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The overall objective of this research was to define the cellular basis underlying 

heritable subfertility in roosters homozygous for the rose comb allele (R/R). Fertilization 

in the hen is preceded by the ascension of motile sperm through the vagina and sperm 

sequestration within sperm storage tubules (SST). The objective of the first set of 

experiments was to determine if reduced sperm sequestration could account for subfertility. 

Sperm sequestration differed between genotypes following intravaginal insemination (p < 

0.0001). However, sperm sequestration did not differ between genotypes when sperm 

were incubated with SST in vitro (p > 0.05). Therefore, subfertility was attributed to 

reduced sperm transport within the vagina. To test this hypothesis, an assay was developed 

to evaluate fowl sperm motility in vitro. Based upon this assay, ejaculates from subfertile 

males contained smaller subpopulations of highly motile sperm than the ejaculates from 

controls (p < 0.001). 

The objective of the next set of experiments was to characterize the motility of 

individual sperm and to identify a mechanism that could account for the genotypic 
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difference in sperm cell motility. Computer-assisted sperm motion analysis evaluation 

revealed that ejaculates from controls contained 91% motile sperm whereas ejaculates from 

subfertile males contained 62% motile sperm (p < 0.001). The ATP concentration in sperm 

from subfertile males was 63% less than that of sperm from controls (p < 0.001). A link 

between sperm ATP concentration and immotility was investigated. First, sperm 

metabolism was evaluated using motility as an endpoint. The genotypic difference in sperm 

motility persisted when ATP synthesis was limited to glycolysis (p < 0.001). Consequently, 

mitochondrial respiration could not account for the genotypic difference in sperm motility. 

In contrast, sperm uptake of [1,2-3H] 2-deoxy-D-glucose did differ between genotypes (p 

< 0.001). The activity of key glycolytic enzymes, creatine kinase, and dynein ATPase did 

not differ between genotypes (p > 0.05). Therefore reduced sperm motility did not appear 

to be due to ATP synthesis, allocation of high energy phosphate bonds along the axoneme, 

or ATP consumption (p > 0.05). In conclusion, subfertility of roosters homozygous for the 

rose comb allele was attributed to decreased spermatozoal glucose transport. 
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Identification of a Mechanism Underlying Heritable Subfertility in Roosters
 
Homozygous for the Rose Comb Allele.
 

CHAPTER 1 

INTRODUCTION 

Reproduction in the domestic fowl depends upon events that occur throughout the 

lifespan of the animal. The gonadal-hypothalamic-pituitary axis becomes functional and the 

reproductive tracts develop in ovo. The male reproductive tract becomes patent within a 

period of weeks after hatching. As evidenced by gonadal weight, gametogenesis begins at 

puberty. Likewise, secondary sexual attributes and reproductive behavior are apparent at 

puberty. Fertilization and the subsequent development of a new organism are dependent 

on the successful transfer of sperm from the male to the female. Movement of spermatozoa 

from the vagina to the infundibulum, where fertilization occurs, is dependent upon a tier 

of prerequisites: (1) passage of sperm through the hen's vagina, (2) sperm sequestration 

within the sperm storage tubules (SST), (3) passage of sperm from the shell gland to the 

infundibulum, and (4) gamete recognition. 

Fertilization in the hen is complicated by a lack of synchronization of ovulation with 

copulation. Additionally, a nascent egg often blocks the oviduct following deposition of 

sperm within the vagina. These apparent blocks to fertilization are overcome by sperm 

sequestration within SST. The SST are simple, unbranched tubules located in the utero­

vaginal junction (Hodges, 1974). The role of SST in fertilization has been recently 

reviewed by Bakst et al. (1994). As stated previously, fertilization in the fowl depends 

upon a tier of prerequisites. A review of the prerequisites that relate to sperm follows. 
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While sperm sequestration affords the hen a viable population of sperm within the 

oviduct, only 1-2% of sperm deposited in the vagina enter the SST (Brillard, 1993). 

Therefore, several researchers have proposed selection processes in the vagina that allow 

only competent sperm to reach the SST (Bakst et al., 1994). First, 84-92% of inseminated 

sperm are lost from the oviduct either by defecation or muscular contractions of the cloaca 

(Allen and Grigg, 1957; Howarth, 1971). The remnant subpopulation appears to be 

segregated by two mechanisms. First, a motile subpopulation of sperm are believed to 

propel themselves to the UVJ by moving over the vaginal surface between mucosal folds 

(Bakst et al., 1994). This sperm movement is enhanced by the beating action of cilia 

present on the epithelia cells in the mucosal folds. Second, immotile sperm are believed 

to be lost from the oviduct when trapped in fluid or debris moving in an abovarian 

direction. Therefore, factors that affect sperm transport in the vagina are the contractility 

of the oviduct, the beating of epithelia cilia, and the motility of sperm within the oviduct. 

Sperm antigens may also affect sperm transport in the vagina. Steele and Wishart 

(1992) reported that although semen contains immunoglobulins, sperm are 

immunoglobulin-free prior to ejaculation. However, immunoglobulins are bound to the 

surface of many sperm following deposition in the vagina. The majority of sperm 

characterized by surface bound immunoglobulin were dead, whereas only a small 

percentage of viable sperm had surface bound immunoglobulin. Steele and Wishart (1992) 

suggested the binding of immunoglobulin to sperm resulted in sperm death and thus 

reduced the size of the subpopulation of viable sperm within the oviduct. However, it was 
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not determined if immunoglobulin binding induced sperm death or if the immunoglobulin 

binding followed sperm death resulting from some other cause. 

In addition to sperm motility and antigens, a third factor affecting vaginal sperm 

transport appears to be the cell surface. Desialylation of sperm surface glycoproteins or 

glycolipids decreased fertility following intravaginal insemination (Froman and Thurston, 

1984; Lake and Ravie, 1988; Froman and Engel, 1989; Howarth, 1990a; Froman and 

Thursam, 1994). In contrast, Froman and Engel (1989) reported no deleterious effect on 

fertility following intramagnal insemination of desialylated sperm. Therefore, Froman and 

Engel (1989) as well as Froman and Thursam (1994) attributed the effect of desialylation 

to reduced sperm sequestration rather than aberrant gamete recognition. A second 

experimental approach that reduces fertility and sperm sequestration is suspension of sperm 

in a hypertonic medium prior to insemination. Steele and Wishart (1996) proposed that 

removal of sperm surface proteins impedes sperm passage through the vagina by making 

treated sperm more susceptible to immunoglobulins present in the vagina. In summary, cell 

surface properties have a profound affect on sperm passage through the vagina. 

Sperm passage through the vagina enables sperm sequestration in the SST. Sperm 

sequestration entails entry, storage within, and egress from the SST. The movement of 

sperm into the SST is dependent upon motility. This has been demonstrated in vitro by 

Nash et al. (1986), Bakst (1987), and Steele and Wishart (1992). Sperm are maintained 

within the SST in vivo for a period of days to weeks. While storage of sperm within SST 

is well established, the mechanisms underlying maintenance and egress are unknown 

(Zavaleta and Ogasawara, 1987; Bakst et al., 1994). Antiperistalsis of the oviduct muscles 
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is believed to transport sperm from the shell gland to the infundibulum. In this regard, 

Allen and Grigg (1957) demonstrated that radiolabeled dead sperm moved from the shell 

gland to the infundibulum within minutes. Likewise, carbon particles and india ink 

introduced above the vaginal sphincter ascend through the oviduct and reach the 

infundibulum within minutes (Fujihara et al., 1983; Etches, 1996). 

The infundibulum serves as a secondary sperm storage site (Bakst et al., 1994). 

More importantly, the infundibulum is the site of fertilization in the domestic fowl (Olson 

and Neher, 1948). Fertilization depends upon sperm binding to the inner perivitelline layer, 

a subsequent acrosome reaction and sperm penetration of the inner perivitelline layer, and 

finally fusion of the plasma membranes of the sperm cell and oocyte as reviewed by 

Howarth (1984). Based upon research performed in the late 1980's and early 1990's, sperm 

binding of the perivitelline layer and the acrosome reaction appear to be receptor-mediated 

phenomenon (Koyanagi et al., 1988; Kido and Doi, 1988; Howarth, 1990a; 1990b; 1992; 

Bramwell and Howarth, 1992; Steele et al, 1994). In review, fertility in the domestic fowl 

depends upon sperm attributes that must be manifest at specific times within the oviduct. 

Therefore, failure of sperm to interact with either the oviduct or the oocyte at key steps 

within the fertilization process results in the production of a nonfertilized egg. 

Roosters homozygous for the rose comb allele (R/R) are subfertile and therefore 

less fecund than r/r roosters (Crawford and Merritt, 1963). That is, hens inseminated with 

spermatozoa from R/R males, hereafter referred to as subfertile males, lay significantly 

fewer fertilized eggs than hens inseminated with sperm from fertile males. Subfertility in 

R/R males was first described in the 1950s (Cochez, 1951; Ponsignon, 1951); however, the 
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cell specific mechanism that results in subfertility has remained undetermined. Many 

reproductive attributes have been compared between subfertile and fertile males. For 

example, neither sperm viability nor morphology differed between subfertile and fertile 

genotypes (Crawford and Smyth, 1964b; Kirby et al, 1989). Likewise, neither testicular 

structure nor semen characteristics differed between genotypes (Buck land and Hawes, 

1968). 

Investigation of sperm-specific attributes that might account for the subfertility of 

R/R males has yielded contradictory data. Crawford and Smyth (1964a) could not attribute 

subfertility to poor sperm motility. Likewise, Petitjean and Cochez (1966) reported no 

difference in the motility of ejaculated sperm between genotypes. However, after in vitro 

sperm storage, the sperm motility of subfertile males was less than that of controls 

(Petitjean and Cochez, 1966). Studies of sperm metabolism have also generated 

contradictory information. Crawford and Smyth (1964a) measured sperm metabolism with 

the methylene blue reduction time assay. These researchers failed to detect a genotypic 

difference in sperm metabolism. In contrast, Buck land et al. (1969) reported sperm from 

subfertile males had decreased aconitase and fumarase activities. Fumarase activity was 

significantly correlated with sperm fertilizing ability. However, Petitjean and Servouse 

(1981) failed to identify any genotypic effect in fumarase activity. Kirby and Froman 

(1991) and Kirby et al (1994) measured sperm metabolism by formazan production. These 

researchers concluded sperm from subfertile males had significantly lower metabolic 

capacity than sperm from fertile controls. 
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Etches et al. (1974) and Kirby et al. (1989; 1994) compared sperm movement 

above and below the vaginal sphincter. The subfertile status of R/R males was dependent 

upon insemination route. The expected incidence of subfertility was only observed 

following intravaginal insemination. No genotypic difference in fertilizing ability was 

observed following intramagnal insemination. Likewise, the fertilizing ability of testicular 

sperm did not differ between genotypes following intramagnal insemination (Kirby et al., 

1994). Testicular fowl sperm, unlike mammalian sperm, can fertilize oocytes if deposited 

in the oviduct above the vaginal sphincter (Howarth, 1983; Kirby et al., 1989). Kirby et al. 

(1994) attributed the subfertile status of R/R males to an inability of sperm to pass through 

the vagina and become sequestered within the SST. 

In summary, the prerequisites that enable fowl sperm to fertilize oocytes are known. 

Of these, three prerequisites are dependent upon spermatozoal properties: (1) passage of 

sperm through the hen's vagina, (2) sequestration within the SST, and (3) gamete 

recognition. Therefore, any cellular defect that would result in reproductive failure at one 

or more of these levels could account for the subfertility associated with R/R roosters. 

Based upon previously published data, either sperm passage through the vagina or 

sequestration within the SST appeared to be a likely basis for subfertility. The overall 

objective of this research was to define the cellular basis underlying heritable subfertility in 

roosters homozygous for the rose comb allele (R/R). 
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2.1 ABSTRACT 

Fertility, sperm metabolism, sperm filling of oviduct sperm storage tubules (SST), 

and sperm motility were compared between subfertile roosters homozygous for the rose 

comb allele (R/R) and fertile controls (r/r or R/r males). As expected, fertility of R/R males 

was less than that of controls (p < 0.0001). The metabolic rate of spermatozoa from R/R 

males was also reduced compared with controls (p < 0.05). Likewise, filling of SST in vivo 

was lower (p < 0.0001) for spermatozoa from R/R males when compared with controls. 

However, in vitro filling of SSTs was not different between genotypes (p > 0.05). Motility 

of spermatozoa from R/R males was less than that of controls (p < 0.001) as determined 

by an objective spectrophotometric assay. Previous researchers have concluded that 

subfertility associated with homozygosity for the rose comb allele is attributable to a sperm-

specific phenomenon. However, the cellular mechanism(s) responsible for the subfertile 

status were not defined. In contrast to previous research, we have demonstrated that 

subfertility of R/R males is explicable in terms of reduced sperm transport through the hen's 

vagina in which reduced sperm motility appears to be the major contributing factor. 
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2.2 INTRODUCTION 

In 1951 Cochez [1] reported that roosters homozygous for the rose comb allele 

(R/R) were subfertile. Subfertility has been reported by several groups and determined to 

be a sperm-specific phenomenon [2-4]. Thereafter, sperm motility was implicated as a basis 

for subfertility. Sperm motility is essential for passage through the hen's vagina [5]. Poor 

sperm motility for R/R roosters was reported by Petitjean and Cochez [6]; however, 

Crawford and Smyth [7], Petitjean [8] as well as Petitjean and Servouse [9], reported 

normal motility for sperm from homozygous rose comb roosters. These conflicting 

observations may have been due to subjective estimates of sperm motility. 

In contrast to subfertility following intravaginal insemination, intramagnal 

insemination of sperm from R/R males resulted in fertility equivalent to that of fertile males 

[10,11]; consequently, the authors inferred that subfertility following intravaginal 

insemination was due to insufficient filling of the sperm storage tubules (SST). Maximal 

filling of SST occurs during the first 24-48 hours after insemination and is essential for the 

series of fertilized eggs that typically follow a single insemination [12]. In previous 

research, neither an objective determination of motility nor an estimation of SST filling was 

made for sperm from R/R males. 

Sperm metabolism also has been suspect. Buckland et al. [13] associated 

homozygosity for the rose comb allele with decreased spermatozoal fumarase, aconitase 

and isocitric dehydrogenase activities. Fumarase activity was significantly correlated with 

fertility. However, Petitjean and Servouse [9] did not observe a difference in spermatozoal 



13 

fumarase activity from subfertile R/R and fertile males. Likewise, estimates of sperm 

metabolism also have been contradictory. For example, neither Crawford and Smyth [7] 

nor Petitjean [8] observed a difference in sperm metabolism between subfertile R/R and 

fertile males. However, studies in this laboratory have indicated otherwise [11,14]. 

The objective of the present work was to provide a definitive explanation for the 

subfertility associated with roosters homozygous for the rose comb allele. The present 

research was designed to do the following: (1) compare sperm filling of SST following 

intravaginal insemination of sperm from R/R and fertile males, (2) compare sperm filling of 

SST following incubation of oviduct explants with sperm from R/R and fertile males, and 

(3) compare spermatozoal motility from R/R and fertile males using an objective method. 

Providing that reduced sperm metabolism would be observed as reported previously 

[11,14], we believed these objectives would enable us to definitively identify a sperm cell 

attribute that would account for subfertility in R/R males. 

2.3 MATERIALS AND METHODS 

2.3.1 Evaluation of Fertility 

In order to establish homozygosity for the rose comb allele (R/R), Silver Laced 

Wyandotte roosters were bred to Single Comb White Leghorn (SCWL) hens (r/r) and the 

comb phenotype of progeny determined. Roosters were designated homozygous providing 

they sired only rose comb chicks (n = 25 to 40 chicks per male). New Hampshire roosters 
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(r/r) of equivalent age were used as controls. Groups of 10 roosters per genotype were 

maintained under identical conditions. 

Fertility of individual roosters was determined in order to verify a difference 

between genotypes. Sperm concentration was determined according to Bilgili and Renden 

[15] for each male. Semen was diluted to 2 x 109 spermatozoa/ml with Beltsville Poultry 

Semen Extender (BPSE) prepared according to Sexton and Few lass [16]. Twelve hens per 

male were inseminated intravaginally with 1 x 108 sperm/hen. Eggs were collected 

throughout a 21-day interval and set for incubation twice weekly. Fertility was determined 

by breaking eggs open after 4 days of incubation and then examining the contents for 

embryonic development. Three replicate trials were performed per male. Fertility was 

analyzed as described by Kirby and Froman [17]. Based upon fertility, representative 

roosters (n = 3 per genotype) were selected for subsequent evaluation of sperm 

metabolism, SST filling, and motility. 

