = E(Yu) a-2 (3) 

Cov(eu,eu,) ci(duu1; 9) u u'. 
where xu is a matrix of covariates and spatial coordinates, cr(. ; .) is a spatial 
covariance function of a vector of parameters 9 and the distances between the 



64 

spatial locations of the population units TheThe residual covariance in (3) can 
be interpreted as a real part of the process that generated the realization of the 
finite population (interpreting the data as a realization of a random field) , or can 
be used as a surrogate for response surface explanatory variables that were not 
measured in the survey (Jager and Overton 1991). It is this second interpretation 
that will be used here adding this additional structure to the model may change 
the CDF estimate by treating missing covariates as heterogeneous variance 
structure, induced residual spatial correlation, or both. This will be investigated 
in this case study. 

For the analysis of each stratum separately, the Chambers and Dunstan 
(CD) estimator will be the same as in equation (1) but the predictions will be 
OLS predictions for population model (2) S'iu = xo(x'x)ix'y and 'spatial' 
predictions using an estimated spatial covariance matrix under population model 
(3) xo(xtlx)ixtly f0t--1(y x(x'E lx) lxi ly ), fo is theYu 

transpose of the estimated residual spatial covariance between the sample and 
nonsample locations, t is the estimated residual spatial covariance between the 
sample locations and x0 is the matrix of covariates and the spatial coordinates for 
the nonsample units. Because the design is stratified, a further modification of 
the analysis of the E' s is to analyze the residuals from all three strata at the same 
time. This is particularly of interest when the unexplained spatial pattern of the 
population is independent of strata. Combining the strata for this purpose 
increases the sample size used for spatial covariance estimation by allowing 
spatially adjacent residuals that are on opposite sides of a stratum boundary to be 
included in a common spatial analysis. 

Stratum differences in the residuals need to be accounted for before 
proceeding. To do this, the response model will be fit separately for each stratum 
and the set of residuals will be adjusted for their different stratum variance so 
that a single spatial linear model can be estimated for the entire population. 
There are three options, depending upon which model is the most feasible for the 
stratum variances: (1) No scaling, this is equivalent to assuming that the 
variance functions are all equal, cr that the stratification is only correlated with 
the first moments of Y, (2) Scaling by a separate 6 for each stratum. This 

assumes that the residuals are homoscedastic, and that the strata have different 
residual variances, (3) scaling by a function of the fitted value g(y) and (4) 
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Scaling by a separate, heterogeneous standard deviation function Fr ) for each 
stratum, this assumes that the variances are heteroscedastic and different for each 
stratum. Heterogeneous scaling (4) was chosen for these data. This decision was 
based upon examination of residual plots, which indicated two things; (1) large 
residuals are associated with large values of ANC and (2) the variances of the 
three strata are different, especially for stratum 3. From results in chapter 2, this 
form of scaling sets aside less of the residual variability than form (2) and for 
these highly patterned residuals this is desired. Each residual is scaled by its 
estimated stratum specific standard deviation function giving a set of 

homogeneous residuals for the entire sample: 

uh = 6uhriihg(Sruh) (4) 
This set of scaled residuals is then analyzed for spatial covariance (actually spatial 

correlation because they have been scaled by their standard deviations). If 

significant spatial covariance is found, the spatial covariance matrix is used to 
make predicted residuals for the nonsample units using an ordinary kriging 
predictor: 

= f'ult 0 Euh (5) 
Where Ej is the transpose of the estimated residual spatial covariance between the 

sample and nonsample locations and E is the estimated residual spatial covariance 
between the sample locations. 

These predicted residuals on the nonsample are then rescaled according to 
the estimated standard deviation functions used in (4), and added to the stratum 
specific OLS predictions. These predictions are then used for the nonsample units 
in the model based CDF estimator (1). 

uh = h "Vuh f:h 

yuh = Yuh+ E'uh 

Given a set of residuals and predictions for the sample units, the parameter -y, in 

the variance function g(E(yu);-y) = Sr-7, is estimated using the methodology 
introduced in the introduction: 
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ln(4,) = a + b ln(377,)-1-c, 

7-j, is then estimated using the slope of this line, g. 

In particular, for the data discussed in the introduction, two regression 
models were fit to the sample values in each stratum: 

(1) ANC=00 fiielevation + 02pH f 

(2) ANC=00 Oielevation + 132pH 031at 041ong 

Here the latitude and longitude variables have been transformed to 
accurately represent geographic distance. Strata were analyzed separately with 
each of the two models, and each model was fit using two structures for the 
residuals, the spatially independent version in (2) above and the spatially 
correlated version in (3). Predictions with spatially independent residuals will be 
termed ols predictions, predictions using spatially correlated residuals will be 
called uk predictions (based on the commonly used term 'universal kriging' for 
this model). The CDFs were estimated using the Chambers and Dunstan 
estimator with both a homogeneous and heterogeneous standard deviation 
function as in equation (1). 

A further analysis was made by fitting regression model (A) for each 
stratum, and then estimating spatial covariance for the residuals from all of the 
strata together. For this modification of the spatial analysis, the residuals from 
all three strata were scaled by their standard deviation functions before spatial 
covariance estimation. Predicted residuals were made for the nonsample lakes in 
each stratum and these predicted residuals (5) were added to the OLS predictions 
after rescaling by the same standard deviation function used in (4). The CDFs 
were estimated using predicted values 57-, and estimated standard deviations & in 
the CD estimator. 



67 

4.3 Results: Fitted Models. 

For stratum 1 the fitted equations are: 

Model 1 

ANC = 5157 0.49*elevation + 1270*pH 
5 = 0.694 

ANC = 2675 0.561*elevation + 731*pH 
Cov(eu,eu,) = 2043.9 + 4591.5 duu, = 0 

= 4591.5*exp(0.0194* duu, ) duu, > 0 

y =0.338 
Model 2 

ANC = 2017 0.43*elevation + 251*pH +0.899*lat +0.296*long 
spatial covariance was estimated to be 0. 

-7 = 0.699 

For stratum 2 the fitted equations are: 

Model 1 

ANC = 7335.84 0.654*elevation +1782.9*pH 
.51= .8409 

ANC = 5936.5 0.538*elevation +14591.1*pH 
Cov(eii,Eu,) = 6727.5 + 7744.8 duu, = 0 

= 7744.8*exp(0.0199* duu, ) dun, > 0 
-- T = 1.05 

Model 2 

ANC = 1215.96 0.5614*elevation + 65.32*pH +1.247*lat +0.3194*long 
-7 = 1.06 

ANC = 1270 0.548*elevation +13.84*pH +1.22*lat +0.377*long 
Cov(cu,eu,) = 8814 + 7888.3 duu, = 0 

= 7888.3*exp(0.004* duu, ) duu, > 0 
57 = .979 
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For stratum 3 the fitted equations are: 

Model 1 

ANC = 17630 1.57*elevation 3833*pH 
-7 = 1.06 

ANC = 11993 1.58*elevation 2467.7*pH 

Cov(eu,eu,) = 52158.9 + 2488080 = 0 
= 2488080*exp(0.005* duu, duu, > 0 

57 = 1.45 

Model 2 

ANC = 15650 1.71*elevation 940.4*pH 1.91*lat 2.36*long 
= 1.09 

ANC = 39681 1.61*elevation 355*pH 0.48*lat 8.13*long 
Cov(eu,eu,) = 49592 + 2186442 duu, = 0 

= 2186442*exp(0.006* duu, ) duu, > 0 
-7 = 1.24 

Additionally, residuals from the stratum specific regression models (for model 1) 
were analyzed as a set for spatial covariance using the exponential covariance 
model. This model was fit via REML for the three types of scaling discussed 
above. Table 4.1 gives the estimated parameters. 

Table 4.1 Estimated Covariance Parameters for the Different Forms of Scaling. 

01 02Oo 

No Scaling NO CONVERGENCE 

Homogeneous Scaling 0.0062 0.9661 0.5527 

Heterogeneo' s Scaling 0.0 1.0042 0.3227 
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We see that the form of scaling primarily affects 02, which describes the 
rate at which the covariance decreases with spatial distance. For heterogeneous 
scaling, this rate is more gradual than for homogeneous scaling, indicating an 
increase in correlation range between the heterogeneous scaled residuals relative to 
the homogeneously scaled ones. 

The estimates of 'y range between 0.3 1.5, which indicates that the 
standard deviation function ,Ig(E(yti);-y) ranges between 0.15 and 0.75. Stratum 1 
has the smallest estimated values for 7, and stratum 3 the largest. 

