
AN ABSTRACT OF THE THESIS OF

Martin D. Dill for the degree of Master of Science in Electrical and Computer Engineering
presented on June 9, 1997. Title: Improving Motion Estimation with Evolvable Search
Algorithms

Abstract approved:

Until now the topic of motion estimation, as used in video compression, has been

dominated by search methodologies which are modifications of an exhaustive search. This

research takes a completely new approach by applying two evolvable search algorithms,

the Genetic Algorithm and the Genetic Program, to the area of motion estimation. The

main purpose of this research is to determine the applicability of evolvable search methods

to the topic of motion estimation. Several methods are studied: in the first application, a

Genetic Algorithm is used to determine individual motion vectors one at a time, while the

second method explores the use of a Genetic Algorithm to search for all of the motion

vectors to correlate two frames simultaneously. To reduce the number of motion vectors

required, Genetic Programming is applied to variable block size motion estimation.

Finally, this work is expanded by applying it to region motion estimation, which is not

restricted to using square or rectangular motion blocks.

Redacted for Privacy

©Copyright by Martin D. Dill

June 9, 1997

All Rights Reserved

Improving Motion Estimation With Evolvable Search Algorithms

by

Martin D. Dill

A THESIS

submitted to

Oregon State University

in partial fulfillment of
the requirements for the

degree of

Master of Science

Completed June 9, 1997

Commencement June 1998

Master of Science thesis of Martin D. Dill presented on June 9, 1997

APPROVED:

Major Professor, representing Electrical & Computer Engineering

Wj'YliCe841AX-al puter EngineeringChair of Department of Elect

Dean of Graduat chool

I understand that my thesis will become part of the permanent collection of Oregon State
University libraries. My signature below authorizes release of my thesis to any reader
upon request.

Martin D. Dill, Author

Redacted for Privacy

Redacted for Privacy

Redacted for Privacy

Redacted for Privacy

ACKNOWLEDGMENT

Dr. James Herzog of Oregon State University has patiently reviewed and
supported this work.

TABLE OF CONTENTS

Pane
11. INTRODUCTION

2. PHILOSOPHY AND REVIEW OF LITERATURE 6

2.1. Review of Motion Estimation Algorithm Literature 6

2.2 Introduction to Genetic Algorithms and Genetic Programming 11

2.3 Rationale for the Effectiveness of Genetic Operators 24

3. THESIS CONTRIBUTIONS AND VERIFICATIONS 27

3.1 Experimental Overview 27

3.2 Block Motion Estimation with Fixed Block Sizes 27

3.2.1 Fixed Size Block Motion Estimation, Iterative Method 28

3.2.2 Fixed Size Block Motion Estimation, One-Shot Method 48

3.3 Block Motion Estimation with Variable Block Sizes 55

3.4 Region Based Motion Estimation 65

3.4.1 Region Based Motion Estimation, Fixed Block Size

Method 65

3.4.2 Region Based Motion Estimation, Variable Block Size

Method 69

4. CONCLUSIONS AND SUGGESTIONS FOR FURTHER WORK 78

BIBLIOGRAPHY 82

APPENDICES 89

LIST OF FIGURES

Figure Page

1.1 Typical MPEG picture sequence 4

1.2 Motion prediction example 5

2.1 Example GA bit string denoting variable fields 11

2.2 GP bit string of solution program for the Positive Root of the Quadratic

Equation 12

2.3 GP tree illustrating the program for the positive root solution of the

quadratic equation 13

2.4 Detail of Crossover operation 17

2.5 Parent 1 in Crossover operation for example GP 19

2.6 Parent 2 in Crossover operation for example GP 20

2.7 Child 1 in Crossover operation for example GP 21

2.8 Child 2 in Crossover operation for example GP 22

2.9 Schemata example 25

3.1 Color difference of fixed block size iterative and exhaustive search 31

3.2 Number of compares for fixed block size iterative search, Test 1 32

3.3 Number of compares for fixed block size iterative search, Test 2 33

3.4 Number of compares for fixed block size iterative search, Test 3 34

3.5 Number of compares for fixed block size iterative search, Test 4 35

3.6 Number of compares for fixed block size iterative search, Test 5 36

3.7 Number of compares for fixed block size iterative search, Test 6 37

3.8 Number of compares for fixed block size iterative search, Test 7 38

LIST OF FIGURES (Continued)

Figure Page

3.9 Number of compares for fixed block size iterative search, Test 8 39

3.10 Color difference of improved fixed block size iterative and exhaustive

search 40

3.11 Number of compares for improved fixed block size iterative search, Test 1 41

3.12 Number of compares for improved fixed block size iterative search, Test 2 42

3.13 Number of compares for improved fixed block size iterative search, Test 3 43

3.14 Number of compares for improved fixed block size iterative search, Test 4 44

3.15 Number of compares for improved fixed block size iterative search, Test 5 45

3.16 Number of compares for improved fixed block size iterative search, Test 6 46

3.17 Number of compares for improved fixed block size iterative search, Test 7 47

3.18 Number of compares for improved fixed block size iterative search, Test 8 48

3.19 Color difference of fixed block size one-shot and exhaustive search 50

3.20 Best fitness per generation for fixed block size one-shot search, Test 1 51

3.21 Best fitness per generation for fixed block size one-shot search, Test 2 51

3.22 Best fitness per generation for fixed block size one-shot search, Test 3 52

3.23 Best fitness per generation for fixed block size one-shot search, Test 4 52

3.24 Best fitness per generation for fixed block size one-shot search, Test 5 53

3.25 Best fitness per generation for fixed block size one-shot search, Test 6 53

3.26 Best fitness per generation for fixed block size one-shot search, Test 7 54

3.27 Best fitness per generation for fixed block size one-shot search, Test 8 54

3.28 Variable block size motion estimation, Step 1
 56

LIST OF FIGURES (Continued)

Figure Page

3.29 Variable block size motion estimation, Step 2 57

3.30 Variable block size motion estimation, Step 3 58

3.31 Variable block size motion estimation, Step 4 59

3.32 Color difference of variable block size and exhaustive search 60

3.33 Best fitness per generation for variable block size search, Test 1 61

3.34 Best fitness per generation for variable block size search, Test 2 61

3.35 Best fitness per generation for variable block size search, Test 3 62

3.36 Best fitness per generation for variable block size search, Test 4 62

3.37 Best fitness per generation for variable block size search, Test 5 63

3.38 Best fitness per generation for variable block size search, Test 6 63

3.39 Best fitness per generation for variable block size search, Test 7 64

3.40 Best fitness per generation for variable block size search, Test 8 64

3.41 Region motion estimation, Fixed Block Size Method 66

3.42 Region motion estimation, Fixed Block Size Method, frame 1 68

3.43 Region motion estimation, Fixed Block Size Method, frame 2 68

3.44 Region motion estimation, Fixed Block Size Method, frame 3 69

3.45 Region motion estimation, Fixed Block Size Method, frame 4 69

3.46 Region motion estimation Variable Block Size Method, Step 1 71

3.47 Region motion estimation Variable Block Size Method, Step 2 72

3.48 Region motion estimation Variable Block Size Method, Step 3 73

3.49 Region motion estimation Variable Block Size Method, Step 4 74

LIST OF FIGURES (Continued)

Figure Pau

3.50 Region motion estimation, Variable Block Size Method, frame 1 75

3.51 Region motion estimation, Variable Block Size Method, frame 2 76

3.52 Region motion estimation, Variable Block Size Method, frame 3 76

3.53 Region motion estimation, Variable Block Size Method, frame 4 77

LIST OF TABLES

Table Page

2.1 Example GA population 15

2.2 Reproduction operation for example GA 16

2.3 Crossover operation for example GA 18

2.4 Mutation operation for example GP 23

LIST OF APPENDICES

PageAppendix

90APPENDIX A

94APPENDIX B

98APPENDIX C

99APPENDIX D

SOFTWARE

The software used for this research is available upon request. Please contact:

Martin Dill

11322 SW Meadowlark Lane

Beaverton, Oregon 97007

E-mail: dills@worldnet.att.net

mailto:dills@worldnet.att.net

DEDICATION

This thesis is dedicated to:

My wife Karen and my daughter Kristina.

Improving Motion Estimation with Evolvable Search Algorithms

CHAPTER 1 - INTRODUCTION

This research examines the applicability of evolvable search algorithms (Genetic

Algorithms and Genetic Programming) to the topic of motion estimation as used in video

compression.

Motion pictures have long fascinated people of all walks of life, whether it is

television, a motion picture at a local theater, or a video that was brought home for an

evening's enjoyment. In recent times a transition in the medium from analog to digital

recording technologies has occurred, which has brought with it many problems. One of

the largest problems is the sheer volume of data required to adequately represent motion

pictures. As a means for processing these large quantities of data, data compression

algorithms have been developed. One of the most important requirements of data

compression is to store any length of a video sequence, using conventional computer

data storage technologies.

Some of the most exciting forms of data compression used for motion pictures

are the MPEG (Moving Pictures Expert Group) compression standards, of which

MPEG-1 and MPEG-2 are the most common. One of the more interesting parts of the

standards deals with motion estimation. Motion estimation is used to avoid storing the

image to computer memory a number of times, as an object moves across the screen.

The process of motion estimation just stores the image to computer memory once, when

it first appears, along with motion vectors which describe its movement over time.

2

A moving picture is really a sequence of individual still picture frames displayed

in sequence one after another. The rate at which these frames are displayed varies. For

example a typical motion picture is 24 frames per second while a television image is

effectively displayed at about 30 frames per second.

MPEG takes a three dimensional approach to compressing moving pictures.

First it can take advantage of intra-frame compression, which means that an individual

frame is compressed by itself, in a manner much like that of compressing a digitized

photograph. Secondly, MPEG utilizes inter-frame compression, in which a sequence of

picture frames are compressed along the temporal axis. It is with these two compression

techniques that MPEG achieves its high quality output with minimal data storage

requirements.

To implement the inter-frame and intra-frame compression modes, MPEG uses

three techniques to encode the individual pictures in a moving picture sequence. These

are I, P, and B Frames. The I Frame is the intra-coded frame; this means that it contains

all of the data of an individual frame and does not depend on the content of the previous

or the following frames. The first frame of any sequence to be displayed must be an I

Frame. The P and B Frames are inter-coded frames. The P Frame is a predicted frame

and uses motion estimation vectors from the previous I or P Frame (whichever is closer).

The B Frame is a bi-directional predicted frame, which uses motion estimation vectors

from the previous P or I Frame (whichever is closer) and the following P or I Frame

(whichever is closer). Typically a P Frame is about one-third the size of an I Frame and

a B Frame is about one-third the size of a P Frame. So from a compression point of

view, it is advantageous to use as many P and B Frames as possible.

3

A typical display sequence is illustrated in Figure 1.1. The sequence starts with

an I Frame, then displays two B Frames, a P Frame, two B Frames, another P Frame,

and finally another I Frame. In this arrangement, an I Frame is displayed every twelve

frames. This is a practical upper limit on how many inter-frames can be displayed

between intra-coded frames. The reason for this practical upper limit is that when a

decoding device starts to decode a stream, a delay of more than half a second before any

data can be displayed is generally too much, since the decoder cannot display anything

until it receives an I Frame. This issue becomes important in a number of real-world

situations. For example when "channel surfing" on a digital television system, which

uses MPEG or a similar technology, the consumer does not want to wait very long for

the picture to appear after the change of channels.

4

Figure 1.1 Typical MPEG picture sequence

I = Intra-Coded Picture
B = Bi-directionally Predicted Picture
P = Predicted PictureB

B

P

B
B

P
B

B

The temporal compression component is achieved through motion estimation.

Motion estimation is done on a macro-block level. (A macro-block is a square block of

picture data, 16 by 16 pixels.) This process is performed in the following manner. A

macro-block is chosen in the reference frame. If the selected macro-block is part of a

moving object, then it may also exist in the next frame, but possibly at a different

location and slightly modified. By comparing the reference frame to the predicted frame

it is possible to determine the coordinate differences of the two macro-blocks. This

difference can be represented as a vector in which the X and Y components represent the

horizontal and vertical displacement of the macro-block, respectively. So when the

decoder has a reference macro-block along with its associated motion vector, then it can

move the macro-block to the proper location in the predicted frame.

5

Figure 1.2 Motion prediction example

Frame with motion
Frame with reference

vector and predicted
macroblock

macroblock

Motion estimation is the single largest determinant in producing a compression

ratio which can be achieved in an MPEG data stream of a given video quality. Since

motion estimation is a very time consuming and computationally intensive process, the

difference between a good and mediocre motion estimator can radically affect the

amount of computer memory required for a motion picture, as the compression ratios

achieved by a video compressor can be largely improved. This research will explore

motion estimation using both a Genetic Algorithm (GA) and a Genetic Program (GP).

6

CHAPTER 2 PHILOSOPHY AND REVIEW OF LITERATURE

The topic of motion estimation has a broad application. Motion estimation is not

only used in MPEG, but in a number of other video compression methods as well.

Additionally, motion estimation is even used in many applications not related to data

compression; it is used in any application that needs to determine motion from several

individual pictures. For example, motion estimation can be used in an air traffic control

system that needs to determine the velocities of aircraft from individual radar images.

MPEG uses motion estimation for macro-blocks. In other words, the motion

estimator looks at a square block of pixels and tries to find the best match in the next

frame. Other applications may require a different approach, for example they may need

to estimate motion for regions or previously identified objects in the image. A different

application may use the motion of an object from frame to frame to help identify the

shape of the object, i.e. determine the object's boundaries.

2.1 Review of Motion Estimation Algorithm Literature

There are a number of recent research papers available on the subject of motion

estimation. This can be attributed to the importance of the topic with today's new digital

video mediums. Many of the articles deal directly with improving the estimation of block

motion vectors. For example Jehng et al. (1992) implemented a motion estimator in

hardware with a motion estimation algorithm called 3HAS. This algorithm takes several

steps to find motion vectors by successively narrowing down the search area, three

times.

7

Wong (1995) presents a heuristic based motion estimation technique which

reduces both the number of search locations, via sub-sampling, as well as the number of

operations to perform at each location, with a simplified signature. This research does

not compare actual blocks of pixels, but signatures of blocks of pixels. It is claimed that

this process has several advantages: all pixel points contribute to signatures, only sixteen

values are needed to represent a block (16x16), and signature values of overlapping

blocks can be easily computed. It was shown that this algorithm is 69 times faster than

that of an exhaustive search.

Liu and Zaccarin (1993) developed an algorithm that produces the same quality

of output as an exhaustive search, but reduces the computation by a factor ranging from

8 to 16. This is accomplished by first determining a sub-sampled motion field by

estimating the motion vectors for a fraction of the blocks. Then only a fraction of the

pixels at any location are used to determine these vectors. An alternating pattern of sub-

sampled pixels are used to help maintain motion vector accuracy. The sub-sampled

motion field is then interpolated and a motion vector determined for each block of pixels.

Chan and Siu (1995) improved on the work of Liu and Zaccarin. An alternating

pattern of sub-sampled pixels are not used to determine motion vectors, but to actually

interpret the pixel data. Pixels that are most representative of the block in which they are

found are selected. It was found that high activity in the luminance signal, which

indicates edges and texture, is one of the main contributors to the matching criterion. So

by examining a pixel and its neighbors, it is possible to determine the main pixels in a

block and use those for the block matching process.

8

One of the newer areas of video compression is region-based motion estimation.

Region based motion estimation does not suffer from the blockiness often associated

with block based algorithms, such as MPEG, and provides better compression ratios. In

region based motion estimation actual image regions are first identified, by various

means, and then motion vectors are associated with these regions, rather than with

arbitrary blocks of pixels. Dang et al. (1995) proposed a three-step algorithm for region-

based representation and motion estimation. In the first step intensity based image

segmentation is used to partition an image into various regions. The second step

consists of motion estimation for these regions, and in the third step, called region

fusion, adjacent regions with the same motion vectors are merged together and the initial

boundaries adjusted.

Karczewicz et al. (1995) took a similar approach, but used a polynomial model of

a motion vector to allow for more variations in the type of motion (not limited to simple

x and y displacements). A method for reducing the number of coefficients of the

polynomial without severely impacting the quality of the video was also provided.

Zhang et al. (1995) tackled the problem of image segmentation. In this research,

three techniques were combined to overcome the shortcomings of each individual

method. The first, motion field based segmentation, yields segmentation that

differentiates objects moving with different motions. The second, gray level based

segmentation, is robust and results in natural segmentation along object boundaries. The

third, change detection, is good at providing an initial coarse segmentation into motion

and stationary segments. It was found that the entire algorithm (consisting of these three

techniques) worked best when the sequence contained a highly textured background and

involved complex motion. Further investigation of this algorithm is needed for various

9

types of image sequences. This illustrates the complexity of performing image

segmentation for motion estimation.

A different approach from the previous literature is taken in this research to solve

the motion estimation problem. A GA and GP are implemented to find the appropriate

motion vectors to translate objects from one picture frame to the next.

No previous references as to the use of a GA or a GP for motion estimation were

found by the author. One of the few applications of a GA to image processing was a

study by Cavicchio (1970) in which a GA was used in a pattern recognition problem. In

this research, a GA was used to find a set of detectors (or patterns) which would in turn

be used to classify an image digitized on a 25 by 25 grid. It was found that despite the

enormous search space, the GA considerably outperformed other algorithms for creating

detectors. Gritz et al. (1995) used a GP to generate controller programs to animate

articulated figures. They had some success with this technique, but found that the

generated programs were rather "brittle" (the programs were only suited for a particular

task, rather than a general skill, and were sensitive to initial conditions). They are

continuing their work in an attempt to make the programs more general and robust.

For the first part of this research a GA is utilized to determine simple motion

vectors for block based motion estimation. In the second part of the research, a GA and

a GP will be used to aid in region-based motion estimation, not just to determine motion

vectors, but to actually find the largest possible regions. GAs and GPs provide a certain

simplicity to finding solutions to complex problems since there is no need to specify an

algorithm for solving the actual problem. All that is required is a way of ranking possible

solutions. These types of search algorithms are particularly well suited to the problem of

10

dealing with image data because of their implicit parallelism, which makes heuristically

searching very large search spaces possible.