2.3.2 Evaluation of Sperm Metabolism 

Metabolism was determined by a modification of the technique of Chaudhuri and 

Wishart [18]. Semen was pooled according to genotype. Each semen sample was diluted 

to 5 x 108 spermatozoa/ml in TES buffer containing 111 mM NaC1, 25 mM glucose and 4 

mM CaC12, pH 7.4. A 200111 volume of sperm suspension was added to 1.0 ml of reaction 

medium prewarmed to 41°C in a culture tube. The reaction medium contained 200 11M 2­

(p-iodopheny1)-3-(p-nitropheny1)-5-phenyl-tetrazolium chloride (INT), 9.2 [tM phenazine 

methosulphate, and 2.4 mM KCN in the buffer described above. Reaction mixtures, in 

triplicate, were incubated at 41°C for 1,3,5 or 7 minutes. Reduction of INT to formazan 
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was terminated by the addition of 200 ill of 0.1 M HC1 containing 5% (v/v) Triton X-100 

(Sigma Chemical Co., St. Louis, MO). Culture tubes were placed in a boiling water bath 

for 30 seconds and then centrifuged at 700 x g for 10 minutes. Absorbance of the 

supernatant was measured at 520 nm. Data were evaluated by the method of least squares. 

2.3.3 Evaluation of Sperm Storage Tubule Filling in vivo 

Semen was pooled according to genotype. Semen was diluted with BPSE to 2 x 

109 spermatozoa per ml. Each hen was inseminated intravaginally with 1 x 108 in a volume 

of 50 Ill. Hens were sacrificed 16-18 hours post insemination and oviducts removed. 

Oviducts were removed from euthanized hens, split longitudinally, and tissue containing the 

SST was located using the technique of Bakst [19]. Tissue containing SST was excised, 

and weighed. Tissue explants were mixed with 10 ml homogenization buffer per g of 

tissue. The buffer contained 0.05% (v/v) Triton X-100 in 0.9% (w/v) NaCl. The tissue was 

homogenized for 3 minutes in a 25-m1 stainless steel microcontainer (Eberbach Corp., Ann 

Arbor, MI). Formaldehyde, 37% (v/v), was added to bring the final formaldehyde 

concentration to 0.5% (v/v). This solution was homogenized for 1 additional minute and 

then stored overnight at 4°C in 10-m1 Erlenmeyer flask. Sperm nuclei were counted with 

a hemacytometer. Six replicate counts were made per sample. The data were analyzed 

using the Kruskal-Wallis nonparametric test [20]. 

2.3.4 Evaluation of Sperm Storage Tubule Filling in vitro 

Tissue explants were procured and weighed as above. Each explant was halved and 

incubated either with sperm from R/R or r/r males in a 25-m1 Nalgene Erlenmeyer flask. 

Incubation conditions were based on Nash et al. [21], Bakst [22], and Steele and Wishart 
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[23]. Incubation was performed at 41°C for 2 hours in a humidified chamber filled with 

air containing 5% CO2. Additionally, flasks were rotated at 55 rpm. The incubation 

medium was Eagle's Minimum Essential Medium (MEM; Sigma) prepared as described by 

Howarth [21]. Pooled semen from each genotype was diluted beforehand with BPSE to 

2 x 109 sperm per ml. A volume of sperm suspension was added to the MEM so that the 

final concentration was 2.5 x 10' sperm per ml. MEM volume was based upon tissue 

weight: 4 ml MEM per g explant. After incubation, explants were washed in excess 

isotonic saline for 3 minutes in order to remove sperm associated with the mucosal surface. 

Washed explants were homogenized, and spermatozoal nuclei counted as described above. 

Data were analyzed by paired comparison [20]. 

2.3.5 Evaluation of Sperm Motility 

Sperm motility was measured by using a modification of a swim-up technique [22]. 

Semen was pooled according to genotype. Spermatozoal concentration and viability were 

determined according to Bilgili and Renden [15]. Semen was diluted to 5 x 108 

spermatozoa/ml with 50 mM TES buffer, pH 7.4, containing 111 mM NaCl, 25 mM 

glucose, 4 mM CaC12. A 150111 volume of sperm suspension was layered upon 1.5 ml 6% 

(w/v) Accudenz® (Accurate Chemical & Scientific Corporation, Westbury, NY) solution 

prewarmed to 41°C in a disposable cuvette. The cuvette was incubated for 5 minutes in 

a 41°C water bath. Absorbance was measured at 550 nm one minute after loading the 

incubated cuvette into a spectrophotometer (DU-640, Beckman Instruments, Fullerton, 

CA). 
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Each representative rooster used in the experiments described above was bred to 

10 heterozygous rose comb hens (R/r). At sexual maturity, male progeny were bred to 

SCWL hens in order to establish homo- or heterozygosity for the rose comb allele (5 

SCWL hens per male). Sperm motility was compared between homozygous (n = 29) and 

heterozygous (n = 29) rose comb males. Data were analyzed by single classification 

analysis of variance with the general linear model of SAS [23]. 

2.4 RESULTS 

As shown in Figure 2.1, Silver Laced Wyandotte roosters homozygous for the rose 

comb allele were subfertile relative to controls. Both initial fertility and duration of fertility 

were reduced in each replicate trial. These observations were consonant with previous 

research [4]. Likewise, sperm from the homozygous rose comb roosters were 

characterized by a metabolic rate that was less than that of the controls (p < 0.05). As 

shown in Figure 2.2, the difference in formazan production observed for subfertile and 

fertile roosters was comparable to that observed previously [11,14]. 

At 16-18 hours after intravaginal insemination, SST contained an average 2.9 x 106 

sperm in the case of fertile males (Table 2.1). In contrast, SST from hens inseminated with 

sperm from RJR males contained only 41% (p < 0.0001) as many sperm (Table 2.1). 

However, when oviduct explants were incubated with sperm there was no difference in 

SST filling between genotypes (Table 2.2). 
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FIGURE 2.1. Duration of fertility after a single insemination of SCWL hens with sperm 
from a R/R male (circles) or r/r male (triangles). Solid lines represent the functions 

Y(x) = [82.9]/[1 + e-443c7.31, and 
e-.664(13.2-1,y(x) 

in which 7.3 and 13.2 are estimates of the parameter T, or time of half-maximal fertility. 
Each hen (n = 36 per treatment group) was inseminated with 1 x 108 sperm. There was a 
significant difference (p < 0.0001) in ti between R/R and r/r males. 

http:e-443c7.31
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FIGURE 2.2. Formazan production by sperm from R/R males (circles) and r/r males 
(triangles) incubated at 41°C. Solid lines represent the functions: (a) R/R males, y(x) = 
127.68 + 13.41(x), R2 = 0.99, and (b) r/r males, y(x) = 126.13 + 23.83(x), R2= 0.99. 
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Table 2.1. Spermatozoa from R/R and r/r roosters present in SST after artificial 
insemination. 

Genotype Hens Spermatozoa in SST* 
(n) ( x 106) 

R/R 17 1.207 ± 0.0539' 

r/r 17 2.934 ± 0.1811b 

* Each value is a mean ± SEM. 
a,b Means differed at p < 0.0001. 

Table 2.2. Spermatozoa from R/R and r/r roosters present in SST after incubation in vitro. 

Genotype Hens Spermatozoa in SST* 
(n) ( x 106) 

R/R 20 2.32 ± 0.305 

r/r 20 2.27 ± 0.285 

*Each value is a mean ± SEM. 
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Preliminary research demonstrated that sperm motility was essential for sperm 

penetration into 6% (w/v) Accudenz ®. Sperm immobilized by heat denaturation at 56°C 

did not penetrate. When a sperm suspension was overlaid on the Accudenz® and the 

absorbance of the Accudenz® layer was measured as a function of time, data points 

approximated a logistic function (Figure 2.3). The greatest change in absorbance occurred 

between 2 and 8 minutes of incubation. Therefore, an incubation interval of 5 minutes was 

chosen for subsequent motility measurements. 

As shown in Table 2.3, the mean absorbance value of samples from R/R males was 

67% of controls. Thus, the motility of sperm from R/R males was less than that of the 

fertile controls. 
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FIGURE 2.3. Absorbance of 6% (w/v) Accudenz® solution through time following an 
overlay of sperm suspension. The cuvette contained 1.5 ml of Accudnez® pre-warmed 
to 41°C. After a 0.150 ml volume sperm suspension (5 x 10i sperm/m1) was layered 
upon the Accudenz® and the initial reading taken, the cuvette was maintained at 41°C 
in a water bath. 
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Table 2.3. Results of the evaluation of sperm motility for homozygous (R/R) and 
heterozygous (R/r) rose comb roosters. 

Genotype Roosters Absorbance* 
(n) 

R/R 29 0.4962 ± 0.048' 

R/r 29 0.7417 ± 0.047b 

*Absorbance at 550 nm was directly proportional to the extent to which spermatozoa 
entered a solution of 6% Accudenz®. A sperm suspension was overlaid upon the 
Accudenz® within a cuvette. The cuvette was incubated at 41°C for 5 min, then the 
absorbance of the Accudenz® layer was measured.
 

a,b Means different at p < 0.001. 
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2.5 DISCUSSION 

The cellular basis for the subfertility of roosters homozygous for the rose comb 

allele has perplexed researchers since the 1950s [see 11, for review]. Previous research, 

when viewed collectively, has generated contradictory results. Nonetheless, sperm motility 

has been implicated by several groups [6,11] but never objectively measured. Chaudhuri 

and Wishart [18] correlated sperm metabolic activity with sperm motility in normal 

roosters. Kirby et al. [11] reported that sperm from R/R roosters were characterized by 

reduced metabolic rate and inferred poor sperm motility. Suboptimal filling of sperm 

storage tubules by sperm from R/R males also was inferred from fertility data [11] but, as 

with sperm motility, objective measurements were not made. 

Filling of SST by spermatozoa is paramount for fertility in poultry [12]. However, 

only 1% of inseminated sperm from fertile roosters reach the SST [27]. In this study, 

sperm from fertile control roosters were recovered from the SST at a rate of 2.9% after 

artificial insemination comparable to previously published values [27]. We attribute our 

slightly higher value to differences among breeds of roosters and hens [28]. In contrast, 

the recovery rate for sperm from R/R males was only 41% (p < 0.0001) of that observed 

for fertile control sperm. We inferred that sperm from R/R males had a reduced ability to 

traverse the vagina to reach the SST. We hypothesized that poor sperm motility accounted 

for suboptimal SST filling. 

An alternative hypothesis was that sperm from R/R males traversed the vagina but 

failed to enter the SST. Consequently, sperm from subfertile and fertile males were 
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incubated with oviduct explants containing SST. In this case, however, there was no 

difference in the extent of SST filling between genotypes. Preliminary work (Figure 2.4) 

using spermatozoa stained with the fluorochrome bis-benzamide [19] and incubated with 

explants indicated that the majority of spermatozoa associated with the explant following 

washing, were within the SST. Therefore, we concluded that incubation of sperm with 

explants followed by explant homogenization and hemacytometer counts of 

homogenization-resistant sperm nuclei provided an estimate of sperm that had entered the 

SST. In summary, the alternate hypothesis that sperm from R/R males traversed the vagina 

but failed to enter the SST was rejected. 

Results from the in vivo and in vitro SST experiments along with the observations 

of Kirby and Froman [14] as well as Kirby et al. [11] with respect to sperm metabolism 

lead us to believe that decreased sperm motility was the most likely explanation that could 

account for the subfertility associated with R/R roosters. Our initial attempts to test this 

hypothesis were informative, in that sperm from R/R roosters did not penetrate a 6% 

Accudenz solution to the extent that sperm from fertile controls did. Penetration of the 

Accudenz layer was dependent on sperm motility (Figure 2.3). We inferred a difference 

in sperm motility based upon observable differences in sperm cell mobility. However, 

testing the motility hypothesis required a larger number of roosters. Therefore, each of 

three homozygous rose comb roosters was bred with approximately 10 heterozygous hens. 

Male progeny (n=80) were tested for homozygosity for the rose comb allele. Therefore, 

males heterozygous for the rose comb allele were used as fertile controls in the motility 

experiment. As shown in Table 2.3, homozygotes were characterized by reduced (p < 
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0.001) motility. While the sperm motility assay did not provide any assessment of variables 

such as beat frequency or velocity, it did provide an evaluation of the mobility of a sperm 

cell population. The results from this experiment provided definitive evidence that the 

motility of sperm from R/R males is reduced when compared to fertile controls (Table 2.3). 

However, the basis for this difference in motility is unknown. 

Sperm are highly compartmentalized cells. In the case of rooster sperm under 

physiological conditions, motility appears to depend upon an influx of extracellular calcium 

[25,26] in addition to the synthesis of ATP in the midpiece and hydrolysis of ATP by dynein 

ATPase associated with the axoneme. Therefore, several cellular compartments may 

warrant investigation in the case of sperm from males homozygous for the rose comb allele. 

For example, it is not known whether plasma membrane calcium permeability, ATP 

production, ATP consumption, or axonemal structure differ due to genotype. 
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FIGURE 2.4. Fluorescence microgaphs of bis-benzamide labeled sperm associated with 
sperm storage tubules (SST). (A) SST from a hen inseminated intravaginally with 1 X 
108 sperm and sacrificed 18 hr post artificial insemination. Note fluorescence of sperm 
nuclei clustered at the distal end and scattered throughout the lumen of the SST. Scale 
bar = 25 gm. (B) SST from oviduct explant incubated for 2 hr at 41°C with labeled 
sperm. Sperm nuclei are located at the distal end of both SST similar to the in vivo 
results in (A). Single sperm can be localized in the lumen of the SST with the addition 
of white light. Scale bar = 25 pm. 



28 

2.6 REFERENCES 

1.	 Cochez LP. An infertility factor balanced by breeding in white wyandottes. Proc. 
IXth World's Poultry Cong 1951;1:122-128. 

2.	 Crawford RD, Smyth JR Jr. Infertility and action of the gene for rose comb in the 
domestic fowl. Can J Genet Cytol 1964a;6:298-303. 

3.	 Crawford RD, Smyth JR Jr. Studies on the relationship between fertility and the 
gene for rose comb in the domestic fowl. 1. The relationship between comb 
genotype and fertility. Poultry Sci 1964b;43:1009-1017. 

4.	 Kirby JD, Froman DP, Engel HN Jr, Bernier PE. Decreased sperm survivability in 
subfertile Delaware roosters as indicated by comparative and competitive 
fertilization. J Reprod Fert 1989;86:671-677. 

5.	 Allen TE, Grigg GW. Sperm transport in the fowl. Aust J Agri Res 
1957;8:788-799. 

6.	 Petitjean MJ, Cochez LP. Subfertility of cocks homozygous for the 'R' gene (rose 
comb). Proc XIIIth World's Poultry Cong 1966;I:121-127. 

7.	 Crawford RD, Smyth JR Jr. Semen quality and the gene for rose comb in the 
domestic fowl. Poultry Sci 1964d;43:1551-1557. 

8.	 Petitjean MJ. Resultants experimentaux sur la subfertilite liee a la crete rosacee 
chez le coq. C.R. XIX Congr Mond Avic 1970;2:313-318. 

9.	 Petitjean MJ, Servouse M. Comparative study of some characteristics of the semen 
of RR (rose comb) or rr (single comb) cockerels. Reprod Nutr Develop 
1981;21:1085-1093. 

10. Etches RJ, Buckland RB, Hawes RO. The effect of the genes for rose comb and 
polydactyly on sperm transport in the hen's oviduct. Poultry Sci 1974:53:422-424. 

11. Kirby JD, Engel BIN Jr, Froman DP. Analysis of subfertility associated with 
homozygosity of the rose comb fowl. Poultry Sci 1994;73:871-878. 

12. Bakst MR, Wishart G, Brillard J-P. Oviducal sperm selection, transport, and 
storage in poultry. Poultry Science Rev 1994;5:117-143. 



29 

13. Buck land RB, Wilcox FH, Schaffner CS. Influence of homozygosity for rose comb
 
on fumarase, aconitase, isocitric dehydrogenase and malic dehydrogenase activity
 
in spermatozoa of the domestic fowl (Gallus domesticus). J 29Reprod Fert
 
1969;18:89-95.
 

14. Kirby JD, Froman DP. Comparative metabolism of spermatozoa from subfertile
 
Delaware and Wyandotte roosters. J Reprod Fert 1991;91:125-130.
 

15.	 Bilgili SF, Renden JA. Fluorometic determination of avian sperm viability and
 
concentration. Poultry Sci 1984;63:2275-2277.
 

16. Sexton TJ, Fewlass TA. A new poultry semen extender. 2. Effect of the diluent
 
components on the fertilizing capacity of chicken semen stored at 5°C. Poultry Sci
 
1978;57:277-284.
 

17. Kirby JD, Froman DP. Analysis of poultry fertility data. Poultry Sci
 
1990;69:1764-1768.
 

18. Chaudhuri D, Wishart GJ. Predicting the fertilizing ability of avian semen: The 
development of an objective colourimetric method for assessing the metabolic 
activity of fowl spermatozoa. Br Poultry Sci 1988;19:837-845. 

