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Wave runup has been investigated on the high energy dissipative beaches 

typical of the Pacific Northwest of the United States. This has been accomplished 

through field investigations on the central Oregon coast utilizing video image 

processing techniques. Extreme runup statistics have been found to linearly depend 

on the deep-water significant wave height. This relationship and other potential 

runup models have been used to develop a methodology which evaluates the 

susceptibility of coastal properties to erosion. Extreme water elevations, including 

water elevations measured by tide gauges as well as elevations achieved by wave 

runup, are compared with measured elevations of the beach face junction on a 

variety of beaches. The model, valid for conditions when the beach face junction is 

landward of the mean water line, predicts susceptibilities to erosion that agree well 

with observations. 

A more detailed investigation into the frequency response and frequency-

wave number structure of swash motions is also presented. Overlap in the coverage 

of 3 video cameras allowed for runup elevations to be analyzed at any longshore 

position over a 1600 m reach of beach. Runup spectra show a large saturated region 

with an f4 dependence extending to lower frequencies than previously reported. 
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Runup motions are coherent over very large alongshore distances, 0(1 km), at the 

extremely low frequencies, 0(0.005 Hz), that dominate the swash zone. Due to the 

low frequency nature of the swash, the array length was too short to resolve between 

leaky modes and higher edge wave modes. 

Finally, an analytic model is presented which predicts longshore currents and 

sediment transport on beaches backed by vertical structures with toes seaward of the 

mean water line. A partial standing wave develops in front of the structures causing 

modulations of the bottom stress, radiation stresses and the resulting setup, 

longshore current and longshore sediment transport. Model results suggest that the 

magnitudes of these processes can be either greater or less than on a similar beach 

without a structure, depending on the position of the structure across the surf zone, 

the beach slope and the wave conditions. 
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WAVE RUNUP ON HIGH ENERGY, DISSIPATIVE BEACHES AND THE
 
PREDICTION OF COASTAL EROSION
 

CHAPTER ONE: GENERAL INTRODUCTION 

Erosion has been common along the Oregon coast due to the high energy 

nature of the wave climate and the dynamic behavior of its beaches. Erosion has 

occurred in areas where either sea cliffs or foredunes back the beaches. The erosion 

has been episodic, associated with the occurrence of extreme storms, and it also has 

been spatially variable. This spatial variation is due in part to the tectonic setting of 

Oregon, which has resulted in different rates of coastal uplift (Komar and Shih, 

1993). In general, the southern part of the coast and the northern-most part near the 

Columbia River are rising faster than the present rate of sea level rise, while the 

north-central stretch has minimal uplift and therefore is experiencing a sea level 

transgression due to the global rise in sea level. This coast wide pattern of relative 

sea-level change is reflected in the degree of sea cliff and dune erosion. However, 

there also are more local controls, which include the volume of sand on the fronting 

beach and the corresponding ability of the beach to act as a buffer between the sea 

cliffs or sand dunes and storm waves (Shih and Komar, 1994). The north-central 

portion of the Oregon coast, where erosion has been greatest, is segmented into a 

series of littoral cells by large headlands, which effectively isolate the stretches of 

beach within each cell. Sources and losses of sand to the series of littoral cells are 

highly variable, and this has controlled the amount of sand on the beach and the 

elevation of the junction between the beach face and the backing feature, be it a sea 

cliff, sand dune or shore protection structure. As a result, there tends to be 

differences in the susceptibilities of properties to erosion between the series of 

littoral cells. It is this highly spatial as well as temporal variation that has made it 

important to develop analysis techniques that can assist in rationally evaluating 

potential erosion. One such methodology (developed in this thesis) examines the 
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extreme total water levels experienced on Oregon beaches relative to the elevation of 

the beach face junction. This analysis requires the capability to predict both the 

extreme water levels measured by tide gauges as well as extreme wave runup levels 

during large storm events. 

Many beaches in the Pacific Northwest of the United States can be classified 

as dissipative. They exhibit behavior which is very different than beaches on the 

more heavily populated, and more heavily studied, intermediate to reflective beaches 

common on the east coast of the U.S. Beaches in general can be morphologically 

classified as ranging from fully dissipative, corresponding to low sloping beaches, to 

highly reflective steep beaches (Wright and Short, 1983). Dissipative beaches are 

characterized by spilling breakers and wide saturated surf zones, while on more 

reflective beaches, nearshore processes occur over a narrower region. As incident 

waves propagate shoreward and become significantly affected by the shallowing 

bathymetry, wave energy is transferred through non-linear processes to both higher 

and lower frequencies (Longuet-Higgens and Stewart, 1962). On steep beaches, this 

evolution of the incident spectrum occurs over only a few wave lengths. On very 

mild sloped beaches, the evolution occurs over many wavelengths, in which case the 

incident waves can be strongly dissipated and the inner surf zone can be dominated 

by low frequency (infragravity) energy. In particular, fluid motions over the swash 

zone, defined as the section of intermittently wetted profile between the landward 

most runup of ocean waves and the furthest offshore rundown, can be of extremely 

low frequency on dissipative beaches. 

Nearshore field studies in the U.S. have, until recently, been limited to a 

relatively narrow range of beach types and offshore wave conditions, primarily 

focusing on intermediate to reflective beaches subject to relatively low wave heights. 

Holman and Sallenger (1985) and Holman (1986), using an extensive data set taken 

from the intermediate beach of the Field Research Facility in Duck, North Carolina, 

showed that swash on natural beaches depends strongly on a non-dimensional surf 

similarity parameter known as the Iribarren number. Other field studies of wave 
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runup have taken place on relatively low energy dissipative beaches in southern 

California (Guza and Thornton, 1984 and Raubenheimer and Guza, 1996). These 

studies have shown wave runup to be linearly dependent simply on the offshore 

wave height, rather than the Iribarren number. Incident band energy in the swash 

zone of these dissipative beaches is typically saturated, and it is the infragravity 

energy that increases with increasing offshore wave height. A recent field 

experiment on the central Oregon coast (described in this thesis) investigated the 

dynamics of a high energy dissipative beach. Video image processing techniques 

were employed to make accurate measurements of the swash zone during the 

experiment (Holman and Guza, 1984; Holland et al., 1997). 

This thesis has three primary objectives. The first is to characterize wave 

runup on the high energy dissipative beaches typical of the Pacific Northwest of the 

U.S. This objective is addressed in both Chapters 2, "Wave runup, extreme water 

levels and the erosion of properties backing beaches," and 3, "Longshore variability 

of wave runup on a high energy dissipative beach." In Chapter 2 it is shown that 

extreme runup statistics are linearly related to the offshore wave height, consistent 

with the observations of Guza and Thornton (1982). Portions of this chapter, co­

authored by Dr. Paul Komar, Dr. William McDougal and Dr. Reginald Beach, were 

presented at the 25th Conference on Coastal Engineering and will appear in the 

conference proceedings (Ruggiero et al., in press). The chapter in full will be 

submitted to the Journal of Coastal Research. Swash dynamics on dissipative 

beaches are more closely examined in Chapter 3. This chapter extends the extreme 

statistical analysis of Chapter 2 to an investigation of the frequency response of 

swash motions, as well as to the frequency wavenumber structure of these motions. 

Runup is found to be coherent over very large alongshore distances, 0(1 km), at the 

extremely low frequencies, 0(0.005 Hz), that dominate the swash zone. Chapter 3 

is co-authored by Dr. Rob Holman and Dr. Reginald Beach and will be submitted to 

the Journal of Geophysical Research. 
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The second objective of this thesis is to develop a quantitative methodology 

for determining the susceptibility of coastal properties to wave induced erosion. 

This objective is addressed in Chapter 2, where we report on analyses of extreme 

water levels measured by a tide gauge, on predicted extreme total water levels 

including wave runup, on efforts to document the beach morphology variations that 

affect wave runup and determine beach face junction levels, and on efforts to apply 

the analyses in coastal-zone management decisions. Combining empirical 

relationships for wave runup with long-term data bases of measured tides and waves, 

we predict the frequency with which properties backing beaches are subject to 

potential erosion. The application in this chapter is to the Oregon coast, but the 

techniques can be used on other coastlines, employing wave and water level data 

specific to those areas. 

The model described in Chapter 2 can predict not only the frequency with 

which sea cliffs and dunes are impacted by storm wave runup, but also the 

susceptibility of coastal protection structures to potential failure. The third objective 

of this thesis extends the analysis of Chapter 2 to vertical structures that are more 

disruptive to surf zone processes. Vertical structures in this sense can be thought of 

as either sea cliffs or sea walls. Weggel (1988) proposed a classification scheme for 

vertical structures, depending on the location of the structure with respect to the 

shoreline. A Type-1 sea wall (or sea cliff), according to Weggel (1988), has its toe 

located landward of the level of maximum runup at all times. The toe of a Type-2 

sea wall is always above the mean water level but is impacted by wave runup during 

storm conditions. These are the conditions for which the erosion susceptibility 

model of Chapter 2 was developed, in order to predict how often the sea wall or sea 

cliff would be impacted by wave runup. The toe of a Type -3 through a Type-5 sea 

wall ranges from occasionally submerged under the still water level to always 

submerged at every tide level but still within the surf zone. Finally, a Type-6 sea 

wall is located beyond the breaker line. Although the assumptions in the model of 

Chapter 2 are not applicable above the Type-2 classification, the model described in 

Chapter 4, "Longshore currents and sediment transport on beaches with seawalls," is 
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valid for sea wall types 3-5. Therefore, the third objective of this thesis is to 

predict longshore currents and sediment transport on beaches backed by sea walls. 

This is accomplished with an analytic model based on the depth and time averaged 

shallow water equations of motion in the nearshore. Model results suggest that the 

magnitudes of longshore currents and sediment transport in front of a seawall can be 

either greater or less than a similar beach without a seawall, depending on the 

location of the structure within the surf zone, the beach slope and the wave 

conditions. Chapter 4 is co-authored by Dr. William McDougal and has been 

submitted to Coastal Engineering. 

Conclusions drawn from the investigations into these three objectives are 

summarized in Chapter 5. Beach morphology data collected for the application of 

the model described in Chapter 2, as well as for studies of the long term beach 

response to shore stabilization structures (Hearon, 1995 and Hearon et al., in press) 

and numerical modelling of foredune erosion on the Oregon coast (Carpenter, 1995), 

is presented in Appendix A. The appendix, taken from an engineering report 

submitted to the Oregon Department of Land Conservation and Development, 

describes beach morphology monitoring on the Oregon coast from 1993 through 

1996 with information about the 23 sites in the data base. The actual survey data 

can be found in Ruggiero (1995). 
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CHAPTER TWO: WAVE RUNUP, EXTREME WATER LEVELS AND THE
 
EROSION OF PROPERTIES BACKING BEACHES
 

2.1 Abstract 

A model has been developed to evaluate the susceptibilities of coastal 

properties to wave induced erosion. The model includes analyses of the 

probabilities of extreme water levels affected by various oceanographic and 

atmospheric processes, as well as by predicted tides, and the runup elevations of 

storm waves on beaches. The application is to the Oregon coast, where measured 

tides often exceed predicted tides by tens of centimeters, especially during the 

occurrence of an El Nino, and where measurement of the runup on dissipative 

beaches typical of the Oregon coast have been found to depend on the deep-water 

significant wave height. Predicted extreme water elevations are compared with the 

measured elevations of the junctions between the beach face and the toes of 

foredunes and sea cliffs. The objective is to evaluate the expected number of hours 

per year water can reach the property, an evaluation of the susceptibility to potential 

erosion. This assessment is illustrated by an application to the Jump Off Joe 

Landslide in Newport, Oregon, with the analysis showing that the toe of the slide 

can expect upwards of 173 hours of wave attack per year, while the adjacent 

vegetated sea cliff unaffected by landsliding is impacted only 13 hours. The model 

is applied to the entire littoral cell in the Newport area, demonstrating how this type 

of analysis can aid in making coastal management decisions. Application is made to 

other sites along the Oregon coast, revealing differences between the various littoral 

cells, depending on the quantity of sand on the beach and its capacity to act as a 

buffer from wave attack. 
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2.2 Introduction 

The overall morphology of a beach can be characterized as ranging from 

dissipative to reflective (Wright and Short, 1983), depending on the sediment grain 

size and wave conditions. This classification scheme relates to the dissipation of 

wave energy, the dynamic response of the beach morphology, and ultimately to the 

natural capacity of the beach to protect coastal properties. Much of the Oregon 

coast is characterized by wide, dissipative, sandy beaches, which are backed by 

either sea cliffs or sand dunes. This dynamic coast typically experiences a very 

intense winter wave climate, and there have been many documented cases of 

dramatic, yet episodic, sea cliff and dune erosion (Komar and Shih, 1993). A 

typical response of property owners following such erosion events is to build large 

coastal protection structures. Often these structures are built after a single event, 

which is followed by a long period with no significant wave attack. From a coastal 

management perspective, it is of interest to be able to predict the expected frequency 

and intensity of such erosion events to determine if a coastal structure is an 

appropriate response as well as to rationally determine setback lines for the siting of 

new developments. 

Wave induced erosion of properties backing beaches, whether they be in 

foredunes or sited atop sea cliffs, depends on the elevation achieved by the water 

relative to the elevation of the fronting beach. There are two main components, 

diagrammed in Figure 2.1, which combine to generate total water levels (Shih et al., 

1994; Ruggiero et al., 1996). The first is the measured tide elevation, r, which 

consists of the predicted tide and the many oceanographic and atmospheric processes 

that alter the mean water level from the predicted tidal elevation. These factors 

include water temperature, the geostrophic effects of offshore currents, the presence 

of winds, particularly onshore winds that can cause storm surge, and the various 

processes associated with El Nirios which can alter water levels by tens of 

centimeters (Komar and Enfield, 1987). Superimposed on these many processes that 
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Figure 2.1. The basic model for the quantitative assessment of the susceptibilities of sea cliffs and sand dunes to 
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affect the mean water level at any given time along the coast, is the vertical 

component of wave runup, R, which consists of both the wave setup that elevates 

the mean shoreline position, and swash fluctuations, S, about the setup. Wave 

induced erosion of a sea cliff or dune will occur only when the total elevation of the 

water at times of maximum runup exceeds the elevation of the beach-face junction G­

+ R > 

This paper reports on a model that has been developed to provide quantitative 

evaluations of the susceptibilities of coastal properties to erosion by waves. This is 

achieved through evaluations of the factors discussed above, including examinations 

of the probabilities of extreme mean water elevations and the runup of storm waves 

beyond the mean water elevation. The application here is to the central Oregon 

coast where long-term measurements of tides and deep-water wave conditions make 

such analyses possible. Other researchers have attempted to determine the risk of 

coastal properties to erosion using probabilistic techniques. For example, Gares 

(1990) demonstrates a method for using runup to determine flooding risk on the 

New Jersey shoreline. Runup is calculated using the composite slope technique 

presented in the Shore Protection Manual (USACOE, 1984), and probability curves 

are produced assuming that maximum runup occurs at times of maximum storm 

surge. In the current work, an attempt is made to characterize extreme runup 

statistics on the high energy, yet dissipative beaches common in Oregon where the 

storm surge is relatively small. Experiments have been undertaken on a number of 

beaches so that runup can be related to the deep-water wave conditions, as well as to 

the local beach morphology. The application is illustrated for a variety of sites 

along the coast, sites that differ in the morphologies of the fronting beaches and in 

their ability to protect foredunes and sea cliffs from erosion. Although the 

application here is to the Oregon coast, the techniques being illustrated can be used 

on other coasts to evaluate the susceptibilities of properties to erosion, and thus can 

serve as the basis for coastal management decisions. 
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2.3 Analysis of Wave Runup and Extreme Water Levels 

The objective of this study is to predict the frequency with which the total 

water level, E, reaches or exceeds the elevation Ei of the junction between sea cliff, 

dune or coastal protection structure and the beach face. To achieve this goal, we 

first examine wave runup on high energy dissipative beaches and then construct 

extreme value probability distributions (e-v pdf) for the combined total water levels 

due to wave runup and water levels measured by tide gages. 

2.3.1 Wave Runup 

The evaluation of wave runup, loosely defined as the time varying location of 

the shoreward edge of water on the beach face, has been of interest to coastal 

engineers, oceanographers and coastal planners. Wave runup is a continuous 

process, but statistics of runup maxima are often the measure of particular interest in 

engineering and management applications. The symbol R will be used for all 

statistical representations of wave runup whether concerning the continuous process 

or simply the maxima. Particular statistics will be denoted by subscripts. Based on 

laboratory observations of monochromatic waves, Hunt (1959) demonstrated a 

dependence between the non-dimensional maximum vertical runup elevation, R, 

(normalized by the deep-water significant wave height and a "surf similarity" 

parameter 

(2.1) 
HS
 

where c is a dimensionless constant. The Iribarren number, one of several 

similarity parameters that have been used to explain a variety of surf zone processes 

(Battjes, 1974), is defined as 
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= (2.2)
(1-1,40112 

where is the beach slope in radians (assumed small, so that tan sin /3.2-­

and Lo is the deep-water wave length given by Lo=(g/22-)T2, g is the acceleration 

due to gravity and T is the wave period. Low values of Ec, indicate relatively 

dissipative beaches. Holman and Sallenger (1985) and Holman (1986), using an 

extensive data set taken from the intermediate sloped beach of the Field Research 

Facility (FRF) in Duck, North Carolina, showed that broad band swash on natural 

beaches also strongly depends on the Iribarren number. Similar results have been 

found by other researchers, including Battjes (1971) and van der Meer and Stam 

(1992). 

Much effort has been spent formulating methods to determine the probability 

distribution function of irregular wave runup maxima (Saville, 1962; Battjes, 1971; 

Nielson and Hans low, 1991; and Walton, 1992). Many of these models have 

employed the hypothesis of equivalency (Battjes, 1971) in which the distribution of 

runup of random waves can be found by applying the runup value of a 

monochromatic wave train to the individual wave in the irregular wave train. 

Extreme runup statistics can then be derived from these analytical probability density 

functions, typically Rayleigh, by examining the tails of the distribution. Holland 

and Holman (1993) note that the zero-crossing definition of runup maxima used in 

these studies should be restricted to narrow banded spectra. A more generic 

description of maxima, suitable for both narrow and broad banded spectra, includes 

all local maxima, both negative and positive. Holman (1986) examined the 

relationship between extreme runup statistics and the Iribarren number using the 

above more inclusive definition of runup maxima. Due to relatively short data 

records, and therefore a limited number of runup maxima, Holman calculated 

quantile exceedence values from the observed frequency distribution for each data 

set, rather than fitting the data to a known (Rayleigh) frequency distribution. In 

particular, Holman (1986) examined the 2% exceedence value of runup maxima, 
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R2%. From this study, the dimensionless constant of (2.1) was found to be 

approximately c = 0.9. Conditions in which 2% of runup maxima are reaching or 

exceeding the elevation of the beach face junction are taken in this paper to be a 

reasonable proxy for potential erosion. 

