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Improving Motion Estimation with Evolvable Search Algorithms 

CHAPTER 1 - INTRODUCTION 

This research examines the applicability of evolvable search algorithms (Genetic 

Algorithms and Genetic Programming) to the topic of motion estimation as used in video 

compression. 

Motion pictures have long fascinated people of all walks of life, whether it is 

television, a motion picture at a local theater, or a video that was brought home for an 

evening's enjoyment. In recent times a transition in the medium from analog to digital 

recording technologies has occurred, which has brought with it many problems. One of 

the largest problems is the sheer volume of data required to adequately represent motion 

pictures. As a means for processing these large quantities of data, data compression 

algorithms have been developed. One of the most important requirements of data 

compression is to store any length of a video sequence, using conventional computer 

data storage technologies. 

Some of the most exciting forms of data compression used for motion pictures 

are the MPEG (Moving Pictures Expert Group) compression standards, of which 

MPEG-1 and MPEG-2 are the most common. One of the more interesting parts of the 

standards deals with motion estimation. Motion estimation is used to avoid storing the 

image to computer memory a number of times, as an object moves across the screen. 

The process of motion estimation just stores the image to computer memory once, when 

it first appears, along with motion vectors which describe its movement over time. 
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A moving picture is really a sequence of individual still picture frames displayed 

in sequence one after another. The rate at which these frames are displayed varies. For 

example a typical motion picture is 24 frames per second while a television image is 

effectively displayed at about 30 frames per second. 

MPEG takes a three dimensional approach to compressing moving pictures. 

First it can take advantage of intra-frame compression, which means that an individual 

frame is compressed by itself, in a manner much like that of compressing a digitized 

photograph. Secondly, MPEG utilizes inter-frame compression, in which a sequence of 

picture frames are compressed along the temporal axis. It is with these two compression 

techniques that MPEG achieves its high quality output with minimal data storage 

requirements. 

To implement the inter-frame and intra-frame compression modes, MPEG uses 

three techniques to encode the individual pictures in a moving picture sequence. These 

are I, P, and B Frames. The I Frame is the intra-coded frame; this means that it contains 

all of the data of an individual frame and does not depend on the content of the previous 

or the following frames. The first frame of any sequence to be displayed must be an I 

Frame. The P and B Frames are inter-coded frames. The P Frame is a predicted frame 

and uses motion estimation vectors from the previous I or P Frame (whichever is closer). 

The B Frame is a bi-directional predicted frame, which uses motion estimation vectors 

from the previous P or I Frame (whichever is closer) and the following P or I Frame 

(whichever is closer). Typically a P Frame is about one-third the size of an I Frame and 

a B Frame is about one-third the size of a P Frame. So from a compression point of 

view, it is advantageous to use as many P and B Frames as possible. 
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A typical display sequence is illustrated in Figure 1.1. The sequence starts with 

an I Frame, then displays two B Frames, a P Frame, two B Frames, another P Frame, 

and finally another I Frame. In this arrangement, an I Frame is displayed every twelve 

frames. This is a practical upper limit on how many inter-frames can be displayed 

between intra-coded frames. The reason for this practical upper limit is that when a 

decoding device starts to decode a stream, a delay of more than half a second before any 

data can be displayed is generally too much, since the decoder cannot display anything 

until it receives an I Frame. This issue becomes important in a number of real-world 

situations. For example when "channel surfing" on a digital television system, which 

uses MPEG or a similar technology, the consumer does not want to wait very long for 

the picture to appear after the change of channels. 
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Figure 1.1 Typical MPEG picture sequence 

I = Intra-Coded Picture 
B = Bi-directionally Predicted Picture 
P = Predicted PictureB
 

B
 
P
 

B 
B 

P 
B 

B 

The temporal compression component is achieved through motion estimation. 

