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Abstract approved: 

Crystals of DNA oligonucleotides are a rich source of information about 

the conformation of DNA. However, the packing of DNA in crystals limits their 

utility in several ways. Crystal packing of DNA can distort molecular structure, 

limit a sequence to one helical conformation, and hinder the study of non-self-

complementary sequences. These three problems are addressed in this thesis by 

developing and testing strategies to control the packing of DNA in new lattices of 

A-, B-, and Z-DNA. 

Different lengths of short oligonucleotides vary in their overall shape and 

thus in their ability to pack in crystal lattices. Due to distortions introduced by 

crystal packing, DNA octamers in the A-form crystallize in an extended 

conformation and have few correlations between base sequence and local helical 

structure. By reducing the length of alternating and non-alternating dGdC 

sequences to six bases, the hexamers crystallize with fewer crystal packing 

induced distortions and with many correlations between base sequence and local 

helical structure. 

In the past, there have been no crystal structures of the same sequence in 

two helical conformations. When the octamer sequence d(GCGTACGC), which 

crystallizes as A-DNA, is extended by one guanine in the 3' direction to form the 
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nonamer d(GCGTACGCG), the octamer duplex region crystallizes in the B-form. 

The octamer duplexes stack directly on top of each other while the overhanging 

base unstacks and slips into the minor groove of the neighboring duplex where it 

forms an unusual d[G*(GC)] base triplet. This interduplex interaction was not 

restricted to one type of lattice since the nonamer sequence d(GCAATTGCG) 

crystallized in a different lattice with the same d[G*(GC)] base triplet. 

The two backbones of duplexes of non-self-complementary sequences are 

often so similar that such duplexes will enter the lattice in two orientations rather 

than one thereby complicating the structure determination problem. The two 5'-

overhanging bases of the heptamer duplexes of d(GCGCGCG)cl(TCGCGCG) 

and d(GCGCGCG)d(CCGCGCG) crystallize in different lattice environments. 

As a result, these duplexes crystallize without orientational disorder. 
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Controlling DNA Packing in Crystals 

Chapter 1 

Introduction 

Crystal structures solved to near atomic resolution provide detailed 

information concerning the conformation of DNA. Crystal packing, 

however, limits their usefulness to molecular biology in three ways 

addressed in this thesis. First, crystal packing distorts the structure of DNA. 

These distortions are a major concern because small changes in molecular 

structure can cause profound changes in biological function. Second, crystal 

structures of identical sequences in two helical conformations are 

nonexistent. This hinders the understanding of how two helical forms 

inter- convert. Third, the conformations of the backbones in heteroduplexes 

are almost identical, so the duplexes can enter the crystal pointed up in one 

unit cell and pointed down in the next unit cell. The resulting crystal 

disorder is avoided by limiting crystallographic studies to palindromic 

sequences in which two strands of one sequence can pair to form a duplex. 

These three problems are addressed by designing new lattices for the helical 

forms of DNA found in crystals: A-, B-, and Z-DNA. 

Double helical DNA has two antiparallel polynucleotide chains. Each 

monomer in a chain has three chemical moieties: an aromatic base, a 2' 

deoxyribose ring, and a negatively charged phosphate group. Adjacent 

monomers are connected by a phosphodiester link between the 5' and 3' 

hydroxyl groups on the deoxyribose rings (Figure 1.1a). Glycosidic bonds 
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Figure 1.1. (a) The primary structure of a DNA dinucleotide. (b) Watson-
Crick AT and GC base pairs. (c) The bonds about which the torsion angles of 
the backbone are defined--a: 03'-P-05'-05', f3: P-05'-05'-C4', y 05'- C5' -C4'-
C3', 8: C5'-C4'C3'-03', C: C4'-C3'-03'-P, C3'-03'-P-05', x (pyrimidines): 
04'-C1'-N1-C2, x (purines): 04'-C1'-N1-C4. (d) Guanine in the anti and syn 
conformations about the glycosidic bond (top), and a comparison of the C3'-
endo and C2'-endo sugar puckers (bottom). 
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attach the bases to the backbone by linking the C1' carbons of the sugar rings 

and the N9 nitrogens of the purines or the N1 nitrogens of the pyrimidines. 

Four bases are commonly found in DNA: two purines, guanine and 

adenine, and two pyrimidines, thymine and cytosine. Two antiparallel DNA 

strands form a duplex by hydrogen bonding with Watson-Crick base pairs 

between adenine and thymine and between guanine and cytosine (Figure 

1.1b). 

The duplex forms a double helix to bury most of the hydrophobic 

surface areas of the bases. If the duplex could be completely extended, it 

would have 3.7 A wide gaps between the 3.3 A thick base pairs which are 

spaced 7A apart. These gaps would destabilize the duplex, so to avoid this 

problem, the duplex fills the gaps by folding into a helix. The helix stacks the 

base pairs on top of each other in a spiral, thereby placing the backbones on 

the outside of the duplex where the exposure of the hydrophilic phosphates 

to solvent keeps the duplex soluble in aqueous solutions. The backbones 

separate two grooves on the surface of the helix. On one side of the base 

pairs, glycosidic bonds flank the minor groove while the major groove lies 

on the other side (Figure 1.1b). The depth and width of the grooves vary 

with helical form. 

Watson and Crick (1953) determined the first structure of B-DNA 

(Figure. 1.2). Their model has 10 base pairs per helical turn (helical repeat). 

Each base pair is related by a right-handed 36° rotation about the helical axis 

(helical twist) and a 3.4 A translation along the helical axis (helical rise). The 

helical axis passes through the middle of each base pair and is perpendicular 

to each base pairs (base pair inclination angle 0 °). The deoxyribose rings are 

in the C2'-endo conformation (Figure 1.1d). In this conformation, the C2' 

and C5' carbons are above the plane formed by three of the four remaining 
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Figure 1.2. (a) Side view of twelve base pairs of A-, B-, and Z-DNA (left to 
right). Helix length increases from left to right. (b) View down the helix 
axes of the same models in (a). The base pairs in A-DNA (left) are displaced 
4.5 A towards the minor groove. This leaves a hollow channel in the 
middle of the helix (b). The base pairs are displaced 2 A towards the major 
groove in Z-DNA (right) (b). 



5 

ring atoms. The bases are anti relative to the sugar rings (Figure 1.1d). 

Although two grooves are equal in depth, the minor groove is narrow, and 

the major groove is wide. B-DNA is thought to be the predominant helical 

form in vivo because it is found in aqueous solutions and in DNA fibers in 

high relative humidity (Peck & Wang, 1982; Franklin & Gosling, 1953c). 

Around 1980, fiber diffraction studies of DNA were supplemented 

with x-ray diffraction studies of DNA single crystals because it was finally 

possible to obtain large and pure quantities of synthetic DNA 

oligonucleotides for the growth of crystals. Single crystal x-ray diffraction 

data can be used to determine the position of every atom in the unique part 

of the crystal, whereas the fiber data can be used to determine only the 

average helical parameters. 

The first crystal structure of B-DNA, known as the Drew-Dickerson 

dodecamer, has the sequence d(CGCGAATTCGCG) (Wing et al., 1980). It 

differs in at least five important ways from fiber model B-DNA (Drew et al., 

1988). First, the backbone conformation is variable with the values of the 

backbone torsion angle 8 and the glycosidic angle x depending on whether 

the base is a purine or pyrimidine (Figure 1.1c). In addition, correlations 

between the values of the torsion angles C and E give rise to the BI and BII 

conformations. The backbones in the fiber model have a conformation that 

is the average of BI and BII. Third, the bases in a pair twist about their 

common long axis rather than remain coplanar. This propeller twisting 

appears to improve base stacking within a strand (Levitt, 1978) and to 

increase the rigidity of the helix (El Hassan & Calladine, 1996). Third, the 

minor groove is very narrow in the central AATT region compared to the 

ends and to the fiber model. Fourth, the helical repeat is closer to 10.6 base 

pairs per turn, which is the helical repeat of B-DNA in solution (Peck & 
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Wang, 1981; Rhodes & Klug, 1981). Fifth, the helical twist varies between 28° 

and 42° in a base sequence dependent fashion rather than remaining 36°. 

Helical twist varies over a similar range of angles in vitro in a base sequence 

dependent manner (Lomonossoff et al., 1981). 

The base sequence dependence of DNA structure was hypothesized by 

Klug and others (1979) and is now widely accepted. In addition to the Drew-

Dickerson dodecamer, most crystal structures of B-DNA have several strong 

correlations between base sequence and structure at the base step level 

(Yanagi et al., 1991). In DNA polymers several hundred base pairs in length 

in solution, several repeating sequences are associated with the intrinsic 

curvature of DNA (Marini et al., 1982; Hagerman, 1985, 1986). In addition, 

the base sequence dependence of DNA flexibility is found in the positioning 

of DNA as it wraps around the histone octamer (Satchwell et al., 1986) and in 

the shaping of DNA as it is bound by the binding sites of transcription factors 

(Pabo & Sauer, 1992). 

In lower relative humidity (75%), the sodium salt of calf thymus DNA 

fibers adopt the A-form (Franklin & Gosling 1953a,b). The first molecular 

model of A-DNA, which was derived from fiber diffraction data (Langridge 

et al., 1957), has eleven base pairs in one right-handed helical turn. Each base 

pair rises only 2.6 A along the helix axis because it is inclined 20° relative to 

the helix axis and because it is displaced 4.5 A towards the minor groove. As 

a result, the minor groove is shallow and broad while the major groove is 

deep and narrow. The bases are in the anti conformation about the 

glycosidic bonds. The deoxyriboses are in the C3'-endo conformation that 

places the C3' carbon on the same side as the C5' carbon above the plane of 

the sugar (Figure 1.1d). This ring conformation separates the 3' and 5' 

phosphates by about 6 A compared to about 7 A in B-DNA. 
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As a result of significant crystal packing effects, most crystal structures 

of A-DNA are elongated compared to fiber model A-DNA (Wahl & 

Sundaralingam, 1997). These structures have an increased helical rise of 2.9 

A, a reduced base pair inclination angle of 12°, and a depressed base pair 

displacement of 3.8 A. 

A-DNA is of biological interest because it resembles B-DNA. The 

energy barrier between the two conformations is small, only about 1 

kcal/(mol base pair) (Ivanov et al., 1974). Dehydrating conditions induce the 

transition from B- to A-DNA form. Titrations with the dehydrating agent 

triflourethanol induce fourteen different sequences in the 5S Ribosomal 

RNA gene to undergo the B-to-A transition independently (Becker and 

Wang, 1989). Shortly after the onset of sporulation, which dehydrates cells, 

small acid-soluble spore proteins bind DNA and induce a transition to the A-

form in Bacillus subtilis (Mohr et al., 1991). Transcription factors surround 

their binding sites on DNA with a dehydrated environment which may 

favor the formation of A-like structures (Ivanov et al., 1995; Guzikevich-

Guerstein & Shakked, 1996). 

Unlike the structures of A- and B-DNA, which were first determined 

by fiber diffraction studies, the structure of Z-DNA was first determined by 

single crystal diffraction studies of the hexamer d(CGCGCG) (Wang et al., 

1979). The hexamer forms a left-handed helix with a zig-zagged backbone, 

hence the name Z-DNA (Figure 1.2). The backbones zigzag because cytosines 

in anti alternate in each strand with guanines in the unusual syn orientation 

about the glycosidic bond (Figure 1.1d). The sugar puckers of the guanines 

are C3'-endo whereas those of the cytosines are C2'-endo. One helical turn 

has twelve base pairs, and the helical twist alternates between -9° in CpG 

steps and -51° in GpC steps. The helical rise averages 3.7 A. The base pairs 
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are almost perpendicular to the helical axis, and they are displaced towards 

the major groove. As a result, the major groove is convex whereas the 

minor groove is deep and narrow. 

The transition to the Z-form can be induced in many ways including 

high salt concentrations and the negative supercoiling of DNA. Polymers of 

poly(dG-dC)poly(dG-dC) can form Z-DNA in solutions with high salt 

concentrations (Pohl & Jovin, 1972). Alternating pyrimidine/purine 

sequences that are rich in GC base pairs convert to Z-DNA in vitro and in 

situ under the negative superhelical stress generated behind transcribing 

RNA polymerase (Liu & Wang, 1987; Wittig, et al., 1992). The biological 

function of Z-DNA, however, is still unknown (Herbert & Rich, 1996), but 

the ability of specific DNA sequences to adopt different helical forms in 

changing environments suggests that helical polymorphism may play a role 

in gene expression (Wells et al., 1978). 

DNA duplexes four to twelve base pairs long crystallize from 40 

microliter drops of buffered salt solutions by equilibration against reservoirs 

of precipitating agents such as 2- methyl -2,4- pentanediol (MPD). As the DNA 

concentrates during the vapor diffusion process, the equilibrium between 

single-stranded and double-stranded DNA shifts towards double-stranded 

DNA (Ho et al., 1991). The cation strength (or CS = Z 2[cation], where Z is the 

charge of the cation) of the solution drives the B-to-Z transition in a base 

sequence dependent manner in sequences that form Z-DNA (Kagawa et al., 

1989). A-DNA crystallizes in solutions with lower CS and MPD 

concentrations than those used to crystallize B-DNA (Timsit & Moras, 1992). 

When DNA duplexes reach super-saturating concentrations, several 

duplexes associate to form a crystal nucleus and crystal growth proceeds. 
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Crystals that reach a size of 0.2 x 0.2 x 0.2 mm are often suitable for x-ray 

diffraction studies. 

In DNA crystals, duplexes occupy about 50 to 75% of the volume, and 

solvent molecules fill the remaining volume. Some solvent molecules are 

considered an integral part of the DNA structure (Berman, 1994) because they 

occupy well defined positions in the first hydration shell of waters 

surrounding the DNA (Schneider et al., 1993). The disordered solvent 

molecules outside of the second hydration shell fill the cavities and channels 

between DNA helices. The contacts between DNA duplexes cover a minor 

amount of their exposed surface area, so DNA crystals can be thought of as 

highly ordered gels. DNA crystals dehydrate easily and are too fragile for 

most crystal physics experiments. Consequently, the physical properties of 

DNA crystals are inferred from the crystal structures and the crystallization 

solutions (Ho et al., 1991). 

DNA crystal packing is partially driven by the need to keep the 

hydrophilic phosphates hydrated and the hydrophobic terminal base pairs 

buried (Quigley, 1991). To remain hydrated, the backbones either face 

solvent channels or project into the well hydrated major grooves of 

neighboring duplexes (Timsit & Moras, 1992). The aromatic surfaces of the 

terminal base pairs are the largest patches of exposed hydrophobic surface on 

short DNA duplexes in solution. In the crystal structures of B-DNA 

decamers and Z-DNA hexamers, the stacking of the duplexes end-to-end 

covers most of the terminal base pair hydrophobic surface area (Figure 1.3a). 

In the crystal structures of B-DNA dodecamers and A-DNA octamers (Figure 

1.3b & c), the terminal base pairs are buried in the minor grooves of 

neighboring duplexes(Figure 1.3b & c). Favorable van der Waals interactions 

further stabilize these interduplex contacts. 
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Figure 1.3. Major DNA packing motifs in crystals. (a) The end-to-end 
stacking of two Z-DNA hexamers. (b) Two base pairs at the end of one 
duplex overlap with the minor groove of a second duplex in B-DNA Drew-
Dickerson type dodecamers. (c) The terminal base pair-to-minor groove 
packing in the crystal structures of the A-DNA octamers that crystallize in 
space group P43212. The inside of the cresent formed by the duplexes is the 
major groove surface. (d) The two "packing driving boxes" for the Drew-
Dickerson dodecamer, which is also an example of a self-complementary 
sequence in which two strands of the same sequence can form a duplex by 
aligning in antiparallel directions. 
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Hydrogen bonds between neighboring helices also stabilize DNA 

lattices (Wang & Teng, 1988). Four to eight hydrogen bonds link bases in the 

terminal base pairs of A-DNA octamers to bases in the minor grooves of 

neighboring duplexes (Tippin & Sundaralingam, 1996). At each end of the 

Drew-Dickerson dodecamer, the last two guanines form eight base-to-base 

hydrogen bonds with guanines in the minor grooves of a neighboring 

duplex (Wing et al., 1980). Each Z-DNA hexamer is held in place by four 

hydrogen bonds between the backbones of neighboring duplexes (Ho & 

Mooers, 1997). If two duplexes are too far apart to form direct hydrogen 

bonds, water molecules often bridge the two duplexes with hydrogen bonds. 

Likewise, hydrated cations and cobalt hexammine sometimes bridge 

duplexes with hydrogen bonds (Gessner et al., 1985). 

Considering the negative charge on each phosphate and the density of 

DNA in crystals while ignoring the anions, DNA crystals have about 2.0-2.5 

M negative charge. The electrostatic repulsion between negatively charged 

backbones is reduced by cation concentrations with CS in excess of the 

negative charge on the backbones (Wing et al., 1980). Cations are 

occasionally recognized in crystal structures by their electron density and 

coordination spheres (Gessner et al., 1989). The close approach of two 

phosphates from different backbones can be stabilized by a bridging cation as 

in the crystal structure of the B-DNA decamer d(CGCAATTGCG) (Spink et 

al., 1995). 

The symmetry of the crystal environment around a duplex varies 

widely. The unit cells of DNA crystals may be found in 65 space groups, and 

the asymmetric unit (the smallest unit from which the lattice can be 

generated by symmetry ) of the unit cell may contain a dinucleotide, a strand, 

a duplex, or several duplexes. When a crystallographic symmetry operator 
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relates one part of a duplex to another, each part is in an asymmetric unit, 

and each part experiences the same crystal environment. If the whole 

duplex is in the asymmetric unit, perfect crystallographic symmetry no 

longer relates one strand of the duplex to the other. Instead, each region of 

the duplex is in a crystallographically distinct environment. However, the 

degree to which these environments differ is unpredictable and has to be 

assessed case by case. When two or more duplexes are in the asymmetric 

unit, they, too, may or may not be in symmetrically similar environments 

(Tereshko et al., 1996). 

The packing of DNA in crystals is largely controlled by the choice of 

base sequence, strand length, and duplex terminus, although a change in 

crystallization conditions can change crystal packing (Shakked et al., 1989). 

The helical form of DNA oligomers is base sequence dependent and 

generally predictable (Basham et al., 1995). It can be chosen by designing a 

sequence using empirically derived rules about how sequence dictates helical 

form (Peticolas et al., 1988). In addition, certain di- and trinucleotides at key 

positions in the sequence can be selected to stabilize the packing of duplexes 

by forming interduplex hydrogen bonds with similar sequence elements in 

neighboring duplexes (Timsit & Moras, 1994) (Figure 1.4d). These sequence 

elements have been called "packing driving boxes" (Timsit & Moras, 1992). 

Sequence length controls the overall shape of the duplex and thus how 

duplexes pack together. Duplexes near a half or full helical turn in length 

usually have smaller lattice induced distortions (Verdaguer et al., 1991). The 

termini of duplexes control the types of interactions that are possible at the 

interfaces of duplexes. Termini can be blunt or staggered with nucleotides 

overhanging the 3'- or 5'-ends. Blunt ends can participate in end-to-end 

stacking or end-to-minor groove packing whereas overhangs generally limit 
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duplexes to end-on-end stacking (Van Meervelt et al., 1995; Vlieghe et al., 

1996b). 

A major difficulty with studying DNA in crystals is that lattice contacts 

often distort the duplex by bending the helix axis, changing the base stacking, 

and altering the backbone conformation. Base sequence is thought to also 

introduce structural variations. Consequently, the separation of crystal 

packing effects from sequence effects is thought to require crystal structures 

of the same sequence in different lattices and crystal structures of the 

different sequences in the same lattice (Dickerson et al., 1994). This approach 

assumes that crystal packing effects and base sequence effects are additive. 

This assumption may be useful if the interaction between the two of effects is 

small. 

Crystal packing forces sometimes bend DNA helices up to 25°. 

Although these bends are relatively minor compared to the 90° bend of the 

TATA box sequence in the binding site of the Escherichia coli catabolite 

activator protein (CAP) (Schultz et al., 1991), they provide information about 

the sequence dependence of DNA flexibility. In crystal structures of A- and 

B-DNA, bends generally occur towards the major groove (Young et al., 1996). 

In B-DNA crystal structures, the CA/TG base step appears unusually flexible 

because the helix axis at this step has equal propensities to bend towards the 

major or minor groove. In the P212/2/ lattice of 25 Drew-Dickerson type 

crystal structures, bends vary in magnitude, direction, and position along the 

helix axis, depending on the base sequence and crystallization conditions 

(Dickerson et al., 1994, 1996). Dickerson concludes that the same packing 

forces are not exerted on every dodecamer sequence that crystallizes in this 

lattice. 
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Lattice contacts can modify the stacking of base pairs in the helix, 

thereby changing the helical parameters at the base step level. Of the six 

degrees of freedom between two base pairs in a base pair step, helical twist is 

the most sensitive to crystal packing forces because the flat surfaces of the 

bases pairs provide little resistance to twisting (Levitt, 1978). The resistance 

of a base step to changes in helical twist decreases as its base stacking grows 

poorer. For example, in the 5'-TpA-3' base pair step, there is have very little 

overlap of bases within and between strands. Consequently, this step has a 

very wide range of helical twist values in A- and B-DNA crystal structures 

(Hunter & Lu, 1997). 

In response to strong lattice contacts, the backbone can change in a 

concerted fashion because it has six torsional degrees of freedom (a, (3, y, 8, c, 

and in the 5' to 3' direction between two phosphates) (Figure 1.1c), in 

addition to the x angle about the glycosidic bond. For example, the backbone 

at the fifth base step in the A-DNA octamer d(CCCCGGGG) is extended in 

response to crystal packing (Haran et al., 1987). A crankshaft motion (Figure 

1.4) about the 05'-05' bond changes the a and y torsion angles from their 

normal +gauche, -gauche (30° to 90°), (270° to 330°) conformation to an 

extended trans, trans (150° to 210) conformation. This motion separates the 

adjacent phosphates by an additional Angstrom while keeping the 

deoxyribose in the C3'-endo conformation. Crick & Watson (1954) proposed 

a similar conformation for an extended backbone many years earlier. 