4.4 Results: Residual Analysis. 

The residual plots for the individual strata reveal differences in the 
variance-covariance between strata. Figures 4.1-4.3 show, plots for model (1) in 
the left column and model (2) on the right. The top plot is of the residuals versus 

the fitted values and the bottom plot is the semi-variogram. The semi-variogram, 
ry(d), is related to the covariance as 2-y (d)=C(0) C(d) and is a useful residual 
diagnostic tool. The empirical semi-variogram is estimated as: 

E (fu- f,)2 (9)2N 
d {uu': duu,,d1 

Where N d is the number of pairs of residuals separated by a distance of d units 
(kilometers for the data analyzed here) and the sum is over the set of all pairs of 
residuals that are d units apart. Notable features of the semi-variogram are the 
value of the semi-variance at the point where the fitted curve flattens out (called 
the sill in geostatistical terminology). This is a measure of the variance of the 
residuals. The separation distance at which the fitted semi-variogram flattens out 
(often called the range) is a measure of the distance beyond which the residuals 
are uncorrelated. Examination of the residual plots indicates that strata 1 and 2 
appear to have variances increasiiv with the fitted values. Stratum 3 is less clear 
but appears to have two large positive residuals and variance increasing with the 
fitted value. The semi-variograms reveal that the residual variances are different 

between strata, with sills of approximately 3500, 9500 and 450000 for strata 1, 2, 3 
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respectively. The correlation ranges are similar for strata 1 and 2, about 50 Km, 
but for stratum 3 is appears to be much greater, about 200 Km. These plots 
motivated the fitting of the spatial versions of the two models for each of the 
strata and using the specific form of the Chambers and Dunstan estimator (8). 
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Figure 4.1 Residual Plots for Stratum 1. Model 1 (left) and model 2 (right). 
Estimated residuals versus fitted values (top) and semi-variograms with two fitted 
models 
(bottom). 
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Figure 4.2 Residual Plots for Stratum Model 1 (left) and model 2 (right). 
Estimated residuals versus fitted values (top) and semi-variograms with two fitted 
models 
(bottom). 
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Figure 4.3 Residual Plots for Stratum 3. Model 1 (left) and model 2 (right).
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Figure 4.4 shows plots of the model 1 residuals from all three strata 
combined into one plot. The left column shows the residuals plotted versus the 
fitted values (left), residuals divided by the estimated stratum standard deviation 

(middle), and divided by the estimated stratum standard deviation function 
6,4, as in (6) (bottom). The right column shows the empirical semi-variogram 
and two fitted semi-variogram models. The unscaled residuals have some 
evidence of heterogeneous variance, but no evidence of spatial correlation. Scaling 

by the stratum standard deviation drastically changes the shape of the residual 
plot and the semi-variogram. There is evidence of spatial correlation with a 
correlation range of 45 or 100 Km, depending upon which variogram model is 
used. Scaling by the heterogeneous variance function markedly reduces the 
correlation range of the residual semi-variograms, to between 5 and 20 Km 
depending upon which model is used. Figure 4.5 is a similar plot for model 2. 
The residual assessment is similar to that of model 1. 

4.5 Design Effect. 

Another issue that warrants investigation is the influence of the variable 
probabilities of selection on the covariance function (or alternately, the variogram) 
estimate (9) for the entire set of residuals. The sample set of lakes is not an SRS 
from the population of lakes due to the differing probabilities of selection for each 
of the strata. The pairwise inclusion probabilities will not be the same for all 
pairs of lakes in the same distance class set {ij: hii=h1. In particular, the 
pairwise inclusion probabilities for a pair in the same stratum, say stratum h will 
be: 

iruu' 
nh(nh-1) 
Nh(Nh-1) ' and for pairs in separate strata: 

nhnh' 
uu NhNh; 

Setting wuu' 1 fria, an estimator of the empirical covariance function will be: 
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1 (10)
E tuna' eU* 

where both summations are over the set: {u,u': dun, d }. The exponential and 
the gaussian semi-variogram models are fit to the estimator (9) and the weighted 
estimator (10). The models are: o-(d;8) = 90*exp(-191d) and or (d;0) = 
00 *exp(- 91d2). The estimated coefficients are given in table 4.2. 

Table 4.2 Estimated Semi-variogram Parameters using the two Empirical 
Estimators. 

Model 1 Model 2 

90 91 90 91 

(9) 1.29 .0196 1.02 .00228 

(10) 1.31 .0189 1.02 .00224 

In this case, adjusting for the variable probabilities of selection made little 
difference in the fitted functions and this would have little affect on the 
predictions, and the variable probabilities are ignored here. This may not be the 
case in general and if the inclusion probabilities for a data set are known then this 
comparison should be made. In general, when the inclusion probabilities are 
known they should be used in the covariance estimator simply because the 
additional information about the sample may lead to better model based estimates 
of finite population parameters. In this case the differences were very subtle, 
because the sampling rates were not distinctly different in the three strata. 
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Figure 4.4 Residual Plots for Model 1: All Strata Combined. The left column 
shows estimated residuals versus fitted values and the right column is the semi­
variogram with two estimated models. Rows in the plots using residuals with no 
scaling (top), homogeneous scaling (middle), and heterogeneous scaling (bottom). 



77 

Residual Plot Residual Semi- variogram 

O 
0 

OO,0 

0 

0 
0 200 

44.4* 

400 600 800 1000 1200 1400 

0 
LC) 

0 

0.'et 
. ....0: fte .S? 

50 100 

. 

150 200 250 

co 

0 

0 200 400 660 800 1000 1200 1400 0 50 100 150 200 

O 

CV 

0 

. 

0 

.+. 

fit 

200 

. 

400 600 

Yu 

800 1000 1200 1400 

O 

LC) 

O 

O 
O 

. 
. . ..,.....,,,,,.. %. 

, . % .......- i7 . II . : 'N..'" q'
s 

0 50 100 

distance, d(km) 

. 

. .. 

200 250 

Figure 4.5 Residual Plots for Model 2: All Strata Combined. The left column 
shows estimated residuals versus fitted values and the right column is the semi­
variogram with two estimated models. Rows in the plots using residuals with no 
scaling (top), homogeneous scaling (middle), and heterogeneous scaling (bottom). 
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4.6 Results: Parameter Estimation. 

The Chambers and Dunstan estimator was used to estimate the stratum 
CDFs using models 1 and 2, spatial and nonspatial versions, and the spatial 
version of model 1 where the entire population of residuals was used to make 
predicted residuals for each stratum. Figures 4.6 - 4.7 show estimates using model 
based predictions from model 1. The figures contain two plots apiece, each plot 
shows four estimates of the CDF, the design based estimator (step function solid 
line), the naive model based estimator (smooth solid line) and two Chambers and 
Dunstan estimators, one with a homogeneous variance function and the other 
heterogeneous (dashed lines). All three model based estimators in a plot use the 
same model based predictions, Sr-uh. For the top plot, the model based predictions 
are from regression model (1). For the bottom plot, the model based predictions 
are from the version of (1) with spatially correlated residuals with the covariance 
estimated separately for each stratum. In addition, estimates of the stratum 
means and standard deviations from each estimator are given in table 4.3. Figure 
4.6 shows the estimated CDFs for stratum 1. The bias correction of the CD 
estimators over the naive estimator is apparent, especially in the upper quartile. 
The naive model based estimators between the two plots are distinct, reflecting 
the influence of the 3 different prediction models for the nonsample units. The 
CD estimator using uk predictions where the residual covariance is estimated 
within the stratum is the most distinct. This is reflected in the estimated mean 
for the stratum, which is largest for this model (table 4.3). For stratum 2 the bias 
correction of the CD estimators relative to the naive model based estimator are 
most noticeable in lower half of the distribution (figure 4.7). The relative 
performance of the CD estimators for the mean and standard deviation are the 
same as for stratum 1. For stratum 3, the estimator using uk predictions with 
spatial covariance estimated within the stratum has heavier tails (figure 4.8). 
This is reflected in the large estimate of the population standard deviation for this 
model. 

Figures 4.9-4.11 show the CD estimates using models 1 and 2 for Strata 1, 
2 and 3 respectively. The design based estimator is included for comparison. For 
stratum 1, the model based estimates are all different from the design based 

http:4.9-4.11
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estimate. The model based estimates that use only the stratum specific analysis 
are parallel to each other (recall that the spatial and nonspatial versions of model 
2 are identical here, because the spatial covariance estimated to be 0), with the 
biggest differences around the upper quartile. 

For stratum 2, the model 2 estimates (both spatial and non spatial) were 
very similar to the design based estimate except in the lower tail (figure 4.9). The 
2 estimators based upon model 1 using only stratum 2 information are quite 
different from these, and different from each other except in the upper tail. 

For stratum 3, all model based estimators differ appropriately from the 
design based one. This is the only stratum where the design based estimator was 

steeper and to the left of the model based estimates. The estimators using within 
stratum analysis were parallel to each other until the 70th percentile, where the 
kriging versions of models 1 and 2 estimated longer flatter upper tails. 
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Figure 4.6 Estimated CDFs for Stratum 1. a) uses regression predictions from 
model 1, the elevation and pH model. b) uses kriging predictions from this model
where the residual spatial covariance is estimated separately for each stratum. 
Lines are design based (step function solid line), naive estimator (smooth solid), 
and CD with homogeneous variance function (short dashed) and a heterogeneous 
variance function (long dashes). 
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Figure 4.7 Estimated CDFs for Stratum 2. a) uses regression predictions from 
model 1, the elevatio and pH model. b) uses kriging predictions from model (1) 
where the residual spatial covariance is estimated separately for each stratum. 
Lines are design based (step function solid line), naive estimator (smooth solid), 
and CD with homogeneous variance function (short dashes) and heterogeneous 
variance function (long dashes). 