19. Bakst MR. Fate of fluorescent stained sperm following insemination: new light on 
oviducal sperm transport and storage in the turkey. Biol Reprod 1994;50:987-992. 

20. Sokal RR, Rohlf RJ. Two-way analysis of variance. In: Biometry, 2nd ed. New 
York: Freeman; 1981: 321-371. 

21. Nash SR, Wiggins ME, Birrenkott GP Jr, Dickey JF. In vitro filling of the 
uterovaginal sperm host glands-timed entrance with avian and bull sperm. Poultry 
Sci 1986; 65(suppl 1):97. 

22. Bakst MR. Anatomical basis of sperm-storage in the avina oviduct. Scanning 
Microsc 1987;1:1257-1266. 

23. Steele MG, Wishart GJ. Evidence of a species-specific barrier to sperm transport 
within the vagina of the chicken hen. Theriogenology 1992;38:1107-1114. 

24. Howarth B Jr. Preservation of the fertilizing capacity of cock semen incubated in 
vitro at 41C. Poultry Sci 1981;60:1075-1078. 

25.	 Suttiyotin P, Thwaites CJ. Evaluation of ram semen motility by a swim-up 
technique. J Reprod Fert 1993;97:339-345. 



30 

26. SAS Institute. SAS Release 6.03. Cary, NC: SAS Institute: 1986. 

27. Brillard, J-P. Sperm storage and transport following natural mating and artificial 
insemination. Poultry Sci 1993;72:923-928. 

28. Brillard J-P. Factors affecting transport following natural mating and artificial 
insemination. Anim Reprod Sci 1992;27:247-256. 

29. Thomson MF, Wishart GJ. Elucidation of the mechanism responsible for the 
temperature-dependent reversible inactivation of the motility of fowl spermatozoa. 
Br Poultry Sci 1988;30:687-692. 

30. Ashizawa K, Wishart GJ. Resolution of the sperm motility-stimulating principle of 
fowl seminal plasma into Ca2+ and an unidentified low molecular weight factor. J 
Reprod Fert 1987;81:495-499. 



31 

CHAPTER 3 

TRANSFER OF SPERM INTO A CHEMICALLY DEFINED
 
ENVIRONMENT BY CENTRIFUGATION
 
THROUGH 12% (WT/VOL) ACCUDENZ®
 

Derek J. McLean, Allen J. Feltmann, David P. Froman 

Department of Animal Sciences, Oregon State University,
 
Corvallis, Oregon 97331
 

Oregon State University Technical Paper Number 11,157. 



32 

3.1 ABSTRACT 

Centrifugation is commonly used to wash sperm. However, most washing 

techniques do not put sperm in a chemically defined environment. Rather, washing by 

centrifugation in effect, dilutes seminal plasma components. A 0.5-mL volume of 30% 

(wt/vol) Accudenz® was layered beneath 5 mL of 12% (wt/vol) Accudenz® in a 15 mL 

polypropylene centrifuge tube. Diluted semen from individual males (n=10) was overlaid 

upon the 12% (wt/vol) Accudenz®. After centrifugation at 1250 x g at 4 C for 25 min, 

washed sperm were present at the interface of the Accudenz® layers. Based upon 

hemacytometer counts, sperm recovery was 83% (CV=12%). Neither sperm viability nor 

morphology were affected by washing. Efficacy of the washing procedure was evaluated 

by using extracellular glucose, glutamic acid, Ca'', and protein as markers. Washing 

eliminated 99% of the glutamic acid and glucose associated with sperm. Likewise, washing 

removed 97.5% of the extracellular Ca+2 associated with sperm. As evidenced by total 

protein analysis and SDS-PAGE, washing removed 98% of seminal plasma proteins from 

sperm. In addition, washing did not affect sperm motility or fertilizing ability. This 

procedure returns extended sperm to a physiological concentration in a chemically defined 

environment. By suspending washed sperm in distinct media, we induced differential sperm 

motility. Therefore, this procedure is suitable for the study of the effect of specific 

substances upon sperm metabolism and motility. 
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3.2 INTRODUCTION 

Sperm motility is essential for maximal fertility in the fowl (Bakst et al., 1994). 

Fowl sperm motility is sensitive to factors in seminal plasma and synthetic diluents. For 

instance, fowl sperm are motile if suspended in a calcium free medium at 30 C. However, 

if the temperature is increased to 40 C, sperm become immotile (Thomson and Wishart, 

1988). Motility is restored at 40 C by 2 mM calcium, 10% seminal plasma, or 10% 

peritoneal fluid collected at ovulation (Ashizawa et al., 1989). Likewise, sperm respiration 

is strongly influenced by intracellular calcium concentrations (Ashizawa et al, 1992). Of 

the substances that reactivate fowl sperm motility, calcium's affect on motility has received 

the most attention (Thomson and Wishart, 1991; Ashizawa et al., 1994). In fact, calcium 

was identified as one of two substances in seminal plasma that stimulated motility at 40 C 

(Ashizawa and Wishart, 1987). 

Proteins and serum replacements may also affect sperm activity. Bakst and Cecil 

(1992a; 1992b) evaluated turkey sperm motility after storage in diluents containing BSA 

and two commercially available serum replacements using computer-assisted semen 

analysis. The presence of BSA and serum replacements significantly increased sperm 

motility (Bakst and Cecil, 1992a; 1992b). In addition, Mohan et al. (1995) reported that 

fowl seminal plasma contains a 75 kDa sperm motility inhibiting factor (SMIF) that inhibits 

motility. Furthermore, a number of enzymes (Lake, 1984) and a proteinase inhibitor 

(Lessley and Brown, 1978) have been reported in fowl seminal plasma but the precise 

biological roles of these proteins are unknown. 
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Fowl semen contains significant concentrations of proteins, glutamic acid, and 

inorganic ions (Freeman, 1984). Transparent fluid adds glucose to the seminal plasma 

(Freeman, 1984). Assessment of sperm function in relation to exogenous nutrients, 

motility agonists, and antagonists, is necessary for analyzing how sperm react with their 

environment. Traditionally, centrifugation of sperm has been used as a method for 

washing sperm free of substances present in seminal plasma. However, this approach 

merely dilutes the components of the medium in which sperm are suspended. Because of 

the biochemical complexity of seminal plasma and the potential for interactions between 

these compounds, it is desirable to study sperm in a chemically defined environment. In 

previous research (Froman and Thursam, 1994), sperm were washed through 12% (wt/vol) 

Accudenz® in order to remove an exogenous enzyme. We hypothesized this simple 

technique could also be used to wash sperm free of seminal plasma components and thereby 

provide a means to study sperm in a chemically defined environment. 

3.3 MATERIALS AND METHODS 

3.3.1 Experimental animals 

New Hampshire roosters (n = 10) were used as semen donors. All roosters were 

housed in individual cages, provided feed and water ad libitum, and were 26-42 weeks of 

age when used for the following experiments. 
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3.3.2 Sperm washing procedure 

A 30% (wt/vol) stock solution of Accudenz ®3 was prepared using 3 mM KC1 

containing 5 mM TES, pH 7.4, as the solvent. A 50 mM TES solution, pH 7.4, containing 

130 mM NaCl (hereafter referred to as TES buffer), was prepared. The TES buffer had 

an osmolality of approximately 315 mmol/kg. A portion of the TES buffer was diluted with 

deionized water to an osmolality of 275 mmol/kg. The diluted TES buffer was used to 

prepare 12% (wt/vol) Accudenz® (315 mmoUkg) with the 30% stock solution. 

Each experiment was performed with sperm from individual males. Sperm 

concentration was determined spectrophotometrically. Ejaculates were diluted to 2 x 109 

sperm/mL with TES buffer. Five mL of the 12% (wt/vol) Accudenz® was placed in a 15­

mL polypropylene centrifuge tube. A 0.5-mL volume of 30% (wt/vol) Accudenz® was 

placed beneath the 12% (wt/vol) Accudenz® with a Pasteur pipet. The sperm suspension 

was overlaid on the 12% (wt/vol) Accudenz® solution and screw caps secured. Tubes 

were centrifuged at 1250 x g at 4 C for 25 min. After centrifugation, fluid above and below 

the washed sperm was removed by aspiration. 

3.3.3 Evaluation of fertility 

Fertilizing ability of sperm from individual roosters (n=10) was determined before 

and after washing. Sperm concentration in each ejaculate was determined 

spectrophotometrically. A sample of the ejaculate was diluted to 2 x 109 sperm/mL with 

50 mM TES, pH 7.4, containing 120 mM NaC1, 10 mM glucose, and 2 mM CaC12, 

hereafter referred to as motility buffer. Each sperm suspension was used to inseminate 10 

'Accurate Chemical and Scientific Corp., Westbury, NY 11590. 
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hens with 75 x 106 sperm/hen. The remaining neat semen was diluted with TES buffer and 

washed as described above. Washed sperm were diluted to 2 x 109 sperm/mL with motility 

buffer. Ten hens per male were inseminated as described above. Eggs were collected 

throughout a 10-day interval and set twice. Fertility was determined by breaking eggs open 

after 4 days of incubation and then examining the contents for embryonic development. 

Fertility was analyzed as described by Kirby and Froman (1991). 

3.3.4 Evaluation of washing procedure 

Sperm viability (n=10 males, 1 ejaculate per male) was determined before and after 

washing by ethidium bromide exclusion (Bilgili and Renden, 1984). Ejaculates were diluted 

to 2 x 109 sperm/mL with TES buffer and washed as described above. Recovery of washed 

sperm (n=10 males, 1 ejaculate per male) was determined as follows. Sperm concentration 

of neat semen was determined using a hemacytometer and each ejaculate was diluted to 

2 x 109 sperm/mL with TES buffer and washed as described above. The sperm suspension 

volume was recorded for washed sperm and sperm concentration was determined with a 

hemacytometer. 

Glucose concentration (n=10 males, 1 ejaculate per male) was determined with an 

assay kit'. Neat semen was diluted to 2 x 10 sperm/mL with motility buffer. A 0.5-mL 

sample of the sperm suspension was centrifuged at 12,000 x g for 5 minutes and 20 AL of 

the supernatant assayed for glucose. The residual sperm suspension was washed as 

described above. Washed sperm were resuspended to 2 x 109 sperm/mL with TES buffer 

and then centrifuged at 12,000 x g for 5 minutes. The supernatant was assayed for glucose. 

'Sigma Chemical Company, Catalog # 115-A, St. Louis, MO, 63178 
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Unknown glucose concentrations were determined using a standard curve (r=0.99) with 

standards ranging from 25 mM to 0.1 mM glucose. 

Calcium concentrations (n=10 males, 1 ejaculate per male) were measured 

spectrophotometrically with the indicator Arsenazo III' according to Gratzer and Beaven 

(1977). A 5 mM Arsenazo III solution was passed 3 times through a column of Dowex 

50W and then filtered prior to use. Neat semen was diluted to 2 x 109 sperm/mL with 

motility buffer. A 0.5-mL sample of the sperm suspension was centrifuged at 12,000 x g 

for 5 minutes. A 0.4-mL volume of the supernatant was assayed by adding 0.1 mL of 

filtered Arsenazo HI and then measuring the absorbance at 654 nm. The remaining sperm 

suspension was washed as described above. Washed sperm were resuspended to 2 x 109 

sperm/mL with TES buffer and centrifuged at 12,000 x g for 5 minutes. The supernatant 

was assayed for calcium. Unknown calcium concentrations were determined using a 

standard curve (r=0.99) with standards ranging from 10 mM to 0.1 AM calcium. 

Concentrations of glutamic acid (n=5 males, 1 ejaculate per male) were determined 

by amino acid analysis'. Prior to analysis, a 0.5-mL volume of neat semen was centrifuged 

at 12,000 x g for 5 min, and the supernatant was frozen at -20 C. The remaining neat 

semen was diluted to 2 x 109 sperm/mL with TES buffer and washed as described above. 

The washed sperm were microcentrifuged and the supernatant frozen as above. Protein 

concentrations (n=10 males, 1 ejaculate per male) were determined using the Bradford 

'Sigma Chemical Company, A 9676, St. Louis, MO, 63178 

'AAA Laboratory, Mercer Island, WA, 98040 
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protein assay'. A 0.25-mL sample of neat semen was centrifuged at 12,000 x g for 5 min, 

and the supernatant was assayed for total protein. The remaining neat semen was diluted 

to 2 x 109 sperm/mL with TES buffer and washed as described above. Washed sperm were 

microcentrifuged and the supernatant was assayed for total protein as described above. 

Total protein was also evaluated before and after washing using SDS-PAGE (Laemmli, 

1970). Electrophoresis was performed in a vertical slab gel containing 6-20% (wt/vol) 

acrylamide. 

3.3.5 Evaluation of sperm mobility 

Sperm mobility was measured using the procedure of Froman and McLean (1996). 

An ejaculate from each of 10 males was diluted to 5 x 108 sperm/mL with motility buffer. 

A 60-4 volume of sperm suspension was layered upon 0.6 mL of 6% (wt/vol) Accudenz® 

solution prewarmed to 41 C in a disposable microcuvette. The 6% (wt/vol) Accudenz® 

solution was prepared by diluting the 30% (wt/vol) Accudenz stock solution with motility 

buffer diluted to 290 mmol/kg. The cuvette was incubated for 5 mM in a 41 C water bath. 

Absorbance was measured at 550 nm 1 min after the incubated cuvette was loaded into a 

spectrophotometer. The remaining neat semen was diluted to 2 x 109 sperm/mL with TES 

buffer and washed as described above. The mobility of washed sperm was measured as 

above, but using each of the following media for sperm resuspension: 1) isotonic buffered 

saline containing 2 mM Ca", 2) isotonic buffered saline containing 2 mM Ca' and 10 mM 

glucose, and 3) isotonic buffered saline containing 2 mM Ca' and 3 mM CN . Each 

medium was also used to prepare 6% (wt/vol) Accudenz®. 

"Bio-Rad, 500-0006, Hercules, CA 94547 
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3.4 RESULTS 

Semen diluted to 2 x 109 sperm/mL can be layered on top of 12% (wt/vol) 

Accudenz® without mixing layers. When centrifuged at 1250 x g, sperm pass through the 

12% (wt/vol) Accudenz® while the solution the sperm were suspended in does not mix 

with Accudenz® solution. Furthermore, sperm do not penetrate the 30% (wt/vol) 

Accudenz® solution underlying the 12% (wt/vol) Accudenz®. Therefore, when this 

procedure is performed as described in the Materials and Methods section, sperm form a 

band approximately 1 cm deep at the interface of the 12% and 30% (wt/vol) Accudenz 

solutions. Likewise, a thin white band is present at the interface of the medium in which 

the sperm were suspended and the 12% (wt/vol) Accudenz® solution. Transmission 

electron microscopy (TEM) of the material from this band revealed a few intact sperm, 

cellular debris, and spermiophages (data not shown). Conversely, sperm recovered from 

the interface of the 12% and 30% (wt/vol) Accudenz® solutions had normal morphology 

as evidenced by TEM and phase contrast microscopy (data not shown). Likewise, these 

sperm were viable as evidenced by ethidium bromide exclusion (Table 3.1). As shown in 

Table 3.1, recovery of washed sperm was 83% (CV=12%). As shown in Table 3.2, 
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TABLE 3.1. Sperm recovery and sperm viability before and after washing sperm through 
12% (wt/vol) Accudenz® 

Roosters Pre-Wash	 Post-Wash Recovery' 
(n) Viability'	 Viability' (%) 

(%) (%) 

10 99.75 ± 0.05	 99.5 ± 0.05 83.8 ± 4.0 

'Each value is a mean ± SEM. 

TABLE 3.2. Reduction of marker compounds after washing sperm through 12% (wt/vol) 
Accudenz® 

Roosters	 Component Reduction' 
(n)	 ( %)
 

9 glucose 99.2 ± 0.14
 

5 glutamic acid 99.8 ± 0.05
 

10 calcium 97.3 ± 0.13
 

9 protein 98.3 ± 0.23
 

'Each value is a mean ± SEM. 
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washing removed 99.8, 99.2 and 97.3% of extracellular glutamic acid, glucose, and Ca', 

respectively. Likewise, washing removed 98.3% of extracellular protein (Table 3.2). The 

efficacy of the washing procedure was corroborated by SDS-PAGE (Figure 3.1). 

The postwash sperm mobility was 97% of prewash mobility when the resuspending 

medium contained glucose (data not shown). As shown in Table 3.3, the fertilizing ability 

of washed sperm did not differ from non-washed control sperm (P 0.05; Table 3.3). 