11

2.2 Introduction to Genetic Algorithms and Genetic Programming

As Darwinian evolution over the millennia has well adapted organisms to the

natural environment, these same principles can be applied to evolution in the artificial

environment. Within a system of our own creation on a computer, selective breeding

techniques and survival of the fittest can work together to create robust artificial

organisms. Genetic operators are a means by which artificial evolution is applicable to

software enhancement. The Genetic Algorithm (GA) optimizes for problem parameters,

while the Genetic Program (GP) derives optimized data structures, in the form of

software code. Both the GA and GP have the same genetic operators. However the

chromosome structure is different. For a GA, the chromosome "bit string" is composed

of fields, which are an encoding for problem parameters. (Refer to Figure 2.1.)

Figure 2.1 Example GA bit string denoting variable fields

0 0 1 0 1 1 1 0 0 0

I i

I

a I

II)

Whereas for a GP, the chromosome bit string, which looks similar to that of the GA,

represents a data structure. For example the quadratic equation:

axe +bx+c

solved for x, yields:

b±Alb2 4ac x=
2a

12

consists of mathematical operators and variables and can be represented by the bit string

shown in Figure 2.2. The data structure contained within the bit string, is encoded with

different fields representing both functions (mathematical and logical operators) and

terminals (input variables), in an ordered tree structure.

Figure 2.2 GP bit string of solution program for the positive root of the quadratic
equation

1001 10 010 10 10 010 0100 01 11 010 001 100 000 0010 01 010 011

Hi LFJ [I I

I I I HI I "
I I-1 y Mul b LT] 41 I c l I Sub 11 (Add a I Div

b b Mul a Mul SqRt 2 Mul

Where,
Add = Addition
Sub = Subtraction
Mul = Multiplication
Div = Division
SqRt = Square Root

Equation in Reverse Polish Form:

(((-1)(b) multiply) ((((b)(b)multiply)((4)(a)(c)multiply)subtract)sqr-root) add)

((2)(a)multiply)divide

Simplified Equation in Mathematical Form:

b + 4ac

2a

With the GP data tree structure, software programs or mathematical/logical

equations can be evolved. For example the GP tree illustrating the positive root solution

for the quadratic equation encoded in the previous bit string is shown in Figure 2.3.

13

Figure 2.3 GP tree illustrating the program for the positive root solution of the quadratic
equation

Result - Positive

Root

I

Division

I -1
I

Add Multiply

I

I

Square
Root

Subtract

I
I I ±

Multiply Multiply

I T
 la
1b b c,

1

The standard, most basic operators for a simple GA/GP are Reproduction, Crossover,

and Mutation. The following sections will briefly detail these operations and

demonstrate them with an example.

Before the artificial evolution can begin, an initial population of solutions must be

created. Population creation can be performed by random binary number generation,

user selection of "good" solutions, or some combination of both. The "fitness" or merit

of these initial solutions are then evaluated and assigned numeric values. Following the

creation of the initial population, the standard genetic operators can be applied for a

number of generations.

14

For demonstration purposes an example is given to illustrate all of the basic

operations for a single generation of a GA. Optimization will be performed for the

purpose of finding values such that the variable x is made as large as possible. Note that

the GA is not searching for the roots of any specific equation, but is just searching for

the largest possible value of x which it can generate. The fitness function of the GA will

simply plug the GA's values into the quadratic equation and return the value ofx as the

fitness.

The bit string given encodes the values for the variables a, b, and c in the positive

root solution to the quadratic equation, as shown in Figure 2.1, where the variables a

and c are restricted to a three-bit representation (values 0-7) and variable b has a four-bit

representation (values 0-15). (For the purposes of this example, several solution

restrictions are applied. To avoid division by zero, variable a is restricted from being

equal to zero. Also, the b2 -4ac root is always positive, to avoid the condition ofa

negative root.) The example population and corresponding fitness values are given in

Table 2.1.

15

Table 2.1 Example GA population

Population Bit Strings Fitness
Member a-b-c X
1 001-0111-000 0.0
2 011-1000-100 -0.67
3 101-1001-011 -0.44
4 001-0010-001 -1.0
5 011-0110-010 -0.42
6 100-0111-011 -0.75
7 010-1110-111 -0.54
8 100-1011-101 -0.57
9 111-1100-010 -0.18
10 111-1101-110 -0.86
Total Fitness = -5.43
Average Fitness = -0.54

To begin breeding solutions in the artificial environment, the Reproduction

operator must be applied. In Reproduction, parent strings are selected. There are a

number of methods for implementing this operator. However, one of the most common

is Tournament Selection. Loosely based on wild animal mating contests, in Tournament

Selection two randomly selected strings "duel" each other based on fitness. The string

with the larger fitness is declared the "winner" and thus is eligible to produce offspring.

This process is illustrated in the continuation of the previous example, in Table 2.2.

16

Table 2.2 Reproduction operation for example GA

Reproduction Tournament New Generation
Case Selection (Winners)
1 String 1 vs. 4 String 1
2 String 9 vs. 10 String 9
3 String 5 vs. 6 String 5
4 String 1 vs. 2 String 1
5 String 3 vs. 7 String 3
6 String 8 vs. 1 String 1
7 String 2 vs. 5 String 5
8 String 4 vs. 3 String 3
9 String 6 vs. 8 String 8
10 String 10 vs. 9 String 9

The Crossover operator actually produces offspring. In this process, two strings

from the pool of eligible parents, (the results of the Reproduction operation), are

randomly selected. Then, at randomly selected bit sites, the two strings exchange

"chromosomes", thus forming two offspring. For example, as shown in detail in Figure

2.4, String 1 and String 5 mate. Their cross site is randomly selected as bit position 5

(counting from the right, starting with zero). The results of this mating are two child

strings. However, in this particular implementation, the second child is always rejected,

so as to maintain the initial population size. (Both "children" strings could be selected if

the mating process were reduced by half. Both methods are commonly employed.)

17

Figure 2.4 Detail of Crossover operation

0 0 1 0 1 1 1 0 0 0 Parent - String 1

Cross-Site = 5
0 1 0 1 1 0 0 1 0 Parent String 5

0 0 1 0 1 1 0 0 1 0 Child 1

and

Child 2

The Crossover operation is continued in thesame manner for the entire population.

Mate strings and cross-sites are chosen randomly. This is illustrated in the continuation

of the previous example, shown in Table 2.3. Notice that the total fitness values have

improved after the crossover operation from that of the original population, from -5.43

to 3.87, respectively.

18

Table 2.3 Crossover operation for example GA

New String Chosen Mate String Cross- Result String Fitness
Generation Population Mate Site of
(Offspring) Result
String 1 001-0111-000 String 5 011-0110-010 5 001-0110-010 -0.35
String 9 111-1100-010 String 1 001-0111-000 0 111-1100-010 -0.18
String 5 011-0110-010 String 6 100-0111-011 6 011-0111-011 -0.57
String 1 001-0111-000 String 4 001-0010-001 1 000-0111-001 -0.15
String 3 101-1001-011 String 8 100-1011-101 8 100-1011-101 -0.57
String 1 001-0111-000 String 9 111-1100-010 3 001-0110-010 -0.35
String 5 011-0110-010 String 2 011-1000-100 7 011-1000-100 -0.67
String 3 101-1001-011 String 1 001-0111-000 4 101-1011-000 0

String 8 100-1011-101 String 7 010-1110-111 8 110-1110-111 -0.73
String 9 111-1100-010 String 3 101-1001-011 2 111-1100-011 -0.3

Total Fitness (after Crossover) = -3.87
Average Fitness (after Crossover) = -0.387

In a GP, the bit string crossover is performed in the same manner, but with rules

maintaining the tree structure. For the GP tree structure, an entire tree branch, starting

from the node chosen for the crossover reference and proceeding to the root of the tree,

is swapped and joined to the selected node of the opposite parent. For example, with the

solution to the quadratic equation as the goal of the GP breeding process, let us observe

the breeding of the following trees in Figures 2.5 and 2.6, where the branches selected

for the crossover exchange are indicated by the dashed lines. The resulting "child" trees

are shown in Figures 2.7 and 2.8.

19

Figure 2.5 Parent 1 in Crossover operation for example GP

Result - Positive
Root

Division

I

I

Add Multiply

1 1

1

a
Multiply

b Add

1 1
1 1

Subtract Add

20

Figure 2.6 Parent 2 in Crossover operation for example GP

Result - Positive
Root

Division

I 1-

Subtract Multiply

Square aMultiply
Root

HE Subtract

Multiply Multiply

I

b b

21

Figure 2.7 Child 1 in Crossover operation for example GP

Result - Positive
Root

Division

I T

Add Multiply
I I

Square 7 a
Multiply Root

Subtract

I I

Multiply Multiply

FT
a c4

22

Figure 2.8 Child 2 in Crossover operation for example GP

Result - Positive

Root

Division

I I

Add Multiply

Multiply Multiply
a

b Add

Subtract Add
1

c a a

The final standard operator for GA and GP is Mutation. The Mutation operator

introduces a genetic diversity factor. Mutations are random changes in the binary

genetic code, which can introduce some non-inherited characteristics, particularly

important as a population may be converging prematurely. Generally this operation is

performed by selecting at a given probability, a single bit, from all the bit strings in the

population, and inverting it. In a binary system, the inversion changes a 0 logic state to a

1, and vice versa. In GP, as a precaution against undefined tree structures, the code is

written such that when the inversion takes place, a function is exchanged only for

another function and a terminal is exchanged only for another terminal. A number of GP

23

studies have shown that effective rates of mutation are sma11123. As "survival of the

fittest" determines the outcome of the evolutionary process, the effects of mutation

which are shown to be harmful are quickly eliminated, whereas those which are

beneficial are propagated through the population. Continuing with the previous

example, the mutation probability rate is arbitrarily set at 1/100 bits. Therefore in Table

2.4 it is shown that a single bit, within the population often bit strings often bits each, is

inverted. Note that in this example, the total and average fitness values have been

improved by the Mutation operator.

Table 2.4 Mutation operation for example GP

Crossover Result Mutation Gen=1 Fitness
Population Fitness String Population
001-0110-010 -0.35 xxx- xxxx -xxx 001-0110-010 -0.35
111-1100-010 -0.18 xxx- xxxx -xxx 111-1100-010 -0.18
011-0111-011 -0.57 xxx- xxxx -xxx 011-0111-011 -0.57
000-0111-001 -0.15 xxx- xxxx -xxx 000-0111-001 -0.15
100-1011-101 -0.57 xxx- xxxx -xxx 100-1011-101 -0.57
001-0110-010 -0.35 xxx- xxxx -xxx 001-0110-010 -0.35
011-1000-100 -0.67 xxx- xxxx -Oxx 011-1000-000 0
101-1011-000 0 xxx-xxxx-xxx 101-1011-000 0

110-1110-111 -0.73 xxx- xxxx -xxx 110-1110-111 -0.73
111-1100-011 -0.3 xxx- xxxx -xxx 111-1100-011 -0.3
Total Fitness (after Mutation) = -3.2
Average Fitness (after Mutation) = -0.32

1 John R. Koza, Genetic Programming: On the Programming of Computers by Means of Natural
Selection (Cambridge: The MIT Press, 1992), pp. 599-600.

2 Koza, pp. 105-106.

3 David E. Goldberg, Genetic Algorithms in Search, Optimization, & Machine Learning (New York:

Addison-Wesley Publishing Company, Inc.), p. 33.

24

With the completion of the Reproduction, Crossover, and Mutation operations, a

new generation is created. The artificial evolution of a GA or a GP is conducted over

the "millennia", as the process is run for a number of generations. This number of

generations can be either preset or based on the optimization performance. Through the

simple example given, it is shown that the genetic operators improve the merit of the

encoded solutions. The formal theory demonstrating the effectiveness of the genetic

process is given as the Schemata Theorem4 and is based on probability and pattern

recognition.

2.3 Rationale for the Effectiveness of Genetic Operators

There is much information, about the characteristics of effective and non

effective solutions, present within the genetic population. Encoded within each

generation is a history of its "race". This history pertains to the successes and failures of

solution characteristics, inherent in the genetic codes (or chromosomes) of the ancestors,

which are pronounced in the current generation. Selective breeding pressures cause the

combination of the successful characteristics to be combined, as strings of high merit

breed with others of like fitness.

The characteristics in the genetic codes, which are transmitted through breeding,

are represented with bit patterns known as schemata. (Schema is the singular form;

schemata is the plural form.) In the binary system, all the elements of bit strings can be

represented by the following set {0, 1, *}, where * represents a don't care, but must be

composed of the elements (0,1). For example, given the schemata {000*1**11}, Figure

2.9 shows the strings which are represented. The matching elements are underlined.

4 Goldberg, pp. 30-33.

25

Figure 2.9 Schemata example

Strings Schemata
000010011 000*1**11
000010111
000011011
000011111
000110011
000110111
000111011
000111111

For a string with length / and cardinality k (k=2 for a binary encoding), there are

(k+1)1 schemata. For a population of size n, there is an upper bound on the number of

schemata as n2', where the bound depends on the particular population's diversity. It is

these schemata which are processed in parallel through the application of the genetic

operators.

The standard genetic operators of Reproduction, Crossover, and Mutation all

effect the propagation of schemata to the next generation, but in varying degrees. As the

Reproduction operator determines the pool of potential parents, it is the most important

determinant of schemata propagation. With the implementation of a selection bias based

on higher fitness, it is probable that these "good" parents will produce good or better

offspring. The inherent qualities which make these selected parent strings superior are

contained within their schemata, and as such, should be combined with the good

characteristics of their mate, producing offspring which inherit a number of high-quality

characteristics. Offspring of poor quality should die out quickly, and due to the high-

performance breeding pressures, the poor characteristics inherent in their schemata

should decline in number throughout the population rapidly. Through the breeding

26

process, the propagation and decline of good and bad traits in the schemata can be

summarized numerically. "A particular schema grows as the ratio of the average fitness

of the schema to the average fitness of the population."5 The Reproductive Schema

Growth Equation6 is given for all the schemata existing at one time within a population,

as the following:

m(H,t+1) = m(H,t) f(H) / avg. f

where,

m(H,t+1) m samples of a unique schema H, within a population A(t), at a time t +1

m(H,t) m samples of schema H at time t

f(H) average fitness of the strings in schema H, at time t

avg. f average population fitness

Thus, it can be demonstrated that through the genetic operators of Reproduction,

Crossover, and Mutation the "good" schemata propagate through the population and

increase over a number of generations. Consequently the solution traits of high merit are

increased in the artificial evolution.

5 Goldberg, p. 30.
6 Ibid.

27

CHAPTER 3 - THESIS CONTRIBUTIONS AND VERIFICATIONS

3.1 Experimental Overview

In this research several aspects of applying genetic search methodologies to the

motion estimation problem will be explored. The genetic search methodologies will be

used to determine motion vectors and motion regions in place of other search

methodologies in order to determine their appropriateness to the problem. Fixed block

size motion estimation, variable block size motion estimation, and region motion

estimation are the areas which will be examined.

The software for the tests includes a C++ implementation of a GA and a GP

(refer to Appendix D). These programs are used in the following experiments:

Block motion estimation with fixed block sizes

Block motion estimation with variable block sizes

Region based motion estimation

These tests provide a diverse representation of the motion estimation problem and as

such, should provide adequate results indicating whether this research should be pursued

further.

3.2 Block Motion Estimation with Fixed Block Sizes

The first area of investigation will be the simple block motion estimation, as is

used in MPEG and other video compression formats. This is a good starting point

because it is fairly simple and the brute force algorithm (exhaustive search) is

straightforward, which makes it a good reference for comparison purposes. It is also

computationally intensive and thus can benefit from any improvement.

28

When evaluating motion vectors it must be noted that there are two separate

frames, the current frame and the previous frame. The current frame is the starting

point. It is divided into blocks for which matches are found in the previous frame. This

guarantees coverage of the current frame. If the reference were taken in the opposite

direction, dividing the previous frame into blocks and finding matches in the current

frame, the current frame may not have the best coverage. This is because there may be

more then one correct motion vector for a block. For example, if the previous frame and

the current frame both have a large area which is a uniform color or pattern and the

actual motion block size is smaller than this pattern, there may be more than one correct

motion vector to correlate the blocks between the frames. Therefore the evaluation of

motion vectors starts from the current frame and works backwards.

A generic GA is utilized for the motion estimation. It is quite rudimentary,

making use of the genetic operators of Reproduction, single point Crossover (previously

described), and Mutation. These basic operations are implemented in the same method

as is show in the example of Section 2. While a number of other implementation

methods exist for the genetic operators, the basic GA has been shown to be quite robust,

and there is rarely a need for more exotic features in these operations.

3.2.1 Fixed Size Block Motion Estimation, Iterative Method

The purpose of this experiment is to examine how well a GA can determine the

motion vectors to correlate two video frames using fixed size blocks. An iterative

approach will be used in which only one motion vector will be computed at a time.

29

The first step is to divide the video frame into equal sized blocks; blocks of eight

pixels by eight pixels will be used. A GA is then instantiated for every block and tries to

find a matching block in the previous frame. Every instantiation of the GA uses a

population size of 50 and runs a maximum of 20 generations. The GA uses tournament

selection, a crossover probability of 0.6, and a mutation probability of 0.0005.

It was chosen to encode the motion vectors into eight-bit strings for the GA.

The first four bits are for the horizontal motion vector and the last four bits are for the

vertical motion vector. Each four bit vector can have a value from 0 to 15, but since

negative as well as positive values are necessary, a 7 is subtracted from the vector value

to give the actual displacement value of the motion vector. Thus motion vector ranges

are from 7 to +8 for both the horizontal and vertical components. There is no need to

allow the motion vectors to have larger values, since the motion from one frame to the

next is typically small. Larger vectors would increase the search space, making it more

difficult to find correct vectors. The GA fitness function uses these motion vector values

to determine merit. This is done by comparing the selected block in the current frame to

the same block in the previous frame, displaced by the motion vectors. The red, green,

and blue values of the pixels are subtracted, their absolute values taken, and then

summed to generate an error value. Since the goal of the GA is to maximize the fitness

values, the error value is multiplied by a -1.

This is very similar to the brute force, exhaustive search, approach with the only

difference being that a GA is utilized to find the motion vectors. In both cases the

motion vectors for the blocks are determined sequentially, one at a time.

30

The experimentation for the Fixed Block Size Motion Estimation consisted of

eight individual tests. Each test consists of finding the motion vectors to correlate blocks

between two consecutive video frames using the method described above. The first four

tests use consecutive frames from a video of a woman singing (refer to Appendix A),

while the following four tests use consecutive frames from a video sequence of a

marching army (refer to Appendix B).