82 

0 500 1000 1500 2000 2500 

b) 

-500 0 500 11000 1500 2000 2500 

Figure 4.8 Estimated CDFs for Stratum 3. a) uses regression predictions from 
model 1, the elevation and pH model. b) uses kriging predictions from model (1) 
where the residual spatial covariance is estimated separately for each stratum. 
Lines are design based (step function solid line), naive estimator (smooth solid), 
and CD with homogeneous variance function (short dashes) and heterogeneous 
variance function (long dashes). 
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Figure 4.9 Estimated CDFs for Stratum 1. The solid line is the design based 
estimate. All other lines are CD estimates with heterogeneous vz. riance functions 
but using predicted values from different models. The two short dashed lines use 
ols predictions and uk predictions from model 1 respectively, the medium dashed 
lines use ols and uk predictions from model 2, and the mixed dashed line uses uk 
predictions from model 1, but estimates combined stratum residual covariance. 
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Figure 4.10 Estimated CDFs for Stratum 2. The solid line is the design based 
estimate. All other lines are CD estimates with heterogeneous variance functions 
but using predicted values from different models. The two short dashed lines use 
ols predictions and uk predictions from model 1 respectively, the medium dashed 
lines use ols and uk predictions from model 2, and the mixed dashed line uses uk 
predictions from model 1, but estimates combined stratum residual covariance. 
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Figure 4.11 Estimated CDFs for Stratum 3. The solid line is the design based 
estimate. All other lines are CD estimates with heterogeneous variance functions 
but using predicted values from different models. The two short dashed lines use 
ols predictions and uk predictions from model 1 respectively, the medium dashed 
lines use ols and uk predictions from model 2, and the mixed dashed line uses uk 
predictions from model 1, but estimates combined stratum residual covariance. 
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Table 4.3 Estimates of Means and Standard Deviations for the three Strata. 

Stratum 1 

design based 

naive 

CD het sd function 
CD horn sd function 
naive 

CD het sd function 
CD horn sd function 
naive 

CD het sd function 
CD horn sd function 
Stratum 2 
design based 

naive 

CD het sd function 
CD horn sd function 
naive 

CD het sd function 
CD horn sd function 
naive 

CD het sd function 
CD horn sd function 
Stratum 3 
design based 

naive 

CD het sd function 
CD horn sd function 
naive 

CD het sd function 
CD horn sd functioi 
naive 

CD het sd function 
CD horn sd function 

Mean 

78.9381 

41.9305 

41.7447 

41.7206 

50.0982 

51.1911 

51.1236 

41.2143 

41.7447 

41.7206 

Mean 

116.000 

73.0358 

74.3278 

75.4274 

82.7436 

83.4756 

84.7303 

71.8833 

73.2386 

75.1058 

Mean 

587.900 

684.6976 

668.0643 

691.6280 

734.8775 

631.5018 

692.5509 

739.3184 

702.0567 

737.5866 

Standard Deviation 

90.9386 

63.9296 

89.0370 ols predictions 

92.3414 

71.3797 

84.6666 } uk within stratum 
91.3446 

73.4937 

89.0370 } uk combined strata 
92.6633 

Standard Deviation 

128.5978 

82.8924 

119.3598 ols predictions 
122.6496 

82.2808 

111.7280 uk within stratum 
123.0652 

94.2002 

123.1837 } uk combined strata 
130.1062 

Standard Deviation 
698.5401 

399.0496 

616.6783 } ols predictions 

611.8690 

686.8112 

648.7975 uk within stratum 
651.1833 

478.7105 

638.4802 uk combined strata 

640.5866 
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Figure 4.12 Estimated CDFs for the Entire Population. The solid step function is 
the design based estimate. The model has d estimators use ols predictions. The
solid line is the naive estimator, the dashed line is the CD estimator with a 
heterogeneous variance function. 
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Figure 4.13 Estimated CDF for the Entire Population. The solid step function is
the design based estimate. The model based estimators use kriCng predictions. 
The covariance function is estimated separately for each stratum. The solid line 
is the naive estimator, the dashed line is the CD estimator with a 
heterogeneous variance function. 
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Figure 4.14 Estimated CDF for the Entire Population. The solid step function is
the design based estimate. The model based estimators use kriging predictions. 
The covariance function is estimated using all of the residuals after being scaled
by a heterogeneous variance function. The solid line is the naive estimator, the 
dashed line is the CD estimator with a heterogeneous variance function. 
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4.7 Discussion. 

For stratum 1, estimating residual correlation changes the distribution 
function estimates little. Adding the latitude and longitude coordinates to the 
regression model seems to account for most of the spatial pattern in residuals. 
Additionally, adding information from residuals from surrounding strata changed 
the estimate only slightly. This is probably due to stratum 1 being a single, 
convex shaped area of the geographic area. For strata 2 and 3, there is more of a 
difference between the estimates using residual covariance information within the 
strata versus using the residual covariance from all strata. This is due to the 
fragmented nature of these strata. Many of the sampled lakes that are 
geographically close to lakes in strata 2 and 3 are in different strata, using a 
residual analysis of all the stratum residuals combined has a greater affect on the 
shape of the estimated distribution. 
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5. Conclusions. 

This research has focussed upon model based methods for estimating the 
parameters of spatial populations from probability samples. Design based 
methods provide unbiased, or at least consistent, estimates of population 
parameters using the properties of the sampling design. The model based 
procedures are used in cases where there is additional information that is known 
for the entire population, such as covariate information. The spatial populations 
considered here are interpreted to have spatial patterns in response to patterns in 
the values of causal variables. In practice, causal variables may be unknown, and 
known explanatory variables, though not directly causal themselves, can be used 
as surrogates for these unknown causal variables. Additionally, when the spatial 
coordinates are known for the entire population, a spatial model can be used as a 
surrogate for unknown spatially patterned causal variables. The explanatory 
variables are used in a regression model that estimates the relationship between 
the population values and the variables. The spatial information can be 
incorporated into the regression model in two ways, by including the spatial 
coordinates in the regression equation or by invoking a spatial covariance function 

for the residuals from the regression model. 

When estimating residual spatial covariance for probability samples which 
are stratified, and the strata have different residual variance structures, it is 

sometimes necessary to scale the residuals before doing the analysis. The use of 
residual scaling in residual spatial covariance estimation of spatial populations 
sampled with stratified designs was investigated. The form of residual scaling 
influenced the estimated correlation of the residual spatial pattern at short 
distances and the estimated distance at which the populations units are 

uncorrelated. The estimated correlation at short distances was always weaker 
when scaling by a residual standard deviation than when scaling by a 
heterogeneous variance function E[yu]7cr. Heterogeneous scaling leaves more of 

the spatial variability of the residuals in the spatial pattern model, whereas 
homogeneous scaling treats more of the residual variability as purely random. 
Which form of scaling to use needs to be determined from residual diagnostics and 

any intuitive understanding about the missing covariates that are influencing the 
spatial pattern of the population. Residual scaling is only necessary when it is of 
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interest to analyze residuals from mixed strata for spatial covariance when there is 
evidence that the strata have different variances. For the nonstratified 
populations, the results for the estimated CDF and other parameters using 
predicted values from an estimated spatial covariance model with no residual 
scaling were generally better, and the implications are that using no residual 
scaling for spatial covariance estimation for stratified populations would be better 
as well in cases where the stratum variances are similar. 

Using spatial information for the estimation of finite population parameters 

(CDF, mean, standard deviation) yielded improved precision of the estimates over 

the design based estimates in some cases for the populations studied here. The 
improvements were largest for the cases where the spatial coordinates were 
included in the regression model, given that the known explanatory variables were 

already included in the model. Accounting for the residual spatial covariance led 
to additional improvements in estimation, especially for the population standard 
deviation, though this additional improvement was not always large. In general, 
using residual spatial covariance as part of a modeling strategy to obtain 
predictions to use in the Chambers and Dunstan estimator did not lead to large 
improvements in the estimates. In most cases, the simpler method of including 
the spatial coordinates (or some function of them) in the regression model was 

adequate for estimation of the population parameters for the populations studied 
here. These results are dependent upon the strength of the spatial pattern of the 
missing covariate, the explanatory power of covariates available for the analysis, 
and which spatial model is a better approximation of the spatial pattern of the 
missing covariate (using spatial coordinates, residual covariance or both). For the 
simulation studies conducted here, the, missing covariate had a planar spatial 
pattern and therefore the spatial coordinates were a better approximation than a 
residual spatial covariance function. The spatial scale of the population is also 
important. The populations considered here cover a broad scale, with distinct 
population units separated by distances on the order of kilometers. This result 
may not hold for other populations. The nature of the population and the scale of 
the observations may lead to the opposite situation, residual spatial covariance is 
an important and meaningful component of the population. 
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Appendix 1. Results for estimated means and standard deviations. 
Notation: Each model takes on several forms, which are distinct based upon the
predictions used in the estimator, and the form of the standard deviation model
used in the Chambers and Dunstan estimator. 
hte design based estimator 
olp estimate using regression predictions and the CDF estimator (11). 
oll CD using regression model predictions and gYul 'NVu. 
ol2 CD using regression model predictions and g yu;-y = 1. 
ukp estimate using kriging predictions and the CDF estimator (11).
ukl CD using kriging model predictions and g(Yul = 
uk2 CD using kriging model predictions and g(yu;-y = 1. 

Results for Population N1, models REG 2 and UK 1. 

Population Population 
Mean Standard Deviation 

Bias Rmse Bias Rmse 
hte -1.3611 10.2336 -0.3001 7.1283 

olp -0.8936 2.92886 -4.5245 5.9914 

oll -0.4705 2.69392 -3.0630 4.5739 

o12 -0.7598 2.69167 -2.4220 4.0919 

ukp -0.8453 2.90731 -4.3355 5.8525 

uki -1.2179 3.02515 -1.5142 3.9009 

uk2 -1.0866 2.81813 -1.4864 3.6789 
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Results for Population N1, REG 1 and UK 2 with heterogeneous scaling between 
stages. 