Sperm mobility was 75% of controls when washed sperm were resuspended in glucose free 

isotonic saline (Figure 3.2). In contrast, when washed sperm were resuspended in a 

glucose free medium containing 3 mM cyanide, sperm were immotile (Figure 3.2). 
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FIGURE 3.1. Polypeptides derived from chicken seminal plasma proteins following 
SDS-PAGE in a vertical slab gel containing a 6-20% (wt/vol) gradient of acrylamide. 
Polypeptides were stained with Coomassie blue. Lane A denotes molecular weight 
markers. Lane B shows proteins associated with nonwashed sperm. After washing 
sperm through 12% (wt/vol) Accudenz®, sperm were resuspended to a physiological 
concentration with TES buffer. As demonstrated in lane C, washing removed seminal 
plasma proteins. 
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TABLE 3.3. Fertilizing ability of sperm before and after washing through 12% (wt/vol) 
Accudenz® 

Roosters Treatment Hens' Eggs2 Fertility' 
(n) (n) (n) 

8 Nonwashed 70 549 71.9±10.9 

8 Washed 61 450 71.1±10.6 

'Each Single Comb White Leghorn hen was inseminated with a dose of 75 x 106 sperm in
 
a volume of 75 /21.
 

2Collected daily and set weekly.
 

'Each value is a mean ± SEM.
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FIGURE 3.2. Sperm mobility as measured by a change in absorbance following an 
overlay of 6% (wt/vol) Accudenz with sperm suspensions after centrifugation through 
12% (wt/vol) Accudenz. Each bar represents the mean and standard error of 10 
replicate trials with semen from individual males. In each assay, pooled sperm were 
washed by centrifugation through 12% (wt/vol) Accudenz prepared with buffered 
isotonic saline. This procedure washes sperm and returns them to a physiological 
concentration. Washed sperm were resuspended in each of three media. Each medium 
contained 2 mM Ca'. Media differed according to glucose and cyanide content. 
Combinations of reagents are shown along the X axis. Glucose and cyanide were used 
at 15 and 3 mM, respectively. Sperm were immotile in the glucose free medium 
containing cyanide. 
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3.5 DISCUSSION 

Our primary objective was to determine whether we could procure fully functional 

sperm in a chemically defined environment. In previous research, sperm were centrifuged 

through an Accudenz® solution in order to wash sperm free of an exogenous enzyme 

(Froman and Thursam, 1994). We hypothesized this simple technique could also be used 

to wash sperm free of seminal plasma components so that the effect of specific compounds 

could be studied on sperm cell function. Attributes of washed sperm were evaluated in 

vitro and in vivo. The efficacy of washing was evaluated in terms of the extent sperm could 

be washed free of small and large molecular weight compounds. 

Traditionally, centrifugation has been used as a method to wash sperm. However, 

this approach merely dilutes the components of the medium in which sperm are suspended. 

As alluded to above, Froman and Thursam (1994) prepared a sperm suspension containing 

exogenous neuraminidase, centrifuged the sperm through 12% (wt/vol) Accudenz, and 

recovered washed sperm at a physiological concentration from the interface between the 

12% and an underlying 30% (wt /vol) Accudenz solution. Fertilizing ability was not 

affected and washed sperm were free of neuraminidase activity. Therefore, the washing 

procedure effectively removed an exogenous macromolecule from a population of sperm. 

However, we wanted to establish the efficacy of the procedure for compounds commonly 

found in extended semen. 

The efficacy of washing was tested using the following markers: glutamic acid, 

glucose, Ca+2, and seminal plasma protein. Glutamic acid is the predominant free amino 
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acid in fowl seminal plasma (Freeman, 1984). Due to the pKa of the a-amino group, the 

a-carboxyl group and the side chain, this molecule is an organic anion at physiological pH. 

Glucose was used because it is present in semen (Freeman, 1984). Likewise, a hexose is 

commonly used as a nutrient in extenders. We chose the inorganic cation Ca.÷2 as the third 

marker because it is found in mM concentrations in seminal plasma and is a motility agonist 

at body temperature (Ashizawa and Wishart, 1987; Wishart and Ashizawa, 1987). Finally, 

we used seminal plasma proteins as macromolecular markers. 

As evidenced by in vitro mobility at body temperature and the fertilizing ability of 

washed sperm in vivo (Table 3.2), the washing procedure did not impair sperm function. 

As shown in Table 3.2, the washing procedure reduced the presence of extracellular 

markers by an average of 98.7%. As evidenced by a CV of 1.1%, the efficacy of the 

washing procedure was independent of the chemical nature of the marker. In each case, 

the postwash concentration of the marker was negligible. Therefore, we concluded the 

washing procedure did indeed place sperm in a chemically defined environment. 

Having shown it was possible to place functional sperm in a chemically defined 

environment, we conducted an experiment to demonstrate application of the method. We 

hypothesized that we could control sperm metabolism by controlling the extracellular 

environment. We chose sperm mobility as an endpoint. Fowl sperm metabolism is affected 

by glucose (Goldberg and Norman; 1961; Sexton, 1974; Wishart, 1982). Having 

considered that: (1) we could wash sperm free of glucose, (2) fowl sperm can utilize an 

endogenous substrate under aerobic conditions (Howarth, 1978; Howarth, 1981), and (3) 

cyanide inhibits mitochondrial respiration, we formulated the following hypotheses. First, 
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sperm would be motile in a glucose-free medium. Second, sperm would be immotile in a 

glucose free medium containing cyanide. As shown in Figure 3.2, these hypothesized 

outcomes were observed. Therefore, profound differences in sperm function were 

experimentally induced by controlling the chemical composition of the spermatozoal 

environment. In conclusion, the procedure described herein represents a simple method to 

recover large numbers of viable fowl sperm in a chemically defined environment. We 

propose that it can be applied to the study of such phenomena as sperm metabolism, 

motility, and the acrosome reaction. 
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4.1 ABSTRACT 

Roosters homozygous for the rose comb allele (R/R) are subfertile. In previous 

research, these subfertile roosters were characterized with limited sperm mobility as 

measured with an in vitro sperm penetration assay. The objective of the present study was 

to further characterize sperm motility and account for an underlying mechanism. Reduced 

sperm mobility was explicable in terms of reduced sperm motility (p < 0.001) as measured 

with a Hobson SpermTracker. The concentration of intracellular ATP in sperm from 

subfertile roosters was less than that from fertile controls (p < 0.001). The genotypic 

difference in sperm mobility was maintained when ATP production was dependent on 

anaerobic glycolysis (p < 0.001). In this case, sperm were incubated with exogenous 

glucose and cyanide. Consequently, we could not attribute the genotypic difference in 

sperm mobility to mitochondrial respiration. In contrast, glucose transport, as measured 

by the uptake of [1,2-3H] 2-deoxy-D-glucose, was reduced in sperm from subfertile 

roosters (p < 0.001). Neither hexokinase nor glyceraldehyde-3-phosphate dehydrogenase 

activity differed between genotypes (p > 0.05). Likewise, lactate dehydrogenase activity 

did not differ between genotypes (p > 0.05). As evidenced by creatine kinase activity and 

dynein ATPase activity, neither the potential for energy transfer nor utilization within the 

axoneme differed between genotypes (p > 0.05). Therefore, we attribute the subfertility 

of roosters homozygous for the rose comb allele to decreased spermatozoal glucose 

transport. 
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4.2 INTRODUCTION 

The production of a series of fertilized eggs by a hen after a single insemination is 

dependent on several events occurring in the hen's reproductive tract. First, sperm traverse 

the vagina and enter the sperm storage tubules (SST), which are located near the vaginal 

sphincter [1]. Sperm must be motile to reach and enter the SST [1,2]. Thereafter, sperm 

are released from the SST and apparently transported by antiperistalsis to the infundibulum 

where fertilization occurs. Sperm motility does not appear to be necessary for sperm 

transport above the vaginal sphincter or for fertilization [2-4]. 

Heritable male subfertility in the domestic fowl has been reported in two models 

[5,6]. Single comb (r/r) roosters carrying the dominant sperm degeneration allele (Sd) are 

subfertile due to a defect acquired by sperm during their passage through the excurrent 

ducts of the testis resulting in premature sperm degeneration [7]. Roosters homozygous 

for the rose comb allele (R/R) are also subfertile [5,8]. Froman et al. [9] demonstrated that 

these two traits have a cumulative effect. Unlike sperm from Sd roosters, sperm from R/R 

roosters are viable and have normal morphology [10]. Behavior of sperm from R/R males 

within the hen's oviduct has been well characterized [4,8,11]. While intravaginal 

insemination of ejaculated sperm from R/R males resulted in subfertility [4,8], no difference 

in fertility was observed after intramagnal insemination of ejaculated sperm [4,11]. 

Likewise, no difference in fertility was observed following intramagnal insemination of 

testicular sperm from R/R males [4]. McLean and Froman [8] reported that sperm 

ejaculated by R/R males do not enter the SST after artificial insemination (Al) to the same 
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extent as sperm from fertile controls. However, there is no genotypic difference in sperm 

penetration of SST when sperm are incubated with oviduct explants [8]. Viewed 

collectively, these observations implicate poor sperm motility as a possible factor 

responsible for subfertility of R/R males, as was suspected by Kirby et al. [4]. This 

hypothesis was not rejected by McLean and Froman [8], who demonstrated sperm from 

R/R males had reduced mobility as evidenced by in vitro sperm penetration of Accudenz. 

Poor sperm motility can be associated with several factors. Among these are 

abnormal axonemal structure due to mutations, defects in sperm biochemistry, and 

immobilizing antisperm antibodies [12]. Metabolism of sperm from R/R males has been 

suggested as having a role in subfertility of these roosters [4,13]. Most notably, fumarase 

activity was reported to be less in sperm from R/R males than controls and the activity of 

this enzyme was correlated to fertility [13]. However, this finding was later contradicted 

[14]. Kirby et al. [4] and McLean and Froman [8] used a test of overall metabolic activity 

to show metabolism of sperm from R/R males was less than controls. This test did not, 

however, identify the specific metabolic pathway or pathways responsible for the decreased 

activity observed. 

The objective of the current research was to further characterize sperm motility and 

key biochemical attributes underlying motility. The present research was designed to do 

the following: 1) confirm decreased mobility of sperm populations, 2) evaluate motile 

properties of individual sperm by computer assisted sperm motion analysis, 3) identify a 

mechanism that might account for compromised sperm motility. 
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4.3 MATERIALS AND METHODS 

4.3.1 Experimental Animals 

All comparisons were made between sperm from subfertile R/R and fertile r/r 

roosters. All roosters were F2 having been derived from an orginal cross of a Silver Laced 

Wyandotte (R/R) male and 10 Single Comb White Leghorn hens (r/r). Males were 

individually caged, received feed and water ad libitum and were used as semen donors 

when they were 26-42 weeks of age. 

4.3.2 Evaluation of sperm mobility 

Sperm mobility was measured with an objective spectrophotometric method that 

quantitates the number of sperm that enter a 6% (v/v) Accudenz [15]. Semen was obtained 

from individual males (n = 40/genotype) and sperm concentration determined. Semen was 

diluted to 5 x 108 sperm/ml with 50 mM TES buffer, pH 7.4, containing 120 mM NaCl, 10 

mM glucose, and 2 mM CaCl2. This buffer will be referred to as motility buffer. A 60 

volume of sperm suspension was layered upon 0.6 ml 6% Accudenz (Accurate Chemical 

& Scientific Corporation, Westbury, NY) solution prewarmed to 41°C in a disposable 

microcuvette. The cuvette was incubated for 5 min in a 41°C water bath. Absorbance 

was measured at 550 nm 1 min after the incubated cuvette was loaded into a 

spectrophotometer (DU-640, Beckman Instruments, Fullerton, CA). 

4.3.3 Evaluation of sperm motility 

Motility variables of individual sperm were determined using computer assisted 

sperm motion analysis. Motility of sperm from individual R/R males and fertile controls 
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was evaluated with a Hobson Sperm Tracker (Biogenics, Napa, CA). Semen was obtained 

from individual males and sperm concentration determined. Semen was diluted to 17 x 108 

sperm/ml with motility buffer. Approximately 3 ill of sperm suspension was injected into 

a 20 micron Micro Cell slide (Conception Technologies, San Diego, CA). In each case, 

sperm motility variables were estimated using a 40X objective, negative phase contrast 

microscopy. Three fields of approximately 50 sperm per field were evaluated for a total 

of 150 sperm tracks per sample at 25°C. 

4.3.4 Evaluation of Sperm Biochemical Properties 

ATP concentrations in freshly ejaculated sperm (n = 9 per genotype) were 

determined using the FireZyme Ltd. (Halifax, Nova Scotia) luciferase method. Semen was 

diluted to 5 x 108 sperm/ml with a proprietary isotonic diluent. A 50 ill volume of the 

sperm suspension was diluted further to lyse cells and stabilize ATP. This solution, in turn, 

was mixed with a proprietary solution containing luciferin and luciferase. Light output was 

measured immediately with a luminometer (FireZyme Ltd). ATP concentrations were 

determined from a standard curve. 

Sperm mobility based upon ATP derived from anaerobic glycolysis was measured 

as follows. Semen was pooled according to genotype (n = 10 males per genotype) and five 

replicate experiments performed. In each case sperm concentration was determined 

spectrophotometrically. Semen was diluted to 2 x 109 sperm/ml with 50 mM TES, pH 7.4, 

containing 130 mM NaCl. Five ml of 12% (w/v) Accudenz was placed in a 15 ml 

polypropylene centrifuge tube. A 0.5 ml volume of 30% (w/v) Accudenz was placed 

beneath the 12% Accudenz with a Pasteur pipet. The sperm suspension was overlayed on 
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the 12% Accudenz solution. Tubes were centrifuged at 1250 x g for 25 min at 4°C. After 

centrifugation, fluid above and below the pelleted sperm was removed by aspiration. A 

stock solution of isotonic buffered saline containing 2 mM CaC12 was used to prepare each 

of the following media: 1) 15 mM glucose, 2) 15 mM glucose and 3 mM cyanide, and 3) 

3 mM cyanide. Each medium was used to prepare a 6% (w/v) Accudenz solution. 

Mobility of sperm from each genotype was measured using the mobility assay as described 

above. 

Lactate dehydrogenase (LDH), glyceraldehyde-3-phosphate dehydrogenase 

(GAPDH), and hexokinase (HK) activities were determined from a crude sperm extract. 

Semen was pooled according to genotype (n = 10 males per genotype) and 12 replicate 

experiments performed. Pooled semen was centrifuged through 12% (w/v) Accudenz as 

described above. Washed sperm were diluted to 1 x 109 sperm/ml with PBS containing 

0.1% (v/v) Triton X-100 (Sigma). The sperm suspension was transferred to a 15-m1 

dounce homogenizer and disrupted by homogenization. Sperm were lysed with the loose 

and tight clearance pestle (10 strokes each) and lysates were centrifuged at 12,000 x g for 

5 min. Supernatants constituted crude enzyme extracts. GAPDH and HK activities were 

determined according to the procedures of Krebs [16] and Schulze et al. [17], respectively. 

LDH activity was determined according to the procedure described by Gutmann and 

Wahlfeld [18]. 

Dynein ATPase activity was determined with the procedure of McConnell et al. 

[19]. Semen was pooled according to genotype and diluted 1:10 with 50 mM TES buffer, 

pH 7.4 containing 130 mM NaCl. This sperm suspension was centrifuged at 700 x g for 
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10 min at 4°C. The sperm pellet was resuspended in demembranation buffer containing 20 

mM Tris, pH 7.9, 0.2 M sucrose, 1 mM MgSO4, 1 mM dithiothreitol (DTT), 0.5 mM 

PMSF, and 0.1% (v/v) Triton X-100. After centrifugation, demembranated sperm were 

washed once with detergent-free demembranation buffer and recentrifuged. Dynein 

ATPase was solubilized by resuspending the demembranated sperm in a 20 mM Tris buffer, 

pH 7.9, containing 0.6 M NaCl, 1 mM DTT, 4 mM MgC12, 0.5 mM EDTA, and 0.5 mM 

PMSF for 10 min at 4°C. This suspension was centrifuged at 100,000 x g for 30 min at 

4°C. The supernatant was used as the crude dynein extract. 

Dynein ATPase activity was assayed by the hydrolysis of ATP. ATPase activity 

was determined by incubating 0.25 ml of crude dynein extract with 1 ml of 20 mM Tris, 4 

mM MgSO4, 0.1 mM ATP, pH 7.9, for 30 min at 41°C. The mixture was boiled to stop 

the reaction. ATP concentration was determined using bioluminescence as described 

above. 

Creatine kinase activity was determined from a crude sperm extract. Semen was 

pooled according to genotype (n = 10 males per genotype) and 12 replicate experiments 

performed. Pooled semen was centrifuged through 12% (w/v) Accudenz as described 

above. Washed sperm were diluted to 2 x 109 sperm/ml with 50 mM TES buffer, pH 7.4, 

containing 130 mM NaCl. A 0.01 ml sample of the sperm suspension was diluted into 0.39 

ml of 0.15 M Tris, pH 8.0, containing 0.15 M HEPES, 5 mM MgC12, 150 mM KC1, 0.5 
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mM EDTA, 1 mM DTT, and 0.05% (v/v) Triton X-100. A 0.01 ml sample of this 

disrupted sperm suspension was diluted with 0.09 ml of detergent free Tris buffer. Creatine 

kinase activity in the extract was determined with a creatine phosphokinase kit (Sigma). 