The results of these tests are analyzed in two ways. The first measure of merit

simply rates the quality of the end result (i.e., are the motion vectors worthwhile?). This

is calculated with the following formula:

cR[Y][x] gR[y][x] I + I cG[Y][x] gG[Y][x]l + I c-B[Y][x] gB[y][x]l
y=0 x=0

Where:

cR[y][x] is the red componant of the specified pixel in the current frame

gR[y][x] is the red componant of the specified pixel in the generated frame

cG[y] [x] is the green componant of the specified pixel in the current frame

gG[y][x] is the green componant of the specified pixel in the generated frame

cB[y][x] is the blue componant of the specified pixel in the current frame

gB[y][x] is the blue componant of the specified pixel in the generated frame

This formula simply sums the absolute values of the differences of the red, green, and

blue pixel components between the original current frame and the current frame which

was built by applying the generated motion vectors to the previous frame. The second

measure of merit is the computation time necessary to calculate the motion vectors. The

simplest way of determining this is to record the number of times an individual block in

31

the current frame was compared to a block in the previous frame, as this gives a close

approximation of the amount of calculations performed, which can easily be compared to

an exhaustive search.

Figure 3.1 illustrates the merit of the motion vectors. It shows the color

differences between the current video frame and the video frame generated by the GA's

motion vectors (applied to the previous frame). This color difference (error) value is

displayed for each of the eight tests. In addition, the color difference between the

current video frame and the video frame of the exhaustive search's motion vectors is also

displayed. As can be seen, the images generated by the GA's motion vectors have a

substantially higher error than the images generated by the exhaustive search's motion

vectors.

Figure 3.1 Color difference of fixed block size iterative and exhaustive search

a)
8000000

u_cps 6000000

4000000a
L. 2000000
0

0 1 1

2 3 4 5 6 7 8

Test Number

Fixed Block Iterative p Exhaustive

32

Figure 3.2 shows the number of compares performed for each block in Test 1.

The horizontal axis shows the block number (only one block is being processed at a

time), while the vertical axis shows the number of block compares performed until the

best motion vector for that block was found. The average number of compares

performed for each block was 98.86. Since the exhaustive search performs 64 compares

for every block, these results are not very good.

Figure 3.2 Number of compares for fixed block size iterative search, Test 1

o	 1000

900

800

to 700

E a) 600

0 al 500

111c 4000 it 300 IR" lump vi Fi III 111111111111
1_ 200 PrIl "Iri lit 11 mil tirr U

100
I

P 1II ¶I 11

0 I

z CV CO LO CO IN- CO 0) 0 (NIN er) 'I' U) CO N- CO 0 CNA
Cs1 "ch U) CO CO 0

Block Number

Figure 3.3 shows the number of compares performed for each block in Test 2,

until the best motion vectors were found. The average number of compares performed

for each block was 97.40.

33

Figure 3.3 Number of compares for fixed block size iterative search, Test 2

1000
900in
800

11 700 cn
E ow 600

1:13 500
(.)O c 4000 ii 300
$
:D 200
.c 100

0

I

I

'mei IrrIPTIIIP I

111111rlir
N-- Cs.I V) V- LO CO

CN1 c'f) V- LON CNI CO Nr. in

II
IN il

11Trill WT9'1111711f7,111 rril 1
N- CO CA CD
CO N- 03 0
CO N 03 0

N-

Block Number

Figure 3.4 shows the number of compares performed for each block in Test 3,

until the best motion vector was found. The average number of compares performed for

each block was 105.04.

34

Figure 3.4 Number of compares for fixed block size iterative search, Test 3

o
in

1000
900
800
700

E 0 600
O m
4 C0 ir

500
400
300

Il I VI Mir
'11111111111191

.0
200
100 ! P i l ! P I I I VI I a

z
0 l' CV CI)

CNI
CNI CO

1.0

V'
CO
Lt)
LO

1

N
CO
CO

CO
N
N

CD
CO
CO

0
CD0

V."

Block Number

Figure 3.5 shows the number of compares performed for each block in Test 4,

until the best motion vector was found. The average number ofcompares performed for

each block was 94.87.

35

Figure 3.5 Number of compares for fixed block size iterative search, Test 4

1 000
900

e 800
as

.o
E

...0,

8
700
600

O0 -o4- C0 E
500
400
300

t_
a; 200
.o 100
=
Z

0
v CO

(NI
CN1

U)
Nr
zr

(.0
in
U)

N
CO
CO

CO
N
N

000
.-

T..l-
T".

CN1

CNI
CN/
e-

Block Number

Figure 3.6 shows the number of compares performed for each block in Test 5,

until the best motion vector was found. The average number of compares performed for

each block was 104.53.

36

Figure 3.6 Number of compares for fixed block size iterative search, Test 5

o	 1000

900

800
L
700
a.
600
E A w 500

C.)o -a 400

rf i2	 300

200

100

z
0

CV V) V" U, CD N- co o) o

(N1 Cf) U) N- 00 o

Ce) U) N- co o
Block Number

Figure 3.7 shows the number of compares performed for each block in Test 6,

until the best motion vector was	 for

each block was 99.37.

37

Figure 3.7 Number of compares for fixed block size iterative search, Test 6

o	 1000

900

800

700
o. H 600E

500
-0 4006 it	 300 1,r111111111

Ia)	 200 VIII 1 I 1 711 11'11111
.0 100 n

0 1 0 00 Ns CO IC) V' M N 7:: 0
I

54) N M V' U) CO I's- 00 0) 01 Cs1 CO V' 111 CO Ns CO 0 0 (NI
'l

Block Number

Figure 3.8 shows the number of compares performed for each block in Test 7,

until the best motion The average number of compares performed for

each block was 97.52.

38

Figure 3.8 Number of compares for fixed block size iterative search, Test 7

o 1000
1- 900

800

E
H 700

600
(..)

500
400

O 300

.0
200
100

0
O
T'a"

CS)

CNI

CON
CO

N
CO
V'

CO
V'
U)

In
ct,

cr
CO
N

CO
N
CO

CNI
CO
0)

N 0
0) 00 CN1

Block Number

Figure 3.9 shows the number of compares performed for each block in Test 8,

The average number of compares performed for

each block was 97.36.

39

Figure 3.9 Number of compares for fixed block size iterative search, Test 8

o 1000
H
E

900
800

o. to '
E w

700
600

o CO 500
C.) -o

6
400
300
200

.o 100
3 0
z

ClN C')
Cf.)

U)
U) CO

N
1

00
CO

0)
0)

0
Cl

Block Number

The results of this experiment did not give very promising results for the GA

implementation of the Fixed the Iterative Method.

The exhaustive search outperformed the GA in both execution speed (the exhaustive

search uses 64 compares per block, while the GA uses on average 99.37) and in the

quality of results (refer to Figure 3.1). It is, of course, not possible to outperform the

quality of the exhaustive search, since it will always find the best solution. A good

algorithm, however, should closely approximate the results of the exhaustive search.

One technique commonly used in GAs is to "seed" the initial population with

some known good values. The previous experiment initialized the population with

random values. The following experiment initializes 2 out of 50 (4%) members of the

initial population with null vectors, i.e. vectors of the original, unmoved image.

Figure 3.10 illustrates the merit of the evolved motion vectors. The color

differences between the current video frame and the video frame generated by the GA's

40

motion vectors (applied to the previous frame) are shown. This color difference (error)

value is displayed for each of the eight tests. In addition, the color difference between

the current video frame and the video frame generated by the exhaustive search's motion

vectors is also displayed. However, as can be seen, the images generated in this

experiment have a substantially higher error than the images generated by the exhaustive

search's motion vectors.

Figure 3.10 Color difference of improved fixed block size iterative and exhaustive
search

cc-) 8000000
6000000
4000000

0
2000000

0

2 3 4 5 6 7 8

Test Number

Fixed Block Iterative, Improved Exhaustive

Comparing these results to Figure 3.1, there is about a 25% improvement in the

color difference values of the video frames generated by the improved GA's motion

vectors.

41

Figure 3.11 shows the number of compares performed for each block in Test 1,

until the best motion vector was found. The average number of compares performed for

each block was 89.70.

Figure 3.11 Number of compares for improved fixed block size iterative search, Test 1

1000

900

800

700

600
 mil500
400 ,p_Ipm

300

200 r Ell 77 Pi

l

!r100
I
1111111 III
0

Figure 3.12 shows the number of compares performed for each block in Test 2,

until the best motion vector was found. The average number of compares performed for

each block was 47.94.

42

Figure 3.12 Number of compares for improved fixed block size iterative search, Test 2

1000

900

800

700

600

500

400

300

200

' 100

f11711"11111:111111'0

e- 1.0 0) (r) N- -- It) 0) Cr) (- LC) 0) Cr) N- ,- LO 0)r- `ct CV 0) Nr 0) (0 17t r CO CO Cr) ,- CO LO v- CV CV Cr) .7 LO Lil (0 r- to 0) o .- ,- N

,t-
az) e- r r

Block Number

Figure 3.13 shows the number of compares performed for each block in Test 3,

until the best motion vector was found. The average number of compares performed for

each block was 43.60.

43

Figure 3.13 Number of compares for improved fixed block size iterative search, Test 3

1000

900

800

700

600

500

400

300

200

100

0
, to

r.
cr) ol r-Nr N Na N

et:

C')

11)
'4'
V'

CDa
LO

01
CY)
LO

r-
CO
CO

. 11) CD

N. a CO DN. CO CC?)

V U) CO
V. CO U)- ..l... Nr r a-

Block Number

Figure 3.14 shows the number of compares performed for each block in Test 4,

until the best motion vector was found. The average number of compares performed for

each block was 37.77.

44

Figure 3.14 Number of compares for improved fixed block size iterative search, Test 4

S 1000
fn

900

800
'u.

700

600

2.	 500
E	 400

300

6	 200

III	 Pli1100

0	 I11 1111111111111111M1
.--	 11) 0)

a- N N V)
01 f ,- Ill

'I'
CD

II)
V)

If)
I,-
CO N.

V)

a)
0)
CO 0 0 v-

V) I,- ..- (1)

<--

0)
NN V N 0) N- 0) CO C') CO'1' CO CO T- 1.0'7C-r r r r r

Block Number

Figure 3.15 shows the number of compares performed for each block in Test 5,

until the best motion vector was found. The average number of compares performed for

each block was 80.41.

45

Figure 3.15 Number of compares for improved fixed block size iterative search, Test 5

1000

900

800

700

600

500

400
1111300

200 1111FT rr 111i-117m lin
!II

100

0 agENINITTIMMINS. U) 0) Cr) N. %- U) VI N. 0) Cr) N. T.' L 0 0)'7 N 0) cr . 0) 7t , co ,-- 1.0N- CO CO Cr) CO- N N 0) 0 . .4 NCr) V' U) U) CC) N. CO CO r r r r
Block Number

Figure 3.16 shows the number of compares performed for each block in Test 6,

until the best motion vector was found. The average number of compares performed for

each block was 39.21.

46

Figure 3.16 Number of compares for improved fixed block size iterative search, Test 6

1000

900

800

700

600

500

400

300

200

100

0

1114111111'f FM111111111'
I IT! !' 11" ' '111! 11111 11 11

L() 0) CO N L()N 0) N vN N CO 'Cr

0)
U)

CO
0)
ir)

I,
CO

1
'17
N co

CO
co

C')
(0
cr)

CO
cz)

U)
CO U)

Block Number

Figure 3.17 shows the number of compares performed for each block in Test 7,

until the best motion vector was found. The average number of compares performed for

each block was 62.81.

47

Figure 3.17 Number of compares for improved fixed block size iterative search, Test 7

1000

900

800

700

600
1111111N1500

400

300 ICI

200 11111111 'II 11111

100 III H P' 11

0

Figure 3.18 shows the number of compares performed for each block in Test 8,

until the best motion vector was found. The average number of compares performed for

each block was 33.41.

48

Figure 3.18 Number of compares for improved fixed block size iterative search, Test 8

1000

900

800

700

600

500

400

300

200

100

prImill!purply' num till
0

U) 0) el
CN1

CNI

h-
CNI Cr)

lf)
cr

0) co
cp
111 CO N CO

CD
co
CO

co
CD

N
cf)
C)

In
CO

0)
LO
Cr

Block Number

Figures 3.11 through 3.18 show quite an improvement over the original Fixed

Block Size GA search method. The average number of blocks compared until the best

was found was 54.35, which is better than the 64 compares required for each exhaustive

search block.

3.2.2 Fixed Size Block Motion Estimation, One-Shot Method

In the previous section a separate GA was used to find the motion vectors for

each individual block. But, instantiating a GA for every block is inefficient. A better

approach would be to use the GA to search for all of the motion vectors simultaneously.

To accomplish this, a modified version of the string encoding used in the previous

section is implemented. For this experiment, each string consists of a series of eight-bit

strings concatenated together. The number of eight-bit strings concatenated together

corresponds to the number of blocks in the current image. For an image consisting of

1280 blocks (40 x 32), the string length will be 8 x 1280 or 10240 bits. (Note that this is

49

a fairly small image, so the strings can get very long). The fitness function is also

modified slightly so that it evaluates the fitness of the motion vectors for each individual

block and then sums all of these values together into a total fitness value for the entire

image. The GA uses tournament selection, a crossover probability of 0.6, and a

mutation probability of 0.0005. The population size was increased to 500 and the

number of generations was increased to 50. Test 1 through Test 8 (refer to Appendix A

and Appendix B) will be used in this experiment.

Figure 3.19 illustrates the merit of the evolved motion vectors. The color

differences between the current video frame and the video frame generated by the GA

motion vectors (applied to the previous frame) are shown. This color difference (error)

value is displayed for each of the eight tests. In addition, the color difference between

the current video frame and the video frame generated by the exhaustive search's motion

vectors is also displayed. As can be seen, the images generated by using the GA

generated motion vectors have a substantially higher error than the images generated by

the exhaustive search's motion vectors. This GA experiment did not perform as well as

the GA implementation of Figure 3.10. Although the software is run for more

generations, these results are understandable since in this experiment the GA must

optimize a 10240 bit string. A much greater amount of computation is required than in

the previous experiments.

50

Figure 3.19 Color difference of fixed block size one-shot and exhaustive search

10000000

5000000

1 1

1 2 3 4 5 6 7 8

Test Number

Fixed Block One Shot Exhaustive

Figures 3.20 through 3.27 plot the best fitness values found versus the generation

number. Each graph shows one of the eight tests. It is interesting to note that each

graph shows the current best found fitness steadily increasing, verifying that the GA is

actually optimizing the 10240 bit string at a fairly constant rate. But the process is

extremely slow due to the large amount of computations. (On a Pentium 133MHz PC,

each test took several hours to complete). To compute the fitness of an individual string

1280 block compares are needed. So for each generation there are 1280 x 500 =

640,000 block compares. This is a much greater amount of computation than with the

exhaustive search method which requires only 1280 x 64 = 81,920 compares total. The

number of compares done by the GA could have been decreased by reducing the size of

the GA's population, but it was kept large for the initial experiments since GAs with

larger populations tend to work better. The performance of the Fixed Block Size One-

Shot method was worse in a number of quality measures than that of the exhaustive

search method. Thus, there was no reason to reduce the population size for further

experiments.

51

Figure 3.20 Best fitness per generation for fixed block size one-shot search, Test 1

U)
a)

LL

0.00E+00

1.00E+06

2.00E+06

-3.00E+06

-4.00E+06

5.00E+06

-6.00E+06

7.00E+06

-8.00E+06

-9.00E+06

11
'4' N- C) C) CD 0) N LO OD ,r 'Cr h., CD () CO CD

I111111 IIIIIIII III I 1

000.04.0.6.00......................"

Generation

Figure 3.21 Best fitness per generation for fixed block size one-shot search, Test 2

1.1)

0,1
C

LL

0.00E+00

1.00E+06

2.00E+06

3.00E+06

4.00E+06

5.00E+06

-6.00E+06

7.00E+06

-8.00E+06

-9.00E+06

I I I I I I I I 1

c r" (V N N Cc) cc) ..:r a- .1

Generation

http:000.04.0.6.00

52

Figure 3.22 Best fitness per generation for fixed block size one-shot search, Test 3

0.00E +00 II II 71I I I - U) Cr)

I

Ns
1

1 to a) Co) I,- T- In a)
1.00E +06 v-- A-- N N N V) (*) St .4t _V___.

2.00E +06

3.00E +06

4.00E +06

5.00E +06

- 6.00E +06

7.00E +06 IMA.4.

8.00E +06

- 9.00E +06

Generation

Figure 3.23 Best fitness per generation for fixed block size one-shot search, Test 4

0.00E+00
v- cn N- Lc) o)a- AT-1.00E+06 N N N V) ;71" 'At

-2.00E+06

-3.00E+06

-4.00E+06
U

-5.00E+06

-6.00E+06

-7.00E +06

-8.00E+06

-9.00E+06

Generation

53

Figure 3.24 Best fitness per generation for fixed block size one-shot search, Test 5

Cn
a

LL

0.00E+00

1.00E+06

2.00E+06

-3.00E+06

4.00E+06

5.00E+06

6.00E+06

-7.00E+06

8.00E+06

9.00E+06

r	 111 11.1111 II 111111 11 '1/11
LO 0) (v) N- s- If*) 0) 01 1--

s- s- N N 04 r) o -cr nt. __st

Generation

Figure 3.25 Best fitness per generation for fixed block size one-shot search, Test 6

0.00E+00 III II III(i11111 111I1 iil ill" in 0) CO N. t-
I

Ul 0) 01 N- s- in 0)
-1.00E+06 s- s-- N N N (*) Nt ntC') ___V___

2.00E+06

3.00E+06

4.00E+06

ro

LL
5.00E+06

6.00E+06

7.00E+06

8.00E+06

9.00E+06

Generation

54

c

Figure 3.26 Best fitness per generation for fixed block size one-shot search, Test 7

0.00E+00

1.00E+06

-2.00E+06

3.00E+06

-4.00E+06

-5.00E+06U.

6.00E+06

7.00E+06

8.00E+06

9.00E+06

fl(111,,,,	 i,,,1,,IIII IIIIIIIIIII/11
- -. N N N C.I_12V gt '1

Generation

Figure 3.27 Best fitness per generation for fixed block size one-shot search, Test 8

a)

LL

0.00E+00

-1.00E+06

2.00E+06

3.00E+06

-4.00E+06

5.00E+06

6.00E+06

-7.00E+06

8.00E+06

-9.00E+06

I I	 7If	 IIII 11"1.! iI11.1

.- '- et_______N___ N V) C9 4.qr Nr cr

Generation

55

3.3 Block Motion Estimation with Variable Block Sizes

Block motion estimation can be generalized to include blocks of variable sizes.