When analyzing a dissipative subset of their data, with Iribarren numbers 

between 0.5 and 1.0, Holman and Sallenger (1985) found that the incident band 

swash was saturated while the infragravity band swash increased with increasing 

offshore wave height. These results were similar to those found by Guza and 

Thornton (1982), who investigated swash dynamics on low energy dissipative 

beaches in southern California. Guza and Thornton (1982) suggested a linear 

relationship between the significant vertical runup elevation, R and the significant 

wave height, Hs, obtaining 

/?, (m) =0.71H, + 0.035 (m) (2.3) 

Rs is defined as 4a, where u2 is the total variance of the runup elevation time series, 

and is thus a statistic describing runup as a continuous process. Aagard (1990) also 

found a linear relationship between runup elevation and wave height on relatively 

low energy dissipative beaches in Denmark and Australia. 

Data bases containing a decade or more of measurements of wave heights 

and periods are now becoming readily available for use by engineers, scientists and 

planners. These data coupled with simple relationships, such as those above, 

between wave runup and deep-water wave and beach morphology characteristics, 

suggest a straight forward method of determining extreme runup statistics for a 

variety of conditions. If the interest is in predicting potential erosion, as in this 

paper, then empirical relationships for statistics such as R2%, which represent actual 

elevations relative to some vertical datum, are necessary. Rs is a measure of the 

relative energy in a runup record, but does not indicate a particular elevation 
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reached by the runup. With a suitable runup model, one can take advantage of 

measurements of wave characteristics, heights and periods, and a knowledge of 

beach morphology, to develop extreme value distributions for the particular runup 

statistic of interest. 

2.3.2 Measurements of Wave Runup 

Field investigations have been performed on the central Oregon coast in an 

attempt to determine predictive relationships for extreme runup, and to further our 

understanding of runup dynamics on the high energy dissipative beaches common in 

the Pacific Northwest of the U.S. All runup measurements were made employing 

the video techniques developed at the Coastal Imaging Lab of Oregon State 

University (Holman and Guza, 1984; Holland et al., in press). Runup elevation 

time series were extracted from video recordings using the modified "timestack" 

technique as described by Aagard and Holm (1989) and Holland and Holman 

(1993), in which the landward most identifiable edge of water is digitized using 

standard image processing algorithms along with manual refinements. Runup was 

measured under a wide variety of wave conditions; deep-water wave heights ranged 

from 1.4 m to 4.6 m, spectral peak periods ranged from 7 s to 17 s, and a variety 

of nearshore morphologies were included with beach slopes ranging from 0.005 to 

0.047. The field program culminated in February, 1996 at Agate Beach in 

Newport, Oregon with a major investigation into the dynamics of high energy 

dissipative beaches. During this experiment, three video cameras were used with 

the overlap in the field of view of the cameras allowing for continuous coverage of 

runup measurements over a 1.6 km alongshore stretch of beach (Chapter 3). 

Table 2.1 lists the locations at which runup data were obtained and the 

environmental conditions during data collection. For each data record, the tide 

(measured at the Hatfield Marine Science Center, Oregon State University, in 

Yaquina Bay at Newport, Oregon) has been removed and extreme runup statistics 
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Table 2.1. Environmental conditions during runup measurements. 

Location Date # of Runs H, (m) T (s) 13 

Gleneden 02/02/91 1 3.2 11 0.047 

21st Street 02/17/91 1 2.2 11 0.033 

Beverly Beach 03/17/91 1 3.8 15 0.040 

Beverly Beach 03/15/94 3 3.0 17 0.040 

Beverly Beach 11/16/94 4 4.6 14 0.047 

Nye Beach 11/08/95 1 3.3 9 0.030 

Nye Beach 11/21/95 3 2.3 7 0.033 

Beverly Beach 11/22/95 2 2.0 9 0.037 

Agate Beach (02/07/96-02/17/96) 58 (1.4-4.1) (5-17) (0.005-0.025) 
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have been computed after identifying the local maxima of the shoreline elevation 

time series. Although there is a distinction between the processes that force wave 

setup and swash fluctuations, for most engineering applications the measure of 

interest is the extreme statistics associated with the total runup. Therefore, all runup 

statistics presented include both setup and swash. The beach slopes, /3, given in 

Table 2.1 are specifically the foreshore slopes, taken to be the best linear fit of the 

measured beach surface between plus and minus two standard deviations from the 

mean raw runup elevation. Beach morphology, as well as ground control points 

used for solving the geometry of the video images, were typically obtained using 

standard terrestrial surveying techniques. However, during the Agate Beach field 

experiment, differential global positioning system (DGPS) surveying techniques were 

employed. The survey system was installed on a 6-wheeled amphibious "buggy" 

which, by traveling at approximately 5 m/s, allowed for the dense mapping of the 

large alongshore beach surface in only a few hours (Plant and Holman, in prep.). 

All wave height and period information in this paper is taken from the Scripps 

Institute of Oceanography Coastal Data Information Program (CDIP) buoy offshore 

from Bandon, Oregon located in approximately 64 m of water. 

2.3.3 Observations 

Several statistical representations of the Oregon runup data have been 

calculated. The two percent exceedence elevation of local runup maxima, R2%, non­

dimensionalized by the deep-water significant wave height, is shown in Figure 2.2 

plotted against the Iribarren number. The pluses in the figure represent the data 

obtained on Oregon beaches, while the circles are the data of Holman (1986) from 

the FRF, which are shown for comparison. The Iribarren number clearly 

distinguishes between the dynamically different nearshore systems from which the 

data were taken. The Oregon data fall in the extremely dissipative range of 

Iribarren numbers, while the FRF data range from dissipative to reflective. 

Although the Oregon data are of the expected order of magnitude, any linear 
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Figure 2.2. Comparison between non-dimensional extreme runup statistics 
obtained by Holman (1986) from the FRF (circles) and from data collected on 
Oregon beaches (pluses). 
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predictive model forced through the origin, such as (2.1) derived from Holman's 

data, would tend to under-predict R2% on the flatter Oregon beaches, an observation 

noted earlier by Shih et al. (1994). However, when regressing all of the data (a 

total of 223 points) against the Iribarren number and calculating an intercept, a 

linear model does a very good job in explaining the variance of the data. The slope 

and intercept calculated for Figure 2.2, as well as the subsequent data plots, are 

listed in Table 2.2. 

A close examination of Figure 2.2 reveals that, between Iribarren numbers 

from approximately 0.25 to 0.75, there may be a flattening in the linear dependence 

between the normalized extreme runup and the Iribarren number. In fact, Figure 

2.3a shows that for the limited and extremely dissipative range of Iribarren numbers 

of the Oregon data, 0.05 < Et, < 0.5, the non-dimensional R2% does not strongly 

depend on this similarity parameter (r2 = 0.14) except at very low E. Figure 2.3b 

also reveals little dependence of the non-dimensional Oregon runup data on the 

foreshore beach slope (r2 = 0.18), again except for at very low values of 13. 

Holman's (1986) data have been re-analyzed by Douglass (1992), who found that 

removing the beach slope term from (2.1) does not cause any reduction in the ability 

to predict runup on intermediate beaches. Similarly, by analyzing a wide variety of 

Australian beaches, Neilsen and Hans low (1991) found that the relationship proposed 

by Holman explained results from field experiments on relatively steep beaches with 

> 1:10, while for flatter more dissipative beaches with /3 < 1:10, runup 

depended only on the wave steepness. In contrast to these results, Figure 2.3c for 

our Oregon data shows no dependence of R2%/H., on the wave steepness (r2 = 

0.004). Although not shown, the dimensional extreme runup also does not depend 

on the wave period, another surprising result as runup has a first order dependence 

on the wave period in the dimensional form of (2.1). 

Similar to the results found by Guza and Thornton (1982) and Aagard 

(1990), the best simple parameterization of R2% for the Oregon data alone is a 
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Table 2.2. Regression coefficients for extreme runup statistics. 

Variables Slope, m A m Intercept, b A b r2 

0.75 ± 0.03 0.22 ± 0.29 0.77R2% /HS vs to
 
(all data)
 

R2%/H, vs to 0.33 ± 0.10 0.32 ± 0.08 0.14 
(Oregon data only) 

R2%/H, vs 0 3.18 ± 0.81 0.32 ± 0.07 0.18 

R2%/Hs vs 11,1L0 0.89 ± 1.70 0.37 ± 0.09 0.004 

R2% vs H, 0.50 ± 0.04 -0.22 ± 0.21 0.72 
(Oregon data) 

R2% vs H, 0.42 ± 0.03 1.16 ± 0.43 0.48 
(FRF data) 

R2% vs (/3 H, LY/2 0.27 ± 0.004 0.0 ± 0.40 0.67 
(all data) 
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Figure 2.3. Dependence of non-dimensional extreme runup statistics on a) 
the Iribarren number, b) the foreshore beach slope and c) the wave steepness. 
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dependence on the deep-water significant wave height as shown in Figure 2.4. The 

best-fit straight line matched to the Oregon data is 

R2% (m) = 0.5H, 0.22 (m) (r2 = 0.72) (2.4) 

Thirty-three of the data runs from the Agate Beach field experiment listed in Table 

2.1 are from an analysis of the longshore variability of wave runup over a 1.6 km 

distance (Chapter 3). Each of these data runs, from the same 2 hour period, have 

the same offshore wave conditions and only the foreshore slope is variable. This 

large alongshore distance has been separated into three regions, based on changes in 

foreshore slope, and averages of R2% have been calculated for each region. 

Including all of the 33 runs in Figure 2.4 simply adds scatter at a single wave height 

and does not significantly alter the regression coefficients of (2.4) determined when 

using just the three averages. The FRF data of Holman (1986) are shown again to 

emphasize the fact that the two data sets are derived from dynamically very different 

systems, as the Holman data are clearly offset above the Oregon data. Interestingly, 

within the error estimates of the linear regressions through each individual data sets, 

the slopes of the dependence on H,. are comparable. Figure 2.5 shows a final 

parameterization of wave runup, which is slightly different than the dimensional 

form of the Iribarren number dependence of (2.1). The relationship, shown as the 

solid line in the figure, 

(2.5)R2% = 0.27 ((if-1A)I'2 r2 = 0.67 

does equally well in explaining the variance of both the Oregon data and the FRF 

data of Holman (1986). Three predictive runup models, (2.4), (2.1) (using the 

regression coefficients generated including both data sets) and (2.5), will be used in 

the subsequent analysis of extreme total water levels. 

The extreme runup statistics presented here are monochromatic 

representations of spectral phenomena. In fact, all of the Oregon runup data, 

particularly that on the very low sloping Agate Beach, were dominated by 
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Figure 2.4. Dependence of dimensional extreme runup statistics on the deep 
water significant wave height for both FRF data (circles) and Oregon data (pluses). 
The best fit straight line through the Oregon data has a slope and intercept of 0.5 
and -0.22 respectively. 
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infragravity energy (f < 0.05 Hz). Spectral peaks typically occurred at periods 

ranging from approximately 100 seconds to 200 seconds, and usually more than 

90% of the runup elevation variance fell in the infragravity band. A representative 

frequency spectrum from one of the data runs during the Agate Beach field 

experiment is shown in Figure 2.6, revealing the very low frequency nature of the 

swash motions. The asterisk in the figure denotes the peak frequency of the incident 

waves. Note that at this frequency the runup energy density is approximately three 

orders of magnitude less than at the peak swash frequencies. The broad region in 

the spectrum with a f' roll off is an indication that the runup over this frequency 

band is saturated (Huntley, 1977). The incident band energy was saturated for most 

data runs, and the dependence on wave height shown in Figure 2.4 can almost 

entirely be explained by the infragravity band energy and its dependence on the 

wave height. Again, these results are similar to those found by Guza and Thornton 

(1982). 

2.3.4 Extreme Water Levels 

Observed water levels can generally be represented as 

t) = r0(t) (c) (t) (2.6) 

in which ro(t) is the mean sea-level, which changes slowly with time, ?;,(t) is the 

tidal part of the variation and rxt) is the non-tidal residual component. Water levels 

measured by tide gauges are often greater than predicted tidal levels due to the many 

factors that can make up the residual component, such as the occurrence of a storm 

surge, the effects of water temperature, currents and atmospheric disturbances such 

as an El Nirio. A 24 year time series of hourly measured tides obtained from the 

tide gauge in Newport, Oregon has been analyzed to investigate some of these 

processes. Elevations reported by tide gauges are typically relative to a tidal datum, 

such as MSL or MLLW, which apply only locally and can vary over time. At the 

Newport tide gauge, MSL is approximately 10 cm higher than the U.S. National 
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Figure 2.6. Representative energy density spectrum from Oregon runup data, 
obtained during the High Energy Field Experiment on Agate Beach. The asterisk 
indicates the peak frequency of the deep-water waves. 
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Geodetic Vertical Datum (NGVD) of 1929. NGVD has the important advantage of 

being a nationally fixed reference elevation, therefore most engineering design is 

relative to this or some other fixed datum. All tidal and land elevations presented in 

this paper have been adjusted accordingly to NGVD 29. The yearly maxima of the 

measured tides have been fitted to a Fisher-Tippet Type I extreme-value probability 

distribution (e-v pdf), commonly known as the Gumbel extreme value distribution, 

and return intervals have been computed for extreme tides. A predicted tide time 

series has been generated for the same 24 year period at the same location, using 

National Ocean Service (NOS) methods, and the predicted yearly maxima have also 

been fitted to a Gumbel extreme value distribution. Both distributions are shown in 

Figure 2.7, and as noted by Shih et al. (1994), for long return periods there are 

significant differences, on the order of 0.4 m, between predicted and observed 

extreme tides. 

The difference between measured and predicted tides has been computed for 

the entire 24 year data set. Although the tectonic setting of the central Oregon coast 

allows it to feel a relative rise in sea-level, this rise is thought to be quite small 

(Komar and Shih, 1993), therefore this term is eliminated from the analysis and all 

differences between measured and predicted tides are lumped into t.(t). The auto-

correlation of this raw residual time series shows a roll off in correlation at a lag of 

approximately 48 hours. This lag corresponds well with the typical storm duration 

on the Oregon coast. The raw residuals were then filtered using a 48 hour low pass 

filter, eliminating measurement noise from the signal. The standard deviation of this 

low pass filtered residual time series is approximately 13 cm, giving a measure of 

the typical elevation for storm surge on the Oregon coast (Pugh, 1990). The 

majority of extreme tidal residuals throughout the 24 year period correspond to 

times of well-documented El Nilio events. For example, the 1982-83 El Niiio raised 

water levels by approximately 15 cm above the previously measured high levels for 

the winter months, and on the order 35 cm above the average measured levels for 

those months (Huyer et al., 1983). Although these events are usually associated 
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Figure 2.7. Return periods calculated from a Gumbel extreme value 
distribution of measured (solid line) and predicted tides (dashed-dot line). Pluses 
indicate binned data through which distribution was fitted. 
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with increased wave energy, both the residual and the measured tide are not 

significantly correlated with wave height throughout the period of overlap between 

the tide and wave data, a period of approximately 15 years. This observation 

suggests that models such as that proposed by Gares (1990) in which extreme 

measured water levels and extreme runup occur at the same time, although suited 

for coastlines which experience hurricanes and Nor' Easters generating significant 

storm surge, are not generally suitable to the Oregon coast. 

2.3.5 Waves and Total Water Levels 

In a previous section it was shown that the best simple predictor of extreme 

runup on dissipative Oregon beaches is the deep-water significant wave height. A 

15 year wave data set from the CDIP buoy offshore from Bandon, Oregon has been 

used to estimate the extreme wave climate of the Oregon coast. Two other data 

sources could also have been used; a microseismometer system operated by Oregon 

State University at the Marine Science Center in Newport and a deep-water buoy of 

the National Data Buoy Center (NDBC) of NOAA offshore from Newport. 

Although both sources make their measurements closer to the tide gage and the site 

of the runup experiments, the NDBC buoy has been found to over predict large 

wave heights by approximately 10% (Tillotsen and Komar, 1997), and the CDIP 

buoy measurements are of better quality than the microseismometer. The 

measurements taken in approximately 64 m of water have been shoaled, using linear 

wave theory, to deep-water. A Gumbel extreme value distribution has been fitted to 

the yearly maxima of this data, and Figure 2.8 reveals the resulting recurrence 

intervals for extreme storm waves. Given the relatively short record of wave 

heights, predictions of very long recurrence intervals have large uncertainties. 

However, based on the extreme value analyses, the 50 year significant wave height 

on the central Oregon coast is 8.9 m and the 100 year significant wave height is 9.3 

m. 
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Figure 2.8. Return periods calculated from a Gumbel extreme value 
distribution of deep-water significant wave heights (solid line) measured by the 
CDIP buoy off of Bandon, Oregon. 
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The linear relationship between wave height and extreme runup statistics 

given in (2.4) can now serve as a transfer function to construct an extreme value 

distribution for R2% from the distribution of extreme wave heights. Return periods 

can again be calculated, shown in Figure 2.9, revealing how often the 2% 

exceedance elevation of runup maxima reach extreme levels. Analytic probability 

density functions have now been determined for both extreme measured tides and 

extreme wave runup, the two components of the sea cliff and dune erosion model 

shown in Figure 2.1. Assuming that wave runup and measured water levels are 

statistically independent allows the joint probability of the two components of total 

water levels to be easily calculated. This exercise has been completed, and contours 

of equal probability of occurrence have been generated. However, a much more 

useful and direct method for determining the statistics of extreme total water levels, 

without making an independence assumption, is to apply the above model for wave 

runup to the wave component of the joint time series of waves and water levels. 

