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Parallel computers are classified into: Multiprocessors, and multicomputers. A

multiprocessor system usually has a shared memory through which its processors

can communicate. On the other hand, the processors of a multicomputer system

communicate by message passing through an interconnection network. A widely

used class of interconnection networks is the toroidal networks. Compared to a

hypercube, a torus has a larger diameter, but better tradeoffs, such as higher channel

bandwidth and lower node degree. Results on resource placements and fault-tolerant

broadcasting in toroidal networks are presented.

Given a limited number of resources, it is desirable to distribute these resources

over the interconnection network so that the distance between a non-resource and a

closest resource is minimized. This problem is known as distance-d placement. In

such a placement, each non-resource must be within a distance of d or less from at

least one resource, where the number of resources used is the least possible. Solutions

for distance-d placements in 2D and 3D tori are proposed. These solutions are

compared with placements used so far in practice. Simulation experiments show
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that the proposed solutions are superior to the placements used in practice in terms 

of reducing average network latency. 

The complexity of a multicomputer increases the chances of having processor fail

ures. Therefore, designing fault-tolerant communication algorithms is quite necessary 

for a sufficient utilization of such a system. Broadcasting (single-node one-to-all) in a 

multicomputer is one of the important communication primitives. A non-redundant 

fault-tolerant broadcasting algorithm in a faulty toroidal network is designed. The 

algorithm can adapt up to (2n 2) processor failures. Compared to the optimal 

algorithm in a fault-free n-dimensional toroidal network, the proposed algorithm re

quires at most 3 extra communication steps using cut through packet routing, and 

(n + 1) extra steps using store-and-forward routing. 
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ON RESOURCE PLACEMENTS AND FAULT-TOLERANT
 

BROADCASTING IN TOROIDAL NETWORKS
 

Chapter 1 

INTRODUCTION 

Parallel computers are architecturally classified into: shared-memory multipro

cessors, and distributed-memory multicomputers [44]. The processors of a system 

in the former class communicate through a shared memory, while in the latter, by 

message passing through an interconnection network. The focus of this thesis is 

made on toroidal interconnection networks. Several multicomputers have been built 

using this kind of networks, or networks that can be directly embedded into a torus. 

Examples are: Caltech Cosmic Cube (hypercube of 64 nodes) [68], Intel Paragon (2D 

mesh), Touchstone Delta (two dimensional mesh) [3], IBM Victor (16 x 16 mesh) [72], 

Ametak 2010 [71], Caltech Mosaic C multicomputer [70, 69], MIT J-Machine (three 

dimensional mesh) [3], Tera system (Q3k) [6], Cray T3D, and Cray T3E (three di

mensional torus) [7, 54, 67]. 

A subclass of toroidal networks is k-ary n-cube (Qini) graphs. In a torus, different 

dimensions may have different sizes, but in Cf lc' all dimensions have the same size k. 

It has been shown that low-dimensional (21101 is a more wire efficient communication 

network than high-dimensional ones, under the assumption of constant node num

ber and constant wire bisection [33]. For this reason, low-dimensional tori and Qnk' 

interconnection networks have become significant from the practical point of view. 
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This thesis presents the results of investigating two problems: resource placements 

in 2D and 3D tori, and fault-tolerant broadcasting in toroidal networks. 

The rest of this chapter is divided into four sections. Section 1.1 presents re

source placement problems and a brief history of their development. Section 1.2 

overviews the importance of fault-tolerant communications in practice. Section 1.3 

describes the organization of the thesis. Finally, Section 1.4 introduces some terms 

and notations needed in later chapters. 

1.1 Resource Placements 

Providing each processor in a parallel computer with all the resources it needs is not 

cost effective. Methods for distributing a limited number of resources over an inter

connection network have been investigated. Earlier, most of the resource placement 

research was concentrated on hypercube networks [25, 26, 50, 63]. Recently, more 

research has been conducted on the placement methods for tori and C networks 

[8, 9, 10, 60, 61]. There are three subproblems associated with resource placements: 

distance-d placement, j-adjacency placement, and generalized placement. Distance-d 

placement involves in placing resources such that each non-resource node is within a 

distance of d or less from exactly one resource node. On the other hand, j-adjacency 

placement considers placing resources so that each non-resource node is adjacent to j 

resource nodes. Generalized placement combines both of distance-d and j-adjacency 

placements. It considers placing resources such that each non-resource node is within 

a distance < d from j resource nodes [8, 9, 10]. 

In this thesis, the distance-d placements for 2D and 3D tori are investigated. 

Finding a distance-d placement for any given network is a "hard" problem. A single 

instance of this problem is the perfect distance-1 placement, which is equivalent to 
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finding a perfect 1-error-correcting code or a perfect dominating set for a given graph. 

Both of these problems have been shown to be NP-complete [32, 37, 51]. 

1.2 Fault Tolerant Communications 

The communication algorithms of a multicomputer are quite crucial to its perfor

mance. They are the basic tools by which the processors can cooperate. When some 

processors or links fail, it is not effective, and sometimes not affordable, to keep the 

entire system idle till the failures are resolved. For this reason, the design of effi

cient fault-tolerant communication algorithms is essential in the industry of parallel 

computers. 

Broadcasting (single-node one-to-all) is one of the important communication pat

terns for multicomputer systems [45]. Broadcasting in faulty toroidal networks is 

investigated in Chapter 5 of this thesis. 

1.3 Organization 

The thesis is organized as follows. 

Chapter 2 overviews the results of investigating distance-d resource placements 

in 2D tori. 

Chapter 3 presents the results of a simulation study that compares the effects of 

different Input/Output resource placement strategies in 2D tori on average network 

latencies. In this study, the resource placement methods described in Chapter 2 are 

compared with strategies used so far in practice. 

In Chapter 4, distance-d resource placements in 3D tori are investigated. 

Chapter 5 describes a fault-tolerant broadcasting algorithm for toroidal networks 

in general. 

Finally, future research topics are described in Chapter 6. 
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1.4 Terminologies 

The Lee distance is a metric used in the field of error correcting codes. It has 

been shown in [19] that the Lee distance is a natural metric for toroidal networks. 

Many topological properties of a toroidal network can be derived from this useful 

metric [19]. In this section, some definitions and terms needed in later chapters are 

introduced. 

1.4.1 Mixed Radix Notation 

Let X = Xn-iXn-2 x0 be an n-dimensional vector over K = kn_1kn_2 /co, where 

x, has the radix kt, then X is said to be in mixed radix notation. I(X), the Integer 

Value of X, is defined as: 
n-1 i-1 

1(X) = xo + xiko + x2kok1 + + xn_ikoki = E(xt H 
i=o i=o 

For example, if 432 is a vector over 543, then 1(432) = 4(12) + 3(3) + 2 = 59 

1.4.2 Lee Weight 

Let X be a vector in mixed radix notation over K, then the Lee Weight, WL, of X 

is defined as: 
n-1 

WL = E min(x,, ki xi). 
i=0 

For example, if 342 is a vector defined over 765, then WL(342) = 3 + 2 + 2 = 7. 

1.4.3 Lee Distance 

Let X and Y be vectors in mixed radix notation over K, then the Lee Distance, DL, 

is defined as: 
n-1 

DL(X, Y) = E min(x, yi(mod k,), yi x,(mod lc,)) = WL(X Y). 
i=o 

For example, let 131 and 554 be vectors over 765, then DL(131,554) = 7. 
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1.4.4 Torus 

Let T be an n-dimensional torus defined over K ko, then T is denoted 

by Tk k. 2-2 over TK and defined as follows. Let N = ni-01 ki, T is a graph with 

N nodes numbered from 0 to (N 1). Each node of T is labeled with a mixed radix 

n-dimensional vector over K and this vector is referred to as the address of the node. 

For any node X E T, the node number of X = I(X). For any two nodes X and Y 

E T, there is an edge between X and Y if and only if DL(X, Y) = 1. 

A k-ary n-cube graph, Qikl, is a torus in which all the dimensions have the same 

radix. 

1.4.5 Finite Groups 

A group, as defined in [30], is a set S together with a binary operation ED for which 

the following properties hold: 

1. Closure: V a, b E S, aeb E S. 

2. Identity: There is an element e E S such that V a E S, eea= a@e= a. 

3. Associativity: V a, b,c E S, (a ED b) ED c = a ED (b c). 

4. Inverse: V a E 5, there exists a unique element b E S such that aEDb = aEDb = e. 

If V a, b E 5, aeb = aeb then (S, ®) is an Abelian group. Further, If < oo, 

(S, ED) is called a finite group. 
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Chapter 2 

RESOURCE PLACEMENT FOR 2D TORI 

Methods for perfect distance-d placements in 2D tori have been presented in 

[8, 9, 10, 50]. These methods can be applied to special cases of 2D tori, as shown in 

Section 2.1. In this chapter, a placement scheme for k x k tori is defined and proven 

to maintain special characteristics. Furthermore, a discussion on when and how to 

use the defined scheme in finding placements for 2D tori is included. 

There are five sections in this chapter. Section 2.1 overviews the related litera

ture. Section 2.2 presents a distance-d placement scheme for k-ary 2-cube (or k x k 

tori). Sections 2.3 and 2.4 present placements for 2D tori, based on the scheme of 

Section 2.2. Finally, Section 2.5 draws the conclusions of this chapter. 

2.1 Previous Work 

The problem of resource placements in 2D tori has been investigated from two differ

ent points of view : Error correcting codes and graph theory. Bose, Broeg, and Bae 

have proposed solutions based on Lee error correcting codes [40, 13, 19, 21, 8, 9, 10]. 

On the other hand, Livingston and Stout have investigated resource placements using 

the concept of perfect dominating sets of graph theory [50, 51]. 

In the rest of this section, an overview of the major related results achieved by 

the above previous studies will be presented. However, before this presentation some 

terms are needed to be defined. 
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(a) 5 x 5 Regular (b) 2x4 Irregular 

FIGURE 2.1: Perfect placements in 2D tori 

Definition 2.1.1 A placement is a perfect distance-d if any non-resource node is 

within a distance of d or less from exactly one resource node. 

Figure 2.1 shows two different perfect placements. 

Definition 2.1.2 A radius-d packing sphere of a resource node A is the set of all 

nodes within a distance of d or less from A. 

Definition 2.1.3 A perfect distance-d placement is called regular if the radius-d 

sphere of each resource node has the maximum possible size; otherwise it is called 

irregular. 

Examples of regular and irregular perfect placements are shown in Figure 2.1-(a) 

and (b), respectively. As it can be noticed from these figures, the radius-1 packing 

sphere of a resource in the regular case does not collapse into itself, while it does in 

the irregular case. In general, a sphere can collapse into itself if and only if it exists 

in a space in which at least one of the dimensions is less than (2d + 1). 
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NUM
MUM11EMU 

NUMMENNMIUM 
FIGURE 2.2: Perfect distance-1 placement for a 10 x 10 torus in which a 5 x 5 
torus is used as a tiling block. Dashed lines indicate links among tiles. 

The major related results of the above mentioned studies can be summarized in 

the following: 

Bose et al have proved that the surface area (i.e. the number of nodes at a 

distance exactly d from a given node) of a radius-d sphere in a Qnk is [19, 21]: 

min(d,n) 

(2.1) 

The volume (i.e. the number of nodes at a distance of d or less from a given 

node) of a radius-d sphere in a Qnk is [10, 21]: 

d min(d,n) 

Vnk (d) = 1 + E Ankw = 1+ E (d) (2.2)2Z CZ)
i=1 

Based on that, it is easy to verify that the maximum possible area and volume 

of a radius-d sphere in a 2D torus, d > 1, are (4d) and (2d2+2d+1), respectively. 
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Bae and Bose have shown that for an X x Y torus, a regular perfect distance-d 

placement exists, if both X and Y are divisible by 2d2 + 2d + 1. In this case, 

first, a perfect distance-d placement for k x k torus, k = 2d2 +2d+1, is obtained 

by using Lee error correcting codes. The resources are placed at (i, 2d2i), for 

i = 0, 1, ... , k 1. Next, k x k torus is used to tile the larger X x Y torus 

[8, 9, 10]. Figure 2.2 shows how a 5 x 5 torus is used to tile a 10 x 10 torus. 

Bae and Bose have proved that for any X x Y torus, there exists a regular 

perfect distance-1 placement, if and only if both X and Y are divisible by 5 

[8, 9, 10]. 

Livingston and Stout have claimed that a perfect distance-d placement exists 

for an X x Y torus, if and only if {X, Y} E 

{ {2, 4dp}, {4, (4d 2)p}, {6, (4d 4)p}, ... , {2d, (2d + 2)p} : p > 1} U 

{{(2d2 + 2d + 1)p, (2d2 + 2d + 1)q} : p, q > 1} [50]. 

However, this claim is not quite right. According to this claim, a 4 x 4 torus 

should have a perfect distance-1 placement, but this can easily be proven to 

be wrong. Upon a discussion between M. L. Livingston* and the author, the 

above claim has been modified and proved by Livingston to be as follows: 

A perfect distance-d placement exists for an X x Y torus, if and only if {X, Y} 

E { {2, 4dp} : 0 < p <d-1} U {{(2d2 + 2d + 1)p, (2d2 + 2d + 1)q} : p,q > 1} . 

Based on this, it is clear that perfect placements do not exist for the majority of 

2D tori. This is the main motivation for investigating the so-called quasi-perfect 

placements. The following section defines this term and presents the major results 

of this investigation. 

* Currently with the department of Computer Science at the University of Oregon 
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(a) 16 resources (b) 32 resources (c) 64 resources 

FIGURE 2.3: Quasi-perfect resource placements for 32 x 16 torus: (a) quasi-perfect 
distance-3 (b) quasi-perfect distance-2 (c) quasi-perfect distance-1. 

2.2 Quasi-Perfect Placement Scheme for k x k Tori 

Perfect placements do not exist for a large class of 2D tori. Cases for which perfect 

placements are not possible, quasi-perfect placements might exist. A quasi-perfect 

placement satisfies the following two conditions: 

1. Let a and b be any two resource nodes and Sa and Sb be the sets of nodes at 

a distance d or less from a and b, respectively, then Sa n Sb = 0. 

2. No non-resource node is at a distance of more than d + 1 from some resource 

nodes. 
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These two conditions imply that the maximum possible number of non-resource nodes 

are at a distance of d or less from the resource nodes, and the remaining nodes are at 

a distance of d+ 1 from some resource nodes. Examples of quasi-perfect placements 

are shown in Figure 2.3. 

Finding an allocation method for quasi-perfect placements would offer more flexi

bility in choosing the dimensions of an interconnection network, as well as the ability 

to scale the number of used resources up or down. For instance, it would be possible 

to find a quasi-perfect placement for a torus of size 2i x 2j (many practical systems 

have sizes 2x in each dimension). Figure 2.3-(b) shows a quasi-perfect distance-2 

placement for 32 x 16 using 32 resources. For the same network, it is possible to have 

a quasi-perfect distance-3 placement using 16 resources, or a quasi-perfect distance-1 

placement using 64 resources, as illustrated in Figures 2.3- (a) &(c), respectively. 

2.2.1 QPK Placement Scheme - The Proposed Method 

A linear resource placement for Q1, can be described by a 1 x 2 generator matrix 

[al a2]. For example, G = [1 2] is a generator matrix for placing resources in a 

5 x 5 torus where resources are placed in (i, 2i mod 5), 0 < i < 5, as illustrated in 

Figure 2.1-(a). A special linear placement scheme for Qi2, is defined as follows: 

The QPk Scheme is a linear resource placement method for (4, interconnection 

networks, generated by G = [d (d + 1)]. QPk is defined as follows: 

QPk = {(x,y) : x = id (mod k), y = i(d + 1) (mod k), 0 < i < k} 

where 2d2 + 2 < k < 2(d +1)2 +1, d> 0. 

The following subsections prove that the QPK is: 

A quasi-perfect distance-(d 1) placement when 2d2 + 2 < k < 2d2 + 2d. 
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A perfect distance-d placement when k = 2d2 + 2d +1. 

A quasi-perfect distance-d placement when 2d2 + 2d + 2 < k < 2(d + 1)2 + 1. 

The rest of this subsection presents definitions and lemmas needed in the following 

subsections. 

Definition 2.2.1 Let n, = (id (mod k), i(d + 1) (mod k)) 

and nj (jd (mod k), j(d +1) (mod k)), then ni and nj E QPk. 

The operations +8 and , are defined as follows: 

ni +8 nj = (d(i + j) (mod k), (d + 1)(i + j) (mod k)). 

nj = (d(i j) (mod k), (d +1)(i j) (mod k)). 

Lemma 2.2.1 (QPk, -1-8) is a finite Abelian group. 

Proof: 

1. Closure: For any two nodes ni and nj E QPk, 

ni +, =	 (d(i + j) (mod k), (d +1)(i + j) (mod k)) 

n(v-i-j) (mod k) c QPk. 

2. Identity Element: (0, 0) is the identity element. 

3. Associativity: For any three nodes ni, nj, and n1 E QPk, 

(ni +8 ni) +8 n1 = (d(i + j +1) (mod k), (d +1)(i + j +1) (mod k)) 

= ni +, +3 ni) 

4. Inverse: The inverse of any node ni = nk_i, 0 < i < k: 
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ni nk_i = (d(i + k i) (mod k), (d +1)(i + k i) (mod k)) 

= (0, 0). 

Suppose there is a node nj, 0 < j < k such that j (ki) and ni +s ni = (0, 0) 

j = k i which is a contradiction. Hence, the inverse of ni is unique. 

5. Commutativity: for any two nodes ni and nj E QPk, 

ni +, =	 (d(i + j) (mod k), (d +1)(i + j) (mod k)) 

(d(j + i) (mod k), (d + 1) (j + i) (mod k)) 

n +, ni. 

Lemma 2.2.2 The cardinality of QPk is k (i.e. IQ Pk' = k). 

Proof: Assume there exists ni = i j, and 0 < i, j < k = ni = (0, 0) 

(i j) (mod k) = 0. This is a contradiction since i j and 0 < i, j < k. 

Lemma 2.2.3 WL (ni) = WL E QPk. 