The MPEG standard does not allow for this, but using variable block sizes can be more

efficient. Since one motion vector is required for each block, fewer motion vectors are

required if larger common blocks are found between frames.

One way to represent variable sized blocks common between two frames is with

a tree structure where each node represents a common block of the two frames. The

root node is a block that covers the entire frame. The root node can have four children,

each of these children can have four children, and so on. Each child represents one

quarter of the parent block. When the tree is complete, traversing the leaf nodes will

enumerate all of the motion estimation blocks and this will provide complete coverage,

since all of the blocks will have been checked. The following figures illustrate this

algorithm.

Figure 3.28 represents the root node of the current frame. The root node

includes the entire frame. If the previous frame (the frame to which this one is being

compared) is the same (with a possible horizontal and/or vertical displacement), then

there is no need to have a larger tree. One single motion vector is sufficient to express

the differences between the two frames.

56

Figure 3.28 Variable block size motion estimation, Step 1

A

If the frame to which the comparison is made is not the same, the current frame

must be divided into smaller sections so that these smaller sections can be correlated

between the current and the previous frame. Figure 3.29 illustrates how the current

frame is divided into four equal sized blocks (four children of the root node), which are

compared to same sized blocks in the previous frame. In the case that only a small

section of the image has changed, most of the blocks will have a motion vector of zero

and will not need to be divided any further.

57

Figure 3.29 Variable block size motion estimation, Step 2

B C

E D

In Figure 3.29, Block B was the only block for which a good match between the

current and the previous frame could not be found. Therefore Block B needs to be

further subdivided as is illustrated in Figure 3.30. This process can be repeated until the

blocks match or until a minimum block size is reached.

58

Figure 3.30 Variable block size motion estimation, Step 3

F G

Figure 3.31 represents the variable size block motion estimation tree of Figures

3.28 through 3.30. Each node represents a motion block with its own motion vector.

Traversing the leaf nodes of the tree (C, D, E, F, G, H, I) will provide all of the blocks

and their associated motion vectors. These vectors can then be used to reconstruct the

current frame from the previous frame.

59

Figure 3.31 Variable block size motion estimation, Step 4

It is possible to use a GA to find the leaf nodes, but this would necessitate using a

GA for each individual node; it would be much more effective if the entire tree could be

processed at once. A GP is appropriate for this purpose, since it works on tree

structures rather than strings. Using a GP, a population of tree structures can be

created, each of which represents the entire frame. Then through artificial evolution the

population should converge to a tree structure that uses the fewest nodes to represent

the best motion blocks. In this manner, it is possible to build the entire tree at once.

In the following experiments, involving the Test 1 through Test 8 video

sequences, the GP was run for 50 generations with a population size of 500. The

minimum tree height was 2 and the maximum was 6. Every tree nodewas allowed four

sub-nodes (or children). A completely filled out tree of height 6 has 1024 leaf nodes.

Since the test image sizes are 320 pixels by 256 pixels (refer to Appendix A and

60

Appendix B), the smallest possible block is 10 pixels by 8 pixels. The largest possible

block is the entire image.

Figure 3.32 illustrates how well the GP performed its variable block size search

compared to the exhaustive search. It is interesting to note that this search performed

slightly better then the Improved Fixed Block Size Iterative search (Figure 3.10); the

average color difference for each test is about 6% less then that of the Improved Fixed

Block Size Iterative search. However, this was the slowest of all the search methods

tested.

Figure 3.32 Color difference of variable block size and exhaustive search

a)
2 6000000
a)
a) 4000000

6 2000000

0
2 3 4 5 6 7 8

Test Number

Variable Block "'Exhaustive

Figures 3.33 through 3.40 plot the current best fitness found versus the

generation number. Each graph shows one of the eight tests. Figures 3.34, 3.35, 3.36,

3.38, 3.39, and 3.40 all only show an increase in the best fitness in the first few

generations and then the fitness remains unchanged for subsequent generations. Figures

61

3.33 and 3.37 only show a very small increase in the best found fitness as the generations

progress.

Figure 3.33 Best fitness per generation for variable block size search, Test 1

0.00E+00

-1.00E+06

-2.00E+06

-3.00E+06
a)

LL	 -4.00E+06

-5.00E+06

-6.00E+06

-7.00E+06

111111/1111111(11.111T11 '1111
CT) Cr) r- in 0) CO I,- LO rnN N M MCs) 27

Generation

Figure 3.34 Best fitness per generation for variable block size search, Test 2

62

Figure 3.35 Best fitness per generation for variable block size search, Test 3

0.00E+00 III III I I I I I 1 I 1 I 1 I I

LO 0) CI t".- <
1

I) 0) C'") N- ,-- in a)
-i-- s.-- CN Cs.1 (N Cr) CO ct -4. -4

-1.00E+06

-2.00E+06

0 -3.00E+06

a)c

LL -4.00E+06

-5.00E+06

-6.00E+06

-7.00E+06

Generation

Figure 3.36 Best fitness per generation for variable block size search, Test 4

63

Figure 3.37 Best fitness per generation for variable block size search, Test 5

Figure 3.38 Best fitness per generation for variable block size search, Test 6

0.00E +00
.".. Li, CD C.) t.... r) a) el r-- La a)... ' oi N N Cr) Cr) st- .7 ,zt

- 1.00E +06

- 2.00E +06

-3.00E+06
a)

00,44401140004)..04.00000044111444400000400.004000000,

c

LL -4.00E+06

5.00E+06

6.00E+06

7.00E+06

Generation

64

Figure 3.39 Best fitness per generation for variable block size search, Test 7

0.00E +00

1.00E +06

2.00E +06

o'n -3.00E+06
w

LL -4.00E+06

5.00E+06

6.00E+06

7.00E+06

11.111	 '14.1'11111-	 v.) U) a) CO "r" u.)
(71 CV 04 Cv) M Nt 41 V'

4100.000000494.400414400011401)0440044004440041006400

Generation

Figure 3.40 Best fitness per generation for variable block size search, Test 8

0.00E+00
U) a)	 U) 0) CO N. U)

CNI Cv) M .71`	 .zr
-1.00E+06

-2.00E+06

.1-3.00E+06
a)

-4.00E+06

-5.00E+06

-6.00E+06

-7.00E+06

Generation

65

3.4 Region Based Motion Estimation

The goal of region based motion estimation is to improve on variable block size

motion estimation by assigning motion vectors to regions, which are not necessarily

squares or rectangles. One of the main motivations to use regions over rectangles is that

moving objects are rarely rectangular. If these motion regions can be adequately

determined, then the number of motion vectors needed to represent a sequence of

moving pictures can be reduced. Region based motion estimation also reduces the

"blockiness" (a number of block shapes detectable in the final decompressed image)

associated with block based motion estimation at low data rates. But, this problem is

more computationally intensive than other motion estimation algorithms since motion

boundaries must be determined.

Motion regions can also be used in the process of image segmentation. ln image

segmentation the physical elements of an image are identified, for example an airplane in

an air traffic control system or a visual inspection in a manufacturing quality control

system which identifies faulty parts. Image segmentation is typically done using several

different techniques combined together, since the use of a single technique (such as using

motion) is very limited.

3.4.1 Region Based Motion Estimation, Fixed Block Size Method

One fairly simple implementation of region based motion estimation is to create

regions by combining adjacent blocks that have the same motion vectors. This is pretty

simple, but unless fairly small sized blocks are used, the motion estimated image may

suffer from some blockiness around the region's boundaries, as can be seen in Figure

66

3.41. This process is an improvement over fixed block size motion estimation, where the

blockiness can occur throughout the image.

Figure 3.41 Region motion estimation, Fixed Block Size Method

A simple way to implement region based motion estimation with a fixed block

size is to use the motion vectors generated by a GA. The blocks with the same motion

vectors are combined into groups which represent motion regions. The vectors can be

generated by either the iterative method (in which the motion vectors for the blocks are

evaluated one at a time) or the one-shot method (in which all of the blocks are processed

simultaneously). Once the GA processes all of the blocks, the blocks are sorted into

groups which have the same motion vectors. Each of these groups may contain several

non-adjacent regions which can be further subdivided ifnecessary.

67

Depending on the application, adjacent blocks in these groups can be combined

into larger blocks, reducing the overall block count. Another option is to combine all of

the blocks in a group and specify the region by its perimeter.

This experiment will start with the Improved Fixed Block Size Iterative Method,

which has performed best in this research. The GA is run with the same parameters as in

Section 3.2.1: a population size of 50, 20 generations, tournament selection, a crossover

probability of 0.6, and a mutation probability of 0.0005. When all of the blocks have

been processed, the best motion vectors for each block are stored in a bitmap file such

that all blocks which have the same motion vectors are filled with the same color. This

creates a visual representation of the motion vectors used to reconstruct a frame.

Looking at this visual motion representation it should be possible to recognize moving

objects. However, this is a subjective experiment. For the video sequences in Test 1

through Test 4 refer to Appendix A.

Figures 3.42 through 3.45 show a graphical representation of the motion vectors

found by the GA. Figures 3.43, 3.44, 3.45 show the head of the woman singer fairly

clearly. Figure 3.42 has quite a bit more noise in it.

68

Figure 3.42 Region motion estimation, Fixed Block Size Method, frame 1

Figure 3.43 Region motion estimation, Fixed Block Size Method, frame 2

69

Figure 3.44 Region motion estimation, Fixed Block Size Method, frame 3

Figure 3.45 Region motion estimation, Fixed Block Size Method, frame 4

3.4.2 Region Based Motion Estimation, Variable Block Size Method

The region based motion estimation in the experiments in this section makes use

of variable block sizes. It is best to use the largest possible blocks to minimize the

70

amount of information that needs to be incorporated in the compressed data stream.

These variable sized blocks can be nicely represented in a tree structure, as has been

previously described. Once the tree is built, it is traversed and all of the blocks that have

the same motion vector are logically grouped together. Note that the blocks do not have

to be adjacent, since this is a grouping of all of the regions that have the same motion. If

needed, the groups can be divided into groupings which only contain the motion regions

in which the blocks are adjacent.

The region based motion estimation Variable Block Size Method differs from the

Fixed Block Size Method in that the Variable Block Size Method is a top-down

approach, while the Fixed Block Size Method is a bottom-up approach. The Variable

Block Size Method is illustrated with Figures 3.46-3.49.

Figure 3.46 shows the current frame with a region denoted, which also exists in

the previous frame, but at a different location. To determine the boundaries of this

region and how they relate to a similar region in the previous frame, some analysis must

be done. First the entire current frame is compared to the entire previous frame and it is

determined that these frames are not the same.

http:3.46-3.49

71

Figure 3.46 Region motion estimation Variable Block Size Method, Step 1

A

Figure 3.47 shows how the image is next divided into four equal areas in an

attempt to find some matching areas between this frame (the current frame) and the

previous frame. Since it is found that the areas still do not match, it is necessary for the

frame to be subdivided further.

72

Figure 3.47 Region motion estimation Variable Block Size Method, Step 2

B C

E D

Figure 3.48 details the smaller subdivisions in the image. The process of dividing

the image into smaller and smaller subdivisions continues until the motion blocks can be

matched to the previous frame or until a minimum motion block size is reached.

73

Figure 3.48 Region motion estimation Variable Block Size Method, Step 3

F G

After the image is divided into its motion blocks, a pass is made through the tree

to logically group the blocks according to their motion vectors. The end result is a

region that covers the motion area, as show in Figure 3.49. This method could also be

used as a means to identify moving objects in an image sequence.

74

Figure 3.49 Region motion estimation Variable Block Size Method, Step 4

Note that the image subdivision produced by the region motion estimation of the

Variable Block Size Method is similar to the end result of the Fixed Block Size Method

if the adjacent blocks in the Fixed Block Size Method are combined into larger blocks.

However, the Fixed Block Size Method has the advantage that the block combinations

are done as part of the block identification process. The advantage of the Variable Block

Size Method over that of the Fixed Block Size Method is that the Variable Block Size

Method should be faster. (This is because if the Variable Block Size Method finds an

appropriate motion vector for a larger block, it can move on to the next block, while the

Fixed Block Size Method must determine the motion vectors for all of the blocks.)

For this experiment the Variable Block Size motion estimation GP code from

Section 3.3 was used. Video segments shown in Test 1 through Test 4 (refer to

Appendix A) were used in this experiment. The GP used a population size of 500 and

ran for 50 generations. The minimum tree height was 2 and the maximum height was 6.

75

Figures 3.50 through 3.53 are the graphical representations of the motion regions

as determined by the GP. These figures illustrate how the GP partitioned the image into

sub-blocks. However the GP did not partition the images into the sub-blocks thatone

would expect. The blocks created by the GP are much too large to allow recognition of

the image of the woman singing. The GP appeared to favor smaller trees. The most

likely explanation of this behavior is that the GP can minimize the error of the motion

vectors more easily if there are fewer of them.

Figure 3.50 Region motion estimation, Variable Block Size Method, frame 1

76

Figure 3.51 Region motion estimation, Variable Block Size Method, frame 2

Figure 3.52 Region motion estimation, Variable Block Size Method, frame 3

77

Figure 3.53 Region motion estimation, Variable Block Size Method, frame 4

78

CHAPTER 4 - CONCLUSIONS AND SUGGESTIONS FOR FURTHER WORK

Motion estimation is one of the most important components of video

compression. To date all of the previous research has concentrated on improving motion

estimation by creating new algorithms which sub-sample the data in various ways to

overcome the need for an exhaustive search. In this research a totally new approach to

motion estimation was proposed, making use of Genetic Algorithms and Genetic

Programs. This is a major deviation from the previous work done in the field because of

the way the evolvable search methodologies work. With this approach it is no longer

required to develop an algorithm to find optimal motion vectors, since the evolvable

search methodologies automatically develop the algorithm.

Fixed block size motion estimation was first examined. The first experiments

applied an iterative algorithm in which a GA was used to compute the individual motion

vectors for similar sized blocks. This method was found to perform worse than the

exhaustive search, both in the speed of execution and in the quality of the resulting

motion vectors.

By adding the null motion vectors to the initial population of the GA the

performance of the fixed block size motion estimation was improved considerably. The

average search time was better than that of the exhaustive search and the quality of the

motion vectors was greatly improved from the previous experiments.

Instead of performing an iterative search for fixed block size motion vectors,

experiments were conducted using a GA to compute all of the motion vectors to

correlate two video frames simultaneously. It was found that although the GA did

improve the fitness values of the motion vectors over time, the progression was

79

extremely slow. The number of blocks of data compared is also considerably larger than

the total number of blocks compared with an exhaustive search.

The possibility of using a GP to create variable block size motion vectors was

next investigated. (It is advantageous to have the motion blocks be as large as possible,

since fewer motion vectors are then required.) A GP was more appropriate for this

problem than a GA since the tree structure lends itself to a recursive representation of

sub-blocks. Through experimentation it was found that the error between the reference

frame and the frame generated by the motion vectors was slightly better than the fixed

block size motion estimation with the null vectors added to the initial population.

Unfortunately, the speed of execution for this application was the worst of all the

experiments.

GAs and GPs were also utilized to determine motion regions. The central goal of

this method was to group like motion vectors to determine the shape of a moving object.

In three out of four experiments the GA produced motion estimation image results which

resembled the head of the woman singer (Appendix A), while the GP failed to

accomplish this. This was attributed to the "greediness" of the GP, as it displayed a

tendency to use the largest possible blocks and thus not create motion blocks small

enough to represent the details of the moving images.

After experimenting with the various forms of motion estimation and evolvable

search methods, it can be concluded that although the approach of evolutionary motion

estimation is both novel and interesting, it is not practical. There are currently other

motion estimation algorithms which generate motion vectors faster and of comparable

quality to those found by an exhaustive search.

80

There are however, a few areas of evolutionary motion estimation which hold

promise and should be explored further. One such area is to use a GA to generate an

algorithm or pattern, which would then be used to find motion vectors to correlate

motion blocks between two frames of a video sequence. Depending on the video

sequence, the algorithm or pattern may not produce useful results for the entire video

sequence. When it is found that the quality of the vectors produced declines, the GA

will have to be re-run to generate a new algorithm or pattern; this could be done

automatically if the block matching rate falls below a certain level. This would

essentially be a continuation of the work done by Cavicchio (1970) in which a GA was

utilized in a pattern recognition problem. In this research a GA generated "detectors" or

patterns, which were used to classify a digitized image; the GA was not directly used to

process images.

The use of more complex motion vectors also merits further investigation.

Rather than just using horizontal and vertical displacement, rotation could be

incorporated, or a polynomial could be used to express the motion vector, as in the

research by Karczewicz et al. (1995). This should be of greater benefit as the size of

motion blocks increase, especially in the case of using variable block sizes.

Additionally, the region based motion estimation methods could be combined

with other image segmentation techniques to aid in object identifications. (This is

because motion estimation alone only works if the entire object is moving with relation

to its background.)

81

As digital video becomes more prevalent, video compression becomes more

important. New algorithms, implemented in both hardware and software, are being

created at a rapid pace. New approaches are necessary to increase the speed of

compression and playback, as well as the quality of the playback video. Better

compression algorithms make it possible to store ever larger quantities of video images

on current computer storage devices. This research explored artificial evolutionary

algorithms as a new and innovative means of improving motion estimation for video

compression.

82

BIBLIOGRAPHY

Barron, J. L. and R. Eagleson. "Binocular Estimation of Motion and Structure from
Long Sequences Using Optical Flow Without Correspondence". In Proceedings:
International Conference on Image Processing, Washington, D.C., October 23
26, 1995. Volume II. Los Alamitos, California: IEEE Computer Society Press,
1995. pp. 193-196.

Bonomi, Mauro. "Multimedia and CD-ROM: An Overview of JPEG, MPEG and the
Future". CD-ROM Professional. November 1991, pp. 38-40.

Cavicchio, D. J. "Adaptive search using simulated evolution." Diss. University of
Michigan, Ann Arbor 1970.