Population Population 
Mean Standard Deviation 

Bias Rmse Bias Rmse 
olp 22.1141 23.1451 -23.1612 25.1846 

oll 5.40281 8.41538 -1.2689 7.90459 

012 5.79221 8.72716 1.55462 8.15991 

ukp 22.1929 23.4753 -22.683 25.2815 

ukl 3.56706 8.05986 1.03546 8.45375 

uk2 3.86471 8.28695 4.08096 9.47838 
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Results for Population N2, models REG 2 and UK1. 

Population Population 

Mean Standard Deviation 
Bias Rmse Bias Rinse 

hte -2.2055 14.6205 -0.5700 11.8863 

olp 18.5206 26.9438 -39.565 45.0352 

oll -3.5138 12.2823 -2.4261 10.7063 

o12 -0.5061 11.7106 0.09879 11.2312 

ukp 18.6222 27.6784 -38.983 44.5835 

ukl -5.8732 16.1312 0.14826 12.8310 

uk2 -0.9214 11.9757 0.96207 11.4683 

Results for Population N2, REG 1 and UK 2 with heterogeneous scaling between 
stages. 

Population Population 
Mean Standard Deviation 

Bias Rmse Bias Rmse 

olp 28.6632 34.6943 -53.3169 57.8088 

oll -0.9124 11.9954 -1.0220 11.1796 

o12 2.26291 12.0246 1.11565 12.1264 

ukp 27.7011 34.3539 -51.1381 56.0224 

ukl -2.3469 12.7121 0.07128 11.3712 

uk2 0.81761 12.4875 2.39192 12.6129 
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Results for Population S1 stratum 1, REG1 

Stratum Stratum 
Mean Standard Deviation 

Bias Rmse Bias Rmse 

olp -52.8 92.754 35.687 43.82 

oll -24.287 30.664 28.783 32.2003 

o12 -24.077 30.7276 28.915 32.394 

Results for Population S1 stratum 1, REG 2 and UK 2 with homogeneous scaling 
between stages. 

Stratum Stratum 
Mean Standard Deviation 

Bias Rmse Bias Rmse 

hte -1.676 10.0664 -1.9085 9.0089 

olp 2.7351 3.77562 -2.2593 4.6581 

oll 1.4808 3.25150 -0.7763 5.0061 

o12 1.6577 3.37334 -0.8618 5.1079 

ukp 2.0666 3.54885 -2.1560 4.7536 

ukl 0.8444 3.09817 -0.7113 5.0977 

uk2 1.0292 3.20021 -0.8099 5.2052 
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Results for Population S1 stratum2, REG1. 

Stratum Stratum 
Mean Standard Deviation 

Bias Rmse Bias Rmse 
olp -26.953 94.730 1.0524 66.673 

oll -6.2961 17.6615 -3.638 15.2701 

ol2 -1.9188 15.439 -5.804 15.377 

Results for Population S1 stratum 2, REG 2 and UK2 with homogeneous scaling 
between the stages. 

Stratum Stratum 
Mean Standard Deviation 

Bias Rmse Bias Rmse 

hte 3.5204 19.097 -2.5197 17.351 

olp 1.9820 8.9818 -2.2999 10.283 

oll 1.0934 7.0943 -1.1258 7.7442 

o12 1.5202 7.1791 -1.3988 7.6881 

ukp 1.9069 8.8582 -2.4684 10.018 

uk1 1.1375 7.0062 -1.2999 7.6746 

uk2 1.5518 7.0807 -1.5387 7.6386 
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Results for Population S1 stratum 3, REG 1 

Stratum Stratum 
Mean Standard Deviation 

Bias Rinse Bias Rmse 

olp 39.504 80.919 -34.92 83.448 

oll -28.629 42.66 1.1215 28.26 

o12 -6.380 23.787 0.8577 28.049 

Results for Population S1 stratum 3, REG 2 and UK 2 with homogeneous scaling 
between stages. 

Stratum Stratum 
Mean Standard Deviation 

Bias Rsme Bias Muse 
hte -3.72767 62.6714 4.13466 33.5027 

olp -6.58126 20.5937 -12.956 18.7958 

oll -22.3422 29.0904 -5.2547 14.0857 

o12 -19.2440 26.3185 -3.7557 13.3597 

ukp -8.15566 20.7042 -13.106 18.5007 

ukl -22.8870 29.4822 -6.1084 14.0821 

uk2 -19.8526 26.8945 -4.7613 13.3533 
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Results for Population S2 stratum 1, REG 1 

Stratum Stratum 
Mean Standard Deviation 

Bias Rinse Bias Rmse 

olp 11.239 13.692 -13.289 20.088 

oll -1.2407 9.3749 2.1411 13.515 

ol2 0.2934 9.0492 1.197 13.236 

Results for Population S2 stratum 1, REG 2 and UK 2 with homogeneous scaling 
between stages. 

Stratum Stratum 
Mean Standard Deviation 

Bias Rmse Bias Rinse 

hte -1.9990 10.6255 -2.1618 8.36893 

olp 2.48131 6.4159 -3.8108 9.62236 

oll -3.2658 8.1063 2.01239 10.0109 

o12 -2.8128 7.7176 1.98828 9.8693 

ukp 2.12423 6.4030 -3.7722 9.8398 

ukl -3.6419 8.3828 2.07467 10.0851 

uk2 -3.2066 8.0047 2.06943 9.9596 
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Results for Population S2 stratum 2, REG 1. 

Stratum Stratum 
Mean Standard Deviation 

Bias Rinse Bias Rinse 
olp -25.5767 93.771 -2.030 65.1289 

oll -7.953 18.757 -2.954 16.149 

o12 -3.653 16.1389 -4.939 16.102 

Results for Population S2 stratum 2, REG 2 and UK 2 with homogeneous scaling 
between stages. 

Stratum Stratum 
Mean Standard Deviation 

Bias Rmse Bias Rinse 
hte 3.9476 19.5241 -2.7894 17.6021 

olp 3.1536 11.5156 -4.8394 14.3084 

oll -0.5267 8.40087 -0.6196 9.7063 

o12 0.3637 8.40280 -0.9942 9.6456 

ukp 3.3189 11.4313 -5.0656 14.3050 

uk1 -0.4561 8.3714 -0.7304 9.6812 

uk2 0.4171 8.3790 -1.0702 9.6365 
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Results for Population S2 stratum 3, REG 1. 

Stratum Stratum 
Mean Standard Deviation 

Bias Rmse Bias Rmse 
olp 51.806 77.586 -38.403 79.705 

oll -19.113 32.204 3.052 28.719 

o12 2.343 22.519 2.782 28.861 

Results for Population S2 stratum 3, REG 2 and UK 2 with homogeneous scaling 
between stages. 

Stratum Stratum 
Mean Standard Deviation 

Bias Rmse Bias Rmse 
hte -3.7145 64.2147 3.74833 34.2504 

olp 2.2967 19.5241 -11.6321 19.1103 
oll -14.018 24.4566 -3.18476 14.8481 

ol2 -10.6790 22.4625 -1.13038 14.3690 
ukp 0.8880 19.5112 -11.6735 18.9060 
uki -14.5362 24.4516 -3.5364 14.5451 

uk2 -11.3054 22.4859 -1.5129 14.0306 
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Results for Population S3 stratum 1 REG 1. 

Stratum Stratum 
Mean Standard Deviation 

Bias Rmse Bias Rmse 

olp 8.9396 11.7079 -10.578 16.449 

oll 0.1227 8.707 -0.391 12.112 

ol2 1.238 8.504 -1.365 12.069 

Results for Population S3 stratum 1, REG 2 and UK 2 with homogeneous scaling 
between stages. 

Stratum Stratum 
Mean Standard Deviation 

Bias Rmse Bias Raise 
hte -1.2892 8.7067 -1.5053 9.2073 

olp 8.2401 11.672 -10.5251 17.3648 

oll -0.1518 9.6691 -0.8658 13.3007 

o12 0.8595 9.4139 -1.7207 13.2266 

ukp 8.1214 11.6265 -10.3537 17.3098 

ukl -0.1853 9.6874 -0.8227 13.3077 

uk2 0.8283 9.4303 -1.6801 13.2341 
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Results for Population S3 stratum 1, UK 2 with heterogeneous scaling between 
stages. 

Stratum 
Mean 

Bias 

ukp 8.1960 

ukl -0.1968 

uk2 0.8242 

Rmse 

11.6401 

9.6385 

9.3807 

Stratum 
Standard Deviation 
Bias Rmse 

-10.4041 17.2675 

-0.7769 13.2453 

-1.6401 13.1694 
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Results for Population S3 stratum 2, REG 1. 

Stratum Stratum 
Mean Standard Deviation 

Bias Rinse Bias Rmse 
olp 19.832 25.696 -28.103 37.458 

oll 4.941 16.3098 -6.699 22.090 

o12 5.3277 16.3711 -6.6707 21.993 

Results for Population S3 stratum 2, REG 2 and UK 2 with homogeneous scaling 
between stages. 