In Chapter 2, the problem of distorted DNA structure is addressed 

with the specific question of how to reduce the crystal packing induced 

distortions in A-DNA crystal structures. The majority of the A-DNA crystal 

structures are eight base pairs in length. Unfortunately, most correlations 

between local helical variations and base sequence are obscured in the A-
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Figure 1.4. (a) Backbone in normal +gauche, -gauche conformation of A-
DNA. (b) Backbone in the extended trans, trans conformation in A-DNA 
which separates two adjacent phosphates by a distance comparable to that 
found between two adjacent phophates in B-DNA. 
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DNA octamer crystal structures by crystal packing induced distortions to the 

molecular structure (Ramakrishnan & Sundaralingam, 1993a). A-DNA 

hexamers are hypothesized to crystallize with fewer crystal packing effects 

because they had a length that is closer to a half helical turn. Four hexamer 

sequences crystallized in conformations closer to fiber model A-DNA than 

the A-DNA octamers. The crystal structures of the hexamers demonstrate 

the utility of changing strand length to control lattice induced distortions. 

A second major limitation on the study of DNA in crystals is the 

absence of crystal structures of identical sequences in more than one helical 

form. Apparently, the crystallization conditions for alternative helical forms 

of a sequence continue to elude DNA crystallographers. The lattice, 

however, may contribute to this problem. After a crystal nucleus has 

formed, only duplexes in the same conformation as in the nucleus may be 

incorporated into the lattice during crystal growth. 

In Chapter 3, this problem is approached with the specific question of 

how to crystallize the A-DNA forming sequence d(GCGTACGC) as B-DNA. 

The addition of a guanosine to the 3' end of the octamer is hypothesized to 

stabilize the octamer duplex in the B-form by forming interduplex hydrogen 

bonds in the crystal. The overhang is also expected to block the terminal base 

pair from packing in the minor grooves of a neighboring duplex in the 

manner of A-DNA octamers crystal structures. The nonamer sequence 

d(GCGTACGCG) crystallizes in the B-form with the overhangs forming 

unusual base triplets in the minor groove of neighboring duplexes. The 

crystal structure of the nonamer demonstrates a method of crystallizing 

identical sequences in two helical forms. 

Crystallographic symmetry imposes a third restraint on the study of 

DNA in crystals by preventing the lattice from distinguishing the two 
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distinct strands of a non-self-complementary sequence. In a such a 

heteroduplex, the sequence in one strand may complement that of the 

second strand, but the sequences are different. However, the backbones of 

both strands may have almost identical conformations. As a result, non-self-

complementary duplexes often enter a unique position in the crystal in 

different orientations from one unit cell to the next. The resulting disorder 

complicates the structure determination problem because two or more 

duplexes appear superimposed in the electron density map. This 

orientational disorder is usually avoided by crystallizing self-complementary 

sequences which form homoduplexes from two identical strands. This 

strategy, however, reduces the variety of sequences that can be studied in 

crystals. 

In Chapter 4, the third problem is pursued with the specific question 

of how to crystallize a heteroduplex without disorder in its orientation in the 

crystal. To answer this question, the lattice of the Z-DNA heptamer 

d(GCGCGCG) is selected because it crystallizes with the ends of the duplex in 

two distinct crystal environments. At one end of the duplex, the guanosine 

5'-overhang flips out of the helical stack; at the other end of the duplex, a 

guanosine 5'-overhang remains stacked. This structure suggests that 

heteroduplexes with different bases in the 5' terminal position of each strand 

will crystallize in one orientation if one overhang has a stronger preference 

to remain stacked. This hypothesis is tested twice by crystallizing the 

heteroduplexes d(GCGCGCG)d(TCGCGCG) and d(GCGCGCG)cl(CCGCGCG). 

In both experiments, the two strands of the heteroduplexes are distinct in the 

crystal because the guanosine overhang remains stacked and the pyrimidine 

flips out of the stack. These results suggest that non-self-complementary 
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sequences with distinct overhangs will crystallize without orientational 

disorder. 

The central question asked in this thesis is how to control the packing 

of DNA in crystals to remove several limitations on DNA crystallography. 

Three major challenges caused by crystal packing are identified, and three 

general strategies to control DNA crystal packing are developed. Changing 

duplex length reduced lattice induced distortions in A-DNA crystal 

structures. The addition of 3' overhangs to an octamer sequence that forms 

A-DNA allows it to crystallizes as B-DNA. The extension of a strand of a Z-

DNA hexamer in the 5' direction with different nucleotides allows the 

crystallization of heteroduplexes without lattice disorder. These results 

demonstrate crystal engineering methods which extend the opportunities to 

study DNA structure in crystals by controlling the packing of DNA. 
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2.1. Summary 

We have solved the single-crystal x-ray structures of two different 
hexanucleotides: the alternating sequence d(Gm5CGm5CGC), and the non-
alternating sequence d(Gm5CCGGC). Both of these hexamers crystallize 
readily as A-DNA in the orthorhombic space group C2221. Although 

hexanucleotides have been previously crystallized as Z-DNA, and in one 
case as B-DNA, this is the first time hexanucleotides have been crystallized as 

A-DNA. Both hexamers adopt a typical A-conformation, which is 
surprisingly more similar to the structure of A-DNA fibers than to other A-
DNA single crystals. The structure of d(Gm5CGm5CGC) was solved to a 

resolution of 2.1 A (R-factor = 19.6%). This structure has all of the features 
characteristic of canonical A-DNA, including it's helical repeat (11.2 
b.p./turn), helical rise (2.6 A/b.p.), base pair displacement (-4.7 A), base 

inclination angle (16.9°), and sugar puckers that are predominantly 3'-endo. 
The lower resolution, non-alternating structure has similar overall average 
values for these parameters. We observed several sequence dependent 
correlations in these parameters, especially in the d(CG) base step. These 

steps have lower twist and rise values, coupled with high roll angles as 
compared to d(GC) steps. The molecular interactions involved in crystal 
packing and the detailed structure of the bound water in the crystals, 
however, are similar to those of longer 8 and 10 by A-DNA crystal structures. 
Although the structural effect of cytosine methylation on A-DNA appears to 
be minimal, this modification significantly affects the ability of these 
sequences to crystallize as A-DNA. In conclusion, we present the A-DNA 
forming class of hexanucleotides, a new crystallographic system for studying 

DNA structure at near atomic resolution. 
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2.2. Introduction 

Contained within the large number of single crystal oligonucleotide 

structures determined to date is a wealth of structural information that can, 

potentially, answer many questions concerning the structure of duplex DNA 

at the atomic level (Dickerson, 1992; Kennard & Salisbury, 1993; Heinemann 

et al., 1994). The cloud that veils our understanding of how this detailed 

crystallographic information relates to the workings of DNA in the cell is the 

perceived 'tyranny of the lattice' (Dickerson et a1.,1994). In short, the local 

conformation of DNA in a single crystal is necessarily constrained by the 

forces that hold DNA in the regular lattice of the crystal. At one extreme, it 

has been argued that the global conformation of a DNA duplex, whether it 

forms right-handed A- or B-DNA, or left-handed Z-DNA, is defined 

predominantly by the crystal packing forces. This leads to assumptions that 

certain characteristics of an oligonucleotide, such as length, will force the 

DNA into a conformation 'allowed' by the crystal lattice, regardless of other 

intrinsic factors such as sequence. Thus, it has been presumed by some that 

octanucleotides will only crystallize as A-DNA and hexanucleotides as Z-

DNA. 

For this study, we had designed a hexanucleotide sequence originally 

to test the limits on the types of sequences which could be crystallized as Z-

DNA. Essentially all previous hexanucleotides have crystallized as Z-DNA, 

but unlike previous Z-DNA forming hexanucleotides, this sequence starts 

with a guanine rather than a cytosine base. It has the general sequence motif 

d(GCGCGC), as opposed to the canonical Z-DNA forming hexamer sequence, 

d(CGCGCG) (Wang et al., 1979). Although these are both alternating dG-dC 

sequences, Quadrifoglio et al. (1984) had shown that short oligonucleotides of 
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the form d(CG)n readily form left-handed Z-DNA in solution, while d(GC)n 

do not. In an effort to overcome the inabilities of d(GC)n to become left-

handed, we incorporated methylated cytosines into the sequence, and thus, 

the sequence we attempted to crystallize as Z-DNA was d(Gm5CGm5CGC). It 

is very well established that methylation of cytosines dramatically stabilizes 

the Z-DNA conformation (Behe & Felsenfeld, 1981; Fujii et al., 1982) and, 

therefore, we were hoping to overcome the "end effect" of starting the 

hexamer sequence with guanine as opposed to a cytosine. 

To our surprise this sequence crystallized readily as right-handed A-

DNA rather than as Z-DNA. This is the first report of a hexanucleotide 

crystallizing as A-DNA and is unusual in that it is an alternating dG-dC 

sequence. Although it is generally accepted that poly-d(G)/poly-d(C) 

sequences can easily assume the A-conformation, the B-A transition in 

alternating poly-d(GC) sequences has not been as thoroughly investigated 

(perhaps because these sequences have such a strong propensity to form Z-

DNA). However, it is interesting to note that DNA octamers of alternating 

purine/pyrimidine sequences, such as d(GTGTACAC) and d(GTGCGCAC), 

have previously been crystallized as A-DNA (Jain et al., 1987; Bingman et al., 

1992). Perhaps certain alternating dG-dC sequences will also crystallize as A-

DNA, but that the crystallization properties of these sequences have not yet 

been fully investigated. We have recently, in fact, crystallized a partially 

methylated alternating dG-dC octamer with the sequence d(GCGCGCGC) as 

A-DNA (unpublished results). 

We present in this paper the structure of the hexanucleotide 

d(Gm5CGm5CGC) as A-DNA. This structure is compared to previous A-

DNA crystal structures and the structure of A-DNA in fibers, and it is found 

to be more like the canonical fiber conformation. We also present the 
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structure of a non-alternating hexanucleotide, d(Gm5CCGGC), again as A-

DNA, which in comparison, allows us to distinguish sequence specific effects 

and also distortions to the DNA structure that are induced by crystal packing 

effects. Finally, a comparison of various demethylated forms of the 

alternating and non-alternating sequences provides some insight as to the 

effect of cytosine methylation on the structure and stability of A-DNA. With 

the inclusion of the phosphorothioate structure reported by Cruse et al. 

(1986), hexanucleotides containing only dG/dC base pairs have now been 

crystallized in all three of the major DNA duplex forms, as A-, B- or Z-DNA. 

2.3. Results 

2.3.1 Crystallization and crystal packing of hexanucleotides 

The crystallization of various hexanucleotides (Table 2.1) containing 

methylated cytosine bases in the general sequence d(GCXYGC), where X and 

Y are either cytosine or guanine nucleotides, was attempted under a variety 

of solution conditions. In all cases where diffraction quality crystals were 

obtained, the solutions were characterized by low salt concentrations ([Mg+2] 

20 mM). These are typical of the conditions reported to give either A- or B-

DNA crystals of longer sequences (Timsit & Moras, 1992), and significantly 

lower than the cation concentrations for crystallizing Z-DNA 

hexanucleotides (Ho et al., 1991). The resulting crystals showed the general 

morphology of flat rectangular plates, reaching dimensions of up to 1.0 mm 

in length along two edges, but which were usually very thin in the third 

dimension (typically <0.2 mm in thickness). 

The crystals were all isomorphous in the orthorhombic C2221 space 

group. The asymmetric unit is defined by one hexanucleotide duplex, with 
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eight asymmetric units in the unit cell. The unit cell volumes varied 

between the four crystals from 69,830 A3 to 72,888 A3 (Table 1). As also 

shown in Table 1, the effective resolution limit of the data collected for the 

crystal of d(Gm5CGm5CGC) was 2.1 A; however, we included data to 1.9 A in 

the refinement process. (In this work the "effective" resolution is defined as 

the limit at which at least 50% of the expected reflections are observed.) Note 

that the data on the other three structures are significantly lower in 

resolution than for the original d(Gm5CGm5CGC) hexamer (Table 2.1). 

The structures of all four hexanucleotide sequences were determined 

to be that of A-DNA (Figure 2.1). The crystal lattice of the hexanucleotides in 

these crystals is shown in Figure 2.2. The molecules in these crystals are 

packed in such a way that the DNA duplexes form discrete layers, or sheets, 

in the a-c plane of the unit cell (Figure 2.2a). The three-dimensional crystal 

can be generated by stacking the planar sheets of hexamers along the unique 

crystallographic b-axis. Interestingly, there are no direct DNA-DNA 

interactions between the sheets of hexamers in these crystals. However, 

there are several waters that link these sheets together via hydrogen bonds. 

These planar sheets are unique to A-DNA hexanucleotides since longer A-

DNA oligonucleotides pack in spirals rather than planar sheets. The planar 

organization of the hexamers in these crystals, and the apparent lack of 

interactions between the layers, may explain the typical thinness of these 

plates along one dimension of the crystal. 

In a perpendicular view, we see that each sheet of the crystal is 

composed of four hexamer duplexes lying perpendicular to each other to 

form a rectangular array (Figure 2.2b). These arrays form a small cavity at the 

junction of the terminal base pairs of four hexamer duplexes and a large 
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Table 2.1. Crystal and refinement data for four A-DNA hexamers in space 
group C2,21. 

Gm503m503C Gm500CEC Gm5033GC 033SGC 

Unit cell dimensions (A) 

a 39.67 39.44 38.90 39.10 

b 45.98 45.84 45.97 45.97 

c 39.96 39.52 39.05 39.11 

Volume (A3) 72,888 71,449 69,830 70,297 

Reflections 

Collected 
(Unique) 

2937 2102 2816 1677 

Complete-
ness (%) 

76.9 82.3 73.6 80.4 

Refined 1994 1273 1190 929 

Resolution 
Limit 

Effective* 2.1 2.5 2.5 2.7 

Refined 1.9 2.2 2.0 2.3 

Final R-
value (%) 

17.6 16.5 17.2 16.5 

Solvent 
Molecules 
(Waters in 
Special Positions) 

34 (3) 35(2) 31(1) 22(0) 
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Table 2.1 (Continued) 

Mean 
Temperature 
Factor (A2) 

Nucleotide 16.4 15.9 13.2 14.6 

Solvent 42.3 44.3 34.6 39.0 

R.M.S Deviation from Ideality in: 

Bond Length 0.013 0.019 0.018 0.018 
(A) 

Bond Angles 3.506 4.122 4.155 3.959 
(0) 

*The effective resolution has 50% data completeness in reciprocal space in a 
thin shell with a radius that corresponds to the effective resolution. 
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Figure 2.1. A stereo view of the crystal structure of d(Gm5CGm5CGC). A 
stick model of the structure is shown. 
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Figure 2.2. Packing of d(Gm5CGm5CGC) duplexes in the crystal lattice. (a) 
The DNA duplexes form planar sheets that extend out from the a-b face of 
the C2221 unit cell and stacked along the b axis. Duplexes are related from 
one sheet to the next by the 2-fold screw axis normal to the a-b-face. Only 
one of thirteen 2-fold screw axes normal to the C-face is shown. (b) On the 
perpendicular face of the unit cell, the duplexes appear as rectangular arrays 
of hexamers within a sheet. Two-fold rotation axes relate the opposing 
hexanucleotides that line the large elliptic cavities formed by the arrays and 
the small cavities at the junction of four loops. Only two of the six two-fold 
rotation axes that are normal to the B-face are shown. 
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cavity in the center of each loop. The two-fold symmetry axes of this space 

group pass through the center of these cavities along the crystallographic b-

axis. It is important to note that the cavities in this network are too small to 

contain disordered B-DNA molecules which have been sometimes found in 

other crystals of A-DNA (Doucet et a/., 1989; Bingman et al., 1992). 

The specific molecular interactions holding the rectangular arrays 

together are common to all four hexanucleotide structures. The 5'-terminal 

guanine base of two neighboring duplexes sit in the minor groove at the 3-10 

and 4-9 base pairs of each DNA hexanucleotide. In other words, each 

hexamer has molecular contacts with the ends of two other hexamers. This 

is similar to the types of interactions observed in the A-DNA crystal lattice of 

octa- and decanucleotides (Wang et a/. 1982; Frederick et al., 1989; 

Ramakrishnan & Sundaralingam, 1993), although these longer sequences do 

not form discrete sheets of molecules. The structural consequences of these 

crystal lattice interactions are therefore length dependent. 

2.2.2 Effect of methylation on the crystallization and structure of 
hexanucleotides 

For the alternating d(GCGCGC) type hexamer sequence, we observed a 

strong correlation between the degree and position of methylated cytosines 

and the 'crystallizability' of the sequence. For example, the fully 

unmethylated sequence d(GCGCGC) would not crystallize under any 

conditions surveyed, while the double- methylated sequence 

d(Gm5CGm5CGC) crystallized very readily and easily gave the highest quality 

crystals, in terms of x-ray diffraction. Of the two single-methylated sequences 

we studied, methylation at the second position, in the sequence 

d(Gm5CGCGC), gave significantly better crystals than methylation at the 

central cytosine, e.g. d(GCGm5CGC). In the case of the non-alternating 
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sequence, of the general type d(GCCGGC), methylation again at the second 

cytosine appeared to facilitate crystallization. In this case, however, we also 

obtained diffraction quality crystals of the fully unmethylated sequence 

d(GCCGGC). 

Although the number and the position of methylated cytosines helps 

in the crystallization of this family of hexanucleotide crystals, the effect of 

cytosine methylation on the molecular structure of each sequence is not very 

significant or well correlated with the positions of the methyl groups. There 

were no noticeable effects of cytosine methylation on the helical parameters, 

the base-stacking or the crystal packing interactions in these two A-DNA 

hexanucleotides. Frederick et al. (1987) made very similar observations 

regarding the crystallization and structure of d(GGm5CCGGCC), when 

comparing the methylated and unmethylated versions of that sequence. 

Since the effect of cytosine methylation on the crystallization properties of 

hexamers is substantial, but the structural ramifications of the modification 

are not obvious, we are going to focus mainly on the sequence specific effects 

found by comparing the alternating and non-alternating hexamer structures. 

2.2.3 The conformation of d(GCXYGC) hexanucleotides is canonical A-DNA 

In general the structures of both the alternating and non-alternating 

hexanucleotide sequences are typical of A-DNA (Figure 1a), having wide 

minor grooves, and narrow major grooves as compared to B-DNA. The 

average helical repeat of these hexamers ranges from 11.0 to 11.2 bp/turn, 

which is identical, within the deviation of the structures, to the 11.0 bp/turn 

found for both the A-DNA fibers and an average of all other previous A-

DNA crystal structures (see Table 2.2). 
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While the average helical parameters of previous A-DNA crystal 

structures differ significantly from the fiber structure of A-DNA, those of the 

hexanudeotides are actually closer to the values of the fiber conformation 

than to previous crystal structures. In B-DNA, the base pairs of the double 

helix are essentially perpendicular to the helix axis (with an inclination of 

approximately -6°). For A-DNA, the base pairs in the fiber are dramatically 

inclined (19.51 while those in all previous crystal structures are 

significantly less inclined (12.2°). The inclination angle for the 

hexanucleotide structures in this study (17.2° on average) are intermediate 

between the fiber and the crystal structures of longer oligonucleotides (Table 

2.2) but lie closer to the fiber structure. In addition, while the base pairs of B-

DNA are intersected by the helix axis, in A-DNA fibers the base pairs are 

displaced by 4.5 A away from the axis and toward the minor groove. 

Similarly, the structures of the hexanucleotide sequences have base pairs that 

are displaced on average by 4.4 A, while the average displacement in 

previous crystal structures of A-DNA is only 3.8 A. Each base pair in the 

hexamers rises along the helix axis by an average of 2.6 A, which is again 

nearly identical to that of the A-DNA structure in fibers but lower than is 

usually seen in other crystal forms. Finally, we compared the root mean 

square (rms) deviations between corresponding atoms of the crystal 

structures and the fiber models at the nucleotide level as a detailed and 

length independent measure of how closely one structure matches the 

canonical A-DNA structure. The average rms deviation for 

d(Gm5CGm5CGC) to fibers was only 0.98 A/nucleotide while it was 1.25 

A/nucleotide for the dodecamer d(CCCCCGCGGGGG) (Verdaguer et al., 

1991). The conformation of this dodecamer has been reported to be closer to 
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Table 2.2. Comparison of helical parameters for A-DNA structures. 

Repeat Helical Helical Indina- Roll Displ.* 

(bp/ Twist Rise lion Ange 

Structure turn) (°) (A) (0) ( °) (A) 

d(Gm5CGm5CGC) 11.2 32.0 2.6 16.2 8.3 -4.8 

d(Gm5CGCGC) 11.1 32.5 2.6 16.6 8.6 -4.5 

d(Gm5CCGGC) 11.1 32.5 2.6 17.1 9.4 -4.2 

d(GCCGGC) 11.0 32.7 2.6 16.8 9.0 -4.3 

d(C0333,7,03GGGO 10.4 34.7 2.6 13.6 7.1 -4.3 

Fiber A-DNA** 11.0 32.7 2.6 19.5 10.9 -4.5 

Crystal A-DNA** 11.0 32.7 2.9 12.2 6.8 -3.8 
*This is the x-component of the displacement of the base pairs from the 
helical axis (Babcock et al., 1994). The y-component was less than 0.3 A in all 
cases. A negative value refers to the displacement of the helical axis toward 
the major groove. 
**The fiber A-DNA model was generated by the program Insightll. Crystal 
A-DNA refers to the average parameters of 18 self-complementary A-DNA 
crystal structures in the Nucleic Acid Database (NDB). The structures in this 
set contain no mismatches, no unusual base pairs, and only room 
temperature diffraction data. The fiber model, each of the NDB crystal 
structures, and the four hexanucleotide crystal structures were analyzed with 
the program developed by Babcock et al. (1994). 
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that of fiber A-DNA than the crystal structures of A-DNA octamers. Thus 

the conformation of the hexanucleotide sequences is that of A-DNA and, 

interestingly, appears to be closer to the A-DNA structure observed in fibers 

rather than to other A-DNA crystal structures. 

2.3.4 The structures of alternating and non-alternating hexanucleotides differ 
as A-DNA 

Within the general class d(GCXYGC), for XY defined as GC, the 

hexanucleotide has an alternating sequence motif. Similarly, for XY defined 

as CG, as in d(GCCGGC), the sequence is non-alternating. We find that this 

difference in sequence is reflected strongly in many of the local helical 

parameters of the A-DNA conformation of these structures. Some of the 

major structural indicators of A-DNA include the rise of each base pair along 

the helical axis, the twist of the base pairs around the helical axis, and the roll 

angle between base pairs. All of these parameters alternate in the structure 

of the alternating sequences (Figure 2.3). The helical rise and base pair roll in 

contrast do not alternate in the non-alternating sequences (Figure 2.4). Other 

parameters, such as buckle and propeller twist, do not appear to follow any 

base pair specific behavior. The sites of methylation do not dramatically 

affect these general patterns for the alternating and non-alternating 

sequences (Figures 2.3 and 2.4). 