Chan, Yui-Lam and Wan-Chi Siu. "A New Block Motion Vector Estimation Using
Adaptive Pixel Decimation". In Conference Proceedings: The 1995
International Conference on Acoustics, Speech, and Signal Processing, May 9
12 1995, Westin Hotel Detroit, Michigan, USA. Volume 4. Sponsored by The
Signal Processing Society of The Institute of Electrical and Electronics
Engineers. Piscataway, New Jersey: The Institute of Electrical and Electronics
Engineers, 1995. pp. 2257-2264.

Chang, Hsuan T. and Chung J. Kuo. "An Improved Scheme for Fractal Image Coding".
In Proceedings: 1995 IEEE International Symposium on Circuits and Systems,
Seattle, Washington, USA, April 30 - May 3, 1995. Volume 3. Sponsored by
the IEEE Circuits and Systems Society. Piscataway, New Jersey: Institute of
Electrical and Electronics Engineers, 1995. pp. 1624-1627.

Chellappa, Rama. Digital Image Processing. Los Alamitos, California: I I-SEE Computer
Society Press. 1992.

Chiariglione, Leonardo. "The Development of an Integrated Audiovisual Coding
Standard: MPEG". Proceedings of the IEEE. Vol. 83, No. 2 (February 1995),
pp. 151-157.

83

Dang, Viet-Nam, Abdol-Reza Mansouri, and Janusz Konrad. "Motion Estimation for
Region-Based Video Coding". In Proceedings: International Conference on
Image Processing, Washington, D.C., October 23-26, 1995. Volume II. Los
Alamitos, California: IEEE Computer Society Press, 1995. pp. 189-192.

Delopoulos, Athanasios N. and Antony G. Constantinides. "Object Oriented Motion and
Deformation Estimation Using Composite Segmentation". In Proceedings:
International Conference on Image Processing, Washington, D.C., October 23
26, 1995. Volume II. Los Alamitos, California: IEEE Computer Society Press,
1995. pp. 217-220.

Denney, Thomas S. Jr. "On Estimating 3-D Incompressible Motion". In Proceedings:
International Conference on Image Processing, Washington, D. C., October 23
26, 1995. Volume III. Los Alamitos, California: IEEE computer Society Press,
1995, pp. 492-495.

Duc, Benoit, Philippe Schroeter, and Josef Bigun. "Motion Estimation and
Segmentation by Fuzzy Clustering". In Proceedings: International Conference
on Image Processing, Washington, D. C., October 23-26, 1995. Volume III.
Los Alamitos, California: IEEE computer Society Press, 1995, pp. 472-475.

Dufaux, Frederic and Fabrice Moscheni. "Motion Estimation Techniques for Digital TV:
A Review and a New Contribution". Proceedings of the IEEE. Volume 83, No.
6 (June 1995), pp. 858-876.

Efstratiadis, S. N., M. G. Strintzis, and A. K. Katsaggelos. "Motion Field Prediction and
Restoration for Low Bit-Rate Video Coding". In Proceedings: International
Conference on Image Processing, Washington, D.C., October 23-26, 1995.
Volume II. Los Alamitos, California: IEEE Computer Society Press, 1995. pp.
213-216.

Feng, Jian, Kwok-Tung Lo, Hassan Mehrpour, and A. E. Karbowiak. "Adaptive Block
Matching Motion Estimation Algorithm Using Bit-Plane Matching". In
Proceedings: International Conference on Image Processing, Washington, D. C.,
October 23-26, 1995. Volume III. Los Alamitos, California: IEEE computer
Society Press, 1995, pp. 496-499.

84

Fok, Yiu-Hung, Oscar C. Au, and Ross D. Murch. "Novel Fast Block Motion
Estimation in Feature Subspace". In Proceedings: International Conference on
Image Processing, Washington,D.C., October 23-26, 1995. Volume II. Los
Alamitos, California: IEEE Computer Society Press, 1995. pp. 209-212.

Goldberg, David E. Genetic Algorithms in Search, Optimization, and Machine Learning.
Reading, Massachusetts: Addison-Wesley Publishing Company, Inc. 1989.

Gonzalez, Rafael C. and Richard E. Woods. Digital Image Processing. Reading,
Massachusetts: Addison-Wesley Publishing Company, Inc. 1992.

Green, William B. Digital Image Processing: A Systems Approach. New York, New
York: Van Nostrand Reinhold, Inc. 1989.

Gritz, L. and J. K. Hahn. "Genetic Programming for Articulated Figure Motion". In the
Journal of Visualization and Computer Animation. 1995.

Hebert, Thomas J. and Xudong Yang. "A Sequential Algorithm for Motion Estimation
from Point Correspondences with Intermittent Occlusions". In Proceedings:
International Conference on Image Processing, Washington, D.C., October 23
26, 1995. Volume II. Los Alamitos, California: IEEE Computer Society Press,
1995. pp. 221-224.

Information Technology - Generic Coding of Moving Pictures and Associated Audio
Information - Part 2: Video. Draft International Standard. Geneva,
Switzerland: International Organization for Standardization and International
Electrotechnical Commission, 1994.

Information Technology - Generic Coding of Moving Pictures and Associated Audio
Information - Part 3: Audio. International Standard. Geneva, Switzerland:
International Organization for Standardization and International Electrotechnical
Commission, 1995.

Jehng, Yeu-Shen, Liang-Gee Chen, and Tzi-Dar Chiueh. "A Motion Estimator for Low
Bit-Rate Video CODEC". IEEE Transactions on Consumer Electronics.
Volume 38, Number 2, May 1992. pp. 60-69.

85

Karczewicz, Marta, Jacek Nieweglowski, and Petri Haavisto. "Motion Estimation and
Representation for Arbitrarily Shaped Image Regions". In Proceedings:
International Conference on Image Processing, Washington, D.C., October 23
26, 1995. Volume II. Los Alamitos, California: IEEE Computer Society Press,
1995. pp. 197-200.

Kim, Yanghoon, Chong S. Rim, and Byoungki Min. "A Block Matching Algorithm with
16:1 Subsampling and Its Hardware Design". In Proceedings: 1995 IEEE
International Symposium on Circuits and Systems, Seattle, Washington, USA,
April 30 - May 3_, 1995. Volume 1. Sponsored by the IEEE Circuits and
Systems Society. Piscataway, New Jersey: Institute of Electrical and Electronics
Engineers, 1995. pp. 613-616.

Koza, John R. Genetic Programming: On the Programming of Computers by Means of
Natural Selection. Cambridge, Massachusetts: The MIT Press, 1992.

Koza, John R. Genetic Programming II: Automatic Discovery of Reusable Programs.
Cambridge, Masschusetts: The MIT Press, 1994.

Lam, Simon S., Simon Chow, and David K. Y. Yau. "An Algorithm for Lossless
Smoothing of MPEG Video". SIGCOMM 94. London, England: Association
for Computing Machinery, 1994.

Laplante, Philip A. and Alexander D. Stoyenko, Editors. Real-Time Imaging: Theory,
Techniques, and Applications. Piscataway, New Jersey: IEEE Press, 1996.

Le Gall, Dideir. "MPEG: A Video Compression Standard for Multimedia
Applications". Communications of the ACM. Vol. 34, No. 4 (April 1991), pp.
47-58.

Lee, Jungwoo. "Optimal Quadtree for Variable Block Size Motion Estimation". In
Proceedings: International Conference on Image Processing, Washington, D. C.,
October 23-26, 1995. Volume III. Los Alamitos, California: IEEE computer
Society Press, 1995, pp. 480-483.

86

Leek, Matthew R. "MPEG Q&A". CD-ROM Professional. July/August 1994, pp. 41
46.

Li, J. and X. Lin. "Sequential Image Coding Based On Multiresolution Tree
Architecture". Electronic Letters. Vol. 29, No. 17 (August 1993), pp. 1545
1547.

Liu, Bede and Andre Zaccarin. "New Fast Algorithms for the Estimation of Block
Motion Vectors". IEEE Transactions on Circuits and Systems for Video
Technology. Vol. 3, No. 2 (April 1993), pp. 148-157.

Liu, Hain-Ching and Greg Zick. "Automatic Determination of Scene Changes in MPEG
Compressed Video". In Proceedings: 1995 IEEE International Symposium on
Circuits and Systems, Seattle, Washington, USA, April 30 - May 3, 1995.
Volume 1. Sponsored by the IEEE Circuits and Systems Society. Piscataway,
New Jersey: Institute of Electrical and Electronics Engineers, 1995. pp. 764
767.

Liu, Hongche, Tsai-Hong Hong, Martin Herman, and Rama Chellappa. "Spatio-
Temporal Filters for Transparent Motion Segmentation". In Proceedings:
International Conference on Image Processing, Washington, D. C., October 23
26, 1995. Volume III. Los Alamitos, California: IEEE computer Society Press,
1995, pp. 464-467.

Martin, Graham R., Roger A. Packwood, and Injong Rhee "Variable size block
matching motion estimation with minimal error". In Proceedings: Digital Video
Compression: Algorithms and Technologies 1996.. Volume 2668. San Jose,
California: SPIE, 1996, pp. 324-333.

Nelson, Lee J. "MPEG-1, MPEG-2 & You: Light in the Middle of the Tunnel".
Advanced Imaging. November 1994, pp. 28-31, 86.

Niyogi, Sourabh A. "Spatiotemporal Junction Analysis for Motion Boundary
Detection". In Proceedings: International Conference on Image Processing.,
Washington, D. C., October 23- 26,1995. Volume III. Los Alamitos, California:
IEEE computer Society Press, 1995, pp. 468-471.

87

Ozer, Jan. "The CD-ROM Publisher's MPEG Primer". CD-ROM Professional. June
1995, pp. 79-94.

Pan, Davis. "A Tutorial on MPEG/Audio Compression". IEEE Multimedia Magazine.
Summer 1995, pp. 60-74.

Salembier, Philippe, Luis Torres, Fernand Meyer, and Chuang Gu. "Region-Based
Video Coding Using Mathematical Morphology". Proceedings of the IEEE.
Volume 83, No. 6, (June 1995), pp. 843-857.

Senda, Yuzo, Hidenobu Harasaki, and Mitsuhara Yano. "A Simplified Motion
Estimation Using an Approximation for the MPEG-2 Real-Time Encoder". In
Conference Proceedings: The 1995 International Conference on Acoustics,
Speech, and Signal Processing, May 9-12, 1995, Westin Hotel, Detroit,
Michigan, USA. Volume 4. Sponsored by The Signal Processing Society of The
Institute of Electrical and Electronics Engineers. Piscataway, New Jersey: The
Institute of Electrical and Electronics Engineers, 1995. pp. 2273-2276.

Sun, Huifang. "Hierarchical Decoder for MPEG Compressed Video Data". IEEE
Transactions on Consumer Electronics. Vol. 39, No. 3 (August 1993), pp. 559
564.

Turton, B. C. H. and T. Arslan. "An Architecture for Enhancing Image Processing via
Parallel Genetic Algorithms & Data Compression". First IEE/IEEE International
Conference on Genetic Algorithms in Engineering Systems Innovations and
Applications, University of Sheffield, UK, September 12-14, 1995. pp. 337-342.

Vasconcelos, Nuno and Andrew Lippman. "Spatiotemporal Model-Based Optic Flow
Estimation". In Proceedings: International Conference on Image Processing,
Washington, D.C., October 23-26, 1995. Volume II. Los Alamitos, California:
IEEE Computer Society Press, 1995. pp. 201-204.

Wang, Yao, Xia-Ming Hsieh, and Jian-Hong Hu. "Region Segmentation Based on
Active Mesh Representation of Motion: Comparison of Parallel and Sequential
Approaches". In Proceedings: International Conference on Image Processing,
Washington, D.C., October 23-26, 1995. Volume II. Los Alamitos, California:
IEEE Computer Society Press, 1995. pp. 185-188.

88

Watkinson, John. Compression in Video & Audio. Oxford, Great Brittain: Focal Press,
An imprint of Butterworth-Heinemann Ltd., 1995.

Wong, Yiwan. "An Efficient Heuristic-Based Motion Estimation Algorithm". In
Proceedings: International Conference on Image Processing, Washington, D.C.,
October 23-26, 1995. Volume II. Los Alamitos, California: IEEE Computer
Society Press, 1995. pp. 205-208.

Zhang, Kui, Moroslaw Bober, and Josef Kittler. "Motion Based Image Segmentation for
Video Coding". In Proceedings: International Conference on Image Processing,
Washington, D. C., October 23-26, 1995. Volume III. Los Alamitos, California:
IEEE computer Society Press, 1995, pp. 476-479.

89

APPENDICES

90

APPENDIX A

The following five frames are the video frames used in Test 1 through Test 4.

The video frames are from the Goodtime.avi video distributed with the Microsoft

Windows 95 CD-ROM. The frames were individually captured, resized to 320 pixels by

256 pixels with 256 colors and saved as device independent bitmap files.

Each test consists of taking two consecutive frames and finding the motion

vectors which relate individual blocks in the second frame to blocks in the first frame.

The following table illustrates which frames are used in Test 1 through Test 4.

Test Name Previous Frame Current Frame

Test 1 Goodtime.avi, frame 1789 Goodtime.avi, frame 1790

Test 2 Goodtime.avi, frame 1790 Goodtime.avi, frame 1791

Test 3 Goodtime.avi, frame 1791 Goodtime.avi, frame 1792

Test 4 Goodtime.avi, frame 1792 Goodtime.avi, frame 1793

91

Goodtime.avi, frame 1789

Goodtime.avi, frame 1790

92

Goodtime.avi, frame 1791

Goodtime.avi, frame 1792

93

Goodtime.avi, frame 1793

94

APPENDIX B

The following five frames are the video frames used in Test 5 through Test 8.

The video frames are from the Robroy.avi video distributed with the Microsoft Windows

95 CD-ROM. The frames were individually captured, resized to 320 pixels by 256 pixels

with 256 colors and saved as device independent bitmap files.

Each test consists of taking two consecutive frames and finding the motion

vectors which relate individual blocks in the current frame to blocks in the previous

frame. The following table illustrates which frames are used in Test 5 through Test 8.

Test Name Previous Frame Current Frame

Test 5 Robroy.avi, frame 1736 Robroy.avi, frame 1737

Test 6 Robroy. avi, frame 1737 Robroy. avi, frame 1738

Test 7 Robroy.avi, frame 1738 Robroy.avi, frame 1739

Test 8 Robroy.avi, frame 1739 Robroy.avi, frame 1740

95

Robroy, frame 1736

Robroy, frame 1737

96

Robroy, frame 1738

Robroy, frame 1739

97

Robroy, frame 1740

98

APPENDIX C

This appendix describes how to run the software used in this research.

There is one executable file named motion.exe which contains the necessary code

to run any of the tests. The command line options are as follows:

motion test curr.bmp prev.bmp outBlock.bmp outVect.bmp > out.txt

Where test is one of the following:

test Test description

1 Fixed block size iterative search (normal and enhanced)

2 Fixed block size one-shot search

3 Variable block size search

4 Region motion estimation, fixed block size search

5 Region motion estimation, variable block size search

6 Exhaustive search

The file curr. bmp and prey. bmp are the Device Independent Bitmap files which

represent the current and the previous frame for the specified test (the current

implementation is limited to using 256 color bitmap files). The file outBlock.bmp is a

Device Independent Bitmap file which is created by the motion.exe program. This file is

the video frame which results from applying the best motion vectors found in the test to

the previous frame. The file outVect.bmp is only used in the region motion estimation

experiments. It is created by motion.exe and contains a graphical representation of the

motion vectors. The file out. txt captures the program's standard output which provides

additional information on search performance.

99

APPENDIX D

This appendix lists the software used for this research. All of the code is written

in standard C++. The compiler used is Borland C++ Builder Standard Edition. The

target system was a Pentium 133MHz PC running Microsoft Windows 95. The

application was run in Console mode.

File: ga.h

//

#ifndef gaH

#define gaH

//

// This class a complete Genetic Algorithm implementation. All that

// needs to be supplied is the fitness function (this is an abstract

// base class, so it cannot be instantiated). The way to do this is

// to derive a class from this one, and define the fitness function

// in there.

class GA

{

public:

GA(unsigned populationSize, unsigned stringLength);

virtual -GA();

virtual void init();

void work(unsigned numGenerations);

const char * const getBestString();

double getBestFitness();

unsigned getBestGeneration();

protected:

unsigned populationSize_;

unsigned stringLength;

double selectionProb_;

double reproductionProbj

double mutationProb;

unsigned currentGeneration_;

struct Individual

1

char *string_;

char *tempString_;

double fitness_;

double tempFitness_;

1;

Individual *pool;

Individual best_;

unsigned bestGeneration_;

bool abortSearch_;

void evalFitness();

100

1

void select();

void reproduce();

void mutate();

// This method needs to be defined by the derived class

// It needs to calculate the fitness of a string, and

// store that value in the fitness_ field of the individual.

virtual void fitness(Individual &indiv) = 0;

virtual void notifyStartGeneration() {};

virtual void notifyEndGeneration() {};

virtual void notifyNewBest() {};

1;

#endif

// eof

File: ga.cpp

//

#include <assert.h>

#include <iostream.h>

#include <memory.h>

#pragma hdrstop

#include "ga.h"

#include "random.h"

//

//

// GA::GA()

//

// Constructor for the GA class. The strings are all allocated, but

// not initialized.

//

GA::GA(unsigned populationSize, unsigned stringLength)

:
 populationSize_(populationSize),

stringLength_(stringLength)

pool_ = new Individual[populationSize_];

for (unsigned i=0 ; i<populationSize_ ; i++)

poolii].string_ = new char [stringLength_];

pool_[i].tempString_ = new char [stringLength_];

pool_[i].fitness_ = 0.0;

best_.string_ = new char [stringLength_];

best_.tempString_ = 0;

// Initialize the best fitness to a very negative number so that no

// real fitness would be more negative.

best_.fitness_ = -1.7e308;

bestGeneration_ = 0;

abortSearch = false;

// Setup the default probabilities.

selectionProb_ = 0.6;

reproductionProb_ = 0.6;

mutationProb = 0.0005;

101

//

// GA::-GA()

//

// The destructor is necessary because the class contains dynamically

// allocated elements.

GA::-GA()

1

for (unsigned i=0 ; i<populationSize_ ; i++)

delete [] poolii].string_;

delete [] poolii].tempString_,

1

delete [] pool_;

delete [] best_.string;

1

//

// GA::init()

//

// This method is used to initialize the strings in the population to

// random bit values.