Proof: 

WL(ni) = min (id (mod k), k id (mod k)) + 

min (id + i (mod k), k id i (mod k)) 

min(id (mod k), id (mod k)) + 

min (id + i (mod k), id i (mod k)). 
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Furthermore, 

WL(nk-t) =	 min ((k i)d (mod k), k (k i)d (mod k)) + 

min ((k i)(id + i) (mod k), k (k i)(id + i) (mod k)) 

min (id (mod k), id (mod k)) + 

min (id i (mod k), id + i (mod k)). 

Hence, WL(ni) = WL(nk-i) 

Lemma 2.2.4 Let D(QPk) be the minimum Lee distance, DL, between any two
 

nodes in QPk. D(QPk) > minimum {Lee weight WL(ni): ni E QPk A i 0}.
 

Proof: D(QPk) = DL (nt,ni) for some n, and ni E QPk,
 

Hence, D(QPk) = WL (nt s n3) = WL (nt +s nk--i)
 

Since (QPk, +s) is a group, (ni +, nk_j) E QPk, and (ni nk-j) (0,0).
 

2.2.2 Minimum Distance Between any Two Resources 

In this subsection, QPk is proven to satisfy the first necessary condition of a quasi-

perfect placement. This will follow in two steps: 

Showing that the radius-(d 1) packing spheres of any two resources in QPk 

are disjoint when 2d2 + 2 < k < 2d2 + 2d (Theorem 2.2.1 and Corollary 2.2.2). 

Showing that the radius-d packing spheres of any two resources in QPk are 

disjoint when 2d2 + 2d + 3 < k < 2d2 + 4d + 3 (Theorem 2.2.3 and Corollary 

2.2.4). 

Theorem 2.2.1 Let D(QPk) be the minimum Lee distance, DL, between any two 

resource nodes in QPk. D(QPk) > 2d 1, when 2d2 + 2 < k < 2d2 + 2d. 
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Proof: The only nodes in a given torus with Lee weight < (2d 1) are those 

at a distance of (2d 2) or less from (0, 0). These nodes are nothing but the nodes 

of radius-(2d 2) packing sphere of (0, 0). Let this sphere be denoted as Rn,(2d-2) 

Showing that ni 0 Rno,(2d-2), for any n, E QPK, 0 < i < k, proves this theorem. The 

proof is by contradiction. Assume there exists n, E Rno,(2d-2)) 0 < i < k. Then, ni 

must be in one of the following classes: 

Class 1: id (mod k) = 0 A 0 < id + i (mod k) < 2d 2. 

Assume there exists an n, E Class 1 = 2d-2 > WL (ni) = i (mod k) = i, since 

i < k and 2d- 2 < d2 +1 < Furthermore, id (mod k) = 0 = id = Ck, C > 0 
> 2d > 2d 1, since k > 2d2 + 2. This means that WL (ni) > 2d 

(Contradiction) = There exists no ni E Class 1. 

Class 2: id (mod k) = 0 A k 2d + 2 < id + i (mod k) < k.
 

Assume there exists an n, E Class 2 = n, has an inverse E QPk since (QPk, +s)
 

is a group (Lemma 2.2.1). Suppose nj is the inverse of n, then jd (mod k) = 0
 

and 0 < jd+ j (mod k) < 2d 2. Hence, nj E Class 1, but it was shown that
 

no such nj E Class 1 (Contradiction).
 

Class 3: k 2d + 2 < id (mod k) < k A 0 < id + i (mod k) < 2d 2. 

Assume there exists an ni E Class 3 = WL (ni) = id+ i-id (mod k) = i since 

2d -2 < 2, k -2d+ 2 > 2, and i < k. Furthermore, id (mod k) > id+i (mod k) 

> 1 = i > > 2d 2. Hence, WL (ni) > 2d 1 (Contradiction) 

There exists no n, E Class 3. 

Class 4: 0 < id (mod k) < 2d 2 A k 2d + 2 < id + i (mod k) < k. 

Assume there exists an n, E Class 4 = its inverse nj E Class 3. However, 

1 
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it was shown that no such ni E Class 4 (Contradiction) = There is no n2 E 

Class 4. 

Class 5: 0 < id (mod k) < 2d 2 A id + i (mod k) = 0.
 

Assume there exists an ni E Class 5 = 2d-1 > WL(n,) = WL(ni) E Class 3,
 

where ni is the inverse of n,. However, it was shown that there is no such ni
 

E Class 3 (Contradiction) = There exists no n, E Class 5.
 

Class 6: 0 < id (mod k) < 2d 2 A 0 < id + i (mod k) < 2d 2. 

Assume there exists an ni E Class 6. Since id + i (mod k) id (mod k) 

one of the following cases holds: 

I. id + i (mod k) > id (mod k) 

id + i (mod k) id (mod k) = i, 1 < i < 2d 3, d > 3. 

If i = 1 then WL, (ni) = 2d +1 > 2d 1. 

If 2 < i < 2d 3 then 2d < id < 2d2 3d = id (mod k) > 2d 2 

ni V Class 6 (Contradiction). 

II. id (mod k) > id + i (mod k)
 

id (mod k) id i (mod k) = k i, 1 < k i < 2d 3
 

k 2d + 3 < i < k-1,d> 3
 

kd 2d2 + 3d < id < kd d id (mod k) > 3d + 2
 

ni V Class 6 (Contradiction).
 

Class 7: k 2d + 2 < id (mod k) < k A k 2d + 2 < id + i (mod k) < k. 

Assume there exists an n, E Class 7 = its inverse ni E Class 6. However, it 

was shown that there is no such ni E Class 6 (Contradiction). 

Hence, WL(ni) > 2d 1, 0 < i < k. This proves that D(QPk) > 2d 1. 
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Corollary 2.2.2 Let Ra,d be the radius-d packing sphere of node a. 

Ra,(d_i)nRb,(d_i) = 0, for any two nodes a and b E QPk, when 2d2+2 < k < 2d2-1-2d. 

Proof: Assume there exist two resource nodes a and b such that: 

Ra,(d-1) n Rb,(d-1) 

This means that there exists at least one node c that belongs to both Ra,(d_1) and 

Rb,(d_1). In such a case, the distance between a and b < (2d 2) since (a c < d 1 

and c b < d 1). However, this contradicts with Theorem 2.2.1. 

Theorem 2.2.3 Let D(QPk) be the minimum Lee distance, DL, between any two 

nodes in QPk. D(QPk) > 2d +1, when 2d2 +2d +1 < k < 2(d +1)2 +1. 

Proof: The proof is quite similar to the proof of Theorem 2.2.1. The only nodes 

in a given torus with Lee weight < (2d+ 1) are those at a distance of 2d or less from 

(0, 0). These nodes are nothing but the nodes of radius-(2d) packing sphere of (0, 0). 

Let this sphere be denoted as Rn,0,(2d). Showing that n, Rno,(2d), for any n, E QPK, 

0 < i < k, proves this theorem. The proof is by contradiction. Assume there exists 

ni E Rn,(2d), 0 < i < k. Then, n, must be in one of the following classes: 

Class 1: id (mod k) = 0 A 0 < id + i (mod k) < 2d. 

Assume there exists an ni in Class 1 = 2d > WL (ni) = i (mod k) = i, since 

i < k and 2d < d2 + d < 2. Furthermore, id (mod k) = 0 = id = Ck, C > 0 

> 2d2d-d2d+1 > 2d + 2, since k > 2d2 + 2d + 1. This means that WL (ni) 

> 2d + 1 (Contradiction) = There exists no ni E Class 1. 

Class 2: id (mod k) = 0 A k 2d < id + i (mod k) < k.
 

Assume there exists an n, E Class 2 = ni has an inverse E QPk since (QPk, +8)
 

is a group (Lemma 2.2.1). Suppose ni is the inverse of n2 then jd (mod k) = 0
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and 0 < jd + j (mod k) < 2d. Hence, n3 E Class 1, but it was shown that no 

such ni E Class 1 (Contradiction). 

Class 3: k 2d < id (mod k) < k A 0 < id + i (mod k) < 2d.
 

Assume there exists an ni E Class 3 = WL (ni) = id+ i id (mod k) = i since
 

2d 2 < 2, k 2d > I-2c-, and i < k. Furthermore, id (mod k) > id + i (mod k)
 

> 1 = i > > 2d. Hence, WL (ni) > 2d + 1 (Contradiction) 

There exists no such n, E Class 3. 

Class 4: 0 < id (mod k) < 2d A k 2d < id+ i (mod k) < k.
 

Assume there exists an n, E Class 4 = its inverse n3 E Class 3. However, it
 

was shown that there is no such ni E Class 3 (Contradiction).
 

Class 5: 0 < id (mod k) < 2d A id+ i (mod k) = 0.
 

Assume there exists an n, E Class 5 = 2d-1 > WL(ni) = WL(ni) E Class 3,
 

where ni is inverse of ni. However, it was shown that there is no such ni
 

Class 3 (Contradiction).
 

Class 6: 0 < id (mod k) < 2d A 0 < id+ i (mod k) < 2d.
 

Assume there exists an n, E Class 6. Since id + i (mod k) id (mod k)
 

one of the following cases holds:
 

I. id + i (mod k) > id (mod k) 

id + i (mod k) id (mod k) , 1 < i < 2d 1, d > 2. If 1 < < 2 
then WL (ni) > 2d + 1. If 3 < i < 2d 1 then 3d < id < 2d2 d 

id (mod k) > 3d = ni V Class 6 (Contradiction). 

II. id (mod k) > id + i (mod k)
 

id (mod k) id i (mod k) = k i, 1 < k i < 2d 1, d > 2
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k-2d+1 < i < k-1, kd-2d2+d < id < kdd id (mod k)> 3d+1 

ni 10 Class 6 (Contradiction). 

Class 7: k 2d < id (mod k) < k A k 2d < id + i (mod k) < k. Assume 

there exists an ni E Class 7 = its inverse nj E Class 6. However, it was 

shown that there is no such nj E Class 6 (Contradiction). 

Hence, WL(ni) > 2d +1, 0 < i < k. This proves that D(QPk) > 2d + 1. 

Corollary 2.2.4 Let Ra,d be the radius-d packing sphere of node a.
 

Ra,d n Rb,d = 0, for any two resource nodes a and b E QPk, when 2d2 + 2d + 1 < k <
 

2(d + 1)2 +1.
 

Proof: Assume there exist two resource nodes a and b such that: 

Ra,d n Rb,d 

This means that there exists at least one node c that belongs to both Ra,d and Rb,d. 

In such a case, the distance between a and b < 2d since (a -+ c < d and c b < d). 

However, this contradicts with Theorem 3.1. 

Corollary 2.2.5 QPk is a perfect distance-d placement when k = 2d2 + 2d + 1. 

Proof: In this case, the number of nodes in = 2d2 + 2d + 1 = k [21]. 

Further, R,,,,dnRni,d = 0, where ni and nj are two different resource nodes (Corollary 

2.2.4), Since IQPk1 = k (Lemma 2.2.2), the total number of nodes covered by all the 

resources = 

2-di=o Rni,d = k2, where ni iis ith resource node. 

Thus, each non-resource node is within a distance of d or less from exactly one 

resource node. 
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2.2.3	 Maximum Distance Between a Non-Resource and the Closest 
Resource 

In the previous subsection, QPK was proven to maintain the first necessary condition 

for a quasi-perfect placement. In this subsection, QPk is proven to satisfy the second 

necessary condition. This will follow in several stages: 

Theorem 2.2.6 proves that any node in a k x k torus is within a distance of d 

or less from at least one resource node E QPk, for 2d2 + 2 < k < 2d2 + d. 

Theorem 2.2.7 proves that any node in a k x k torus is within a distance of d 

or less from at least one resource node E QPk, for 2d2 + d +1 < k < 2d2 + 2d. 

Theorem 2.2.9 proves that any node in a kxk torus is within a distance of (d+1) 

or less from at least one resource node E QPk, for 2d2+2d+2 < k < 2d2+3d+1. 

Theorem 2.2.10 proves that any node in a k x k torus is within a distance of 

(d + 1) or less from at least one resource node E QPk, for 2d2 + 3d + 2 < k < 

2d2 + 4d + 2. 

Theorem 2.2.11 proves that any node in a k x k torus is within a distance of 

(d + 1) or less from at least one resource node E QPk, for k = 2d2 + 4d + 3. 

Lemma 2.2.5 Let T be a k x k torus. Furthermore, Let S be a set defined as follows. 

S = fn : n E T and DL(n,R) = (d + i +1), where R is any resource in T} 

If any node in S is at a distance of (d + i) or less from some resource nodes, then 

each node in T is within a distance of (d + i) or less from at least one resource node. 

Proof: Let b be a non-resource node such that DL(a,b) --= (d + i + j), j > 1, and a 

be one of the closest resource nodes to b. There exists a node, say c, at a distance of 
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(j 1) from b and at a distance of (d + i + 1) from a. By the hypothesis, there exists 

a resource node r such that DL(r, c) = + i). Hence, DL(r, b) < (d + i + j 1) < 

(d + i + j). This contradicts the assumption of a being one of the closest resource 

nodes to b. Therefore, a node such as b does not exist in T. 

Lemma 2.2.6 Let T be a k x k torus. Let r2 = (id (mod k), id + i(mod k)) be 

the ith-resource node in QPk. Suppose every non-resource node, R, at a distance of 

(d + j + k) from the resource node ro = (0, 0) is at a distance of (d + j + k 1) from 

some resource node S. Then, every non-resource node in T is within a distance of 

(d + j + k 1) or less from at least one resource node. 

Proof: Let b be a non-resource node such that D L(a, = (d + j + k), and 

a be one of the closest resource nodes to b. Let a be the additive inverse of a. 

Then, (b a (mod k)) is at a distance of (d + j + k) from (0, 0). By the lemma 

hypothesis, there must be a resource node, say r, at a distance of (d + j + k 1) from 

(b a (mod k)). Hence b must be at a distance of (d+j+k 1) from (r +a (mod k)) 

which is a resource node since QPk is a group. This contradicts the assumption that 

a is one of the closest resource nodes to b. Therefore, a node such as b does not exist 

in T. 

Theorem 2.2.6 Any node in a k x k torus is within a distance of d or less from at 

least one resource node when QPk is used, where 2d2 + 2 < k < 2d2 + d. 

Proof: Suppose a node a is at a distance of (d +1) from the resource node (0, 0). 

It will be shown that the node a is at a distance of d or less from some other resource 

nodes. Thus, based on Lemma 2.2.5 and Lemma 2.2.6, this theorem follows. 

Any node at a distance of (d + 1) from (0, 0) must be in one of the following 

classes: 
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FIGURE 2.4: Nodes at distance of d or (d+ 1) from (0,0) as described in the proofs 
of theorems 2.2.6-11. 

Class 1: [ (x, y) : x y = (d + 1), 1 < y < (d + 1), and 0 < x < d 1. 

Let r1 = (d, d + 1). Obviously, r1 E QPk , and 

DL(ri, (x, y)) < 2d + 1 x y = d. 

Class 2: { (x, y) : xy = (d+1), (d-1) < y < 1, and d < x < 0 1. 
Let r_1 = (d, d 1). Obviously, r(_1) is a resource node, and 

DL(r(_1), (x, y)) < 2d + 1 + x + y = d. 

Class 3: { (x, y) : x y = (d + 1), d < y < 0, and 1 < x < (d + 1) }. 
Define a matrix M of i rows and j columns to be: 
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(1,-d) (2,1 d) (3, 2 d) . (d 1, -2) (d, -1) (d +1,0) 

(1,-d) (2, 1 d) (3, 2 d) (d 1, -2) (d, -1) (d +1,0)
M= 

(1,-d) (2,1 d) (3, 2 d) . . . (d 1, -2) (d, -1) (d +1,0) 

, 1 < i < (d 1), 1 < j < (d + 1). 

Note that M[i, j] is a unique node in Class 3 when k = i + 2d2 +1, x = j, and 

y = j d 1. More clearly, the ith row represents all the nodes of Class 3 

in a k x k torus, k = 2d2 + i + 1. Hence, M can be rewritten by adding the 

corresponding k to the negative terms as follows: 

(1,2(12 d + 2) (2, 2(12 d + 3) ... (d, 2d2 + 1) (d +1,2(12 + 2) 

(1, 2d2 d + 3) (2, 2d2 d + 4) . (d,2d2 + 2) (d + 1, 2d2 + 3)
M= 

(1, 2d2) (2,2(12 + 1) . . . (d,2d2 + d 1) (d +1,2d2 + d) 

Let r(_2d) be resource node number (k 2d).
 

Thus, 7-(_2d) = (k 2d2, k 2d2 2d). Define V1 to be a vector of i elements:
 

Vi = 

(2, 2d2 

(3, 2d2 

2d + 4) = 

2d + 6) = 

r(_2d) 

r(-2d) 

when k = 2d2 + 2 

when k = 2d2 + 3 

(d, 2d2) = r(_2d) when k = 2d2 + d 

, 1 < i < (d 1). 

Furthermore, let r(1_2d) be resource node number (k 2d + 1).
 

Thus, r(1-2d) = (k 2d2 + d, k 2d2 d + 1).
 

Define V2 to be a vector of i elements:
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(d + 2,2d2 d + 5) = r(_2d+1) when k = 2(12 + 2 

(d + 3, 2d d + 7) = r (-2d+i) when k = 2d2 + 3 
v2= 

(2d, 1) = r (-2d+i) when k = 2d2 + d 

, 1 < i < (d 1). 

Define a matrix M' of i rows and j columns such that: 

V1[i], > 1 

mi[i,i] = 
V2[i], 1 

WL(M[i, jj) < d, 1 < i < (d 1) and 1 < j < (d + 1). Hence, every 

node in Class 3 is within a distance of d or less from at least one resource 

node. 

Class 4: { (x, y) : y x = (d + 1), 0 < y < d, and (-d 1) < x < -1 1. 
Let M be a matrix of i rows and j columns: 

(-1, d) (-2, d 1) (-3, d 2) ... (1 d, 2) (-d, 1) (-d 1,0) 

(-1, d) (-2, d 1) (-3, d 2) ... (1 d, 2) (-d, 1) (-d 1, 0)
M= 

(-1, d) (-2, d 1) (-3, d 2) ... (1 d, 2) (-d, 1) (-d 1,0) 

, 1 < i < (d 1), 1 < j < (d +1). 