Hexose uptake was determined with the procedure of Hiipakka and Hammerstedt 

[20]. Sperm from individual ejaculates (n = 15 per genotype) were diluted to 1 x 109 

sperm/ml with 50 mM TES, pH 7.4, containing 130 mM NaC1 and centrifuged at 700 x g 

for 20 min at 4°C. Washed sperm were diluted to 1.5 x 109 sperm/ml with 50 mM TES, 

pH 7.4, containing 120 mM NaC1, 1 mM 2-deoxy-D-glucose, and 2 mM CaC12. A 0.1 ml 

volume of sperm suspensions was mixed with an equal volume of buffer containing [1,2-3H] 

2-deoxy-D-glucose (1 kcCi//21). The resultant sperm suspensions were incubated at 41°C 

for 16 min. Uptake of 2-deoxy-D-glucose was stopped by the addition of 0.5 ml of a 0.1 

M glucose solution. Samples were centrifuged at 12,000 x g for 5 mM, supernatants 

discarded, and pellets resuspended in 0.5 ml of 50 mM TES, pH 7.4, containing 120 mM 

NaC1 and 0.1% (v/v) Triton X-100. Each sperm extract was incubated 56°C for 10 min 

and then transferred to scintillation vials containing 5 ml of CytoScint ES scintillation fluid 

(ICN, Costa Mesa, CA). Radioactivity was determined in a Beckman LS 6000SE 

scintillation counter (Beckman Instruments, Fullerton, CA). Cytochalasin B (Sigma) was 

used to inhibit glucose uptake and thus provide an estimate of radioactivity in the 

extracellular space within the sperm pellet. 
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4.3.5 Statistical Analysis 

Single classification ANOVA was used to analyze the following data sets: sperm 

mobility as measured by penetration of Accudenz, sperm motility variables estimated by 

computer assisted sperm motion analysis, ATP concentrations, and 2-deoxy-D-glucose 

uptake. Enzyme activities were analyzed by t-test. 

4.4 RESULTS 

As shown in Table 4.1, sperm mobility differed between genotypes (p < 0.0001). 

As shown in Table 4.2, the percentage of motile sperm may account for the reduced sperm 

mobility of R/R roosters. In contrast, variables derived from motile sperm, e.g. straight line 

velocity, did not differ between genotypes (p > 0.05). An additional genotypic difference 

was sperm ATP concentration (Table 4.3). Sperm from subfertile R/R roosters had an ATP 

concentration that was 37% of that from fertile controls (p < 0.0001). 

Preliminary research with sperm from fertile roosters demonstrated that washing 

sperm through 12% (v/v) Accudenz followed by resuspension in 15 mM glucose had no 

effect on sperm mobility. In other words, the postwash mobility was equivalent to the 

prewash mobility. However, as shown in Table 4.4, the postwash mobility from fertile 

roosters differed when washed sperm were resuspended in different media. When washed 

sperm were resuspended in a glucose free medium containing 3 mM KCN, sperm did not 

penetrate the Accudenz solution from the sperm suspension overlay. Evaluation of such 

sperm suspensions by phase contrast microscopy confirmed that these sperm were 
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TABLE 4.1. Sperm mobility measured by sperm penetration of 6% (w/v) Accudenz®. 

Genotype Roosters Absorbance* 
(n) 

R/R 40 0.101 ± 0.09' 

r/r 40 0.500 ± 0.19b 

*Absorbance at 550 nm is proportional to the extent to which sperm penetrate the 
Accudenz layer from a sperm suspension overlay. Each value is a mean ± SEM. 

a,b Means different at p < 0.0001. 

TABLE 4.2. Variables* estimated with computer assisted sperm motion analysis. 

Genotype* Straight line 
Velocity 

Average path 
Velocity 

Beat cross 
frequency 

ALHg 
(Am) 

Motile Sperm
(%) 

(Pm) (Pm) (11z) 

R/R 18 ± 5.7 31 ± 7.1 10.7 ± 3.1 7.2 ± 1.1 62 ± 20a 

r/r 20 ± 6.3 34 ± 5.6 12.1 ± 2.3 6.3 ± 1.3 91 ±6.3b 

*Each value is a mean ± SEM 

*n = 12 males per genotype 

Amplitude of lateral head displacement 

a,bMeans different at p < 0.001. 
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TABLE 4.3. Concentrations of ATP in sperm from males homozygous for the rose 
comb allele (R/R) and controls (r/r). 

Genotype Roosters ATP * 
(n) (nmole /109 sperm) 

R/R 9 31.84 ± 8.2a 

r/r 9 85.41 ± 10.6b 

*Each value is a mean ± SEM. 

a,bMeans different at p < 0.001. 
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TABLE 4.4. Genotypic difference in sperm mobility when ATP production was limited to 
anaerobic glycolysis. 

Combinations of Reagents in TES buffer* Absorbance by Genotypet 
Glucose Cyanide RJR r/r 

+ 0.145 ± 0.040' 0.705 ± 0.043b 

+ 0.005 ± 0.001 0.007 ± 0.006 

+ + 0.125 ± 0.029' 0.675 ± 0.066b 

*TES buffer consisted of 50 mM TES, pH 7.4, 120 mMNaC1, 2 mM CaC12, and when 
present, 15 mM glucose, and 3 mM KCN. 

-Absorbance at 550 nm is proportional to the extent to which sperm penetrate the 
Accudenz® layer from a sperm suspension overlay. Each value is a mean ± SEM. 

a,b Means within rows differed at p < 0.0001. 
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immotile. In contrast, when washed sperm from fertile roosters were resuspended in 

medium containing 15 mM glucose and 3 mM KCN, sperm mobility was 83% (Table 4.4) 

of that KCN free medium containing glucose. Therefore, sperm from fertile roosters used 

anaerobic glycolysis to generate ATP required for progressive motility. 

As also shown in Table 4.4, the genotypic difference was evident when washed 

sperm were resuspended in medium containing either 15 mM glucose or 15 mM glucose 

with 3 mM KCN. However, the genotypic difference was lost in the medium containing 

just 3 mM KCN. Therefore, the genotypic difference persisted when anaerobic 

glycolysis was the only means of ATP production. 

As shown in Figue 4.1, uptake of [1,2-3H] 2-deoxy-D-glucose differed between 

genotypes (p < 0.001). Uptake of 2-deoxy-D-glucose (dGlc) by sperm from controls was 

84.4 pmole 2dGlc /108 sperm. In contrast, uptake of dGlc by sperm from R/R males was 

only 52.25 pmole dGlc/108 sperm, or 62% of the control value. In addition, hexokinase, 

glyceraldehyde-3-phosphate dehydrogenase, lactate dehydrogenase, creatine kinase, and 

dynein ATPase activities did not differ between genotypes (p > 0.05; Table 4.5). 
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.1.
 

FIGURE 4.1. Uptake of [1,2-31-1] 2-Deoxy-D-glucose by sperm from R/R (open) and r/r 
(filled) males. Each bar represents the mean and standard error of 14 replicate observations 
from individual males. Means were significantly different (p < 0.001). 
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Table 4.5. Sperm enzyme activities* (Units/mg protein) by semen donor genotype. 

Genotype Hexokinase GAPDHa Lactate Creatine Dynein 
Dehydrogenase Kinase ATPase 

R/R 0.62 ± 0.1 0.20 ± 0.01 7.9 ± 0.27 9.2 ± 1.1 2.03 ± 0.7 

r/r 0.66 ± 0.1 0.20 ± 0.01 7.4 ± 0.21 9.0± 1.3 1.94 ± 0.7 

* n = 12 replicates using pooled semen from 10 males per genotype. Each value is a 
mean ± SEM. 

aGlyceraldehyde-3-phosphate dehydrogenase 
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4.4 DISCUSSION 

Roosters homozygous for the rose comb allele (R/R) are subfertile and ejaculate 

sperm that are characterized by poor mobility [8]. Mobility was measured with an objective 

spectrophotometric method that quantitates the number of sperm that enter a 6% (v/v) 

Accudenz solution [15] from a sperm suspension overlay. Therefore, this method is 

descriptive of sperm cell populations but does not describe the attributes of individual 

sperm within these populations. We confirmed our initial observations on sperm mobility 

[8] using two populations of roosters (Table 4.1). Attributes of individual sperm can be 

determined using computer assisted sperm motion analysis [21-23]. Evaluation of 

individual ejaculates with such a system indicated the percentage of motile sperm was less 

in ejaculates from R/R roosters than those of fertile controls (Table 4.2). However, 

variables based upon motile cells, such as straight line velocity, average path velocity, 

amplitude, and beat cross frequency, did not differ between genotypes. We attributed the 

decreased sperm mobility of R/R males to a lower percentage of motile sperm. 

Sperm mobility data sets were transformed into frequency distributions (unpublished 

data). As previously reported [24], frequencies from fertile roosters approximated a normal 

distribution. However, the distribution for the subfertile R/R roosters was skewed. 

Subsequent experiments were based on males selected from the portion of each 

distribution that was most representative of the genotype. 

Ford and Rees [25] state that 40-60% of the ATP generated in mammalian sperm 

cells is used for the purpose of cell motility. Therefore, ATP synthesis is critical to motility. 
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As shown in Table 4.2, sperm from R/R males had lower ATP concentrations than sperm 

from fertile controls. The measurement of intracellular ATP concentration, as described 

in the materials and methods, provides an averaged value for all cells within the sample. 

Based upon the Hobson SpermTracker data (Table 4.2), subfertile and fertile males have 

38 and 9% immotile cells, respectively. Therefore, the subfertile males constitute an 

extreme example of heterogeneity within a sperm cell population from a given male. 

However, because of the size of the subpopulation of immotile sperm in ejaculates from 

subfertile males, we hypothesized that we could detect a difference based upon averaged 

values of biochemical variables. Due to the complex nature of the regulation of ATP 

synthesis in sperm [25], the basis for the observed differences in ATP concentration were 

not obvious. Thus, we took advantage of the highly compartmentalized nature of sperm 

and inferred that mitochondrial respiration did not account for the genotypic difference in 

sperm motility (Table 4.4). Based upon the results shown in Table 4.4, sperm motility in 

the presence of cyanide was dependent on exogenous glucose. Cyanide blocks 

mitochondrial respiration by inhibiting cytochrome oxidase. Sperm were immotile in the 

presence of cyanide when glucose was absent. However, when sperm were suspended in 

a medium containing cyanide and glucose, the genotypic difference was apparent. 

Consequently, mitochondrial function cannot account for the genotypic difference in 

motility. 

The experimental results shown in Table 4.4 provided us with four avenues of 

investigation: (1) glucose uptake, (2) ATP synthesis by glycolysis, (3) allocation of energy 

along the axoneme via the phosphorylcreatine shuttle [26], (4) utilization of energy by 
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dynein ATPase. Glucose uptake is dependent on glucose transporters in the plasma 

membrane [27]. Glucose uptake was measured using 2-deoxy-D-glucose which enters 

cells, is phosphorylated but is not metabolized [20]. Uptake of 2-deoxy-D-glucose by 

sperm from R/R males was only 62% of controls (Figure 4.1). In contrast, the production, 

allocation and utilization of energy within sperm cells did not differ between genotypes 

(Table 4.5). 

Fowl sperm can produce ATP under anaerobic conditions to maintain motility and 

fertilizing ability [28,29]. Even though there is not a sperm specific lactate dehydrogenase 

(LDH) in fowl sperm [30-32], LDH is critical for ATP production by anaerobic glycolysis 

[25]. However, LDH activity did not differ between genotypes. Two additional enzyme 

activities related to glycolysis were measured: hexokinase and glyceraldehyde-3 phosphate 

dehydrogenase. Hexokinase is the initial enzyme of glycolysis that phosphorylates glucose 

within the cytoplasm, and glyceraldehyde-3-phosphate dehydrogenase is the rate limiting 

glycolytic enzyme of fowl sperm [33]. However, in either case, no difference was observed 

between genotypes (Table 4.5). Consequently, we did not attribute the genotypic 

difference in sperm motility to glycolytic ATP synthesis. 

Based upon the presence of creatine kinase along the length of fowl sperm axoneme 

[26] high energy phosphate bonds may be allocated along the axoneme with the 

phosphorylcreatine shuttle [34,35]. Once the high energy phosphate bonds have been 

transfered to ADP, the ATP generated is hydrolyzed by dynein ATPase [36]. However, 

there was neither a difference in creatine kinase activity nor dynein ATPase activity 

between genotypes (Table 4.5). Specific inhibitors were used in each case to validate 
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enzyme data. In summary, we rejected the hypothesis that energy allocation or utilization 

was responsible for the genotypic difference in motility. 

Reduced glucose uptake, in part, appears to be responsible for reduced metabolism 

Glucose transport in sperm has beenand poor motility of sperm from R/R males. 

To date, six glucoseinvestigated in bull, ram, rat, and human sperm [20,37,38]. 

transporters have been identified [27]. Two glucose transporters, Glutl and Glut3, have 

been associated with rat and human testis and Glut3 has been associated with both rat and 

human sperm [39,40]. Glut5 has also been associated with human sperm, however, it is 

considered a fructose, rather than a glucose, transporter [40]. Chicken glucose transporters 

have been studied by several groups [41,42]. We used a rabbit anti -Glut3 antibody (a gift 

from Dr. Martyn White, East Carolina Medical School, Greenville, NC), and have 

Analysis of thedemonstrated the presence of Glut3 in fowl sperm by western blotting.
 

structure and function of Glut3 from sperm ofR/R roosters may provide a molecular basis
 

for the subfertility associated with this genotype. 
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CHAPTER 5
 

CONCLUSIONS
 

This research demonstrated that heritable subfertility associated with homozygosity 

for the rose comb (R/R) allele is due to reduced sperm glucose transport. Reduced glucose 

transport would be expected to limit sperm metabolic rate. Consequently, this could 

account for the reduced ATP concentrations observed within sperm from subfertile males. 

Additionally, reduced glucose uptake could account for reduced sperm motility. The 

percentage of immotile sperm in ejaculates from subfertile males was 38% compared to 9% 

for fertile males, as evaluated using computer assisted sperm motion analysis. Conversely, 

the properties of motile sperm do not differ between genotypes. This may explain why R/R 

males are subfertile rather than infertile. 

This thesis validated the application of a sperm penetration assay as well as 

computer assisted sperm motion analysis for the evaluation of fowl sperm motility. 

Whereas computer assisted sperm motion analysis provides information based upon 

individual sperm within a population, the sperm penetration assay estimates the size of a 

highly mobile subpopulation. The sperm penetration assay is based upon the ability of 

motile sperm to penetrate an Accudenz® solution. Sperm penetration is measured 

spectrophotometrically. Absorbance at 550 nm is directly proportional to the number of 

sperm that enter the Accudenz® solution from an overlay of extended semen. When 

applied to sperm from R/R males, the assay lead to the discovery that ejaculates from these 

males contained a significantly smaller subpopulation of highly mobile sperm than do 
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ejaculates from fertile controls. In addition to using Accudenz® to measure sperm 

mobility, this reagent was found useful for placing sperm in a chemically defined medium. 

This experimental capability afforded the demonstration that the genotypic difference in 

sperm mobility was present when ATP synthesis was limited to anaerobic glycolysis. 

Viewed collectively, these data demonstrate how an aberrant sperm cellular 

mechanism can account for the subfertility associated with roosters homozygous for the 

rose comb allele. As stated earlier, reduced glucose transport would be expected to limit 

ATP synthesis. In a cell characterized by high energetic demands, such a condition would 

be expected to compromise the cell's function. Thus, it is more apparent why sperm from 

subfertile males do not ascend the vagina and enter SST to the extent that sperm from 

fertile males do. It is noteworthy that the subfertility of R/R males is a function of 

insemination route. As explained previously, the genotypic difference in fertility is 

essentially eliminated by use of intramagnal insemination (Etches et al., 1974; Kirby et al., 

1994). Sperm placed in this region of the oviduct do not have to traverse the vagina and 

enter SST. Therefore, two critical prerequisites for fertilization in the fowl are 

circumvented by intramagnal insemination. Nonetheless, sperm from subfertile males 

appear to bind perivitelline layer proteins, undergo an acrosomal reaction, and the fuse with 

the oocyte plasma membrane as do sperm from fertile controls. 

This research demonstrated the importance of sperm motility to fertility in the 

domestic fowl using a genetic model. In contrast to research such as Wishart and Palmer 

(1986) who reported a correlation between sperm motility and fertility, the present research 

demonstrated a cause and effect relationship between the sperm motility and fertility. 
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Homozygosity for the rose comb allele provides avenues for additional research. It should 

be noted that the objective of this research was to find a sperm specific attribute that could 

account for subfertility. Demonstration of reduced glucose transport in sperm from R/R 

males may be sperm specific. To date, 7 members of the glucose transporter gene family 

have been identified (Mueckler, 1994). Of these, 4 are believed to transport glucose 

through the plasma membrane. The expression of glucose transporter isoforms is often 

tissue specific and hormonally regulated. It has been shown that Glut3 is the only glucose 

transporter present in rat sperm (Burant and Davidson, 1994). Preliminary research in this 

study demonstrated that Glut3 is present in fowl sperm. 