//

void GA::init()

1

randomInit();

currentGeneration = 0;

for (unsigned i=0 ; i<populationSize_ ; i++)

1

for (unsigned j=0 ; j<stringLength_ ; j++)

pool_[i].string_[j] = (char) (randomInt() % 2);

1

1

1

//

// GA::work()

//

// This is the main genetic algorithm method. It performs the genetic

// operations for the specified number of generations. It can be

// called several times if desired.

//

void GA::work(unsigned numGenerations)

1

for (unsigned i=0 ; i<numGenerations && !abortSearch_ ; i++)

currentGeneration++;

notifyStartGeneration();

evalFitness();

select();

reproduce();

mutate();

notifyEndGeneration();

1

1

102

1

//

// GA::getBestString()

//

// Returns a pointer to the best string found so far.

//

const char * const GA::getBestString()

return best.string_;

//

// GA::getBestFitness()

//

// Returns the fitness of the best string found so far.

//

double GA::getBestFitness()

return best.fitness;

//

// GA::getBestGeneration()

//

// Returns the generation in which the best string found so far

// was found.

//

unsigned GA::getBestGeneration()

return bestGeneration;

//

// GA: :evalFitness ()

//

// Evaluate the fitness of the entire population of strings.

//

void GA::evalFitness()

for (unsigned i=0 ; i<populationSize_ && !abortSearch_ ; i++)

fitness(pool_[i]);

if (pool_[i].fitness_ > best_.fitness_)

memcpy(best_.string_, stringLength_);

best_.fitness_ = pool_[i].fitness_;

bestGeneration_ = currentGeneration_;

notifyNewBest();

//

// GA::select()

//

// Perform the selection operator on the population of strings.

// Tournament selection is used to maintain evolutionalry pressure.

//

void GA::select()

for (unsigned i=0 ; i<populationSize_ ; i++)

103

unsigned j;

j = randomInt() % populationSize_;

if (pool_[i].fitness_ > pool_[j].fitness_)

memcpy(pool_[1].tempString_, pool_[1].string_, stringLength_);

pool_[i].tempFitness_ = pool_[i].fitness_;

else

memcpy(pool_[i].tempString_, pool_[j].string_, stringLength_);

pool_[i].tempFitness_ = pool_[j].fitness_;

for (unsigned i=0 ; i<populationSize_ ; i++)

memcpy(pool_[1].string_, pool_[1].tempString_, stringLength_);

pool[1].fitness = pool[1].tempFitness;

//

// GA::reproduce()

//

// The reproduction operator. Strings are chosen in pairs, which are

// the subjected to single point crossover.

//

void GA::reproduce()

unsigned matel;

unsigned mate2;

unsigned slice;

char *tempi;

char *temp2;

for (unsigned i=0 ; i<populationSize_ ; i++)

if (randomFloat() <= reproductionProb_)

matel = randomInt() % populationSize_;

mate2 = randomInt() % populationSize_;

slice = (randomInt() % (stringLength 1)) + 1;

tempt = new char[stringLength_];

memcpy(templ, pool[matel].string, slice);

memcpy(templ + slice, pool[mate2].string_ + slice,

stringLength slice);

temp2 = new char[stringLength_];

memcpy(temp2, poolimate21.string_, slice);

memcpy(temp2 + slice, poolimatel].string_ + slice,

stringLength_ slice);

memcpy(poolimatell.string_, tempi, stringLength_);

memcpy(pool[mate2].string_, temp2, stringLength_);

delete H templ;

delete H temp2;

//

// GA::mutate()

//

1

104

// The mutation operator. When a point is chosen for mutation, a

// random bit is used to replace the current one.

//

void GA::mutate()

{

for (unsigned i=0 ; i<populationSize_ ; i++)

{

for (unsigned j=0 ; j<stringLength_ ; j++)

{

if randomFloat() <= mutationProb_)
(

{

pool_[i].string_[j] = (char) (randomInt() % 2);

1

}

}

}

// eof

File: gp.h

//

#ifndef gpH

#define gpH

#include "gpnode.h"

//

// This class represents a singe GP tree structure. These are used

// by the GPPool class. This GP class contains an instance of a

// Node which needs to be defined elseware.

class GP

friend ostream & operator <<(ostream & out, const GP & gp);

public:

GP();

GP(int minHeight, int maxHeight);

-GP();

GP & operator =(const GP &other);

unsigned depth(bool refresh=false, unsigned parentDepth=0);

unsigned length();

GP * subNode(unsigned index);

double fitness();

void crossover(GP *other, double prob, unsigned maxHeight);

void mutate(double prob, unsigned minHeight, unsigned maxHeight);

private:

Node node;

double fitness_;

unsigned depth_;

enum { MAX_CHILDREN=4 };

GP *children[MAXCHILDREN];

double fitness(unsigned &nodeNumber, unsigned *tPath);

void traverse(unsigned &length, unsigned index, GP **node);

;

105

// This is the Genetic Programming implementation. It contains all

// of the operators required to evolve genetic programs.

class GPPool

friend ostream & operator <<(ostream & out, const GPPool & pool);

public:

GPPool(unsigned populationSize, unsigned minTreeHeight,

unsigned maxTreeHeight);

virtual -GPPool();

virtual void init();

void work(unsigned numGenerations);

GP * getBestTree();

double getBestFitness();

unsigned getBestGeneration();

protected:

unsigned populationSize;

unsigned minTreeHeight;

unsigned maxTreeHeight_;

double selectionProb_;

double reproductionProb_;

double mutationProb_;

unsigned currentGeneration_;

unsigned bestGeneration_;

GP * *pool_;

GP *best;

void evalFitness();

void select();

void reproduce();

void mutate();

virtual void notifyStartGeneration() {};

virtual void notifyEndGeneration() 11;

virtual void notifyNewBest() {};

;

#endif

// eof

File gp.cpp

//

#include <assert.h>

#include <memory.h>

#pragma hdrstop

#include "gp.h"

#include "random.h"

//

//

// GP::GP()

//

106

1

// Only the root node is made.
//

GP::GP()

fitness_ = 0.0;

depth_ = 0;

for (int i=0 ; i<MAX_CHILDREN ; i++)

children ii] = 0;

//

// GP::GP()

//

// A GP is constructed with every branch of the tree having a depth

// of at least minHeight, but no more then maxHeight.

//

GP::GP(int minHeight, int maxHeight)

{

//assert(minHeight > 0);

assert(maxHeight > 0);

fitness = 0.0;

depth_ = 0;

bool hasChildren = (minHeight > 1)

II ((maxHeight > 1) && (randomInt() % maxHeight)!=0);

for (int i=0 ; i<MAX_CHILDREN ; i++)

children [i] = 0;

if (hasChildren)

1

1

childrenii] = new GP(minHeight 1, maxHeight 1);

//

// GP::-GP

//

// This deletes the nodes of the tree which were dynamically

// allocated.

//

GP::-GP()

for (int i=0 ; i<MAX_CHILDREN ; i++)

{

delete children ii];

//

// GP::operator=()

//

// Assignment operator for the GP class. This needs to be explicitly

// defined since a GP contains dynamically allocated objects.

//

GP & GP::operator =(const GP &other)

if (this != &other)

107

assert(this);

assert(&other);

node_ = other.node_;

fitness_ = other.fitness_;

depth_ = other.depth_;

for (int i=0 ; i<MAX_CHILDREN ; i++)

delete children_[i];

children_[i] = 0;

if other.children_[i]
()

children_[i] = new GP(1, 1);

*children[i] = *other.children_[i];

return *this;

//

// GP::depth()

//

// Find the depth of the nodes in the tree.

//

unsigned GP::depth(bool refresh, unsigned parentDepth)

if refresh
()

depth_ = parentDepth + 1;

for (int i=0 ; i<MAX_CHILDREN ; i++)

{

if (children_[i])

children_[i]->depth(true, depth_);

return depth_;

//

// GP::length()

//

// Find the length of the tree, ie the total number of nodes

// in the tree.

//

unsigned GP::length()

unsigned length = 1;

for (int i=0 ; i<MAXCHILDREN ; i++)

if children_[i]
()

length += children_[i]->length();

return length;

//

// GP::subNode()

//

// Return a pointer to the specified node. The "index" argument

// must be in the range of 0..length()-1.

108

//

GP * GP::subNode(unsigned index)

unsigned length = 0;

GP *tempNode = 0;

GP **node = &tempNode;

traverse(length, index, node);

return *node;

//

// GP::fitness()

//

// Evaluate the fitness of this GP. The current path is always

// stored in treePath. Some outside routines need to know what

// the path to the node is.

//

static unsigned treePath[20];

double GP::fitness()

unsigned nodeNumber = 0;

return fitness(nodeNumber, treePath);

//

// GP::crossover()

//

// This performs the crossover operation with the current tree,

// and the one specified in the argument list.

//

void GP::crossover(GP *other, double prob, unsigned maxHeight)

// Find a common node which we can switch.

GP *crossl = this;

GP *cross2 = other;

int branch;

int height = randomInt() % maxHeight;

for (int i=0 ; i<height ; i++)

branch = randomInt() % MAX_CHILDREN;

if (crossl->children_[branch]==0 II cross2->children_[branch]==0
)

break;

crossl = crossl->children_[branch];

cross2 = cross2 >children [branch];

assert (crossl);

assert (cross2);

// Perform the actual crossover.

GP temp;

temp = *crossl;

*crossl = *cross2;

*cross2 = temp;

//

// GP::mutate()

//

// This method performs a possible mutation on the GP. If a mutation

// occurs, the subtree of the selected node is deleted and replaced

// with a new randomly created tree.

//

void GP::mutate(double prob, unsigned minHeight, unsigned maxHeight)

109

.
// Find a node to mutate

unsigned len = length();

for (unsigned i=0 ; i<len ; i++)

{

if (prob >= randomFloat())

{

depth(true /*refresh*/);

GP *node = subNode(randomInt() % length());

GP newNode(minHeight node->depth() + 1,

maxHeight node->depth() + 1);

*node = newNode;

// Since we modified the tree, update the loop count to

// correspond to the current tree length.

len = length();

//

// GP::fitness()

//

// This is the recursive fitness method which is called by the

// main fitness routine. It in turn calls the nodes fitness

// function.

//

double GP::fitness(unsigned &nodeNumber, unsigned *tPath)

{

bool leafNode = true;

fitness_ = 0.0;

for (int i=0 ; i<MAX_CHILDREN ; i++)

1

)
if (childrenii)

leafNode = false;

*tPath = i + 1;

fitness_ += children_[i]->fitness(nodeNumber, tPath+1);

*tPath = 0;

if (leafNode)

1

fitness += node.fitness(nodeNumber++, treePath);

return fitness;

//

// GP::traverse()

//

// This method traverses the GP.

//

void GP::traverse(unsigned &length, unsigned index, GP **node)

if (length++ == index)

{

*node = this;

for (int i=0 ; i<MAX_CHILDREN ; i++)

if children_[i]
()

children[i]->traverse(length, index, node);

110

1

//

// operator<<()

//

// This is the stream operator for the GP. It is a simple way

// to print out a tree for debugging purposes.

//

ostream & operator <<(ostream & out, const GP & gp)

{

out << gp.node_;

out « "(";

for (int i=0 ; i<GP::MAX CHILDREN ; i++)

if (gp.children_[i])

{

out << *(gp.children_[i]);
1

out << ") ";

return out

//

// GPPool:: GPPool()

//

// Constructs a GPPool which is a collection of GPs

//

GPPool::GPPool(unsigned populationSize, unsigned minTreeHeight,

unsigned maxTreeHeight)

:
 populationSize_(populationSize),

minTreeHeight_(minTreeHeight),

maxTreeHeight_(maxTreeHeight)

pool_ = new GP* [populationSize_];

// Setup the default probabilities.

selectionProb_ = 0.6;

reproductionProb_ = 0.6;

mutationProb = 0.0001;

//

// GPPool::-GPPool()

//

// The destructor is required since the GPPool contains dynamically

// allocated objects.

GPPool::-GPPool()

for (unsigned i=0 ; i<populationSize_ ; i++)

delete pool_[i];

delete [] pool;

//

// GPPool::init()

//

// Initialize the population with random trees, and clear out the

// best GP found so far.

111

1

//

void GPPool::init()

randomInit();

currentGeneration = 0;

for (unsigned i=0 ; i<populationSize_ ; i++)

= new GP(minTreeHeight_, maxTreeHeight_);

}

best_ = new GP;

*best_ = *pool_[0];

bestGeneration = 0;

//

// GPPool::work()

//

// This is the main genetic programming loop. When called it cycles

// through the indicated number of generations. If desired it can

// be called multiple times.

//

void GPPool::work(unsigned numGenerations)

for (unsigned i=0 ; i<numGenerations ; i++)

currentGeneration++;

notifyStartGeneration();

evalFitness();

select();

reproduce();

mutate();

notifyEndGeneration();

//

// GPPool::getBestTree()

//

// Return a pointer to the best GP found so far.

//

GP * GPPool::getBestTree()

return best_;

//

// GPPool::getBestFitness()

//

// Return the fitness value of the best GP found so far.

//

double GPPool::getBestFitness()

return best->fitness();

//

// GPPool::getBestGeneration()

112

//

// Return the generation in which the best GP so far was found.

//

unsigned GPPool::getBestGeneration()

{

return bestGeneration;

//

// GPPool::evalFitness()

//

// Evaluate the fitness of all of the GPs in the pool. If a new

// best is found, make a note of it.

//

void GPPool::evalFitness()

{

for (unsigned i=0 ; i<populationSize_ ; i++)

if (pool_[i]->fitness() > best_->fitness())

{

*best_ = *pool_[i];

bestGeneration_ = currentGeneration_;

notifyNewBest();

//

// GPPool::select()

//

// Selection operator for the genetic programming. Tournament selection

// is used to maintain evolutionary pressure.

//

void GPPool::select()

GP *tempPool = new GP[populationSize_];

for (unsigned i=0 ; i<populationSize_ ; i++)

{

unsigned j;

j = randomInt() % populationSize_;

)
if (pool_[i]->fitness() > pool_[j]->fitness()

{

tempPool[i] = *pool_[i];

1

else

1

tempPool[i] = *pool_[j];

1

// Move the temporary pool to the real pool

for (unsigned i=0 ; i<populationSize_ ; i++)

// Copy all of the temporary nodes back to main nodes.

*pool_[i] = tempPool[i];

delete [] tempPool;

//

// GPPool::reproduct()

1

1

113

//

// Reproduction operator for the genetic programming. This selects

// two nodes at a time, and performs a crossover operation on them.

void GPPool::reproduce()

for (unsigned i=0 ; i<populationSize_ ; i++)

unsigned mother = randomInt() % populationSize_;

unsigned father = randomInt() % populationSize_;

assert (pool_[mother]);

assert (pool_[father]);

pool_[mother]->crossover(pool_[father], reproductionProb_,

maxTreeHeight_);

//

// GPPool::mutate()

//

// Mutation operator for the genetic programming.

//

void GPPool::mutate()

{

for (unsigned i=0 ; i<populationSize_ ; i++)

poolii]->mutate(mutationProb_, minTreeHeight_, maxTreeHeight_);

//

// operator«()

//

// Stream operator which allows the printing of the best GP found

// so far. This is useful for debugging purposes.

//

ostream & operator << (ostream & out, const GPPool & pool)

out << *(pool.best_);

return out;

// eof

File: bitmap.h

//

#ifndef bitmapH

#define bitmapH

//

// This class is used to store pixel blocks of various sizes.

class Block

public:

Block(unsigned width, unsigned height);

114

-Block();

void fill(unsigned char colorIndex);

unsigned width() { return width_; }

unsigned height() { return height_; }

unsigned *pixel,

unsigned char *index;

private:

unsigned width_;

unsigned height;

1 ;

// The BitMap class allows reading, saving, and manipulation of a

// Windows Device Independant Bitmap file. It is currently limited

// to using 256 color bitmap files.

class BitMap

{

public:

BitMap(const char * file);

-BitMap();

unsigned height();

unsigned width();

unsigned char pixellndex(unsigned x, unsigned y);

unsigned pixelColor(unsigned x, unsigned y);

unsigned color(unsigned index);

Block * getBlock(unsigned x, unsigned y, unsigned width,

unsigned height);

void clear();

void putBlock(Block *blk, unsigned x, unsigned y);

void writeFile(const char * file);

protected:

enum

{

DATAPTR_OFFSET Ox0000000AL,

WIDTH_OFFSET 0x00000012L,

HEIGHT_OFFSET Ox00000016L,

COLORTABLE OFFSET = 0x00000036L,

;

unsigned *colorTable_;

unsigned char *pixMap_;

unsigned char *data_;

1 ;

#endif

// eof

File: bitmap.cpp

//
#include <assert.h>

#include <fstream.h>

#pragma hdrstop

115

#include "bitmap.h"

//

//

// Block::Block()

//

// The constructor create a block of the given size. The data

// is not initialized.

//

Block::Block(unsigned width, unsigned height)

:
 width_(width), height_(height)

pixel_ = new unsigned [height_ * width_];

index_ = new unsigned char [height_ * width_];

//

// Block::-Block()

//

// The destructor is necessary since the Block class contains

// dynamically allocated elements.

//

Block::-Block()

delete [] pixel_;

delete [] index_;

//

// Block::fill()

//

// This routine will fill all of the block's pixels with the given

// color index value.

//

void Block::fill(unsigned char colorIndex)

for (unsigned i=0 ; i<width_ * height_ ; i++)

{

index [] = colorIndex;

//

// BitMap::BitMap()

//

// Constructor for the BitMap class. When a BitMap is constructed

// it in initialzed with the data from the specified bitmap file.

//

BitMap::BitMap(const char * file)

// Format of BMP file

//

// 0012 0015 : width of image

// 0016 0019 : height of image

// 0036 0435 : color table, 256 entries, each entry is four bytes

// BB GG RR 00

// 0436 eof : pixel data, from left to right, bottom to top; each

// pixel represents anindex into the color table

//

116

ifstream in(file, ios::in+ios::binary);

unsigned char data;

unsigned totalSize = 0;

in.seekg(2L);

for (int i=0 ; i<sizeof(unsigned) ; i++)

in.get(data);

totalSize += data << (8 * i);

in.seekg(OL);

data = new unsigned char [totalSize];

for (unsigned i=0 ; i<totalSize ; i++)

in.get(data_[i]);

1

colorTable_ = (unsigned *) (data_ + COLORTABLE_OFFSET);

pixMap_ = data_ + *((unsigned *)(data_ + DATAPTR_OFFSET));

//

// BitMap::-BitMap()

//

// The destructor is necessary since the class contains dynamically

// allocated elements.