Motion estimation is done on a macro-block level. (A macro-block is a square block of 

picture data, 16 by 16 pixels.) This process is performed in the following manner. A 

macro-block is chosen in the reference frame. If the selected macro-block is part of a 

moving object, then it may also exist in the next frame, but possibly at a different 

location and slightly modified. By comparing the reference frame to the predicted frame 

it is possible to determine the coordinate differences of the two macro-blocks. This 

difference can be represented as a vector in which the X and Y components represent the 

horizontal and vertical displacement of the macro-block, respectively. So when the 

decoder has a reference macro-block along with its associated motion vector, then it can 

move the macro-block to the proper location in the predicted frame. 
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Figure 1.2 Motion prediction example 

Frame with motion
Frame with reference 

vector and predicted
macroblock 

macroblock 

Motion estimation is the single largest determinant in producing a compression 

ratio which can be achieved in an MPEG data stream of a given video quality. Since 

motion estimation is a very time consuming and computationally intensive process, the 

difference between a good and mediocre motion estimator can radically affect the 

amount of computer memory required for a motion picture, as the compression ratios 

achieved by a video compressor can be largely improved. This research will explore 

motion estimation using both a Genetic Algorithm (GA) and a Genetic Program (GP). 
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CHAPTER 2 PHILOSOPHY AND REVIEW OF LITERATURE
 

The topic of motion estimation has a broad application. Motion estimation is not 

only used in MPEG, but in a number of other video compression methods as well. 

Additionally, motion estimation is even used in many applications not related to data 

compression; it is used in any application that needs to determine motion from several 

individual pictures. For example, motion estimation can be used in an air traffic control 

system that needs to determine the velocities of aircraft from individual radar images. 

MPEG uses motion estimation for macro-blocks. In other words, the motion 

estimator looks at a square block of pixels and tries to find the best match in the next 

frame. Other applications may require a different approach, for example they may need 

to estimate motion for regions or previously identified objects in the image. A different 

application may use the motion of an object from frame to frame to help identify the 

shape of the object, i.e. determine the object's boundaries. 

2.1 Review of Motion Estimation Algorithm Literature 

There are a number of recent research papers available on the subject of motion 

estimation. This can be attributed to the importance of the topic with today's new digital 

video mediums. Many of the articles deal directly with improving the estimation of block 

motion vectors. For example Jehng et al. (1992) implemented a motion estimator in 

hardware with a motion estimation algorithm called 3HAS. This algorithm takes several 

steps to find motion vectors by successively narrowing down the search area, three 

times. 
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Wong (1995) presents a heuristic based motion estimation technique which 

reduces both the number of search locations, via sub-sampling, as well as the number of 

operations to perform at each location, with a simplified signature. This research does 

not compare actual blocks of pixels, but signatures of blocks of pixels. It is claimed that 

this process has several advantages: all pixel points contribute to signatures, only sixteen 

values are needed to represent a block (16x16), and signature values of overlapping 

blocks can be easily computed. It was shown that this algorithm is 69 times faster than 

that of an exhaustive search. 

Liu and Zaccarin (1993) developed an algorithm that produces the same quality 

of output as an exhaustive search, but reduces the computation by a factor ranging from 

8 to 16. This is accomplished by first determining a sub-sampled motion field by 

estimating the motion vectors for a fraction of the blocks. Then only a fraction of the 

pixels at any location are used to determine these vectors. An alternating pattern of sub-

sampled pixels are used to help maintain motion vector accuracy. The sub-sampled 

motion field is then interpolated and a motion vector determined for each block of pixels. 

Chan and Siu (1995) improved on the work of Liu and Zaccarin. An alternating 

pattern of sub-sampled pixels are not used to determine motion vectors, but to actually 

interpret the pixel data. Pixels that are most representative of the block in which they are 

found are selected. It was found that high activity in the luminance signal, which 

indicates edges and texture, is one of the main contributors to the matching criterion. So 

by examining a pixel and its neighbors, it is possible to determine the main pixels in a 

block and use those for the block matching process. 
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One of the newer areas of video compression is region-based motion estimation. 

Region based motion estimation does not suffer from the blockiness often associated 

with block based algorithms, such as MPEG, and provides better compression ratios. In 

region based motion estimation actual image regions are first identified, by various 

means, and then motion vectors are associated with these regions, rather than with 

arbitrary blocks of pixels. Dang et al. (1995) proposed a three-step algorithm for region-

based representation and motion estimation. In the first step intensity based image 

segmentation is used to partition an image into various regions. The second step 

consists of motion estimation for these regions, and in the third step, called region 

fusion, adjacent regions with the same motion vectors are merged together and the initial 

boundaries adjusted. 