This joint time series is constructed from the time periods in which the wave data 

and tide data overlap. The irregularly spaced wave data have been interpolated to 

match the hourly measurement interval of the Yaquina Bay tide measurements, and 

then used to calculate runup at this interval. In doing this we generate a runup time 

series which can be superimposed on the measured tide to give a simulated total 

water level time series. Extreme value analysis is then applied to this new time 

series directly. In this case, however, the extreme value pdf, shown in Figure 

2.10a, has been produced using all of the water level data above a threshold of 2.8 

m, rather than just the yearly maxima (Muir and El-Shaarawi, 1986). By 

performing the analysis in this manner, the return intervals shown in Figure 2.10b 

represent the fraction of time when the 2% exceedence elevation of runup maxima, 

superimposed on the measured tide, reaches or exceeds any elevation E. Since we 

have used all of the hourly data above a threshold in constructing the e-v pdf, we 

can convert return intervals to the more convenient unit of hours of wave runup 

impact per year which is shown in Figure 2.10c. 
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Figure 2.10. a) Gumbel extreme value distribution and b) return periods of 
simulated total water levels determined by combining both measured tides and runup 
calculated using runup model (2.4). c) Hours of impact per year in which 2% of 
runup maxima reach or exceed a particular elevation E. 
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The two other runup models have also been applied to this direct method of 

simulating a total water level time series over the period of overlap between the 

wave and tide measurements. For each of these models, the wave period is needed, 

in addition to the wave height, in order to determine the deep-water wave length. 

Also, a beach slope needs to be assumed a priori in order to calculate a total water 

elevation for a particular set of wave height, period and tide measurements. Figure 

2.11 gives estimates of hours of wave runup impact per year for the later two runup 

models for three representative beach slopes, 0 = 0.01 (pluses), 0.03 (circles) and 

0.05 (asterisks). Figure 2.11a, (2.5), and Figure 2.11b, (2.1), show very similar 

results, with the expected susceptibility to erosion for a particular beach face 

junction elevation increasing with increasing beach slope. The results from the 

simple runup model, (2.4), have been overlaid in both figures, as the solid line, and 

appear to give similar results as the more involved models with a beach slope of 

between 0.03 and 0.05. This lends confidence to the simple dependence of runup on 

wave height, as much of the runup data collected in this study were from beaches 

within this range of beach slopes. 

2.4 Beach Elevations and the Erosion of Sea Cliffs and Foredunes 

The morphology and size of the fronting beach, and its capacity to serve as a 

buffer between erosive waves and its backing feature, is another important factor in 

the occurrence of wave induced property erosion. The Oregon coast is divided into 

a series of littoral cells, with beaches confined between large headlands. The 

elevation of the beach-face junction varies considerably between cells due to 

differences in sediment grain sizes, and the quantities of sand in a particular cell. 

This elevation can also vary within a cell due to local effects such as the lowering of 

the beach by rip current embayments (Shih and Komar, 1994). A number of 

beaches with varying morphologies and buffering abilities are being monitored in 

Oregon to determine these elevations relative to NGVD 29, as well as to quantify 

typical summer and winter profiles and long term morphology changes. The erosion 
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susceptibility model has been applied to 13 sites along the central Oregon coast, 

accounting for 8 of the 13 littoral cells. More detailed information of the study sites 

and littoral cells is given in Appendix A of this thesis. The beaches are backed by 

sea cliffs, dunes and shore protection structures, and all have beach slopes(/3 

0.05) within the range of applicability of runup models derived from the data 

collected in this study. 

Table 2.3 summarizes the model results as applied to the sites on the Oregon 

coast. The table lists the average winter beach slopes and the average winter 

elevations of the junction between the beach face and the respective backing feature. 

The number of hours per year in which 2% of runup maxima are predicted to reach 

or exceed Ei are given as compared to field observations concerning the morphologic 

stability of the particular site. Results have been tabulated for three different runup 

models, (2.4), (2.1) and (2.5), respectively. The first site, Jump Off Joe, is backed 

by the remains of a massive landslide which protrudes out onto the active beach 

profile, hence the very low EJ. The toe of the landslide is actively eroding and is 

reached by swash during most higher high tides in the winter. Nye Beach, 

immediately to the south of Jump Off Joe, is relatively stable and backed by a 

vegetated sea cliff. Figure 2.12 shows beach profile measurements, obtained on 6 

June 1995, from these sites. The two lines are separated by only 70 m in the 

alongshore. The figure reveals that the beach fronting the landslide (pluses) is close 

to 1 m lower than Nye Beach (circles) over much of the profile. The models predict 

that the sea cliff at Jump Off Joe will be hit by wave runup much more often than 

any other site, including the cliff at Nye Beach, agreeing well with observations. 

The actual number of hours tabulated in Table 2.3, in which runup is expected to 

impact the property is of less importance than the relative difference between model 

predictions for various sites. 

Figure 2.13a shows the alongshore variations in the elevation of the beach 

face junction throughout 20 km of the approximately 40 km long Newport littoral 
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Table 2.3. Wave impacts per year as compared to beach stability observations. 

Site Backing EE Impacts per year (hrs) Observations 
Feature 

(2.4) (2.1) (2.5) 

Jump Off Joe Sea Cliff 0.034 2.90 173 97 104 severe erosion 

Nye Beach Sea Cliff 0.034 3.70 13 5 4 stable 

Beverly Beach Sea Cliff 0.043 4.02 4 7 5 erosion 

Oceanside Dune 0.023 3.60 18 3 2 stable/erosion 

South Beach Dune 0.026 4.12 3 .3 .2 accretion 

Manzanita North Dune 0.025 4.20 2 .2 .1 stable/erosion 

Manzanita South Dune 0.038 6.30 heavy accretion 

Nestucca Spit Dune 0.046 6.50 heavy accretion 

C&L Ranch Sea Wall 0.030 3.15 77 38 37 severe erosion 

Pacific Shores Sea Wall 0.039 3.65 15 12 10 erosion 

San Marine Sea Wall 0.030 3.75 11 4 3 erosion 

Pacific Palisades Sea Wall 0.052 5.30 .3 .2 accretion 

Driftwood Shores Sea Wall 0.033 7.50 heavy accretion 



36 

5 

4 

0 

- 1 

2 
-150 -100 -50 0 

cross-shore distance (m) 

Figure 2.12. Beach profile measurements fronting the Jump Off Joe landslide 
(pluses) and the sea cliffs of Nye Beach (circles), both within the Newport littoral 
cell. 
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Figure 2.13. a) Elevations relative to NGVD 29 of beach face junctions 
within the Newport Littoral cell, with increasing distance being to the south. b) 
Model application (runup model (2.4)) throughout the cell. 
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cell within which Jump Off Joe and Nye Beach are located. The cell's northern 

limit, Yaquina Head, is given an alongshore location of 0 km in the figure. The 

beaches throughout the cell are backed by a variety of features including sea cliffs, 

dunes and shore protection structures. Foreshore beach slopes also have been 

measured throughout the cell, all having values less than 0.045 and therefore within 

the range from which the runup models were derived. However, due to the 

variability of beach slope, the simple runup model (2.4) is preferred in a littoral cell 

wide application. Figure 13b shows the results of the model being applied to the 

beach face junction elevations throughout the cell. The estimates of the frequency of 

impact reveal the relative susceptibility to erosion along this particular stretch of 

coastline. For example, the model suggests that the large sand dunes of South 

Beach, Oregon, located between 6 and 10 km from Yaquina Headland are relatively 

free from the danger of erosion from wave attack while the beaches further to the 

south, backed mostly by bluffs and sea cliffs, experience wave attack much more 

frequently. Again, these results are consistent with long term observations. 

Although the sea cliffs and bluffs are impacted by waves more frequently than the 

sand dunes with higher beach face junction elevations, they erode relatively slowly 

due to their resistance. Sand dunes respond more quickly to erosion events and have 

thus achieved beach face junctions more in equilibrium with the fronting beach and 

offshore wave conditions, thereby reducing the frequency with which waves reach 

the toe of the dunes. However, when waves and extreme water levels do reach the 

dune toe, the erosional response is rapid. 

Model results appear to echo observed differences between littoral cells on 

the central Oregon coast. Cells that are known to have an abundant supply of 

sediment such the Umpqua littoral cell, in which Driftwood Shores is located, and 

portions of both Rockaway and Lincoln City littoral cells, which contain Manzanita 

South and Pacific Palisades respectively, experience little erosion. This is in 

agreement with the estimates given for these beaches in Table 2.3. In contrast, the 

Beverly Beach littoral cell is thought to be deficient in total sand volume and 
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therefore beaches within this cell have little buffering ability (Komar and Shih, 

1993). Model results at this site demonstrate the importance of including 

morphology information, 0, in a runup model. Beverly Beach is known to be more 

erosive than neighboring Nye Beach in the Newport cell. This difference is revealed 

in Table 2.3 only for the more complicated runup models (2.1) and (2.5). 

2.5 Conclusion and Discussion 

Extreme wave runup on high energy dissipative beaches has been 

characterized under a broad range of offshore wave and beach morphology 

conditions. Unlike runup on intermediate to reflective beaches, extreme statistics 

were found to be better parameterized simply by the deep-water wave height rather 

than by the Iribarren number. Measured extreme water levels on the central Oregon 

coast can be significantly different than predicted tides, but the extreme events 

typically do not coincide with extreme runup associated with large storm waves. 

Extreme total water levels have been predicted by fitting an extreme value 

distribution to a simulated total water level time-series. These predictions are used 

to determine the relative susceptibility of properties backing beaches to erosion, and 

model results agree well with qualitative observations. 

With an appropriate model relating runup elevations to deep-water wave 

conditions, the relative frequency of occurrence of sea cliff or dune erosion can be 

predicted using historical wave, tide and beach morphology records at any coastal 

site. Coastal regulators, the anticipated users of the model, will have a quantitative 

method to determine the susceptibilities of properties to erosion and thus a rationale 

to establish setback distances for coastal developments. The model can also aid in 

the development of dune-management plans which balance the role of dunes in 

reducing future property losses versus development pressures such as those currently 

being experienced on the Oregon coast. For example, from the data given in Table 

2.3 (runup model (2.4)), it appears that shorelines subjected to less than 1 hour of 
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attack per year tend to be stable, while those with more than 10 hours per year tend 

to experience erosion. In its present form the model may be used to evaluate the 

need for shore protection structures and may assist in their design. Future model 

development will attempt to include impact forces in order to predict erosion rates of 

both sea cliff and dune backed shorelines. Although not important at the Oregon 

site, adding the long-term sea level rise to the predicted extreme water levels can be 

easily accomplished at other sites. For application to beaches which are more 

reflective than those investigated here, extreme total water levels should be estimated 

using runup model (2.1) or (2.5). Unfortunately, for erodible beaches, the beach 

slope itself is a function of the incident wave characteristics and thus the appropriate 

beach slope needs to be chosen carefully. As we are interested in extreme runup 

impacting the beach face junction, beach slopes measured in the vicinity of the beach 

face junction are appropriate as the runup models were developed using local 

foreshore slopes. 

The major weakness of the erosion susceptibility model is the simple 

relationships between extreme runup statistics and offshore wave conditions. 

Although runup measurements were taken over a broad range of wave and 

morphology conditions, the predictive models take no account of the possibility that 

the functional relationships between runup, wave characteristics and beach slope may 

change under more extreme conditions than those measured. The models also 

ignore large-scale morphology, including offshore bars and bathymetry, as well as 

large-scale alongshore variability. Furthermore, rip current embayments, which 

serve to greatly reduce the width of the beach fronting properties, are not accounted 

for. More runup data are needed on beaches between the dissipative extremes 

presented here, and the more intermediate to reflective systems (particularly with 

Iribarren numbers between 0.25 and 0.75) to further help in identifying appropriate 

runup models for a particular beach state. 
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CHAPTER THREE: LONGSHORE VARIABILITY OF WAVE RUNUP ON A
 
HIGH ENERGY, DISSIPATIVE BEACH 

3.1 Abstract 

Wave runup data collected on the central Oregon coast during February 

1996, stand in strong contrast to the considerable archive of runup data currently 

available in the literature. These runup data consist of swash elevation time series 

extracted from video recordings made using 3 cameras mounted on a headland 

located approximately 2 km from the study site. Overlap in the coverage of the 3 

cameras allowed for runup elevations to be analyzed at any alongshore position over 

a 1.6 km stretch of beach. The significant vertical runup elevation was highly 

variable, and was found to be dependent on the foreshore beach slope which varied 

by a factor of 5 over the study area. Runup motions were dominated by low 

frequency (infragravity) energy with peak periods of swash spectra typically being 

approximately 200 seconds. Incident band energy levels were 2.5 to 3 orders of 

magnitude lower than the spectral peaks. A broad saturated region of the runup 

spectra was observed with a /4 roll off extending to lower frequencies than 

previously observed. At infragravity frequencies, motions were found to be 

coherent over alongshore length scales in excess of 1 km. However, due to the low 

frequency nature of the runup motions, the 1.6 km array was too short to be able to 

resolve most edge wave modes. 

3.2 Introduction 

Wave runup, loosely defined as the time-varying location of the shoreward 

edge of water on the beach face, is of considerable importance in determining the 

susceptibility of coastal properties to wave induced erosion. Runup (R) is typically 

expressed in terms of a vertical excursion consisting of two components: a super­
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elevation of the mean water level, called setup (77), and fluctuations about that mean, 

called swash (S). Field investigations of runup dynamics have typically taken place 

on intermediate to reflective beaches (Holman and Sallenger, 1985; Holman, 1986; 

Holland, 1995) and low energy dissipative beaches (Guza and Thornton, 1982; 

Raubenheimer et al., 1995; Raubenheimer and Guza, 1996). The current work 

extends these analyses to the high energy, dissipative beaches common in the Pacific 

Northwest of the U.S. It is not uncommon for these low sloping beaches to 

experience deep-water significant wave heights exceeding 6.0 m. The present 

investigation summarizes the variability of wave runup statistics and spectral 

response over a 1.6 km alongshore distance from a 1.5 hour data run on Agate 

Beach, Oregon. A brief literature review of runup is given in section 3.2, and the 

study site and experimental methods are described in section 3.3. Results are 

presented in section 3.4, and are followed by a discussion and summary. 

3.3 Wave Runup Dynamics 

Based on laboratory observations of monochromatic waves (Hunt, 1959), as 

well as an extensive set of field observations on the intermediate to reflective beach 

of the Field Research Facility in Duck, North Carolina (Holman and Sallenger, 

1985; Holman, 1986), wave runup has been parameterized by 

I?, (3.1)= 
H 

where R, is the vertical runup excursion normalized by Hs, the deep-water significant 

wave height, c is a dimensionless constant and o is the Iribarren number. The 

Iribarren number is a non-dimensional "surf similarity" parameter which has been 

found to describe a number of surf zone processes (Battjes, 1974), and is given by 
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0 (3.2) 
° (H5IL)112 

where f3 is the beach slope in radians (assumed small, so that tan 0 = sin f3 = 13), 

L, is the deep-water wave length given as Lo=g T2 /2u, g is the acceleration due to 

gravity and T is the peak incident wave period. Low Iribarren numbers, < 1.25, 

typically indicate dissipative shorelines (Holman and Sallenger, 1985), while higher 

values indicate more reflective surf zones. A linear relationship between wave 

runup and Iribarren number has been proposed by a number of other researchers 

including Battjes (1971) and van der Meer and Stam (1992). The hypothesis of 

equivalency, which links monochromatic results and random runup statistics, is often 

used in association with (3.1) to calculate the distribution of runup maxima from the 

joint distribution of incident wave heights and periods. 

Through non-linear interactions, incident band energy is transferred to both 

higher and lower frequencies throughout the surf zone (Longuet-Higgens and 

Stewart, 1962). On dissipative beaches, infragravity energy (with frequencies of 

roughly 0.05 to 0.003 Hz) tends to dominate the inner surf zone, especially the 

swash. In contrast to the above linear dependence on , Guza and Thornton (1982) 

found that on relatively low energy dissipative beaches, the infragravity component 

of R, varied linearly with the offshore wave height, while the incident band 

component remained constant. When analyzing a dissipative subset (low Iribarren 

numbers) of their data, Holman and Sallenger (1985) also showed this difference in 

behavior between the infragravity and incident bands of runup. 

Miche (1951) hypothesized that monochromatic incident waves can be 

thought of as having both a progressive and a standing component, and that the 

amplitude of swash oscillations is proportional to the amount of shoreline reflection 

and thus proportional to the standing wave amplitude. The standing wave amplitude 

at the shoreline reaches a maxima with waves just large enough to be breaking, and 

therefore can be termed saturated as a further increase in wave height simply 
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increases the amplitude of the progressive component, which dissipates through 

wave breaking and has zero shoreline amplitude. Saturation therefore implies that 

the swash amplitude does not increase with increasing offshore wave height, a 

concept used to describe the aforementioned incident band results of Guza and 

Thornton (1982). Qualitatively, Miche's hypothesis has been confirmed in the 

laboratory (Battjes, 1974; Gum and Bowen, 1976), in the field (Huntley et al., 

1977; Gum and Thornton, 1982; Gum et al., 1984) and more recently in the 

application of a numerical model based on the one-dimensional depth-averaged 

nonlinear shallow water equations (Raubenheimer et al., 1995 and Raubenheimer 

and Gum, 1996). Carrier and Greenspan (1958) analytically solved the non-linear 

inviscid, shallow water wave equations on a planar beach and showed that a 

monochromatic, non-breaking standing wave solution exists when 

asco2 (3.3)= < les 

g tan`f3 

where Es is another similarity parameter in which as is the vertical swash amplitude 

at the shoreline and co is the wave angular frequency. Wave breaking initiates at Es 

= 1.0, and the shoreline amplitude has been shown to continue to increase until it 

reaches a saturation (critical) value Esc. Published estimates of this critical value 

range from 1.25 (Gum and Thornton, 1982) to 3.0 ± 1.0 (Gum and Bowen, 1976). 

Gum et al. (1984) showed that by combining Miche's hypothesis with (3.3) the 

normalized vertical runup excursion becomes 

:to?.to : reflective 
R (3.4) 

= 
HS 

:to<to : saturated 

where is = (7P/213)". Note that in the saturated region of (3.4), R is independent 

of the wave height and has a 32 dependence rather than the linear relationship with 

beach slope predicted by (3.1). 
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In analogy to the above monochromatic results, Huntley et a/.(1977) 

suggested that for broad band swash, incident band frequencies in the vertical runup 

energy density spectrum would become saturated and have the form 

(3.5) 

E(f) = a f4 

where a is a dimensional constant. Huntley et al. (1977) presented field results 

showing a f4 spectral decay within this band, and by combining (3.3) with (3.5) 

suggested a universal form for the runup spectrum 

E(f) = g 02/(2 irf)2]2 (3.6) 

where Esc. is now a dimensional constant related to the bandwidth of the saturated 

spectrum. Runup energy densities in the saturated band are independent of offshore 

wave conditions as wave breaking prevents the magnitude of swash oscillations in 

the saturated band from increasing past a certain level which depends on beach 

slope. Guza and Thornton (1982) showed similar saturated spectra from field data 

but with a /3 roll off, a result possibly explained by differences in measurement 

techniques. Raubenheimer and Guza (1996) presented more runup data with 

incident band saturation and their field observations, as well as results from the 

numerical model Rbreak (Kobayashi et al., 1989), both show a f4 roll off. The 

present results also show this f4 spectral decay over a broad saturated band width, 

extended to lower frequencies than previously reported. However, the universality 

of (3.6) is cast into doubt based on multiple realizations of E(f) with similar wave 

conditions and a strongly variable beach slope. 