The expression of Glut3 during spermatogenesis may explain why sperm from R/R 

males have reduced glucose transport. Molecular probes exist that could be used to 

determine mRNA levels of Glut3 in the testes. Decreased Glut3 mRNA levels in testes 

from R/R males may indicate that Glut3 expression is affected by this genotype. Several 

steps of gene regulation could be affected. These include the initiation of transcription or 

translation, post-translational modifications to the protein, or mRNA storage in the 

cytoplasm. During spermatogenesis, translation of mRNA from several sperm-specific 

proteins occurs up to 8 days after all transcription stops in elongating spermatids (Kleene 

et aL 1984). This is possible due to the storage of mRNA in the cytoplasm in 

translationally inert ribonucleoprotein particles. There are other examples of various 

mechanisms of gene regulation utilized during spermatogenesis such as alternative splicing 

of mRNA. The complex regulation of gene expression for sperm-specific proteins may 

provide an explanation of how sperm from R/R males have altered Glut3 expression. 
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Other mechanisms involved in gene expression or protein dispersion during 

spermatogenesis could be studied with the rose comb model. For example, Braun et al. 

(1989) demonstrated, through the use of transgenic mice, that haploid spermatids exchange 

mRNA and proteins through intracellular bridges connecting developing spermatids in a 

cohort. Thus, while a sperm cell may not contain a copy of an allele, it can contain the 

gene product. These findings relate to a major assumption in early research with R/R 

males. Crawford and Smyth (1964a) demonstrated that sperm carrying the R allele derived 

from heterozygote males are fully functional. However, based on the results of Braun et 

al. (1989), sperm carrying either the R allele or a linked allele that may be responsible for 

subfertility, may contain a fully functional gene product. This could explain why sperm 

carrying the R allele from heterozygotes fertilize oocytes as well as sperm carrying the r 

allele. Thus, roosters heterozygous for the rose comb allele may represent a model that 

could be used to test the working hypothesis of Braun et al. (1989). According to this 

hypothesis, sperm from heterozygotes would contain functional and dysfunctional gene 

products. 
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A.1 ABSTRACT 

When a suspension of rooster sperm was overlaid upon 6% (wt/vol) Accudenz®, 

immotile sperm did not enter but motile sperm entered rapidly. The absorbance of the 

Accudenz® layer increased as a result. These phenomena were used to measure sperm 

motility objectively at body temperature. The intra-assay coefficient of variation (CV) was 

2.6% (n=3). When roosters (n=36) were ejaculated repeatedly and sperm motility data 

analyzed by two-way ANOVA, a male effect was observed (P < .001). When roosters 

were ranked by mean motility scores (n=3 evaluations per male) and representative males 

selected as semen donors, a difference in fertility (P < .001) was observed between males 

characterized by minimal and maximal sperm motility. Frequency analysis with data from 

a second flock of roosters (n=100) revealed a normal distribution. Roosters categorized 

by average sperm motility (n=18) or sperm motility greater than a standard deviation above 

the mean (n=17) were selected for further analysis by repeated measurements. A split plot 

ANOVA revealed a difference between categories (P < .0001) and variation among males 

within a category (P < .0001). In contrast, sperm motility was independent of time and 

there was no interaction between category and time (P .05). Thereafter, 5 roosters from 

each group were ejaculated weekly and inter-assay CVs estimated with semen pooled by 

category (n=3 observations per category). During this interval, sperm motility of average 

roosters was 55 ± 5.9% of that of roosters within the high motility category. Inter-assay 

CVs were 18.1 and 9.2% for roosters originally categorized by average and high sperm 
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motility, respectively. The assay described has potential for: (1) selecting males based on 

sperm motility, and (2) standardizing the measurement of poultry sperm motility. 

A.2 INTRODUCTION 

The motility of poultry sperm has been measured objectively by four principal 

means: spectrophotometry, videomicroscopy, digital image analysis, and sperm movement 

from one medium into another. Wall and Boone (1973), Atherton et al. (1980), as well 

as Wishart and Ross (1985) described modifications of a spectrophotometric technique 

originally used by Timourian and Watchmaker (1970) for measuring the motility of sea 

urchin sperm. Spectrophotometry has been used predominantly to evaluate sperm motility 

in pooled semen samples (Wishart, 1984a,b; Ashizawa and Wishart, 1987; Wishart and 

Ashizawa, 1987; Thomson and Wishart, 1988; Ashizawa et al., 1989a,b; Ashizawa et al., 

1990; Ashizawa and Wishart, 1992; Thomson and Wishart, 1991; Froman and Thursam, 

1994). In contrast, videomicroscopy has been applied principally towards the study of 

axonemal function (Ashizawa et al., 1989c; Ashizawa and Hori, 1990; Ashizawa and Sano, 

1990; Ashizawa et al., 1992a,b; Ashizawa et al., 1993; Ashizawa et al., 1994a,b). The 

limited use of digital image analysis (Bakst and Cecil, 1992a,b) is most likely attributable 

to the cost of instrumentation. 

As reviewed recently by Suttiyotin and Thwaites (1993), sperm migration from one 

medium into another has been used as a measure of sperm motility for numerous 

mammalian species. In contrast, this phenomenon has received little attention as a means 
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of measuring the motility of poultry sperm (Birrenkott et al.,1977; McLean and Froman, 

1995). The latter researchers sought a sperm attribute that would account for the 

subfertility of roosters homozygous for the rose comb allele. In comparison to fertile 

heterozygotes, subfertile homozygotes were characterized by decreased sperm motility 

when sperm suspensions from individual roosters were overlaid upon 6% (wt/vol) 

Accudenz ®3. Furthermore, sperm motility was measured at body temperature utilizing 

standard laboratory equipment, the assay was rapid, and the results were easily interpreted 

and analyzed. Therefore, the objectives of the present research were to: (1) determine 

intra-and inter-assay coefficients of variation for the sperm penetration test, (2) test for 

differences in sperm motility among normal, fertile males, and (3) to determine whether a 

cause and effect relationship could be demonstrated between in vitro sperm motility and 

fertility. 

'Accurate Chemical & Scientific Corporation, Westbury, NY 11590. 
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A.3 MATERIALS AND METHODS 

A.3.1 Intra-assay Coefficient of Variation 

Four solutions were required for the sperm penetration assay. First, a 30% (wt/vol) 

stock solution of Accudenz® was prepared with 3 mM KC1 containing 5 mM N -tris­

[hydroxymethyl]methyl-2- amino - ethanesulfonic acid (TES), pH 7.4, as the solvent. 

Second, another TES-based buffer, henceforth designated as motility buffer, contained 111 

mM NaC1, 25 mM glucose, and 4 mM CaC12 in 50 mM TES, pH 7.4. The osmolality of 

the motility buffer was 320 mmol/kg. Third, a portion of the motility buffer was diluted to 

290 mmol/kg with deionized water. Fourth, a 6% (wt /vol) Accudenz® solution was 

prepared by diluting the stock solution with diluted motility extender. The pH and 

osmolality of the 6% (wt/vol) Accudenz® solution were 7.35 pH units and 323 mmol/kg, 

respectively. 

A 1.5-mL volume of the 6% (wt/vol) Accudenz® solution was pipetted into each 

of three polystyrene cuvets held within a 41 C water bath. After the Accudenz® solution 

had reached thermal equilibrium, semen was procured from each of 10 New Hampshire 

roosters. Ejaculates were pooled and the semen thoroughly mixed. Sperm concentration 

was determined fluorometrically according to Bilgili and Renden (1984). Semen was 

diluted with motility buffer to a concentration of 5 x 108 sperm per mL. At 3-min intervals, 

150-biL volumes of sperm suspension were overlaid upon 1.5-mL volumes of Accudenz® 

layers. Each cuvet was removed from the water bath after a 5-mM incubation and then 

placed within a spectrophotometer. Absorbance at 550 nm was recorded after a 1 -min 
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interval. This process was repeated for sperm that had been immobilized by heating at 56 

C for 10 min. The intra-assay coefficient of variation (CV) was calculated for motile 

sperm by dividing the observed standard deviation by mean absorbance and then 

multiplying the proportion by 100. 

Experiment 1 was replicated as follows. The bottom of each of 3 polystyrene 

cuvets was perforated with a red-hot stainless steel probe. A 7-mm length of polyethylene 

capillary tubing (1.9 mm outer diameter) was attached to the cuvet with Silastic® Medical 

Adhesive' so that the upper end of the tubing protruded 1 mm above the plane of the 

bottom of the cuvet. The adhesive was allowed to cure overnight. Prior to loading each 

cuvet with 6% (wt/vol) Accudenz® as above, the lower end of each capillary tube was 

sealed with a stainless steel sealing plug. Thereafter, cuvets were placed in a 41 C 

waterbath. Semen was collected and manipulated as above. At 3-min intervals, 100-4 

volumes of sperm suspension were overlaid upon the Accudenz® layers. After incubating 

for 10 min at 41 C, each cuvet was removed from the water bath, the stainless steel plug 

removed, and the Accudenz® layer collected into a 1.5-mL microcentrifuge tube. 

Accudenz® layers containing sperm were centrifuged at 15,600 x g for 1 min. Each 

supernatant was removed with a Pasteur pipet, a 40-AL volume of motility buffer was 

added to the microcentrifuge tube, the pelleted cells were resuspended, and the final volume 

of the sperm suspension recorded. Likewise, residual sperm suspensions were recovered 

from cuvets and volumes recorded. Sperm concentrations in top and bottom layers, i.e. 

extended semen overlay and 6% (wt/vol) Accudenz®, were determined as above. Sperm 

4Dow Corning Corp., Medical Products Division, Midland, MI 48640 
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recovered from the Accudenz® layer were expressed as a percentage of the total sperm 

recovered from each cuvet. A mean percentage was calculated and the CV calculated as 

above. 

A.3.2 Difference in Sperm Motility Among Males 

Repeated measurements were made on individually caged males as follows. Manual 

ejaculation of 48-wk-old New Hampshire roosters (n=36) was initiated on an every-other­

day basis. Roosters were ejaculated randomly on each of 3 consecutive semen collection 

days. The following steps were performed sequentially for each rooster. Immediately after 

ejaculation, sperm concentration was determined as above, the ejaculate diluted to 5 x 108 

sperm per mL with pre-warmed motility buffer, a 300-p.L volume of the sperm suspension 

overlaid upon 3 mL of pre-warmed 6% (wt/vol) Accudenz® held in a polystyrene cuvet, the 

cuvet incubated for 5 min at 41 C, the cuvet placed within a photometer', and a reading 

made after a 1-min interval. Photometric data were analyzed by two-way ANOVA (Sokal 

and Rohlf, 1969a). 

A.3.3 In Vitro Sperm Motility and Fertility 

Roosters were ranked according to their mean motility scores. A fertility trial was 

performed in which Single Comb White Leghorn hens (n=45 per treatment group) were 

inseminated with sperm obtained from roosters categorized as having minimal, average, or 

maximal sperm motility. Roosters within a category (n=3) were manually ejaculated, their 

semen pooled, sperm concentration measured as above, and pooled semen extended to 5 

x 108 sperm per mL with motility buffer. Each hen was inseminated intravaginally with 5 

'Model 534A Densimeter, Animal Reproduction Systems, Chino, CA 91710 
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x 10' sperm. Egg collection, incubation, and data analysis were performed according to 

Kirby and Froman (1990). 

This experiment was replicated as follows. The true difference in fertility between 

roosters categorized as having minimal or maximal sperm motility was assumed to be 5 

percentage units based upon the results of the first fertility trial. The number of eggs per 

treatment group needed to detect this difference with 90% certainty at a significance level 

of a=.05 was calculated according to Sokal and Rohlf (1969b). Thus, only roosters 

categorized by minimal or maximal sperm motility were used as semen donors in the second 

fertility trial. Males within one category (n=3) were manually ejaculated and their semen 

processed as above. Prior to insemination, sperm motility was measured as outlined in the 

first experiment. Then, each of approximately 130 Leghorn hens was inseminated 

intravaginally with 5 x 10' sperm. Thereafter, this process was repeated for males within 

the second category and the hens constituting their corresponding treatment group. Egg 

collection, incubation, and data analysis were performed as above. 

A.3.4 Analysis of Males Categorized by Sperm Motility 

Repeated measurements were made on males categorized by sperm motility as 

follows. Males were selected from a second flock of New Hampshire roosters based upon 

a single measurement of sperm motility and frequency analysis. Individually caged 25-wk­

old roosters (n=100) were assigned randomly to be ejaculated on one of three consecutive 

days. Sperm motility was measured as described above. Data were analyzed by single 

classification ANOVA (Sokal and Rohlf, 1969c) in order to determine whether 

observations were independent of a time effect. The Kolmogorov-Smirnov test for 
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goodness of fit was used to determine whether observed frequencies of pooled data 

approximated a normal distribution (Sokal and Rohlf, 1969d). 

Males were ranked by their sperm motility scores. Males with scores near average 

(n=18) were categorized as average. Males with scores greater than one standard deviation 

above the mean (n=17) were categorized as high sperm motility males. Manual ejaculation 

of categorized roosters was initiated on an every-other-day basis. Roosters were 

randomized by cage number and sperm motility measured by photometric analysis on each 

of 3 days. Photometric data were analyzed by split plot design ANOVA (Sokal and Rohlf, 

1969e). 

A.3.5 Inter-assay Coefficient of Variation 

Five representative roosters were selected per sperm motility category. Each 

rooster was ejaculated on a weekly basis. Semen was pooled by category as roosters were 

ejaculated, and duplicate measurements of sperm motility were made by 

spectrophotometric analysis per pool per week. A different batch of reagents was used 

each week. Inter-assay CVs were estimated from the sample means of each category. 
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A.4 RESULTS 

A.4.1 Intra-assay Coefficient of Variation 

Sperm rendered immotile by heating to 56 C did not penetrate the Accudenz® layer. 

In contrast, motile sperm entered the Accudenz® layer rapidly and, as a consequence, 

absorbance increased as a function of time. A representative plot of absorbance versus time 

is shown in Figure A.1. In preliminary experiments, we found the rate of sperm penetration 

to be most rapid during the initial 5 min of incubation. Likewise, once cuvettes were placed 

within the spectrophotometer, results were most consistent when measurements were made 

after a slight delay. We attributed this effect to physical stabilization of the Accudenz® 

layer. Therefore, we adopted a 5-min incubation interval and a 1-min delay between 

cuvette transfer and making a measurement as standard operating procedures. When these 

conditions were used with a sperm suspension derived from pooled semen containing 5 x 

108 sperm per mL, the mean absorbance, standard deviation, and intra-assay CV (n=3) were 

0.9385, 0.0244, and 2.6%, respectively. When the repeatability of the assay was estimated 

in terms of the percentage of sperm recovered from the Accudenz® layer after 10 min of 

incubation at 41 C, the mean and intra-assay CV were 82% and 6.2%, respectively. 

A.4.2 Difference in Sperm Motility Among Males 

When sperm penetration into Accudenz® was measured with a photometer (Figure 

A.2), a pattern comparable to that obtained with a spectrophotometer (Figure A.1) was 

observed. When sperm motility was tested repeatedly for each of 36 New Hampshire 

roosters, the effect of time was nonsignificant. However, a difference (P _. 0.001) in sperm 
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FIGURE A.1. Absorbance of 6% (wt/vol) Accudenz® (A) after overlay with a sperm 
suspension containing motile sperm. Time zero denotes the time at which a 150-AL 
volume of sperm suspension, containing 5 x 108 rooster sperm per mL, was overlaid upon 
a 1.5-mL volume of Accudenz® pre-warmed to 41 C. After the initial reading was made, 
the cuvet was incubated in a 41 C water bath. The cuvet was removed from the water bath 
and absorbance measured at 550 nm after 2, 4, 6, 8, 10, 20, and 30 min of incubation. 
When this procedure was repeated with sperm immobilized by pre-heating to 56 C, the 
absorbance remained at zero over the time course shown. 
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FIGURE A.2. Increase in photometer units (A) due to sperm penetration of 6% (wt/vol) 
Accudenz®. Time zero denotes the time at which a 300-A volume of a sperm suspension, 
containing 5 x 10' rooster sperm per mL, was overlaid upon a 3-mL volume of Accudenz® 
pre-warmed to 41 C. After the initial reading was made, the cuvette was incubated in a 41 
C water bath. The cuvette was removed from the water bath and measurements made after 
5, 10, 20, 30 and 40 min incubation at 41 C. 
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motility was found among roosters. The ANOVA is summarized in Table A.1. When 

males were ranked by mean scores, the maximal sperm motility score was 5 times greater 

than the minimal score. 