Karczewicz et al. (1995) took a similar approach, but used a polynomial model of 

a motion vector to allow for more variations in the type of motion (not limited to simple 

x and y displacements). A method for reducing the number of coefficients of the 

polynomial without severely impacting the quality of the video was also provided. 

Zhang et al. (1995) tackled the problem of image segmentation. In this research, 

three techniques were combined to overcome the shortcomings of each individual 

method. The first, motion field based segmentation, yields segmentation that 

differentiates objects moving with different motions. The second, gray level based 

segmentation, is robust and results in natural segmentation along object boundaries. The 

third, change detection, is good at providing an initial coarse segmentation into motion 

and stationary segments. It was found that the entire algorithm (consisting of these three 

techniques) worked best when the sequence contained a highly textured background and 

involved complex motion. Further investigation of this algorithm is needed for various 
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types of image sequences. This illustrates the complexity of performing image 

segmentation for motion estimation. 

A different approach from the previous literature is taken in this research to solve 

the motion estimation problem. A GA and GP are implemented to find the appropriate 

motion vectors to translate objects from one picture frame to the next. 

No previous references as to the use of a GA or a GP for motion estimation were 

found by the author. One of the few applications of a GA to image processing was a 

study by Cavicchio (1970) in which a GA was used in a pattern recognition problem. In 

this research, a GA was used to find a set of detectors (or patterns) which would in turn 

be used to classify an image digitized on a 25 by 25 grid. It was found that despite the 

enormous search space, the GA considerably outperformed other algorithms for creating 

detectors. Gritz et al. (1995) used a GP to generate controller programs to animate 

articulated figures. They had some success with this technique, but found that the 

generated programs were rather "brittle" (the programs were only suited for a particular 

task, rather than a general skill, and were sensitive to initial conditions). They are 

continuing their work in an attempt to make the programs more general and robust. 

For the first part of this research a GA is utilized to determine simple motion 

vectors for block based motion estimation. In the second part of the research, a GA and 

a GP will be used to aid in region-based motion estimation, not just to determine motion 

vectors, but to actually find the largest possible regions. GAs and GPs provide a certain 

simplicity to finding solutions to complex problems since there is no need to specify an 

algorithm for solving the actual problem. All that is required is a way of ranking possible 

solutions. These types of search algorithms are particularly well suited to the problem of 
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dealing with image data because of their implicit parallelism, which makes heuristically 

searching very large search spaces possible. 
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2.2 Introduction to Genetic Algorithms and Genetic Programming 

As Darwinian evolution over the millennia has well adapted organisms to the 

natural environment, these same principles can be applied to evolution in the artificial 

environment. Within a system of our own creation on a computer, selective breeding 

techniques and survival of the fittest can work together to create robust artificial 

organisms. Genetic operators are a means by which artificial evolution is applicable to 

software enhancement. The Genetic Algorithm (GA) optimizes for problem parameters, 

while the Genetic Program (GP) derives optimized data structures, in the form of 

software code. Both the GA and GP have the same genetic operators. However the 

chromosome structure is different. For a GA, the chromosome "bit string" is composed 

of fields, which are an encoding for problem parameters. (Refer to Figure 2.1.) 

Figure 2.1 Example GA bit string denoting variable fields 

0 0 1 0 1 1 1 0 0 0 

I i 

I 

a I 

II) 

Whereas for a GP, the chromosome bit string, which looks similar to that of the GA, 

represents a data structure. For example the quadratic equation: 

axe +bx+c 

solved for x, yields: 

b±Alb2 4ac x= 
2a 
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consists of mathematical operators and variables and can be represented by the bit string 

shown in Figure 2.2. The data structure contained within the bit string, is encoded with 

different fields representing both functions (mathematical and logical operators) and 

terminals (input variables), in an ordered tree structure. 