3.4 Field Experiment 

Runup data were obtained during the High Energy Field Experiment at Agate 

Beach in Newport, Oregon during February 1996 as one component of an 

investigation into the dynamics of high energy dissipative beaches. Agate Beach 
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stands in direct contrast to the more reflective Duck, North. Carolina, site of many 

previous runup investigations, as large amplitude, low frequency motions are the 

dominant forcing within the inner-to-mid surf zone. The field experiment was 

designed to characterize the temporal and spatial scales of these motions and their 

role in suspended sediment transport. In-situ instrumentation, consisting of current 

meters, suspended sediment sensors and pressure sensors, were deployed in the 

inner surf zone in a cross-shaped pattern with cross-shore and longshore arrays of 

approximately 120 X 324 m. Video monitoring of wave breaking intensity, as well 

as detailed surveys of the foreshore and offshore bathymetry, were also performed. 

The environmental conditions during the month of February 1996 are shown in 

Figure 3.1. The experiment lasted for 11 days, 7 February to 17 February, during 

which the significant deep-water wave height ranged from 1.4 to 4.1 m (Figure 

3.1a), peak wave periods ranged from 5 to 17 s (Figure 3.1b), and the semi-diurnal 

tide typically had a 2 to 3 m vertical excursion (Figure 3.1c). The wave height and 

period data were obtained from the Coastal Data Information Program (CDIP) buoy 

offshore from Bandon, Oregon located in approximately 64 m of water, 100 km to 

the south of the study site. During the experiment the wave heights from the CDIP 

buoy compared well with data from the microseismometer system operated by 

Oregon State University at the Marine Science Center in Newport, Oregon as well 

as the deep-water buoy of the National Data Buoy Center (NDBC) of NOAA 

offshore from Newport. Although the latter two data sources are closer to the 

experiment site, the microseismometer typically provides a poor estimate of wave 

periods and the NDBC buoy has been found to over predict large wave heights by 

approximately 10% (Tillotsen and Komar, 1997). The beach sand at Agate Beach 

has a median diameter of 0.2 mm, and although the foreshore slope varied greatly in 

the longshore, at any cross-shore transect the foreshore slope (averaging 1:70) 

changed relatively little throughout the experiment. The definition of foreshore 

slope in this paper is taken to be the best linear fit of the measured beach surface 

between ± two standard deviations from the mean raw runup elevation. 
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Figure 3.1. Deep-water significant wave height a), peak wave period b) and 
tide elevation c) during the High Energy Beach Experiment of February 1996. 
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Figure 3.2 shows an oblique (Figure 3.2a) and plan (Figure 3.2b) view of ten 

minute time-averaged video exposures taken at Agate Beach at low tide on 11 

February 1996. Regions of higher image intensity result from waves breaking 

preferentially over shallow bathymetric features. The plan view, with the positive x 

direction being offshore and positive y direction being to the south, reveals two, and 

possibly three, fairly uniform alongshore sandbars offshore from the study area. 

The pluses indicate the locations of the in-situ instrumentation. One can infer from 

the location of the instruments, which were submerged at high tide, and the position 

of the seaward-most sand bar, the extremely large cross-shore length scales 0 (1 

km) typical of this beach. 

Video recordings of swash were made using 3 cameras mounted on Yaquina 

Head, a promontory located approximately 2 km to the north of the in-situ 

instrumentation. Overlap in the field of view of the three cameras allowed for 

continuous coverage of runup over an alongshore distance of over 1.5 km. The data 

discussed below consist of 1.5 hour swash elevation time series measured along 33 

cross-shore transects spaced every 50 m in the longshore on 11 February 1996 from 

15:59 to 17:29 PST. During this data run the deep-water significant wave height 

was 2.3 m, the wave period was 13 s and the tide was high. Figure 3.3 shows a 

snapshot from the runup camera aimed furthest north. Overlaid in the field of view 

are the cross-shore transects at which runup was digitized, for this particular 

camera, extending from an alongshore position of y=-1200 m to y=-950 m, spaced 

every 50 m. The middle camera covered from y=-950 m to y=-350 m, and the 

camera pointed to the south extended the runup coverage to y =400 m. Vertical 

swash elevation time series were extracted from the video recordings using the 

"timestack" method as outlined by Aagard and Holm (1989) and Holland and 

Holman (1993). Using the known geometric transformation between ground and 

image coordinates, the light intensity of each pixel in the cross-shore transect was 

digitized. The runup position at each video sample time is the landward-most 

identifiable edge of water determined via standard image processing algorithms with 
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Figure 3.2. Oblique (a) and plan (b) view images from 10 minute time-
averaged video exposures of Agate Beach, Oregon on 11 February 1996 at low tide. 
Pluses in the plan view indicate the locations of in-situ instrumentation. 
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Figure 3.3. "Snap-shot" video image taken from northern most facing runup 
camera at 16:00 PST on 11 February 1996. Solid lines indicate the locations of 
cross-shore transects, spaced at 50 m, over which runup was digitized. 
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manual refinements. Figure 3.4 is an example of a "timestack" showing temporal 

and spatial runup variability. Holman and Guza (1984) and Holland et al. (1995) 

demonstrated that runup extracted from a video record roughly corresponds to data 

acquired with resistance wire runup gauges supported less than a few centimeters 

above the beach face. The vertical resolution of the video technique varies with 

distance from the cameras but was typically less than 2 cm. 

To extract runup elevations along cross-shore transects from video signals 

using the "timestack" technique, the geometry of the beach is needed in addition to 

the geometry of the camera. To obtain the beach surface over such large cross-

shore and alongshore distances, differential global positioning system (DGPS) 

surveying techniques were employed. The survey system was installed on a 6­

wheeled amphibious "buggy" which by traveling at approximately 5 m/s, yielded a 

dense mapping of the large beach surface in only a few hours (Plant and Holman, in 

prep.). Figure 3.5 is a contour map of Agate Beach obtained on 11 February 1996. 

The dots correspond to the individual survey measurements, and the solid lines 

reveal the elevation contours referenced to the U.S. National Geodetic Vertical 

Datum (NGVD) of 1929. The asterisks indicate the locations of the in situ 

instrumentation, and the solid lines perpendicular to the contours give the locations 

of the 33 transects at which runup time series were extracted and analyzed. The 

1600 m runup array has been separated into two sections based on differences in the 

foreshore beach slope as evidenced by the contour lines and differences in spectra 

calculated at each of the cross-shore transects. Section I, with a relatively steeper 

foreshore, consists of both the north, y=-1200 m to y=-850 m, and the south, y =­

150 m to y=400 m, regions of the study area, with section II being the middle, y =­

800 m to y=-200 m, region. Two typically low flowing drainages from the backing 

bluff had more substantial flows during the experiment due to heavy rainfall 

preceding the experiment. These streams deposited sediment in deltas causing the 

extremely flat beaches in section II. 
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Figure 3.4. Video timestack for the 15:59 PST run at transect y= -1200 m. 
Intensity patterns vary with time (down the page) and with cross-shore position 
(across the page). The dark line is the digitized landward edge of runup. 
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Figure 3.5. Contour map of the foreshore beach survey from 11 February 
1996. The dots are the positions of actual survey measurements and contour 
intervals (solid lines), relative to NGVD 29, are spaced at 1 m. The solid lines 
perpendicular to the contours indicate the locations of cross-shore transects where 

runup was measured, at 50 m intervals, with a total alongshore coverage of 1600 m. 
The asterisks indicate the locations of the in-situ instrumentation. 
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3.5 Results 

Analysis of the runup data has been separated into bulk statistics, frequency 

dependence and alongshore scale and structure. Results for each category are 

summarized below. 

3.5.1 Runup Statistics 

In Figure 3.6a the solid line shows the alongshore variability of the 

significant vertical swash excursion, Rs obtained from the time-series of 33 

individual cross-shore transects. Rs, defined as 4a where a2 is the total variance of 

the runup elevation time series, varies by a factor of two over the 1600 m study 

region. A clear reduction in Rs is evident section II, y=-800 to y=-200. Also 

shown in Figure 3.6a as the dash-dot line is the foreshore beach slope, f3, as a 

function of alongshore distance. The foreshore slope varies by a factor of 5 over 

the study area, ranging from 0.005 to 0.025. The average slope in section I is 

0.019 while in section II it is 0.009. The apparent dependence of Rs on /3 lends 

credibility to the parameterization of runup with the foreshore slope, defined as 

above or in a similar fashion. Figure 3.6b shows a power law dependence between 

the two parameters yielding an exponent of 0.41. The best fit in log-log space is 

shown as the solid line in the figure. The runup data have been band partitioned to 

determine the sea-swell (incident band) component (0.05 Hz < f < 0.2 Hz) and the 

infragravity band component (f < 0.05 Hz) of R. For each of the 33 transects, the 

infragravity band contained over 95% of the total runup variance, and the incident 

band was saturated. Figure 3.6c reveals a linear relationship between the sea-swell 

component of the significant runup elevation, R," , and the foreshore slope. This 

result is in contrast to the squared relationship predicted for saturated runup by (3.4) 

and results recently published by Raubenheimer and Guza (1996) that also agree 

with (3.4). 
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Figure 3.6. a) Significant vertical runup elevation (solid line) and foreshore 
beach slope (dashed-dot line) as a function of alongshore distance. b) Total 
significant runup versus beach slope (asterisks) and best fit in log-log space (line). 

6.2 0141 c) Sea-swell significant runup versus beach slope (pluses) and best fit 
line. R555 = 13.0 0 0.02, r2 = 0.87. 
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The above results were obtained from a single 1.5 hr data run in which 33 

individual cross-shore transects were analyzed. Figures 3.7 and 3.8 show results 

that include data obtained from other runs during the High Energy Beach 

Experiment, as well as data from runup experiments on other dissipative Oregon 

beaches. These data were also obtained utilizing video techniques and are described 

in Ruggiero et al. (in press) and Chapter 2. In Figure 3.7a the band partitioned, 

normalized significant runup is plotted versus the Iribarren number. The pluses 

represent the incident band and the circles the infragravity band. All of the data fall 

in the extremely dissipative range of Iribarren numbers, 0 < 0.5, and neither 

frequency band demonstrates a strong dependence on this similarity parameter. In 

Figure 3.7b it is apparent that a linear relationship between I?, and Hs is more 

pronounced in the infragravity band than in the incident band, another indication of 

saturation. The total significant runup, including all frequencies, is shown in Figure 

3.8 to have a (weak) linear dependence on wave height. The best linear fit through 

the data is also shown on the figure, and gives the relationship 

R = 0.37( ±0.05)H5 + 0.28(± 0.23) r2 = 0.45 (3.7) 

In an analysis of extreme runup statistics from the same data (Chapter 2), the two 

percent exceedence elevation of runup maxima, R2%, was also found to be better 

parameterized by the deep-water significant wave height than by the Iribarren 

number. The linear dependence between significant runup elevation and wave 

height found by Guza and Thornton (1982), Rs cx 0.7 Hs, was much stronger than 

found here for the Oregon data, (3.7). 

3.5.2 Frequency Dependence 

Figure 3.9 shows a sample 5 minute runup time series from two sites: data 

collected at the FRF during the DELILAH experiment (Figure 3.9a, from Holland 

(1995)), and data from Agate Beach during the High Energy Field Experiment of 

1996 (Figure 3.9b). In each panel, time-series from multiple cross-shore transects 
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Figure 3.7. (a) Normalized significant runup elevation as a function of 
Iribarren number obtained from low and high frequency runup variances. Circles 
represent low frequencies (f <0.05 Hz) and pluses indicate high frequencies (f > 
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Figure 3.8. Total significant vertical runup elevation versus deep-water 
significant wave height. 
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Figure 3.9. Typical 5 minute runup time series from a) the 17 October 1990, 
13:38 EST data run of the DELILAH experiment in Duck, NC taken from Holland 
(1995), and b) the 11 February 1996, 15:59 PST data run from the High Energy 
Beach Experiment in Newport, OR. Cross-shore transects at which runup was 
measured are offset vertically. The transects are spaced at 10 m in a) and at 50 m 
in b). 
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have been offset vertically to reveal structure in the longshore (the FRF data is 

spaced at 10 m in the longshore). The FRF data show a dominant incident wave 

signal having a period of approximately 15 seconds, while the Oregon data show 

only a few discernible runup maxima over the 5 minute record, clearly indicating 

the very low frequency infragravity nature of the signal. Individual wave crests can 

be followed over large alongshore distances at incident band frequencies in Figure 

3.9a and at infragravity band frequencies in Figure 3.9b. 

Figure 3.10a shows the frequency spectrum for each of the 33 cross-shore 

transects analyzed from the 15:59 to 17:29 PST data run on 11 February 1996. 

There appears to be a clear division between spectra from section I, transects with 

steeper foreshore slopes, and spectra from the shallower sloping section II. Figure 

3.10b displays a representative spectrum from each section. Spectra were calculated 

from runup elevation time series from which both the mean and the tide have been 

removed. Band averaging resulted in 18 degrees of freedom with a bandwidth of 

0.0017 Hz. The most obvious feature in the spectra are the energy peaks at 

extremely low frequencies, approximately 0.0043 Hz, for both section I and section 

II. Although the two spectra have energy peaks at similar low frequencies, the 

spectrum from section I, y = -1100 m, has more energy at all higher frequencies 

than the spectrum from section II, y = -600 m. There is a sharp roll off in energy 

beyond the peak frequencies and at the cutoff between the infragravity and incident 

bands, 0.05 Hz, the spectra have dropped 2.5 to 3.0 orders of magnitude in energy. 

The asterisks in Figure 3.10a,b indicate the peak frequency of the deep water waves 

for this particular run. 

Figure 3.11 shows averages of the spectra calculated from the transects in 

each of the two sections in a log-log plot. The average spectra are relatively white 

at low infragravity frequencies, followed clearly by a red saturated region, 

approximately proportional to f4, extending to much lower frequencies, 0(0.01 Hz) 

than previously reported by other researchers. Both Huntley (1977), and 
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Figure 3.10. a) Observed runup energy density spectra from all 33 transects 
and b) representative spectra from y = 1100 in section I (top line) and y= 600 
m from section II. The asterisks indicates the peak period of the deep-water waves. 
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Figure 3.11. Average energy density spectra from section I (top line) and 
section II. The vertical dashed line at 0.05 Hz indicates the division between the 
infragravity and the sea swell frequency bands. The dotted lines have a f-4 slope and 
are separated by a distance proportional to 04. The solid lines through the spectra 
within the saturated band are the best fits to the estimates in log-log space. The line 
in section I has the form E(f) = 1.2 x 10' f 41, while in section II, E(f) = 2.2 x 
10-8 f-4.0. 
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Raubenheimer and Guza (1996), show saturated runup spectra extending only 

throughout the incident band. Guza and Thornton (1982) show saturated runup 

spectra, with an f-3 roll off rather than the"' dependence of the other studies, 

extending into the infragravity band to approximately 0.04 Hz. Figure 3.11 shows 

again that the distinction between sections I and II is quite clear, and the saturated 

region in the spectra from section H, the section with the lower beach slopes, 

extends to slightly lower frequencies than in section I. The average spectra from the 

two regions are separated by a distance less than that predicted by the A' relationship 

suggested by Huntley et al. (1977) in (3.5) and the observations reported by 

Raubenheimer and Guza (1996). 

3.5.3 Longshore Coherence Length Scales 

Agate Beach, Oregon is an extremely dissipative beach due to its low slope. 

This, coupled with high energy conditions, results in large cross-shore length scales 

with winter storm waves often breaking at distances greater than 1 km offshore. 

These large cross-shore length scales and the low frequencies that dominate the surf 

zone, suggest that alongshore length scales may also be quite large. Measurements 

of the longshore variability of wave runup have previously been made at the 

intermediate beach of the FRF by Holman and Sallenger (1984), Holman et al. 

(1990) and by Holland (1995). Holland (1995) defined a simple measure of the 

longshore structure of runup motions as the length scale over which swash motions 

of a given frequency are coherent. Squared coherence values were calculated from 

the cross-spectral matrix of all possible sensor pairs as a function of frequency and 

sensor separation (alongshore lag). An example can be seen in Figure 3.12 in which 

the squared coherence (solid line) has been calculated for the peak frequency 

(0.0043 Hz) from the average spectra in section I. Also shown is the critical 

squared coherence level (95% significance) which has been calculated individually as 

a function of lag due to the variable number of corresponding realizations. A 

coherence length scale, L, is defined as the maximum lag with squared coherence 
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Figure 3.12. Squared coherence (solid line) and critical squared coherence 
level (95 % significance, dash-dot line) versus alongshore lag for the peak frequency 
of the average energy density spectrum in section I. 
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above the critical value, for which all shorter lags have squared coherence levels 

that were also significant. For the peak frequency shown in Figure 3.12, the 

coherence length scale is approximately 1250 m. Characteristic longshore length 

scales have been computed in this manner for all frequencies in the infragravity band 

and are shown in Figure 3.13a. Consistent with the time-series shown in Figure 

3.6b and replays of the video records, the Oregon data is coherent over length scales 

on the order of 1 km at the peak infragravity frequencies which dominate the runup 

motions. In contrast, while the multiple time-series in Figure 3.6a reveal alongshore 

coherence over the length of the array in the incident band, Holland (1995) found 

that in the infragravity band, swash during DELILAH was coherent only over 

approximately 100 m as shown in Figure 3.13b. 

3.5.4 Wavenwnber- Frequency Structure 

Potential mechanisms forcing the energetic motions found at low infragravity 

frequencies include long waves incident from deep water and reflected at the 

shoreline, forcing by incident wave group structure and edge waves. Measurements 

of the alongshore variability of runup giving alongshore phase relations can be used 

to define an alongshore wavenumber, ky. This wave number can then be used to 

determine whether or not the infragravity energy consists of edge waves which are 

trapped to the shoreline or leaky waves which are not trapped. For a particular 

frequency, 01, these possibilities are distinguished by 

cue gky : edge waves 
(3.8) 

(02 > gky : leaky modes 

The wave for which the equality holds is called the cutoff mode. 