The roll angle of the base pairs in the sequence d(Gm5CGm5CGC) 

alternates between -4° for the d(GpC) steps and -14° for the d(CpG) (Figure 

3c). These are lower and higher roll angles, respectively compared to that of 

A-DNA fibers. The roll angles of both the d(CpG) (4.35° ± 3.91 °) and d(GpC) 

(15.25° ± 2.18°) steps are also correlated between the alternating and non-

alternating structures, which gives us some confidence that the roll angles 

are sequence dependent in these structures. The roll angle for the 
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Figure 2.3. Comparison of (a) helical rise, (b) helical twist, and (c) roll angle 
for the base steps in the two alternating hexanucleotide A-DNA structures. 
Open circles represent values for d(Gm5CG m5CGC) and open squares 
represent d(Gm5CGCGC). The differences between the circles and the 
squares represents the structural effect of a single methyl group on the 
alternating hexanucleotides. The heavy line represents the mean of the 
alternating sequences. Horizontal dashed lines represent the values for fiber 
A-DNA and B-DNA structures. 



35 

3.5 
(a) 

3 

2 

(b) 
36 B-DNA 

34 

32 A-DNA 

30 

20 (c) 

15 

10 A-DNA 

5 

0 

-5 B-DNA 
G1/C2 C2/G3 G3/C4 C4/G5 G5/C6 

Base Step 

Figure 2.3. 



36 

Figure 2.4. Comparison of (a) helical rise, (b) helical twist, and (c) roll for the 
two non-alternating hexanucleotide A-DNA structures. Open squares 
represent values for d(Gm5CCGGC) and open squares represent d(GCCGGC). 
The differences between the circles and the squares represents the structural 
effect of a single methyl group on the non-alternating hexanucleotides. The 
heavy line represents the mean of the non-alternating sequences. 
Horizontal dashed lines represent the values observed for fiber A-DNA and 
B-DNA structures. 
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d(CpC/GpG) steps in the non-alternating hexamers is approximately 10.70° ± 

1.70 °. 

Besides having a very high roll angle, the d(CpG) step has other 

unique features, especially within the alternating dG-dC sequence. The 

average rise for the d(CpG) step in all of these structures is only about 2.0 A 

(Figure 2.3a), which is very low compared to an average of 2.6 A for A-DNA 

fibers, and 2.9A for other A-DNA crystal forms (Table 2.2). The helical twist 

values of the d(CpG) steps in the alternating sequence d(Gm5CGm5CGC) are 

also unusual. The average twist values for the d(CpG) steps in the 

alternating hexamers is about 29°, but the single d(CpG) step in the non-

alternating structure has a typical A-DNA twist value of about 33°. When 

taken together these data suggest that the d(CpG) step is easily distorted into 

conformational extremes, and that in strictly alternating dG-dC sequences, 

the d(CpG) step in A-DNA will have the following properties: much lower 

than average rise, a lower than average twist angle, and a larger than average 

roll angle values. 

In the final analysis, the low and high roll angles at each dinucleotide 

step compensate to give an average helical roll that is very similar to that of 

A-DNA in the fiber (Figure 2.3c). This trend is repeated for the helical rise 

and twist. The alternating sequence shows an alternating pattern in these 

structural indicators, while the non-alternating sequence generally does not. 

In the end the variations average to give values that are very close to those 

of fiber A-DNA. This degree of conformational variability at the base-pair 

level is probably also inherent in the structures of longer DNA, including 

the fibers. These local variations, however, simply cannot be resolved by 

fiber diffraction of randomly aligned sequences. 
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2.3.5 Structure of the phosphoribose backbone 

The conformation of the furanose ring of the nucleotide ribose sugars 

(sugar pucker) are generally thought to be indicative of the DNA 

conformation. For A-DNA, the sugar is usually in the C3'-endo 

conformation, where the third carbon in the sugar ring lies slightly below 

the plane of the furanose ring. The sugar puckers observed in the current 

hexanucleotides were predominately C3'-endo. The exceptions were the GI 

and G7 residues of d(Gm5CCGGC) and G9 of d(Gm5CGm5CGC), which all 

adopt a C2'-exo conformation. The pseudorotation angles of these 

nucleotides, however, are very near the separation between C2'-exo and C3'-

endo. Since all three of these guanines are involved in the intermolecular 

contacts, this suggests that their sugar conformations are distorted by crystal 

packing forces in the lattice. 

There is a distortion to the DNA backbone that appears to be 

dependent on whether the sequence is alternating or non-alternating. For 

the alternating d(GCGCGC) sequence, a guanine is placed at the third 

position. In this situation, the ribose 04' of the terminal base forms a 

hydrogen bond with the N2 amino group of the central purine (Figures 2.5a 

and b). In the non-alternating sequence d(GCCGGC), a cytosine sits at the 

third position and does not allow formation of this hydrogen bond (Figures 

2.5c and d). The structural consequence of this single hydrogen bond is to 

distort the phosphoribose backbone of the nucleotide at the point of 

interaction. 

This hydrogen bond pushes the G7' nucleotide into the backbone of 

G3, forcing the latter to become extended. As a consequence, the 5'-end of 

the phosphoribose backbone must become extended and, therefore, adopts a 
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Figure 2.5. Intermolecular interactions in the crystals of the alternating (a 
and b) and the non-alternating (c and d) hexanucleotide sequences as A-
DNA. (a) A single hydrogen bond links the G3 base of d(Gm5CGm5CGC) and 
the terminal guanine of a symmetry related duplex (G7'). (b) The analogous 
hydrogen bond between G9 and G1' of the symmetry related hexamer is 
shown for the d(Gm5CGm5CGC) structure. Both G3 and G9 have backbones 
in the extended trans,trans conformation. (c) The intermolecular contact is 
shown for the C3-G10 base pair of d(Gm5CCGGC) and the terminal guanine 
of a symmetry related duplex (G7'). The cytosine C3 lacks a hydrogen bond 
donor in the vicinity of the 04' of G7. (d) A similar intermolecular contact 
is shown on the other side of the molecular dyad between the G4-C9 base 
pairs of d(Gm5CCGGC) and the G1' base of a symmetry related duplex. 
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trans,trans conformation. This extended conformation is characterized by a 

low a torsion angle (139°± 4°compared to the average 294° ± 9° for the other 

residues) and a high y torsion angle (190° ± 4° compared to the average 57° ± 

4° for other residues). The a torsion angle is the 03'-P-05'-05' angle, and 

the 7 torsion angle is the 05'-05'-C4'-C3' angle. A similar interaction is 

observed at the G9 position where the ribose of the G1' from an adjacent 

duplex sits in the minor groove. An analogous hydrogen bond between the 

N2 amino group and the ribose of the intervening guanine residue and 

subsequent extension of the phosphoribose backbone is observed for these 

residues positioned across the molecular dyad (Figures 2.5a and b). 

In the case of the non-alternating d(Gm5CCGGC) structure, the third 

position is occupied by a cytosine. Thus the inter-duplex hydrogen bond 

cannot form because of the absence of the hydrogen bond donor (Figures 2.5c 

and d) as described above. Consequently, the backbone in the third position 

of these hexamers adopts the normal -gauche,+gauche conformation. 

Similar interactions and distortions to the phosphoribose backbone 

are observed in the structures of octanucleotides that crystallize in the P43212 

space group (Jain et al., 1989). In the octamers, the ribose of the terminal G9 

nucleotide interacts with the base at the fifth position of the neighboring 

duplex. The trans,trans conformation is always observed when a purine is at 

this fifth position. Thus, the extension of the backbone at the central base 

pair results from crystal lattice distortions to the DNA structure and is not 

intrinsic to the structure of A-DNA. Any guanine at the central position of a 

hexanucleotide (G3) or octanucleotide (G5) structure that show this end-to-

minor groove interaction will be forced into a trans,trans conformation. 
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d(Gm5CGm5CGC) d(Gm5CCGGC) 
(a) G 1 G1Gil G11 

C12 m5C2 r12 m5C2 

Figure 2.6. Comparison of base stacking in d(Gm5CGm5CGC) (on the left) 
with those of d(Gm5CCGGC) (on the right). The base steps 1-2 (a), 2-3 (b), and 
3-4 (c) represent the type of base stacking observed in the crystal structures. 
The 4-5 and 5-6 base steps (not shown) are very similar to the stacking of the 
2-3 and 1-2 base steps, respectively. The atoms of the top base pair in each 
base step are represented by open circles, and the atoms of the bottom base 
pair in each step are represented by closed circles. The hydrogen bonds 
between bases are represented by dashed lines. 
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2.3.6 Effects of sequence and methylation on base stacking 

The bases of the hexamer sequences stack in a manner that is typical of 

other A-DNA crystal structures (Figure 2.6). In the purine-pyrimidine steps 

of A-DNA and B-DNA, bases within a strand generally stack over each other 

(as in the d(GpC) steps shown in Figures 2.6a and 2.6c). In pyrimidine-purine 

steps (Figures 2.6b and 2.6c), the purine bases stack between opposite strands. 

This interstrand overlap is exaggerated in A-DNA where the pyrimidine-

purine steps have large slide values (Calladine & Drew, 1984). This pattern 

of base stacking is a characteristic of previously determined crystal structures 

of alternating purine-pyrimidine A-DNA sequences (Jain et al., 1989; 

Takusagawa, 1990) and of fiber A-DNA structures (Chandrasekaran et al., 

1989). 

The bases of the homopyrimidine d(CpC) steps in d(Gm5CCGGC) are 

intermediate between the d(GpC) and the d(CpG) extremes. Although the 

bases stack primarily along the same strand, some degree of interstrand 

overlap is observed. This pattern of base stacking is characteristic of 

previously determined crystal structures of sequences with homopurine and 

homopyrimidine stretches such as d(GGGGCCCC) (McCall et al., 1985). 

There is no apparent effect of methylation on the base stacking within 

these A-DNA structures. The degree of interstrand guanine overlap in the 

d(m5CpG) steps of d(Gm5CGm5CGC) and the central d(CpG step) of 

d(Gm5CCGGC) are nearly identical (Figures 2.6b and 2.6c). The cytosines in 

these steps have no interstrand overlap and little intrastrand stacking. 

Similarly, the distorted trans,trans conformation of d(Gm5CGm5CGC) in the 

second step does not affect base stacking (Figure 6b). This is consistent with 

the observations for A-DNA octanucleotides (Jain et al., 1989). 
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2.3.7 Solvent structure of A-DNA hexanucleotides 

The arrangement of solvent molecules around a DNA structure plays 

an important role in defining the stability of the structure (Saenger et al., 

1986; Westof, 1988; Ho et al., 1991). The hexamers described here have the 

typical A-DNA solvation pattern of lightly solvated minor grooves and 

heavily solvated backbones and major grooves (Schneider et al., 1992). No 

pentagonal arrangements of solvent molecules, however, were observed in 

the major groove of these structures, as has been reported previously for 

several A-DNA octamers (Kennard et al., 1986). 

Solvent structure plays a specific role in holding the DNA together 

within the DNA sheets and between the layers in this C2221 lattice. The 

most important solvent molecules for this space group are the waters that 

link the sheets DNA hexamers together along the crystallographic b-axis in 

the lattice. One DNA-solvent-DNA interaction appears in both the 

alternating and non-alternating structures. This water bridges the 02P 

phosphate oxygen of the nucleotide at the 10 position (C10 in the alternating 

structure and G10 of the non-alternating structure) with the identical 

phosphate oxygen of a symmetry related duplex (water A in Figure 2.7). Two 

waters bridge the 02P phosphate oxygen of the symmetry related G3 

nucleotides in only the alternating sequence (waters B and B' in Figure 2.7). 

2.4. Discussion 

We have crystallized a set of alternating and non-alternating d(G/C) 

containing hexanucleotide sequences as A-DNA. This set includes sequences 

having methylated cytosines. Both the number and position of methylation 
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Figure 2.7. The hydration pattern of an A-DNA hexamer. A stereo view 
normal to the crystallographic b-axis of the hydrated hexamer 
d(Gm5CGm5CGC) is shown. One unique hexanucleotide is shown 
sandwiched between two symmetry related duplexes. The 34 waters assigned
to the hexamer in the asymmetric unit are represented by spheres, while the
waters assigned to the symmetry related duplexes are shown as crosses. The 
water molecule that links the CIO phosphate of the unique hexamer to the 
C10 phosphate of a symmetry related duplex is labeled A. The two waters 
joined by hydrogen bonds that link the two symmetry related G3 phosphate
oxygens are labeled B and B'. 
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sites within the sequences strongly affects their ability to crystallize and the 

quality of crystals in terms of x-ray diffraction, but do not generally affect the 

overall structure. This concurs well with the observations of Frederick et al. 

(1987), that diffraction quality crystals of the sequence d(GGm5CCGGCC) can 

be readily obtained, but that d(GGm5Cm5CGGCC) formed showers of 

microcrystals (i.e., this sequence crystallized too easily). The structure of 

d(GGm5CCGGCC) however did not differ from the unmethylated version of 

this octamer. Since the methyl group at the C5 position of a cytosine base lies 

in the major groove of A-DNA, this cannot directly affect the crystal packing 

forces that hold the lattice together. The interactions within the crystal 

lattices of this octanucleotide and the current hexanucleotide sequences 

places the ends of neighboring duplexes into the minor groove of A-DNA. It 

is possible that methylation does not directly stabilize the A-DNA 

conformation, but instead simply lowers the intrinsic solubility of the 

oligonucleotide, thereby helping the DNA to come out of solution as a 

crystal. It is more likely that methylation affects the ability of the various 

sequences to adopt the A-conformation. We find that the alternating 

sequence of the type d(GCGCGC) appears to require methylation to crystallize 

as A-DNA, while the analogous non-alternating d(GCCGGC) sequence does 

not. The presence of two GpG steps makes this latter hexamer a better A-

DNA sequence (Wang et al., 1982), suggesting that the stabilizing effect of 

methylation is not required for crystallization. 

How this stabilization comes about is not entirely clear, since there is 

very little distortion to the DNA or the overall solvent structure caused by 

this modification. Perhaps the dependence of the methylation effect on 

position will provide the answer, but we will need to study a larger set of 
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methylated and unmethylated structures, in conjunction with other 

theoretical and biochemical approaches to draw any general conclusions on 

the effects of methylation on the stabilization of A-DNA. Toward this end 

we have recently crystallized the octamer sequence d(Gm5CGCGm5CGC) in 

order to gain additional insight into the effects of methylation on A-DNA 

structure. 
The overall structure of these hexanucleotides is that of canonical A-

DNA, as defined from fiber diffraction studies. This is even more so than 

the crystal structures of longer oligonucleotides. The average base pair 

displacement and rise across the A-DNA hexanucleotide family are identical 

to those of the fiber structures (Arnott & Hukins et al., 1989). In contrast, the 

crystal structures of longer oligonucleotides are characterized by base pair 

displacements that are closer to the helical axis by 0.5 A, and by helical rises 

that are 0.3 A longer along the axis compared to fiber A-DNA. The A-DNA 

structures of eight, ten and twelve base pair oligonucleotides are thus 

significantly longer and narrower helices as compared to both the hexamer 

and fiber structures. 

These differences do not appear to correlate directly to the crystal 

packing density. The volume per base pair in the hexanucleotides 

(-1500A3/bp) falls well within the range of those for all previous A-DNA 

crystals. The molecular packing interactions are similar to those of octamer 

crystals in the P43212 space group, with the same structural distortions 

induced by crystal packing at the points of DNA-DNA interaction. The 

hexamer structure in the crystals, however, does appear to be significantly 

more variable at the base pair level than the crystal structures of longer 

sequences. The average standard deviation in the inclination angles, for 

example, of the hexanucleotides is 12 °, while that of all previous 8, 10, and 
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12 base pair A-DNA structures is 7°. It appears that the base pairs are less 

constrained by the crystal packing in the hexanucleotide crystals. This is also 

evident from the high degree of symmetry across the molecular dyad axis 

and between the complementary strands (Figures 3 and 4). Perhaps the lack 

of interactions between the sheets of the crystal lattice reduces the number of 

intermolecular contacts that constrain the structure in the hexanucleotides, 

thus allowing greater variability in the DNA conformations in a sequence 

dependent manner. Intermolecular interactions in crystals of longer A-DNA 

sequences are often stabilized by two hydrogen bonds at each intermolecular 

contact (Ramakrishnan & Sundaralingam, 1993). 

In these crystallization studies, we had originally designed the 

sequence d(Gm5CGm5CGC) to potentially form Z-DNA. This sequence 

incorporates motifs that are characteristic of Z-DNA, including the 

alternating dG-dC base pairs and methylation of cytosine at the C5 positions. 

Why did this sequence not adopt the left-handed conformation? First, 

methylation also apparently tends to stabilize the A-DNA conformation. 

Thus A- and Z-DNA are competing conformations once B-DNA has been 

destabilized. Perhaps a more significant determinant which causes 

d(Gm5CGm5CGC) to be A-DNA, while d(m5CGm5CGm5CG) very easily 

forms Z-DNA (Fujii et al., 1982) is that the A-forming sequence starts with a 

guanine, while the Z-forming sequence starts with a cytosine. Quadrifoglio 

et al. (1984), showed that, in solution, short alternating sequences readily 

adopt the left-handed conformation only when the base at the 5'-end is a 

cytosine. For sequences that start with a guanine, Z-DNA cannot be 

completely induced until the length of the sequence exceeds 14 base pairs. 

This indicates that the inability of short d(GC)n sequences to form Z-DNA is 

the result of this unusual end effect. 
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What is the root of this strong end-effect? If we examine the classic Z-

DNA forming sequence d(CGCGCG), we see that the bases along each strand 

alternate between the anti and syn conformations for the cytosines and 

guanines, respectively (Wang et al., 1979). Treating this sequence as packets 

of dinudeotides, this sequence can be thought of as three separate anti-syn 

d(CG) dinucleotide steps which are stabilized in the Z-conformation by the 

high degree of stacking between the base pairs. This additionally keeps the 

aromatic bases inaccessible to solvent. A syn-anti step in Z-DNA, however, 

has the bases unstacked and more exposed to solvent. For the sequence 

d(CGCGCG) there are two destabilizing syn-anti steps separating the three 

stabilizing anti-syn steps. Thus, d(CGCGCG) overall would be expected to be 

stable as Z-DNA. 

In this context, the sequence d(GCGCGC) would be described by three 

Z-destabilizing syn-anti steps and only two stabilizing anti-syn steps, making 

the sequence overall unstable as Z-DNA. A similar explanation for why 

d(GTGTACAC) formed A-DNA rather than Z-DNA was given by Jain et al. 

(1987). As this sequence is extended, the number of syn-anti steps 

approaches that of the anti-syn steps and the Z-DNA stabilizing and 

destabilizing effects are equalized. Long sequences of d(GC)n therefore 

would behave similarly to long sequences of d(CG)n. 

The structures presented here of the alternating and non-alternating 

d(C/G) containing hexanucleotides now expands the number of different 

DNA lengths that crystallize as A-DNA. By comparing the structure of a 

specific conformation in different crystal lattices, the intrinsic properties and 

the flexibility of a DNA form can eventually emerge (Heinemann et al., 

1994). Alternatively, we can also state that hexanucleotide sequences, which 

crystallize predominantly as Z-DNA and in one case as B-DNA, can now be 
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crystallized in any of the three standard DNA duplex conformations. In 

short alternating dG-dC sequences, effects such as cytosine methylation that 

destabilize the standard B-conformation of the DNA duplex will force the 

sequence to adopt a new conformation. If the sequence starts with a cytosine 

that new conformation is likely to be Z-DNA, especially if it is an alternating 

pyrimidine/purine sequence. If it starts with a guanine, the results 

presented in this paper suggest that the new conformation will be A-DNA. 

Therefore, hexanucleotides as a family, represent a common length in which 

the properties of A-, B-, and Z-DNA can be compared. 

2.5 Materials and Methods 

2.5.1 Oligonucleotide synthesis and crystallization 

The hexanucleotides used for this study (Table 2.1) were synthesized 

using phosphoramidite chemistry on an Applied Biosystems synthesizer in 

the Center for Gene Research and Biotechnology at Oregon State University. 

Size exclusion chromatography on a Sephadex G-10 column was used to 

remove blocking groups, prematurely terminated oligonucleotides, and to 

desalt the oligonucleotides. The oligonucleotides were then concentrated by 

lyophilization, resuspended in dilute sodium cacodylate buffer, and used for 

crystallization without further purification. 

All crystals were grown at room temperature by the vapor diffusion 

method from 40-60 ill droplets in a sitting drop setup. The initial 

crystallization conditions varied slightly between hexamers, but generally 

crystals were grown in solutions containing 1 mM DNA (single strand 

concentration), 15 mM sodium cacodylate buffer (pH 7), 0.5 to 5 mM 
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spermine, 1 to 20 mM MgC12, and 5% volume MPD (2-methy1-2,4-

pentanediol). These solutions were equilibrated against a reservoir of 35% 

MPD. Large platelike crystals were obtained for most sequences after 7-14 

days, although some, especially the less methylated sequences, took several 

weeks. The crystal of d(Gm5CGm5CGC) used for data collection was 

approximately 1.0 X 1.5 X 0.15 mm in size while the others were much 

smaller, especially in the first two dimensions. 

2.5.2 Data collection 

Single crystals were mounted in a glass capillary tube for x-ray 

diffraction data collection. Data from the d(Gm5CGm5CGC) crystal were 

collected on a Rigaku rotating anode diffractometer at 15°C using Cu Ka 

radiation. Diffraction data from the d(Gm5CGCGC), d(Gm5CCGGC), and 

d(GCCGGC) crystals were collected on a Siemens P4 diffractometer with a 

sealed tube copper source. The intensities for all data sets were corrected for 

polarization, Lorentz factor, and absorption. The crystals are all 

isomorphous and in the orthorhombic space group C2221 (Table 2.1). 

2.5.3 Molecular replacement solution 

Since d(Gm5CGm5CGC) is the first hexamer crystallized in this 

orthorhombic space group, it had a unique phase solution which required 

the determination of the molecule's orientation and position within the 

unit cell. Trial A-, B-, and Z-DNA models were generated using the program 

InsightII (Biosym Technologies, Inc.) with optimized helical parameters 

based on canonical fiber conformations (Arnott & Hukins, 1972). These 

models were then subjected to exhaustive rotation and translation searches 

in the C2221 space group with the program AMoRe (Navaza, 1994) using 
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8-4.0 A data. These searches yielded an A-DNA solution that was 

significantly better than either the B-DNA or Z-DNA solutions. The best 

solutions for each model, as judged by the R-factors, were then subjected to 

ten rounds of rigid body refinement with 8-3.5 A data in AMoRe. After rigid 

body refinement, the R-factor of the best A-DNA solution (41.2%) was 9.9% 

better than that of the best B-DNA solution (51.1%) and 9.2% better than the 

best Z-DNA solution (50.4%). 