Note that M[i, j] is a unique node in Class 4 when k = i + 2d2 + 1, x = -j, 
and y = d j + 1. More clearly, the ith row represents all the nodes of Class 4 

in a k x k torus, k = 2d2 + i + 1. Hence, M can be rewritten by adding the 

corresponding k to the negative terms as follows: 
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(2d2 + 1, d) (2d2, d 1) . . . (2d2 d + 2,1) (2d2 d + 1, 0) 

(2d2 + 2, d) (2d2 + 1, d 1) . . . (2d2 d + 3,1) (2d2 d + 2, 0)
M= 

(2d2 + d 1, d) (2d2 + d 2, d 1) . . . (2d2, 1) (2d2 1, 0) 

Let r(2d) be resource node number (2d).
 

Thus, r(2d) = (2d2, 2d2 + 2d). Define V1 to be a vector of i elements:
 

(2d2, 2d 2) = r(2d) when k = 2d2 + 2 

(2d2, 2d 3) = r(2d) when k = 2d2 + 3 
171 = 

(2d2, d) = r(2d) when k = 2d2 + d 

, 1 < i < (d 1). 

Furthermore, let r(2d_1) be resource node number (2d 1).
 

Thus, r(2d_1) = (2d2 d, 2d2 + d 1). Define V2 to be a vector of i elements:
 

(2d2 d, d 3) = r(2d-1) when k = 2d2 + 2 

(2d2 d, d 4) = r(2d-1) when k = 2d2 + 3 
V2 = 

(2d2 d, 1) = r(2d-1) when k = 2d2 + d 

, 1 < i < (d 1). 

Define a matrix M' of i rows and j columns such that: 

V1[i], i > 
mi[i,i] = 

172 [i] < 1 

WL(M[i, j1) < d, 1 < i < (d 1) and 1 < j < (d + 1). Hence, every 
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node in Class 4 is within a distance of d or less from at least one resource 

node. 

Thus, any node is within a distance of d or less from at least one resource node. 

Theorem 2.2.7 Any node in a k x k torus is within a distance of d or less from at 

least one resource node when QPk is used, where 2d2 + d +1 < k < 2d2 + 2d. 

Proof: Suppose a node a is at a distance of (d+ 1) from the resource node (0, 0). 

It will be shown that the node a is at a distance of d or less from some other resource 

nodes. Thus, based on Lemma 2.2.5 and Lemma 2.2.6, this theorem follows. 

Any node at a distance of (d + 1) from (0, 0) must be in one of the following 

classes: 

Class 1: { (x,y): x ± y = (d + 1), 1 < y < (d +1), and 0 < x < d 1. 

Let r1 = (d, d+ 1). Obviously, r1 E QPk , and 

DL(7-1, (x, y)) < 2d +1 x y = d. 

Class 2: { (x, y) : x y = (d +1), (d 1) < y < 1, and d < x < 0 }. 

Let r_1 = (d, d 1). Obviously, r(_1) is a resource node, and 

D L(r(_1), (x, y)) < 2d + 1 + x + y = d. 

Class 3: { (x, y) : x y = (d + 1), d < y < 0, and 1 < x < (d + 1) }. 

Define a matrix M of i rows and j columns to be: 



27 

(1, -d) (2,1 d) (3, 2 d) (d -1, -2) (d, -1) (d +1, 0) 

(1,-d) (2,1 d) (3, 2 d) (d 1, -2) (d, -1) (d + 1,0)
M= 

(1,-d) (2,1 d) (3, 2 d) (d 1, -2) (d, -1) (d +1,0) 

, 1 < i < d, 1 < j < (d + 1). 

Note that M[i, j] is a unique node in Class 3 when k = i + 2d2 + d, x = j, and 

y = j d 1. More clearly, the ith row represents all the nodes of Class 3 

in a k x k torus, k = 2d2 + i + d. Hence, M can be rewritten by adding the 

corresponding k to the negative terms as follows: 

(1, 2d2 + 1) (2, 2d2 + 2) ... (d, 2d2 + d) (d + 1, 0) 

M= 
(1, 2d2 + 2) (2, 2d2 + 3) ... (d, 2d2 + d + 1) (d + 1,0) 

(1,2(12 + d) (2, 2(12 + d + 1) . (d,2d2 + 2d 1) (d + 1,0) 

Let r(_2d_1) be resource node number (k 2d 1).
 

Thus, r(_2d_1) = (k 2d2 d, k 2d2 3d 1). Define V1 to be a vector of i
 

elements:
 

(1,242 +1), when k = 2d2 + d + 1 

(2,242 d + 3) = when k = 2d2 + d + 2 
= 

(d, 2d2 + d 1) = r(-2d-1) when k = 2d2 + 2d 

, 1 < i < d. 

Furthermore, let r(_2d) be resource node number (k 2d).
 

Thus, r(_2d) (k 2d2, k 2d2 2d).
 

Define 172 to be a vector of i elements:
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(d + 1,2d2 + 2) = r(_2d) when k = 2d2 + d +1 

(d + 2,2d2 + 4) = r(_2d) when k = 2d2 + d + 2 
V2 = 

(2d, 0) = r(_2d) when k = 2d2 + 2d 

, 1 < < d. 

Define a matrix M' of i rows and j columns such that: 

{ i > j 1
M'[i,j]= 

V2 i < j 1 

WL(M[i, j] j1) < d, 1 < i < d and 1 < j < (d + 1). Hence, every node 

in Class 3 is within a distance of d or less from at least one resource node. 

Class 4: { (x, y) : y x = (d + 1), 0 < y < d, and (d 1) < x < 1 1. 
Define a matrix M of i rows and j columns to be: 

(-1, d) (-2, d 1) (-3, d 2) ... (1 d, 2) (d, 1) (d 1, 0) 

(-1, d) (-2,d 1) (-3,d 2) ... (1 d, 2) (d, 1) (d 1,0)
M= 

(-1, d) (-2, d 1) (-3, d 2) ... (1 d, 2) (d, 1) (d 1,0) 

, 1 < i < d, 1 < j < (d +1). 

Note that M[i, j] is a unique node in Class 4 when k = i + 2d2 + d, x = j, 
and y = d +1 j. More clearly, the ith row represents all the nodes of Class 4 

in a k x k torus, k = 2d2 + i + d. Hence, M can be rewritten by adding the 
corresponding k to the negative terms as follows: 
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(2d2 + d, d) (2d2 + d 1, d 1) . . . (2d2 + 1,1) (2d +2, 0) 

M= 
(2d2 + d + 1, d) (2d2 + d, d 1) . . . (2d2 , 1) (2d2 + 1,0) 

(2cP + 2d 1, d) (2d2 + 2d 2, d 1) . . . (2d2 + d 2, 1) (2d2 + d 1, 0) 

Let r(2d+1) be resource node number (2d + 1).
 

Thus, r(2d+1) (2d2 + d, 2d2 + 3d + 1). Define V1 to be a vector of i elements:
 

(2d2 + d, 2d) = r (2d-po when k = 2d2 + d + 1 

(2d2 + d, 2d 1) = r (2d+i) when k = 2d2 + d + 2 
V-1 = 

(2d2 + d, d + 1) = r(2d+1) when k = 2d2 + 2d
 

, 1 < i < d.
 

Furthermore, let r(2d) be resource node number (k 2d).
 

Thus, r(2d) = (2d2, 2d2 + 2d).
 

Define V2 to be a vector of i elements:
 

(2d2, d 1) = r(2d) when k = 2d2 + d + 1 

(2d2, d 2) = r(2d) when k = 2d2 + d + 2 
142 

(2d2, 0) = red) when k = 2d2 + 2d
 

, 1 < i < d.
 

Define a matrix M' of i rows and j columns such that: 

[i] i > j 1 

V2 [i] , i < j 1 

WL(M[i, j1) < d, 1 < i < d and 1 < j < (d + 1). Hence, every node 
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in Class 4 is within a distance of d or less from at least one resource node. 

Thus, any node is within a distance of d or less from at least one resource node. 

Corollary 2.2.8 QPk is a quasi-perfect distance-(d 1) placement when 2d2 + 2 < 

k < 2d2 + 2d. 

Proof: 

(1) In this range, the radius-(d	 1) packing spheres of any two nodes in QPk are 

disjoint (Corollary 2.2.2). 

(2) Also in this range, any node is at a distance of d or less from at least one 

resource node (Theorems 2.2.6 and 2.2.7). 

Hence, the two conditions required for a quasi-perfect distance-(d 1) placement are 

satisfied. 

Theorem 2.2.9 Any node in a k x k torus is within a distance of (d+1) or less from 

at least one resource node when QPk is used, where 2d2 +2d+ 2 < k < 2d2 + 3d +1. 

Proof: Suppose a node a is at a distance of (d + 2) from the resource node (0, 0). 

It will be shown that the node a is at a distance of (d + 1) or less from some other 

resource nodes. Thus, based on Lemma 2.2.5 and Lemma 2.2.6, this theorem follows. 

Any node at a distance of (d + 2) from (0, 0) must be in one of the following 

classes: 

Class 1: { (x, y) : x + y = (d + 2), 1 < y < (d + 2), and 0 < x < (d + 1) }. 

Let r1 = (d, d + 1). Obviously, r1 E QPk , and 

D L(rt, (x, Y)) < (d + 1). 
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Class 2: { (x, y) : x y = (d + 2), (d 2) < y < 1, and (d 1) <
 

x < 0 1.
 

Let r_1 = (d, d 1). Obviously, r(_1) is a resource node, and
 

Dijr(_1), (x,y)) < (d +1). 

Class 3: { (x, y) : x y = (d + 2), (d 1) < y < 0, and 1 < x < (d + 2) }. 
Define a matrix M of i rows and j columns to be: 

(1, d 1) (2, d) (3,1 d) . . . (d, 2) (d + 1, 1) (d + 2, 0) 

(1, d 1) (2, d) (3,1 d) . . . (d, 2) (d + 1, 1) (d + 2, 0)
M= 

(1, d 1) (2, d) (3,1 d) . . . (d, 2) (d + 1, 1) (d + 2, 0) 

, 1 < i < d, 1 < j < (d + 2). 

Note that M[i, j] is a unique node in Class 3 when k = i + 2d2 + 2d + 1, 
x = j, and y = j d 2. More clearly, the ith row represents all the nodes of 

Class 3 in a k x k torus, k = i + 2d2 + 2d + 1. Hence, M can be rewritten by 

adding the corresponding k to the negative terms as follows: 

(1,2d2 + d + 1) (2,2d2 + d + 2) ... (d + 1,2d2 + 2d + 1) (d + 2, 0) 

(1, 2d2 + d + 2) (2, 2d2 + d + 3) ... (d + 1,2d2 + 2d + 2) (d + 2, 0)
M= 

(1, 2d2 + 2d) (2, 2d2 + 2d + 1) ... (d + 1,2d2 + 3d) (d + 2, 0) 
_ 

Let r(_2d_2) be resource node number (k 2d 2).
 

Thus, r(_2d_2) = (k 2d2 2d, k 2d2 4d 2). Define V1 to be a vector of i
 

elements:
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(2, 2d2 + 2) = r(_2d_2) when k = 2d2 + 2d + 2 

(3, 2d2 + 4) = r(_2d_2) when k = 2d2 + 2d + 3 
V1 = 

(d + 1,2d2 + 2d) = r(_2d_2) when k = 2d2 + 3d + 1 

, 1 < i < d. 

Furthermore, let r(_2d_1) be resource node number (k 2d 1).
 

Thus, r(_2d_1) (k 2d2 d, k 2d2 3d 1).
 

Define V2 to be a vector of i elements:
 

(d+2,242 +d +3) = r(-2d-1) when k = 2d2 +2d + 2 

(d+3,242+d+5)-= r(_2d_1) when k = 2d2 + 2d + 3 
V2 =-

(2d, 0) = r(_2d_1) when k = 2d2 +3d +1 
_ 

, 1 < i < d. 

Define a matrix M' of i rows and j columns such that: 

{ V1 [i], i ? j 1 

mi[i, i] = 
V2[i], i < j 1 

WL(M[i, j] Mli, j]) < (d + 1), 1 < i < d and 1 < j < (d + 2). Hence, every 

node in Class 3 is within a distance of (d+ 1) or less from at least one resource 

node. 

Class 4: { (x, y) : y x =-- (d + 2), 0 < y < (d +1), and (d 2) < x < 1 }. 
Define a matrix M of i rows and j columns to be: 
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( -1, d + 1) ( -2, d) ( -3, d 1) (-d, 2) (-d 1, 1) (-d 2, 0) 

(-1, d + 1) (-2, d) (-3, d 1) . . . (-d, 2) (-d 1,1) (-d 2,0)
M= 

(-1, d + 1) (-2, d) (-3, d 1) (-d, 2) (-d 1,1) (-d 2, 0) 

, 1 < i < d, 1 <j < (d + 2). 

Note that M[i, j] is a unique node in Class 4 when k = i + 2d2 + 2d + 1, 
x = -j, and y = d + 2 j. More clearly, the ith row represents all the nodes 

of Class 4 in a k x k torus, k = 2d2 + 2d + 1 + i. Hence, M can be rewritten 

by adding the corresponding k to the negative terms as follows: 

(2d2 + 2d + 1, d + 1) (2d2 + 2d, d) . . . (2cP + d + 1,1) (2d2 + d, 0) 

(2d2 + 2d + 2, d + 1) (2d2 + 2d, d) . . . (2d2 + d + 2,1) (2d2 + d + 1, 0)
M= 

(2d2 + 3d, d + 1) (2d2 + 3d 1, d) . . . (2d2 + 2d,1) (2d2 + 2d 1,0) 

Let r(2d+2) be resource node number (2d + 2).
 

Thus, r(2d+2) = (2d2 + 2d, 2d2 + 4d + 2). Define V1 to be a vector of i elements:
 

(2d2 + 2d, 2d) = r (2d+2) when k = 2d2 + 2d + 2 

(2d2 + 2d, 2d 1) = r(2d+2) when k = 2d2 + 2d + 3 
v1 = 

(2d2 + 2d, d + 1) = r (2d+2) when k = 2d2 + 3d + 1 

, 1 < i < d. 

Furthermore, let r(2d±1) be resource node number (2d + 1).
 

Thus, r(2d+1) = (2d2 + d, 2d2 + 3d + 1).
 

Define V2 to be a vector of i elements:
 



34 

..... 

(2d2 + d, d 1) = r (2d+i) when k = 2d2 + 2d + 2 

(2d2 + d, d 2) = r(2d+i) when k = 2d2 + 2d + 3 
172 

(2d2 + d, 0) = r (2d+i) when k = 2d2 + 3d + 1 

, 1 < i < d. 

Define a matrix M' of i rows and j columns such that: 

{Vi[i], i > j 1 

M'[2, i] = 
V2[i], i < j 1 

WL(M[i, j] Mli, ji) < (d + 1), 1 < i < d and 1 < j < (d + 2). Hence, every 

node in Class 4 is within a distance of (d+ 1) or less from at least one resource 

node. 

Thus, any node is within a distance of (d + 1) or less from at least one resource 

node. 

Theorem 2.2.10 Any node in a k x k torus is within a distance of (d + 1) from at 

least one resource node when QPk is used, where 2d2 + 3d + 2 < k < 2d2 + 4d + 2. 

Proof: Suppose a node a is at a distance of (d + 2) from the resource node (0, 0). 

It will be shown that the node a is at a distance of (d + 1) or less from some other 

resource nodes. Thus, based on Lemma 2.2.5 and Lemma 2.2.6, this theorem follows. 

Any node at a distance of (d + 2) from (0, 0) must be in one of the following 

classes: 
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Class 1: { (x, y) : x + y = (d + 2), 1 < y < (d + 2), and 0 < x < (d + 1) }. 

Let rl = (d, d + 1). Obviously, r1 E QPk , and 

DL (T.]. , (x, y)) < (d + 1). 

Class 2: { (x, y) : -x y = (d + 2), (-d 2) < y < -1, and (-d 1) <
 

x < 0 1.
 

Let r_1 = (-d, -d 1). Obviously, r(_1) is a resource node, and
 

D L(r(_1), (x , y)) < (d + 1). 

Class 3: { (x, y) : x y = (d + 2), (-d 1) < y < 0, and 1 < x < (d + 2) }. 

Define a matrix M of i rows and j columns to be: 

(1,-d 1) (2, -d) (3,1 d) .. . (d, -2) (d + 1, -1) (d + 2,0) 

(1,-d 1) (2, -d) (3,1 d) .. . (d, -2) (d + 1,-1) (d + 2,0)
M= 

(1, -d 1) (2, -d) (3,1 d) .. . (d, -2) (d + 1,-1) (d + 2,0) 

, 1 < i < (d + 1), 1 < j < (d + 2). 

Note that M[i, j] is a unique node in Class 3 when k = i + 2d2 + 3d + 1, 
x = j, and y = j d 2. More clearly, the ith row represents all the nodes of 

Class 3 in a k x k torus, k = i + 2d2 + 3d + 1. Hence, M can be rewritten by 

adding the corresponding k to the negative terms as follows: 

(1, 2d2 + 2d+ 1) (2, 2d2 + 2d + 2) ... (d + 1,2(12 + 3d + 1) (d + 2,0) 

(1, 2d2 + 2d + 2) (2, 2d2 + 2d + 3) ... (d + 1,2d2 + 3d + 2) (d + 2,0)
M= 

(1, 2d2 + 3d + 1) (2, 2d2 + 3d + 2) ... (d + 1,2d2 + 4d + 1) (d + 2, 0) 
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Let r(_2d_3) be resource node number (k 2d 3).
 

Thus, r(_2d_3) = (k 2d2 3d, k 2d2 5d 3). Define V1 to be a vector of i
 

elements:
 

242 + d + 1) = r(_2d_3) when k = 2d2 + 3d + 2 

(3,2d2 + d + = r(_2d_3) when k = 2d2 + 3d + 3 
v1= 

(d + 2,2d2 + 3d +1) = r(_2d_3) when k = 2d2 + 4d + 2 
-

,1<i<(d +1). 