A wavenumber-frequency spectrum was calculated to investigate the 

dynamics of the runup motions over the length of the array. Figure 3.14 shows the 
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Figure 3.13. Coherence length scale (in the alongshore) within the 
infragravity band as a function of frequency from a) 11 February 1996, Agate 
Beach, OR and b) average over all runs during DELILAH experiment in Duck, NC, 
taken from Holland (1995). 
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spectrum, derived from an iterative maximum likelihood estimator (IMLE developed 

by Pawka (1982)). The IMLE analysis was carried out by designing an alongshore 

lag array of sensors (runup transects), shifting the array in the longshore for a total 

of 14 separate realizations, which were then averaged to generate Figure 3.14. 

Shading intensity is proportional to measured energy density levels displayed on a 

log scale. For an alongshore homogeneous and temporally stationary wave field, 

wave energy associated with edge, leaky or shear waves would be expected to lie 

along ridges in wavenumber frequency space. Dispersion lines for mode 0, 1 and 2 

edge waves are indicated on the figure (dotted lines) as are the cutoff between leaky 

and edge wave modes (solid lines). Only the sub-incident frequencies are shown 

and wavelengths greater than 100 m. The majority of the energy is concentrated at 

extremely low wave numbers, and there is no clear evidence of low mode edge 

waves apparent in the figure. Surprisingly, due to the extremely low frequencies of 

the motions the 1600 m array length becomes relatively very short. For the peak 

frequency of the average spectrum from section II (0.0043 Hz), the approximate 

cutoff wavelength separating the edge wave and leaky mode regimes is 84 km. 

Therefore, we are unable to resolve the difference between leaky modes and higher 

edge wave modes. 

The alongshore structure in individual frequency bands can be examined 

using the technique of frequency-domain empirical orthogonal functions or EOF's 

(Holman and Sallenger, 1984). EOF's are the complex eigenvectors of the cross-

spectral matrix and can be expressed in terms of an amplitude and phase. The phase 

expresses the relative phase amongst the runup transects, with phase jumps of 7 

indicating a wave standing in the longshore, potentially a standing edge wave. 

Figure 3.15 shows the results of EOF analysis for 3 particular frequency bands 

centered at 0.0043, 0.0077 and 0.011 Hz, hereafter referred to as band 1, 2 and 3. 

These frequencies appear as relative peaks in the average energy density spectra 

from section I in Figure 3.11. The amplitudes and phases of the first two EOF 

modes are shown for each frequency band. The first mode dominates for each of 
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the three frequency bands explaining 72%, 56% and 54% of the total variance 

respectively. The second EOF mode explains 18%, 26% and 26% respectively. 

Both the amplitudes and phases in the first mode of bands 1 and 2 are 

relatively uniform across most of the 1600 m study area, although there is a drop in 

phase at the southern end of the beach in the first band. Uniform alongshore phases 

indicate that the energy within these first two bands are associated with very small 

longshore wave numbers. The approximate cutoff wavelength separating the edge 

wave and leaky mode regimes for band 2 is 26 km. The cutoff wavelength would 

have a 7°, in band 1, and 22°, in band 2, phase shift over the length of the 1600 m 

array. While the data cannot resolve whether or not there is a high mode edge wave 

present, it seems likely that the first EOF of these two frequency bands are 

describing leaky modes. The phase structure of the first mode of band 3 appears to 

be connected to the morphology of the foreshore. The waves first arrive in the 

lower sloping region of section II, before either to the north or the south, as waves 

propagate "down phase" in this analysis. This is probably due to the deeper water 

in section II relative to section I for a constant cross-shore location (see Figure 3.5). 

3.6 Discussion 

Guza and Thornton (1982) showed that for a particular beach slope, runup 

spectra have approximately the same energy level in the saturated frequency range, 

regardless of incident wave conditions. The dimensional proportionality, a, from 

(3.5), depends on the foreshore slope and determines what these energy levels will 

be. This parameter, and the actual power of the roll off of the saturated runup 

energy density spectrum, can be calculated by fitting spectral estimates within the 

saturated band to the form of (3.5) in log-log space. For the average spectrum in 

section I, the top line in Figure 3.11, the energy density spectrum has the form E(f) 

= 1.2 x 104 f4.14. The constant derived for the average spectra in section II is 

approximately an order of magnitude less and the power dependence is exactly r. 
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These relationships are shown in Figure 3.11 as the solid lines through the spectral 

estimates within the saturated band. The universal form for the saturated runup 

spectrum suggested by Huntley et al. (1977), (3.6), requires a to be proportional to 

he. To test this dependence, the constant a has been calculated for each of the 33 

transects in our runup array. Figure 3.16 shows the estimates from the Oregon 

data, asterisks, as well as data taken from Huntley et al. (1977), circles, from 4 

different beaches all with much greater foreshore slopes. The best fit through the 

data in log-log space is shown as the solid line. The calculated power of the 

dependence between a and (3 including both data sets is 2.85. Using just the Oregon 

data the power of the dependence becomes 2.0, analogous to the linear relationship 

between the sea-swell significant runup elevation and beach slope shown in Figure 

3.6c. 

The value of Esc* from (3.6), a dimensional constant with units of Hz-', can 

be determined from the estimates of a using the following relation 

a' (27)2 (3.9)
Es = 

32 

Note that if a is not proportional IV, as in the case of the data presented in Figure 

3.16, estimates of :* will also depend on the beach slope. From arguments of 

downslope swash accelerations, Huntley et al. (1977) define a universal constant, es' 

(zif)m, approximately equal to 1.0, where Af is taken as the band width of the 

saturated runup spectrum. Although the saturated region of the Oregon runup 

spectra extend to slightly lower frequencies for lower foreshore slopes, the estimated 

bandwidth for each of the runup spectra is fairly constant. Therefore, for the data 

presented in this paper, the universal constant, as defined above, is in fact not a 

constant but a variable depending on 13. 
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3.6 Summary 

Wave runup on Agate Beach, Oregon is dominated by infragravity energy 

with spectral peaks at approximately 0.005 Hz. This behavior, on a strongly 

dissipative beach, contrasts with runup at Duck, North Carolina which is dominated 

by incident band energy. Significant runup height varied by a factor of 2 over the 

1.6 km study area and was dependent on the foreshore beach slope. All calculated 

runup spectra showed a broad saturated region with an f-4 dependence. However, 

the extension of the universal form for shoreline runup spectra of Huntley et al. 

(1977) to extremely low sloping beaches has been cast into doubt. Runup motions at 

peak infragravity frequencies were coherent over large alongshore length scales, on 

the order of 1 km. The cut-off wave length for leaky modes is approximately 84 

km at the peak runup frequencies, so even with a 1.6 km array most edge wave 

modes were under-resolved. 
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CHAPTER FOUR: LONGSHORE CURRENTS AND SEDIMENT 
TRANSPORT ON BEACHES WITH SEAWALLS 

4.1 Abstract 

An analytic model is developed to predict long shore currents and the 

associated sediment transport on a planar beach backed by a seawall. The model 

assumes shallow water, small angle of wave incidence, spilling breakers and 

conservation of reflected wave energy flux. A partial standing wave develops in 

front of the seawall causing modulations of the bottom stress, radiation stresses and 

the resulting setup, longshore current and longshore sediment transport. This 

influence increases as the beach slope decreases because more standing waves 

develop across the wider surf zone. The total longshore sediment transport is 

strongly influenced by the cross-shore location of the seawall. On steep beaches, 

the total transport is less than that for a natural beach. For milder sloped beaches, 

the modulations become significant and the transport may be either more or less 

than that for a beach with no wall, depending on the location of the seawall. 

4.2 Introduction 

The effects of seawalls on beaches has been a topic of study and 

controversy for many years. Recent reviews of the available literature (Kraus, 

1987; Griggs and Tait, 1990; and Kraus and McDougal, 1996) demonstrate the 

need for still more research. Beaches have been reputed to respond to 

wave/seawall interactions in many ways, including the formation of scour troughs, 

deflated beach profiles, end scour, up-coast accretion, down-coast erosion, far 

down-coast shoals, reflection bars, delayed post-storm recovery, etc. Processes 

identified as having contributed to these possible responses include sediment 

impoundment (groin effect), wave reflection, acceleration of longshore currents, 
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increased sediment mobilization, and so on. Controls on how these processes 

affect beach change have also been discussed; long term shoreline changes, 

position of the seawall relative to the surf zone, width of the surf zone, sediment 

supply as well as wave and seawall characteristics. Confusion and disagreement in 

the literature is compounded by the lack of sufficient field data and inconclusive 

physical and theoretical models. 

For example, the commonly accepted hypothesis that the reflection of 

normally incident waves from a seawall is a significant contributor to beach profile 

change, and to the development of the scour trench located in front of seawalls, 

has been recently cast into doubt. Several numerical cross-shore profile models 

have been developed to examine this question, including a modified version of 

SBEACH which explicitly includes wave reflection from the seawall and its 

influence on wave breaking and setup (McDougal et al, 1996). This study yielded 

two rather surprising results. The first is that the beach change predictions 

including reflected waves were not substantially different from those neglecting 

reflection (ie. the standard SBEACH model with a no transport condition at the 

location of the seawall). The second was that a large scour trench did not develop 

at the toe of the seawall, even for very energetic waves. These numerical results 

were confirmed in the large-scale model tests conducted as a component of the 

SUPERTANK experiments (Kraus et al, 1992). The agreement of these two-

dimensional numerical and physical models indicate that alongshore processes may 

be significant in seawall related effects (Kraus and McDougal, 1996). 

Unfortunately, there is much less understanding of the alongshore processes 

in front of seawalls. In an unpublished doctoral dissertation, Jones (1975) 

theoretically and experimentally examined the effects of a seawall on longshore 

currents and the response of the fronting beach. He found that the longshore 

current profiles exhibited maxima and minima in response to a standing wave 

system, forced by monochromatic waves, which developed in front of the seawall. 
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Maximum erosion was observed at the toe of the seawall, and the maximum net 

erosion occurred if the seawall was positioned approximately three-fifths of the 

distance from the breakpoint to the still water line. Silvester (1977) suggested that 

oblique wave incidence on a seawall could establish a short-crested wave system 

which would amplify the transport of material over what would normally occur 

without the wall. The bed fronting the wall would scour, the immediate down drift 

section of coast would recede, and further down coast a shoal would develop 

beyond the influence of wave reflection. In a monitoring project of the effect of 

structures and water levels on bluff and shoreline erosion in Lake Michigan, 

Birkemeier (1980) provides one of the few quantitative measurements of longshore 

currents in front of a seawall. The southward moving current during a small storm 

was measured with dye tracers to be much larger in front of the wall than the 

adjacent north and south sections of coast. 

In a study based on 20 years of surveys along the Gold Coast, Australia, 

Macdonald and Patterson (1984) noted that "once the waves impinge on the 

seawalls for a significant proportion of the time, wave reflections and accelerated 

longshore currents can lead to increased scour adjacent to the walls." In contrast, 

Dean (1986) argues that there is no factual data to support the contention that 

armoring causes increased sediment transport and thus a steepening of the beach 

profile. He presents a "rational" argument, based on the net longshore thrust 

including reflection, that wave reflection actually causes a reduction in longshore 

sediment transport. Plant and Griggs (1992) attempted to test the hypothesis that 

longshore currents in front of a seawall may be accelerated if the surf zone is 

sufficiently restricted by the presence of the wall. However, due to the logistics of 

their study site, they were unable to sample time periods long enough to resolve 

statistically meaningful variations in the mean current between walled and un­

walled sections of beach. In three-dimensional physical model tests, Kamphuis 

(1992) found that the longshore sediment transport rate in front of a seawall 

decreased over time as the fronting beach eroded. Two long term field studies 
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have addressed the effects seawalls have on beaches in California (Griggs et al, 

1994) and Oregon (Hearon et al., in press) over time scales of close to a decade. 

Measurable or significant differences between profiles for seawall-backed and 

control beaches were not found in the studies, suggesting little long term effect of 

seawalls on the beaches. Based on the above sometime conflicting results, it has 

not yet been confirmed in the field or the laboratory whether long shore currents 

and sediment transport rates will increase or decrease in front of a seawall, as 

compared to a non-armored section of beach. 

This paper presents an analytic model to estimate longshore currents and 

littoral transport on planar beaches backed by seawalls, the objective being to shed 

light on the influence of seawalls on nearshore processes. The model is based on 

the depth and time averaged equations of motion in the nearshore, assuming no 

longshore gradients. Once the waves, incident and reflected, and the total depth 

including setup are determined, the longshore equation of motion is used to 

calculate a mean longshore current, and from this the sediment transport is 

estimated using a Bagnold-type model (Bagnold, 1963). Attempts have been made, 

wherever possible, to compare the results of the model with those from a similar 

beach with no seawall. The behavior of the long wave equation with a seawall as 

the onshore boundary condition is then used to explain some of the model results. 

4.3 Wave Model 

As waves propagate toward the shore, they refract, shoal, and break. With 

a seawall present, they may also reflect, redirecting non-dissipated wave energy 

back through the surf zone. Figure 4.1 is a plan view which shows the incident 

and reflected waves relative to the shoreline; 0, is the incident wave angle, Or is the 

reflected wave angle and the x coordinate is directed positive offshore with an 

origin landward of the seawall. This mathematically convenient coordinate system 

will be discussed later. The reflected wave angle is related to the incident wave 
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angle as, Or = -0i, so hereafter the angles will simply be denoted as 0 with the 

appropriate sign. A partial standing wave develops in front of the seawall in which 

the total velocity potential can be expressed as the sum of the incident and reflected 

velocity potentials, 

g coshk(d + z) 
i 

= (a' cos(kx cos° 
w cosh kd 

(4.1) 
ky sin° + (a) + ar cos(kx cos0 

+ ky sin0 cot + er.)) 

where g is the acceleration due to gravity, k is the modulus of the wave number (k 

and lc are the components of the wave number in the cross-shore and longshore 

respectively), d is the total water depth equal to the sum of the still water depth, h, 

and the mean free surface elevation 1, a, and a,. are the incident and reflected wave 

amplitudes, co is the angular frequency, and e,. is the local phase between the 

incident and reflected waves and is a function of cross-shore location. 

4.3.1 Incident and Reflected Wave Amplitude 

The change in wave amplitude across the surf zone causes a change in 

both the cross-shore and longshore radiation stresses. These gradients are balanced 

by an increase/decrease of the mean water level in the cross-shore, setup/setdown, 

and by a mean current in the longshore. In the present model, the spilling breaker 

assumption is employed in the surf zone so that the total breaker amplitude is 

simply related to the local total water depth as 

x icdai + ar = (h + = (4.2) 
2 2 

in which K is a breaker index. The cross-shore variation in the wave amplitude is 

determined assuming that the reflected wave energy flux, FT, is conserved across 
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the surf zone 

Pr = p gar2 Cgr = pgA	 (4.3) 

in which p is the water density, cgr is the reflected wave group velocity and A is a 

constant. This constant is evaluated at the seawall, so let 

2	 (4.4)a = a2 Crr = r CLq -ma 0- wall 

where the subscript ( Lail denotes values calculated at the seawall. Assuming that 

the increased energy in the surf zone, due to the reflected wave, is dissipated in the 

incident wave, (4.2) and (4.4) can be combined to give the cross-shore variation in 

the incident wave amplitude 

xd Alf2a.	 (4.5)
2 Cgr 

The constant A is determined from the reflected wave amplitude at the seawall. 

This is equal to the incident wave amplitude at the seawall multiplied by a 

reflection coefficient, Kr. The reflected wave amplitude can now be defined as, 

Kdwail (Cr, 
(4.6) 

aT ( 1 + Kr) 2 Cs, 

This formulation, along with the assumption that the reflected wave energy is 

dissipated in the incident wave, is consistent with the work of Jones (1975). 

However, the present formulation also includes wave setup. Note that as Kr --> 0, 

A -> 0 and (4.5) collapses to the typical formulation of the incident wave amplitude 

for spilling breakers, which is used in the classical no seawall derivations of wave 

setup, long shore currents and longshore sediment transport on planar beaches (eg. 

Bowen et al, 1968; Bowen, 1969; Longuet Higgins, 1970a,b; and McDougal and 

Hudspeth, 1983a,b). The solutions of McDougal and Hudspeth (1983a,b) will be 

compared with the present model, and will be hereinafter referred to as MH83. 
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4.3.2 Setup/Setdown 

Wave setup /letdown is determined from the cross-shore momentum 

equation, neglecting bottom and surface stresses and assuming no longshore 

gradients, 3()/ay = 0, 

(4.7)-pg(h+Ti) = 
dx dx 

where S. is the onshore component of the onshore directed radiation stress. The 

present derivation of S., including the reflected wave, is slightly different from 

that of McDougal et al (1996). The spatial derivatives of the phase between the 

incident and reflected wave, c,./, are derived analytically rather than computed via 

numerical iteration. The present result is written as 

S. = (Eii+E0 [n(cos20 + 1) 1 ] + nEn.
k2 

(4.8)+ Eircos(2kxcose + er) [2n sin20 1] 

er 
+ n cosh [2E, er 2Ei,cos(2kxeos0 + er) ] 

where Eil and En are the incident and reflected wave energies, Eir is 

= 
1 pgaiar (4.9) 
2 

and n is the ratio between group velocity and wave celerity. 

At this point, it is necessary to make several simplifying assumptions to 

develop an analytic solution to the cross-shore momentum equation. First, we 

assume shallow water in the region of interest such that 
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C = Cg = (gd) (4.10) 

where C is the wave phase speed. We consider only a planar beach with bottom 

slope m. In MH83, the wave setup is a linear function of cross-shore location for 

a planar beach, while in the current work there is a spatial oscillation term in the 

radiation stress which acts to modulate the time averaged total depth. However, 

we will later show that a linear setup assumption is still valid for the determination 

of the longshore current and sediment transport in front of a seawall. The present 

model is developed for a beach backed by a vertical seawall located within the surf 

zone, such that the elevated mean water level due to wave setup is at a higher 

elevation than the intersection of the beach with the seawall. The seawall must be 

landward of the breaker line but can be either landward or seaward of the still 

water line. The model is valid for three of the six types of seawalls, Type-3, 

Type-4, and Type-5, according to Weggel's (1988) classification system based on 

the seawall's location with respect to the shoreline. Figure 4.2 is a profile view of 

a seawall on a planar beach and geometrically suggests that the total slope, s, is 

simply the bottom slope, m, less the slope of the wave setup, a, in a coordinate 

system with an origin at the projected intersection of the wave setup with the 

planar beach. This choice of coordinate system allows the total depth to be written 

as d = sx, a convenience that greatly simplifies both the cross-shore and longshore 

equations of motion. 