The refined molecular replacement solution for the A-DNA model 

was then subjected to successive rounds of positional refinement in X-PLOR 

starting with 15- 8 A data and finishing with 8-3.2 A data (Briinger, 1992). 

The R-value at this stage was 37.3%, but the initial electron density maps 

were not very well defined. An isomorphous crystal of a brominated 

derivative of the original hexamer, d(GBr5CGm5CGC), was used to help 

determine the position of the DNA duplex. The bromine positions were 

found by applying direct methods (SHELXTL PCTM, Release 4.1, Siemens 

Analytical X-ray Instruments, Inc.) on the difference data set: 

d(GBr5CGm5CGC) minus d(Gm5CGm5CGC). These bromine positions 

served to verify the orientation and position of the best A-DNA solution 

provided previously by AMoRe. The best refined A-DNA model from 

AMoRe was then subjected to simulated annealing in X-PLOR using 8-2.7 A 

data with a slow cool protocol starting at 3000 °K followed by 80 cycles of 

positional refinement. This procedure substantially improved the fit of the 

model to the data, reducing the R-factor from 37.3% to 23%. The subsequent 

2Fo -Fc electron density map revealed that the refined A-DNA model now fit 

the data very well. 
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2.5.4 Structure refinement and analysis 

All four crystal structures were refined using similar protocols. After 

simulated annealing of the model against data at 8-2.1 A data for 

d(Gm5CGm5CGC), and against the 8-2.5 A data for the other three structures, 

the overall and individual temperature factors were refined. Then solvent 

positions were identified by searching an (Fo-Fc) electron density map using 

PEAKMAX from the CCP4 suite of crystallographic programs (Collaborative 

Computational Project, Number 4, 1994). Difference electron density peaks 

above 2a were treated as potential solvent molecules. The CCP4 program, 

WATPEAK, was used to select the crystallographically unique peaks and to 

measure their distance to potential hydrogen bonding sites on the DNA 

model. Potential positions that were within 2.4 to 3.6 A of DNA hydrogen 

bonding partners were examined for their fit to both (Fo-Fc) and (2Fo -Fc) 

electron density maps. Several water molecules were located in special 

positions in the unit cell and were, therefore, fixed in position during the 

refinement. Each round of water addition was followed by a round of 

conventional position refinement and isotropic temperature factor 

refinement. Final R-factors for these A-DNA hexanucleotide structures 

ranged from 16.5% to 19.6% and are given in Table 1. The (2Fo-Fc) electron 

density maps for two base pairs of alternating d(Gm5CGm5CGC) structure are 

shown in Figure 2.8. The atomic coordinates for all structures will be 

deposited in both the Protein Data Bank of the Brookhaven National 

Laboratory (Bernstein et al., 1977) and the Nucleic Acid Database (Berman et 

al., 1992). 

Helical parameters were determined with a program developed and 

kindly provided to our group by Marla Babcock at Rutgers University 
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(a) G1  

Figure 2.8. 2Fo -Fc map at 2.1 A resolution of (a) the G1-C7 terminal base pair 
and (b) the G3-m5C10 base pair of the d(Gm5CGm5CGC) structure. The map 
was contoured at 1.0 a. The water molecules have been deleted frOm the 
model. 
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(Babcock et al, 1994). The program NASTE (Nucleic Acid STructure 
Evaluation), a helical analysis program under development in our lab, was 

used to measure the backbone torsion angles and the ribose ring 
pseudorotation angles. 
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3.1 Summary 

Bases overhanging the ends of oligonucleotide duplexes form 

interduplex hydrogen bonds which facilitate the crystallization of protein-

DNA complexes and interesting DNA structures. We have solved the 

crystal structures of d(GCAATTGCG) and d(GCGTACGCG), which are 

characterized by eight base pairs of standard B-DNA and single guanines 

overhanging the 3'-ends. The octamer duplex section is able to stack end-to-

end with a neighboring duplex because the overhanging guanines twist out 

of the helical stacks to avoid collisions with the neighboring duplex. Each 

extra-helical guanine projects into the minor groove of a neighboring duplex 

and forms an unusual d[G*(GC)] base triplet. The sequence d(GCAATTGCG) 

crystallizes in two different unit cells, and the structures are solved to 

resolutions of 2.25 A and 2.3 A. The structure of the sequence 

d(GCGTACGCG) is solved to a resolution of 2.5 A. In all three structures, the 

base triplets are similar . We discuss the geometry of stacking B-DNA 

octamer duplexes and demonstrate how a -72° twist angle at the junction 

between duplexes places 3'-overhangs in the minor groove and 5'-overhangs 

in the major groove of a neighboring duplex. 

3.2 Introduction 

Non-Watson-Crick base pairs frequently stabilize the tertiary 

interactions between nucleic acid duplexes. For example, many of the 26 

different non-Watson-Crick base pairs that share two cyclic hydrogen bonds 

stabilize folded RNAs (Rich and RafBhandary, 1976). In particular, a 
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symmetric r(GG) base pair stabilizes the "L" shaped fold of E. coil tRNACys 

by forming hydrogen bonds between the N2 and N3 atoms on minor groove 

faces of guanine 15 and guanine 48 (Hou et al., 1993). Non-Watson-Crick 

base pairs are also found in DNA mismatches and in unusual DNA 

structures, either as base pairs or as components of base triples or quadruples 

(Brown & Hunter, 1997). Here, we report the structure of a symmetric d(GG) 

base pair in an unusual d[G*(GC)] base triplet. The guanine 3'-overhangs 

project into the minor grooves of B-DNA duplexes where they form triplets 

in the crystal structures of two nonamer sequences. 

Base triplets can also form in the wide and shallow minor groove of 

RNA double helical regions when a single stranded region approaches a 

double helical region. For example, residue A153, the third residue in the 

GAAA tetraloop in the group I self-splicing intron, forms a base triplet in the 

minor groove of a Watson-Crick r(CG) base pair by hydrogen bonding with 

the N2 amino group of G250 (Cate et al., 1996a). Likewise, the second and 

third adenines in the GAAA tetraloop in the crystal structure of the 

hammerhead ribozyme form base triplets in the minor groove of r(CG) base 

pairs in the double helical stem of the tetraloop of a neighboring ribozyme 

(Pley et al., 1994). In contrast, base triplet formation in the narrow minor 

grooves of the B-DNA is surprising, although not without precedent. The 

two base pairs at each end of the duplex in crystal structures of the B-DNA 

dodecamers starting with a 5'-CGY... sequence (Dickerson et al., 1987) and the 

B-DNA octamer d(CGCTAGCG) (Tereshko et al., 1996) form two interduplex 

symmetric d(GG) base pairs in the minor grooves of neighboring duplexes. 

In the dodecamer and the octamer, the guanines in these d(GG) base pairs 

are in the anti conformation, and their deoxyribose are in the C2'-endo 

conformation which is typical form B-DNA. On the other hand, the 
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overhanging guanines are extra-helical because they have rotated into the 

syn conformation and their deoxyribose are in the C3'-endo conformation 

which is not typical of B-DNA. The unusual conformation of the 

overhanging guanines permits the nonamers to stack end-to-end whereas 

the octamer and dodecamer duplexes do not stack end-to-end. 

The end-to-end stacking of two B-DNA duplexes that are not a full or 

half helical turn in length requires changing the twist angle at the junction 

between duplexes from the 36° twist expected between two adjacent base 

pairs in the B-form. Several "underwound" stacks have been stabilized with 

overhanging nucleotides. For example, 5'- and 3'-overhangs stabilize the 

end-to-end stacking of the central octamer duplex region of the decamer 

d(CGCAATTGCG) (Spink et al., 1995). The 3'-overhanging guanine projects 

into the minor groove whereas the 5'-overhanging cytosine projects into the 

major groove. The terminal base pair at the junction between duplexes is 

related by a rotation angle of about -72°. If the 5'-overhanging base is a 

purine, it will clash with the terminal Watson-Crick base pair of the 

neighboring duplex. This clash can be avoided by the staggered, non-coaxial 

stacking of duplexes, as in the crystal structure of the B-DNA nonamer 

d(GCGAATTCG) (Van Meervelt et al., 1995; Vlieghe et al., 1996a) and the B-

DNA decamer d(GGCCAATTGG) (Vlieghe et al., 1996b). 

We used x-ray crystallography to determine how guanine 3'-

overhangs stabilized the packing and structure of the octamer sequences 

d(GCAATTGC) and d(GCGTACGC). The first octamer sequence has a central 

AT rich region found in the sequences of other B-DNA crystal structures, so 

the crystallization of the nonamer sequence d(GCAATTGCG) as B-DNA is 

not surprising. On the other hand, we have crystallized the second octamer 

as A-DNA so the crystallization of the nonamer d(GCGTACGCG) as B-DNA 
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was not assured. The crystal structures of these two nonamer sequences 

demonstrate that only guanine 3'-overhangs are necessary to stabilize the 

coaxial stacking of B-DNA octamer duplex regions. This finding expands the 

repertoire of structures that can be used to design stable multibranched 

nucleic acids and protein*DNA complexes. 

3.3 Results 

We have solved the crystal structures of the DNA sequences 

d(GCAATTGCG) and d(GCGTACGCG). The underlined sequences form 

octamer duplexes which crystallized in the B-form. One of the most 

interesting features of these crystal structures is the d[G*(GC)] base triplets 

formed by the 3'-guanines overhanging each end of the central octamer 

duplexes. Each overhanging guanine projects into the minor groove of a 

neighboring duplex where it forms a base triplet with the terminal d(GC) 

base pair (Figure 3.1c). In contrast, 5'-overhangs of the nonamer 

d(GCGAATTCG) and the decamer d(GGCCAATTGG) form two types of 

d[(GC)*GJ base triplets (Figure 3.1 a & b) in the major groove (Van Meervelt 

et al., 1995, Vlieghe et al., 1996b). We report the structural features of the 

d[G*(GC)] base triplet and the influence of the triplet on duplex stacking, 

crystal packing, solvent interactions, and the helical features of the B-DNA 

duplex regions. 

3.3.1 Structure of the cl[G*(GC)1 base triplet 

In the d[G*(GC)] base-triplets reported here, the third strand guanine 

is hydrogen bonded to the guanine of the Watson-Crick base pair via the N2 

amino group and the N3 nitrogen in the purine rings to form a d(GG) base 
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Figure 3.1. Hydrogen bonding patterns in DNA base triplets. Standard 
dRCG)*G1 base-triplets are formed between Watson-Crick base-pairs and a 
guanine in Hoogsteen (a) and reverse Hoogsteen (b) arrangements. The 
triplet in (a) was observed in the crystal structure of d(GCGAATTCG) (Van 
Meervelt et al., 1995) (average hydrogen bond distances (A) from this crystal 
structure are indicated). The triplets in both (a) and (b) were observed in the 
crystal structures of d(GGCCAATTGG) (Vlieghe et al., 1996b). (c) The 
d[G*(GC)] triplet observed in the current structures has the guanine sitting 
in the minor groove. 
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Table 3.1. Overhanging guanine base-to-base hydrogen bond distances in 
the crystal structures of d(GCGTACGCG) and of d(GCAATTGCG). The 
dihedral angle between the overhanging guanine and the guanine of the 
Watson-Crick base pair is given in degrees. This angle is the average of the 
complements of two diheral angles: C8-N1-N1*-C8* and C8-C2-C2*-C8*. 
The translational symmetry mates are marked by an asterisk. 

Hydrogen Bond Distances (A) Base Plane 
Angle 

d(GG) Base Pair N2--N3 N3--N2 La 
d(GCGTACGCG) 

G9-G1* 2.70 2.84 36.93 

d(GCAATIUOG)-A 

G9-G28 2.99 2.8 8 40.08 

G18 G19* 3.20 3.01 34.75 

G27-G10 2.72 2.7 3 40.93 

G36 G1* 2.74 2.77 34.10 

d(GCAATIUCG)-B 

G9-28 2.92 3.00 37.04 

G18 G19* 2.84 2.83 38.17 

G27-G10 2.78 2.86 33.33 

G36.G1* 2.83 3.17 38.17 
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pair (Figure 3.1C). The resulting d(GG) base pair has also been found at the 

lattice contacts between two B-DNA duplexes in crystal lattices (Wing et al., 

1980, Spink et al., 1995, Tereshko et al., 1996), but in these cases the d(GG) 

base pair was in a four base hydrogen bond network rather than a true base 

triplet. Thus, the nonamer structures reported here show that the base 

triplet formed in the minor groove can stand on its own, without the need 

for hydrogen bonding interactions with a fourth base. 

The N2--N3 potential hydrogen bond lengths have a mean value of 2.89 A, 

with a range of 2.72 A to 3.20 A, for the eight crystallographically unique 

triplets in the two crystal structures of the nonamer d(GCAATTGCG) (Table 

3.2). The two unique N2--N3 distances in the structure of d(GCGTACGCG) 

are 2.70 A and 2.84 A. These distances overlap the N2-N3 distances of d(GG) 

base pairs found in high resolution crystal structures of (a) parallel stranded 

duplexes of d(CpG) (2.87 A and 2.97 A) (Cruse et a1.,1983; Coll et al., 1987), (b) 

cyclic diguanylic acid (3.01 A) (Egli et al., 1990), (c) a 1:1 complex of 9-

ethylguanine with 1-methylcytosine (3.01 A) (O'Brien, 1967), and (d) guanine 

hydrochloride (3.08 A) (Broomhead, 1951). 

The minor groove of B-DNA is too narrow (-6 A wide, nucleus to 

nucleus distance) to accommodate a guanine that is coplanar with a Watson-

Crick base pair (Figure 3.3a & b). Instead, the guanine of the third strand tilts 

at an average angle of 37.1° in order to approach close enough to the guanine 

of the Watson-Crick base pair to form two hydrogen bonds (Fig. 3.2a). This 

angle compares well with the angles of 38.3 °and 33.7° formed by the d(GG) 

base pairs in the two crystal structures of parallel stranded DNAs (Fig.3.2b), 

where neither guanine was constrained by packing in a minor groove (Cruse 

et al., 1983; Coil et al., 1987). Recent ab initio quantum chemical methods 

http:Fig.3.2b
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Figure 3.2. Top views (a) and side views (b) of a d[G*(GC)] base triplet on the 
left, a d(GG) base pair in the middle, and a GG base pair on the right. The 
side views emphasizes the large angle between two guanine bases in a triplet,
in a base pair with deoxyribose backbones, and in a base pair without 
backbones. The d[G*(GC)] base triplet is from the crystal structure of 
d(GCGTACGCG). The d(GG) base pair is from the crystal structure of d(CpG) 
which crystallized in parallel-stranded duplex (Coll et al., 1987). The GG base 
pair was calculated by ab initio quantum mechanical methods (Sponer et al., 
1996). 
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Figure 3.3. (a) A view down the helix axis of a 2Fo-Fc electron density map 
of the d[G*(GC)] triplet from the second monoclinic form of 
d(GCAATTGCG). The electron density map was contoured at the one sigma 
contour level with diffraction data to a resolution of 2.1 A. (b) Side view of 
one overhanging guanine projecting into one minor groove. The three 
potential hydrogen bonds that may stabilize the extra-helical guanine are 
represented by dashed lines. (c) The close approach of two 01P phosphates of 
two antiparallel overhanging guanines is stabilized by a hydrated 
magnesium complex. The four water oxygens that complete the octahedral 
coordination sphere of the magnesium are represented by the letter W. 
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produced a theoretical structure of a GG base pair (Fig. 3.2c) with an angle of 

42.9° between guanine base planes (Sponer et al. 1996). The physical basis of 

this large tilt angle has not been thoroughly explored, but the slight sp3 

character of the guanine amino group is thought to be one of several factors 

favoring hydrogen bond formation between tilted guanines (Jiri Sponer, 

personal communication). In the crystal structures of the nonamers, the 

backbone of the overhanging guanosine accommodates the large tilt of the 

base by a rotation about the glycosidic bond from the anti conformation (x = 

-108°) to the high anti conformation (x = -84° to -69°) , which is actually part 

of the syn range, and by a change in the sugar pucker of the deoxyribose ring 

from C2'-endo to C3'-endo. 

Intramolecular interactions between the overhanging guanine (GUA 

9) and the its 3'-neighboring cytosine (CYT 8) stabilize its extra helical 

packing in the minor groove. The overhanging guanine had van der Waals 

contacts with the C5 and C6 atoms of CYT 8. In addition, a hydrogen bond 

links the guanine's N1 and the CYT 8's 02P phosphate oxygen (Figure 3.3b). 

Thus, the overhanging guanines form hydrogen bonds with bases in the 

terminal base pairs of both duplexes at a junction between helices. The 

deoxyribose 03' atoms of the overhanging guanines are too far (4-5 A) from 

the amino N2 of the guanine in the second base pair of the neighboring 

duplex to form a hydrogen bond, as in the structure of d(CGCAATTGCG) 

(Spink et al., 1995). 

3.3.2 Triplet formation and duplex stacking 

In all three crystal structures, the eight base pair duplexes form B-DNA 

and are stacked end-to-end to form columns of duplexes. Although the 

duplexes are stacked with their helical axes aligned, they do not quite form 
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Figure 3.4. Comparison of the stacking of B-DNA octamer duplexes. (a) Two 
d(GCAATTGCG) duplexes (top) crystallized in a staggered fashion to avoid a 
clash between the 5'-overhanging guanine in black and the terminal 
Watson-Crick base pair of the duplex below it (Van Meervelt et al., 1995). 
The two Watson-Crick base pairs (bottom) at the junction between two 
duplexes are related by a -72° rotation angle with staggered helical axes. (b) 
A model of two B-DNA duplexes stacked in a pseudocontinuous fashion 
(top) with a rotation angle of 36° between the two terminal base pairs at the 
junction between duplexes (bottom). (c) Two duplexes of d(GCAATTGCG) 
from the second monoclinic crystal structure stacked with their helical axes 
aligned (top) and with the terminal base pairs related by a rotation angle of 
-72° (bottom). 
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pseudo-continuous helices (Figure 3.4c). The angle between the stacked 

terminal base-pairs of two duplexes is about -72°, as opposed to about +36° 

seen in the pseudo-continuous helices in the crystal structures of B-DNA 

decamers (Figure 3.4b). In this orientation, the extension of each strand by 

one guanine in the 3' direction causes a collision between the overhanging 

guanine and the backbone of the neighboring duplex. This collision is 

avoided by unstacking of the dangling guanine and its projection into the 

minor groove (Figure 3.4c). 

3.3.3 Hydrated magnesiums and backbone contacts stabilize triplets 

The two 3'-overhanging nucleotides at the junction between 
duplexes are on the same side of the stack, and their phosphates pass each 

other in opposing directions at a shorter a distance (-3 A) than one would 

expect due to the electrostatic repulsion between the negatively charged 
phosphates. In the crystal structure of d(GCGTACGCG), the two phosphate 

01P atoms are bridged by a Mg+2(H20)4 ion which also sits on the 
crystallographic 42 symmetry axis (Fig. 3.5a). In the second structure of 

d(GCAATTGCG), the 01P atoms of the overhanging guanines in the middle 

of the asymmetric unit (GUA 9 and GUA 27) are bridged by a Mg+2(H20)3 ion 

while in the first structure, the 01P atoms of the overhanging guanines 
(GUA 18 and GUA 36) at the ends are bridged by a Mg+2(H20)3 ion. The 

remaining overhangs in both structures are bridged by electron densities 
which are too poorly defined to be modeled as metal complexes, although 

metals probably occupy these sites. The coordination of two close 
approaching phosphate oxygens by one magnesium has been observed in 

other nucleic acid crystal structures (Holbrook et al., 1977; Cate et al., 1996a,b). 
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(b)  

(d) 

Figure 3.5. The packing of four DNA duplexes in the crystal structures 
d(GCGTACGCG) and d(GCAATTGCG). The backbones are outlined with 
ribbons. (a) Stacks of duplexes of the sequence d(GCGTACGCG) pack 
together in the tetragonal lattice to form a cross that has 90° between the 
arms. (b) Rotation by 90° about the vertical reveals the contact between the 
stacks which is mediated by one magnesium water complex. (c) Stacks of 
duplexes of the sequence d(GCAATTGCG) pack in a monoclinic lattice to 
form a cross that has 63° between the arms. (d) Rotation by 90° about the 
vertical reveals the contact between the stacks which is mediated by three 
magnesium water complexes and which induces bends in the axes of the 
duplexes. 
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The nonamer structures, however, are of higher resolution and thus 

provide views of all or most of the coordinating waters of the bridging 

magnesium's octahedral coordination sphere. 

In addition to the phosphates of the overhangs, the deoxyribose rings 

of the overhangs pass very close to the deoxyribose rings of cytosine 8 in the 

opposing strands (Figure 3.3b). The four deoxyribose rings have shape 

complementarity, and their close approach is stabilized by favorable van der 

Waals interactions, the burial of hydrophobic surface area, and the 

magnesium-water complex bridging the phosphates. A similar structural 

motif involving four ribose rings in RNA has been called a "ribose zipper" 

(Cate et al., 1996a; Pley et al., 1994), which is further stabilized by reciprocal 

02' to 02' hydrogen bonds and 02' to base 02 or N3 hydrogen bonds. 

3.3.4 Triplets do not limit crystal geometry 

The d[G*(GC)] triplets linking together the nonamers do not restrict 

the crystal packing of the columns of duplexes to one particular geometry. In 

high concentrations of magnesium, the sequence d(GCAATTGCG) 
crystallized in the columns of duplexes that are crossed at an angle of 62° in 

the first monoclinic lattice (Figure 3.5c) and at an angle of 63° in the second 

lattice. In low concentrations of magnesium, the columns of duplexes of 

d(GCGTACGCG) are crossed at an angle of 90° (Figure 3.6a). 

In contrast, B-DNA duplexes with 5-overhangs crystallize with their 

helical axes aligned parallel to adjacent duplexes in the lattice. This is a 

consequence of the staggered stacking found in the structures with guanine 

5'-overhangs: d(GCGAATTCG) (Van Meervelt et al., 1995) (Figure 3.4a) and 

d(GGCAATTCGG) (Vlieghe et al., 1996b). However, duplexes of the decamer 

d(CGCAATTGCG) (Spink et al., 1995) do not have this limitation because 
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they have a smaller pyrimdine 5-overhang. As a result, they are almost 
coaxially stacked. The crystal packing of this decamer suggests that nonamers 

with 3'-overhangs have the potential to crystallize with all duplexes being 

parallel. 