A.4.3 In Vitro Sperm Motility and Fertility 

Data from the initial fertility trial are summarized in Table A.2. No difference in 

fertility was observed among treatment groups when hens were inseminated with sperm 

from males categorized a priori by minimal, average, or maximal sperm motility. Fertility 

averaged 54, 53, and 49% for these treatment groups, respectively. In contrast, a 

difference in fertility (P 0.001) was observed between hens inseminated with sperm from 

males categorized by minimal or maximal sperm motility in the second fertility trial (Table 

A.3). Graphical analysis of this data set (Figure A.3) revealed that the difference was 

attributable to lower initial fertility in the case of hens inseminated with sperm characterized 

by minimal motility. In the second fertility trial, differential sperm motility was confirmed 

using extended semen just minutes before insemination. After a 5-min incubation interval 

at 41 C, the absorbance of the 6% (wt/vol) Accudenz® was 0.4423 and 0.8470 for males 

categorized a priori as having minimal and maximal sperm motility. 

A.4.4 Analysis of Males Categorized by Sperm Motility 

Measurements of sperm motility from individual roosters made over a 3-d interval 

were independent of time. Therefore, data were pooled and a frequency analysis performed 

(Figure A.4). The hypothesis that observed frequencies approximated a normal distribution 

was not rejected. The solid line in Figure A.4 represents the shape of the predicted 
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TABLE A.1. Summary of two-way ANOVA following repeated measurements of 
rooster sperm motility' 

Source of Degrees of Sum of Mean 
Variation Freedom Squares Square F-value 

Day 2 8,002 4,001 1.0959 

Rooster 35 507,096 14,488 3.9682*** 

'Each of 36 New Hampshire roosters was ejaculated on an every-other-day basis. 
Three consecutive measurements were made per rooster. 

***P < 0.001 

TABLE A.2. Summary of first fertility trial. 

Roosters Sperm Hens2 Eggs3 Fertility' 
(n) Motility' (n) (n) (%) 

3 Maximal 43 697 54 ± 1.6 

3 Average 43 686 53 ± 2.0 

3 Minimal 44 741 49 ± 2.6 

'A priori categorization based upon sperm penetration of 6% (wt/vol) Accudenz®. 
Roosters (n=36) were ranked by motility scores, and 3 representative roosters were 
chosen for each category. 

2Each hen was inseminated intravaginally with a single dose of 50 x 106 sperm.
 

3Collected over a 21-d interval.
 

"Each value is a mean ± SEM
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TABLE A.3. Summary of second fertility trial 

Roosters Sperm Hens2 Eggs' Fertility' 
(n) Motility (n) (n) (%) 

3 Maximal 135 2,590 52 ± 1.0A 

3 Minimal 129 2,485 44 ± 1.4B 

li4 priori categorization based upon sperm penetration of 6% (wt/vol) Accffdenz . 

Roosters (n=36) were ranked by motility scores, and 3 representative roosters were chosen 
for each category. Differential sperm motility was confirmed prior to insemination. Sperm 
from "minimal" roosters penetrated Accudenz® to only 51% of the extent to which sperm 
from "maximal" roosters did. 

2Each hen was inseminated intravaginally with a single dose of 50 x 106 sperm. 

3Collected over a 21-d interval. 

"Each value is a mean ± SEM. 

A'BDifferent at P .. .0001. 
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FIGURE A.3. Duration of fertility after a single insemination of Single Comb White 
Leghorn hens with sperm from New Hampshire roosters categorized as having maximal 
(A) or minimal (0) sperm motility. Designations were based upon the ranked scores of 
36 roosters after sperm penetration into 6% (wt/vol) Accudenz® from an overlaid sperm 
suspension. Each hen was inseminated intravaginally with 5 x 107 sperm. Solid lines 
represent the functions 

y(x) = [98]/[1 + e" 5866(11.6 -X)], and
 
y(x) = [92]/[ 1 e-.4279(10.4-1,
 

in which 98 and 92 are estimates of the parameter y, the initial percentage of fertilized 
eggs. 
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FIGURE A.4. Frequency analysis of sperm motility from individual New Hampshire 
roosters (n=100). Bars denote categories based upon the extent to which sperm penetrated 
6% (wt/vol) Accudenz® as measured by a photometer. Each category represents an 
increment of 75 photometer units. Bars are centered upon interval midpoints. Thus, the 
first bar, which is centered on 37.5 photometer units, represents the frequency of 
observations that were greater than 0 < 75 photometer units. The hypothesis that observed 
frequencies approximated a normal distribution was not rejected (P > .05). The solid line_ 

represents the normal distribution as determined by the normal probability density function 
and estimates of 283 and 131.4 for 11 and o, respectively. 
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distribution using 283 and 131.4 as estimates of[t and a, respectively. When males were 

ranked by motility scores, the maximum was 30.5 fold greater than the minimum. Analysis 

of repeated measurements from males categorized by average or high sperm motility 

demonstrated highly significant differences (P < 0.0001) between categories and among 

males within categories (Table A.4). In contrast, neither time nor a category by time 

interaction exerted an effect on sperm motility. 

A.4.5 Interassay Coefficient of Variation 

Mean absorbance, standard deviation, and inter-assay CV (n=3) for roosters 

categorized by photometric analysis as having average sperm motility (see Figure A.4) were 

0.5614, 0.10133, and 18.0% when the sperm motility of pooled semen was evaluated by 

spectrophotometric analysis. Likewise, these statistics were 1.0082, 0.09256, and 9.2% 

for roosters categorized by high sperm motility. Sperm from average roosters penetrated 

the Accudenz® layer to only 55 ± 5.9% of the extent to which sperm from high sperm 

motility roosters did. 
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TABLE A.4. Summary of split-plot ANOVA following repeatedmeasurements of sperm 
motility from roosters categorized a priori by average or high sperm motility' 

Source of Degrees of Sum of Mean 
Variation Freedom Squares Square F-value 

Category 1 813,875 813,874 70.54**** 

Male within 33 1,465,375 44,405 
category 

Time 2 12,033 6,016 0.52 

Category by 2 28,010 4,005 1.21 
time 

'Each of 35 New Hampshire roosters was ejaculated on an every-other-day basis. 
Roosters had been characterized beforehand as having average (n=18) or high sperm 
motility (n-=17). Three consecutive measurements of sperm motility were made per 
rooster. 

**"*P < 0.0001 
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A.5 DISCUSSION 

The objective analysis of poultry sperm motility has been hampered by a number of 

factors. These include the very nature of poultry semen, lack of proximity between semen 

donors and analytical equipment, and the cost of computer-assisted analysis. As inferred 

from a recent review of sperm interaction with the oviduct (Bakst et al., 1994), the motility 

of sperm populations within the oviduct, the vagina in particular, should be viewed in terms 

of millions of sperm dispersed over a ciliated epithelial surface in oviducal fluid at body 

temperature. Based upon alternative techniques reviewed for this report, the 

spectrophotometric method originally adapted by Wall and Boone (1973) for poultry sperm 

has been used most frequently. In this assay, sperm motility is determined in a volume of 

synthetic diluent containing 5 to 20 million sperm per mL. Furthermore, in 50% of the 

reports cited, sperm motility was measured at 30 C. Meaningful information may be 

derived from the measurement of sperm motility under non-physiological conditions. 

However, it is known with certainty that the motility of chicken sperm under physiological 

conditions depends upon an interaction between temperature and extracellular Ca' 

(Ashizawa and Wishart, 1987; Wishart and Ashizawa, 1987; Thomson and Wishart, 1988; 

Ashizawa et al., 1989a; Ashizawa and Sano, 1990; Thomson and Wishart, 1991; Ashizawa 

et al., 1992; Ashizawa and Wishart, 1992; Ashizawa et al., 1994). Consequently, routine 

estimation of sperm motility under conditions that approximated body temperature and 

extracellular fluid electrolyte composition seemed warranted. 
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The spectrophotometric assay cited most frequently (Wishart and Ross, 1985) can 

be performed at 40 C using a range of Ca' concentrations that stimulate sperm motility at 

body temperature (Wishart and Ashizawa, 1987). This assay utilizes three basic principles. 

First, absorbance is proportional to the concentration of sperm within a sperm suspension. 

Second, if a suspension of motile sperm is passed through a flow cell and the flow is 

stopped abruptly, then absorbance decays exponentially as a function of time (see Wishart 

and Ross, 1985 for further details). Third, the extent to which absorbance decreases is 

proportional to the percentage of motile sperm in the suspension. Therefore, change in 

absorbance is the key variable to be estimated. This value can be expressed as an index 

(Wall and Boone, 1973; Atherton et al., 1980) or a parametric estimate (Wishart and Ross, 

1985; Froman and Thursam, 1994). 

In a prior study (McLean and Froman, 1995), differential sperm penetration of an 

Accudenz® solution was used to distinguish roosters with heritable subfertility from fertile 

males. This method was developed after the method of Wishart and Ross (1985) failed to 

provide consistent results. Accudenz® is a non-ionic, biologically inert cell separation 

medium, and the absorbance of Accudenz® at 550 nm increases when motile sperm enter 

the medium from an overlaid sperm suspension. Unlike previously described 

spectrophotometric methods for measuring the motility of poultry sperm, the technique did 

not require a flow cell. We hypothesized that sperm penetration of Accudenz® could be 

used to detect differences in sperm motility among normal, fertile males. 
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Our first objective was to determine the intra-assay coefficient of variation. This 

was determined by overlaying a suspension of rooster sperm upon 6% (wt/vol) Accudenz® 

in a disposable cuvet, incubating the cuvet at 41 C for a pre-determined interval, and then 

measuring the absorbance of the Accudenz® layer. This method yielded an intra-assay 

coefficient of 2.6% (n=3). In a subsequent experiment, the coefficient of variation was 

based upon sperm recovered from the Accudenz® layer. In this case, the coefficient of 

variation was 6.2% (n=3). We attributed the greater variability to experimental error 

associated with sperm recovery prior to determination of sperm concentration. In either 

case, sperm penetration of Accudenz® was found to be a repeatable phenomenon. 

Our next objective was to test for differences in sperm motility among males. This 

was accomplished with two different flocks of New Hampshire roosters. As evidenced by 

ANOVA (Tables A.1 and A.4) and ranked motility scores, appreciable differences in sperm 

motility were observed among males. These experiments were performed with a portable 

photometer rather than a spectrophotometer. Therefore, the photometer afforded an 

assessment of sperm motility immediately after ejaculation. Patterns of sperm penetration 

were comparable between instruments (Figures A.1 and A.2). We concluded that 

differences among males were not attributable to differential loss of motility due to 

inconsistent conditions prior to measurement. 

Another objective was to determine whether a cause and effect relationship could 

be demonstrated between in vitro sperm motility and fertility. In the first fertility trial, 

males characterized by maximal, average, or minimal sperm motility were selected as semen 

donors (n=3 males per category). As shown in Table A.3, no difference was observed 
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among groups of hens. In view of the work of Wishart and Palmer (1986), who reported 

a correlation coefficient of .82 between fertility and the sperm motility of individual males, 

we attributed the trial's outcome to inadequate sample size. In the first trial, fertility for 

the maximal and minimal sperm motility groups differed by only 5 percentage points (Table 

A.3). This difference was viewed as an estimate of the true difference between these two 

categories of males. We determined that a minimum of 2100 eggs would be needed per 

group of hens to detect this difference with a 90% certainty at a significance level of 

a=0.05 (Sokal and Rohlf, 1969b). 

In contrast to the first fertility trial, a difference in fertility was detected between 

maximal and minimal sperm motility males in the second trial (Table A.4). When these data 

sets were analyzed graphically (Figure A.3), the initial level of fertility, as estimated by the 

parameter y , differed by 6 percentage units, and this disparity increased over the course 

of a week. In fact, fertility during this interval was 84% (n=842 eggs) and 96% (n=868 

eggs) for males categorized by minimal and maximal sperm motility, respectively. Thus, 

while insemination doses were equivalent, the effective insemination doses were not. It is 

noteworthy that the designations minimal and maximal must be viewed in context because 

they only refer to the ranked motility scores of the 36 roosters used in the initial test of 

variability among males. Thus, the roosters categorized by minimal and maximal sperm 

motility in the second fertility trial may have been comparable to the roosters used to 

determine inter-assay CVs, which were categorized by average and high sperm motility, 

respectively. Based upon spectrophotometric analysis, the absorbance value associated 

with the "maximal" roosters was 84% of the mean observed for the high sperm motility 
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roosters. Sperm from "minimal" roosters penetrated Accudenz® to only 51% of the extent 

to which sperm from "maximal" roosters did. In contrast, sperm from average roosters 

penetrated Accudenz® to only 55 ± 5.9% of the extent to which sperm from high sperm 

motility roosters did. Therefore, it is likely that the difference in fertility shown in Table 

A.3 reflects a comparison of average versus above average sperm motility rather than 

genuine extremes as implied by the terms minimal and maximal. 

In summary, our overall experimental goal was to determine whether we could 

develop an objective sperm motility assay that would: (1) approximate physiological 

conditions, (2) require simple, portable equipment, (3) be applicable to individual males, 

and (4) yield repeatable, biologically significant results. Each of these stipulations were 

met. Furthermore, we found that the assay, with minor modifications, could be applied to 

turkey sperm (Figure A.5). Even so, measurement of poultry sperm motility by sperm 

penetration of Accudenz® does not afford information about individual sperm. Indeed, it 

is an assessment of the mobility of a sperm population. Nonetheless, it is sperm mobility 

rather than sperm motility per se that enables sperm sequestration within the hen's sperm 

storage tubules. In conclusion, our experiments, in conjunction with the single step 

technique by which sperm can be washed by centrifugation through Accudenz® (Froman 

and Thursam, 1994), have demonstrated the potential for: (1) studying the effects of 

chemically defined environments on sperm motility, (2) studying attributes of highly motile 

or largely immotile subpopulations of sperm, (3) selecting semen donors based upon sperm 

motility, and (4) the establishment of simple, objective criteria for assessing the quality of 

semen sold as a commodity. 
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FIGURE A.5. Absorbance of 4% (wt/vol) Accudenz® after overlay with pooled turkey 
semen (n----10 Beltsville Medium White toms) diluted with 3 mM caffeine in TES-buffered 

isotonic saline, pH 7.4, containing glucose and Ca' (A) or the buffer alone (0). In each 
case, semen was diluted to 1 x 109 sperm per mL. Three 150-ktL volumes of each sperm 
suspension were overlaid upon three 1.5-mL volumes of Accudenz®. In each case, the 
Accudenz® solution had been pre-warmed to 41 C within a polystyrene cuvet. Overlays 
were staggered by several minutes. After an initial reading was made, each cuvet was 
incubated in a 41 C water bath. Thereafter, each cuvet was removed from the water bath 
and absorbance at 550 nm measured after 5, 10, 20, 30, and 40 min of incubation. With 
or without a motility agonist, turkey sperm penetrated the Accudenz® layer much more 
slowly than did rooster sperm as evidenced by the magnitude and dispersion of absorbance 
values over time relative to the number of overlaid sperm. Each symbol represents a mean 
(n=3). Error bars denote standard deviations. The motility of turkey sperm in vitro was 
enhanced by caffeine. 
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B.1 ABSTRACT 

Semen donors were selected from a population of 100 roosters based upon the 

extent to which sperm penetrated 6% (wt/vol) Accudenz® from an overlay of extended 

semen. Semen donors categorized by average or high sperm motility (n=5 per 

phenotype) were ejaculated weekly, their ejaculates pooled by phenotype, and pooled 

semen extended. A subsample of each sperm suspension was overlaid on 6% (wt/vol) 

Accudenz® in a cuvette, the cuvette was placed in a 41 C water bath, and the 

absorbance of the Accudenz® layer was measured after a 5-min incubation. The 

remainder of the sperm suspension was inseminated (n=55 hens per phenotype). Each 

hen was inseminated weekly with 50 x 106 sperm for 14 wk. The hatchability of eggs 

laid by hens inseminated with sperm from the high motility phenotype was 10% greater 

(P < 0.001) than that of hens inseminated with sperm from the average phenotype. The 

difference in fecundity was explicable in terms of fertility (P < 0.001). A replicate 

experiment tested the effect of sperm motility as well as insemination dose on fertility. 

Roosters were treated as above, and hens (n=41 to 45 per phenotype) were inseminated 

weekly with 25, 50, or 100 x 106 sperm per hen for 3 wk. Two-way ANOVA detected 

a sperm motility effect (P < 0.0001) but did not detect a dose effect (P 0.05) or a 

motility by dose interaction (P 0.05). A posteriori comparison among means 

revealed that the maximal fertility obtained with sperm from average roosters was 9% 

less (P ._ 0.05) than that obtained with only 25% as many sperm from the high motility 
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phenotype. These experiments demonstrated that the fecundity of artificially 

inseminated hens can be increased when sperm penetration of Accudenz® is used as a 

selection criterion for semen donors. 