The wave length is the product of the wave celerity and the wave period, so 

with the above assumptions, the wave number may be written as 

27t 2itk (4.11) 
L CT (gsx)14 

in which L is the wave length and T is the wave period. It is assumed that 

refraction is sufficient to yield small breaking wave angles, and that once inside the 

surf zone the change in wave angle is also small such that 0 = OB, a constant 

evaluated at the breaker line. Separating out the aforementioned spatial oscillation 
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Figure 4.2 Wave setup in front of a seawall, profile view definition 
sketch. 
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term, denoted as 

f = cos(2kxcos0 + Er) (4.12) 

serves to simplify the cross-shore radiation stress term. The phase term can be 

separated into two parts, 

Er = env + erg (4.13) 

where ,,, is determined by the amount of time it takes the incident wave to 

propagate from an arbitrary offshore location, xo, to the seawall and back again to 

xo 

4n 
wail 

dx (4.14) 
E"" T Ccose

X, 

A geometric phase, erg, arises from the choice of coordinate system and is chosen 

to ensure an anti-node at the seawall. The radiation stress term can now be 

simplified and combined with (4.7) to give the dimensional equation for wave setup 

dii* -3 d 2(ai + a,.2. 
+ arf) (4.15) 

dx* 4d5 dx* 

where the asterisks, which have been left off until this point for brevity, denote 

dimensional quantities. 

It is convenient to introduce the following dimensionless quantities: i = 

d = d'IdBs, X = x*IxBs, A = As r/(d13.3 (27)1"2), and (4) = 0.)* r/(27)'. 

With these definitions, the cross-shore equation of motion can be integrated to give 

the non-dimensional spatial structure of the wave setup 
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3x2X Ay1/2 9A112Ky1/4 3Ay'f 
T1 = 

8 2X 4X114 2X3 

3A.112-Ke4 f (4.16)3Ae2 fx-54.tax
4r4 4 

3A1r2icy1/4 X-5/4fdX + Clf4 

where 7 = dBalLo., Los = gs T121(27) is the deep-water wave length from linear 

wave theory, and c1 is a constant of integration. The two integrals in (4.16) have 

been evaluated and result in lengthy expressions involving special functions which 

are reported in Appendix B. Wave setdown can be derived and non­

dimensionalized in a similar manner to that described for the setup. The constant 

c1 is determined by matching the setup and setdown at the breaker line. Again, 

with no reflection from the seawall, A -0 0 and (4.16) collapses to the no seawall 

formulation for wave setup on a planar beach. 

The seawall, and the partial standing wave that develops in front of it, 

affect cross-shore surf zone dynamics in several ways. Table 4.1 lists the range of 

wave and beach conditions which are used to demonstrate the behavior of the 

model. By varying the position of the seawall across the surf zone, a total of 88 

cases were examined. Figure 4.3 shows the influence of the seawall on the width 

of the surf zone. The ordinate is the ratio of the seawall location, x,B, to the 

break point location xB0,11, calculated for a beach with the same still water depth 

slope, m, but with no seawall. This scaling is chosen since it is not a priori 

known where waves will break due to the reflected waves from the seawall. The 

top curve represents the ratio of the break point calculated for the beach with the 

seawall, xB, to xB,,,,,ll. The non-dissipated energy that is reflected back through 

the surf zone causes incoming waves to break further seaward than they would if 

no seawall was present. For example, a seawall located at approximately 50% of 
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Table 4.1 Range of wave conditions and beach slopes used in model runs. 

Case aB (m) T (s) m 

1 a,b,c,d 0.5 6 1:10, 1:20, 1:50, 1:100 

2 a,b,c,d 1.5 10 1:10, 1:20, 1:50, 1:100 

3 a,b,c,d 3.5 15 1:10, 1:20, 1:50, 1:100 
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Figure 4.3 Influence of seawall on surf zone width. 



88 

the no wall surf zone width causes waves to break 20% further seaward. The 

bottom curve demonstrates that the seawall does, however, reduce the overall, or 

effective, width of the surf zone by eliminating the area behind the wall from the 

surf zone. 

Figure 4.4 has three non-dimensional setup/setdown profiles representing 

three seawall locations, 20%, 40% and 60% of xB,,,,B. Unfortunately, in the non­

dimensionalization of the cross-shore equations of motion, most wave parameters 

do not drop out as they do in simpler setup/setdown models (ie. MH83). 

Therefore, Figure 4.4 is not general, but represents a specific set of conditions 

from Table 4.1; case 3d with ao = 3.5 m, T = 15 s, and m = 1:100. The spatial 

oscillation term causes the modulation in the wave setup/setdown. The number of 

oscillations across the surf zone depends on the ratio of the wave length to the surf 

zone width. Figure 4.4 also demonstrates that the magnitude of the modulations 

increases as the seawall is moved seaward. This is because the incident wave at 

the seawall is larger, and therefore the reflected wave is also larger. To further 

illustrate the seaward extension of the surf zone due to the waves reflected from 

the seawall, the cross-shore distance in Figure 4.4 has again been scaled by x8 

,u, rather than by xB which would have set each of the scaled break points to a 

value of 1. 

To solve the longshore equations of motion analytically, a simple 

representation of the total water depth is required. To validate the assumption of a 

linear total depth slope, 88 setup profiles were calculated and used to determine the 

corresponding still water depth profiles. Figure 4.5 shows a composite of both the 

setup and bottom profiles generated from the model. The excellent correlation that 

a planar bottom slope has with the model results (r2 = 0.995) confirms that the 

modulation of the wave setup has only a small effect on the total water depth, thus 

the approximation of a linear total depth slope is reasonable. The linear regression 

also gives a relationship between the total slope s, and the bottom slope m, 
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Figure 4.4 Wave setup/setdown in front of seawall for 3 locations of the 
seawall, x,,,il/xB no wall = 0.2 (solid line), 0.4 (dashed line) and 0.6 (dotted line). 
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Figure 4.5 Composite of 88 non-dimensional setup and still water depth 

profiles. Results of linear regression gives h/dB = 0.156 1.197 X, r2 = 0.995. 
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(4.17)s = 0.84 m 

which is necessary in solving the longshore equation of motion. For comparison, 

an analytic solution is possible for the no seawall total depth slope and, therefore, 

a relationship between SmH83 and m for a beach with no seawall 

SmH83 = m (1 
3K2 

) (4.18) 
8 + 3 K2 

For a typical mild slope breaker index of K = 0.8 this gives SmH83 = 0.81 m. The 

total depth slope is steeper for a beach with a seawall than for a beach without a 

seawall. 

4.4 Longshore Current 

Most theories for mean longshore currents due to oblique wave approach 

are based on a longshore momentum flux balance (Bowen, 1969; Longuet-Higgins, 

1970a,b; Thornton and Guza, 1986 and MH83). The present model follows this 

tradition, but also includes the effect of reflected waves from a seawall. The time 

averaged equation for longshore momentum can be simplified to a balance between 

the cross-shore gradient of the longshore radiation stress and the longshore bottom 

stress. An eddy viscosity term modeling surf zone turbulence is also included, 

serving to smooth the mean longshore current. The balance becomes 

-11--(µecriv) + t = AS''' (4.19)d dx "' dx 

where ge is the eddy viscosity, v is the mean longshore current, rby is the bottom 

stress in the longshore direction, Ste, is the longshore component of the onshore 

radiation stress and asterisks are implied, denoting dimensional quantities, but left 

off for brevity. The eddy viscosity term is necessary for a reasonable longshore 

current profile when the forcing is from monochromatic waves. Many eddy 
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viscosity models have been proposed, but the longshore current is rather insensitive 

to the choice (McDougal and Hudspeth, 1986). We will assume a simple 

representation of /.4, which increases linearly across the surf zone and is 

proportional to a characteristic density, velocity and length scale 

(4.20)= Np(gd)112x 

where N is a dimensionless constant. 

4.4.1 Bottom Stress 

The bottom stress is estimated using a quadratic bottom shear stress law, 

based on the combined wave orbital velocity and mean current velocity 

b = - p cfI a I a (4.21) 

where cf is a dimensionless coefficient and /7 is the depth averaged velocity vector. 

For a small angle of wave incidence and weak mean longshore current, the time 

averaged bottom stress in the longshore direction can be written as 

1 (4.22)Tby = pcflu.Ruy+v)dz
d 

The longshore component of the wave orbital velocity, uy, which is easily derived 

from (4.1), is proportional to sin() and will be neglected from the bottom stress due 

to the small angle assumption. The onshore component of the wave orbital 

velocity including the reflected wave is 
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gkcoshk(d+ z)
ux (a cos° sin(kxcose

coshkd 

(4.23) 
-kysine + 0+a,(c,os0 + -2-.)sin(kxcos0 

+kysine - cat + e)) 

After several trigonometric and algebraic simplifications, (4.23) can be written as 

ux = c2sin t + a (x) (4.24) 

where the coefficient c2 is 

el 
c2 = g (z) cos2 0 + a(cose + 

(4.25) 

el 
2a p rcose (COS° + --pf)1/2 

in which 

gkcoshk(d + z) (4.26) 
coshkd 

and a(x) is a spatially dependent phase term which will be eliminated during the 

subsequent time averaging of the bottom stress. The coefficient c2 can be 

simplified via a binomial expansion, assuming a,Ja, < 1 

' (4.27)
c2 g ( z ) c o s ( ) (a a (1 + 

Er 

cos° 

This assumption is reasonable over most of the surf zone except very close to the 

wall. At the wall itself, if K, = 1.0, the ratio a jai = 1, and the simplified c2 

would have the greatest error. This maximum error is approximately 14% at the 

seawall, and much less for the rest of the profile. Making the same set of 
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assumptions as when determining the total water depth, depth and time averaging, 

the bottom stress becomes 

fg 
pc1-- (ai + a,f)v	 (4.28) 

tbY 
7C (gd)1f2 

4.4.2 Longshore Radiation Stress 

s, is the longshore component of the onshore directed radiation stress and 

is determined from 

(4.29)S = f
ii

pu u dz
xy x y 

-d 

The result, again derived accounting for the partial standing wave which develops 

in front of the seawall, is written as 

el el (4.30)
S =n((Eu+E,,,)sine cos() + (Eir--r-f + En.-2: ) sin()) 

xy k k 

Employing Snell's law for wave refraction and making the same set of assumptions 

as above, the cross-shore derivative of (4.30) is 

sin20 d 2 2.dS pg ( ai + ad(gd)112
dx 'Y 4 (gdB)1f2dx 

(4.31) 

e+ pg	 ( a.i a, f ar2)(gd)112 
(gdsinB)1I2 
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4.4.3 Longshore Current Solution Without Mixing 

Due to the complexity of both the bottom stress and the longshore radiation 

stress, an analytic solution to the differential equation (4.19) is still prohibitively 

difficult. However, we can determine the longshore current in front of a seawall 

with no mixing by neglecting the eddy viscosity term in the longshore equation of 

motion. Figure 4.6 shows the no-mixing longshore current calculated from two 

possible bottom stresses using case 3d from Table 4.1 and a seawall located at 

20% of the no seawall surf zone width. First, the longshore current using the 

bottom stress formulation in (4.28), which includes the spatial oscillation term, is 

presented. A second bottom stress, determined by the approximation a, + arf 

K d/2, further simplifies the problem. Figure 4.6 shows that this approximation 

has only a small effect on the longshore current throughout the surf zone, except 

very close to the seawall where the prediction is non-conservative. For both cases, 

the longshore current velocity, v, has been non-dimensionalized by the no-mixing, 

no seawall longshore current evaluated at the breaker line, vB no wall. The no-mixing 

longshore current profiles shown in Figure 4.6 are questionable not only in 

magnitude, but also in the large shear developed by the modulations. Including a 

mixing term to generate a reasonable longshore current profile is more important 

for a surf zone with a seawall than for one without. 

By further simplifying the bottom stress, we have now eliminated the 

second of the three places where the partial standing wave is encountered. Earlier 

we showed that the total depth could be approximated as linear, even though the 

setup is modulated. Here we have also eliminated the spatial oscillation term from 

the bottom stress to yield 

r = P cf K(gd) 1/2 v (4.32) 
bY 

This is the same form of the bottom stress found in many of the no seawall 

solutions to the longshore equation of motion (MH83). The third manifestation of 



96 

0.2 0.4 0.6 0.8 
x/rB
 

Figure 4.6 Longshore current in front of seawall with no mixing, using 
model case # 3d and two formulations of the bottom stress, r b oc (a, + an) v 
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the spatial oscillation term, which has been retained, is in the forcing of (4.19), 

dVdx. 

4.4.4 Longshore Current Solution With Mixing 

We can now simplify the longshore equation of motion (4.19) by using the 

final form of the bottom stress. The dimensional equation for longshore current in 

front of a seawall can be written as 

5 . dvs v"
x*2d2v + x = 

dx *2 2 dx P 

(4.33) 
1 dS*xY . 

X < X;
(p* Ns(g sx*)112) dx 

0; x' > x; 

where the lateral mixing coefficient is 

Nis (4.34) 
C K 

After non-dimensionalizing (4.33) in the same manner as the cross-shore equation 

of motion and expanding the radiation stress term, the non-dimensional longshore 

equation of motion can be written as 

..,,d 2V 5 dV V
 
dX2 

+ 2 dX P 
=
 

(4.35)
csx-1/4f+ c6x3/4f c7x-1/2f ;c3X + c4X-1/4 X < 1 

0; X >1 

where 
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5 sin 20 K2 CB 5sin2OKA1/271/4cB 
c4 

32N 16N 

sin OKA 1/2 71/4 eB5 sin OKA 1/271/4 cB (4.36)
C5 , C6 = 

8N 2N 

sin OA yin CB 
C7 

N 

(g* dB)1121v8and CB wail* is a non-dimensional break point celerity. This is the 

Euler equation and has a homogeneous solution of the form 

(4.37)Vh = AiXX' A2XX2 

where 

)m-3 ± (9 + 
16 

(4.38) 
X12 = 4 

and Az and A2 are integration constants. The particular solution is determined via 

the method of undetermined coefficients. However, due to the complicated forcing 

terms hi (4.35), P must be chosen carefully to give values of X1,2 for which the 

integrals arising from the solution technique can be solved. This is not a severe 

limitation in that the longshore current can still be solved over a range of P values 

consistent with what is usually presented in longshore current discussions. In the 

subsequent discussion of the model results, solutions with P = 0.4 are presented. 

Once again, note that as K,. -+ 0 (4.35) collapses on to the no seawall formulation 

of longshore currents on a planar beach. 

Boundary conditions are introduced to evaluate the integration constants. 

The velocity must be bounded far offshore and the velocity and the gradient of the 

velocity must match at the breaker line. 
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(4.39 a) V(X-002) -0 bound 

V(1-) = V W); ) dr (4.39 b,c) 

Typically, in longshore current models the velocity must also be bound at the 

shoreline. In the present model, with wave reflection off of a seawall, a mixed 

boundary condition was chosen which allows for a no-slip wall condition, free-slip 

wall condition, or a combination of the two 

2,G1V(X = Xwa) + 17(X = Xwall ) = 03 (4.40) 
dX 

The free-slip condition, with th = 0, 02 = 1 and 03 = 0, is the only boundary 

condition for which results are presented. 

With a model for wave setup, and the longshore equation of motion solved, 

the long shore current in front of a seawall can now be calculated. Non­

dimensionalizing does not sufficiently reduce the number of parameters to develop 

generic plots, so individual cases must be analyzed resulting in rather cumbersome 

sensitivity analyses. Figure 4.7 shows the longshore current in front of a seawall 

for case 3d with the seawall located at several positions across the surf zone. As 

found by Jones (1975), local maxima and minima are evident in the current 

profiles due to the partial standing waves which develop in front of the seawall. 

The magnitudes of the longshore currents are sensitive to the position of the 

seawall, and in the present case the largest current is found when the seawall is 

approximately three fifths of the way across the surf zone. The MH83 solution is 

also shown in Figure 4.7 and the position of the seawall determines whether or not 

it increases or decreases the longshore current relative to the longshore current on 

a similar beach with no wall. This dependency on relative seawall location 

confirms a hypothesis that has been suggested by many researchers (eg. Dean, 

1986; Weggel, 1988 and Griggs and Tait, 1990). 
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Figure 4.7 Longshore current profiles fronting a seawall for model case # 
3d and several positions of the wall, xall/xil no = 0.2 (thick solid line), 0.411 

(dashed line), 0.6 (small dotted line), 0.63 (dashed-dot line) and 0.8 (thin solid 

line). The large dots represent the longshore current with no seawall (MH83). 
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Figure 4.7 was generated for a single beach/wave condition and 5 positions 

of the seawall. Similar results have been generated for many other conditions but 

are not presented. The model substantiates the observation made by Weggel 

(1988) that "reflected waves alter radiation stresses and thus affect the cross-shore 

distribution of long shore current velocity in front of the wall." However, the 

behavior of the profiles are quite complex. This suggests that integrated quantities 

across the surf zone might be simpler to analyze. Figure 4.8 shows the results of 

many model runs in which the longshore current has been integrated from the 

seawall out to an offshore location of five times the break point to yield the total 

long shore volumetric flow rate, Q. The shallow water assumption is violated in 

the calculation of Q at this distance offshore. However, the velocities are small 

at these distances so the influence on the total flow is rather small. The total 

volumetric flow rate from the no wall solution is calculated by integrating the 

longshore current from the hypothetical seawall location to five times the no wall 

break point. Each panel in Figure 4.8 represents one beach slope, three offshore 

wave conditions, and many positions of the seawall ranging from 20% to 80% of 

the no wall surf zone width. Figure 4.8a, the steepest beach (1V:10H), shows a 

fairly simple response to the location of the seawall. The total volumetric flow 

rate decreases as the wall is pushed seaward until the wall is approximately 70% of 

the way across the no wall surf zone when the flow begins to increase. This steep 

beach sharply reduces the amount of long shore current as compared to a beach 

without a seawall. Figure 4.8b reveals that a moderately sloped beach (1V:20H) 

increases the longshore current relative to a beach with no wall. Interestingly, the 

larger wave heights and longer wave periods force less total flow than the smaller 

waves. The next two panels, for mild slopes of 1V:50H (Figure 4.8c) and 

1V:100H (Figure 4.8d), have many inflection points. This clearly demonstrates 

the strong dependence of the longshore current on the cross-shore position of the 

seawall in the surf zone. 
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Figure 4.8 Total volumetric flow rate fronting a seawall for 4 planar beach 
slopes, a) m = 1:10, b) m = 1:20, c) m = 1:50, d) m = 1:100, and several wave 
conditions, case 1, from Table 4.1, (solid line), 2 (dashed-dot line) and 3 (small 
dotted line). The large dots represent the total volumetric flow rate with no 
seawall. 
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4.5 Longshore Sediment Transport 

Once the longshore current in front of a seawall is known, an estimate of 

the longshore sediment transport profile is possible. A Bagnold-type energetics 

model (Bagnold, 1963) is used which includes both bed load and suspended load. 