Stratum Stratum 
Mean Standard Deviation 

Bias Rmse Bias Rinse 
hte 3.3439 14.5086 -2.1245 12.4388 

olp 16.5247 24.0517 -22.2775 34.0796 

oll 4.2148 16.7129 -5.1537 21.9008 

ol2 4.6287 16.7465 -5.2166 21.8178 

ukp 16.4872 24.0704 -22.2538 34.0598 

uk1 4.1844 16.6916 -5.1219 21.8932 

uk2 4.5974 16.7284 -5.1847 21.8137 
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Results for Population 53, stratum 2, UK 2 with heterogeneous scaling between 
stages. 

Stratum 
Mean 

Bias 

ukp 16.6009 

ukl 4.3185 
uk2 4.7263 

Raise 

24.0714 

16.6901 

16.7244 

Stratum 
Standard Deviation 

Bias Rinse 

-22.4220 34.0637 

-5.3276 21.9261 

-5.3833 21.8385 
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Results for Population S3 stratum 3, REG 1. 

Stratum Stratum 
Mean Standard Deviation 

Bias Rmse Bias Rinse 

olp 21.356 32.8108 -28.024 43.669 

oll 1.955 33.6008 -8.7609 42.7122 

o12 3.4297 34.023 -9.627 43.574 

Results for Population S3 stratum 3, REG 2 and UK 2 with homogeneous scaling 
between stages. 

Stratum Stratum 
Mean Standard Deviation 

Bias Rinse Bias Rmse 

hte -7.5038 50.0281 3.0564 24.6336 

olp 15.2559 34.5588 -21.5084 45.0492 

oll -0.6993 35.0168 -6.1526 43.3065 

o12 0.74038 35.2981 -7.0552 44.0129 

ukp 14.7465 34.2216 -20.9146 44.6146 

uk1 -0.8149 34.7619 -6.0357 42.9624 

uk2 0.62360 35.0391 -6.9346 43.6602 

Results for Population S3 stratum 3, UK 2 with heterogeneous scaling between 
stages. 

Stratum Stratum 
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Mean Standard Deviation 
Bias Rinse Bias Rinse 

ukp 14.4657 34.1535 -20.3206 44.2832 

ukl -1.3862 34.8488 -5.1718 42.7793 

uk2 0.0434 35.1156 -6.0716 43.4844 
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APPENDIX 2. 

Tables for Bias and RMSE of Estimated Percentiles. 
Notation: Each model takes on several forms, which are distinct based upon the
predictions used in the estimator, and the form of the standard deviation model
used in the Chambers and Dunstan estimator. The rows in the tables are as 
follows:
 
hte design based estimator
 
olp estimate using regression predictions and the CDF estimator (11). 
oll CD using regression model predictions and g(yu;7) = Nru. 
o12 CD using regression model predictions and g(yu;-y) = 1. 
ukp estimate using kriging predictions and the CDF estimator (11).
ukl CD using kriging model predictions and gYul = 4372
uk2 CD using kriging model predictions and g yu;-y = 1. 

Results for Population N1, models REG 2 and UK 1.
 

Tabled values are BIAS*100 (top block) and RMSE*100 (bottom block)
 

Estimated Percentile 
0.05 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 0.95 

1.92 0.78 1.47 1.49 1.22 1.74 1.14 0.61 0.65 0.68 0.67 

-0.91 -1.47 -0.04 -0.10 0.50 2.29 1.62 0.22 1.49 0.97 -0.32 

-0.73 -1.22 0.36 0.11 0.04 2.40 0.68 -0.82 1.15 0.71 -0.32 

-0.59 -1.15 0.43 -0.00 -0.12 2.27 0.54 -0.92 1.11 0.73 -0.33 

-0.88 -1.42 -0.05 -0.10 0.45 2.18 1.53 0.24 1.44 0.91 -0.31 

-0.46 -0.90 0.79 0.25 0.06 2.30 0.31 -1.23 1.04 0.54 -0.37 

-0.42 -0.96 0.64 0.03 -0.18 2.15 0.28 -1.16 1.03 0.63 -0.34 

Tabled values are rmse*100. 

Estimated Percentile 
0.05 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 0.95 

18.99 7.74 14.52 14.74 12.08 17.20 11.24 6.00 6.47 6.76 6.60 

9.03 14.59 0.37 1.01 4.96 22.66 16.07 2.21 14.78 9.61 3.15 

7.26 12.09 3.60 1.05 0.38 23.71 6.73 8.15 11.36 7.08 3.15 

5.89 11.39 4.25 0.05 1.1,4 22.45 5.30 9.09 11.03 7.27 3.28 

8.66 14.03 0.45 1.01 4.50 21.61 15.16 2.33 14.23 8.99 3.02 

4.56 8.93 7.83 2.51 0.61 22.72 3.05 12.14 10.33 5.36 3.67 

4.15 9.45 6.31 0.26 1.77 21.30 2.81 11.49 10.23 6.27 3.41 
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Results for Population N1, using models REG 1 and UK 2 with heterogeneous 
scaling between the two stages. 

Tabled values are BIAS*100 (top block) and RMSE*100 (bottom block) 

Estimated Percentile 
0.05 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 0.95 

-1.81 -4.27 -5.15 -6.49 -0.98 4.64 1.96 -1.12 1.23 2.84 3.22 

0.45 -0.04 1.17 -0.29 -1.06 0.58 -2.03 -3.61 0.62 1.13 1.01 

1.18 0.71 1.51 -0.39 -1.62 -0.39 -3.10 -4.62 0.14 1.17 1.27 

-1.84 -4.20 -4.99 -6.28 -0.84 4.93 1.77 -1.52 0.99 2.40 3.15 

0.70 0.30 1.53 -0.03 -0.96 0.45 -2.26 -3.94 0.25 0.77 0.71 

1.48	 1.08 1.87 -0.15 -1.54 -0.55 -3.38 -5.00 -0.28 0.79 0.96 

rmse*100 

0.05 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 0.95 

17.99 42.49 51.29 64.59 9.76 46.16 19.49 11.11 12.22 28.27 32.03 

4.46 0.45 11.63 2.93 10.59 5.77 20.16 35.95 6.17 11.29 10.08 

11.77 7.02 14.98 3.89 16.09 3.91 30.82 46.00 1.35 11.65 12.61 

18.28 41.75 49.67 62.44 8.36 49.05 17.58 15.15 9.88 23.89 31.33 

6.92 2.97 15.25 0.32 9.60 4.52 22.53 39.23 2.49 7.67 7.06 

14.77 10.78 18.56 1.46 15.35 5.50 33.62 49.78 2.75 7.82 9.54 
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Results for Population N2, models REG 2 and UK1.
 

Tabled Values are BIAS*100 (top block) and RMSE*100 (bottom block).
 

Estimated Percentile 
0.05 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 0.95 

-3.19 -7.47 -11.8 -9.29 -2.50 3.45 9.52 8.64 6.03 3.50 2.53 

-0.95 0.17 -0.19 0.84 0.99 0.63 2.49 2.27 0.08 -1.35 -0.67 

-0.18 0.74 -0.22 0.11 -0.21 -0.80 1.11 1.23 -0.51 -1.30 -0.22 

-3.12 -7.26 -11.38-9.08 -2.82 2.87 9.22 8.56 5.95 3.41 2.53 

-0.48 0.72 0.29 1.12 1.05 0.50 2.15 1.81 -0.41 -1.79 -0.99 

-0.06 0.88 -0.13 0.13 -0.26 -0.91 0.93 1.03 -0.70 -1.44 -0.30 

rmse*100 

0.05 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 0.95 

16.81 9.97 10.17 13.22 11.02 16.33 20.25 12.62 12.67 7.76 4.36 

31.37 73.56 115.8 91.54 24.65 33.97 93.80 85.09 59.38 34.45 24.91 

9.32 1.63 1.87 8.27 9.72 6.24 24.55 22.34 0.78 13.34 6.58 

1.82 7.34 2.16 1.12 2.05 7.84 10.89 12.08 5.04 12.76 2.14 

30.74 71.54 112.1 89.39 27.76 28.28 90.83 84.31 58.62 33.58 24.89 

4.71 7.12 2.85 11.00 10.33 4.91 21.15 17.85 4.00 17.62 9.73 

0.60 8.67 1.23 1.30 2.59 9.00 9.15 10.14 6.89 14.16 2.94 

http:11.38-9.08
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Results for Population N2, using models REG 1 and UK2 with hetereogeneous
 
scaling
 

between the two stages.
 

Tabled values are BIAS*100 (top block) and RMSE*100 (bottom block).
 