3.3.5 Overhang phosphates coordinate magnesiums which stabilize lattice 
contacts 

The two closely approaching phosphates of the overhangs provide 

coordination sites for hydrated magnesiums which in turn stabilize the 

contacts between neighboring stacks of duplexes. The magnesium-water 

complexes link the minor groove face of a helical junction to the major 

groove face or backbones of helical junctions in neighboring layers of stacked 

duplexes. In the lattice of d(GCGTACGCG), the crossover point of two stacks 

is mediated by the Mg2+(H20)4 complex mentioned earlier (Figure 3.3b) 

which links the minor groove face of one junction to the major groove face 

of the junction in the adjacent layer of duplexes via four hydrogen bonds 

between the water ligands and the guanines (Figure 3.5b). This is the major 

interaction between columns of duplexes because these columns duplexes 

have no side-to-side contacts. The columns in a layer are spaced 27.51 A 

apart, which is greater than the 20 A diameter of standard B-DNA duplexes. 

In both crystal structures of d(GCAATTGCG), hydrated magnesium 

complexes span two types of crossover points (A and B), neither of which is 

identical to the crossover in the lattice of d(GCGTACGCG). At a type A 

crossover, the helical junction is pinned between two layers of stacks while 

at a Type B crossover, the helical junction is pulled 2 A to one side by 

intermolecular hydrogen bonds mediated by hydrated magnesium 

complexes (Figure 3.5d). At crossover type A, hydrated magnesium 

complexes link the major groove surface of the helical junction to the minor 
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groove surface of a neighboring column of duplexes while the minor groove 

surface has solvent mediated contacts with the backbones of a second 

column of duplexes. At crossover type B, the major groove surface of the 

junction faces a solvent channel while one to three hydrated magnesium 

complexes link the minor groove surface to the major groove surface of a 

junction in a neighboring column of duplexes. 

3.3.6 Global helical features of the duplexes 

The overall features of the backbones and helical structure of the 

octamer duplex sections were characteristic of classical B-DNA in all three 

structures. The sugar puckers of the deoxyribose rings in the octamer duplex 

sections are in the C2'-endo family, which is typical for B-DNA. The base 

pairs in the ocatmer duplex in formed by d(GCGTACGCG) are related by an 

average rotation angle of 35.9° about the helical axis (helical twist) and an 

average translation aonf the helical axis of 3.46 A/bp. Likewise, the duplexes 

of d(GCAATTGCG)-A have average helical twists of 36.0° and 35.4° along 

with average helical rises of 3.40 A and 3.37 A, and duplexes of 

d(GCAATTGCG)-B have average helical twists of 35.2° and 36.1° along with 

average helical rises of 3.39 A and 3.37 A. These values are typical of classical 

B-DNA (Saenger, 1983). 

All five duplexes have wide major grooves and narrow and deep 

minor grooves which is also characteristic of B-DNA. The minor grooves 

are widest at the ends of the duplexes and are narrowest in the middle of the 

duplex as seen in most crystal structures of B-DNA. The presence of a 

guanine base in the minor groove may be expected to widen the minor 

groove near the ends of the duplex, but this is not the case as shown by 

comparing the minor groove widths near the ends of the duplex at the same 
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Figure 3.6. The base-pair parameters (a) opening angle, (b) buckle angle, and 
(c) propeller twist of the crystal structures of d(GCGTACGCG) and the 
d(GCAATTGCG) are plotted by base pair. Opening angle is the rotation angle 
between two bases in a pair about their common vertical z-axis. Buckle angle 
is the rotation between two bases about their common short x-axis. Propeller 
twist is the angle between two base s about their common long axis. These 
structures were analyzed with program by Babcock et al. (1994). The values 
for the structure of d(GCGTACGCG) are plotted with open squares. The 
values for the unique duplexes in the crystals of d(GCAATTGCG) are plotted 
in opposing directions. The values of the first crystal of d(GCAATTGCG) are 
plotted with circlesopen circles for residues 1-18 and the closed circles for 
residues 19-36. Their mean values are plotted with a solid line. The values 
of the second crystal of d(GCAATTGCG) are plotted with triangles--open 
triangles for residues 1-18 and the closed triangles with residues 19-36. Their 
mean values are plotted with a dashed line. 
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Figure 3.7. Plots by base step of the base step parameters (a) helical twist, (b) 
helical rise, (c) roll angle, (d) slide, and (e) tilt angle of the crystal structures of 
d(GCGTACGCG) and the d(GCAATTGCG). The Cartesian coordinate frame 
of each base pair step was used to calculate the parameters with the program 
by Babcock et al. (1994). The x-axis is oriented between the short axes of the 
base pairs, and the y-axis is oriented between the long axes of the base pairs. 
Helical twist is the rotation angle between two base pairs about their 
common vertical z-axis. Helical rise is the distance between two base pairs 
along the vertical z-axis. Roll angle is the rotation about their common long 
axis. Positive values correspond to opening of the base pairs towards the 
minor groove. Slide is the translation of one base pair relative to another 
along their common y-axis. Tilt is the rotation about the common x-axis and 
results in the opening of the base pairs towards one of the two backbones. 
The values for the structure of d(GCGTACGCG) are plotted with open 
squares. The values for the unique duplexes in the crystals of 
d(GCAATTGCG) are plotted in opposing directions because the duplexes are 
more similar when aligned in this way on account of lattice induced bending 
of the helix axis. The values of the first crystal of d(GCAATTGCG) are 
plotted with circles -open circles for residues 1-18 and the closed circles for 
residues 19-36. Their mean values are plotted with a solid line. The values 
of the second crystal of d(GCAATTGCG) are plotted with triangles--open 
triangles for residues 1-18 and the closed triangles with residues 19-36. Their 
mean values are plotted with a dashed line. 
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distance from the molecular dyad of the crystal structure of the B-DNA 

decamer d(CCAGGCCTGG) and the nonamers, (the minor groove width is 

the shortest phosphorous to phosphorous distance across the minor groove 

minus 5.8 A to account for the van der Waals radii of the phosphate groups). 

At this position, the decamer structure has a width of 8.3 A, the structure of 

d(GCGTACGCG) has a width of 7.7 A, and the four structures of 

d(GCAATTGCG) have widths that range from 5.9 A to 7.6 A. The narrower 

widths in the nonamers show that the overhanging guanines are not 

widening the minor grooves. Triplet formation would also be expected to 

cause opening of the terminal base pairs towards the minor groove (negative 

opening), where the opening angle is defined as the rotation angle between 

two bases in a pair about their common vertical axis. The opening angles 

range from -5.4° to 6.3 °which are not significantly different from the 

opening angles of base pairs in other positions in the duplexes (Figure 3.7a). 

The global helical axes of the octamer duplexes sections (drawn with 

the program CURVES) have several minor bends. The minor bends at the 

second and sixth base steps in the all of the nonamer structures are associated 

with the same positive roll angle which bends the helical axis towards the 

major groove (Figure 3.6c). However, the bends at every other base step of 

this type in the neighboring duplexes in the stack face opposing directions 

and thus cancel each other. This cancellation allows the duplexes to stack in 

straight columns. There is a minor weave in the columns of 

d(GCAATTGCG) duplexes due to every other helical junction being pulled 

-2A to one side by contacts with one neighboring column of duplexes. These 

bends, which are apparent in Figure 3.5d, are due to crystal packing geometry 

of the monoclinic lattice rather than base sequence since the sequence at the 

crossovers is identical in the tetragonal and monoclinic 3'-overhang 
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nonamers. The larger bends on the monoclinic structures have large 

positive or negative tilt components at the second and third base steps 

(Figure 3.7e) 

3.3.7 Base triplet formation affected the terminal but not the central base 

steps 

The ocatmer duplex sections have sequences of the type d(GCxxxxGC), 

where x is any nucleotide. The terminal GC base steps are impacted by the 

intermolecular contacts in the minor groove with overhanging guanines 

while the xxxx base steps show strong correlations with base sequence. The 

Cx base steps at the junction between these two regions experience the roll 

bend that has already been discussed. 

The GC regions are affected by both (a) hydrogen bonding in the minor 

groove of the guanine in the terminal base pair to the overhanging guanine 

and (b) hydrogen bonding between a hydrated magnesium complex at the 

helical crossover and the N7 and 06 atoms of the 5'-terminal guanine. The 

intermolecular contacts increase the slide and reduce the roll values from 

what has been observed in GC steps in B-DNA crystal structures in general to 

what has been observed for GC steps near the ends of dodecamers of the 

sequence type 5'-CGCxxxxxxGCG-3' (where x is any nucleotide) (Hunter and 

Lu, 1997) and the octamer d(CGCTAGCG) (Tereshko et al., 1996). 

The AATT tetramer shares with the Drew-Dickerson dodecamer 

d(CGCGAATTCGCG) the base sequence dependent features of high propeller 

twist of the AT base pairs and the associated narrowing of the minor groove 

in the center of the duplex. The nonamer d(GCAATTGCG) had more severe 

and extensive narrowing of the minor groove (3.6 A minimum width) 

compared to the nonamer d(GCGTACGCG) (4.4 A minimum width) and 
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compared in the GC rich decamer d(CCAGGCCTGG) (5.2 A minimum 

width) (Heinemann & Alings, 1989). The central AATT tetramer of 

d(GCAATTGCG) has a rms deviation of 0.8 A with the central AATT 

tetramer of the Drew-Dickerson dodecamer. In contract, the central GTAC 

tetramer of d(GCGTACGCG) has a rms deviation of 1.8 A with the central 

tetramer of the Drew-Dickerson dodecamer. 

The central GTAC tetramer of d(GCGTACGCG) is unique since a 

central GTAC tetramer sequence has not been previously crystallized as B-

DNA. In models of B-DNA generated with canonical B-DNA helical 

parameters, TA base steps have very little overlap of the bases within a 

strand or between strands. The large twist and postive slide values in the 

crystal structure further of d(GCGTACGCG) further reduce this overlap. The 

central TA base step has a very large twist and large positive slide values 

which abolishes overlap between the purine and the pyrimidine ring. 

Instead, each six-membered ring lies on top of an exocyclic base atom of the 

neighboring nucleotide. This overlap may be energetically favorable due to 

the interaction of a permanent dipole with the delocalized electrons of the 

base. In fact, adenines and thymine bases stack in this fashion (Bugg et al., 

1970) in the crystalline state which suggests that the TA step is exhibiting 

geometry for bases that are not constrained by being in a helix. The large 

twist of this step violates Calladine's prediction that pyrimidine/purine steps 

have low twist to avoid clashes of the purine bases in the minor groove 

(Calladine, 1982). In this case, the clashes are alleviated by a large rise value. 

The large twist of this step compares well with of the two duplexes of 

d(CGCTCTAGAGAGCG) which have helical twists of 45.2° and 43.2° and 

with the central base step of d(CGCTAGCG) which has a helical twist of 48.9 

A (Tereshko et al., 1996). The two adjacent AT base pairs have intermediate 
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propeller twists of -16° compared to -8° in isolated AT base pairs of the 

decamer d(CCAGGCCTGG) (Hienemann & Alings, 1989) and -20°+ in the 

four Al' base pairs of the nonamer d(GCAATTGCG). This is reflected in 

intermediate values of minor groove width of the nonamer 

d(GCGTACGCG). The narrow minor grooves and high propeller twist of 

A/T rich regions are sequence dependent features that have been observed 

in most B-DNA crystal structures (Berman, 1997). 

3.3.8 Triplets disrupt hydration patterns 

The presence of the triplet in the minor groove interrupted the line of 

waters known as the spine of hydration. The spines of hydration were also 

interrupted in both crystal structures of d(GCAATTGCG) by a hydrated 

magnesium complex which sits in the minor groove of one duplex and is 

hydrogen bonded to adenine 21, adenine 22, and thymine 33 (Figure 3.5c). 

Further details of the hydration pattern are not presented here because not 

all of the first shell waters could not be modeled accurately with the medium 

resolution diffraction data. 

3.4 Discussion 

We have determined the crystal structures of two nonanucleotide 

sequences, both characterized by eight base pairs of standard B-DNA, with a 

single 3' terminal guanine overhanging each end of the duplex. Although 

the two sequences crystallize in different space groups, the stacking of the 

octamer duplex sections is very similar. The duplexes are stacked end-to-end 

such that the overhanging base sits in the minor groove of an adjacent 

duplex to form a d[G*(GC)] base triplet. Thus, the stacking of the B-DNA 
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duplexes and the base triplet observed here are not anomalies, but are 

characteristic of the sequence type d(GCxxxxGCG), where x is any base. 

When we compare these structures to the structure of the nonamer 

d(GCGAATTCG) (Van Meervelt et al., 1995), we observe that the type of base 

triplet formed by the overhanging guanine and the adjacent DNA duplex 

depends on which end of the DNA strand is extended (Figure 3.4). Why 

should triplet type be correlated with overhang type? When we compare the 

stacking of the B-DNA duplexes with 5'-overhangs to those with 3'-

overhangs, we find that the angles between the terminal base pairs are 

essentially the same (Figure 4a & c). If we start with this duplex-duplex 

interaction as the primary crystal lattice interaction, it becomes clear why 

extending the 5'-end of the duplex places the overhanging base into the 

major groove (Figure 4a), while extension of the 3'-end places the extra base 

in the minor groove of the adjacent duplex (Figure 4c). Once this is 

established, the geometrical constraints of the grooves dictate the details of 

the end-on-end stacking between duplexes. In the case of the 5'-overhang, 

the major groove is wide enough to allow the guanine to sit in the same 

plane as the Watson-Crick base pair if one duplex slides along the long axis 

of the terminal base pair of the adjacent duplex. The sliding motion relieves 

a clash between the 5'-overhanging base and the terminal base pair of the 

neighboring duplex, enabling the overhanging base to remain stacked in its 

strand. This sliding motion, however, breaks the alignment of the helical 

axes of the neighboring duplexes. In the case of 3'-overhanging guanines, 

the guanine must reside in a minor groove which is too narrow to 

accommodate a third base that is coplanar with the Watson-Crick base pair. 

Instead, the 3'-overhanging guanine slips into the minor groove with its 

long axis tilted with respect to the guanine of the terminal Watson-Crick 
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base pair to which it hydrogen bonds. By unstacking, the 3'-overhang avoids 

a clash with the backbone of the neighboring duplex. This permits the 

stacking of the octamer duplexes with their helical axes aligned. 

This does not, however, imply that the stacking between the ends of 

the eight base pair duplexes is an overriding lattice interaction. Indeed, 

when we remove the 3'-terminal guanine from d(GCGTACGCG), leaving 

only the duplex d(GCGTACGC), the octamer sequence crystallizes as A-DNA 

in the space group P61 with the terminal d(GC) base pair sitting on the 

minor groove surface of an adjacent duplex, as is standard for A-DNA 

octamers that crystallize in this space group (Shakked et al., 1981). Thus, 

although the end-to-end stacking of B-DNA duplexes is an available lattice 

interaction for crystallizing B-DNA octanucleotides, it is not sufficiently 

strong in the case of d(GCGTACGC) to overcome the stronger interaction of 

the d(GC) base pair sitting in the minor groove of the A-DNA duplex. 

In fact, the end-on-end stacking of B-DNA octamers may also be a 

weaker interaction than interduplex d(GG) base pair formation in the minor 

groove. The only crystal structure of a B-DNA octamer duplex, 

d(CGCTAGCG), crystallizes with overlapping ends stabilized by two 

interduplex d(GG) base pairs in the minor groove of a neighboring duplex 

(Tereshko et al.,1996). These d(G-G) base pairs are similar to the d(GG) base 

pairs in the base triplets of the nonamers reported here. 

Hydrogen bond counting can be used to explain why the unstacking of 

the 3'-terminal guanines to form a triplet is more favorable in B-DNA 

nonamers than the formation of sometime type of unusual d(GG) base pair 

between the stacked 3'-overhangs of two adjacent duplexes. The formation 

of stacked duplexes joined by d(GG) base pairs sharing two hydrogen bonds 

would add four interduplex hydrogen bonds per duplex whereas the 
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formation of two d[G*(GC)] base triplets at the junction between duplexes 

adds eight interduplex hydrogen bonds per duplex ( or twelve hydrogen 

bonds if the N3 to 01P hydrogen bonds are counted). 

The structures of the nonamer sequences d(GCGTACGCG) and 

d(GCAATTGCG) suggest that the crystallization of stacked B-DNA duplexes 

stabilized by d[G*(GC)] base triplets will require sequences of the type 

d(GCxxxxGCG). Comparisons of the end-on-end stacking of these nonamers 

to those duplexes with 5'-overhangs demonstrate that the stacking angle 

between duplexes is an important consideration in the design of 

oligonucleotides with overhangs to stabilize the crystallization of the 

DNA*protein complexes and unusual nucleic acid structures. 

3.5 Materials and Methods 

3.5.1 Synthesis, purification & crystallization 

The nine base oligonucleotides d(GCGTACGCG) and d(GCAATTGCG) 

were synthesized using phosphoramidite chemistry on an Applied 

Biosystems DNA synthesizer. Size exclusion chromatography on a Sephadex 

G-25 column was used to remove salts, blocking groups, and prematurely 

terminated oligonucleotides. The oligonucleotides were lyophilized, 

resuspended in 30 mM sodium cacodylate buffer (pH 6.0), and used for 

crystallization without further purification. 

Crystals of the two sequences were grown at room temperature by 

vapor diffusion in sitting drop setups. Needle-like crystals with dimensions 

of 0.1 mm x 0.15 mm x 2.0 mm of the sequence d(GCGTACGCG) appeared in 

two weeks from a solution initially containing 0.5 mM DNA (single-strands), 

30 mM sodium cacodylate (pH 6.0), 10 mM MgC12, 1.0 mM spermine, and 
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10% (v/v) 2- methyl -2,4- pentanediol (MPD), with equilibration against a 

reservoir of 50% MPD. Meanwhile, 0.1 mm x 0.1 mm x 0.1 mm trapezoidal 

crystals of the sequence d(GCAATTGCG) appeared in a month from 

solutions containing 0.5 mM DNA (single-strands), 30 mM sodium 

cacodylate (pH 6.0), 150 mM MgC12, 0.5 mM spermine, and 7.5% MPD, with 

equilibration against a reservoir of 25% MPD. Several crystals reached 

dimensions of 0.3 mm x 0.3 mm x.0.2 mm after macroseeding in solutions 

containing 0.25 mM DNA (single-strands), 30 mM sodium cacodylate (pH 

6.0), 150 mM MgC12, 0.25 mM spermine, and 20% MPD, with equilibration 

against a reservior of 22.5% MPD. 

3.5.2 X-ray diffraction data collection 

X-ray diffraction data for the crystals were collected at room 

temperature using a Siemens P4 diffractometer (Cu-Ka radiation from a 

sealed tube source). Diffraction data for the crystal of d(GCGTACGCG) were 

collected with a Siemens Point Counter while diffraction data for the crystal 

of d(GCAATTGCG) were collected with a Siemens HI-STAR area detector. 

The diffraction pattern from the crystal of d(GCGTACGCG) had 4/m mm 

symmetry while those of d(GCAATTGCG) had 2/m symmetry. 

Crystallographic data are presented in Table 3.2. 

3.5.6 Structure solution and refinement 

The structure of the sequence d(GCGTACGCG) was solved by using 

the information from the Patterson map and the symmetry of the crystal 

lattice. The Patterson map generated from the observed structure factors had 

planar densities spaced 3.4 A along the a-b diagonal, suggesting that the 

duplex was in the B-form with its helix axis was aligned parallel to a a-b 
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diagonal. The unit cell volume suggested that only one DNA strand was in 

the asymmetric unit, so the second strand had to be generated by placing the 

molecular dyad of the duplex on the crystallographic two-fold rotation axis 

along the a-b diagonal. The resulting duplex was positioned with its helical 

axis superimposed on a crystallographic two-fold screw axis in the a-b face of 

the unit cell. The two possible orientations of the duplex around the helical 

axis were tested by refinement in X-PLOR (Briinger, 1992) using a new sets of 

parameters for nucleic acids (Parkinson et al., 1996). The model with the 

correct orientation had a R-factor of 35.7% after initial positional refinement 

to 2.7 A data. The overhanging nucleotide was found by subsequent model 

building with XtalView (MacRee, 1992) and further refinement with X-

PLOR.A final R-factor of 20.4% (Rfree=28.9%) was obtained after including 

diffraction data to 2.21 A and adding 17 waters and a 0.5 Mg2+ ion which sits 

on a 42-axis. 

The structure of d(GCAATTGCG) was thought to be similar to that of 

d(GCGTACGCG), because Patterson maps generated from the 

d(GCAATTGCG) diffraction data also had planar densities separated by 3.4 A. 

The unit cell volumes suggested that two duplexes were in each asymmetric 

unit, so two stacked duplexes from the crystal structure of d(GCGTACGCG) 

were used as the search model in the molecular replacement program 

AMoRe (Navaza, 1994). The correct solution for the first monoclinic 

structure, d(GCAATTGCG)-A, had the two duplexes aligned along one of the 

short diagonals that passes through the center of the unit cell, in agreement 

with the Patterson map. This solution had a R-factor of 23.7% after rigid 

body refinement, simulated annealing (starting at 3000 °K), conventional 

position refinement, and individual B-factor refinement with data from 8-
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Table 3.2. Diffraction data and refinement statistics for the crystal structures 
of d(GCGTACGCG) and d(GCAATTGCG). 

Parameter GCGTACCO3 GCAATTGCGA GCAATTGCGB 

Unit Cell Data 

a (A) 38.92 38.23 39.16 

b (A) 38.92 27.86 29.07 

c (A) 33.03 46.07 46.02 

D(*) 114.19 114.11 

Space Group P42212 P21 P21 

Asymmetric unit 1 strand, 4 strands, 4 strands, 

17 waters, 72 waters, 20 waters, 

0.5 Mg2+ 4 Mg2+ 3 Mg2+ 

Diffraction Data 

Total Reflections 1,920 14,526 9,837 

Unique Reflections 1,126 5,936 5,791 

Resolution Range 28.2-2.2 19.1-1.8 13.7-2.0 

(A) 

Rsym(I) for I > 0 (%)* 4.2 6.5 8.0 

Refinement Statistics 

R-factor (%) 20.41 19.63 18.45 

R-free (%) 28.95 27.17 27.06 

Effective Resolution 2.5 A 2.25 A 2.3 A 

Resolution Range (A) 8-2.21 8-2.25 8-2.30 

Completeness (%) 64.4 79.4 77.9 

Reflections 920, F> 1c7(F) 3372, F> 2a(F) 3540, F> 2a(F) 
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Table 3.2 (Continued) 

rms bond lengths (A) 0.015 0.010 0.012 

rms bond angles 1.660 1.674 1.497 

(deg.) 