Furthermore, let r(_2d_2) be resource node number (k 2d 2).
 

Thus, r(_2d_2) (k 2d2 2d, k 2d2 4d 2).
 

Define V2 to be a vector of i elements:
 

(d + 2d2 + 2d + 2) = r(_2d_2) when k = 2d2 + 3d + 2 

(d + 3,2d2 + 2d + 4) = r(_2d_2) when k = 2d2 + 3d + 3 
V2 = 

(2d + 2, 0) = r(_2d_2) when k = 2d2 + 4d + 2 

, 1 < i < (d + 1). 

Define a matrix M' of i rows and j columns such that: 

i> j171 [i], 1 
= 

V2[i], i < j 1 

WL(M[i, j] j1) < (d + 1), 1 < i < (d + 1) and 1 < j < (d + 2). Hence, 

every node in Class 3 is within a distance of (d 1) or less from at least one 

resource node. 
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Class 4: { (x, y) : y x = (d+ 2), 0 < y < (d+1), and (-d- 2) < x < -1 }. 
Define a matrix M of i rows and j columns to be: 

( -1, d + 1) ( -2, d) ( -3, d 1) ... (-d, 2) (-d 1,1) (-d 2, 0) 

(-1, d + 1) ( -2, d) ( -3, d 1) .. . (-d, 2) (-d 1,1) (-d 2, 0)
M= 

(-1, d + 1) (-2, d) (-3, d 1) . . . (-d,2) (-d 1,1) (-d 2, 0) 

,1<i<(d+1),1<j<(d+2). 

Note that M[i, j] is a unique node in Class 4 when k = i + 2d2 + 3d +1, 
x = -j, and y = d + 2 j. More clearly, the ith row represents all the nodes 

of Class 4 in a k x k torus, k = 2d2 + 3d + 1 + i. Hence, M can be rewritten 

by adding the corresponding k to the negative terms as follows: 

(2d2 + 3d + 1, d + 1) (2d2 + 3d, d) . . . (2d2 + 2d + 1,1) (2d2 + 2d, 0) 

(2d2 + 3d + 2, d + 1) (2d2 + 3d, d) . . . (2d2 + 2d + 2,1) (2d2 + 2d + 1, 0)
M= 

(2d2 + 4d + 1, d + 1) (2d2 + 4d, d) . . . (2d2 + 3d + 1,1) (2cP + 3d, 0) 

Let r(2d+3) be resource node number (2d + 3).
 

Thus, r(2d+3) = (2d2 + 3d, 2d2 + 5d+ 3). Define V1 to be a vector of i elements:
 

(2d2 + 3d, 2d + 1) = r(2d+3) when k = 2d2 + 3d + 2 

(2d2 + 3d, 2d) = r(2d+3) when k = 2d2 + 3d + 3 
Vi = 

(2d2 + 3d, d + 1) = r(2d+3) when k = 2d2 + 4d + 2 

, 1 < i < (d +1). 

Furthermore, let r(2d+2) be resource node number (2d + 2). 

Thus, r(2d+2) (2d2 + 2d, 2d2 + 4d + 2). 
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Define V2 to be a vector of i elements: 

(2d2 + 2d, d) = r(2d+2) when k = 2d2 + 3d + 2 

(2d2 + 2d, d 1) = r(2d+2) when k = 2d2 + 3d + 3 
v2 = 

(2d2 + 2d, 0) = r(2d+2) when k = 2d2 + 4d + 2 

, 1 < i < (d + 1). 

Define a matrix M' of i rows and j columns such that: 

vi[ii, >i 1 
mi[i,i] = 

v2H, i< j -1 

WL(M[i, MUD < (d + 1), 1 < i < (d + 1) and 1 < j < (d + 2). Hence, 

every node in Class 4 is within a distance of (d + 1) or less from at least one 

resource node. 

Thus, any node is within a distance of (d + 1) or less from at least one resource 

node. 

Theorem 2.2.11 Any node in a k x k torus is within a distance of (d + 1) or less 

from at least one resource node when QPk is used, where k = 2d2 + 4d + 3. 

Proof: Suppose a node a is at a distance of (d + 2) from the resource node (0, 0). 

It will be shown that the node a is at a distance of (d + 1) or less from some other 

resource nodes. Thus, based on Lemma 2.2.5 and Lemma 2.2.6, this theorem follows. 

Any node at a distance of (d + 2) from (0, 0) must be in one of the following 

classes: 
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Class 1: { (x, y) : x + y = (d + 2), 1 < y < (d + 2), and 0 < x < (d + 1) }. 

Let ri. = (d, d + 1). Obviously, r1 E QPk , and 

DL(ri, (x, Y)) 5_ (d + 1). 

Class 2: { (x, y) : x y = (d + 2), (d 2) < y < 1, and (d 1) <
 

x < 0 }.
 

Let r_1 = (d, d 1). Obviously, r(_1) is a resource node, and
 

D L(7- (_].), (x, 0) 5_ (d +1). 

Class 3: { (x, y) : x y = (d + 2), (d 1) < y < 0, and 1 < x < (d + 2) }. 

Define a matrix M of one row and j columns to be: 

M = [ (1, d 1) (2, d) (3,1 d) . . . (d, 2) (d + 1, 1) (d + 2, 0) ] 

, 1 < j < (d + 2). 

Note that M[1, j] is a unique node in Class 3 when k = 2d2 + 4d + 3, x = j, 

and y = j d 2. Hence, M can be rewritten by adding k to the negative 

terms as follows: 

M= [ (1,2d2+3d+2) (2,2d2+3d+3) ... (d+1,2d2+4d+2) (d+2,0) ] 

Let r(_2d_3) be resource node number (k 2d 3).
 

Thus, r(_2d_3) = (k 2d2 3d, k 2d2 5d 3) = (d + 3, 2d2 + 3d + 3).
 

Furthermore, let r(_1) be resource node number (k 1).
 

Thus, r(_1) = (k d, k d 1) = (2d2 + 3d + 3, 2d2 + 3d + 2).
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Define a matrix M' of one row and j columns such that: 

r( -2d-3) 7 j 1 
[i = 

r(-1), j = 1 

WL (Mk, j]) < (d + 1), i = 1 and 1 < j < (d + 2). Hence, every node 

in Class 3 is within a distance of (d + 1) or less from at least one resource 

node. 

Class 4: { (x, y) : y x = (d+ 2), 0 < y < (d+1), and (d 2) < x < 1 1. 
Define a matrix M of one row and j columns to be: 

M =[ ( -1, d + 1) (-2, d) ( -3, d 1) (d, 2) (d 1,1) ( d 2, 0) 

1 < j < (d + 2). 

Note that M[i, j] is a unique node in Class 4 when k = 2d2 + 4d + 3, x = j, 
and y = d + 2 j. Hence, M can be rewritten by adding k to the negative 
terms as follows: 

M = [ (-1,d + 1) (-2,d) (-3,d-1) (d,2) (d 1,1) (d 2, 0)
 
, 1 < j < (d + 2).
 

Note that M[1, j] is a unique node in Class 4 when k = 2d2 + 4d + 3, x = j, 

and y = j d 2. Hence, M can be rewritten by adding k to the negative 

terms as follows: 

M = [ (2d2 + 4d + 2, d + 1) (2d2 + 4d +1,d) ... (2d2 +3d+2,1) (2d2 + 3d + 1, 0) 

Let r(2d+3) be resource node number (2d + 3). 
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Thus, r(2d+3) = (2d2 + 3d, 2d2 + 5d + 3) = (2d2 + 3d, d). 

Furthermore, let ri be the first resource node. Thus, r1 = (d, d + 1). 

Define a matrix M' of one row and j columns such that: 

1 r(2d+3), j 1
Mi[1, j] = 

Ti , j = 1 

WL(m[i,j] mqi,j]) < (d +1), 1 and 1 < j < (d + 2). 

Thus, any node is within a distance of (d + 1) or less from at least one resource 

node. 

Corollary 2.2.12 QPk is a quasi-perfect distance-d placement when 2d2 + 2d + 2 < 

k < 2d2 + 4d + 3. 

Proof: 

(1) In this range, the radius-d packing spheres of any two resources are disjoint 

(Corollary 2.2.4). 

(2) Also in this range, any node is at a distance of (d + 1) or less from at least one 

resource node (Theorems 2.2.9, 2.2.10, and 2.2.11). 

Hence, the two conditions required for a quasi-perfect distance-d placement are sat

isfied. 

2.3 Quasi-Perfect Placements for 2D Tori 

The QPk placement scheme is designed to define a placement for a k x k torus using 

k resources, where k is an integer > 2. In this section, it is shown when and how 

QPk can be used in finding placements for other X x Y tori. 
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Lemma 2.3.1 let Txxy be an X x Y torus. Let kIX and klY, where k is an integer 

> 2. Furthermore, let TkXk be a k x k torus in which QPk is used to achieve a perfect 

or quasi-perfect distance-1 placement. Then Tkxk can be used to tile Txxy In this 

case, Txxy will maintain a perfect or quasi-perfect distance-1 placement exactly as 

TkXk. The number of resources needed for Txxy is )--SV 

Proof: The tiling blocks are identical. Thus, linking a block to an identical one 

is equivalent to wrapping around the links to the block itself. Hence, the placement 

characteristics of the basic tiling block must hold in the tiled Txxy 

With respect to the number of resources needed, there are k resources in each 

TkXk. Furthermore, )*f tiling blocks are needed to tile Txxy. Hence, the total 

number of the needed resources will be: 

XY k XY 
k2 k 

For example, there are several placements possibilities based on the QPk scheme 

for a 30 x 30 or a 24 x 36 torus. Tables 2.1 and 2.2 show these possible placements. 

The vertical or the horizontal bisection of some placements are quasi-perfect 

exactly as the placement of the whole space before bisecting. The following theorem 

formally explains the idea. 

Theorem 2.3.1 Let T be a k x k torus in which QPk is used, 21k. Assume the 

resultant placement is quasi-perfect distance-l. Let [d, (d +1)] be the generator matrix 

used for the placement. 

(1) If d is even then the horizontal bisection of T uses 1.1 resources and maintains2 

a quasi-perfect distance-1 placement, assuming the bisections are k x 2 tori. 
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Placement Tiling Block Number of Needed Resources 

Quasi-Perfect Distance-0 2 x 2 450 

Quasi-Perfect Distance-0 4 x 4 225 

Perfect Distance-1 5 x 5 180
 

Quasi-Perfect Distance-1 6 x 6 150
 

Quasi-Perfect Distance-1 10 x 10 90
 

Quasi-Perfect Distance-2 15 x 15 60
 

TABLE 2.1: The possible quasi-perfect placements for a 30 x 30 torus using QPk 
placement scheme. 

Placement Tiling Block Number of Needed Resources 

Quasi-Perfect Distance-0 2 x 2 432 

Quasi-Perfect Distance-0 4 x 4 216 

Quasi-Perfect Distance-1 6 x 6 144 

Quasi-Perfect Distance-1 12 x 12 72 

TABLE 2.2: The possible quasi-perfect placements for a 24 x 36 torus using QPk 
placement scheme. 
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(2) If d is odd then the vertical bisection of T uses § resources and maintains a 

quasi-perfect distance-1 placement, assuming the bisections are § x k tori. 

Proof: Let i = 2. i will be a positive integer less than k, since 21k. 

If d is even then ti (mod k) = 0. Hence i(d,d + 1) = (0, 0 + i) = (0, D is 

a resource node. Thus, the horizontal bisections of T are identical in terms of 

resource node locations. 

- If d is odd then If (mod k) = §. Hence, i(d,d+1) = (i, 01 (mod k)) = (§, 0) 

is a resource node. Thus, the vertical bisections of T are identical in terms of 

resource node locations. 

Since in both cases T will be partitioned into two identical parts, the links between 

these parts are equivalent to the wraparound links around each part itself. Further

more, those parts being identical implies that the number of resources in each of 

them is §. 

Examples of cases in which Theorem 2.3.1 holds are shown in Figure 2.5. In 

Figure 2.5-(a), QPk is applied to achieve a quasi-perfect distance-1 placement. The 

generator matrix used in this case is [1 2]. Since (d = 1) is odd and 21(k = 6), 

the vertical bisection is quasi-perfect distance-1. Figure 2.5-(b) shows the placement 

results of using QPk in a 10 x 10 torus . This placement is a quasi-perfect distance-1 

and uses the generator matrix [2 3]. Since (d = 2) is even and 21(k = 10), the 

horizontal bisection is quasi-perfect distance-1. 

From another perspective, these bisections can be used as tiling blocks. For 

example, Figure 2.6 shows how a 6 x 3 torus can be used in tiling a 9 x 12 torus. 

Note that the general conditions for using a tiling block in tiling a given torus are 

slightly different than what was stated in Lemma 2.3.1. Since the dimensions of a 
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(a) 6x 6 (b) lox 10 

FIGURE 2.5: Quasi-perfect placements result from horizontal and vertical bisecting. 

r r 

r r 

r 

FIGURE 2.6: A 9 x 12 torus tiled by a vertical bisection of a 6 x 6 torus. 
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tiling block might not be equal, the conditions needed can be formally described as
 

follows:
 

Given a tiling block, B, of dimensions ki, and k2, and a 2D torus, T, of dimensions
 

X and Y, then B can be used to tile T if:
 

(k1	 I X) and (k2 1 Y). 

OR 

(k1	 1 Y) and (k2 I X). 

2.4 Quasi-Perfect Placements for 2i x 2i Tori 

The 2D tori with dimension sizes as power of two are of special interest in industry. 

In this section, a special attention has been made on resource placements in a k x k 

torus, when k = 2'. The main goal to be achieved is the ability of scaling the number 

of resources down or up for a given 2D torus in this class. The following theorem 

represents the basis for scaling the number of resources down. 

Theorem 2.4.1 Given T, a k x k torus, k = 2', i is an integer > 1.
 

P = { (0,0), (ft, ft) } is a quasi-perfect distance -(2 1) placement for T.
 

Proof: Let R0 and Ri, be (0, 0) and (ft, ft), respectively. 

(1) DL(Ro, R1) = k > (k	 1). Hence, the radius-(ft 1) packing spheres of 

R0 and R1 are disjoint (First necessary condition for P to be a quasi-perfect 

distance-(ft 1) placement). 

(2) It is clear that P is a finite group and so is T.	 Hence, R0 and R1 can be 

transformed to each other as it was shown in Lemma 2.2.6. Thus, showing 

that every node at a distance of (ft + 1) from Ro is at a distance of (ft) or less 
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from R1 proves that every node in T is within a distance of () or less from at
 

least one of R0 or R1.
 

Any node at a distance of (2 +1) from R0 can be written in the following form:
 

(x, y) such that ( min(x , k x) + min(y, k y) = 2 + 1 ), x, y O. 

Note that assuming x to be zero makes = + 1). This implies that (x, y) 

is at a distance of 1) from (0, 0) (Contradiction since (x, y) must be at a 

distance of exactly (t + 1) from (0, 0) ). The same contradiction follows if y 

assumed to be zero. Therefore, for any (x, y) DL(Rl, (x, y)) = k + 1) < t. 
Hence, any node in T is within a distance of (0 from at least one of R0 or 

R1 (Second necessary condition for P to be a quasi-perfect distance -(2 1) 

placement). 

Figure 2.7 shows an application of this theorem. Figure 2.7-(a) shows the use 

of two resources in a 16 x 16 torus to achieve a quasi-perfect distance-7 placement. 

On the other hand, Figure 2.7-(b) shows how to use eight resources and achieve a 

quasi-perfect distance-3 placement. The idea is to use two resources in an 8 x 8 torus 

to obtain a quasi-perfect distance-3 placement, and then, use the 8 x 8 torus in tiling 

16 x 16 torus. 

Unfortunately, finding a quasi-perfect placement using four resources in a k x k 

torus, when k = 2i and i > 3, seems to not be possible. However, proving this 

claim is still under investigation. Hence, at least for the current time, the number 

of resources to be used in the scaling down process for a torus in this class must be 

in the form R = 2 x 0 < 2j < i 1 (i.e. R < 2i). The algorithm in Figure 2.8 

formally describes the scaling down process. 
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(a) Quasi-Perfect Distance-7 (b) Quasi-Perfect Distance-3 

FIGURE 2.7: Quasi-perfect placements as applications of Theorem 2.4.1 in a 16 x 16 
torus. 

For example, a 32 x 32 torus can use different scaled-down quasi-perfect place

ments. Table 2.3 lists these placements and the number of resources needed in each 

case. 

The idea of scaling up the number of resources is based on using a tiling block in 

which QPk is used. For example, it is possible to use an 8 x 8 torus in which QPk 

is used to tile a 16 x 16 torus. In this case, the latter will maintain a quasi-perfect 

distance-1 placement using 32 resources. The algorithm in Figure 2.9 describes a 

possible method for scaling up the number of resources in a torus of this class. 

Table 2.4 lists the possible scaled-up quasi-perfect placements for a 32 x 32 torus 

based on the PLACE-SCALED-UP algorithm. Finally, it should be noticed that any 

placement that results from applying the PLACE-SCALED-DOWN or the PLACE

SCALED-UP algorithm can be used as a tiling block. For example, a 32 x 32 torus 
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PLACE-SCALED-DOWN ( A, B, R, k ) 

A: upper left node of the given torus. 

B: lower right node of the given torus. 

R: number of resources, R = 2 x 0, 0 < 2j < i 1 (i.e. R < k). 

k: dimension, k = 2i, i > 0. 

(1) If R = 2 

place resource° in (0, 0). 

place resources in q, 

(2) Else 

CALL PLACE-SCALED-DOWN ( (0,0) , 

CALL PLACE-SCALED-DOWN ( (2,0) , 

CALL PLACE-SCALED-DOWN ( (0, t) , 

CALL PLACE-SCALED-DOWN ( , 

(k 

(k 

1, 2 

1, § 

1, k 

1, k 

1), 

1) , 

1), 

1), 

FIGURE 2.8: PLACE-SCALED-DOWN algorithm. 