Estimated Percentile 
0.05 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 0.95 

1.74 1.02 0.96 1.28 1.08 1.49 2.01 1.28 1.24 0.80 0.47 

-3.11 -7.73 -13.7 -14.5 -6.34 4.29 9.47 9.42 7.71 6.33 4.32 

-0.38 0.71 -0.05 0.45 0.29 -0.26 1.59 1.61 -0.25 -1.17 -0.18 

0.30 1.23 -0.03 -0.08 -0.73 -1.54 0.26 0.55 -0.87 -1.11 0.30 

-3.04 -7.67 -13.4 -13.7 -5.52 4.31 9.25 9.20 7.28 5.84 4.17 

-0.26 0.91 0.19 0.73 0.47 -0.14 1.59 1.51 -0.42 -1.39 -0.37 

0.46	 1.45 0.21 0.12 -0.58 -1.47 0.22 0.41 -1.08 -1.36 0.10 

rmse*100 

0.05 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 0.95 

17.3 10.1 9.5 12.6 10.6 14.8 19.9 12.7 12.3 7.9 4.6 

30.8 76.5 135.8 144.0 62.7 42.5 93.8 93.3 76.3 62.6 42.8 

3.81 6.99 0.54 4.87 2.85 2.54 15.71 15.95 2.47 11.63 1.75 

2.94 12.15 0.31 0.83 7.24 15.25 2.55 5.49 8.65 11.01 2.99 

30.1 76.0 132.3 135.5 54.6 42.7 91.6 91.0 72.1 57.9 41.3 

2.55 9.03 1.93 7.21 4.69 1.40 15.7 14.98 4.12 13.77 3.69 

4.52 14.34 2.07 1.23 5.78 14.53 2.14 4.11 10.69 13.43 0.96 
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Results for Population S1 by stratum, models REG 2, UK2 with homogeneous
 
scaling between the two stages, and REG 1.
 

Tabled values are BIAS*100 (top block) and RMSE*100 (bottom block).
 

STRATUM 1.
 

Estimated Percentile 
0.05 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 0.95 

1.48 1.95 2.03 2.44 1.86 2.92 2.13 3.85 2.94 -7.38 -33.2 

0.25 -0.68 0.11 -1.16 -3.07 0.82 0.37 0.33 0.86 1.11 0.80 

0.02 -0.68 -0.38 -0.40 -2.97 1.17 -1.02 0.65 0.70 -0.22 0.20 

0.02 -0.62 -0.44 -0.38 -3.01 1.07 -1.12 0.53 0.66 -0.19 0.23 

0.28 -0.76 -0.04 -1.06 -2.80 2.10 0.86 0.73 1.49 1.10 0.74 

0.02 -0.73 -0.43 -0.19 -2.68 1.94 -0.40 1.07 1.05 -0.20 0.12 

0.02	 -0.66 -0.48 -0.17 -2.72 1.84 -0.51 0.95 1.01 -0.16 0.16 

REG 1 results BIAS*100 

13.85 0.03 -4.63 -7.05 -10.9 -11.9 -13.5 -11.5 -12.7 -13.0 -9.27 

-1.08 -2.69 -5.38 -7.05 -10.3 -11.1 -13.5 -12.8 -13.3 -14.1 -10.93 

-1.04 -2.65 -5.45 -7.21 -10.5 -11.4 -13.7 -13.0 -13.5 -14.3 -10.9 

rmse*100 

0.05 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 0.95 

14.77 19.48 20.26 24.41 18.64 29.15 21.28 38.48 29.42 73.77 331.66 

2.49 6.75 1.14 11.59 30.66 8.24 3.68 3.28 8.61 11.12 7.99 

0.17 6.84 3.83 3.98 29.68 11.68 10.19 6.48 7.02 2.24 1.95 

0.24 6.16 4.39 3.80 30.09 10.67 11.23 5.28 6.57 1.86 2.34 

2.77 7.59 0.43 10.59 28.00 20.98 8.61 7.28 14.95 11.00 7.37 

0.19 7.32 4.31 1.91 26.79 19.40 4.03 10.74 10.51 1.96 1.24 

0.22	 6.63 4.82 1.74 27.17 18.40 5.14 9.52 10.13 1.58 1.63 

REG 1 results rmse*100 

0.05 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 0.95 

138 5 0.34 46.31 70.52 109.3 118.8 135.3 114.9 127.1 130.1 92.66 

10.79 26.89 53.85 70.5 102.6 111.2 134.9 127.6 132.8 141.4 109.30 

10.35 26.54 54.53 72.09 104.5 113.7 137.6 130.1 134.9 142.8 109.09 
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STRATUM 2
 

Tabled values are BIAS*100 (top block) and RMSE*100 (bottom block)
 

Estimated Percentile 
0.05 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 0.95 

0.36 1.40 0.88 0.32 0.37 0.27 0.11 0.66 0.50 -5.47 -18.52 

-0.75 0.64 0.40 0.64 0.08 1.50 -0.42 -0.06 -1.99 -1.35 -0.11 

-0.99 0.55 0.77 0.25 0.93 1.55 -0.33 -0.70 -3.07 -1.71 -0.49 

-1.00 0.56 0.74 0.15 0.77 1.37 -0.45 -0.70 -3.02 -1.67 -0.44 

-0.85 0.66 0.56 0.88 0.27 1.41 -0.51 -0.02 -2.11 -1.43 -0.16 

-1.08 0.54 0.87 0.44 1.05 1.51 -0.41 -0.79 -3.16 -1.81 -0.53 

-1.07 0.54 0.84 0.34 0.90 1.34 -0.53 -0.78 -3.11 -1.77 -0.47 

REG 1 results, BIAS*100 

12.09 -2.51 -1.40 -0.56 4.68 5.89 3.75 3.57 1.88 1.10 1.68 

-2.52 -0.07 3.25 3.65 6.45 6.07 2.45 -0.23 -3.92 -3.13 -2.00 

-2.35 -0.33 2.40 2.61 5.48 5.37 1.98 -0.37 -3.76 -2.50 -1.30 

rmse *100 

0.05 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 0.95 

3.57 14.04 8.83 3.21 3.68 2.65 1.08 6.57 4.95 54.74 185.23 

7.47 6.43 3.95 6.43 0.75 14.95 4.19 0.63 19.95 13.55 1.14 

9.91 5.54 7.67 2.54 9.29 15.47 3.32 7.04 30.73 17.07 4.93 

9.97 5.61 7.43 1.52 7.70 13.73 4.52 6.99 30.22 16.69 4.36 

8.47 6.59 5.65 8.80 2.68 14.10 5.11 0.22 21.09 14.28 1.62 

10.78 5.39 8.71 4.37 10.54 15.13 4.12 7.87 31.63 18.09 5.29 

10.75	 5.44 8.43 3.36 8.96 13.38 5.35 7.81 31.08 17.73 4.69 

REG 1 results, rmse*100 

120.8 25.15 14.04 5.62 46.84 58.90 37.53 35.74 18.76 11.03 16.77 

25.22 0.68 32.47 36.52 64.52 60.69 24.46 2.30 39.18 31.32 20.05 

23.52 3.27 24.03 26.12 54.85 53.68 19.78 3.68 37.61 24.99 12.96 
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STRATUM 3
 

Tabled values are BIAS*100 (top block) and RMSE*100 (bottom block)
 

Estimated Percentile 
0.05 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 0.95 

2.94 11.64 45.15 47.06 41.13 33.98 27.23 20.64 13.79 6.99 3.42 

-1.30 -2.25 0.80 0.72 0.64 2.70 1.43 2.03 0.52 -0.07 -0.38 

-1.07 -1.89 0.95 0.80 1.10 2.31 1.16 1.58 0.10 -0.43 -1.56 

-0.69 -1.64 0.89 0.60 0.85 2.18 1.07 1.56 0.03 -0.42 -1.28 

-1.32 -2.51 0.73 0.59 0.65 2.82 1.55 2.21 0.40 -0.06 -0.53 

-1.15 -2.20 0.81 0.65 1.09 2.41 1.36 1.72 0.05 -0.51 -1.66 

-0.81 -1.94 0.71 0.46 0.84 2.28 1.28 1.71 -0.05 -0.49 -1.39 

REG 1 results, BIAS*100 

3.26 -3.34 -0.02 -1.94 -2.81 -3.05 -3.51 2.18 5.20 6.36 3.38 

0.23 -1.59 0.52 1.61 1.31 0.66 -0.77 0.78 0.87 0.04 -1.92 

1.06 -1.13 -0.60 -0.12 -0.54 -1.09 -2.19 0.22 1.34 1.30 -0.57 

rmse*100 

0.05 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 0.95 

29.4 116.4 451.5 470.6 411.3 339.8 272.3 206.4 137.9 69.9 34.2 

13.03 22.53 7.99 7.17 6.42 27.01 14.27 20.27 5.17 0.75 3.81 

10.75 18.92 9.54 7.95 10.97 23.09 11.65 15.77 1.02 4.31 15.64 

6.95 16.37 8.86 6.03 8.53 21.82 10.75 15.55 0.25 4.25 12.78 

13.17 25.14 7.30 5.94 6.48 28.21 15.50 22.07 4.05 0.61 5.33 

11.47 21.97 8.05 6.48 10.94 24.13 13.58 17.18 0.48 5.06 16.65 

8.10 19.36 7.15 4.61 8.44 22.83 12.77 17.07 0.47 4.93 13.94 

REG 1 results, rmse*100 

32.59 33.45 0.16 19.37 28.09 30.45 35.15 21.78 51.96 63.60 33.81 

2.28 15.94 5.19 16.10 13.13 6.60 7.68 7.81 8.73 0.37 19.23 

10.56 11.32 6.04 1.24 5.38 10.85 21.91 2.18 L '.35 12.98 5.71 
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Results for Population S2 by stratum, models REG 2 and UK 2 with
 
homogeneous scaling between the two stages, and REG 1.
 