The model assumes that the orbital wave motion mobilizes the sediment, wave 

power is expended maintaining the sediment in motion, and the presence of a mean 

current, regardless of how small, transports the sediment. In calculating the 

sediment transport, the same set of assumptions are used as when determining the 

wave setup and the longshore current. Non-dimensionalizing the transport rate by 

the no seawall, no mixing transport rate evaluated at the breaker line, the 

dimensionless transport, I, is given as 

( 
dB x v (4.41) 

4.0 wall 

Figure 4.9 shows the non-dimensional sediment transport profile in front of a 

seawall for case 3d and the same positions of the seawall which were presented in 

Figure 4.7. Similar to the response of the longshore current model, the 

magnitudes of sediment transport depend greatly on the position of the seawall. 

Figure 4.10 reveals the dependency of the total quantity of sediment transport, /0 

as a function of bottom slope, wave conditions, and the position of the seawall. /0, 

is calculated by integrating the transport from the position of the seawall to the 

break point. The integration stops at the break point because the sediment 

transport model is only valid in the surf zone. Due to the simplicity of the 

sediment transport model, the integrated sediment transport responds similarly to 

the integrated longshore current. For steep beaches, the total longshore transport 

is less than that on a beach without a seawall. On moderately sloped beaches, the 

total transport is greater than a beach without a seawall. For mild sloped beaches, 

the total transport is generally greater with a seawall, but depends on the surf zone 

width relative to the number of standing waves within the surf zone. Figure 4.11 

demonstrates the effect the reflection coefficient, lc, has on the total sediment 
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Figure 4.9 Sediment transport profiles fronting a seawall for model case # 
3d and several positions of the wall, x,,,11 /xB di = 0.2 (thick solid line), 0.4 
(dashed line), 0.6 (small dotted line), 0.63 (dashed-dot line) and 0.8 (thin solid 
line). The large dots represent the sediment transport with no seawall. 
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Figure 4.10 Total sediment transport fronting a seawall for 4 planar beach 
slopes, a) m = 1:10, b) m = 1:20, c) m = 1:50, d) m = 1:100, and several wave 
conditions, case 1 (solid line), 2 (dashed-dot line) and 3 (small dotted line). The 
large dots represent the total sediment transport with no seawall. 
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Figure 4.11 Effect of reflection coefficient on total sediment transport for 

two planar beach slopes a) m = 1:100, b) m = 1:10 and 5 reflection coefficients, 
Kr = 1.0 (solid line), 0.75 (dashed-dot line), 0.50 (dashed line), 0.25 (small dotted 
line) and 0.01 (pluses). The large dots represent the total sediment transport with 

no seawall. 
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transport. For the mild slope (Figure 4.11a), decreasing the reflection coefficient 

reduces the oscillations in the response due to a smaller standing wave system in 

the surf zone. For the steep sloping beach (Figure 4.11b), increasing the reflection 

coefficient actually decreases the total sediment transport for most positions of the 

seawall. For both beaches the model shows the total sediment transport tending 

toward the no wall solution as the reflection coefficient goes to zero. 

4.6 Comparison With The Long Wave Equation 

Solving the linear long wave equation 

dd . .(g d n ) (4.42) 
dt dx* dx* 

with a seawall as the landward boundary condition both confirms some of the 

results of the present model and sheds light on the complex behavior of longshore 

processes fronting a seawall. The solution for the free surface profile in front of a 

seawall, from the long wave equation, is a combination of Bessel functions. In 

Figure 4.12, a dimensionless amplification factor, 77/dB,,,,,ill, from the long wave 

equation is compared to the solution of the cross-shore equation of motion, (4.15). 

Although the magnitudes of the two solutions are quite different (note the different 

scales on the vertical axes) the similarity in the modulations of the free-surface is 

apparent. The results presented in this figure were calculated for case 3d with the 

seawall at 20% of the no wall surf zone width, xi/x3,,11 = 0.2. Similar results 

have been reproduced for all cases. The modulations in the long wave equation 

can also be compared to the modulations in the longshore current profile. Figure 

4.13 shows that there is a one to one correspondence between the modulations of 

the cross-shore model and the longshore model. 

Due to the Bessel function nature of the solution to (4.42), as the seawall is 

moved seaward the linear long wave equation encounters singularities which result 
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(solid line) and the linear long wave equation (dotted line). 
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(solid line) and the linear long wave equation (dotted line). 
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in free-surfaces with infinite magnitudes. The larger the surf zone width, the more 

singularities. Figure 4.14 shows the integrated total volumetric flow rate, for 

several positions of the seawall, for case 3c and case 3d. Superimposed on the 

figure are the positions of the seawall which cause singularities in the long wave 

equation for these two cases. Again, there is almost a one to one correspondence 

between the singularities and each inflection point in the total longshore current. 

Earlier, it was shown that the maximum longshore current for case 3d occurs when 

the seawall is at a cross-shore position of three fifths of the no wall surf zone 

width (xa/xB no ail = .63). This corresponds almost exactly to one of the 

singularities in the long wave equation. Figure 4.15 shows the maximum 

longshore current as a function of the seawall location for case 3c and 3d. The 

singularities in the long wave equation fall exclusively on or near the local maxima 

and minima in these curves. These results are somewhat surprising as we are 

comparing a cross-shore quantity from a fairly simple model with longshore 

quantities from a much more complex model. It does, however, suggest that the 

behavior of the longshore current and sediment transport in front of a seawall can 

be explained in terms of a resonance, which is tuned by the position of the seawall 

across the surf zone. 

4.7 Conclusions 

An analytic model has been developed to estimate longshore currents and 

the associated sediment transport on a planar beach backed by a seawall. The 

model assumes shallow water, small angle of wave incidence, spilling breakers and 

conservation of reflected wave energy flux. A partial standing wave develops in 

front of the seawall causing modulations in the bottom shear stress, radiation 

stresses and the resulting setup, longshore current and long shore sediment 

transport. Modulations associated with the total water depth and bottom stress are 

relatively small and can be neglected. The modulation of the radiation stress is 
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retained and forces long shore current and sediment transport profiles which behave 

quite differently than no wall formulations. 

Reflection from a seawall causes waves to break further seaward, resulting 

in a steeper total depth slope. However, the effective width of the surf zone (the 

distance from the seawall to the break point) is actually less than the surf zone 

width without a seawall. As the reflection coefficient goes to zero, the present 

model collapses to the no wall solutions for wave setup, longshore current and 

sediment transport on planar beaches. The magnitudes of the long shore current 

and sediment transport in front of a seawall can be either greater than or less than 

a similar beach without a seawall, depending on the location of the seawall in the 

surf zone, the beach slope and the wave conditions. A comparison with the 

solution to the linear long wave equation suggests that the position of the seawall 

serves to tune the surf zone with some positions forcing a resonant condition 

causing local maxima and minima in the behavior of the longshore current and 

sediment transport. 
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CHAPTER FIVE: CONCLUSIONS
 

This thesis characterizes wave runup on high energy dissipative beaches 

utilizing results from field investigations performed on the central Oregon coast. A 

methodology is developed to predict the susceptibility of coastal properties to 

erosion. This model is valid for sea cliffs, sand dunes and coastal protection 

structures which are intermittently impacted by extreme wave runup events. For 

vertical structures, whether sea cliffs or sea walls that have toes seaward of the 

mean water line, longshore processes become increasingly important. Therefore, 

an analytic model which predicts longshore currents and sediment transport on 

beaches backed by vertical structures has been formulated. The main conclusions 

of this thesis can be summarized as follows. 

1) Extreme wave runup statistics have been found to have a linear 

dependence on the deep-water significant wave height on high energy dissipative 

beaches. Dimensional runup has also been parametrized by (fl HS LP. 

Measured water levels on the central Oregon coast can be significantly different 

than predicted tides, but the extreme events typically do not coincide with extreme 

storms. Predictions of extreme total water levels, including water levels measured 

by tide gauges as well as water levels due to wave runup, have been used to 

determine the relative susceptibility to erosion of coastal properties. Model results 

compare well with qualitative observations, illustrating the application of the model 

to coastal zone management decision making. 

2) Wave runup on high energy dissipative beaches is dominated by very low 

frequency infragravity energy. Runup spectra show a large saturated region with 

anf-4 roll off extending to lower frequencies than previously reported. Significant 

vertical runup elevations varied by a factor of 2 over a 1.6 km study area and were 

found to depend strongly on the local foreshore slope. Runup at Agate Beach, 

Oregon is coherent over large alongshore length scales, on the order of 1200 m at 
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peak frequencies. The cut-off wave length for leaky modes is approximately 60 

km at the peak runup frequencies, so even with a 1.6 km array of runup 

measurements, most edge wave modes were not resolved. 

3) Partial standing waves develop in front of vertical structures causing 

modulations in the bottom shear stress, radiation stresses and the resulting setup, 

longshore current and longshore sediment transport. Modulations associated with 

the total water depth and bottom stress are relatively small and can be neglected. 

The magnitudes of the longshore current and sediment transport in front of a 

vertical structure can be either greater than or less than on a similar beach without 

a structure, depending on the location of the structure within the surf zone, the 

beach and the offshore wave conditions. A comparison with the solution to the 

linear long wave equation suggests that the position of the structure serves to tune 

the surf zone, with some positions forcing a resonant condition causing local 

maxima an minima in the behavior of the longshore current and sediment transport. 

In addition to the above conclusions, this work identifies the potential for 

several future directions. The methodology for predicting the relative susceptibility 

of coastal properties to erosion would benefit from an inclusion of the impact 

forces associated with wave runup as well as the corresponding erosion rates of sea 

cliffs and sand dunes. More wave runup measurements would be useful on high 

energy intermediate beaches with Iribarren numbers higher than those reported 

here. Also, runup measurements during large storm events would demonstrate 

whether the functional relationships determined in this study still hold during 

extreme conditions. Finally, the analytic model developed in Chapter 4 should be 

verified in both the laboratory and the field. 
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APPENDIX A
 

A.1 Introduction 

This report is the companion volume to a study in which computer models 

have been used to numerically evaluate ocean processes and sediment transport that 

cause beach and foredune erosion on the Oregon coast, (Carpenter, 1995; Komar et 

al., 1995). The goal of this work is to yield quantitative assessments of shoreline 

stability in the beach/dune environment, information which could be used to 

determine how oceanfront construction setbacks should be established in dune 

environments. The test sites to which the erosion models are applied span much of 

the Oregon coast. 

The numerical models require physical information about each test site in 

order to provide reliable predictions of beach/dune response to storm conditions. 

Ground surveys of beach profiles, sediment sizes, wave conditions and water levels 

are necessary for model applications. This report documents an extensive beach 

profiling database that has been compiled for this study. A more general description 

of data sources available on the Oregon coast is given in Komar et al. (1995). The 

report also includes data collected for parallel studies undertaken by the same 

research group, eg. runup predictions on beaches backed by sea cliffs (Chapters 2 

and 3) and the long term beach response to shore stabilization structures (Hearon et 

al., in press). Data have been organized by type, eg. dune, bluff, or sea cliff 

backed, and by littoral cell. 

A.2 Geologic Setting 

Much of the Oregon coast consists of pocket beaches separated by large 

headlands. These pocket beaches range in size from a few kilometers to over one 
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hundred kilometers. These pocket beaches are termed littoral cells as sediment 

within a particular cell tends to stay within that cell. There are differences in the 

erosional responses of the series of littoral cells, in large part due to different sand 

volumes of the fronting beach and the varying capacity of the beaches to act as 

buffers between storm waves and foredunes or sea cliffs. 

A. 2.1 Littoral Cell Classification 

Table A.1 lists the 13 littoral cells on the Oregon coast, from south to north, 

with the southern and northern boundaries and the approximate length of each cell in 

kilometers. The littoral cells reported here are similar to those presented by earlier 

researchers and were determined simply by examining coastal charts for large 

geographic features, usually headlands. The littoral cells have been named 

according to the major city located within the cell or after a major feature within the 

cell. Cell 3 has been split into three sub-cells due to the enormous distance between 

Cape Arago and Heceta Head. The Umpqua and Siuslaw rivers are natural choices 

for splitting this large cell into sub-cells, both as geomorphological features and the 

fact that both rivers have large jetties at their mouths that serve to restrict most 

longshore sediment transport in the same way as the major headlands do. 

Morphologic and historical descriptions of the cells on the northern half of the 

Oregon coast can be found in Komar et al. (1995). 

A.2.2 Study Sites 

Originally, test sites were chosen for this study simply by the constraint that 

foredunes are present, and that a number of littoral cells are sampled. Of particular 

interest were sites of past foredune erosion, e.g. Pacific City, sites where recent or 

proposed developments may be in danger from future erosion occurrences, e.g. 

South Beach, and sites where foredune accretion in recent years has resulted in 
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Table A.1. Oregon littoral cell classification. 

# Cell Name Southern Northern Approximate 
Boundary Boundary Cell Length 

) 

1 Brookings Crescent City, CA Cape Blanco 120 

2 Bandon Cape Blanco Cape Arago 45 

3 Umpqua Cape Arago Heceta Head 90 

3 a Umpqua (Coos Bay) Cape Arago Umpqua River 38 

3 b Umpqua (Reedsport) Umpqua River Siuslaw River 33 

3 c Umpqua (Florence) Siuslaw River Heceta Head 20 

4 Yachats Heceta Head Cape Perpetua 18 

5 Newport Cape Perpetua Yaquina Head 42 

6 Beverly Beach Yaquina Head Cape Foulweather 10 

7 Lincoln City Cape Foulweather Cascade Head 30 

8 Nestucca Cascade Head Cape Kiwanda 14 

9 Sand Lake Cape Kiwanda Cape Lookout 13 

10 Netarts Cape Lookout Cape Mears 15 

11 Rockaway Cape Mears Cape Falcon 28 

12 Cannon Beach Cape Falcon Tillamook Head 18 

13 Clatsop Plains Tillamook Head Columbia River 30 
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public pressure to permit dune regrading, e.g. Manzanita and Seaside. During 

model testing it was subsequently learned that offshore bathymetry data was 

necessary in accurately modeling beach/dune responses to extreme Oregon storm 

conditions. This is because low sloping beaches, common in Oregon, can have surf 

zones extending well over a kilometer in width during major storms. Bathymetric 

data off of the Oregon coast is almost non-existent, save for work done by Willard 

Bascom in the 1940's (Komar, 1977), due to the difficulty in gathering data in such 

a harsh environment. These Bascom sites were re-occupied, ground surveys were 

obtained, and an attempt was made to patch our "modern" beach profiles onto 

Bascom's "historical" bathymetric data. As mentioned earlier, other studies have 

been performed during this same period in which beaches backed by sea cliffs and 

shore stabilization structures have been monitored. Data gathered during those 

studies are included in this report for completeness and to provide relevant 

information on shoreline stability for beaches having a variety of morphological 

characteristics. 

Beach profile and sediment size information is reported here for 23 sites, 

representing 12 of the 13 littoral cells mentioned above. Beach profiles were 

obtained with an Omni Total Station. Obtaining survey data with the Omni differs 

from classical surveying techniques in that the Omni remains stationary and 

measures the location of the target point with respect to its own location and an 

azimuth set by the user, usually north equals 0 degrees. The target point is a prism 

mounted atop a staff which the rod-person holds at the desired place on the beach. 

The Omni sends an optical signal which is returned by the prism and is then 

processed internally by the Omni unit. The Omni has the capability of measuring 

and storing up to 180 data points in Cartesian coordinates. Slope distance, vertical 

angle, and horizontal angle of a target point with respect to the 0 degree azimuth are 

measured by the Omni. The X and Y (horizontal position), and Z (elevation) 

coordinates of the target point are internally calculated by the Omni using these 

measurements and simple trigonometry. Data have been geometrically transformed 
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in each individual site for coordinate systems with an ordinate (X-axis) positive 

onshore and as shore-perpendicular as possible. This choice forces the abscissa (Y-

axis) to be positive to the north and nearly parallel with the shoreline. Surveys were 

performed with temporary bench marks which were later tied in to permanent bench 

marks, usually of the U.S. Coast and Geodetic Survey or the Oregon Department of 

Transportation. Therefore, the elevation of a particular survey point is fixed relative 

to a datum, NGVD 1929, but the horizontal position is arbitrary. Usually one of 

the temporary bench marks was assigned the horizontal position (0,0) and the rest of 

the points for a particular site are referenced to this, again with the positive X and Y 

directions as given above. 

The studies reported are concentrated on the littoral cells of the northern half 

of the coast. Table A.2 lists the 23 sites by name and classifies them by littoral 

cell, whether they are backed by dunes (D), sea cliffs (C), or bluffs (B), and 

whether or not there are shore stabilization structures, revetments (R), seawalls 

(SW), or no structure (NA). The table also gives the median grain size, D50, in 

millimeters for most of the sites, determined from standard sieve analyses of sand 

samples obtained during the surveys. An asterisk before a site name means that the 

elevations of this site are not referenced to NGVD. This occurred either due to a 

lack of confidence in the permanent bench mark near the site, or due to a lack of a 

permanent bench mark within a few miles of the site. 