B.2 INTRODUCTION 

Sperm cells, in essence, are self-propelled DNA-delivery vehicles. Motility is 

critical for sperm ascension through the hen's vagina to the region where the oviduct's 

sperm storage tubules are located (Bakst et al., 1994). Sperm sequestration within 

these tubules affords a reservoir of viable sperm that, upon their release, may passively 

ascend the oviduct to the site of fertilization over the course of days. Consequently, the 

extent to which sperm are motile within the hen's vagina appears to be a primary 

determinant of fecundity. Nonetheless, when compared to other variables that affect 

poultry reproduction, sperm motility has not been studied extensively. 

Froman and McLean (1996) demonstrated that sperm motility is a normally 

distributed variable when the trait is measured by sperm penetration of Accudenz®3. We 

hypothesized that this technique could be used to select semen donors. Therefore, the 

objective of the present research was to evaluate such potential. 

'Accurate Chemical and Scientific Corp., Westbury, NY 11590. 
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B.3 MATERIALS AND METHODS 

B.3.1 Selection of Semen Donors 

Semen donors (n=5 per phenotype) were selected from two groups of 

individually caged 30-wk-old New Hampshire roosters categorized as having average 

(n=18) or highly motile sperm (n=17) by repeated measure analysis (Froman and 

McLean, 1996). Selection criteria were as follows: consistent motility scores as 

determined by coefficient of variation and a mean motility score (n=3 observations per 

male) that fell within the ranges shown in Figure B.1. During the week in which 

roosters were selected, ejaculates were pooled by phenotype and differential sperm 

motility confirmed. Thereafter, the motility of sperm in pooled, extended semen was 

measured on a weekly basis prior to insemination. 

B.3.2 Effect of Male Phenotype on Fecundity 

Individually caged 30-wk-old New Hampshire hens (n=120) were assigned 

randomly to be inseminated with pooled, extended semen from either the average or 

high sperm motility phenotype. Hens were inseminated weekly for 14 consecutive 

weeks. On each occasion, ejaculates were pooled by phenotype in a graduated 15-m1 

glass centrifuge tube. Semen was transported to the laboratory at a temperature of 20 

to 25 C. Upon arrival in the laboratory, sperm concentration was determined 

fluorometrically (Bilgili and Renden,1984), and neat semen was diluted to 0.5 x 109 

sperm per mL with 111 mM NaCl buffered with 50 mM N-tris-[hydroxymethyl]methy1­

2-amino-ethanesulfonic acid (TES), 
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FIGURE B.1. Frequency distribution based on the analysis of sperm motility from 100 
New Hampshire roosters. Sperm motility was based upon sperm penetration of 6% 
(wt/vol) Accudenz® at 41 C from an overlay of extended semen. Absorbance was 
proportional to the extent to which motile sperm entered the Accudenz® solution. 
Areas under the curve denoted by dashed lines represent subpopulations of roosters that 
were categorized as average (n = 18) or high (n = 17) sperm motility phenotypes. 
Adapted from Froman and McLean (1996). Reproduced with permission of the Poultry 
Science Association, Savoy, Illinois. 
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pH 7.4, containing 25 mM glucose and 4 mM CaC12 (Froman and McLean, 1996). The 

TES-buffered saline was at room temperature when it was mixed with semen. 

Prior to semen collection, 1.5-mL volumes of 6% (wt/vol) Accudenz® were 

pipetted into each of 2 standard polystyrene cuvettes, each cuvette covered with a 1.5 

cm2 piece of Parafilm ®4, and each cuvette placed in a 41 C water bath. After semen was 

extended, sperm motility measurements were made in duplicate according to Froman 

and McLean (1996). Each cuvette was removed from the water bath and then tapped 

on the counter top to remove any adherent air bubbles that had formed on the interface 

between the Accudenz® solution and the inner wall of the cuvette during pre-incubation. 

Then, the cuvette was blanked at 550 nm. Thereafter, a 150-yL volume of sperm 

suspension was overlaid on the Accudenz® solution, and the cuvette was returned to the 

41 C water bath. After a 5-mM interval, the cuvette was transferred to the 

spectrophotometer and absorbance at 550 nm recorded after a 1-min interval. 

Each sperm suspension was transported to a caged layer facility at 20 to 25 C in 

a graduated 15-mL glass centrifuge tube. On the average, approximately 30 min 

elapsed between the start of semen collection and the arrival of extended semen at the 

caged layer facility. Each hen within a treatment group was inseminated with 50 x 106 

sperm in a volume of 100 kL. All hens within a treatment group were inseminated 

within 20 min, and the centrifuge tube containing the sperm suspension was hand-held 

during this interval. Following the insemination of hens in one treatment group, semen 

from the other phenotype was processed and corresponding hens inseminated as above. 

4VWR Scientific, Seattle, WA 98124 
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Eggs were collected daily, set on a weekly basis, and incubated for 22 d. 

Hatchability, hatch of fertilized eggs, and fertility were determined at the end of the 

experiment for each hen that remained in lay over the course of the 14-wk egg 

collection interval. Each proportion was transformed to a modified logit, weighting 

variables calculated, and each transformed data set analyzed with a log odds model 

according to Kirby and Froman (1991). 

B.3.3 Effect of Male Phenotype and Insemination Dose on Fertility 

Individually caged 47-wk-old Single Comb White Leghorn hens (n=260) were 

assigned randomly to be inseminated with 25, 50, or 100 x 106 sperm from either the 

average or high motility phenotype. Hens were inseminated weekly for 3 consecutive 

weeks. On each ocassion, semen was processed and sperm motility measured as above 

with the following exceptions. Once sperm concentration was determined, a 50-0, 

sample of neat semen was removed with an M-250 Microman positive displacement 

pipets. This semen was extended to 0.5 x 190 sperm per mL in a borosilicate culture 

tube with TES-buffered saline containing 25 mM glucose and 4 mM CaC12. This sperm 

suspension was used to conduct the motility assay. 

The remaining neat semen was extended to 1.0 x 109 sperm per mL in a 

graduated 15-mL glass centrifuge tube, and this sperm suspension was used for 

insemination. Each hen was inseminated with a volume of 25, 50, or 100 biL. Egg 

collection, incubation, and data analysis were performed as above with one exception: 

fertility was determined by examining the contents of eggs for embryonic development 

5Rainin Intrument Co., Inc., Woburn, MA 01888 
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after 4 days of incubation. Transformed data were analyzed with a two-way ANOVA. 

A posteriori comparisons among means were made with the Student-Newman-Keuls 

test (Sokal and Rohlf, 1969). 

B.3.4 Analysis of Sperm Motility Data 

Mean sperm motility was plotted as a function of time for each phenotype. 

Because plots appeared linear, the slope and Y-intercept were estimated by the method 

of least squares for each data set using: Yi = a + l3 + g, as the model statement and 

the General Linear Models procedure (SAS Institute, 1987). An extra sums of squares 

F test was made to test whether estimates of the Y-intercepts were equivalent. 
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B.4 RESULTS 

B.4.1 Effect of Male Phenotype on Fecundity 

As shown in Table B.1, the high sperm motility phenotype was more fecund (P 

s 0.001) than the average sperm motility phenotype. Hatchability was 10% greater 

over the course of a 14-wk egg collection interval. This effect was attributed to 

differential fertility (P s 0.001). As shown in Figure B.2, the phenotypic difference in 

sperm motility observed at the onset of the experiment persisted over the duration of the 

experiment. 

B.4.2 Effect of Male Phenotype and Insemination Dose on Fertility 

As shown in Table B.2, the phenotypic difference in fertility observed in the 

initial experiment was also observed (P s 0.0001) in a replicate experiment in which the 

effect of insemination dose was evaluated as well. However, neither an insemination 

dose effect nor an interaction between sperm motility and insemination dose was 

detected (P 0.05). Based upon a posteriori comparisons means, the maximal 

insemination dose, i.e., 100 x 106 sperm per hen, increased fertility (P s 0.05) by 7% 

beyond that observed with the minimal dose of 25 x 106 sperm per hen in the case of the 

average sperm motility phenotype (Table B.3). Nonetheless, the fertility obtained with 

the maximal insemination dose from the average phenotype was 9% less than (P s 

0.05) that obtained with the minimal insemination from the high sperm motility 

phenotype. 
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Table B.1. Differential hatchability and fertility achieved byselecting semen donors 
based upon in vitro sperm motility' 

Hatch of 
Semen Donor Hens2 Eggs3 Hatchability' Fertilized Fertility6

Phenotype (n) (ii) (%) Eggss (%) (%) 

Average Sperm Motility 55 3818 77 ± 1.9A 90 ± 1.2 85 ± 1.6A 

High Sperm Motility 55 4122 87 ± 1.2B 92 ± 1.0 95 ± 0.7B 

A43Means within a column lacking a common superscript differ significantly (P < 0.001). 

'Measured by sperm penetration of 6% (wt/vol) Accudenf at 41 C from an overlay of 
extended semen. 

2Each New Hampshire hen was inseminated weekly for 14 conse-cutive weeks with a 
dose of 50 x 106 sperm in a volume of 100 pt. 

3Collected daily and set weekly. 

`'' 5' 6Each value is a mean ± S. E. M. 
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FIGURE B.2. Normalized data from average (0) and high sperm motility (A) 
phenotypes plotted as a function of time. Roosters (n=5 per phenotype) were ejaculated 
weekly, and ejaculates were pooled by phenotype. Sperm motility was measured by 
diluting neat semen with a buffer, overlaying the sperm suspension upon pre-warmed 
6% (wt/vol) Accudenz® in a polystyrene cuvette, incubating the cuvette at 41 C for 5 
min, and then measuring the absorbance of the Accudenz® at 550 nm. Each data point 
denotes a mean of duplicate samples normalized against the maximal absorbance value 
observed over the course of the evaluation period (1.273). Solid lines represent the 
functions: 

y(x) = 63 + 0.7925(x) 
and 

y(x) = 50 + 0.0737(x). 
Neither slope differed significantly from zero (P 0.05). 
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TABLE B.2. Summary of two-way ANOVA testing the effects of sperm motility and 
insemination dose on fertility' 

Source of Degrees of Sum of Mean 
Variation Freedom Squares Square F-value 

Sperm Motility 1 66.256 66.256 114.42**** 

Insemination Dose 2 3.102 1.551 2.68 

Motility by Dose 2 0.462 0.231 0.40 

'Each of 260 Single Comb White Leghorn hens was inseminated with 25, 50, or 100 x 
106 sperm from one of two sperm suspensions on a weekly basis for 3 consecutive 
weeks. Sperm suspensions were prepared by extending pooled semen from roosters 
categorized as having average or highly motile sperm (n=5 roosters per phenotype). 

****P 0.0001. 
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TABLE B.3. Comparative fertility of rooster phenotypes according to insemination 
dose 

Semen Donor Insemination Hens2 Eggs' Fertility4
Phenotype) Dose (x 10-6) (n) (if) 

(%) 

Average Sperm Motility	 25 42 827 79 ± 1.9 c 

50 41 811 81 ± 2.2 

100 42 828 86 ± 1.8 b 

High Sperm Motility	 25 45 898 95 ±0.9a 

50 45 887 95 ± 0.8 a 

100 45 902 96 ± 0.8' 

a'b'eMeans within a column lacking a common superscript differ significantly (P < 0.05) 
based upon an a posteriori comparison among means. 

'Based upon sperm penetration of 6% (wt/vol) Accudenz® at 41 C from an overlay of 
extended semen. 

2Each Single Comb White Leghorn hen was inseminated weekly for 3 consecutive 
weeks with 25, 50, or 100 /21., of a sperm suspension con-taining of 1 x 109 sperm per 
mL. 

'Collected daily and set weekly over a 3-wk interval. 

4Each value is a mean ± S. E. M. 
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B.4.3 Analysis of Sperm Motility Data 

Average and high sperm motility phenotypes were characterized by correlation 

coefficients of 0.9601 and 0.9816, respectively. Thus, each plot approximated a linear 

relationship. Data points and predicted lines are shown in Figure B.2. Although neither 

slope was different from zero (P z 0.05), Y-intercepts differed from one another (P 

0.001). Therefore, each phenotypic distinction was independent of time over the course 

of the entire experimental interval. 

B.5 DISCUSSION 

Previous experimentation (McLean and Froman, 1996; Froman and McLean, 

1996) established the validity and suitability of measuring sperm motility based upon in 

vitro sperm penetration of Accudenz®. In brief, the assay was repeatable, was 

performed at physiological temperature, and was applicable to individual males. In the 

latter regard, the variable of sperm motility was distributed normally. Furthermore, 

when a repeated measure analysis was performed with males initially categorized with 

average or high sperm motility by a single evaluation per male, the categories were 

indeed distinct. These two phenotypes are shown in Figure B.1 relative to the 

frequency distribution. We hypothesized that fecundity could be increased by 

inseminating hens with pooled semen obtained from roosters charac-terized by high 

sperm motility. 
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Therefore, in the present work, representative males were selected from the 

average and high sperm motility phenotypes identified by Froman and McLean (1996). 

After confirming differential sperm motility when ejaculates were pooled by phenotype 

in preliminary work, a long-term fertility trial was initiated in which the primary end­

point was hatchability. As shown in Table B.1, a difference in hatchability was observed 

between phenotypes, and this effect was attributable to fertility. The effect of sperm 

motility on fertility was evaluated in a replicate experiment in which the effect of 

insemination dose was evaluated as well. Our data (Tables B.2 and B.3) corroborate 

those of Allen and Champion (1955), Cooper and Rowell (1958), Kamar (1960), 

McDaniel and Craig (1962), and Wishart and Palmer (1986) in that each of these data 

sets illustrate the principle that fecundity is more dependent upon sperm quality than 

sperm quantity. With this in mind, it is noteworthy that phenotypic distinctions were 

independent of time (Figure B.2). 

In view of the sperm cell's function, the relationship between sperm motility and 

fertility is self-evident. Thus, reports of a correlation coefficient 0.70 between sperm 

motility and fertility are not surprising (Allen and Champion, 1955; Cooper and Rowell, 

1958; Kamar, 1960; McDaniel and Craig, 1962; Wishart and Palmer, 1986). Likewise, 

sperm motility may account for the results of two distinct types of experiments. First, 

many competitive fertilization experiments, in particular those using sperm from 

roosters homozygous for the rose comb allele (Allen and Champion, 1955; Etches et al., 

1974), may be explained in terms of sperm motility. For example, sperm from subfertile 

R/R males have been characterized by poor sperm motility and a limited ability to enter 



133 

sperm storage tubules following intravaginal insemination (McLean and Froman, 1996). 

Second, testicular sperm are essentially immotile at body temperature (Ashizawa and 

Sano, 1990). And while sperm need not be motile to ascend the oviduct above the 

vaginal sphincter, they must be motile to ascend the hen's vagina and reach the sperm 

storage tubules (Bakst et al., 1994). Consequently, insemination of testicular sperm 

above the vaginal sphincter yields fertilized eggs whereas intravaginal insemination does 

not (Howarth, 1983; Kirby et al., 1990). In summary, sperm motility within the hen's 

vagina appears to be a primary determinant of fecundity. 

And yet, even though sperm motility is essential to the production of poultry, the 

molecular mechanisms that impart motility are only beginning to be understood (Wishart 

and Ashizawa, 1987; Ashizawa and Sano, 1990; Ashizawa et al., 1992; Ashizawa et al., 

1994; Ashizawa et al., 1995). Furthermore, it is not known what accounts for the 

variable size of the highly motile subpopulations of sperm observed in ejaculates of 

different males (Figures 8.1 and B.2). The sperm penetration assay actually measures 

the size of motile subpopulations of sperm; for the overlay contains a fixed number of 

sperm, the incubation time is a constant, and the absorbance of the Accudent layer is 

directly proportional to the number of sperm that enter from the overlay. Even so, it is 

unknown whether such differences are attributable to spermatogenesis, extra-gonadal 

sperm maturation, or an interaction between inherent and acquired cellular properties. 

In any case, variability among males is under-utilized in reproductive management (see 

Bakst and Wishart, 1995). 
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Amann and Hammerstedt (1993) categorized in vitro methods of semen 

evaluation by the following goals. First, when evaluating males whose reproductive 

potential is unknown and by using only a few semen samples per male, identify those 

males that would be subfertile if they were used as semen donors. Second, when 

evaluating any given male whose reproductive potential has been established, identify 

those semen samples characterized by superior fertilizing potential. Third, when 

evaluating males whose reproductive potential is unknown and by using only a few 

semen samples per male, identify those males that have the potential to be fecund. 

These three goals were deemed to be already possible with existing methods, within 

reach due to the advance of technology, and highly unlikely, respectively. However, the 

present research has demonstrated that the third goal may be possible with roosters 

when sperm motility, as measured by sperm penetration of 6% (wt/vol) Accudenz®, is 

the selection criterion. 
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