Placement Number of Needed Resources 

Quasi-Perfect Distance-15 2 

Quasi-Perfect Distance-7 8 

TABLE 2.3: Scaled-down quasi-perfect placements for a 32 x 32 torus that result 
from applying PLACE-SCALED-DOWN algorithm. 
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PLACE-SCALED-UP ( A, B, R, k ) 

A: upper left node of the given torus. 

B: lower right node of the given torus. 

R: number of resources, R = 24,0 < j < i (i.e k < R < k2). 

k: dimension, k = 2i,i > 0. 

(1) If R = k 

Use QPk. 

(2) Else 

CALL PLACE-SCALED-UP ( (0,0) , 1, 2 1), 

CALL PLACE-SCALED-UP ( 0) , (k 1), 

CALL PLACE-SCALED-UP ( (0, §) , 1, k 1), 

CALL PLACE-SCALED-UP ( , (k 1,k 1), 

FIGURE 2.9: PLACE-SCALED-UP algorithm. 

Placement Tiling Block Number of Resources 

Quasi-Perfect Distance-0 2 x 2 512 

Quasi-Perfect Distance-0 4 x 4 256 

Quasi-Perfect Distance-1 8 x 8 128 

Quasi-Perfect Distance-2 16 x 16 64 

TABLE 2.4: Possible scaled-up quasi-perfect placements for a 32 x 32 torus based 
on PLACE-SCALED-UP algorithm. 
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can be used to tile a 64 x 96 torus. Hence, any of the placements listed in Table 2.3 

or Table 2.4 can be achieved in a 64 x 96 torus. 

2.5 Conclusion 

QPk is a placement scheme for k x k tori. In this chapter, QPk has been defined and 

proven to maintain the following properties: 

QPk is a quasi-perfect distance-(d 1) placement, when 2d2 + 2 < k < 2d2 + 2d 

(Corollary 2.2.8). 

QPk is a perfect distance-d placement, when k = 2d2+ 2d + 1 (Corollary 2.2.5). 

QPk is a quasi-perfect distance-d placement, when 2d2+2d+2 < k < 2d2+4d+3 

(Corollary 2.2.12). 

Furthermore, it has been shown when and how to use the QPk in finding placements 

for certain classes of 2D tori. The general distance-d placement problem of 2D tori 

is still under investigation. This problem can be stated as: "Given a 2D torus and R 

resources, how to place the R resources and minimize the maximum distance between 

a non-resource node and its closest resource node?" 
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Chapter 3 

I/O PLACEMENTS AND NETWORK LATENCIES 

The low cost of the high performance microprocessors makes building massively 

parallel supercomputers very cost effective. In this trend, several systems were 

built including Intel-Paragon, Cray, and IBM SP. However, the throughput of an 

Input/Output (I /O) device is too poor when it is compared to the Processing Ele

ment's (PE). This problem prevents utilizing the full power of a parallel computer. 

For this reason, many studies have tried to balance the throughputs of I/O devices 

and PE's [38, 59, 63, 62, 73]. In this chapter, it is shown that the I/O placement 

strategy used in a multicomputer has a major effect on the average network latency. 

The I/O placement strategy is a method by which I/O devices are distributed over 

the interconnection network. In practice, a simple I/O placement is usually used. For 

example, in the Intel-Paragon, whose interconnection network is a two-dimensional 

mesh, service nodes are placed at the boundary as shown in Figure 3.1. This place

ment is called Outer-Column (OC). A major problem with OC is the potentiality of 

hot spot growth. A hot spot is a part of the network in which traffic is concentrated. 

When OC placement is used, it is quite possible that the column in which service 

nodes are placed would become a hot spot. As described in [33, 59], hot spot traffic 

degrades performance of the entire network. Any message that traverses through the 

hot spot has a high probability of getting blocked while other parts of the network 

are not being utilized. 

A uniform distribution of the network traffic guarantees a higher utilization of its 

links and, hence, a better performance [15, 16, 17, 18]. One factor that effects traffic 
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0 -0 
Computation Partition Service Partition 

FIGURE 3.1: Intel-Paragon 

distribution is the I/O placement strategy. A placement strategy that uniformly 

distributes service-request traffic, (or simply I/O traffic), in 2D toroidal networks is 

Perfect/Quasi-perfect, (QPk or simply QP). In this chapter, the performances of 

OC and QP are compared in terms of average network latency [4, 5]. 

The rest of this chapter is divided into five sections. Section 3.1 presents the 

derivations of average distance an I/O request traverses in OC and in QP. Section 3.2 

describes the workload characteristics and the simulation environment. Simulation 

results are shown in Sections 3.3 and 3.4. Finally, conclusions are highlighted in 

Section 3.5. 

3.1 Average Distance Analysis 

The network is assumed to use wormhole routing instead of store-and-forward. Under 

this assumption, the time, t, needed to send a message from A to B can be computed 

as follows: 

1 

t A,B = tc(d + 17) (3.1) 
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(a) 5 x5 torus (b) 8x8 torus (c) 13 x 13 torus (d) 16 x16 torus
 

FIGURE 3.2: Outer-Column I/O placements for the architectures simulated in this 
study. (wraparound links are not shown). 

(a) 5 x5 torus (b) 8 x 8 torus (c) 13x 13 torus (d) 16x 16 torus
 

FIGURE 3.3: Perfect/Quasi-Perfect I/O placements for the architectures simulated 
in this study: (a) perfect distance-1 (b) quasi-perfect distance-1 (c) perfect distance-2 
(d) quasi-perfect distance-2 (wraparound links are not shown). 
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Switch 

PE 1/0 

FIGURE 3.4: Architecture of PE -I /O node. 

where t, is the channel cycle time, d is the number of hops between A and B, 1 is 

the message length, and w is the channel width. Since OC and QP are compared 

in a set of equivalent networks, tc, 1, and w are the same in both cases, but d may 

vary. Therefore, the average traversal distances of an I/O request in OC and in QP 

are derived. The derivation is based on the following assumptions: 

I/O requests are divided into two types: Local and non-local I/O requests. 

Local I/O requests are forwarded to the nearest, or local, I/O node. Non-local 

I/O requests are uniformly distributed among all I/O nodes excluding the local 

one. 

Rates of local and non-local I/O requests are p and (1 p) , respectively. 

The amount of local I/O requests is greater than or equal to the amount of 

non-local I/O requests forwarded to a single non-local I/O node. Formally, 

leE:i. < p < 1, where k is the number of I/O nodes. 

The network is a k x k torus, and the number of I/O nodes is k. 
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Any I/O node embodies a PE as shown in Figure 3.4. This architecture has 

been described in [62]. 

Based on the above assumptions, the average traversal distance, dAvg, of an I/O 

request is given by: 

dAvg = p(d1) + (1 p)(4) (3.2) 

where d1 and do are the average traversal distances for local and non-local I/O re

quests, respectively. dAvg is obtained by solving three subproblems: deriving d1 of 

OC, deriving d1 of QP, and deriving do which will be shown to be independent of 

the placement strategy. The rest of this section is divided into two subsections. 

Subsection 3.1.1 gives the derivations of d1 of OC and QP. Subsection 3.1.2 gives a 

derivation of dr, which is independent of the used placement strategy. 

3.1.1 Average Traversal Distance of Local I/O Communication 

The d1 of OC, COG), is equal to the average distance of a node a in a ring of size
 

k to all the nodes including a in this ring. Thus, d1(OC) of a k x k torus can be
 

derived as follows:
 

Casel: k is odd:
 

2 i Wiliati + (Y)(k21 + 1) k2 1 k 1 
di(OC) 

4k 4 4k 

(3.3) 

Case2: k is even: 

(2 k 
i) 2 (D(§ k2 k

di (On (3.4) 
k k 4k 4 

Deriving d1 of QP, d1(QP), is based on the following fact: The number of the unique 

nodes at a distance of exactly t hops from any node in a k x k torus is 4t, given that 
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k 5* 8 13* 16 221* 256 

d1(OC) 1.24 2.00 3.23 8.00 55.25 64.00 

d1 (QP) 0.8 1.25 1.54 1.81 6.97 7.52 

TABLE 3.1: Values of di(OC) and dl(QP) for different k's rounded to two significant 
digits. * indicates a perfect placement. 

t < For a perfect-t placement in a k x k torus, the number of nodes in theI 

L 2 

local sphere of a single I/O node is (ELI, 4i) + 1 = 2t2 + 2t + 1. Thus, d1(QP) of
 

a k x k torus is given by:
 

Casel: perfect distance-t placement:
 

4 ELI. i2 442t2 + 3t + 1) 2t(k + t) 
(3.5)dl(QP) 2t2 2t + 1 6(2t2 + 2t 1) 3k 

Case 2: quasi-perfect distance-t placement: 

(4 Et_i i2) + (t + 1)(k (2t2 + 2t + 1)) (t + 1)(3k 2t2 4t 3)
di(QP) 

k 3k 

(3.6) 

Table 3.1 shows COG) and d1 (QP) for different k's. It is clear that QP is superior 

to OC in terms of reducing dt. In addition, QP is superior in terms of link utilization. 

In OC, local I/O requests are sent/received only through horizontal links as shown 

in Figure 3.5-(a). However, in QP local I/O, requests are sent/received through 

both horizontal and vertical links, as illustrated in Figure 3.5-(b). This makes the 

interconnection network less content when QP is applied. 

3.1.2 Average Traversal Distance of Non-Local I/O Communication 

Making non-local I/O requests to be uniformly distributed among all I/O nodes 

including the local one, would simplify the derivation of dn. Fortunately, this can 
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(a) OC (b) QP 

FIGURE 3.5: Utilized and non-utilized links, in terms of local I/O request flow, are 
represented by arrows and dashed lines, respectively. 

be achieved easily by taking a portion of the local I/O requests and adding it to the 

non-local requests. Define p' as follows: 

1 p
= P 

k 1 

According to the assumptions stated earlier, the following holds: 

0 < p' < 1 

(1 p') = 1 p 

Hence, (3.2) can be rewritten as: 

dAvg = di + (1 p')(dn) (3.7) 
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Now, non-local I/O requests, of rate (1 p'), are uniformly distributed among all 

I/O nodes including local one. Let dn,(x) be: 

Eik_i E3k.=1 distance (xth I/O node, node(i,j))
dn(x) = 

k2 

In this case, dn, is given by: 

d (x)
do (3.8)

k 

Because of symmetry of dn(i), (3.8) becomes: 

do = dn(x) for any i = 1, 2, ... , k (3.9) 

This proves that do does not depend on location of I/O nodes nor on their number. 

Case 1: k is odd: 

4k(Eli i) 
k2 

k2 1 
2k 

k 1 

2k 
(3.10) 

Case 2: k is even: 

do 
k[(4 E i) 

k2 

k2 

2k 

k 

2 
(3.11) 

This means that the performances of OC and QP will be the same if the rate of non-

local I/O requests is high under the assumption of contention free network. However, 

OC suffers from the potentiality of hot-spot growth. The simulation results, to 

be shown in Sections 3.3 and 3.4, indicate that the non-local I/O requests in OC 

accelerate hot-spot growth. Hence, even in low data locality environments, QP is 

superior to OC. 

3.2 Workload and Simulation Environment 

OC and QP placements for simulated architectures are shown in Figures 3.2, and 3.3. 

A modified version of Proteus [20] is used to simulate 5 x 5, 8 x 8, 13 x 13, and 
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16 x 16 tori. 5 x 5 and 13 x 13 represent perfect cases, while 8 x 8 and 16 x 16 

illustrate quasi-perfect placements. The simulation considers both transaction and 

scientific computing environments. It is assumed that the main distinction between 

these environments is in the overlapping of PE-PE communication and I/O requests. 

Also, it is assumed that computations in scientific environments go in disjoint cycles: 

computation cycle in which PE-PE communication is performed, and I/O cycle in 

which I/O requests are issued. Under this assumption, I/O requests and PE-PE 

communication do not overlap. Contrarily, in transaction environments, it is assumed 

that PE-PE communication and I/O requests do overlap. 

The simulation is designed to work as follows: the nodes generate requests at 

random instants. The average time between two sequential instants, Inter-Request 

time (IR), is a metric for specifying network contention. Small IR's mean high 

volume of traffic and high contention, while large IR's indicate low volume of traffic 

and low contention. IR is assumed to be exponentially distributed. A specified 

percentage of generated requests is considered to be I/O requests. The rest of the 

requests are set to be PE-PE communication requests (abbreviated as PE requests 

in what follows). The destination of a PE request is selected from other PE nodes 

with a uniform probability. A percentage of I/O requests that matches data locality 

factor is forwarded to the closest I/O node. The rest of I/O requests are uniformly 

distributed among the other I/O nodes. Each I/O node is assumed to satisfy all the 

requests it receives [11, 65, 66, 64]. 

In scientific environment, I/O request percentage is set to 100% since it is assumed 

that there is no overlap between PE and I/O requests. In transaction environment, 

the percentage of I/O requests out of the total requests varies from 5% to 20% [62]. 

In this simulation, the I/O request percentage is set to 10%. In both environments, 

I/O request block and flit sizes are set to 4 kilobyte and 1 byte, respectively. PE 
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request block size, however, may vary from 32 byte to 1 kilobyte [38, 62]. Therefore, 

simulating the transaction environment has been carried out for the cases in which 

PE request sizes are 32 byte and 1 kilobyte. 

3.3 Scientific Environment Simulation Results 

Figure 3.6 shows some of the simulation results. The data locality indicates how 

many of those I/O requests generated by any node will be forwarded to the local 

I/O node. For example, 40% data locality means that 40% of the requests generated 

in any node are forwarded to the nearest I/O node, while the remaining requests are 

uniformly distributed among the other I/O nodes. From Figure 3.6, the following 

observations can be made: 

QP, in general, has a less average I/O communication latency than OC. 

The gap between average network latencies of OC and QP increases as IR 

decreases. 

As dimension of interconnection network becomes larger, gaps between average 

network latencies of OC and QP increase. As shown in Section 3.1, the increase 

of interconnection network size causes average traversal distance of local I/O 

communication to increase faster in OC case than in QP case. 

Figure 3.7 shows simulation results when data locality is set to 20% and 80%. 

From these results, we observe the following: 

Average network latencies of OC and QP are always less when data locality 

is high, than when it is low. Non-local I/O requests have to traverse longer 

distances and, hence, their chances to block or to be blocked are higher. 
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FIGURE 3.6: Inter-request time [iisec] vs. average I/O communication latency [usec] 
when data locality is set to 50%. 
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FIGURE 3.7: Inter-request time [psec] vs. average I/O communication latency [Asec] 
when data locality is set to 20% and 80%. 
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Data locality sensitivity of QP is less than OC. This means that changing data 

locality in QP does not effect average latency as much as it does in OC. 

The gaps between OC-20% and QP-20% are larger than the gaps between 

OC-80% and QP-80%. This indicates that low data locality accelerates the 

hot-spot growth in OC case. As pointed above, the non-local I/O requests 

have a higher potentiality toward blocking or getting blocked. QP scatters 

non-local I/O requests uniformly since I/O nodes are uniformly distributed. 

This reduces the chance of a non-local I/O request to block or to be blocked. 

OC, on the other hand, concentrates I/O requests in one column. This increases 

the chance of a non-local I/O request to block or to be blocked. 

Gap between OC-80% and QP-80% becomes greater in larger interconnection 

networks. This is also true for gap between OC -20% and QP-20%. This is 

because the average traversal distance of local I/O requests grows faster in the 

case of OC than that of QP. 

3.4 Transaction Environment Simulation Results 

The simulation results of this environment are evaluated with respect to two met

rics: average I/O communication latency, and average PE communication latency. 

It is desired to investigate the influence of I/O placement strategy on each of I/O 

and PE requests. Using average network latency, i.e. network entire traffic latency 

average, in evaluating the simulation results would have not satisfied the intended 

goal. PE communication is set to be 90% of the total communication in this envi

ronment. Hence, the average network latency is mainly influenced by the average 

PE communication latency. In this case, the influence of I/O placement method on 

I/O communication will not be noticed. 
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FIGURE 3.8: Inter-request time [usec] vs. average I/O communication latency [Asec] 
when PE request block size is 1 kilobyte and data locality is set to 50%. 
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FIGURE 3.9: Inter-request time [pcsec] vs. average I/O communication latency ['ism] 
when PE request block size is 1 kilobyte and data locality is set to 20% and 80%. 
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FIGURE 3.10: Inter-request time [psec] vs. average I/O communication latency 
[/../sec] when PE request block size is 32 byte. 

The simulation has been carried out for the cases in which PE request sizes are set 

to 1 kilobyte and 32 byte. T-1k and T-32 will refer to transaction environments when 

PE request sizes are set to 1 kilobyte and 32 byte, respectively. Figures 3.8, and 3.9 

show the simulation results with respect to average I/O communication latency in 

T-lk. From these figures, the following observations were made: 

All the observations were made in Section 3.3 hold for I/O communication in 

T-lk and T-32. 

In T-lk, even though PE request size is smaller than I/O requests which repre

sent only 10% of the total communication, simulated networks saturate faster 

than the cases of scientific environments. In order to gain more understanding 

of this observation, T-32 was decided to be simulated. The results show that 

the simulated networks saturate almost in the same time in T-32 and scientific 



68 

environment experiments. This indicates that the "over-uniform" distribution 

of the traffic may result in a higher network contention. Indeed, this observation 

needs further study and investigation. The results with respect to the average 

I/O latency of simulating a 16 x 16 torus in T-32 are shown in Figure 3.10. 

The gaps between average I/O latencies of QP and OC in scientific environ

ments are larger than those in T-lk and T-32. This is expected, since in 

this simulation, all the traffic of scientific environment is due to I/O requests. 

Therefore, the placement strategy has more influence on reducing the network 

latency. 

Figures 3.11, and 3.12 show the results of simulating T -lk with respect to average 

PE network latency. Part of the results of simulating T-32 is shown in Figure 3.13. 

From these results, the followings are observed: 

QP has a less average PE-latency than OC in both of T-lk and T-32 exper

iments. This shows that I/O placement strategy influences the traffic of the 

entire network. 

All the observations of Section 3.4 hold here also, but with respect to average 

PE-latency. 