*Rsym(I)= 100 x (1,hk1 ( I I - <I> I / I <I> I ) ) / n where I is the integrated 
intensity of a reflection, <I> is the average of all observations of the 
reflection and its symmetry equivalents, and n is the number of unique 
reflections. All positive, non-zero reflections (26 intensity cutoff) were 
included in scaling and merging. 
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2.35 A in X-PLOR. The final model has a R-factor of 19.6% (Rfree = 27.2%), 72 

waters, and 4 hydrated magnesium complexes with data from 8-2.22 A (Table 

3.2). The correct solution of the second monoclinic structure 

d(GCAATTGCG)-B had the two duplexes aligned along the b-c face diagonal, 

which was also consistent with its Patterson map. The final model had a R-

factor of 18.5% (Rfree = 27.1%), 38 waters, and 3 hydrated magnesium 

complexes with data from 8-2.3 A (Table 3.2). 

The final coordinates and structure factors for the crystal structures of 

d(GCGTACGCG), d(GCAATTGCG)-A, and d(GCAATTGCG)-B have been 

deposited in the Nucleic Acid Database (Berman et al., 1992). Their reference 

codes are XXXX, XXXX, and XXXX, respectively. 
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4.1. Summary 

We have solved the structures of the homoduplex d(Gm5CGCGCG)2, 

and the heteroduplexes d(GCGCGCG)/d(TCGCGCG) and d(GCGCGCG) 

/d(CCGCGCG). The structures form six base pairs of identical Z-DNA 

duplexes with single nucleotides overhanging at the 5'-ends. The 

overhanging nucleotide from one strand remains stacked and sandwiched 

between the blunt-ends of two adjacent Z-DNA duplexes, while the 

overhanging base of the opposing strand is extra-helical. The stacked and the 

extra-helical bases from adjacent duplexes pair to form distorted d(GG) 

reverse Hoogsteen base pairs in the d(Gm5CGCGCG)2 homoduplex, and 

d(GT) reverse wobble and d(GC) reverse Watson-Crick base pairs in the 

d(GCGCGCG)/d(TCGCGCG) and d(GCGCGCG) / d(CCGCGCG) 

heteroduplexes, respectively. Interestingly, only the d(GT) and d(GC) base 

pairs were observed in the heteroduplexes, suggesting that both the d(GT) 

reverse wobble and d(GC) reverse Watson-Crick base pairs are more stable in 

this crystal environment than the d(GG) reverse Hoogsteen base pair. To 

estimate the relative stability of the three types of reverse base pairs, crystals 

were grown using various mixtures of sequences and their strand 

compositions were analyzed by mass spectrometry. The d(GC) reverse 

Watson-Crick base pair was estimated to be more stable by 1.5 kcal/mol and 

the d(GT) reverse wobble base pair more stable by 0.5 kcal/mol than the 

d(GG) reverse Hoogsteen base pair. The step during crystallization 

responsible for discriminating between the strands in the crystal is highly 

cooperative, suggesting that it occurs during the initial nucleating event of 

crystal growth. 
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4.2. Introduction 

The proper pairing of nucleotide bases ensures fidelity in replication 

and transcription of the genetic information in a cell. The pairing of 

guanine with cytosine and adenine with thymine in what is now known as 

standard Watson-Crick base-pairing forms the basis for the structure of 

antiparallel DNA and RNA duplexes. Unusual base pairs, however, also 

play important roles in the transmission of genetic information. Here, we 

study the structures of reversed base pairs formed by nucleotides that 

overhang at the 5'-end of the homoduplex d(Gm5CGCGCG)2, and of the 

d(GCGCGCG) /d(TCGCGCG) and d(GCGCGCG) /d(CCGCGCG) 

heteroduplexes. A distorted d(GG) reverse Hoogsteen base pair is formed in 

the homoduplex, while d(GT) reverse wobble and d(GC) reverse Watson-

Crick base pairs of the type observed in RNA structures form in the 

respective heteroduplexes. 

The two strands of most DNA and RNA structures are oriented 

antiparallel to each other. In DNA duplexes, Watson-Crick-type base pairs 

are the predominant interactions that hold the two strands together. When 

bases are mismatched in DNA, unusual base pairing can occur, including 

wobble base pairs between G and T and Hoogsteen-type base pairs between 

two purine nucleotides (Figure 4.1). These are less stable than standard 

Watson-Crick-type base pairs. In RNA structures, unusual base pairing is 

more prevalent, and have been observed to stabilize the complex tertiary 

structures of large polynucleotides such as tRNA (Quigley & Rich, 1976), 

hammerhead ribozymes (Pley et al., 1994), and the self-splicing Group I 

intron from Tetrahymena thermophila (Cate et al., 1996). 



101  

Figure 4.1. Comparison of the normal and reverse Watson-Crick d(GC) base 
pairs, wobble d(GT) base pairs, and Hoogsteen-like d(GG) base pairs. The 
nitrogens in the bases of the normal Watson-Crick d(GC) base pair are 
numbered to orient the reader to the standard numbering of the purine and 
pyrimidine bases. The glycosidic bond that links the bases to the deoxyribose 
(R) in the reverse base pairs are oriented antiparallel to each other so that 
there is no distinction in terms of major and minor grooves, as there are in 
the normal base pairs. There is, however, a common guanine in the three 
structures studied here, and the major and minor grooves of this base is used 
as the reference in discussing the surfaces in the text. The Watson-Crick face 
of the bases includes the N1 base nitrogen, N2 amino nitrogen and 06 keto 
oxygen of the guanine and the 02 keto oxygen, N3 base nitrogen and N4 
amino nitrogen of the pyrimidine bases of thymine and cytosine. The 
Hoogsteen face of guanine is defined by the 06 keto oxygen and the N7 base 
nitrogen of the purine base. 
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Watson-Crick, wobble, and Hoogsteen-type base pairs all have reverse 

analogues in which one base is completely inverted. Here, we refer to 

"reverse" base pairs as the pairing of the nucleotide bases in which the 

glycosidic bonds are oriented essentially antiparallel to each other (Figure 

4.1). The three base pairs that we study here are asymmetric in the same 

manner that the normal pairings are asymmetric. The Hoogsteen and 

reverse Hoogsteen d(GG) pairs match the Watson-Crick face of one purine 

with the Hoogsteen face of the second. The reverse analogues of the d(GT) 

wobble and d(GC) Watson-Crick base pairs match the two respective 

Watson-Crick faces of the bases. In contrast, truly symmetric reverse base 

pairs, with two identical bases related by a dyad axis perpendicular to the base 

pair plane, have been used in the design of synthetic parallel-stranded DNA 

oligomers (Rippe et al., 1992; Robinson et al., 1994). These are interesting 

structures, although their biological relevance has yet to be determined. 

In large RNA structures, however, loops that fold into local secondary 

and tertiary structures often require the formation of unusual base pairs, 

including reverse base pairs even if the strands are in antiparallel 

orientations. For example, in the crystal structure of yeast tRNAPhe, a reverse 

Watson-Crick base pair at (G15C48) links the a region of the D arm to the 

variable V loop, and a reverse Hoogsteen base pair at (G22m7G46) links the 

D arm to the variable V loop (Kim, 1978). In a second example, a reverse 

Hoogsteen-type base pair forms between G7 and G11 at the base of a GNRA 

structural motif in an RNA aptamer designed to recognize and bind ATP 

(Jiang et al., 1996). Finally, in the NMR solution structure of the hairpin 

formed by r(GGAC(UUCG)GUCC), a r(GU) reverse wobble base pair 

stabilizes the base of a two nucleotide loop (Varani et al., 1991). This hairpin 

structure is thought to occur frequently in ribosomal and messenger RNAs. 
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Thus, non-Watson-Crick base pairs are important for the proper folding of 

RNA molecules into the compact tertiary structure of their functional forms. 

Non-Watson-Crick base pairs are also important for RNA-protein 

recognition. Genetic and biochemical studies have shown that protein 

binding sites in RNA are often associated with important non-Watson-Crick 

base pairs (Allmang et al., 1994; Ibba et al., 1996). In addition, protein binding 

of RNA loops can induce the formation of non-Watson-Crick base pairs. For 

example, the HIV Rev peptide binding to the Rev responsive element (RRE) 

in the env gene of HIV is associated with the formation of two homopurine 

base pairs in an internal RNA loop (Battiste et al., 1994; Battiste et al., 1996). 

The infrequent occurrence of reverse base pairs makes it difficult to 

study the intrinsic stability associated with specific structures. We present 

here the atomic resolution structures of three different reverse base pairs 

formed by nucleotides that overhang the 5'-ends of DNA duplexes. By 

studying the structures of these base pairs and their effects on duplex 

formation during crystallization, we have estimated the stability of the 

d(GC) reverse Watson-Crick and d(GT) reverse wobble base pairs relative to 

the distorted d(GG) reverse Hoogsteen base pair. 

4.3. Results 

We have solved the structures of the heptanucleotide duplexes 
d(GCGCGCG)2 d(Gm5CGCGCG)2 ) (where m5C is cytosine methylated at the 

C5 carbon of the base), d(GCGCGCG)/d(TCGCGCG) and d(GCGCGCG)/ 

d(CCGCGCG). In all four structures, the six underlined nucleotides pair to 

form left-handed Z-DNA d(CGCGCG) duplexes. The nucleotides within 

these duplexes are numbered 1-7 for each nucleotide of the common 
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d(GCGCGCG) strand, and 8-14 for the opposing d(NCGCGCG) strand (where 

N is either G, C, or T). A single nucleotide (G1 of d(GCGCGCG) and N8 of 

d(NCGCGCG)) is left overhanging each of the 5'-ends of the duplexes. These 

overhangs pair with overhangs from adjacent duplexes in the crystal lattice 

to form three different reverse base pairs. The overhanging dG nucleotides 

of the homoduplexes d(GCGCGCG)2 and d(Gm5CGCGCG)2 form nearly 

identical reverse Hoogsteen-type d(G-G) base pairs (rhGG) (Figure 4.2a). 

However, only the structure of the methylated sequence will be discussed 

here; it provided a more reliable structure, as was evident from the final, R-

factors of the refined structures. The duplexes of d(GCGCGCG)/d(TCGCGCG) 

form reverse wobble d(GT) base pairs (rwGT) (Figure 4.2c), while the 

duplexes of d(GCGCGCG)/d(CCGCGCG) form reverse Watson-Crick d(G-C) 

base pairs (rwcGC) (Figure 4.2b). Thus, in all the structures, the overhanging 

nucleotide G1 remains stacked against the Z-DNA duplex, while the 

overhanging nucleotide N8 is extra-helical (Figure 4.3). In the remainder of 

this section, we will first discuss the duplex structures and crystal lattice 

interactions that are common to all the sequences, followed by a more 

detailed description of the structure for each type of base pairing. 

4.3.1 Z-DNA duplex structure 

The six bases at the 3'-end of each sequence form standard Watson-

Crick d(C-G) base pairs. The resulting structure is a left-handed duplex that is 

nearly identical to the Z-DNA structure of d(CG)3 (Wang et al., 1979). The 

sugar conformations alternate between C2'-endo for the dC and C3'-endo for 

the dG nucleotides. The C3'-endo sugar facilitates formation of the syn 

conformation by the purine bases. The 3'-terminal dG nucleotide of each 
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Figure 4.2. Electron density omit maps of the (a) reverse Hoogsteen-like 
d(GG) (rhGG) (b) reverse Watson-Crick d(GC) (rwcGC), and (c) reverse 
wobble d(GT) (rwGT) base pairs. Shown are Fo-Fc maps in which the 
overhanging bases at the 5'-ends were excluded from the phasing 
information used to calculate the structure factors. The hydrogen bonds that 
link the two bases of each base pair and the common guanosine in syn to its 
deoxyribose sugar are indicated by the dashed lines, along with the distances 
for each hydrogen bond. 



(a) (b) (c)  
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Figure 4.3. Stereoview of the crystal lattice. All three crystals in this study 
are in the space group P212121 with four symmetry-related heptamers in the 
unit cell (the contents of one unit cell of d(Gm5CGCGCG)2 is shown). The 
axes of the unit cell are labeled. The one unique heptamer duplex in the 
unit cell is shown as a ball and stick model, while the bonds of the symmetry 
related hexamer duplexes are shown as simple lines. The guanosine in 
position 8 flips out and hydrogen bonds to the stacked guanosine in position 
1 of the adjacent molecule in the same layer of duplexes. Thus, there is a 
single base pair interaction between adjacent duplexes within this unit cell. 
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strand, although in the syn conformation, adopts a C2'-endo sugar 

conformation, as was observed in all the standard Z-DNA structures of 

hexanucleotides (Ho & Mooers, 1997). Thus, the duplexes have the general 

features of Z-DNA as defined by the prototype structure of d(CG)3. 

The helical parameters of the duplex structures are compared to that 

of d(CGCGCG) in greater detail in Table 4.1. The helical twist alternates on 

average between -9.1° for the d(CpG) step and -47.7° for the d(GpC) step for 

all three structures, to give an average of -28.4° per base pair. This is nearly 

identical to the -30.1° twist per base pair observed in the structure d(CG)3. 

When comparing the individual structures, the helical twists between the 

base pairs of the homoduplex are identical (to within one standard 

deviation) to those of the analogous base steps in standard Z-DNA. The two 

heteroduplexes, however, are slightly less left-handed at the d(GpC) 

dinucleotide steps than observed in d(CG)3. This distortion in the 

heteroduplex structures is associated with perturbations required to pair the 

base of the extra-helical nucleotides with the stacked guanosine G1 of an 

adjacent duplex. 

The other obvious difference is the large buckle (angle between base 

planes about the short axis of the base pair) of the base pairs at the ends of the 

duplex regions in all of the current structures. The Z-DNA structure of 

d(CG)3 is very rigid, and the base pairs very planar (showing very little 

propeller twisting or buckling). The high buckle at the ends are again likely 

associated with distortions required to form the unusual base pairs here. All 

other helical parameters, including the rise at each base step and the 

propeller twist at each base pair are identical to those in the structure of 

d(CG)3. 

The solvent structures at the major groove surface and the minor 
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Table 4.1. Comparison of the helical parameters for base steps and base 

pairs of the (CG)3 Z-DNA regions. 

(CG)3 rhGG rwcGC rwGT 

Twist (degree/base step) 

C2G3/C13G14 -9.2 -7.7 -6.5 -7.4 

G3C4/G12C13 -48.9 -47.7 -47.5 -47.5 

C4G5/C11G12 -9.4 -10.4 -10.5 -10.3 

G5C6/G10C11 -50.8 -48.5 -48.0 -47.1 

C6G7/C9G10 -12.2 -9.1 -9.8 -10.6 

Average for CG steps -10.3±1.7 -9.1±1.3 -8.9±2.1 -9.4±1.8 

Average for GC steps -49.9±1.3 -48.1±0.6 -47.8±0.4 -47.3±0.3 

Rise (A/base step) 

C2G3/C13G14 3.8 3.4 3.4 3.4 

G3C4/G12C13 3.6 3.7 3.7 3.6 

C4G5/C11G12 3.9 4.0 3.9 4.1 

G5C6/G10C11 3.5 3.6 3.6 3.7 

C6G7/C9G10 4.1 3.8 3.9 3.8 

Average for CG steps 3.9±0.2 3.7±0.3 3.7±0.3 3.8±0.3 

Average for GC steps 3.6±0.1 3.7±0.1 3.7±0.1 3.7±0.1 

Propeller Twist (degree/ 

base pair) 1.1 -1.2 6.3 -0.7 

C2G14 

G313 3.2 1.3 0.1 2.2 

C4G12 -0.9 -0.3 -0.7 -0.9 

G511 -1.5 -0.3 -0.9 1.2 

C6G10 0.5 -0.3 2.2 -3.6 
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Table 4.1. (continued) 

G7C9 2.7 3.8 0.1 5.4 

Buckle (degree/base pair) 

C2G14 1.9 10.2 10.0 10.4 

G3C13 -3.5 -6.1 -3.5 -5.9 

C4G12 3.0 0.6 0.0 0.1 

G5C11 -2.4 -1.7 -2.1 -0.7 

C6G10 2.0 3.3 3.8 8.2 

G7C9 0.0 -4.7 -1.3 -8.3 
*Values of twist, rise, propeller twist, and buckle are shown for each of the 
three structures (rhGG, rwcGC, and rwGT) described in the text and are 
compared with the 1.0 A crystal structure of d(CG)3 containing only MgC12 
(Gessner et al, 1989). Morphologies of the 5'-overhanging ends are not 
shown. Each structure was evaluated using the program NASTE (Nucleic 
Acid STructure Evaluation), which utilizes a global helix axis to 
determine each parameter. The rhGG, rwcGC, and rwGT structures were 
analyzed with the 5'-overhangs removed and with the remaining d(CG)3 
duplex juxtaposed to the reference d(CG)3 structure. Residues 2-7 and 9-14 
in the rhGG, rwcGC, and rwGT duplexes respectively correspond to 
residues 1-6 and 7-12 in d(CG)3. 



113 

Table 4.2. Backbone and glycosidic torsion angles and sugar puckers of 5'-

overhanging nucleotides.* 

rhGG rwcGC rwGT 

G1 G8 G1 C8 G1 T8 

7 (C5'-C4') 17.90 28.01 26.91 140.15 159.91 -162.68 

8 (C4'-C3') 161.03 175.43 161.81 126.98 106.64 120.36 

E (C3'-03') -156.05 -97.43 -155.20 -79.05 -58.74 -124.54 

C (03'-P) -16.70 169.38 -20.17 75.36 -60.63 -134.33 

X (C1' -N) 74.62 -76.75 79.86 171.71 39.13 75.58 

(S) (S) (S) (A) (S) (S) 

sugar C2'-endo CZ-endo C3'-e co CT-exo O'-endo Cl'-endo 

Pub 
*Torsion angles (degrees) shown above were calculated using the program 
Xfit (MacRee, 1992). The conformation of the base relative to the 
deoxyribose ring is denoted beside x angles as either S (syn) or A (anti). 
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groove crevice of the Z-DNA duplexes are for the most part nearly identical 

to that of the magnesium form of d(CG)3 (Gessner et al., 1989). For most base 

pairs, two waters bridge the N4 amino groups at the major groove surface of 

adjacent cytidines in each d(CpG) dinucleotide step. Differences in the 

pattern of water interactions at this surface result from disruptions caused by 

the binding of a Co(NH3)6+3 complex at the central d(CpG) dinucleotide. The 

amino ligands from this complex form hydrogen bonds to the 04 oxygen and 

N7 nitrogen of G5, while two amino groups hydrogen bond to the phosphate 

oxygen of the phosphodiester linking C4 to G5. This phosphate oxygen is 

also hydrogen bonded to a water ligand of a hydrated magnesium complex. 

Waters from this Mg(H20)6+2 complex also form hydrogen bonds to the 

backbones of two adjacent duplexes and to the N7 of G12 on one of these 

duplexes. Thus, the hydrated magnesium links together three duplexes and 

appears to be important in stabilizing the crystal lattice. 

In the minor groove, the four central d(CG) base pairs show a spine of 

interconnected waters. This spine is formed by two waters lying nearly in 

the plane of each base pair. The disruption of this spine at the terminal base 

pairs is associated with the large buckling and the unusual stacking of the 

paired overhanging nucleotides. The DNA structure and the solvent 

structure around the six standard Watson-Crick d(GC) base pairs, therefore, 

are very similar to that of standard Z-DNA, with some variations that are 

specific for the crystal lattice interactions. 

4.3.2 Crystal lattice interactions 

The duplexes are aligned end-to-end along the crystallographic c-axis, 

similar to the stacking of Z-DNA hexanucleotides in this same space group 

(Figure 4.3). In the crystal lattice of standard Z-DNA hexanucleotides, the 
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duplexes stack end-to-end to form quasi-continuous columns along the c-

axis. Each adjacent column is staggered by two base pairs along this axis. In 

the current heptamer structures, however, the adjacent Z-DNA duplex 

regions are all exactly aligned. This can be envisioned as a series of discrete 

stacked sheets of Z-DNA. 

The most noticeable feature of the crystal lattice, however, is that in 

these heptanucleotide sequences, there is a single base overhanging each 5'-

end. The structures of the overhanging nucleotides are not identical, even 
in the homoduplex d(GCGCGCG)2. In all cases, one of the overhanging 

guanosine nucleotides sits stacked against the duplex, while the other 

nucleotide (whether it is a guanosine, cytidine, or thymidine) is extra-helical, 

extending out and away from the duplex. The extra-helical base pairs with 

the stacked guanosine of an adjacent duplex within each layer, effectively 

interlinking the Z-DNA duplexes. The extra-helical base also serves to fill 

the gap between two stacked duplexes. Thus, the lattice consists of layers of 

duplexes in which each duplex is linked to two adjacent duplexes by pairing 

the bases that overhang the 5'-ends. 

The pairing of extra-helical bases has previously been observed in the 

crystal structure of the Z-DNA hexamer of d(CCGCGG) (Malinina et al., 

1994). In this case, the bases at both ends flip out and form Watson-Crick 

base pairs between adjacent duplexes, leaving only four standard base pairs as 

Z-DNA in the center of the hexamer structure. 

In the lattice of the current heptanucleotides, the reverse base pairs 

bring adjacent helices so close together that a direct helix to helix hydrogen 

bond forms between 02P of G3 and the 03' of G7 of the duplexes. This 

hydrogen bond is analogous to the short (2.63 A) interhelical hydrogen bond 

observed between the 01P of G2 of one hexamer duplex and the 05' of G12 
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in an adjacent hexamer in the crystal structure of the Z-DNA hexamer 

d(CG)3 (Wang et al., 1979, 1981). 

The third base step in each strand of these heptanucleotide structures 

(G3/C4 and G10/C11) is in the unusual Z11 conformation, which has been 

attributed to crystal packing effects in the crystal structure of d(CG)3 (Wang et 

al., 1981). When a base step is in the Z11 conformation, the intervening 

phosphate is rotated outward about 1 A away from the minor groove. In all 

three heptamer crystal structures, the phosphates of nucleotides C4 and C11 

are not directly hydrogen bonded to a neighboring duplex or a metal 

complex, as was observed in the base steps that adopt the Z11 conformation in 

the crystal structures of Z-DNA hexamers and decamers (Gessner et al., 1985, 

Brennan et al., 1986). Thus, while the Zll conformation in the heptamers 

may be caused by crystal packing, the lattice interactions causing this 

distortion remain unclear. 