//

BitMap::-BitMap()

delete [] data_;

1

//

// BitMap::width()

//

// Return the width of the bitmap image in pixels.

//

unsigned BitMap::width()

return *((unsigned *)(data_ + WIDTH_ OFFSET));

1

//

// BitMap::height()

//

// Return the height of the bitmap image in pixels.

//

unsigned BitMap::height()

return *((unsigned *)(data_ + HEIGHT_OFFSET));

//

// BitMap::pixelColor()

//

// Return the color of the specified pixel. The format of

// the color is as follows:

// 0000 0000 BBBB BBBB GGGG GGGG RRRR RRRR

// It is a 32 bit value with the RGB values each taking up

// one byte. The top eight bits are 0.

117

//

unsigned BitMap::pixelColor(unsigned x, unsigned y)

{

return color(pixellndex(x, y));

//

// BitMap::pixelIndex()

//

// Return the color index value of the specified pixel.

//

unsigned char BitMap::pixelIndex(unsigned x, unsigned y)

{

assert(x < width());

assert(y < height());

return pixMap_[y * width() + x];

//

// BitMap::color()

//

// Return the color of the specified index value. The format of

// the color is as follows:

// 0000 0000 BBBB BBBB GGGG GGGG RRRR RRRR

// It is a 32 bit value with the RGB values each taking up

// one byte. The top eight bits are O.

//

unsigned BitMap::color(unsigned index)

assert(index < 256);

return colorTableiindex];

//

// BitMap::getBlock()

//

// This method returns a pointer to a Block which contains the

// image data copied from the specifed coordinates.

//

Block * BitMap::getBlock(unsigned x, unsigned y,

unsigned width, unsigned height)

Block *blk = new Block(width, height);

for (unsigned i=0 ; i<height ; i++)

for (unsigned j=0 ; j<width ; j++)

blk->pixel_[i * width + j] = pixelColor(x+j, y+i);

blk->index[i * width + j] = pixellndex(x +j, y+i);

1

return blk;

//

// BitMap::clear()

//

// This method erases the entire bitmap image by setting all of the

// pixel color index values to Oxff.

//

void BitMap::clear()

1

1

118

for (unsigned y=0 ; y<height() ; y++)

for (unsigned x=0 ; x<width() ; x++)

1

pixMap[y*width() + x] = Oxff;

//

// BitMap::putBlock()

//

// Copies the specified Block to the bitmap image at the

// specified coordinates.

//

void BitMap::putBlock(Block *blk, unsigned x, unsigned y)

for (unsigned i=0 ; i<blk->height() ; i++)

{

for (unsigned j=0 ; j<blk->width() ; j++)

{

pixMap_[(y+i) * width() + x + j]

= blk- >index [i * blk->width() + j];

//

// BitMap::writeFile()

//

// Write the bitmap to the specifed file. The resulting file is a

// Windows Device Independant Bitmap file. If the file already

// exists it is overwritten.

//

void BitMap::writeFile(const char * file)

ofstream out(file, ios::out+ios::binary);

unsigned totalSize = *((unsigned *)(data_+2));

for (unsigned i=0 ; i<totalSize ; i++)

out.put(data[i]);

// eof

File: random.h

//

#ifndef randomH

#define randomH

//

// This is used to set the seed to the current time.

void randomInit();

// Return a random integer of 0 to MAX_RAND.

unsigned randomInt();

119

// Return a random float, in the range of 0 to 1.

double randomFloat();

#endif

// eof

File: random.c pp

//
#include <assert.h>

#include <iostream.h>

#include <stdlib.h>

#include <time.h>

#pragma hdrstop

#include "random.h"

//

//

// randomInit()

//

// This is used to set the seed to the current time.

//

void randomInit()

1

srand((unsigned)time(0));

1

//

// randomInt()

//

// Return a random integer of 0 to MAX_RAND.

//

unsigned randomInt()

return rand();

//

// randomFloat()

//

// Return a random float, in the range of 0 to 1.

//

double randomFloat()

unsigned randMax = (unsigned) RAND_MAX * (unsigned) RAND_MAX;

unsigned random = (unsigned) rand() * (unsigned) rand();

return (double) random / (double) randMax;

// eof

120

File: gpnode.h

//

#ifndef gpnodeH

#define gpnodeH

#include "bitmap.h"

#include <iostream.h>

//

// This is the Node class used by the Genetic Programming portion of

// this program. This class contains the data values which occur at

// every node in a GP tree. So this class is problem specific.

class Node

friend ostream & operator <<(ostream & out, const Node & node);

public:

// Constructor initializes the nodes displacement vectors

// to random values.

Node();

// This method returns the current fitness value of this

// node.

double fitness(unsigned nodeNumber, unsigned *path);

// Static value used by the fitness function to determine

// if it should apply the motion vectors to an image.

static bool useNode;

private:

// The most recently calculated fitness value.

double fitness;

// The horizontal displacement motion vector.

int xMotion;

// The vertical displacement motion vector.

int yMotion;

1 ;

#endif

// eof

File: motion.cpp

//

#include <assert.h>

#include <iostream.h>

#include <stdlib.h>

#include <stdio.h>

#pragma hdrstop

#include "bitmap.h"

121

#include "ga.h"

#include "gp.h"

#include "random.h"

//

//

// This is a derived class of BitMap. The main difference is that the

// getBlock() and putBlock() methods use block index values rather then

// actual image coordinates.

//

class MyBitMap public BitMap
:

{

public:

MyBitMap(const char *file, unsigned blkWidth, unsigned blkHeight)

: BitMap(file), blockWidth_(blkWidth), blockHeight_(blkHeight) {}

unsigned getNumBlocks();

Block *myGetBlock(unsigned blockIndex, int deltaX =O, int deltaY =O);

void myPutBlock(Block *blk, unsigned index);

private:

unsigned blockWidth_;

unsigned blockHeight;

;

unsigned MyBitMap::getNumBlocks()

{

return (width() / blockWidth_) * (height() / blockHeight_);

}

Block *MyBitMap::myGetBlock(unsigned blockIndex, int deltaX, int deltaY)

{

assert(blockIndex < getNumBlocks());

int x = (blockIndex % (width() / blockWidth_)) * blockWidth_;

x += deltaX;

if x < 0) x = 0;
(

if ((unsigned) (x + blockWidth_) >= width())

x = width() blockWidth 1;

int y = (blockIndex / (width() / blockWidth_)) * blockHeight_;

y += deltaY;

if (y < 0) y = 0;

if ((unsigned) (y + blockHeight_) >= height())

y = height() blockHeight 1;

return getBlock(x, y, blockWidth, blockHeight);

void MyBitMap::myPutBlock(Block *blk, unsigned index)

[

assert(blk->width() == blockWidth_);

assert(blk->height() == blockHeight);

int x = (index % (width() / blockWidth_)) * blockWidth;

int y = (index / (width() / blockWidth_)) * blockHeight_;

putBlock(blk, x, y);

// This is used to store a blocks coordinates along with it's

122

// motion vectors. BlockElement represents one block, while

// blockList points to a list of BlockElements which cover the

// entire image under test.

struct BlockElement

BlockElement() {used = false;}

bool used;

unsigned index;

unsigned x;

unsigned y;

unsigned width;

unsigned height;

int xMotion;

int yMotion;

1 ;

BlockElement *blockList = 0;

//

// Routine used for sorting the blockList with the qsort() routine.

//

int sortFunc(const void *a, const void *b)

const BlockElement *blkl = (const BlockElement *) a;

const BlockElement *blk2 = (const BlockElement *) b;

if (blkl->xMotion < blk2->xMotion)

return -1;

if (blkl->xMotion > blk2->xMotion)

return 1;

// At this point we know the xMotion vectors are the same, move

// on to the next sorting critera.

if (blkl->yMotion < blk2->yMotion)

return -1;

if (blkl->yMotion > blk2->yMotion)

return 1;

return 0;

// Global file name pointers

char *currFrameFile = 0;

char *prevFrameFile = 0;

char *outFrameSrcFile = 0;

char *outFrameFile = 0;

char *outFrameFile2 = 0;

// Global picture elements.

MyBitMap *cBmp;

MyBitMap *pBmp;

MyBitMap *oBmp;

BitMap *currBmp;

BitMap *prevBmp;

BitMap *outBmp;

1/

// Global routine used to compare two image blocks of the same size.

// An error value is return which indicates by how much the color

// values of all the pixels in the two blocks differ.

//

double compareBlock(Block *blkl, Block *blk2)

123

assert(blkl->width() == blk2->width());

assert(blkl->height() == blk2->height());

int redl, greenl, bluel;

int red2, green2, blue2;

unsigned pixl, pix2;

double colorError = 0.0;

for (unsigned y=0 ; y<blkl->height() ; y++)

{

for (unsigned x=0 ; x<blkl->width() ; x++)

pixl = blkl->pixel_[y * blkl->width() + x];

pix2 = blk2->pixel_[y * blk2->width() + x];

redl = pixl & Ox000000ff;

red2 = pix2 & Ox000000ff;

greenl = (pixl >> 8) & Ox000000ff;

green2 = (pix2 >> 8) & Ox000000ff;

bluel = (pixl >> 16) & Ox000000ff;

blue2 = (pix2 >> 16) & Ox000000ff;

colorError += abs(redl-red2) + abs(greenl-green2)

+ abs(bluel-blue2);

return colorError;

//

////////// FIXED BLOCK SIZE ITERATIVE MOTION ESTIMATION ////////////////

//

//

// We need to derive a class from GA in order to define the fitness

// fucntion.

//

class MyGA : public GA

{

public:

MyGA(unsigned populationSize, unsigned stringLength,

int vectorLength, int vectorRange)

GA(populationSize, stringLength),

vectorLength_(vectorLength), vectorRange_(vectorRange),

blockCompares_(0), blockComparesToBest_(0) 11;

void setInitialValue(unsigned index, const char * const str);

void setAnchorBlock(int blk);

int stringToNum(const char * const string, unsigned length);

unsigned blockCompares() (return blockComparesToBest_;}

const int vectorLength_;

const int vectorRange_;

private:

int anchorBlock_;

unsigned blockCompares_;

unsigned blockComparesToBest_;

virtual void fitness(Individual &indiv);

virtual void notifyStartGeneration();

virtual void notifyEndGeneration();

virtual void notifyNewBest();

:

I ;

//

// MyGA::fitness

//

// This is what evaluates the fitness of the motion vectors.

//

124

void MyGA::fitness(Individual &indiv)

// Translate the motion vectors from from binary strings to

// integer values.

int colVect = stringToNum(indiv.string_, vectorLength_);

int rowVect = stringToNum(indiv.string+vectorLength, vectorLength_);

// Get the src and destination blocks

Block *srcBlock = cBmp->myGetBlock(anchorBlock_);

Block *destBlock = pBmp->myGetBlock(anchorBlock, rowVect, colVect);

// Compute the fitness of the vectors by comparing the blocks.

indiv.fitness_ = compareBlock(srcBlock, destBlock);

blockCompares++;

delete srcBlock;

delete destBlock;

// Change the sign since the GA maximizes the fitness.

indiv.fitness *= -1.0;

//

// MyGA::notifyStartGeneration

//

/7 This method gets called at the start of every generation.

//

void MyGA::notifyStartGeneration()

}

//

// MyGA::notifyEndGeneration

//

// This method gets called at the end of every generation.

//

void MyGA::notifyEndGeneration()

cout << "gen: " << currentGeneration_

<< ", fit: " << best .fitness << endl;

//

// MyGA::notifyNewBest

//

// This method gets called whenever a new best is found.

//

void MyGA::notifyNewBest()

if best_.fitness > -0.5)
(

abortSearch_ = true;

blockComparesToBest = blockCompares;

//

// MyGA::stringToNum

//

7/ This method takes a bit string and converts it into a vector.

//

int MyGA::stringToNum(const char * const string, unsigned length)

int vect = 0;

1

125

for (unsigned i=0 ; i<length ; i++)

vect = (vect << 1) + string[i];

vect -= (vectorRange_ 1) / 2;

return vect;

//

// MyGA::setInitialValue

//

// This method is used to push a value into the GP's pool of strings.

// This helps bias the population, and give it a starting point.

//

void MyGA::setInitialValue(unsigned index, const char * const str)

assert(index < populationSize_);

assert(pool_ != 0);

memcpy(pooliindex].string_, str, stringLength_);

//

// MyGA::setAnchorBlock

//

// Set the current block being worked on, so the GA can use this

// information.

//

void MyGA::setAnchorBlock(int blk)

anchorBlock = blk;

//

// This method is the main routine of the Genetic Algorithm portion

// of the motion estimator.

//

double gaPoint(unsigned numGenerations, unsigned popSize,

unsigned blocklndex)

const int VECTOR_LENGTH = 4;

const unsigned STRING LENGTH = VECTOR LENGTH * 2;

const int VECTOR RANGE = 16;

// create the GA and do the work.

MyGA ga(popSize, STRING_LENGTH, VECTOR_LENGTH, VECTOR_RANGE);

ga.init();

ga.setInitialValue(0, "\x00\x01\x01\x01\x00\x01\x01\x01");

ga.setlnitialValue(l, "\x00\x01\x01\x01\x00\x01\x01\x01");

ga. setAnchorBlock(blocklndex);

ga.work(numGenerations);

// Display the best one found.

const char * const str = ga.getBestString();

int xVect = ga.stringToNum(str, ga.vectorLength);

int yVect = ga.stringToNum(str+ga.vectorLength, ga.vectorLength_);

Block *copyBlock = pBmp- >myGetBlock(blocklndex, xVect, yVect);

oBmp->myPutBlock(copyBlock, blocklndex);

delete copyBlock;

cout << "blk: " << blocklndex « ", "

<< " deltaX: " << xVect << ", deltaY: " << yVect

<< ", #compares: " << ga.blockCompares() << endl;

126

1

return ga.getBestFitness();

//

// Fixed block size, iterative motion estimation

//

void gaFixedIterative()

{

const unsigned NUM_ GENERATIONS = 20;

const unsigned POPULATION_ SIZE = 50;

const unsigned BLOCK SIZE = 8;

cBmp = new MyBitMap(currFrameFile, BLOCK_SIZE, BLOCK_SIZE);

pBmp = new MyBitMap(prevFrameFile, BLOCK SIZE, BLOCK_SIZE);

oBmp = new MyBitMap(outFrameSrcFile, BLOCK_SIZE, BLOCK SIZE);

oBmp->clear();

// Display the initial conditions.

cout << "// Fixed Block Size Iterative Motion Estimation." << endl;

cout << "// Creating GA with:" << endl;

cout << "// # generations: " << NUM_ GENERATIONS << endl;

cout << "// population size: " << POPULATION_ SIZE << endl;

double totalFitness = 0.0;

for (unsigned i=0 ; i<cBmp->getNumBlocks() ; i++)

totalFitness += gaPoint(NUM_GENERATIONS, POPULATION_ SIZE, i);

oBmp->writeFile(outFrameFile);

cout << "// totalFitness = " << totalFitness << endl;

delete cBmp;

delete pBmp;

delete oBmp;

//

////////// FIXED BLOCK SIZE ONE SHOT MOTION ESTIMATION /////////////////

//

//

// We need to derive a class from GA in order to define the fitness

// fucntion.

//

class MyGA2 public GA
:

public:

MyGA2(unsigned populationSize, unsigned stringLength,

int vectorLength, int vectorRange)

: GA(populationSize, stringLength),

vectorLength_(vectorLength), vectorRange_(vectorRange),

blockCompares_(0), blockComparesToBest_(0) {);

int stringToNum(const char * string, unsigned index);

unsigned blockCompares() {return blockCompares_;}

const int vectorRange_;

const unsigned vectorLength_;

private:

unsigned blockCompares_;

unsigned blockComparesToBest_;

virtual void fitness(Individual &indiv);

virtual void notifyStartGeneration();

virtual void notifyEndGeneration();

127

1

virtual void notifyNewBest();

I ;

//

// MyGA2::fitness

//

// This is what evaluates the fitness of the motion vectors.

//

void MyGA2::fitness(Individual &indiv)

indiv.fitness_ = 0.0;

int colVect, rowVect;

Block *srcBlock;

Block *destBlock;

for (unsigned i=0 ; i<cBmp->getNumBlocks() ; i++)

// Translate the motion vectors from from binary strings to

// integer values.

colVect = stringToNum(indiv.string_, i);

rowVect = stringToNum(indiv.string+vectorLength, i);

// Get the blocks to compare.

srcBlock = cBmp->myGetBlock(i);

destBlock = pBmp->myGetBlock(i, rowVect, colVect);

// Compute the fitness of the vectors.

indiv.fitness_ += compareBlock(srcBlock, destBlock);

blockCompares_++;

delete srcBlock;

delete destBlock;

// Change the sign since the GA maximizes the fitness.

indiv.fitness *= -1.0;

//

// MyGA2::notifyStartGeneration

//

// This method gets called at the start of every generation.

//

void MyGA2::notifyStartGeneration()

}

//

// MyGA2::notifyEndGeneration

//

// This method gets called at the end of every generation.

//

void MyGA2::notifyEndGeneration()

cout << "gen: " << currentGeneration_

<< ", fit: " << best .fitness << endl;

//

// MyGA2::notifyNewBest

//

// This method gets called whenever a new best is found.

//

void MyGA2::notifyNewBest()

128

blockComparesToBest_ = blockCompares_;

//

// MyGA2::stringToNum

//

// Converts the bit strings used by the GA into motion vector

// values.

//

int MyGA2::stringToNum(const char * string, unsigned index)

int vect = 0;

string += index * (vectorLength_ * 2);

for (unsigned i=0 ; i<vectorLength_ ; i++)

vect = (vect << 1) + string[i];

vect -= (vectorRange_ 1) / 2;

return vect;

//

// Fixed block size, one shot motion estimation.