The simulated networks saturate in T-lk faster than in T-32. This is expected 

since the larger size of PE-request in T-lk experiment causes more network 

contention. 
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70 

100.0 100.0 

53 OC-20% data locality 0C-20% data locality 
QP-20% data locality QP-20% data locality 
OC-80% data locality OC-80% data locality 
OP-80% data locality QP-80% data locality 

0 0 

2 50.0 50.0 

E E 
E 
8 

E0 

0 0 
0' 
rn rn 

0.0 
500 1000 1500 0 500 1000 1500 2000 2500 3000 

Inter-request time [Asec] Inter-request time [µsec] 

(a) 5 x 5 torus (b) 8 x 8 torus 

100.0 100.0 

0C-20% data locality OC-20% data locality 
QP-20% data locality QP-20% data locality 
OC-80% data locality OC-80% data locality 
QP-80% data locality_ al QP-80% data localityis 

0 

50.0 500 

E 
E0 

0 

0.0 
0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000 6000 7000 8000 

Inter-request time [µsec] Inter-request time [isec] 

(c) 13 x 13 torus (d) 16 x 16 torus 

FIGURE 3.12: Inter-request time [usec] vs. average PE communication latency 
[itsec] when PE request block size is 1 kilobyte and data locality is set to 20% and 
50%. 



71 

100.0 100.0 

OC-50% data locality 
0] 

OC-20% data locality 
QP -50% data locality OP-20% data locality 

OC -80% data locality 
. OP-80% data locality 

C°4 

0 0 

50.0 2 50.0 

§	
(aC.t 

tL 
a_ a_ 

a) ID
 
rn 

<1. 0.0 
1000	 2000 3000 4000 5000 6000 7000 8000 1000 2000 3000 4000 5000 6000 7000 8000 

Interrequest time [gsec] Interrequest time [pea] 

(a) 16 x 16 torus	 (b) 16 x 16 torus 
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3.5 Conclusion 

In this chapter, it is shown that the I/O placement strategy in a massively parallel 

computer influences interconnection network contention and average network latency 

even if worm hole routing is used. 

Outer-Column (OC) and Perfect/Quasi-perfect (QP) I/O placement strategies 

are compared. The latter is proved to be superior to the former in terms of reducing 

average traversal distance of I/O requests. QP uniformly distributes I/O devices in 

an interconnection network, and hence, I/O requests are uniformly distributed. This 

increases the network links utilization and eliminates the potentiality of hot-spot 

growth from which OC suffers. 

Performance evaluation shows that a k x k torus , in general, has a smaller or 

equal average message latency when QP is used rather than OC. This holds even if 
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I/O data locality varies. The gaps between average message latency of OC and QP 

increase with the increase of network size or network contention. 
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Chapter 4 

RESOURCE PLACEMENT FOR 3D TORI 

The problem of distance-d resource placement is more challenging in 3D tori than 

in 2D ones. The only known regular perfect distance-d placements in 3D toroidal 

spaces are the perfect distance-1 placements for (7i x 7j x 7k) tori, where i, j, and 

k are positive integers. In this chapter, three issues related to distance-d resource 

placements in 3D tori are discussed. First, the existence of linear perfect distance-1 

placements for 3D tori is investigated. Second, irregular perfect placements for 3D 

tori are defined. Third, alternative resource placement approaches for 3D tori are 

introduced. 

There are six sections in this chapter. Section 4.1 presents the previous related 

results. Section 4.2 shows the results of investigating the existence of linear perfect 

distance-1 placements. Section 4.3 defines irregular perfect distance-d placements. 

In section 4.4, the placements for 2D tori, proposed in Chapter 2, are extended 

to 3D tori. Sub-mesh-based resource placement approach for 3D tori is defined in 

Section 4.5. Finally, conclusions of this chapter are highlighted in Section 4.6. 

4.1 Previous Work 

The distance-d placements in 3D tori can be classified, as in 2D tori, into regular and 

irregular placements. As defined in Chapter 2, the volume of a distance-d packing 

sphere of any resource node (i.e. number of nodes at a distance of d or less from the 

given resource) in a regular distance-d placement must be of a full size. However, the 

volume of a distance-d packing sphere in an irregular placement is less than the full 
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(a) Plane 0 (b) Plane 1 (c) Plane 2 (d) Plane 3
 

(e) Plane 4 (f) Plane 5 (g) Plane 6
 

FIGURE 4.1: Regular perfect distance-1 placement in a 7 x 7 x 7 torus. 

size. The full volume size of a distance-d sphere can be derived from equation 2.2 

and proved to be: 

d (2d) (2d ± 1)(d + 1)(E 4i2 + 2) + 1 + 2d + 1. 
3

2=1 

Furthermore, it can be shown, using equation 2.1, that the full surface area of a 

radius-d sphere (i.e. number of nodes at a distance of exactly d from a given node) 

in a 3D torus is: 

4d2 + 2. 

Examples of a regular and an irregular perfect placements are shown in Figures 4.1 

and 4.2, respectively. As it can be noticed, the packing sphere of a resource node in a 
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(a) Plane 0	 (b) 

Plane 1 

FIGURE 4.2: Irregular perfect distance-1 placement in a 2 x 6 x 3 torus. 

regular placement does not collapse into itself, while it does in an irregular case. All 

the dimensions in a regular distance-d placement must be greater than (2d). In an 

irregular distance-d placement, however, at least one of the dimensions is less than 

(2d + 1). 

The related previous results, according to my knowledge, have been achieved by: 

Lee, Golomb, Welch, Livingston, Stout, Bae, Bose, and Broeg. The related results 

can be summarized in the following: 

Lee's error correcting code can be used to achieve a regular perfect distance-1 

placement in an X x Y x Z torus if all of X, Y, and Z are divisible by 7 [13, 

40, 8, 9, 10, 51]. The generator matrix for this code is: 

[ 1 2 0
G= 

0 1 2 
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Golomb and Welch proved that a full size packing sphere, whose radius = 2, 

cannot tile a closed 3D toroidal space. They also showed that there exists an 

integer d such that a full size packing sphere of radius r, r > d, cannot tile a 

closed 3D toroidal space [40]. 

Golomb and Welch conjectured that in a 3D toroidal space there exists no 

perfect t-error correcting codes, t > 2. However, I have discovered irregular 

perfect distance-d placements for 3D tori. These placements can be considered 

as error correcting codes (to be shown in Section 4.3). Still, this conjecture 

may hold for the regular perfect codes. 

Livingston and Stout have shown that there exists an irregular prefect distance-

placement for an X x Y x Z torus if [51]: 

{X, Y,Z} E {{2,3i,6j},i and j > 1}. 

Bae and Bose have defined an open related problem that can be rephrased as 

follows : "There exists a perfect distance-1 placement for a 3D torus if all of its 

dimensions are divisible by 7. However, is it necessary that all the dimensions 

be divisible by 7 for the existence of a perfect distance-1 placement?" [8, 9, 10]. 

Note that they have meant regular perfect distance-1 placements. 

4.2 On Existence of Unknown Linear Perfect Distance-1 Placements 

The known perfect distance-1 placements are: 

(1) The regular perfect distance-1 placements for (7i x 7j x 7k) tori, i, j, and k are 

positive integers (the basic tiling block is shown in Figure 4.1). 
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FIGURE 4.3: Irregular perfect distance-1 placement in a 2 x 2 x 2 torus. 

(2) The irregular perfect distance-1 placements for (2 x 3i x 6j) tori, i and j are 

positive integers (the basic tiling block is shown in Figure 4.2). 

(3) The irregular perfect distance-1 placement for a (2 x 2 x 2) torus (shown in 

Figure 4.3). 

It is clear that these placements are linear. Hence, they maintain several properties 

among which [52, 58, 75]: 

(1) Adding any two resource nodes results in a resource node, 

(2) Every resource node has an additive inverse which is a resource node as well. 

These two properties will be used to prove the non-existence of unknown linear 

distance-1 perfect placements. This claim is proved for the regular and the irregular 

placements in Subsections 4.2.1 and 4.2.2, respectively. 

4.2.1 On Existence of Irregular Linear Distance-1 Placements 

A 3D torus that has an irregular perfect distance-1 placement must have at least one 

dimension equal to two. This gives three possibilities: All dimensions are equal to 

two, only two dimensions are equal to two, or only one dimension is equal to two. 
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The following lemma proves that if two dimensions are equal to two, then the third 

must be equal to two in order to have a perfect distance-1 placement. 

Lemma 4.2.1 Let T be a 3D torus that has a perfect distance-1 placement and two 

of its dimensions are equal to two. Then, the third dimension is equal to two. 

Proof: T can be viewed as a set of 2 x 2 planes. Each of these planes must 

have exactly one resource node for the following reason. If there were two or more 

resources in the same plane, some nodes in this plane would have been shared by 

more than a resource. On the other hand, if a plane had no resources, then there 

would have been at least two resources in the next upper or the next lower plane 

which is just shown to be impossible. 

Assume that the third dimension in T is X, X > 2. Since each of the 2 x 2 

planes must have exactly one resource, there will be at least one node in the first 

plane covered by at least two resources. Hence, X cannot be greater than two. 

Theorem 4.2.1 Let T be a 3D torus that has a linear perfect distance-1 placement, 

and only one of its dimensions, say Z, is equal to two. Then, the other two dimen

sions must be in {{3i,6j} : i and j > 1}. 

Proof: Let X and Y be the other two dimensions of T. T can be thought of as two 

planes of X x Y tori, say Po and P1. In these two planes, there are four possibilities 

with respect to resources distribution: 

(1) Every row in Po and P1 has at least one resource. Furthermore, every column 

in Po and P1 has at least one resource. 

(2) There exists a row without any resources, but every column has at least one 

resource. 
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(3) There exists a column without any resources, but every row has at least one 

resource. 

(4) There exist a row and a column without any resources. 

In what follows, it is proved that: 

When Case(1) holds, then X and Y must be divisible by 6. 

When Case(2) or (3) holds, then {X, Y} must be in: 

{{3i, 6j } : i and j are integers > 0}. 

Case(4) is impossible. 

Case(1) 

Since the placement is linear, every row must have the same number of resources. 

This is true because of the following reason. Assume rip, i.e. the ith row in plane p, 

has the maximum number of resources, say R, among all the rows in both planes. 

Add the additive inverse of one resource in rip to all the resources in this row. This 

results in at least R resources in r00. Since r00 cannot have more than R resources, 

r00 has exactly R resources. Adding the resources of r00 to a resource in rip, results 

in at least R resources in rip,. Again, since rip, cannot have more than R resources, 

rip, has exactly R resources. Since every row has at least one resource then every 

row has R resources. The same can be proved with respect to the columns. Note 

that this does not imply that a row and a column must have the same number of 

resources. 

Since every row has the same number of resources, each resource has three cor

respondent resources in the three adjacent rows (the upper and the lower rows in 
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the same plane, and the same row in the other plane). Hence, for each resource a 

in every row exactly six nodes are needed. Three are covered by a, and three are 

covered by the correspondent resources of a in the adjacent rows. Therefore, the 

number of nodes in each row must be divisible by 6. The same can be said about 

the columns. Hence, X and Y must be divisible by 6. 

Case(2) and Case(3) 

Because of symmetry of a 2D torus, Case(1) and (2) are identical. In the following, 

Case(2) is assumed to hold. Let rip, i.e. the ith row in plane p, be the row without 

any resources. Then, the three rows adjacent to rip must have resources each. 

This is true since each row cannot have more than L3.1 and the three adjacent rows 

to rip must have a total of Y resources. If (3 Y), then (3 [-3 < Y). Thus, some 

nodes in rip would not be covered by any resource. Hence, Y must be divisible by 3. 

Since each column is assumed to have at least one resource, the argument of 

Case(1) holds here also. This means the number of nodes in each column must be 

divisible by 6. Hence, { X, Y } must be in: 

{ { 3i, 6j } : i and j are integers > 

Case(4) 

First, this case does not hold if (X = 3) or (Y = 3). Let r be a row without 

resources. If (X = 3) and (1/ 3), r must be adjacent to three rows each of which 

has resources. Since (X = 3), two of adjacent rows to r are adjacent. Hence, it 

is not possible to place 3 resources in each of them. Therefore, some nodes in r 

would not be covered. The same holds, but with respect to Y, when it is assumed 

that (Y = 3) and (X 3). 

Second, assume that both X and Y are greater than 3. Without loss of generality, 

let the empty row be rio, i.e. the ith row in plane 0. 
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Nodes that cannot be 
covered by their plane 
nor the other plane 

A row or a column 
with resources 

A row or a column 
without resources 

FIGURE 4.4: The impossibility of Case(4). 

- If the empty	 column is cal, then cu+1)0 and cu_i)0 have no resources since co 
X

must have 3 resources. 

If the empty column is coo, then cci+2)0 has no resources since co4.1)0 must have 
X
3 resources. 

Therefore, there is always an empty row, say r, and two empty columns, say ci and 

c(,+2), in the same plane, say p. The nodes (p, r, ci) and (p, r, ci+2) cannot be covered 

by resources in plane p. This is because all the nodes at a distance of one in the same 

plane p from these nodes lay on r, ci, or c,+2. Hence, no resource can be placed in 

any of them. Furthermore, (p + 1, r, c2) and (p + 1, r, ci+2) cannot both be resources. 

If they were, (p + 1, r, cz+i) would have been covered by both of them. Figure 4.4 

illustrates this argument. 
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4.2.2 On Existence of Regular Linear Distance-1 Placements
 

A 3D torus that has a regular perfect distance-1 placement must have all of its 

dimensions to be greater than two. An open question raised by Bae and Bose was [8, 

9]: "If a perfect distance-1 placement exists for a 3D torus, is it possible to have one 

or two of its dimensions to not be divisible by 7 ?" In this subsection, it is proved 

that a regular linear perfect distance-1 placement exists for a 3D torus, if and only 

if all of its dimensions are divisible by 7. 

Theorem 4.2.2 Let T be an X x Y x Z torus that has a regular linear perfect 

distance-1 placement. Then, all of X, Y, and Z are divisible by 7. 

Proof: It is helpful to point out that in a linear placement, any two rings along the 

same dimension have the same number of resources, or one of them has no resources. 

This is true for the following reason. Let r, be the ring with the maximum number of 

resources along the Dth dimension, and R be the number of resources in ri. Adding 

the additive inverse of a resource in r, to all the resources in that ring results in 

at least R resources in r0, where r0 is a ring along the Dth dimension in which the 

identity node (0, 0, , 0) exists. Since R is the maximum number of resources in 

any ring along the Dm' dimension, r0 must have exactly R resources. Let ri be a 

ring along the Dth dimension that has at least one resource. Adding the R resources 

of r0 to a resource in ri results in at least R resources in ri. Again, since R is the 

maximum number of resources in any ring along the Dth dimension, ri must have 

exactly R resources. 

The main idea in this proof is to show that all the rings along the same dimension 

must have the same number of resources. Let rip be the ith row in plane p of a 3D 

torus. Assume that rip has no resources. Then, rip must be covered by rows adjacent 

to it, say 81, 82, 83, and 84. Let N be the number of nodes in rip. Since any row 
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cannot have more than resources, an empty row cannot be covered by one or two 

of its adjacent rows. Hence, rip must be covered by three or four of s1, s2, s3, and 

84 

Assume that rip is covered by three rows adjacent to it. Without loss of generality, 

assume these rows are 81, 82, and s3. This implies that each of s1, s2, and 83 has 

resources. Furthermore, it implies that three of the rows adjacent to s4 cannot
3 

have any resource. This is because any row adjacent to si, s2, or s3 cannot have a 

resource. Hence, some nodes in s4 cannot be covered. 

Assume that rip is covered by all of its four adjacent rows. Then each of s1, s2, 

s3, and s4 must have N resources since the placement is linear. This means that
4 

each of s1, s2, s3, and s4 has N nodes that must be covered by an adjacent row.
4 

This implies that either r10 or 7.01 has a resource, where rniii is the Oh row in the 

nth plane. In any of these cases, rip will have a resource by adding r10 to 7-(i_i)p or 

r01 to rt(p_i). Thus, there exists no row such as rip. 

Since every ring must have at least a resource, all the rings along the same 

dimension must have the same number of resources. This means every resource in 

a ring has four correspondent resources in the rings adjacent to it. Thus, for every 

resource in a ring there must be six nodes plus the resource node; three to be covered 

by the resource and four by its correspondents. Hence, the number of nodes in a ring 

must be divisible by 7. Therefore, any row or column along any dimension must be 

divisible by 7. 

4.3 Irregular Perfect Distance-d Placements 

Golomb and Welch have proved that a full packing sphere of radius 2 cannot tile a 

closed 3D toroidal space. Furthermore, they conjectured that a perfect code does not 

exist in a 3D toroidal space if t > 1 [40]. However, irregular codes (or placements) 
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(a) Plane 0 (b) Plane 1 

FIGURE 4.5: Irregular perfect distance-2 placement in a 2 x 2 x 12 torus. 

exist for any t (or d) in a 3D toroidal space as it will be shown in the following 

theorem. Still, the proof of Golomb and Welch holds for the regular cases and their 

conjecture might hold for them as well. 

Theorem 4.3.1 Let T be a 2 x 2 x (8d 4) torus, d > 2. Then, the placement P 

is an irregular perfect distance-d placement, 

P = { (0,0,0), (0,4d 2,0), (1,2d 1,1), (1,6d 3,1) }. 

Proof: The distance between any two nodes in P is > (2d + 1), d > 2. Hence, 

any node at a distance of d or less from a resource node R is at a distance of (d + 1) 

or more from any other resource. In addition, the size of a radius-d sphere in such 

a space is (8d 4). Assume there exists a node at a distance of (d + 1) from all 

the four resources. This implies that the total number of nodes in T is > 4(8d 4) 

which is not true. Hence, every node in T is at a distance of d or less from exactly 

one resource node. 

Figures 4.5 and 4.6 show an irregular perfect distance-2 and distance-3 place

ments, respectively. An irregular perfect distance-d placement for a 2 x 2 x (8d 4)j 

torus, j > 0, can be achieved by using the 2 x 2 x (8d 4) torus as a tiling block. 