4.3.3 Structure of the helical stacked guanosine nucleotide 

In all cases, the guanosine that remains stacked against the Z-DNA 

duplex is in the syn conformation, extending the alternating anti-syn pattern 

of nucleotides from the duplex to include this overhanging nucleotide. The 

syn conformation of this nucleotide is stabilized by a hydrogen bond between 

the 05' oxygen of the terminal hydroxyl group to the N3 nitrogen of the 

guanine base (Figure 4.2). The Watson-Crick edge of the guanine is 

subsequently oriented to allow pairing with the intervening base of the 

extra-helical overhanging nucleotide of an adjacent duplex. Since the 

interduplex base pairs bring the 5'-nucleotides of adjacent duplexes together 

within these layers, the strands held together in this manner are necessarily 

parallel to each other. These base pairs are therefore the reverse type, with 
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the d(GG) overhangs forming reverse Hoogsteen-type base pairs, the d(GC) 

overhangs forming reverse Watson-Crick base pairs, and d(GT) overhangs 

forming reverse wobble base pairs (Figures 4.1 and 4.2). 

4.3.4 Structure of the reverse Hoogsteen d(GG) base pair 

The Watson-Crick edge of the stacked guanine faces the Hoogsteen 

edge of the extra-helical guanosine nucleotide of an adjacent duplex to form 

a reverse Hoogsteen-type d(GG) base pair (rhGG, Figure 4.2a). In this case, 

although the stacked guanosine is in syn, the extra-helical guanosine base 

adopts the anti conformation. This is analogous to the two mismatched 

G(anti)G(syn) Hoogsteen base pairs in the structure of d(CGCGAATTGGCG)2 

(Skelly et al., 1993). The hydrogen bonds that hold the base pair together are 

shown in Figure 4.2a. The N1 to N7 distance is in the range of hydrogen 

bond donor to acceptor distances observed in Watson-Crick base pairs. The 

N2 to 06 distance, however, is significantly longer than that expected for a 

standard hydrogen bond. This is a result of the shift of both guanines within 

the plane of the bases. This shift is very noticeable when the rhGG base pair 

is superimposed on a rhGG base pair that is part of the r[(GC)"G] triplet in 

yeast tRNAPhe (Westhof et al., 1988) (Figure 4.4), and is likely the result of an 

additional hydrogen bond formed between the N2 amino nitrogen of the 

extra-helical base and the 02P oxygen of cytidine 9 of a third duplex. The 

base planes of the two guanines are almost exactly coplanar as a consequence 

of being sandwiched between two Watson-Crick base pairs of the stacked Z-

DNA duplexes (Figure 4.5a). In contrast, the Hoogsteen d(GG) base pairs in 

the antiparallel duplex of d(CGCGAATTGGCG) are propeller twisted about 

their long axes (Skelly et al., 1993). In the current structure, several waters 
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Figure 4.4. Comparison of the reverse Hoogsteen d(GG) base pair (open 
bonds) with the r(G22:C13)m7G46 triplet (shaded bonds) in the crystal 
structure of tRNAPhe (Westhof et al., 1988). The hydrogen bonds between the 
analogous bases in the two structures are drawn as dashed lines. This 
superposition reveals a sliding of G8 within the base plane of the Hoogsteen-
like base pair in the current structure. This is likely a result of the hydrogen 
bond formed between the N2 amino group and a phosphate oxygen a third 
duplex (not shown). 
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Figure 4.5. Comparison of the base pair stacking and solvent interactions in 
the crystal structures of (a) d(Gm5CGCGCG)2, (b) d(GCGCGCG)/d(CCGCGCG), 
and (c) d(GCGCGCG)/d(TCGCGCG). The views are down the helical axes of 
the three base pairs in the junction between two stacked duplexes. The 
overall set of interactions involve three different duplexes, two in which the 
blunt ends of the fully duplexed Z-DNA hexamers sandwich the stacked 
overhanging guanine (base shown as a ball and stick model), while the third 
is adjacent to the lower duplex, but contributes the extrahelical base to each 
reverse base pair (both the base and deoxyribose of this extended nucleotide 
are shown as ball and stick models). The nucleotides with open bonds are 
closet to the viewer and include an extrahelical base that extends to form 
another reverse base pair with an adjacent helix which is not shown. The 
nucleotides with shaded bonds are farthest from the viewer and include the 
stacked guanosine in the 5' terminal position. The dashed lines connect 
hydrogen bond donors and acceptors important in conferring specificity in 
the formation of each reverse base pair. 
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link each overhanging guanine base to neighboring DNA atoms. There are, 

however, no waters that directly bridge the two guanines in this rhGG base 

pair. The structure of this base pair is distorted by the crystal lattice and 

therefore may not represent the type of rhGG base pair expected to form in 

RNA structures. We will still refer to this as the rhGG base pair, however, 

because it does conform to the geometry of this type of base pair (Figure 4.1) 

and, as we will see later, will be a useful reference structure for comparing 

the stabilities of the rwcGC and rwGT base pairs. 

4.3.5 Structure of the reverse Watson-Crick d(GC) base pair 

A reverse Watson-Crick base pair is formed by pairing the stacked 

guanosine with the extra-helical cytidine of a d(CCGCGCG) strand, with the 

Watson-Crick edges of their bases facing each other. In this case, the cytidine 

in anti pairs with the guanosine in syn. In contrast to the normal d(GC) base 

pairs, the resulting rwcGC base pair is held together by only two hydrogen 

bonds (from the N1 and N2 of the guanine to 02 and N3 atoms, respectively, 

of the cytosine base). In addition, a single water (Wb) was observed to bridge 

the guanine N2 to the cytosine N4 nitrogen, which may provide additional 

stability to this base pairing (Figure 4.5b). When taken together, the reverse 

Watson-Crick base pair appeared to have the greatest number of base-base 

and base-water-base hydrogen bonds of the three reverse base pairs presented 

here. 

4.3.6 Structure of the reverse wobble d(GT) base pair 

A reverse wobble base pair is formed by pairing the stacked guanosine 

with the extra-helical thymidine of the d(TCGCGCG) strand, with the 

Watson-Crick edges of their bases facing each other. In this case, both 
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nucleotides are in the syn-conformation. The resulting rwGT base pair is 

held together by two hydrogen bonds (from the N1 and 06 atoms of the 

guanine to the 04 and N3 atoms, respectively, of the thymine base) (Figure 

4.2c). In several crystal structures of DNA duplexes containing wobble GI' 

mismatches, a water or a hydrated magnesium cation bridges the guanine 06 

and the thymine 04 (Ho et al., 1985; Hunter et al., 1986). No analogous 

solvent interaction was observed in the current rwGT base pair. In fact, very 

few water molecules were observed around this base pair (Figure 4.5c). This 

may be the result of slight positional disorder within the base pair plane. 

The average temperature factors for this base pair are 2-fold higher than the 

remainder of the DNA, and 20% higher than that of the rhGG and rwcGC 

base pairs. 

The deoxyribose 05' oxygen of the thymidine forms a hydrogen bond 

to the 02 oxygen in the base of cytidine C9 from an adjacent stacked duplex. 

This intermolecular hydrogen bond apparently stabilizes the syn 

conformation of the thymidine nucleotide. In comparison, the deoxyribose 

05' of the anti cytidine in the rwcGC base pair does not show this same 

hydrogen bonding interaction. As in the case of the rhGG base pair, the bases 

in the rwGT base pair are nearly coplanar. This is similar to the normal 

wobble d(GT) base pair observed in the crystal structure of a Z-DNA 

hexamer (Ho et al., 1985). On the other hand, the normal wobble d(GT) and 

d(GU) base pairs in several A-DNA crystal structures (Kneale et al., 1985; 

Hunter et al., 1986; Vojtechovsky et al., 1995) and A-RNA crystal structures 

(Holbrook et al., 1991, Cruse et al., 1994) show significant propeller twists. 
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4.3.7 Relative stability of reverse base pairs 

We observed only the rwGT base pairs in the crystals of the 

heterogeneous duplexes formed by mixing the sequence d(GCGCGCG) with 

d(TCGCGCG). To confirm this observation from the crystal structure, the 

single crystal was redissolved and the DNA strand composition analyzed by 

MALDI mass spectrometry (Figure 4.6). The mass spectrum showed that, 

within experimental error, the crystal was composed of near equal ratios of 

the two strands. Mass spectra recorded from the four remaining crystals in 

the crystallization set-up were identical to that of the mounted crystal, 

indicating that this was not unique to the crystal that we had originally 

studied. We would expect that mixing these sequences would result in a 

1:2:1 ratio of d(GCGCGCG)2, d(GCGCGCG)/d(TCGCGCG), and d(TCGCGCG)2 

duplexes in solution. This mixture of homo- and heteroduplexes should 

also be observed when d(GCGCGCG) is paired with d(CCGCGCG). Again, 

only the rwcGC pairing was observed. Thus, the crystal lattice discriminates 

between the reverse base pairs that are formed by the overhanging 

nucleotides, favoring both rwGT and rwcGC over rhGG base pairs. 

In order to gain additional insight into the mechanism for this 

discrimination and the free energy differences between the rhGG versus 

either rwGT or rwcGC, we studied the crystallization of these duplexes in 

solutions containing increasing ratios of the d(GCGCGCG) strand (Gs) 

relative to either the d(TCGCGCG) or d(CCGCGCG) strands, redissolved the 

DNA in the crystals, and quantitated the strand composition within the 

crystals by mass spectrometry. The mass spectra showed equal quantities of 

d(GCGCGCG) and d(TCGCGCG) when the two strands were added at a 1:1 

ratio, but showed only the d(GCGCGCG) strand at ratios ?. 2:1. For the 

d(CCGCGCG) containing crystals, equal proportions of both strands persisted 
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Figure 4.6. MALDI mass spectrumetry analysis of the DNA strand 
composition of d(GCGCGCG)/d(TCGCGCG) single crystals. The horizontal 
axis indicates the mass to charge ratio (M/Z) of the observed fragments, 
while the vertical axis is the abundance of each fragment. The calculated 
mass of each strand is shown in parentheses next to the measured mass. The 
mass determined for the d(GCGCGCG) single-strand is 2122 gm/mol 
(calculated to be 2130 gm/mol), while that of the d(TCGCGCG) single-strand 
is 2097 gm/mol (calculated to be 2105 gm/mol). 
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to a ratio of 3:1. At a 4:1 ratio of d(GCGCGCG) added to d(CCGCGCG), 

however, the spectrum showed predominantly (>90%) the d(GCGCGCG) 

strand. Thus, the crystals convert from the heteroduplexes to the 

homoduplex of d(GCGCGCG)2 as the ratio of d(GCGCGCG) added was 

increased. The order of stability for the reverse base pairs can thus be defined 

as rwcGC > rwGT > rhGG. This was confirmed in an experiment where 

crystals were grown with all three sequences added in equal proportions. In 

this case, the mass spectrum of the dissolved crystals showed only the 

d(GCGCGCG) and d(CCGCGCG) strands, indicating that this was the 

preferred pairing of the DNA. 

To estimate the stability of the rwcGC and rwGT base pairs relative to 

the rhGG base pair, we derived a thermodynamic model to simulate these 

titration results. The sharp transition from hetero- to homoduplexes in the 

crystals suggests that discrimination between the various reverse base pairs 

occurs at a highly cooperative step during crystallization. This is most likely 

during the nucleating event that initiates the formation of the crystals. In 

this model, we consider only two different duplexes that can crystallize, the 

homoduplex (GG) formed by the d(GCGCGCG) strands in solution (Gs) and 

the heteroduplex (GY) formed by Gs and Ys in solution (where Y represents 

either the d(CCGCGCG) or d(TCGCGCG) strand). The homoduplexes (YY) 

are not considered in the model because these have not been observed to 

crystallize in these studies. Qualitatively, we can think of this mechanism as 

one in which the initiation step of crystallization is the formation of a lattice 

in a solution consisting of either the homo- or heteroduplexes of the DNA. 

Once formed, this lattice allows the addition of duplexes that are identical to 

those already in the lattice, excluding all others. Thus, discrimination 

between base pairs results from the probability of bringing n number of 
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identical duplexes together to form the initial nucleating lattice in solution 

(Eq. 1 and 2). Subsequent growth of the crystal is then dependent on the 

composition of this initial lattice. 

nGGs <-> GGL Eq. 1 

nGYs <-> GYL Eq. 2 

The duplexes in the lattices (GGL and GYL) are considered to be in 

equilibrium with the free duplexes in solution (GGs and GYs) in this model. 

Thus, the probability for forming GYL versus GGL is related by Eq. 3 (where 

KGYL and KGGL are the equilibrium constants for formation of the nucleating 

lattices). 

[GGL] /[GYL]= ([GGs]nKGGL)/([GYS]nKGYL) = ([GGs] /[GYs]) (K GGL /KGYL-) 

Eq. 3 

The ratios of the homo- and heteroduplexes in solution are dependent on 

the ratios of the single-strands added to the solutions (Eq. 4-6). 

2Gs <-> GGs, and KGGS = [GGs] / [Gs] 2 Eq. 4 

Gs + Ys <-> GYs, and KGYS = [GYs] /([Gs] [vs]) Eq. 5 

[GGs]/[GYs] = (KGGs[G02)/(KGYs[Gs][vs]) = (Kccs[Gs])/(KGYs[Ys]) Eq. 6 

Since the base pairing and structure of the resulting duplex regions are 

identical between the homo- and heteroduplexes, we can assume that KGGS = 

KGYS Thus, [GGs] / [GYs] = [Gs] / [Ys]. During the slow nucleation steps, the 

DNA is predominantly in solution, so that [Gs] / [Ys] can be assumed to be the 

ratio of the two strands added to solution. The relative probabilities for 

initiating the GGL and GYL lattices are related to the strand compositions of 

the crystallization setup and to the difference in free energy between the 

lattices of the two types of duplexes (MC') (Eq. 7). 
ne-MG7RT 

[GGL] / [GYL] = ([Gs] i[YOKGGL/KGYL) = ([Gs]] i[Ys]) 
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The mass spectrometry analyses provide the compositions of the 

crystals as the types of single-strands and not of DNA duplexes. Thus, the 

observed quantities are the ratios of the individual strands that are associated 

with each type of duplex that is potentially found in each crystal. The GGL 

species contributes two strands of d(GCGCGCG) while GYL contributes one 

such strand. The observed quantity of d(GCGCGCG) in the lattice (Gobs) is 

thus 2 GGL + GYL. The amount of Y strand observed from the mass spectra 

(Yobs) is simply GYL, since this is the only species that contributes. Thus, the 

ratio Gobs /Yobs = 2(GGL/GYL) + 1. The data we obtained showed the 

complete conversion from the hetero- to the homoduplex; we therefore 

represent the observed data as the fraction of Yobs (fy, from 0.5 to 0.0). 

Finally, this can be related to the ratio of the two strands in solution by Eq. 8. 
7RT

fy = 0.5/ f ([Gs] / [Ys])ne-'MG Eq. 8 

Using Eq. 8, we can simulate titration curves for [Gs] aYs] from 1:1 to 

5:1 and values for n = 1 to 16, in which the transition from the heteroduplex 

(fy = 0.5) to the homoduplex (fy = 0) occurs at [Gs] / [Ys] - 3.5 (Fig. 7a). The 

simulated curve at n = 16 reproduces the sharp transition observed between 

the two lattice types (assuming a 10% accuracy in defining fy from the mass 

spectrometry data). This suggests that the discrimination between rwcGC 

and rhGG base pairs in the crystal lattice occurs when a minimum of 16 

duplexes (the contents of four complete unit cells) associate to form an 

initiation complex. The assembly of four complete unit cells in the lattice, 

therefore, appears to be the defining step for the composition of the crystals. 

The assembly of a minimum of four unit cells produces an environment in 
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Figure 4.7. Comparison of the fractions of the d(YCGCGCG) strand (fy = Y / 
(Y+G), Y = observed quantity of d(YCGCGCG) and G = quantity of 
d(GCGCGCG) in the crystal) as the ratio of the d(GCGCGCG) strand relative 
to the d(YCGCGCG) strand ([Gs]/[15]) is increased from 1:1 to 4:1 in the 
crystallization setups, as observed in the crystals and calculated using the 
model and Eq. 8 in the text. (a) The fraction of the strand d(CCGCGCG) (fc) 
in the crystal of the heteroduplex d(GCGCGCG)/d(CCGCGCG) were 
determined at each [Gs]/[11s] ratio by MALDI mass spectrometry (closed 
circles, with errors approximated at 10%). The simulated curves were 
calculated with the number of duplexes in the initiation complex (n) set at 1 
to 16 in Eq. 8, and AAG set to a value that places the midpoint of the 
transition at [Gs]/EYsi = 3.5 for each curve. (b) The fraction of the 
d(YCGCGCG) strand in crystals of the heteroduplexes d(GCGCGCG) 
/d(YCGCGCG) are compared for Y = cytidine (closed cicles) and Y = 
thymidine (open boxes). The values for fy were calculated using Eq. 8, with n 
= 16 and the difference in free energy between the rhGG and the rwcGC and 
rwGT reverse base pairs normalized to each interaction expected within and 
between four unit cells (AAG°/interaction) set at 0.0, 0.5, 1.0, and 1.5 
kcal /mol. 
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which all the possible intermolecular interactions (within the unit cell and 

between unit cells) are represented. 

With the value of n = 16, or four unit cells defining the minimum 

size of the initiation complex, we can now estimate the free energy 

differences between rhGG and the other two types of base pairs. In this 

initiation complex, there is one interduplex base pair interaction within each 

unit cell and one between each unit cell. For the most compact assembly, 

there are a total of 4 base pairs within and 4 between the four unit cells, 

yielding a total of 8 identical base pairing interactions. If we now consider 

the total difference in free energy of interaction as the sum of 8 individual 

interactions (AAG °/int), the titration curves can be simulated, again using 

Eq. 8 (Figure 4.7b). This assumes that only the differences in the free energy 

for pairing bases between the duplexes are important. A comparison of the 

simulated and the mass spectrometry results show the rwcGC base pair to be 

1.5 kcal/mol more stable than rhGG, and rwGT to be 0.5 kcal/mol more 

stable than rhGG, within this crystal system. 

4.4. Discussion 

We present here the structures of reverse base pairs formed by pairing 

the 5'-overhanging nucleotide of d(Gm5CGCGCG) with either the 5'-

guanosine of d(Gm5CGCGCG) to form a d(GG) reverse Hoogsteen, the 5'-

thymidine of d(TCGCGCG) to form a d(GT) reverse wobble, or the 5'-

cytidine of d(CCGCGCG) to form a d(GC) reverse Watson-Crick base pair 

(Figure 4.2). The common guanosine nucleotide is stacked against the 

standard Z-DNA and is relatively inflexible in its conformation (Figure 4.3). 
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In all three structures, this guanosine is in the syn conformation, extending 

the alternating anti-syn character of the Z-DNA duplex. 

The extra-helical nucleotide, which distinguishes each type of base 

pair, adopts either the anti conformation (in rhGG and rwcGC) or the syn 

conformation (in rwGT). This is likely determined by the requirements for 

orienting the base so that the proper face is presented to the stacked guanine 

to form the base pair. For example, the thymine of the rwGT base pair must 

lie towards the major groove of the guanine in order to properly pair its N3 

and 04 atoms with the N1 and 06 of the guanine base (Figure 4.2c). This 

pushes the pyrimidine base closer to the duplex in the lattice and thus 

requires that the nucleotide adopt the more compact syn conformation 

(Figure 4.5c). The cytosine and guanine bases of the rwcGC and rhGG base 

pairs, on the other hand, are pulled towards the minor groove, and thus can 

adopt the more extended anti conformation (Figure 4.2a & 4.2b). Indeed, the 

rhGG is an extreme case, where the extra-helical guanosine is extended to the 

point where it now has only a single hydrogen bond within the base pair. A 

second hydrogen bonding interaction occurs between the N2 amino nitrogen 

of this extended guanosine and the 02P oxygen of cytidine 9 in a third duplex 

(Figure 4.5a). This feature of the purine-purine base pair is not observed in 

either of the base pairs formed with the pyrimidines. 

The structure of the rwcGC base pair is identical to the analogous base 

pairs observed in tRNA (Westhof et al., 1988). The root-mean-square (rms) 

deviation between the atoms of the bases in this structure and that of the 
Phe .tRNA is 0.160 A. In comparison, the average rms deviation of the d(GC) 

Watson-Crick base pairs within the structure of rwcGC is 0.124 A, and 

relative to the d(G-C) Watson-Crick base pair in the structure of B-DNA at 2.5 

A resolution is 0.184 A. Likewise, the bases of the rwGT base pair are similar 
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to the GU reverse wobble base pair observed in the solution structure of the 

unusually stable RNA hairpin formed by the sequence 

r(GGAC(UUCG)GUCC) (Varani et al., 1991). 

In all of these crystal structures, only one well-defined type of reverse 

base pair was observed, even though we attempted to solve the structures 

with all possible combinations of base pairs. It is easy to rationalize the 

common stacked guanosine nucleotide, since this is an extension of the 

highly invariant Z-DNA duplex. It is less obvious, however, why the extra-

helical base of the heteroduplexes should always be the pyrimidine, since the 

pairing two guanines of the homoduplex can obviously be accommodated by 

this same lattice. Mass spectrometry analysis of these heteroduplex showed 

that crystals grown with equal ratios of each strand are composed only of the 

heteroduplexes. In addition, when looking at the population of crystals, all 

the crystals analyzed in this way had this same composition. We concluded 

that the difference must result from the greater stability of the rwcGC and 

rwGT base pairs over the rhGG in this environment. 

Since these base pairs result from crystal lattice interactions, we were 

able to estimate the relative stability of each type of base pair within nearly 

identical environments by analyzing the compositions of crystals grown 

with various ratios of the parent strand (d(GCGCGCG)) with the paired 

pyrimidine strand (d(CCGCGCG) or d(TCGCGCG)). In the case of the rwcGC 

structure, the transition from all heteroduplexes to all homoduplexes in the 

crystals was highly cooperative. The simplest model for this transition 

defines the discriminating step as the initial nucleation event of crystal 

growth. This is not the only interpretation of the cooperativity. However, it 

seems reasonable that once a particular lattice type is established, the growth 

of the crystal can proceed only by extending this same lattice. The minimum 
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cooperativity coefficient that fits the data requires that 16 duplexes be 

involved in the nucleation of the crystal. This is the content of four 

complete unit cells, suggesting that this is the minimum size of a regular 

lattice. In this model, all the interactions between molecules within the unit 

cell and between unit cells are established within this minimum lattice. 

Thus, once this initial lattice is formed, the structure of the pockets in which 

the extra-helical bases must fit becomes defined. These pockets then allow 

only a single type of duplex to add to the crystal lattice. 