A.3 Site Descriptions 

The following sections give simple physical descriptions of each of the 

aforementioned 23 sites reported on in this study. The extensive beach profile data 

base, given in Appendix A of Ruggiero (1995), is also described on a site by site 

basis. All descriptions of particular beach profile measurements refer to this report. 
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Table A.2. Study sites 

# Site Name Littoral Cell Type D, mm Structure 

1 Sport Haven Beach Brookings B N/A 

2 Driftwood Shores Umpqua (Siuslaw River) D .21 R 

3 San Marine Yachats B .22 R 

4 C&L Ranch Newport B .20 R 

5 Pacific Shores Newport C .20 R 

6 South Beach Newport D .26 N/A 

7 Nye Beach Newport C .29 N/A 

8 Beverly Beach Beverly Beach C .27 N/A 

9 Pacific Palisades Lincoln City C .31 R 

10 Gleneden Beach Lincoln City C .45 

11 Pacific Sands Motel Nestucca D .33 SW 

12 Nestucca Spit Nestucca D .44 N/A 

13 Sand Lake Sand Lake D .32 N/A 

14 *Camp Merriweather Sand Lake C .32 N/A 

15 *Camp Clark Sand Lake C .31 N/A 

16 Oceanside Netarts B .31 N/A 

17 *Nedonna Beach Rockaway D .31 N/A 

18 Manzanita S. Rockaway D .33 N/A 

19 Manzanita N. Rockaway D .32 N/A 

20 *Arcata St. Park Cannon Beach C .25 SW 

21 Seaside Clatsop Plains D .22 SW 

22 Del Ray Wayside Clatsop Plains D .25 N/A 

23 Columbia Beach Clatsop Plains D .29 N/A 
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A.3.1 Brookings 

Sport Haven Beach in Brookings is located just south of the southern jetty 

protecting the entrance to the Chetco River. The area studied is seaward of a 

moderately developed port district which includes a R.V. park, a marina and a Coast 

Guard station. The foreshore is particularly steep and is composed of cobbles and 

coarse sand, for this reason no D50 is given for this site in Table A.2. The 

developed area backing the beach was previously a dune area before riverine fill 

material was used to raise the elevation of the RV park and its access road. This 

beach experienced dramatic erosion during December 1994, at which time the road 

fronting the R.V. park was partially destroyed, (Komar et al., 1995). 

Sport Haven Beach was surveyed just once, 2 February 1995, shortly after 

the area had experienced the aforementioned erosion. Transect 1 in Appendix A of 

Ruggiero (1995), a profile view, shows a "natural" portion of this beach, a steep 

slope backed by a relatively short dune, a 5 meter dune crest above mean sea level, 

with a low lying area further landward which is finally backed by a higher fill area. 

Transects 2 through 5 front the more developed portions of this site. The cross-

shore coordinate (X=0) corresponds with the center line of the access road for the 

RV park. Transects 3 and 4 show the large scarp that developed during the erosion 

event and reveals the extent of the road damage. 

A.3.2 Driftwood Shores 

A dune backed beach located at Heceda Beach just north of Florence. A low 

rubble mound revetment measuring approximately 30 m backs this site. For full site 

description see Hearon (1995). 
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A.3.3 San Marine 

A bluff backed beach between Yachats and Waldport. The bluff line is very 

irregular, containing several indentations and moderately protruding areas along a 

lengthy front. There is a rubble mound revetment at this site that measures 

approximately 150 m in length. For full site description see Hearon (1995). 

A.3.4 C&L Ranch 

C&L Ranch is located midway between Lost Creek State Park and Ona 

Beach State Park. There is a 25 m long rubble mound revetment that protects and 

stabilizes the backing bluff of C&L Ranch. For full site description see Hearon 

(1995). 

A.3.5 Pacific Shores 

A sea cliff backed beach approximately three miles south of the Yaquina Bay 

jetties. Two rubble mound revetments, one 20 m and the other 140 m with a 15 m 

gap between, front the sea cliff. For full site description see Hearon (1995). 

A.3.6 South Beach 

This study site is just south of the southern Yaquina Bay jetty in Newport. 

This is an area that accreted due to the construction of the jetties and is 

characterized by large dunes and a wide dissipative beach. There is a proposal to 

develop this site. This site was surveyed twice, with winter and summer profiles 

both taken in 1995. A single profile line was sufficient at this site due to the lack of 

three dimensionality in the foreshore. The profiles reveal little change in the 
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foreshore between summer and winter. The beach is backed by an extensive dune 

network which crests at approximately 8 to 9 meters above NGVD 29, followed by 

a low lying hummocky area and finally another higher crest further landward. 

A.3.7 Nye Beach 

This study site is just north of the parking area for Nye Beach in Newport. 

The site extends from the natural cliff backed portion of the beach towards the north 

to include portions of the historical "Jump Off Joe" landslide. The beach is 

relatively flat and backed by large sea cliffs. The beach face junction, the 

intersection of the sandy beach and the steeper sea cliff or bluff, is at a lower 

elevation in front of the landslide than on the adjacent beach, thus the landslide 

experiences wave attack more frequently. Wave runup measurements have been 

obtained at this site as part of the sea cliff erosion study. The cliff in the southern 

portion of the site consists of loosely consolidated sandstone and is heavily 

vegetated. This suggests that it is relatively stable. The bluff fronting the landslide 

is both mudstone and sandstone with no vegetation due to the movement of the slide 

itself and because of erosion resulting from waves frequently impacting the base of 

the bluff. 

This site has been occupied 10 times from September 1993 to May 1996, 

with 31 profiles representing both winter and summer conditions. The landslide 

area begins approximately at the longshore coordinate, Y = 65 meters, which can 

be located on any of the plan view diagrams for Nye Beach in Appendix A of 

Ruggiero (1995). A close look at the profiles reveals a natural seasonal variability 

in the amount of sand on the beach face. The winter profile has upwards of 60-70 

cm less sand than the summer profile. This can be seen in Figure A.1 in which 

transects 1 from four surveys, 3 September 1993, 22 February 1994, 21 July 1994, 

and 24 January 1995 have been overlaid. Figure A.2 shows 3 additional surveys at 

this same cross-shore transect from 24 January 1995, 29 June 1995 and 11 October 
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Figure A.1. Summer vs winter beach profile comparison, Nye Beach, Oregon. 
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Figure A.2. Lack of summer accretion, Nye Beach, Oregon. 
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1995. Interestingly, by June 1995 the beach had not yet fully recovered from the 

previous winter, and even by October 1995 sediment had not fully returned to form 

the summer upper profile, suggesting that the winter of 1994/1995 transported 

sediment far enough seaward to prohibit the natural accretionary cycle of the beach. 

A.3.8 Beverly Beach 

This study site is just to the north of Beverly Beach State Park, and south of 

Otter Rock. The extremely flat beach is backed by very high cliffs. Of all the 

littoral cells on the Oregon coast, this cell is one of the most deficient in total sand 

volume. Therefore it has the least ability to form a beach which serves as a buffer 

between the waves and the sea cliff (Komar and Shih, 1993). Beverly Beach also 

has a relatively low beach face junction, on average 4.02 m, which also contributes 

to the substantially greater susceptibility to wave attack as compared with other 

locations on the Oregon coast. For this reason, runup measurements have been 

performed at this site. The cliffs are made of resistant mudstone, and have little 

vegetation. 

Winter and summer profiles have been collected at this site for both 1994 and 

1995. Again, the trend is more sand on the profile during the summer. Transect 3 

from the 13 July 1995 (Ruggiero, 1995), survey shows the classic dissipative 

summer profile found on many Oregon beaches. From seaward moving landward, 

the profile is characterized by a wide, flat, low-tide terrace followed by a series of 

well developed berms separated by a fairly steep slope. The upper profile has some 

ephemeral bumps probably caused by eolian processes, as waves do not reach this 

high in the summer months, and the profile is backed by a steep sea cliff. The 

winter profiles at this site often approach a planar beach. 
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A.3.9 Pacific Palisades 

A sea cliff backed beach north of Fogarty Creek State Park, just south of 

Lincoln Beach. A rubble mound revetment follows the curve in the cliff for 

approximately 300 m. For full site description see Hearon (1995). 

A.3.10 Gleneden Beach 

A sea cliff backed beach with a revetment just to the north of Gleneden 

Beach Wayside State Park. A 40 m long rubble mound revetment fronts the sea 

cliff. For full site description see Hearon (1995). 

A.3.11 Pacific Sands Motel 

A dune backed beach with a seawall, located near the Neskowin Beach 

Wayside State Park. A 70 m timber seawall fronts the Pacific Sands Motel. For 

full site description see Hearon (1995). 

A.3.12 Nestucca Spit 

The study site is just seaward of the parking lot in Bob Straub State Park 

which is within Pacific City near the mouth of the Little Nestucca River. There are 

large, well developed, and heavily vegetated dunes. This site is located within a cell 

that has an abundance of sediment. Less than a mile to the north is the area of 

Pacific City where a large area of foredunes have been regraded and planted with 

beach grass. Unfortunately, a winter profile has not been obtained for this site, but 

the summer profiles demonstrate the amount of protection the dunes give the 

backshore with crests reaching up to 14 m. The profiles show a fairly steep 
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foreshore backed by a pronounced berm and then a smoothly sloping beach reaching 

the dunes. 

A.3.13 Sand Lake 

The study site is a several kilometers to the south of Cape Lookout and is 

within the ATV (All Terrain Vehicle) recreation area. The area is abundant with 

sand and large dunes. This site was chosen for this study because Bascom 

performed bathymetric surveys here in 1946, (Komar, 1977; Carpenter, 1995). 

Only a single summer survey was performed at this site, revealing a well defined 

berm and extremely large dunes with crest heights on the order of 15 m. 

A.3.14 Camp Merriweather 

Another Bascom site, this beach fronting a Boy Scout camp is between Sand 

Lake and Cape Lookout. The beach, backed by a large bluff, is quite remote. Only 

a single summer survey is available. Unfortunately the elevations of this site have 

not been tied into a known datum as there is no permanent bench mark within the 

vicinity. The profiles reveal a convex backshore fronted by a fairly planar beach 

and a flat low tide terrace. 

A.3.15 Camp Clark 

The third Bascom site within close proximity, Camp Clark is just south of 

Cape Lookout. The bluff gets taller as the beach meets the Cape. Again, elevations 

are not secure for this site. 
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A.3.16 Oceanside 

This bluff backed beach fronts the wayside on the northernmost edge of the 

town of Oceanside. There is a small headland at the northern edge of this beach, 

followed by Cape Mears further to the north. This beach is backed by a natural 

cobble rampart which is seasonally covered and uncovered. Two summer surveys 

are available for this site. The remnants of a rip current embayment were observed 

on 28 July 1994, lowering portions of the beach face upwards of a meter. This 

feature can be seen in the individual profiles but is more striking when plotted as a 

three dimensional surface or contour plot, also given in Appendix A of Ruggiero 

(1995). The beach face junction at Oceanside is approximately 4.5 m and the 

loosely consolidated bluff is heavily vegetated. 

A.3.17 Nedonna Beach 

The study site is just to the south of the south jetty on the mouth of the 

Nehalem River. The beach is backed by relatively low-lying dunes. The 

community here has previously developed a dune management plan. Winter and 

summer profiles were obtained in 1995. The permanent bench mark used to tie this 

site in to NGVD was suspect, so there is little confidence that the elevations are 

correct. 

A.3.I8 Manzanita South 

This study site is south of the seaward end of Oceancrest Lane (what used to 

be 7th street) in the southern portion of Manzanita. This site has an extremely wide 

beach at low tide and is backed by large dunes. The dunes at this site reach crest 

elevations of up to 14 m. Comparing transect 1 from the 10 August 1994, survey 

with transect 1 from the 7 February 1995, survey demonstrates the classic difference 
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between summer and winter profiles on the Oregon coast, Figure A.3. The summer 

profile is relatively bumpy with ephemeral dune features, and a slight berm is 

evident. The winter waves smooth the entire profile into a classic concave form. 

The home owner at the end of Oceancrest Lane attempted dune regrading, as the 

property was being inundated with sand (apparently a common occurrence in this 

area). Cross-section 1 and transect 3 from the 10 July 1994 survey (Ruggiero, 

1995) quantifies how the beach has been modified. This regrading leaves the 

property much more susceptible to wave attack than its neighbors, as the highest 

sand elevation is some 3 to 4 meters below the dune crest to either side. 

A.3.19 Manzanita North 

This study site is near the end of Beulah Reed Road just to the south of Mt. 

Neahkanie in the northern portion of Manzanita. The backing dunes are fairly stable 

with dense vegetation near the dune crest. Similar to the Oceanside site, a natural 

cobble rampart lies at the base of the dunes due to the rocky headland just to the 

north. The cobbles serve to protect the dune from wave undercutting and are 

seasonally covered and uncovered. Two sites were chosen in Manzanita as this 

community has been in the process of developing a dune management plan. The 

survey's reveal dunes with crests from 7 to 10 m, and the typical variations between 

summer and winter profiles. 

A.3.20 Arcata State Park 

This site is just south of the city of Cannon Beach and is characterized by 

high sea cliffs. The beach is very flat with an exceptionally wide summer profile. 

The permanent bench mark near this site was suspect, so the reported elevations 

may not be correct. 
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Figure A.3. Summer vs winter beach profile comparison, Manzanita, Oregon. 
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A.3.21 Seaside 

The study site is the beach and backing dunes which front the "Prom" in the 

heavily developed Seaside community. Transects were performed in front of 8th 

and 10th avenues as well as further north in the "natural" area between the north 

end of the prom and the riprap revetment which protects the banks of the Necanicum 

River. The community has previously developed a dune management plan. A 

single summer survey is available for this site with transect 1 fronting 8th Avenue, 

transect 2 fronting 10th Avenue, and transect 3 being a "natural" section of beach. 

The dunes are relatively low, cresting at less than 8 m, and the beach just seaward 

of the dunes is slightly convex. Transect 3 reveals the steep scarp fronting the 

dunes to the north. 

A.3.22 Del Ray Wayside 

This site is north of the town of Gearhart between two developments, 

Highlands to the south and Surf Pines to the north. A single summer profile was 

obtained at this site. Currently there are large well developed and heavily vegetated 

dunes here which crest at approximately 12 m. 

A.3.23 Columbia Beach - Clatsop Spit 

This Bascom site is located at the end of Delaurah Beach Road which is 

south of Fort Stevens and just to the north of the military reservation. The beach is 

backed with large well vegetated dunes, however vehicular traffic is heavy at this 

site with tire tracks locally lowering portions of the beach/dune interface. The 

crests of the dunes range from approximately 11 to 13 m. 
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APPENDIX B 

Integral 1, equation (4.16) 

(Cos[b5b3X1I2R- 2Cos[b4b3] + bNXCos[b4b3] - b5b3X1I2Sin[b4b3])) 
b1{ 

3X3r2 

2Sin[b4b3] + b:gXSin[b4b3])Sin[b5b3X112])((b5b3X1r2Cos[b4b3] 
+ 

3X3r2
 

(bN(- (CosIntegral[b5b3X1r2]Sin[b4b3]) + Cos[b4b0SinIntegral[b5b3X9))
 
}+ 

3 

Integral 2, equation (4.16) 

(4Cos[b4b0Cos[b5b3X112]) 
b2 { 

xu4 

+	 bfg2(327)12(- (Cos[b4b3]FresnelSibrb3112(27c)112X111) 
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X114 



142 

where 

b1 = 
3A y 1/2 

2 

b2 _ -3A It2xy 1/2 

4 

b3 = 12 
Y 

b4 = 
1/2

2 wxy,ll 

s 

b5 = 
2 ca 

s 



143 

APPENDIX C
 

a	 dimensional constant (Chap 2), slope of setup (Chap. 4) 

foreshore beach slope 
non-dimensional ratio of depth at breaker line to deep water wave length

7 
Er	 

phase between incident and reflected wave 
cross-shore derivative of phase between incident and reflected wave 

Er' 
Erg geometric component of phase 
Erw wave component of phase 
ES swash surf similarity parameter 
ES` critical swash similarity parameter 

dimensional constant 
measured tide elevation 
mean sea level 
predicted tide 
non-tidal residualJr 
wave setup 
free surface elevation 

0 wave angle 
Oi incident wave angle 

Or reflected wave angle 
breaker index 

X1,2 exponents in solution to Euler equation 

eddy viscosity 
critical similarity parameter 

o	 Iribarren number
 
pi
 

p mass density of water
 
a(x) spatially dependent phase term
 
02 variance of runup elevation time-series
 
Tb bottom stress
 
Thy longshore component of bottom stress
 
4 total velocity potential
 

incident velocity potential
 
Or reflect velocity potential
 
ail boundary condition coefficient
 
02 boundary condition coefficient
 
03 boundary condition coefficient
 

wave angular frequency
 
A constant proportional to reflected wave energy flux
 

integration constants
A1,2
 
ai incident wave amplitude
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a,. reflected wave amplitude 
a, vertical swash amplitude 
bl dimensionless constant 
b2 dimensionless constant 
b3 dimensionless constant 
b4 dimensionless constant 
b5 dimensionless constant 
c dimensionless constant 
C wave celerity 
cl constant of integration 
c2 orbital velocity coefficient 
c3 non-dimensional coefficient 
C4 non-dimensional coefficient 
cs non-dimensional coefficient 
C6 non-dimensional coefficient 
c7 non-dimensional coefficient 
CB non-dimensional break point celerity 
Cf dimensionless bottom stress coefficient 
Cs,. reflected wave group velocity 
d total water depth 
E total water elevation 
Eu incident wave energy 
E;, cross wave energy 

beach-face junction elevation
E./ 
En. reflected wave energy
f wave frequency (Chap. 2 and 3), spatial oscillation term (Chap. 4) 

Fj incident wave energy flux 
F, reflected wave energy flux 
g acceleration due to gravity 
g(z) depth dependent coefficient
 
h still water depth
 
Hs deep-water significant wave height
 
I sediment transport rate
 
I sediment transport
 
k wave number
 
K, reflection coefficient
 
kx cross-shore component of wave number
 
ky, longshore component of wave number
 
L runup coherence length scale
 
Lo deep water wave length
 
m planar beach slope
 
n ratio between group velocity and celerity
 
N dimensionless constant
 
P lateral mixing coefficient
 
Q volumetric flow rate
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R wave runup 
R2% two-percent exceedence elevation of runup maxima 

Rm., maximum vertical runup 
R, significant vertical runup excursion 
R3 sea swell significant runup elevation 

R, vertical runup excursion 
s total slope 
S swash 
Shin83 total depth slope of no wall solution 
Sx, cross-shore component of onshore radiation stress 
S23, longshore component of onshore radiation stress 
T wave period 
u total depth averaged velocity vector 

cross-shore component of wave orbital velocityu., 
longshore component of wave orbital velocity 

mean longshore current 
Vh homogeneous solution to Euler equation 
xo offshore location 

Subscripts
 
values calculated at breaker line
OB 
values calculated at the effective breaker lineOBe 
values calculated at no wall breaker line 
values calculated at location of seawall 

)emu
 

Superscripts

dimensional quantity
0. 