Figure 4.7 illustrates how to achieve a perfect placement for a 2 x 2 x 24 torus by 

using a 2 x 2 x 12 torus as a tiling block. 
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(a) Plane 0 (b) Plane 1
 

FIGURE 4.6: Irregular perfect distance-3 placement in a 2 x 2 x 20 torus. 

(a) Plane 0 (b) Plane 1
 

FIGURE 4.7: Irregular perfect distance-2 placement in a 2 x 2 x 24 torus. 

More irregular perfect placements can be found for a larger set of tori. Theo

rem 4.3.2 generalizes Theorem 4.3.1 as follows. 

Theorem 4.3.2 Let T be a 2 x 2i x (8d-4i) torus, i > 1, d > i, and both i and d are 

positive integers. Then, the placement P is an irregular perfect distance-d placement, 

P . {(0, 0, 0) , (0, 4d 2i, 0), (1, 2d i, i) , (1, 6d 3i, i) }. 

Proof: Since d > i > 1, the Lee distance between any two nodes in P is > (2d+1). 

Hence, any node at a distance of d or less from a resource node R is at a distance of 

(d+1) or more from the other resources. 
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(a) Plane 0 (b) Plane 1 

FIGURE 4.8: Irregular perfect distance-3 placement in a 2 x 4 x 16 torus. 

The volume of a radius-d sphere in such a space is : 

= (2d + 1) + 2 [Eji:11(2d 2j + 1)] + (2d 2i + 1)+ 

(2(d 1) + 1) + 2 [Eji:11(2(d 1) 2j + 1)1 + (2(d 1) 2i + 1) 

= 2i(2d i + 1) + 2i(2d i 1) 

= 2i (4d 2i) = 8id 4i2. 

Assume there exists a node at a distance of (d + 1) or more from all the resources. 

This implies that the number of nodes in T is strictly more than 4(8id 4i2), which 

is not true. Therefore, every node is within a distance of d or less from exactly one 

resource. 

Figures 4.8 and 4.9 show examples for cases in which Theorem 4.3.2 holds. 

4.4 Extending 2D tori Placements to 3D Tori 

The perfect and quasi-perfect placements for 2D tori were introduced in Chapter 2. 

These placements can be extended to 3D tori by taking into account that a 3D torus 

is comprised of several 2D tori. For example, a 3 x 4 x 5 torus is: 

(1) 3 planes each of which is a 4 x 5 torus, 
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(a) Plane 0 (b) Plane 1 

FIGURE 4.9: Irregular perfect distance-4 placement in a 2 x 6 x 20 torus. 

(2) 4 planes each of which is a 3 x 5 torus, or 

(3) 5 planes each of which is a 3 x 4 torus. 

Tables 4.1, 4.2, and 4.3 show the possible placements for 4 x 8 x 16, 9 x 12 x 16, and 

5 x 32 x 32 tori using placements introduced in Chapter 2. Note that a distance-d 

placement in these tables means that the placement is a quasi-perfect distance-(d-1) 

in a tiled 2D plane. Hence, any node in the 3D space would be within a distance of 

d or less from at least one resource node. 

This placement scheme, however, has a major draw back. The links among the 

planes will not be utilized by local communications. This may cause over-contention 

in some links while others are lightly utilized. The Sub-Mesh-Based placements, 

presented in the following section, are designed to overcome this problem. 

4.5 Sub-Mesh-Based Placements 

A 3D torus can be divided into 3D sub-meshes. For example, a 9 x 12 x 15 torus 

can be divided into 27 meshes of size 3 x 4 x 5 each of them can be defined as a 
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Placement Tiling Block Number of Resources 

Distance-1 2 x 2 in 8 x 16 planes 258 

Distance-1 4 x 4 in 8 x 16 planes 128 

Distance-2 8 x 8 in 8 x 16 planes 64 

Distance-3 8 x 16 in 8 x 16 planes 32 

TABLE 4.1: Placements for 4 x 8 x 16 based on 2D placements. 

Placement Tiling Block Number of Resources 

Distance-1 3 x 3 in 9 x 12 planes 576 

Distance-1 2 x 2 in 12 x 16 planes 864 

Distance-1 4 x 4 in 12 x 16 planes 432 

Distance-2 3 x 6 in 9 x 12 planes 288 

Distance-2 4 x 8 in 12 x 16 planes 216 

TABLE 4.2: Placements for 9 x 12 x 16 based on 2D placements. 
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Placement Tiling Block Number of Resources 

Distance-1 2 x 2 in 32 x 32 planes 3560 

Distance-1 4 x 4 in 32 x 32 planes 1280 

Distance-2 8 x 8 in 32 x 32 planes 640 

Distance-3 16 x 16 in 32 x 32 planes 320 

Distance-4 32 x 32 in 32 x 32 planes 160 

Distance-8 32 x 32 scaled down to 8 

resources in 32 x 32 planes 40 

Distance-15 32 x 32 scaled down to 2 

resources in 32 x 32 planes 10 

TABLE 4.3: Placements for 5 x 32 x 32 based on 2D placements. 

resource sphere. Even if the dimensions of a given torus cannot be divided by the 

dimensions of the desired sub-mesh, a placement can be achieved. The following is 

an example illustrating possible solutions for this problem. Let T be an 8 x 10 x 11 

torus. One solution to divide T into 3 x 3 x 3 meshes is to use a 2 x 1 x 2 mesh in 

tiling the region that would be left of 3 x 3 x 3 tiling. Another solution is to add the 

remaining space to the last tiling blocks. In this case, the last region will be tiled 

by a 5 x 4 x 5 mesh. A third solution is to distribute the remaining nodes on to the 

maximum number of the other tiling blocks. In such a case, the tiling blocks to be 

used are 4x 3x 4, and 4x 4x 4. 

Even though this approach does not take advantage of torus wraparound links, 

it is quite flexible in finding different placements for a given 3D torus. Furthermore, 

it can be applied to a 3D mesh as well. 
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A comparison between sub-mesh-based placements and perfect placements, as

suming they exist, is conducted in the rest of this section. The comparison is based 

on two factors. The first factor is sphere size. The larger size means less number 

of resources needed to cover a given space. The second factor is the average local 

traversal distance between a resource and the nodes in its sphere. 

Assume there exists a regular perfect distance-d placement for a 3D torus. The 

sphere size in this case would be: 

2d(2d + 1)(d +
 
+ 2d + 1 

3 

Since the surface area or a regular radius-d sphere is 4d2 + 2, the average traversal 

distance between the resource node and the other nodes within a sphere is computed 

as follows: 

( 4 Ed 1 i.i2 + 2 1 

sphere size 

( d(d + 1)(d2 + + d(d + 1) ) 

sphere size 

d(d + 1)(d2 + d + 1))
 

( 2d(2d + 1)(d + 1)/3 ) + 2d + 1
 

On the other hand, for the sub-mesh-based placements, the volume of a (2x + 

1) x (2y + 1) x (2z + 1) mesh is (2x + 1) (2y + 1) (2z + 1). Assume the resource node 

is located at (x, y, z). Let P be the sum of the plane distances in which the resource 

exists. 

P = (2y + 1i + (2x + 1)2Eyli 

= (2y + 1)(x2 + x) + (2x + 1)(y2 + 
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FIGURE 4.10: Sphere volume for perfect distance-d placement, sub-mesh-based 
distance-3d, distance-(2d/3), and distance-d. 

Based on that, the average traversal distance can be computed as follows: 

((2z + 1)P + (2x + 1)(2y + 1)2 ELI_ i)
 
( (2x + 1)(2y + 1)(2z + 1) )
 

(2y + 1)(x2 + x) + (2x + 1)(y2 + y) + (2x + 1)(2y + 1)(z + z2) 
(2x + 1)(2y + 1)(2z + 1) 

Let x = y = z = d, the volume of the mesh will be (2d + 1)3. Furthermore, the 

average traversal distance would be: 

(2d + 1)(d2 + d)(2d+ 3) (d2 + d)(2d + 3) 
(2d + 1)3 (2d + 1)2 

The comparison has been conducted among perfect distance-d, sub-mesh-based 

distance-3d (x = y = z = d), sub-mesh-based distance-(3d/2) (x = y = z = ) 

and sub-mesh-based distance-d (x = y = z = ). Figures 4.10 and 4.11 show the
3 

2 
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FIGURE 4.11: Average traversal distances for perfect distance-d placement, sub
mesh-based distance-3d, distance-(2d/3), and distance-d. 

comparison results. The perfect distance-d placement has the second largest sphere 

size after sub-mesh-based distance-3d and still the latter has less average traversal 

distance than the former. This makes this placement a considerable alternative for 

perfect placements in 3D tori. 

4.6 Conclusion 

Several topics related to resource placements in 3D tori were investigated in this 

chapter. It is shown that there exists no unknown linear perfect distance-1 place

ments. Irregular perfect distance-d placements were ignored in most of the previous 

related studies; irregular perfect distance-d placements are introduced in this chap

ter. Alternative placement approaches for 3D tori are described. The placements 

for 2D tori introduced in Chapter 2 are extended to 3D tori. Furthermore, the 

sub-mesh-based placement approach is defined. This approach is quite similar to 
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the perfect placements in terms of sphere size, local average traversal distance, and 

uniform distribution of resources over an interconnection network. 
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Chapter 5 

BROADCASTING IN FAULTY TOROIDAL NETWORKS 

Low-dimensional toroidal networks are more wire-efficient communication net

works than high-dimensional ones under the assumptions of constant wire bisection 

and constant number of nodes [33]. For this reason, low-dimensional toroidal in

terconnection networks have become more widely used. Examples of systems that 

use toroidal interconnection networks are: Tera systems [6], Cray T3D [54], and 

Cray T3E [67]. 

Broadcasting (single-node one-to-all) in a multicomputer is one of the important 

communication primitives [45]. In the past, many fault-tolerant broadcasting algo

rithms have been published for hypercube interconnection networks [1, 49, 55, 56, 

57, 76]. Not much work has been done in this area for toroidal networks. In [22], 

a fault-tolerant broadcasting algorithm for k-ary n-cube (C47,) that can adapt up to 

(n 1) failures is given. This chapter presents a fault-tolerant broadcasting algo

rithm for toroidal networks that can adapt up to (2n 2) failures. The algorithm is 

non-redundant, requires a global fault information, and is close to optimal in terms 

of communication time. 

5.1 Fault-Free Broadcasting Algorithm 

MECA is one of the first routing and broadcasting algorithms for Qrkl's [36]. It uses 

wormhole packet routing technique [34, 53], and to avoid deadlocks, it uses virtual 

channels [35]. Later, Bose et al introduced the Basic Broadcasting Algorithm which 

is similar to the e-cube algorithm used in hypercubes [19]. The algorithm needs 
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Broadcast Using Cut-Through (8, M) 

S : Source node, 

M : Broadcasted message,
 

An uncovered-node is a node that has not received M yet, and
 

A covered-node is a node that has received M.
 

(1) Mark S as a covered-node. 

(2) For i = 1 to n 

(2.1) For j = 1 to rig kl 

(2.1.1) Each covered-node sends M to an uncovered-node at a dis

tance of 41 along ith dimension. 

(2.1.2) The nodes which received M in Step (2.1.1) are marked as 

covered-nodes. 

FIGURE 5.1: A fault-free broadcasting algorithm for Q using cut through packet 
routing. 
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Broadcast Using Store and Forward (S, M) 

S : Source node, 

M : Broadcasted message,
 

A covered-node is a node that has already received M,
 

An uncovered-node is a node that has not received M yet, and
 

(1) Mark S as an old-covered-node. 

(2) For i = 1 to n 

(2.1) Mark all old-covered-nodes to be new-covered-nodes. 

(2.2) For j = 1 to Ili 

(2.2.1) Each new-covered-node sends M to an adjacent uncovered-

node along ith dimension. 

(2.2.2) The nodes which received M in Step (2.2.1) are marked as 

new-covered-nodes. 

(2.2.3) Each new-covered-node adjacent to two covered-nodes (old 

or new) along ith dimension is marked as an old-covered

node. 

FIGURE 5.2: A fault-free broadcasting algorithm for QZ using store-and-forward 
packet routing. 
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n phases to broadcast in a Q. In the 0th- phase, the source node performs a ring 

broadcasting along the 0th- dimension. In the ith-phase, each node that has received 

the broadcasted message from a previous phase performs a ring broadcasting along 

the ith-dimension. In the case of store and forward using a single port I/O model, 

this algorithm has been proved to be optimal for k even; for k odd, the algorithm 

takes one extra step than the known lower bound [19]. 

Figures 5.1 and 5.2 describe fault-free broadcasting algorithms for a (21k1 when 

cut through [46] or store-and-forward [48] routing strategy is used, respectively. The 

basic idea of both algorithms is the same as that of the e-cube algorithm described 

above. However, broadcasting in a ring differs depending on the packet routing 

strategy used. When cut though strategy is used, the message path length becomes 

less significant. In such a case, the communication complexity of sending a message 

of size M words along a path of length P becomes: 

t, + Mtv, + Pth, 

where is is startup time, 4, is per word time, and th is per hop time. On the other 

hand, the same message sent over the same path using store-and-forward routing has 

a communication complexity of: 

P(t, + Mt,,, + th). 

Since th is small compared to (t, + Mtw), broadcasting in a ring R of k nodes using 

cut through routing can be performed in [log kl phases as follows. In the 0th- phase, 

the source node S sends the message M to a node at a distance of [-V . In the 

ith-phase, all nodes which have received M in a previous phase send M to distinct 

nodes at a distance of 11. The communication complexity of this algorithm is: 

log k 

[log kl (t, + Mt,) + [logic-1(4+ Mt,,,,)+th(k 1). 
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In a fault-free Q, broadcasting using cut through routing can be achieved by per

forming n ring broadcastings. Figure 5.1 describes such an algorithm which has a 

communication complexity of: 

n [log ki(ts + Mt,) + nth(k 1). 

On the other hand, broadcasting in a ring using store-and-forward routing strategy 

has a communication complexity of: 

12 -1(t, + tm + th). 

Hence, the broadcasting algorithm for (211 described in Figure 5.2 has a communica

tion complexity of: 

rir -(ts + ton + th).
2 

5.2 Fault-Tolerant Broadcasting Algorithm 

In [22], the authors have proposed a non-redundant fault-tolerant broadcasting algo

rithm that can adapt up to (n 1) node failures and requires global fault informa

tion [22]. In this chapter, this algorithm is extended to adapt up to (2n 2) node 

failures. The algorithm is given in Figure 5.3. Its basic idea is as follows. Let the 

number of faulty nodes be t < (2n 2) and the address of these nodes be: 

fl = (an_m_ an_2J an_3J
 

f2 = (an -1,2 an -2,2 an-3,2 6'0,2)
 

ft = (an_14 an -2,t an -3,t ...a04).
 

If k > (2n 2), then at least one of the digits, say bi, in Z k = {0, 1, .. , (k 1)} will 

not appear in the ith digits, i = 0, 1, , (n 1), of the faulty node addresses. Then, 

(* * bi * *) is a fault-free (k 1)-ary n-cube. 
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Broadcasting in a Faulty QZ (S, M) 

Assumptions:
 

1) Total number of faults < 2n 1.
 

2) k > 2n 2 and k > 3.
 

Definitions: 

S : is source node, 

M : is message to be broadcasted, 

Q : is Qin,' to broadcast M in,
 

Ci's : are sub-cubes of Q along a certain dimension X each of which is a yk 
1
 

C : is one of the Ci's that is a fault-free, and
 

RN : is a ring a long the X dimension to which the node N belongs and N E C.
 

(1) S sends M to a node in C, say 5' 

(2) S' broadcasts M in C using one of the algorithms given in Figures 5.1 

or 5.2. 

(3) Each node A e C starts a ring broadcasting along the X dimension 

iff RA is fault-free. 

(4) Each faulty ring along the X dimension gets M from a fault-free 

adjacent ring (one communication step). 

FIGURE 5.3: A broadcasting algorithm for a faulty W. 
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Example: In 0, let the faulty nodes be: 

fl = (3 2 1) 

f2 (1 3 2) 

f3 (0 4 3) 

h = (2 0 4). 

Then, the sub-cube (4 * *) is fault-free because the digit "4" does not appear in the 

second digit addresses of the faulty nodes. Similarly, the sub-cubes (*1*) and (* * 0) 

are also fault-free. 

Let S = (sn_isr,_2s._3 .. so) be the source node. For the time being, assume S 

is in a fault-free QZ-1, say (1),,_1** *). This means that the faulty nodes are along 

the (n 1)th dimensional rings. The number of faulty rings will be < t, where t is 

the number of faulty nodes. This is because there may be more than one faulty node 

in the same ring. In the first phase, S broadcasts the message in the fault-free QZ-1 

using the basic broadcasting algorithm. In the second phase, each node A in the 

fault-free sub-cube QZ-1 will broadcast the message along the (n 1)th dimensional 

ring, provided this ring is fault-free. In the last phase, the fault-free nodes in the 

faulty rings receive the message from nodes of a unique adjacent fault-free ring. It 

will be shown shortly that there exists a unique fault-free ring adjacent to a given 

faulty ring. 

If the source node S is not in any of the fault-free k-ary (n, 1)-cubes, then S 

can send the message to one of the closest nodes in a fault-free k-ary (n 1) -cube. 

After this, the above steps can be repeated. 

The rest of this section is divided into four subsections. In Subsection 5.1, an 

algorithm to find a fault-free Crii-1 (and so a node in this QZ-1) closest to the source 

node S is given. Subsection 5.2 describes an algorithm to find a unique fault-free ring 

adjacent to each of the faulty rings. The communication complexity of the algorithm 
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is derived in Subsection 5.3. Subsection 5.4 discusses conditions under which the 

algorithm can be used in a general toroidal network. 

5.2.1 Closest Fault -Free Qr1 From the Source 

The Lee distance between two rings along the same dimension is defined in the 

following. 

Definition 5.2.1 Let RA and RB be two rings along the same dimension X in a 

toroidal space. RA and RB can be addressed as (ctri_iari_2 ar_i ao) and 

(bn_1bre_2 ...bx+i*bx_1...b0), respectively where * is a don't care character. The Lee 

Distance between RA and RB, DL (RA, RB), is defined as: 

n-2 
DL(RA, RB) = E min (lae bid, ai + 

i=o and iOx 

where ke is the size of the ith dimension. 