//

void gaFixedOneShot()

const unsigned BLOCK_SIZE = 8;

cBmp = new MyBitMap(currFrameFile, BLOCK_SIZE, BLOCK_SIZE);

pBmp = new MyBitMap(prevErameFile, BLOCK_SIZE, BLOCK_SIZE);

oBmp = new MyBitMap(outFrameSrcFile, BLOCK_SIZE, BLOCK_SIZE);

oBmp->clear();

const unsigned NUM GENERATIONS = 50;

const unsigned POPULATION_ IZE = 500;

const unsigned VECTOR_LENGTH = 4;

const unsigned STRING_LENGTH = VECTOR_LENGTH * 2 * cBmp->getNumBlocks();

const int VECTOR RANGE = 16;

// Display the initial conditions.

cout << "// Fixed Block Size One Shot Motion Estimation." << endl;

cout << "// Creating GA with:" << endl;

cout << "// # generations: " << NUM_GENERATIONS << endl;

cout << "// population size: " << POPULATION_SIZE << endl;

cout << "// string length: " << STRING LENGTH << endl;

// Create the GA and do the work.

MyGA2 ga(POPULATION_SIZE, STRING_LENGTH, VECTOR_LENGTH, VECTOR_RANGE);

ga.init();

ga.work(NUM_GENERATIONS);

// Display the best one found.

const char * str = ga.getBestString();

int xVect, yVect;

Block *copyBlock;

for (unsigned i=0 ; i<cBmp->getNumBlocks() ; i++)

{

xVect = ga.stringToNum(str, i);

yVect = ga.stringToNum(str+ga.vectorLength, i);

copyBlock = pBmp->myGetBlock(i, xVect, yVect);

oBmp->myPutBlock(copyBlock, i);

delete copyBlock;

129

1

cout « "blk: " « i « ", "

« " deltaX: " << xVect << ", deltaY: " << yVect

« ", #compares: " « ga.blockCompares() << endl;

oBmp->writeFile(outFrameFile);

delete cBmp;

delete pBmp;

delete oBmp;

//

////////// VARIABLE BLOCK SIZE MOTION ESTIMATION ///////////////////////

//

//

// We need to derive a class from GP in order to define the fitness

// function.

//

class MyGPPool public GPPool
:

public:

MyGPPool(unsigned populationSize, unsigned minTreeHeight,

unsigned maxTreeHeight)

:
 GPPool(populationSize, minTreeHeight, maxTreeHeight)

{blockCompares_ = 0;};

static unsigned blockCompares;

static unsigned blockComparesToBest_;

private:

virtual void notifyStartGeneration();

virtual void notifyEndGeneration();

virtual void notifyNewBest();

1 ;

// The total number of compares performed.

unsigned MyGPPool::blockCompares_ = 0;

// The number of compares performed to find the current best.

unsigned MyGPPool::blockComparesToBest = 0;

// Used to indicate to the fitness funcion that it should store

// the motion vectors in the blockList.

bool Node::useNode = false;

//

// This is the ostream operator<< for the Node class.

//

ostream & operator «(ostream & out, const Node & node)

out << '(' << node.xMotion_ « << node.yMotion_ << ')';

return out;

//

// Node::Node

//

// Constructor for the node object.

//

Node::Node()

const VECTOR_RANGE = 16;

// The X and Y motion vectors can be positive or negative,

// so VECTOR_RANGE/2 is subtracted to make this possible.

130

1

fitness_ = 0.0;

xMotion_ = (randomInt() % VECTOR_RANGE) (VECTOR_RANGE-1) / 2;

yMotion = (randomInt() % VECTOR RANGE) (VECTOR RANGE -1) / 2;

//

// Node::fitness

//

// This method calculates the fitness of the node. It does this by

// applying the motion vectors to the image sequence, and using the

// image differences as a fitness value. The nodeNumber parameter

// is used to determine which block this node refers to.

//

double Node::fitness(unsigned nodeNumber, unsigned *path)

// Start by determining the coordinates of out node

int x = 0;

unsigned width = currBmp->width();

int y = 0;

unsigned height = currBmp->height();

int i = 0;

while path[i]
()

switch (path[i])

{

case 1:

width /= 2;

height 7= 2;

break;

case 2:

x += width / 2;

width /= 2;

height /= 2;

break;

case 3:

y += height / 2;

width 7= 2;

height /= 2;

break;

case 4:

x += width / 2;

y += height / 2;

width /= 2;

height 1= 2;

break;

default:

assert(!"invalid path");

// Make sure the moved block is in the frame.

Block *srcBlock = currBmp->getBlock(x, y, width, height);

int destX = x + xMotion_;

int destY = y + yMotion_;

if (destX<0) destX = 0;

if (destY <0) destY = 0;

if destX + width >= prevBmp->width())
(

destX = prevBmp->width() width 1;

if (destY + height >= prevBmp->height())

destY = prevBmp->height() height 1;

Block *destBlock = prevBmp->getBlock(destX, destY, width, height);

fitness = compareBlock(srcBlock, destBlock);

131

1

MyGPPool::blockCompares++;

if (useNode_)

outBmp->putBlock(destBlock, x, y);

if (blockList)

blockList[nodeNumber].used = true;

blockList[nodeNumber].x = x;

blockList[nodeNumber].y = y;

blockList[nodeNumber].width = width;

blockList[nodeNumber].height = height;

blockList[nodeNumber].xMotion = xMotion_;

blockList[nodeNumber].yMotion = yMotion_;

delete srcBlock;

delete destBlock;

// Change the sign since the GA maximizes the fitness.

fitness_ *= -1.0;

return fitness;

//

// MyGPPool::notifyStartGeneration

//

// This method gets called at the start of every generation.

//

void MyGPPool::notifyStartGeneration()

//

// MyGPPool::notifyEndGeneration

//

// This method gets called at the end of every generation.

//

void MyGPPool::notifyEndGeneration()

cout << "gen: " « currentGeneration_

« ", fit: " << best -> fitness() << endl;

//

// MyGPPool::notifyNewBest

//

// This method gets called whenever a new best is found.

//

void MyGPPool::notifyNewBest()

{

blockComparesToBest = blockCompares;

//

// Variable block size motion estimation.

//

void gpVariable()

currBmp = new BitMap(currFrameFile);

132

prevBmp = new BitMap(prevFrameFile);

outBmp = new BitMap(outFrameSrcFile);

outBmp->clear();

const unsigned NUM_ GENERATIONS = 50;

const unsigned POPULATION_SIZE = 500;

const unsigned MIN TREE HEIGHT = 2;

const unsigned MAX = 6;

// Display the initial conditions.

cout << "// Variable Block Size Motion Estimation." << endl;

cout << "// Creating GP with:" << endl;

cout << "// # generations: " << NUM_ GENERATIONS << endl;

cout << "// population size: " << POPULATION_SIZE << endl;

cout << "// min tree height: " << MIN_TREE_HEIGHT << endl;

cout << "// max tree height: " << MAX TREE HEIGHT << endl;

// A height of 7 generates a tree with 4096 leaf nodes (5461 nodes

// total), which covers a 64x64 image.

MyGPPool pool(POPULATION_SIZE, MIN_TREE_HEIGHT, MAX_TREE_HEIGHT);

pool.init();

pool.work(NUM_GENERATIONS);

GP * best = pool.getBestTree();

cout << "#compares: " << pool.blockComparesToBest_ << endl;

cout << "The best found is:" << endl << *best << endl;

cout << "in generation: " << pool.getBestGeneration() << endl;

cout << "with fitness is: " << pool.getBestFitness() << endl;

// Write the data to an output file.

Node::useNode_ = true;

best->fitness();

Node::useNode_ = false;

outBmp->writeFile(outFrameFile);

delete currBmp;

delete prevBmp;

delete outBmp;

//

//////// FIXED BLOCK SIZE REGION MOTION ESTIMATION /////////////////////

//

//

// This method is the main routine of the Genetic Algorithm portion

// of the motion estimator.

//

double gaFixedRegionPoint(unsigned numGenerations, unsigned popSize,

unsigned blockIndex)

const int VECTOR_LENGTH = 4;

const unsigned STRING_LENGTH = VECTOR_LENGTH * 2;

const int VECTOR RANGE = 16;

// Create the GA and do the work.

MyGA ga(popSize, STRING_LENGTH, VECTOR_LENGTH, VECTOR_RANGE);

ga.init();

ga.setInitialValue(0, H\x00\x01\x01\x01\x00\x°1\x01\x01");

ga.setInitialValue(1, "\x00\x01\x01\x01\x00\x01\x01\x01");

ga. setAnchorBlock(blockIndex);

ga.work(numGenerations);

// Display the best one found.

133

const char * const str = ga.getBestString();

int xVect = ga.stringToNum(str, ga.vectorLength_);

int yVect = ga.stringToNum(str+ga.vectorLength_, ga.vectorLength_);

Block *copyBlock = pBmp->myGetBlock(blockIndex, xVect, yVect);

oBmp->myPutBlock(copyBlock, blockIndex);

delete copyBlock;

blockList[blockIndex].index = blockIndex;

blockList[blockIndex].xMotion = xVect;

blockList[blockIndex].yMotion = yVect;

cout << "bik: " << blockIndex << ", "

« " deltaX: " « xVect « ", deltaY: " « yVect

", #compares: " << ga.blockCompares() << endl;

return ga.getBestFitness();

//

// Fixed block size region estimator.

//

void gaFixedRegion()

const unsigned NUM_ GENERATIONS = 20;

const unsigned POPULATION_ SIZE = 50;

const unsigned BLOCK SIZE = 8;

cBmp = new MyBitMap(currFrameFile, BLOCK_SIZE, BLOCK_SIZE);

pBmp = new MyBitMap(prevFrameFile, BLOCK_SIZE, BLOCK SIZE);

oBmp = new MyBitMap(outFrameSrcFile, BLOCK_SIZE, BLOCK_SIZE);

oBmp->clear();

blockList = new BlockElement [cBmp->getNumBlocks()];

// Display the initial conditions.

cout <<
 "// Fixed Block Size Iterative Motion Estimation." << endl;

cout << "// Creating GA with:" << endl;

generations: " << NUM_ GENERATIONS << endl;
cout « "//

population size: " << POPULATION SIZE << endl;
cout << "//

double totalFitness = 0.0;

for (unsigned i=0 ; i<cBmp->getNumBlocks() ; i++)

totalFitness += gaFixedRegionPoint(NUM_GENERATIONS,

POPULATION SIZE, i);

1

oBmp->writeFile(outFrameFile);

cout << "// totalFitness = " << totalFitness << endl;

// Sort the blockList

//qsort((void *) blockList, cBmp->getNumBlocks(), sizeof(blockList[0]),

// sortFunc);

// We will now loop throgh all of the blocks and save them to a BMP

// file using a different color for each motion vector.

MyBitMap ooBmp(outFrameSreFile, BLOCK_SIZE, BLOCK_SIZE);

ooBmp.clear();

Block motionBlock(BLOCK_SIZE, BLOCK_SIZE);

unsigned c;

for (unsigned i=0 ; i<ooBmp.getNumBlocks() ; i++)

c = ((blockList[i].xMotion & OxOf) << 4)

(blockList[i].yMotion & OxOf);

motionBlock.fill((unsigned char)c);

I

134

ooBmp.myPutBlock(&motionBlock, blockList[i].index);

1

ooBmp.writeFile(outFrameFile2);

delete [] blockList;

blockList = 0;

delete cBmp;

delete pBmp;

delete oBmp;

//

////////// VARIABLE BLOCK SIZE REGION MOTION ESTIMATION ////////////////

//

//

// Variable block size region estimator.

//

void gpVariableRegion()

currBmp = new BitMap(currFrameFile);

prevBmp = new BitMap(prevFrameFile);

outBmp = new BitMap(outFrameSrcFile);

outBmp->clear();

// The actual maximum number of nodes in a depth=6 tree is 1365

const NUM_BLOCK_ELEMENTS = 1400;

blockList = new BlockElement [NUM BLOCK ELEMENTS];

const unsigned NUM_ GENERATIONS = 50;

const unsigned POPULATION_SIZE = 500;

const unsigned MIN_TREE_HEIGHT = 2;

const unsigned MAX TREE HEIGHT = 6;

// Display the initial conditions.

cout << "// Variable Block Size Motion Estimation." << endl;

cout << "// Creating GP with:" << endl;

cout << "// # generations: " << NUM_GENERATIONS << endl;

cout << "// population size: " << POPULATION_SIZE << endl;

cout << "// min tree height: " << MIN_TREE_HEIGHT « endl;

cout << "// max tree height: " << MAX TREE HEIGHT << endl;

// A height of 7 generates a tree with 4096 leaf nodes (5461 nodes

// total), which covers a 64x64 image.

MyGPPool pool(POPULATION_SIZE, MIN_TREE_HEIGHT, MAX_TREE_HEIGHT);

pool.init();

pool.work(NUM_GENERATIONS);

GP * best = pool.getBestTree();

cout << "The best found is:" << endl << *best << endl;

cout << "in generation: " << pool.getBestGeneration() << endl;

cout << "with fitness is: " << pool.getBestFitness() << endl;

// Write the data to an output file.

Node::useNode = true;

best->fitness();

Node::useNode_ = false;

outBmp->writeFile(outFrameFile);

// Sort the blockList

//qsort((void *) blockList, cBmp->getNumBlocks(), sizeof(blockList[0]),

// sortFunc);

// We will now loop throgh all of the blocks and save them to a BMP

// file using a different color for each motion vector.

135

BitMap ooBmp(outFrameSrcFile);

ooBmp.clear();

Block *motionBlock;

unsigned c;

for (unsigned i=0 ; i<NUM BLOCK ELEMENTS ; i++)

if (blockList[i].used==false)

continue;

motionBlock = new Block(blockList[i].width, blockList[i].height);

c = ((blockList[i].xMotion & OxOf) << 4)

(blockList[i].yMotion & OxOf);

motionBlock->fill((unsigned char)c);

ooBmp.putBlock(motionBlock, blockList[i].x, blockList[i].y);

delete motionBlock;

I

1

ooBmp.writeFile(outFrameFile2);

delete H blockList;

blockList = 0;

delete currBmp;

delete prevBmp;

delete outBmp;

1

//

////////// EXHAUSTIVE SEARCH CODE //////////////////////////////////////

//

//

// This method is for testing the exhaustive search method.

//

void exhaustiveSearch()

const int VECTOR_RANGE = 16;

const int MIN_VECTOR = (- VECTOR_RANGE / 2) + 1;

const int MAX_ VECTOR = VECTOR_RANGE / 2;

const int BLOCK SIZE = 8;

MyBitMap *currBmp = new MyBitMap(currFrameFile, BLOCK_SIZE, BLOCK_SIZE);

MyBitMap *prevBmp = new MyBitMap(prevFrameFile, BLOCK_SIZE, BLOCK_SIZE);

MyBitMap *outBmp = new MyBitMap(outFrameSrcFile, BLOCK SIZE,

BLOCK_SIZE);

Block *srcBlock;

Block *destBlock;

Block *copyBlock;

int bestX;

int bestY;

double bestFitness;

double fitness;

unsigned blockCompares = 0;

for (unsigned i=0 ; i<currBmp->getNumBlocks() ; i++)

cout << "(block " << i << ")";

// Get the blocks to compare.

srcBlock = currBmp->myGetBlock(i);

bestFitness = 1.7e+308;

for (int y =MIN VECTOR ; y<MAX_VECTOR+1 ; y++)

{

for (int x--MIN_VECTOR ; x<MAX_VECTOR+1 ; x++)

{

destBlock = prevBmp->myGetBlock(i, x, y);

// Compute the fitness of the vectors.

136

fitness = compareBlock(srcBlock, destBlock);

blockCompares++;

delete destBlock;

if (fitness < bestFitness)

1

bestFitness = fitness;

bestX = x;

bestY = y;

delete srcBlock;

copyBlock = prevBmp->myGetBlock(i, bestX, bestY);

outBmp->myPutBlock(copyBlock, i);

delete copyBlock;

cout « "blk: " « i « ", "

<< " deltaX: " << bestX « ", deltaY: " << bestY

« ", #compares: " << blockCompares « endl;

outBmp->writeFile(outFrameFile);

delete currBmp;

delete prevBmp;

delete outBmp;

//

// Main routine of the motion estimator. This is just a dispatcher

// which calls the appropriate method.

//

void main(int argc, char *argv[])

{

char autoChoice = 0;

if (argc == 5 11 argc == 6
)

{

autoChoice = argv[1][0];

assert(autoChoice=='1' 11 autoChoice=='2' 11 autoChoice=='3' II

autoChoice=='4' II autoChoice=='5' 11 autoChoice=='6');

currFrameFile = argv[2];

prevFrameFile = argv[3];

outFrameSrcFile = argv[3];

outFrameFile = argv[4];

if argc==6
()

outFrameFile2 = argv[5];

else

{

currFrameFile = "test01.bmp";

prevFrameFile = "test02.bmp";

outFrameSrcFile = "test02.bmp";

outFrameFile = "testout.bmp";

outFrameFile2 = "testout2.bmp";

cout << "currFrameFile = " << currFrameFile << endl;

cout << "prevFrameFile = " << prevFrameFile << endl;

cout << "outFrameSrcFile = " << outFrameSrcFile << endl;

cout << "outFrameFile = " << outFrameFile << endl;

cout << "outFrameFile2 = " << outFrameFile2 << endl;

char choice = 0;

137

while choice != '0')
(

{

if autoChoice == 0
()

{

cout « endl

« "Select the test to run:" << endl

<< " 1. Genetic Algorithm (fixed, iterative)" << endl

<< " 2. Genetic Algorithm (fixed, one shot)" << endl

« " 3. Genetic Program (variable)" << endl

<< " 4. Genetic Algorithm (fixed, region)" << endl

<< " 5. Genetic Program (variable, region)" << endl

<< " 6. Exhaustive Search" << endl

« " 0. Exit" << endl

<< "selection: " << flush;

cin >> choice;

}

else

choice = autoChoice;

switch (choice)

{

case '1':

cout << "Genetic Algorithm (fixed, iterative)" << endl;

gaFixedIterative();

break;

case '2':

cout << "Genetic Algorithm (fixed, one shot)" << endl;

gaFixedOneShot();

break;

case '3':

cout << "Genetic Program (variable)" << endl;

gpVariable();

break;

case '4':

cout << "Genetic Algorithm (fixed, region)" << endl;

gaFixedRegion();

break;

case '5':

cout << "Genetic Program (variable, region)" « endl;

gpVariableRegion();

break;

case '6':

cout << "Exhaustive Search" << endl;

exhaustiveSearch();

break;

case '0':

cout « "Exiting program..." « endl;

break;

default:

cout << "Invalid selection, try again." << endl;

break;

}

if autoChoice
()

choice = '0';

// eof

1