STRATUM 1
 

Tabled values are BIAS*100 (top block) and RMSE*100 (bottom block)
 

Estimated Percentile 
0.05 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 0.95 

1.52 2.43 2.75 3.12 2.70 3.22 3.52 3.31 1.19 -9.03 -30.62 

-0.05 -0.94 -0.83 -3.40 -0.44 1.68 2.49 2.10 0.07 2.19 0.65 

0.08 -0.18 -0.75 -1.54 0.46 1.67 1.37 2.01 -0.91 -0.24 -0.82 

0.17 -0.10 -0.84 -1.67 0.24 1.39 1.09 1.80 -0.99 -0.09 -0.68 

-0.12 -0.91 -0.88 -3.25 -0.45 2.14 2.87 2.27 0.09 2.01 0.55 

0.05 -0.20 -0.75 -1.45 0.68 1.96 1.65 2.18 -0.82 -0.29 -0.90 

0.14	 -0.13 -0.84 -1.58 0.46 1.69 1.37 1.97 -0.91 -0.15 -0.76 

REG 1 results, BIAS*100 

0.57 -0.93 -4.27 -7.10 -6.45 -3.12 1.62 6.63 5.29 5.49 3.13 

1.08 0.14 -1.86 -2.98 -1.26 0.06 0.40 2.04 -0.45 0.41 0.11 

1.13	 0.10 -2.08 -3.39 -1.83 -0.50 -0.01 1.92 -0.36 0.78 0.48 

rmse*100 

0.05 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 0.95 

15.1 24.2 27.3 31.0 26.8 32.0 35.1 32.9 11.8 89.8 304.7 

0.55 9.33 8.29 33.82 4.35 16.73 24.78 20.90 0.66 21.81 6.44 

0.76 1.83 7.45 15.36 4.55 16.62 13.67 19.97 9.02 2.40 8.15 

1.67 1.04 8.36 16.62 2.39 13.87 10.88 17.93 9.83 0.92 6.79 

1.19 9.08 8.76 32.39 4.52 21.27 28.55 22.56 0.92 20.00 5.46 

0.47 2.03 7.50 14.46 6.75 19.53 16.41 21.67 8.20 2.90 8.92 

1.39	 1.26 8.37 15.69 4.62 16.80 13.64 19.62 9.05 1.48 7.60 

REG 1 results, rmse*100 
5.68 9.30 42.74 70.96 64.46 31.19 16.23 66.29 52.89 54.92 31.33 

10.81 1.40 18.64 29.78 12.60 0.58 4.04 20.44 4.54 4.11 1.13 

11.33 1.03 20.84 33.95 18.35 5.02 0.11 19.23 3.60 7.76 4.77 
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STRATUM 2
 

Tabled values are BIAS*100 (top block) and RMSE*100 (bottom block)
 

Estimated Percentile 
0.05 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 0.95 

2.69 8.31 20.23 18.03 12.41 6.27 0.03 -6.31 -12.3 -17.9 -20.23 

-0.75 0.06 1.56 1.98 -1.15 -0.02 -0.15 0.30 -0.48 -1.09 0.20 

-0.88 0.24 2.39 1.82 -0.02 0.98 -0.10 -1.01 -2.01 -1.95 -0.58 

-0.83 0.25 2.30 1.61 -0.30 0.69 -0.31 -1.07 -1.96 -1.88 -0.43 

-0.82 0.08 1.69 2.04 -1.12 -0.05 -0.17 0.25 -0.56 -1.17 0.20 

-0.93 0.24 2.45 1.89 0.01 0.96 -0.15 -1.08 -2.08 -1.99 -0.59 

-0.87 0.26 2.37 1.68 -0.27 0.66 -0.36 -1.14 -2.03 -1.91 -0.45 

REG 1 results, BIAS*100 

11.18 -2.15 -0.36 1.21 2.25 4.85 4.29 4.18 3.47 1.33 1.65 

-2.30 -0.52 4.83 5.57 4.65 5.16 2.58 -0.13 -2.64 -3.32 -2.06 

-2.12 -0.73 3.94 4.51 3.63 4.40 2.09 -0.30 -2.44 -2.71 -1.37 

rmse*100 

0.05 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 0.95 

26.8 82.6 201.3 179.4 123.4 62.4 0.30 62.8 122.4 177.8 201.3 

7.49 0.62 15.55 19.72 11.43 0.19 1.49 2.94 4.80 10.87 2.04 

8.74 2.37 23.74 18.12 0.20 9.80 0.95 10.07 20.00 19.43 5.76 

8.31 2.52 22.89 16.02 3.03 6.83 3.05 10.68 19.51 18.71 4.32 

8.18 0.77 16.85 20.34 11.12 0.46 1.66 2.44 5.56 11.62 1.98 

9.21 2.44 24.40 18.82 0.13 9.55 1.47 10.73 20.66 19.77 5.90 

8.70	 2.55 23.55 16.71 2.69 6.56 3.58 11.37 20.21 19.02 4.46 

REG 1 results, rmse*100 

111.8 21.49 3.64 12.12 22.50 48.53 42.87 41.79 34.66 13.28 16.52 

23.03 5.19 48.29 55.69 46.49 51.59 25.83 1.32 26.40 33.15 20.64 

21.21 7.30 39.36 45.07 36.32 44.00 20.94 2.99 24.41 27.12 13.67 
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STRATUM 3
 

Tabled values are BIAS*100 (top block) and RMSE*100 (bottom block)
 

Estimated Percentile 
0.05 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 0.95 

4.09 10.84 43.55 46.74 40.90 34.12 27.25 20.32 13.73 6.88 3.52 

-1.23 -2.50 0.29 0.21 0.79 4.14 1.17 1.01 -0.38 -0.82 -0.02 

-0.80 -2.02 0.63 0.06 1.46 3.67 0.85 0.58 -0.81 -0.91 -1.14 

-0.32 -1.70 0.53 -0.14 1.20 3.51 0.74 0.52 -0.90 -0.94 -0.83 

-1.23 -2.65 0.32 0.11 0.87 4.31 1.27 1.11 -0.44 -0.77 -0.12 

-0.84 -2.14 0.58 -0.00 1.48 3.76 0.95 0.66 -0.82 -0.95 -1.20 

-0.37 -1.83 0.47 -0.20 1.22 3.60 0.85 0.61 -0.92 -0.98 -0.90 

REG 1 results, BIAS*100 

2.44 -4.40 -0.58 -2.58 -2.81 -1.95 -4.05 0.78 3.72 6.18 3.69 

0.42 -1.70 0.02 0.64 1.41 1.78 -1.21 -0.38 -0.20 -0.25 -1.46 

1.30	 -1.17 -1.01 -1.04 -0.43 0.07 -2.67 -1.09 0.08 0.92 -0.18 

rmse*100 

0.05 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 0.95 

40.7 107.9 433.3 465.1 406.9 339.5 271.2 202.2 136.6 68.4 35.1 

12.24 24.90 2.88 2.08 7.87 41.20 11.67 10.02 3.82 8.15 0.20 

7.94 20.07 6.32 0.60 14.55 36.53 8.49 5.76 8.11 9.04 11.35 

3.17 16.96 5.29 1.41 11.96 34.88 7.40 5.17 8.97 9.39 8.28 

12.26 26.38 3.14 1.07 8.67 42.85 12.65 11.06 4.42 7.63 1.24 

8.34 21.28 5.79 0.05 14.78 37.44 9.50 6.59 8.20 9.44 11.91 

3.71	 18.17 4.65 2.01 12.16 35.81 8.45 6.08 9.16 9.74 8.96 

REG1 results, rmse*100 

24.38 44.01 5.81 25.83 28.10 19.52 40.50 7.76 37.20 61.80 36.87 

4.21 17.00 0.24 6.40 14.14 17.82 12.09 3.80 1.97 2.49 14.65 

12.98 11.68 10.10 10.41 4.28 0.69 26.71 10.87 0.78 9.22 1.80 
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Results for Population S3 by stratum, models REG 2 and UK 2 with
 
homogeneous scaling between the two stages and REG 1.
 
STRATUM 1
 

Tabled values are BIAS*100 (top block) and RMSE*100 (bottom block)
 

Estimated Percentile 
0.05 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 0.95 

23.57 -2.88 -12.5 -19.4 -25.9 -32.2 -39.1 -45.6 -52.5 -59.2 -62.7 

-0.06 -0.37 -0.69 -1.83 -3.25 -0.58 -0.08 2.77 0.59 2.34 1.92 

-0.11 0.07 0.73 0.14 -1.05 0.92 -0.92 1.17 -1.03 -0.72 -0.16 

-0.11 0.06 0.63 -0.06 -1.34 0.63 -1.17 1.06 -1.03 -0.53 0.06 

-0.04 -0.36 -0.73 -1.81 -3.23 -0.54 -0.08 2.76 0.57 2.34 1.91 

-0.11 0.07 0.72 0.15 -1.04 0.93 -0.91 1.16 -1.05 -0.73 -0.17 

-0.11 0.06 0.63 -0.06 -1.32 0.63 -1.17 1.04 -1.05 -0.54 0.05 

REG 1 results, BIAS*100 

0.05 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 0.95 

0.15 -0.35 -1.10 -2.00 -4.68 -1.74 -0.91 3.22 1.48 2.83 2.18 

0.03 0.17 0.59 -0.26 -1.66 0.27 -1.44 1.00 -1.00 -0.58 -0.05 

0.03	 0.16 0.48 -0.49 -1.97 -0.05 -1.71 0.88 -0.98 -0.38 0.19 

rmse*100 

0.05 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 0.95 

234.5 28.7 124.6 192.9 257.7 320.6 388.7 454.0 522.3 588.9 624.0 

0.62 3.69 6.91 18.19 32.31 5.77 0.75 27.58 5.87 23.24 19.14 

1.12 0.66 7.23 1.42 10.49 9.17 9.12 11.68 10.27 7.16 1.62 

1.11 0.63 6.30 0.63 13.30 6.23 11.62 10.51 10.27 5.26 0.58 

0.40 3.55 7.26 17.99 32.13 5.39 0.85 27.45 5.66 23.26 19.00 

1.09 0.68 7.16 1.49 10.36 9.26 9.10 11.56 10.45 7.30 1.69 

1.08	 0.64 6.25 0.55 13.17 6.31 11.61 10.38 10.45 5.41 0.51 

REG 1 results, rmse*100 

1.46 3.53 11.03 20.04 46.78 17.45 9.11 32.20 14.75 28.32 21.84 

0.33 1.68 5.92 2.62 16.;:8 2.70 14.44 9.97 9.96 5.83 0.52 

0.28 1.64 4.82 4.91 19.65 0.50 17.13 8.85 9.77 3.76 1.89 



122 

STRATUM 2
 

Tabled values are BIAS*100 (top block) and RMSE*100 (bottom block)
 