For example, if RA = (*223), RB = (*364), and K = (4578), DL(RA, RB) = 1+3+1 

= 5. 

Suppose (* * b * *) is one of the closest fault-free QZ-1 from S. Then the 

node in this sub-cube closest to S is 5' = , si+i, , so) and 

DL(S, S') = D L(st, be). If the shortest path from S to S' is fault-free, then this path 

can be used in Step(1) of the algorithm given in Figure 5.4 to send the message. 

However, if some node in this path is faulty, then S can send the message to a 

node T in an adjacent fault-free ring, and then T can send the message along its 

ring to a node in the fault-free Qnk-1 (Note that the faulty nodes are along the ith 

dimensional rings, and there are (2n 2) adjacent rings to a faulty ring, so at least 

one of the adjacent rings is fault-free). The following lemma is useful to find the 

shortest distance fault-free sub-cube, Qnk-1, from S. 
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Finding Closest Fault-Free Sub-Cube to S 

S : is source node in a QZ,
 

Output is (i, j) indicating that the jth sub-cube along the ith dimension is one of
 

the closest sub-cubes to S.
 

(1) Let faulty nodes be denoted by L, 0 < i < (2n 3). 

(2) Define a 2 dimensional matrix M AT[n, k], and initialize it to be 0's. 

(3) For i = 0 to (n 1) 

(3.1) For j = 0 to (k 1) 

(3.1.1) MAT[i,ithdigit of Id = 1. 

(4) Found = False, i = 0. 

(5) While not Found 

(5.1) If MAT[i,ithdigit of S] = 0 
(5.1.1) Found = True, Return(i, ithdigit of S). 

(5.2) Else i = i + 1. 

(6) Found = False, i = 1. 

(7) While not Found 

(7.1) i = i + 1, j = O. 

(7.2) While (not Found) and (j < n) 
(7.2.1) If M ATLI, jthdigit of S + i] = 0 

(7.2.1.1) Found = True, Return(j, jthdigit of S+ j). 
(7.2.2) Else If M AT[j, jthdigit of S i] = 0; 

(7.2.2.1) Found = True, Return(j, jthdigit of S j). 
(7.2.2) Else j = j + 1; 

FIGURE 5.4: Finding one of the closest sub-cubes to S. 
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Lemma 5.2.1 Suppose S = (sri_i, sri_2, , so) is the source node and the faulty 

nodes are fi = an-2,1, , ao,i), i = 1, 2, , t, where t < (2n 2). Then, one 

of the sub-cubes (* * sp j* *), where j = 0, ±1, ±2, . , ±(n 1), is fault-free. 

Proof: The t faulty nodes can have a maximum of t distinct digits in the pth 

address digits. However, the set {sp j j = 0, ±1, ±2, , ±(n 1)} contains: 

(2n 1) digits and so at least one of the digits, say (sp + j'), is distinct from the pth 

digits of the faulty node address digits. Thus, (* * s, + * *) is a fault-free 

To find the closest fault-free Qnk-1 from S, we proceed in the following order. 

First, check whether any of the sub-cubes (* * sp * *), p = 0, 1, , (n 1), 

is fault-free. If so, the source node is in a fault-free sub-cube and stop this process. 

Otherwise, check any one of the sub-cubes (* * sp j * *), where j = +1, and 

p = 0, 1, 2, ... , (n 1) is fault-free. Continue this process for j = ±2, j = ±3, , 

j = ±(n 1). When a fault-free sub-cube is found, the search process is stopped. 

Lemma 1 guarantees finding a fault-free sub-cube, say (* * + j' * . *), where 

0 < p' < (n 1) and j = 0, ±1, ±2, , ±(n 1). This fault-free sub-cube must be 

one of the closest to S and the distance from S to a node in (* - - - * sp, j' * *) 

closest to S is j'. Suppose there is a fault-free sub-cube (* * j" * *) which 

is closer to S than (* * sp, j' * *). In that case Ii"! < Then in the 

above search process, the sub-cube (* * sp, j" * *) would have been declared 

a fault-free before searching for values j = j' (i.e. the search process for j = +j' 

and j = j' would not have occurred). Thus, this search process finds one of the 

fault-free k-ary (n 1)-cubes closest to S. 

The distance between the source node S and S' which is a node in a fault-free sub-

cube can be at most (n-1) if S sends the message along the same ring. Alternatively, 

this distance can be at most n if S first sends the message to its adjacent fault-free 
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ring and then that node sends the message along its ring to the node in the fault-free 

Q 

The algorithm given in Figure 5.4 formally describes how to find the closest fault-

free sub-cube from S. This algorithm has a local computation complexity of 0(n2). 

First, the algorithm constructs a 2D bit-map matrix M[(n 1), (k 1)] in which 

all the faulty sub-cubes are marked (i.e. if M[i, j] = 1 then the ith sub-cube along 

the it h dimension is faulty; otherwise it is fault-free). This is given in Step(3) of 

the algorithm. Then, it tries to find a fault-free sub-cube along some dimension to 

which S belongs (Step 5). If there are none, then it tries to find a fault-free sub-

cube along some dimension at a minimum distance, DM = 1, 2, ... , (n 1), from S 

(Step 7). From the arguments given in the previous paragraphs, it is easy to verify 

that DM < (n 1). 

If there are two or more fault-free sub-cubes at a distance of DM from S, the 

algorithm can be enhanced by choosing the one to which S can send the message 

M directly. Furthermore, it can be modified to try to find a fault-free sub-cube 

that is connected to S through a fault-free path (this fault-free sub-cube may not 

be closest to S). In this case only one routing operation needs to be done through a 

longer path rather than two routing operations. In cut through routing, the message 

start up time is more significant than the path length, and therefore, this approach 

might be favored. The given algorithm, even with the enhancements, has a local 

computation complexity of 0(n2). In fact, it is possible to find a fault-free sub-

cube, not necessarily the closest, in 0(n) local steps. Instead of searching all the 

dimensions, only one dimension is searched. In this case also, the fault-free sub-cube 

will be at a distance of (n 1) or less from S. 
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Finding An Adjacent Fault-Free Ring (R, X) 

X : A dimension, 

R: A ring along X to which a fault-free adjacent ring is needed to be found. 

(1) Let FR be the set of faulty rings along a given dimension X. 

(2) Let the rings adjacent to R be denoted by Ri, 0 < i < (2n 2). 

(3) Found = False, i = 0. 

(4) While (not Found) 

(4.1) If R. V FR 

(4.1.1) Found = True, Return(i). 

(4.2) Else i = i + 1. 

FIGURE 5.5: Finding an adjacent fault-free ring along a given dimension. 
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Assigning Each Faulty Ring to A Unique Adjacent Fault-Free Ring 

(1) Let FR be the set of faulty rings along the X dimension. 

(2) For each faulty ring L do 

(2.1) Find the set of adjacent rings to fi, let it be A. 

(2.2) A, = A, - FR. 

(2.3) Choose any element in Ai, let it be Ra. Assign Ra to L. 

(2.4) FR = FR U 

FIGURE 5.6: Assigning each faulty ring along the X dimension an adjacent fault-free 
ring 

5.2.2 Finding a Unique Fault-Free Adjacent Ring to a Faulty Ring 

If the source node S is part of the fault-free (n 1) dimensional sub-cube, C, then 

Step(1) of the algorithm, given in Figure 5.4, is not needed. However, if S C, then 

S is in a ring along the X dimension, say RA. If RA is fault-free, Step(1) can be done 

in one communication step. But if RA is faulty, then RA must have an adjacent fault-

free ring along the dimension X, say RB. Hence, S sends M to its correspondent 

node in RB and from there to a node in C. The existence of a fault-free ring RB 

adjacent to RA is proved in the following lemma. 

Lemma 5.2.2 Suppose the source S is in a faulty ring R along the X dimension. 

If the total number of faults in the given Cfki is < (2n 2), and k > 3, then RA has 

an adjacent fault-free ring RB along the X dimension. 
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Proof: The number of faults is < (2n 2). Since RA is faulty, at most (2n 3) 

other faulty rings can exist. But RA has (2n 2) distinct adjacent rings because 

k > 3. Thus, at least one of them is fault-free. 

In order to perform Step(4) of the algorithm we need to show that each faulty 

ring, RN where N E C, along the X dimension can be uniquely assigned a fault-

free adjacent ring along the same dimension. By uniquely, it is meant that every 

faulty ring will be assigned to a distinct fault-free ring so that all the faulty rings are 

covered in a single communication step. 

Lemma 5.2.3 Let the faulty rings along the X dimension be denoted as fi, 0 < 

i < 2n 2. Furthermore, let Ai be the set of rings along the X dimension that are 

adjacent to ft. If fj E Ai and k > 3, then Ai n Aj = 0. 

Proof: If h E Ai then DL(fi, = 1. Assume that f j E Ai and Ai fl Ai q. 

This implies that there exists a ring R along the X dimension such that R E Ai and 

R E Aj. Then, DL(R, fi) = 1 and DL(R, h) = 1. This means either [DL(fi, fi) = 1 

and k = 3] or [DL(fi, fi) = 2 and k > 3]. The first case gives a contradiction because 

it is assumed that k > 3. Since DL(fi, fj) = 1, the second case cannot hold. 

Theorem 5.2.1 In C211, k > 3, if the number of faulty rings is < (2n 2) in some 

dimension, then for each faulty ring there exists a unique fault-free ring adjacent to 

it. 

Proof: The proof is by construction, meaning that it shows how to assign a unique 

fault-free ring to a given faulty ring. Let the faulty rings be fi, f2, ., ft where 

t < (2n 2). Let Az be the adjacent rings of f2, i = 1,2, ... , t. Note that 1,4,1 = 

(2n 2), for i = 1,2, ... ,t. For each faulty ring fi, we assign a unique fault-free 

ring as follows. For i = 1, assign a fault-free ring R1 in Al to fi.; this is possible 

because fi has (2n 2) adjacent rings (i.e. 1,411 = 2n 2) and at most (2n 3) 
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of them can be faulty. Then remove R1 from other Az's, i = 2, 3, ... , t, provided 

R1 is in A. At the ith step, assign a non-assigned fault-free ring in Aj to h. This 

is always possible because of the reasons given below. Let R,/, be the fault-free ring 

assigned to the faulty ring fp, p = 1, 2, ... , (j 1). If DL(fp, h) = 1, then fp E 

A3 and Rp 0 Ap since DL(fp, fi) = 2. On the other hand, if DL(fp, = 2 then 

fp st A, and Rp might be in Ai. In all other cases, both fp and Rp are not in 

Ai. Thus, while trying to assign a fault-free ring to h, there should be at least 

(2n 2) (j 1) rings adjacent to h available; of these the number of fault-free 

rings should be (2n 2) (j 1) (t j) > (2n 2) (j 1) (2n 2 j) > 1. 

Thus, this fault-free ring can be assigned to h. 

5.2.3 Communication Complexity 

Step(2) and Step(3) are exactly equivalent to broadcasting in a Qnk-1 and a (2k, 

respectively. Hence, the communication complexity of the proposed algorithm is the 

complexity of broadcasting in a Qrk4 plus the complexities of Step(2) and Step(3). The 

complexities of Step(2) and Step(3) depend on the packet routing strategy used. In 

the following the complexities are derived when cut through or store-and-forward is 

used. 

Cut Through: In the worst case, two communication steps are needed in Step(1). 

First, the source node S sends the message M to an adjacent node S' in a fault-free 

adjacent ring. Next, 5' sends M to any node in the fault-free sub-cube which is at 

most (n 1) hops away. Thus, Step(1) needs at most: 

2(t8 + 4,M) + nth, 

where t, is the startup time, 4, is time per word, M is the size of broadcasted 

message in words, and th is time per hop. Furthermore, Step(4) needs exactly one 
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communication step in which each faulty ring gets M from an adjacent fault-free 

ring: 

is + twM + th, 

Hence, the total communication complexity is: 

nrig VI (t5 + twM) + nth(k 1) +3(t, + twM) + th(n + 1). 

Store-and-Forward: In the worst case, here also, Step(1) needs to send M to 

an adjacent node S' in a fault-free ring. Next, M is sent from S' to a node in the 

fault-free sub-cube which is at a distance of (n 1) or less. The time required for 

this is: 

n(ts + twM + th) (n 2)t,, 

In addition, Step(4) needs exactly one communication step in which each faulty ring 

gets the message from a fault-free adjacent ring: 

is + twM + th, 

Hence, the resultant communication complexity in this case is: 

k(n r1+n +1)(t, + twM + th) (n 2)t,. 

5.2.4 The Algorithm in Toroidal Networks 

The above algorithm also works for any general toroidal network provided that at 

least one of the dimensions, say X, is greater than (2n 2) and that all the other 

dimensions are greater than 3. The dimension X being greater than (2n 2) as

sures the existence of a fault-free sub-cube along this dimension. Furthermore, the 

other dimensions being greater than 3 guarantees that each faulty ring along the X 
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dimension can be assigned a unique fault-free adjacent ring using a greedy-like strat

egy. These two conditions imply that Lemma 1 and Theorem 1 also hold in those 

cases and, hence, the algorithm works correctly. Furthermore, the communication 

complexities are exactly the same as those of 171,1 case. 

5.3 Conclusion 

This chapter presents a fault-tolerant broadcasting algorithm for toroidal networks 

of n dimensions that can adapt up to (2n 2) failures. Since the connectivity of 

toroidal networks is (2n), the algorithm is very close to optimal with respect to the 

maximum possible number of failures a broadcasting algorithm can adapt. 

The algorithm in the worst case needs three communication steps more than 

broadcasting in a fault-free toroidal network when cut through routing is used. When 

the system uses store-and-forward method, the proposed algorithm requires at most 

(n + 1) more steps than the optimal fault-free algorithm. 
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Chapter 6 

FUTURE RESEARCH 

There are several open research problems related to the topics of this thesis; this 

chapter introduces some of them. The introduced problems are divided into four 

categories: Those related to resource placements, to simulation studies, to commu

nication algorithms, and to the domination concept. The problems of each category 

are discussed in a separate section of this chapter.. 

6.1 Distance-d Resource Placements in Toroidal Networks 

Chapters 2, and 4 of this thesis provided solutions for distance-d problems in 2D and 

3D tori. Still, there are many related open problems in need of further investigation. 

The following lists some of these problems. 

1. In Chapter 2, a scheme for the quasi-perfect placements in 2D tori was given. 

In this scheme, placing a resource is a single step procedure. However, finding 

the closest resource, or resources, from a non-resource node cannot be done 

efficiently. The only method, the author is aware of, is searching all resources 

till the closest ones are found. Designing a more efficient algorithm would be 

helpful especially for applications like the spare processor placements [24, 47, 

74]. 

2. Quasi-perfect distance-1 placements for a Q3k, where 8 < k < 19, have been 

found by the author. However, is it possible to construct a quasi-perfect place

ment scheme for 3D tori? 
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3. Brualdi and Pless have designed greedy codes based on the Hamming dis

tance [23]. These codes have been proved to be linear. Is it possible to construct 

greedy codes based on the Lee distance so it can be used for distance-d place

ments? 

4. Irregular perfect distance-d placements have been ignored in most of the pre

vious studies. More investigation on the existence of these placements should 

be conducted. Furthermore, the existence of irregular quasi-perfect distance-d 

placements might be considered. 

5. Is it possible to have a non-linear perfect distance-d placement for a 2D torus, 

a 3D torus, or any toroidal network? If there are non-linear perfect placements, 

then characterizing their existence would be a very interesting research topic. 

Otherwise, proofing the non-existence of unknown perfect placements would 

be simpler. 

6. Characterizing the existence of linear perfect/quasi-perfect distance-d place

ments for toroidal networks is another interesting research problem. However, 

this problem might be too difficult to handle all at once. Breaking it into the 

special cases of 2D tori, 3D tori, and higher dimensional tori might be a good 

idea. 

7. The general distance-d placement for toroidal networks is one of the most 

challenging related open problems. It is defined by the following question. 

Given R resources, and a toroidal network T; what is the best way by which 

the R resources are distributed over T so the maximum distance among the 

non-resource nodes and the resources is minimized? This problem can also be 

broken into the special cases of 2D tori, 3D tori, and higher dimensional tori. 
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6.2 Simulation Studies 

In Chapter 2, it has been pointed out that the traffic over-distribution resulted in a 

faster network saturation. A simulation study to this phenomena, in different work 

loads and different networks, could be an interesting research problem. 

Another simulation project is to investigate the relationship between the aver

age message latency and the used placement strategy in 3D tori. The placement 

strategies to be compared are the ones proposed in Chapter 4 and the placements 

used in practice. The ones proposed in Chapter 4 are: Sub-Mesh-Based, and 2D 

perfect/quasi-perfect extended to 3D. 

The Sub-Mesh-Based strategy can be applied in 2D tori as well. Comparing the 

Sub-Mesh-Based and perfect/quasi-perfect placements in 2D tori is another interest

ing simulation study. 

6.3 Fault-Tolerant Communication Algorithms 

Chapter 5 has introduced a fault-tolerant one-to-all broadcasting algorithm designed 

for toroidal networks. There are primitive communication patters other than single 

broadcasting. These primitives are: All-to-all, one-to-all personalized, and all-to-all 

personalized. Designing efficient fault-tolerant algorithms for these communication 

patterns is a challenging research topic. 

6.4 Other Types of Dominations 

In this thesis, the distance-d placement problem is investigated. This problem is an 

instance of "dominating sets" in graph theory. The concept of dominating sets has 

existed since the mid-1800's [43]. The very first problem related to this concept were 

the placements of chess pieces to attack all the squares of a chess board. There are 

many types of dominations. Examples are: typical domination [12], perfect dom
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ination [27], independent domination [28, 41], total domination [2, 14], connected 

domination [39], paired domination [42], clique domination [31], and cycle domi

nation [29]. A comprehensive list of domination types can be found in [43]. An 

interesting research topic would be investigating the potential applications of differ

ent domination types to the popular network topologies. 
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