The free energies determined here are specific for the base pairing and 

lattice interactions observed in these crystals, with the rwcGC > rwGT > rhGG 

base pairs. All of these form two hydrogen bonds within the lattice, either 

directly to the stacked guanine, as in the rwcGC and rwGT structures, or one 

with the stacked guanine and one with the backbone of a third duplex as in 

the rhGG structure. With both the atomic resolution structures and the 

thermodynamic data in hand, we can ask what accounts for the differences 

in stability. The rwcGC base pair places the pyrimidine nucleotide in the anti 

conformation. In addition, waters in the plane of the base pairs 

accommodate the unfulfilled hydrogen bonding groups of the bases and thus 

may contribute to the overall stability of the rwcGC base pairing. The 

relative instability of the rwGT base pair likely results from the disfavored 

syn conformation adopted by this pyrimidine base (Haschemeyer & Rich, 

1967; Neumann et al., 1979). Furthermore, no waters were observed bridging 

the guanine and thymine bases, as has been observed in the structures of 

"normal" d(GT) wobble base pairs (Ho et al., 1985; Kneale et al. 1985; Hunter 

et al., 1986). 

The relative instability of the rhGG base pair is likely associated with 

the sliding of the extra-helical guanine away from the stacked guanine, 
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leaving only a single distorted hydrogen bond between the two bases. Still, 

one would expect the hydrogen bond interactions between the N2 amino 

nitrogen and the phosphate of a third duplex (there is one direct hydrogen 

bond and a second water mediated interaction) to compensate for the 

hydrogen bond lost between the two bases. However, the coordination of 

three duplexes to form all the observed hydrogen bond interactions may not 

occur during the nucleation event. It is not clear whether a more standard 

rhGG base pair forms at these initial stages, which is then distorted by 

subsequent lattice interactions. To test these possibilities, we crystallized a 

reverse d(AA) base pair, but its structure is significantly different from the 

d(GG) so that they are not comparable at this time. The structure and 

thermodynamics of a d(GI) base pair in this crystal system should resolve 

this problem. Thus, although the rhGG base pair observed here is highly 

distorted by the crystal lattice, and thus may not represent the structure 

expected in RNA structures, it does serve as a reference for comparing the 

stability of rwcGC and rwGT base pairs. 

4.5. Materials and Methods 

4.5.1 Synthesis, purification, & crystallization 

The seven base oligonucleotides d(Gm5CGCGCG), d(GCGCGCG), 

d(TCGCGCG), and d(CCGCGCG) were synthesized using phosphoramidite 

chemistry on an Applied Biosystems DNA synthesizer in the Center for 

Gene Research and Biotechnology at Oregon State University. Size exclusion 

chromatography on a Sephadex G-25 column was used to remove salts, 

blocking groups, and prematurely terminated oligonucleotides. The 

oligonucleotides were lyophilized, redissolved in 30 mM sodium cacodylate 
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buffer (pH 7.0), and used for crystallization without further purification. The 

oligonucleotides d(GCGCGCG) and d(Gm5CGCGCG) produce homoduplexes 

with two G overhangs. The oligonucleotides d(GCGCGCG) and 

d(TCGCGCG) were mixed in an equimolar ratio to yield duplexes with G and 

T overhangs. Likewise, d(GCGCGCG) and d(CCGCGCG) were similarly 

mixed to produce duplexes with C and G overhangs. 

Crystals of the duplexes were grown at room temperature by vapor 

diffusion in sitting drop setups. All sequences crystallized from initial 

solutions containing 0.5 mM DNA (single-strands), 50 mM sodium 

cacodylate (pH 7.0), 1 mM MgC12, 2.5 mM cobalt hexaammine (Aldrich), and 

5% (v/v) 2-methyl-2,4-pentanediol (MPD), equilibrated against a reservoir of 

17% MPD. Blocky, amber-colored plates appeared within one week and 

reached dimensions of up to 0.4 mm x 0.4 mm x 0.1 mm within two weeks. 

4.5.2 X-ray diffraction data collection 

X-ray diffraction data for the crystals were collected at room 

temperature using a Siemens P4 diffractometer with a Siemens HI-STAR 

area detector (Cu-Ka radiation from a sealed tube source). The raw data were 

integrated and scaled using the software package SAINT (Siemens, Inc.). All 

crystals were isomorphous (in the space group P212121 with nearly identical 

unit cell dimensions (Table 4.3)), and diffracted to high resolution (1.68 to 1.9 

A). 

4.5.3 Structure solution and refinement 

The structure of d(Gm5CGCGCG) was solved first using features of the 

diffraction data to construct an appropriate model for molecular 

replacement. The dimensions of the unit cell suggested that the heptamer 
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was in the Z-DNA form and aligned along the crystallographic c-axis. The 

space group was the same as that of most previously crystallized Z-DNA 

hexamers, and the a and b unit cell axial lengths were very similar to those 

of the archetypal Z-DNA hexamer d(CGCGCG) (Wang et al., 1979, 1981). The 

length of the c axis (-52A) could accommodate 14 base pairs with a helical 

rise of 3.7 A, suggesting that the helical axes of two stacked heptamers were 

aligned parallel to the c-axis. This was confirmed by the Patterson map, 

which showed base-pair cross vectors spaced 3.7 A apart along the c-axis. 

The alternating purine-pyrimidine heptamer sequence could pair to 

form d(Gm5CGCGC) hexamer duplexes with guanosines overhanging the 3'-

ends or d(m5CGCGCG) hexamer duplexes with guanosines overhanging the 

5'-ends. This latter case seemed more likely. Sequences of the type 

d(CGCGCG) typically crystallize as Z-DNA, while d(Gm5CGCGC) crystallize as 

A-DNA (Mooers et al., 1995). This is consistent with studies of Quadrifoglio 

et al., (1984) showing that short alternating d(CG) sequences, but not 

alternating d(GC) sequences form Z-DNA in solution. Both possibilities, 

however, were tested. Models of both types of structures were constructed 

using the program InsightII (Biosym/MSI Corp.) with standard helical 

parameters for Z-DNA. The initial 3'-overhang model was generated by 

removing the cytidine nucleotide at the 5'-end of the duplex structure of 

d(CGCGCGCG), while the 5'-overhang model was constructed by removing 

the nucleotide at the 3'-end of the duplex structure of d(GCGCGCGC). 

For each initial model, the best orientation and position of the heptamer in 

the unit cell was located using the rotation and translation search functions 

of the program AMORE (Nazava, 1994). The R-values for the best initial 

solutions were 44.7% for the 5'-overhang model and 47.7% for the 
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Table 4.3. Diffraction data from the crystal structures of the sequences 
d(Gm5CGCGCG)2, d(GCGCGCG)/d(CCGCGCG), and d(GCGCGCG)/ 
(TCGCGCG) which crystallized in the space group P212121. The crystals are 
represented by their overhangs as rhGG, rwcGC, and rwGT, respectively. 

rhGG rwcGC rwGT 

Unit Cell Dimensions (A): 

a 20.34 20.32 20.28 

b 29.62 29.54 29.41 

c 51.93 51.84 51.89 

Measured Reflections 28,961 20,832 5,784 

Unique Reflections 5,324 5,340 2,601 

Resolution Range (A) 29.60-1.46 14.20-1.48 14.00-1.88 

Rsym(I)* for I > 0 (%) 8.6 8.3 7.2 
*Rsym(I) = 100 x (Ihk1 ( I I - <I> I / I <I> I ) ) / n where I is the integrated 
intensity of a reflection, <I> is the average of all observations of the 
reflection and its symmetry equivalents, and n is the number of unique 
reflections. All positive, non-zero reflections were merged. 

http:14.00-1.88
http:14.20-1.48
http:29.60-1.46
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3'-overhang model. Subsequent refinement of these models demonstrated 

that the 5'-overhang structure was correct. The model was refined to an R-

value of 41.6% using the rigid body and rigid parts (with the bases, 

deoxyriboses, and phosphates treated as independent groups) refinement 

functions in X-PLOR (Brunger, 1992) using a new parameter file for the DNA 

(Parkinson et al., 1996) and data from 8-3.5 A. After simulated annealing 

(with a starting temperature of 3000eK) the R-factor was reduced to 30.6% for 

data from 8-2.2 A. 

The actual conformations of the overhanging nucleotides were 

determined from electron density maps calculated using only the phasing 

information from the six base pairs of the d(CGCGCG) duplex. Difference 

maps generated using XtalView (MacRee, 1992) showed that only one of the 

5'-terminal guanines was stacked. The other overhanging nucleotide was 

flipped out and extended so that it base paired with the stacked overhanging 

guanine of a neighboring duplex (Figure 4.2). The refinement converged to a 

final R of 20.7% (Rfree = 27.8%) at 1.68 A resolution, with 49 waters added, 

including one cobalt hexaammine and one hydrated magnesium complex. 

The coordinate error of less than 0.2 A was estimated from a Luzzati plot 

(Luzzati, 1952). 

The final structures of d(GCGCGCG)2 and d(Gm5CGCGCG)2 were 

identical in all respects. The structures of the heteroduplexes of 

d(GCGCGCG)/d(TCGCGCG) and d(GCGCGCG)/d(CCGCGCG) were solved in 

a similar fashion, using the d(CGCGCG) duplex region of the d(GCGCGCG) 

structure as the starting model, and defining the conformations of the 

overhanging bases from difference maps. The statistics for the refined 
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Table 4.4. Refinement results for the crystal structures of 
d(Gm5CGCGCG)2, (rhGG), d(GCGCGCG)/d(CCGCGCG) (rwGC), and 
d(GCGCGCG)/d(TCGCGCG) (rwGT). 

rhGG rwGC rwGT 

R-working (%) 20.7 20.9 19.1 

R-free (%) 28.7 27.2 28.6 

Resolution Range (A) 8-1.68 8-1.80 8-1.90 

Data Completeness (%)1 82.2 84.5 76.3 

Number of Reflections 3,538 3,127 2,230 

No. of nonhydrogen 286 281 283 

DNA atoms 

No. of water molecules2 49 64 47 

Ave. B-factors 

DNA atoms 15.9 13.3 17.5 

water atoms 31.1 31.5 29.6 

r.m.s. deviation from 

ideality 

bond lengths (A) 0.007 0.008 0.008 

bond angles (degrees) 1.477 1.304 1.311 
(Exclusive of the reflections sequestered in the test set to calculate Rfree 
Refinements were made with a three sigma on F cutoff on each dataset. 
2Each structure was refined with a cobalt hexaammine and a 
hexaaquomagnesium complex in addition to these waters. 
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structures of d(Gm5CGCGCG)2, d(GCGCGCG)/d(TCGCGCG), and 

d(GCGCGCG)/d(CCGCGCG) are listed in Table 4.4. 

In the crystallization solution of the heteroduplexes, homoduplexes of 

d(GCGCGCG) may have been present. As an independent check on the 

composition of the crystals of the heteroduplexes, four large crystals of the 

duplex d(GCGCGCG)/ d(TCGCGCG) were isolated, carefully washed with 

cold crystallization solution lacking DNA, dissolved at 90°C in 50 pa, of 

deionized and distilled water, and individually analyzed by mass 

spectrometry as described below. The spectra from each crystal showed that 

the d(GCGCGCG) and d(TCGCGCG) strands were present in a 1:1 ratio (Fig. 

4.6). 

Helical parameters for the Z-DNA duplex regions were analyzed using 

the program NASTE (Nucleic Acid STructure Evaluation), a program 

developed in this laboratory for analysis of the helical parameters in Z-DNA 

structures. The final coordinates and structure factors for the structures of 

d(Gm5CGCGCG)2, d(GCGCGCG)/(CCGCGCG), and d(GCGCGCG) / 

d(TCGCGCG) have been deposited in the Nucleic Acid Database (Berman et 

al., 1992). Their reference codes are ZDGB55, ZDG054, and ZDG056, 

respectively. 

4.5.4 Crystallization and mass spectrometry analyses of crystals grown with 
different strand compositions 

To estimate the relative stability of the different duplex pairings, 

crystals were grown from solutions in which d(GCGCGCG) was mixed with 

either d(CCGCGCG) or d(TCGCGCG) in molar ratios of 1:1, 2:1, 3:1, and 4:1, 

with the total concentration held constant at 1.4 mM. The crystallization 

solutions contained the identical buffers, salts, and precipitants as those that 

yielded the original crystals. After two weeks, crystals were isolated from the 
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setups, washed several times with deionized water, and then dissolved into 

deionized water for analysis by mass spectrometry. 

Dialyzed DNA from the dissolved crystals were analyzed by matrix-

assisted laser desorption/ionization (MALDI) mass spectrometry using a 

custom-built time-of-flight instrument, as previously described (Jensen et al., 

1993). All samples were analyzed with a matrix of 10 mg/ml of 2,4,6-

trihydroxyacetophenone (Aldrich) in a 50 mM diammonium hydrogen 

citrate/50% acetonitrile solution. For each mass analysis, 0.5 1.1.1, of DNA 

analyte was mixed in a 1:2 ratio with the matrix solution and 0.5 }IL of this 

mixture was placed on the sample stage. At the first sign of crystal formation 

(generally 10-15 seconds after deposition when viewed with a stereo 

microscope), the droplet was gently wiped with a lab tissue, leaving a seed 

layer of crystallites on the surface of the sample stage. Another 0.5 ilL of the 

analyte/matrix mixture was then deposited on top of the seed layer and then 

gently rinsed with cold (4°C) Millipore-filtered water. Each mass spectrum 

was recorded as the sum of 30 consecutive spectra, each produced by a single 

pulse of 355 nm photons from a Nd:YAG laser (Spectra Physics). Mass 

spectra were calibrated using ion-signals from the matrix. 
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Chapter 5 

Discussion 

The packing of DNA in crystals is controlled by modifying the duplex 

length and sequence. These modifications are made to reduce the distortions 

of crystal structures, to crystallize two helical forms of identical sequences, 

and to make the two stands of a heteroduplex distinguishable in the lattice. 

In Chapter 2, the crystallization of shorter sequences yield four crystal 

structures of A-DNA that are less distorted from fiber model A-DNA than 

longer A-DNA crystal structures. In Chapter 3, the use of overhangs to 

crystallize identical sequences in different helical conformations is 

introduced by crystallizing the sequence d(GCGTACGC) as A-DNA and as B-

DNA. In Chapter 4, the use of two different overhangs is introduced to 

crystallize heteroduplexes without orientational disorder in crystals. 

Sequence length, an important crystal packing variable, does not 

appear to limit the helical form found in crystals. For example, A-DNA has 

been crystallized in the tetramer, octamer, decamer, and dodecamer length 

classes in the past (Dickerson, 1992). In Chapter 2, four crystal structures of 

the first A-DNA hexamers are presented. Since the publication of our report 

(Mooers et al., 1995), the crystal structures of the first B-DNA hexamer and B-

DNA octamer have been published (Tani & Secco, 1995; Tereshko et al., 1996). 

Now, almost every length class and helical form combination has at least 

one representative crystal structure. 

Changing the length of a sequence of interest may be one way of 

crystallizing it in a lattice that distorts the structure to a small degree. For 
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example, the A-DNA octamers crystal structures of A-DNA ocatmers are the 

most numerous representatives of A-DNA crystal structures. Unfortunately, 

they are also the most distorted by crystal packing (Ramakrishnan & 

Sundaralingam, 1993a). When extended to twelve base pairs in length, a 

dodecamer sequence crystallizes with a conformation that is close to that of 

fiber model A-DNA (Verdaguer et al., 1991). When reduced to a hexamer 

length, four A-DNA forming duplexes crystallize in a conformation that is 

closer to that of fiber model A-DNA than longer A-DNA crystal structures, 

including the A-DNA dodecamer. The hexamers did not have the base-to-

base interduplex hydrogen bonds that distort the octamers, which partially 

explains this difference. Instead, the two crystal structures of the alternating 

dG-dC sequence each have four symmetric base-to-backbone hydrogen bonds, 

which alter the base stacking slightly because the backbone extends in 

response to this interduplex interaction. The non-alternating hexamer 

duplexes do not have any direct interduplex hydrogen bonds. 

The reduced distortion of the crystal structures of the hexamers was 

somewhat unexpected. Longer DNA oligonucleotides are thought to 

experience fewer "end effects" than shorter oligonucleotides because the 

longer oligonucleotides have more base pairs protected between their ends. 

In A-DNA at least, longer DNA oligonucleotides are not always less 

distorted. 

It does not follow, however, that all A-DNA hexamers will crystallize 

in a conformation like that fiber A-DNA. The hexamer d(Gm5CTAGC) 

crystallizes in a slightly different lattice in an extended conformation not like 

fiber A-DNA because the two base-to-base hydrogen bonds to one strand 

distort this structure asymmetrically (Mooers et al., unpublished results). 

Likewise, two additional dodecamer sequences crystallize with large 
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distortions in lattices different from the above-mentioned dodecamer  

(Bingman et a/., 1992a,b). Thus, strand length is not the sole determinant of 

the distortion that a DNA duplex experiences in the crystalline state. 

The four crystal structures presented in Chapter 2 demonstrate for the 

first time a clear correlation between base sequence and structural variations 

in A-DNA. The two crystal structures of the alternating dG-dC sequence 

have alternating patterns of variation in the local helical parameters roll, 

helical twist, and helical rise. In contrast, the two crystal structures of the 

non-alternating dG-dC sequence have non-alternating patterns of variation 

in the same local helical parameters. There were no significant differences 

in structural variations due to differing numbers of methylated cytosines in 

the alternating dG-dC crystal structures and due to the presence or absence of 

methylated cytosines in the non-alternating dG-dC crystal structures. 

The base sequence dependent features and the fiber model-like global 

shape of the A-DNA hexamer crystal structures suggests that they could be 

used to separate crystal packing effects from base sequence effects in the 

octamers of related sequences. A correction function is being derived from 

the hexamer crystal structures that removes most of the crystal packing 

induced distortions in octamer crystal structures (Mooers et al., unpublished 

results). 

Self-complementary sequences extended by one nucleotide have an 

odd length, so they have one nucleotide overhanging each end of the duplex 

when they form an antiparallel duplex. Overhanging bases have been used 

in the past to stabilize the crystal packing of protein*DNA complexes 

(Schultz et al., 1990) and to study base triplets formed by the overhangs and 

neighboring duplexes in the crystal (Van Meervelt et al., 1995; Vlieghe et al., 

1996a,b). However, no successful attempt at using overhanging bases to 
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stabilize a duplex in a second helical form has been published. In Chapter 3, 

the sequence d(GCGTACGC), which crystallizes as A-DNA, is extended the 

3'-direction by one guanosine and crystallizes as B-DNA. The crystal 

structures of a duplex in two helical forms may provide valuable structural 

data for theoretical studies of how the A- and B-DNA helical forms inter-

convert. 
Also in Chapter 3, the concept of "packing driving boxes", sequence 

elements that supposedly direct the orientation of duplexes during 

crystallization by forming specific interduplex hydrogen bonds (Timsit & 

Moras, 1992), is extended to the termini of duplexes. The sequence 

d(GCAATTGCG) is designed to crystallize with the same end-on-end 

stacking and base triplet formation as d(GCGTACGCG). The sequence 

elements GC were retained at the 5' and 3' ends of the octamer duplex 

d(GCxxxxGC), where x is any nucleotide, because the 5' terminal guanines 

participate in base triplet formation. In addition, the GC base step has helical 

parameters which are very similar to those of the GC base steps from the 

Drew-Dickerson type dodecamers. In the dodecamers, these base steps are 

involved in the formation of interduplex d(GG) base pairs similar to the 

type seen in the crystal structures of the nonamers. This suggests that the 

template sequence for coaxial stacking and base triplet formation in the 

nonamers is d(GCxxxxGCG). The nucleotides in the first and ninth positions 

are obviously required for the formation of the interduplex d(GG) base pair. 

The nucleotides in the seventh position may need to be purines because the 

major groove face of each guanine in the seventh position interacts directly 

with neighboring duplexes via two hydrogen bonds with bridging 

aquomagnesium complexes. Pyrimidines have only one hydrogen bond 

acceptor or donor one their major groove faces, so they may not be able to 
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form such a stable interaction. Thus, it may be possible to generalize the 

template to d(GYxxxxRCG), where Y is a pyrimidine and R is a purine. In 

any event, our extension of the "packing driving box" concept succeeds in 

controlling the crystal packing of the sequence d(GCAATTGCG) to a limited 

extent. This sequence crystallizes with the same coaxial stacking of duplexes 

and the same base triplet, although in two different lattices. The packing 

driving boxes fail to control the orientation of the columns of duplexes since 

they crystallize in a 62° or 63° cross in a monoclinic lattice rather than in the 

90 cross in the tetragonal lattice of the crystal structure of the nonamer 

d(GCGTACGCG). Thus, some packing driving boxes do not always lead to a 

unique packing arrangement. The extra helical guanosine at both ends of 

the duplex form identical interduplex interactions which makes it 

impossible to for the lattice to distinguish between the two strands of non-

self-complementary sequences. 

Non-self-complementary sequences are notorious for crystallizing 

with end-to-end disorder because both of the backbones of such 

heteroduplexes are almost identical although the sequence in the strand is 

not (DiGrabriele and Steitz, 1993; Schroth et al., 1993). This problem is 

generally avoided by crystallizing self-complementary sequences, which 

greatly reduces the variety of sequences that can be studied. In Chapter 3, a Z-

DNA heptamer system is presented in which two heteroduplexes crystallize 

without end-on-end disorder. In addition, a thermodynamic model of lattice 

nucleation is used to explain the absence of homoduplexes in the lattices of 

heteroduplexes. The results suggest that it should be possible to crystallize 

non-self-complementary sequences without end-on-end disorder in this 

system as long as the overhanging bases are different. The uniqueness of the 

two ends of the duplex is the consequence of the differences in the crystalline 
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environments surrounding each overhang. This is a unique feature of the 

P212121 lattice that could be exploited in other DNA crystal systems in this 

space group. For example, the decamer d(GGCCAATTGG) crystallizes in 

space group P212121 with a overhanging guanosine dinucleotide at one end 

of the duplex remaining stacked and a overhanging guanosine dinucleotide 

at the other end flipping out of the helical stack (Vlieghe et al., 1996b). It may 

be possible to also crystallize non-self-complementary sequences in this 

system if each strand has distinguishable overhanging ends. 

While the double helical structure of DNA can lead to difficulties in 

studying DNA structure in crystals, it also holds the solutions of these 

problems. We have demonstrated how modifications of strand sequence 

and length can be used to control the packing of DNA duplexes in crystals. 

We have also shown how these modifications can be used to solve three 

problems that have limited the study of DNA in crystals. 
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