Estimated Percentile 

0.05 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 0.95 

30.30 26.99 20.06 13.28 6.75 0.02 -6.57 -13.0 -19.7 -26.4 -29.68 

-0.66 -0.38 -1.61 -1.89 -0.39 -1.69 -0.00 0.33 1.98 -0.40 1.46 

-0.41 0.10 -0.16 -0.65 -0.24 -1.61 0.29 -0.60 -0.66 -1.60 0.05 

-0.35 0.13 -0.16 -0.74 -0.41 -1.81 0.11 -0.72 -0.69 -1.58 0.13 

-0.66 -0.38 -1.62 -1.88 -0.35 -1.68 0.02 0.33 1.98 -0.38 1.46 

-0.41 0.10 -0.15 -0.63 -0.23 -1.60 0.28 -0.61 -0.67 -1.60 0.05 

-0.35 0.13 -0.14 -0.72 -0.40 -1.80 0.10 -0.73 -0.70 -1.58 0.13 

REG 1 results, BIAS*100 

-1.08 -0.26 -1.21 -2.32 -0.84 -1.53 -0.23 0.74 2.45 -0.14 1.61 

-0.60 0.09 0.07 -0.50 -0.17 -1.52 0.45 -0.43 -0.56 -1.56 0.04 

-0.53 0.12 0.05 -0.61 -0.35 -1.73 0.26 -0.56 -0.59 -1.54 0.12 

rmse*100 

0.05 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 0.95 

301.5 268.5 199.6 132.2 67.2 0.2 65.4 129.1 195.9 263.2 295.3 

6.61 3.80 15.98 18.84 3.87 16.85 0.04 3.29 19.75 3.94 14.53 

4.07 0.96 1.64 6.44 2.39 15.99 2.85 5.98 6.58 15.89 0.52 

3.50 1.26 1.58 7.36 4.11 17.97 1.06 7.17 6.91 15.76 1.28 

6.59 3.77 16.10 18.75 3.52 16.75 0.16 3.31 19.69 3.80 14.52 

4.04 1.03 1.48 6.25 2.25 15.92 2.80 6.06 6.64 15.90 0.51 

3.48	 1.33 1.42 7.18 3.97 17.90 1.02 7.25 6.96 15.76 1.27 

REG 1 results, rmse*100 

10.85 2.62 12.06 23.22 8.45 15.33 2.26 7.44 24.51 1.44 16.07 

5.99 0.94 0.67 5.03 1.73 15.24 4.49 4.34 5.64 15.58 0.37 

5.25 1.21 0.52 6.11 3.54 17.34 2.57 5.59 5.94 15.37 1.21 
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STRATUM 3
 

Tabled values are BIAS*100 (top block) and RMSE*100 (bottom block)
 

Estimated Percentile 

0.05 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 0.95 

64.18 60.80 54.14 48.06 41.32 34.53 27.32 20.41 13.93 6.87 3.42 

-0.29 -1.76 0.83 -0.50 1.42 0.69 0.22 -0.11 0.84 -0.84 0.55 

-0.53 -1.21 0.35 -0.28 0.86 0.92 0.10 -0.75 0.78 -1.40 -0.42 

-0.49 -1.09 0.25 -0.29 0.81 0.86 0.04 -0.78 0.73 -1.38 -0.34 

-0.29 -1.78 0.83 -0.50 1.42 0.70 0.23 -0.12 0.82 -0.86 0.52 

-0.53 -1.22 0.34 -0.28 0.87 0.93 0.11 -0.75 0.78 -1.41 -0.43 

-0.50 -1.11 0.25 -0.29 0.82 0.86 0.04 -0.78 0.73 -1.39 -0.35 

REG 1 results, BIAS*100 

-0.28 -1.73 0.79 -0.60 1.63 0.78 0.64 0.13 0.91 -0.58 0.89 

-0.52 -1.15 0.35 -0.33 0.93 1.03 0.20 -0.71 0.85 -1.31 -0.27 

-0.48 -1.03 0.24 -0.33 0.88 0.96 0.13 -0.75 0.79 -1.29 -0.18 

rmse*100 

0.05 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 0.95 

638.6 605.0 538.6 478.2 411.1 343.5 271.9 203.0 138.6 68.4 34.0 

2.87 17.51 8.26 5.00 14.17 6.84 2.23 1.10 8.34 8.37 5.48 

5.23 12.00 3.47 2.81 8.57 9.18 1.00 7.43 7.79 13.98 4.21 

4.89 10.89 2.52 2.87 8.09 8.51 0.37 7.74 7.27 13.75 3.39 

2.88 17.66 8.23 4.98 14.10 6.93 2.30 1.23 8.19 8.56 5.20 

5.28 12.15 3.41 2.78 8.61 9.26 1.06 7.42 7.74 14.08 4.31 

4.94	 11.05 2.46 2.85 8.13 8.59 0.43 7.73 7.22 13.85 3.49 

REG 1 results, rmse*100 

2.80 17.35 7.92 6.02 16.34 7.84 6.36 1.34 9.11 5.82 8.88 

5.22 11.53 3.45 3.26 9.34 10.31 1.96 7.14 8.48 13.10 2.66 

4.80 10.35 2.42 3.29 8.82 9.59 1.31 7.50 7.90 12.85 1.78 
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Results for Population S3 by stratum, model UK 2 with heterogeneous scaling
 
between the two stages.
 

STRATUM 1
 

Tabled values are BIAS*100 (top block) and RMSE*100 (bottom block)
 

Estimated Percentile 
0.05 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 0.95 

-0.05 -0.37 -0.75 -1.83 -3.26 -0.61 -0.14 2.73 0.56 2.34 1.91 

-0.12 0.06 0.70 0.13 -1.07 0.89 -0.95 1.13 -1.07 -0.75 -0.18 

-0.12 0.06 0.61 -0.07 -1.36 0.59 -1.20 1.01 -1.07 -0.56 0.04 

rmse*100 

0.05 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 0.95 

0.51 3.75 7.48 18.27 32.59 6.14 1.44 27.29 5.64 23.38 19.13 

1.18 0.63 7.00 1.33 10.72 8.91 9.48 11.31 10.68 7.55 1.85 

1.17	 0.59 6.07 0.74 13.56 5.94 12.01 10.12 10.68 5.64 0.39 

STRATUM 2 

Tabled values are BIAS*100 (top block) and RMSE*100 (bottom block) 

Estimated Percentile 
0.05 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 0.95 

-0.67 -0.38 -1.62 -1.88 -0.34 -1.65 0.02 0.36 2.00 -0.38 1.47 

-0.42 0.09 -0.16 -0.63 -0.20 -1.58 0.30 -0.59 -0.64 -1.58 0.06 

-0.36 0.12 -0.15 -0.72 -0.38 -1.78 0.12 -0.71 -0.68 -1.57 0.14 

rmse*100 

0.05 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 0.95 

6.68 3.81 16.22 18.78 3.37 16.55 0.24 3.59 19.97 3.77 14.72 

4.16 0.94 1.58 6.26 2.03 15.83 2.99 5.91 6.44 15.81 0.64 

3.59 1.23 1.52 7.19 3.75 17.82 1.19 7.10 6.75 15.69 1.39 
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STRATUM 3
 

Tabled values are BIAS*100 (top block) and RMSE*100 (bottom block)
 

Estimated Percentile 

0.05 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 0.95 

-0.28 -1.76 0.83 -0.50 1.42 0.70 0.23 -0.13 0.81 -0.86 0.52 

-0.52 -1.21 0.35 -0.28 0.87 0.93 0.10 -0.75 0.78 -1.43 -0.44 

-0.49 -1.10 0.25 -0.29 0.82 0.86 0.04 -0.78 0.73 -1.40 -0.36 

rmse*100 

0.05 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 0.95 

2.85 17.62 8.31 5.00 14.20 7.01 2.29 1.29 8.15 8.60 5.19 

5.24 12.09 3.46 2.82 8.66 9.31 1.02 7.53 7.78 14.26 4.43 

4.90 10.98 2.52 2.88 8.18 8.63 0.40 7.84 7.25 14.03 3.61 