Figure 2.2 GP bit string of solution program for the positive root of the quadratic 
equation 

1001 10 010 10 10 010 0100 01 11 010 001 100 000 0010 01 010 011 

Hi LFJ [I I 

I I I HI I " 
I I-1 y Mul b LT] 41 I c l I Sub 11 (Add a I Div 

b b Mul a Mul SqRt 2 Mul 

Where, 
Add = Addition 
Sub = Subtraction 
Mul = Multiplication 
Div = Division 
SqRt = Square Root 

Equation in Reverse Polish Form:
 
(((-1)(b) multiply) ((((b)(b)multiply)((4)(a)(c)multiply)subtract)sqr-root) add)
 
((2)(a)multiply)divide
 

Simplified Equation in Mathematical Form: 

b + 4ac
 
2a
 

With the GP data tree structure, software programs or mathematical/logical 

equations can be evolved. For example the GP tree illustrating the positive root solution 

for the quadratic equation encoded in the previous bit string is shown in Figure 2.3. 
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Figure 2.3 GP tree illustrating the program for the positive root solution of the quadratic 
equation 

Result - Positive
 
Root
 

I
 
Division 

I -1
I 

Add Multiply 

I 

I 

Square 
Root 

Subtract 

I 
I I ± 

Multiply Multiply 

I T
 la 
1b b c, 

1 

The standard, most basic operators for a simple GA/GP are Reproduction, Crossover, 

and Mutation. The following sections will briefly detail these operations and 

demonstrate them with an example. 

Before the artificial evolution can begin, an initial population of solutions must be 

created. Population creation can be performed by random binary number generation, 

user selection of "good" solutions, or some combination of both. The "fitness" or merit 

of these initial solutions are then evaluated and assigned numeric values. Following the 

creation of the initial population, the standard genetic operators can be applied for a 

number of generations. 
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For demonstration purposes an example is given to illustrate all of the basic 

operations for a single generation of a GA. Optimization will be performed for the 

purpose of finding values such that the variable x is made as large as possible. Note that 

the GA is not searching for the roots of any specific equation, but is just searching for 

the largest possible value of x which it can generate. The fitness function of the GA will 

simply plug the GA's values into the quadratic equation and return the value ofx as the 

fitness. 

The bit string given encodes the values for the variables a, b, and c in the positive 

root solution to the quadratic equation, as shown in Figure 2.1, where the variables a 

and c are restricted to a three-bit representation (values 0-7) and variable b has a four-bit 

representation (values 0-15). (For the purposes of this example, several solution 

restrictions are applied. To avoid division by zero, variable a is restricted from being 

equal to zero. Also, the b2 -4ac root is always positive, to avoid the condition ofa 

negative root.) The example population and corresponding fitness values are given in 

Table 2.1. 
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Table 2.1 Example GA population 

Population Bit Strings Fitness 
Member a-b-c X 
1 001-0111-000 0.0 
2 011-1000-100 -0.67 
3 101-1001-011 -0.44 
4 001-0010-001 -1.0 
5 011-0110-010 -0.42 
6 100-0111-011 -0.75 
7 010-1110-111 -0.54 
8 100-1011-101 -0.57 
9 111-1100-010 -0.18 
10 111-1101-110 -0.86 
Total Fitness = -5.43 
Average Fitness = -0.54 

To begin breeding solutions in the artificial environment, the Reproduction 

operator must be applied. In Reproduction, parent strings are selected. There are a 

number of methods for implementing this operator. However, one of the most common 

is Tournament Selection. Loosely based on wild animal mating contests, in Tournament 

Selection two randomly selected strings "duel" each other based on fitness. The string 

with the larger fitness is declared the "winner" and thus is eligible to produce offspring. 

This process is illustrated in the continuation of the previous example, in Table 2.2. 
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Table 2.2 Reproduction operation for example GA 

Reproduction Tournament New Generation 
Case Selection (Winners) 
1 String 1 vs. 4 String 1 
2 String 9 vs. 10 String 9 
3 String 5 vs. 6 String 5 
4 String 1 vs. 2 String 1 
5 String 3 vs. 7 String 3 
6 String 8 vs. 1 String 1 
7 String 2 vs. 5 String 5 
8 String 4 vs. 3 String 3 
9 String 6 vs. 8 String 8 
10 String 10 vs. 9 String 9 

The Crossover operator actually produces offspring. In this process, two strings 

from the pool of eligible parents, (the results of the Reproduction operation), are 

randomly selected. Then, at randomly selected bit sites, the two strings exchange 

"chromosomes", thus forming two offspring. For example, as shown in detail in Figure 

2.4, String 1 and String 5 mate. Their cross site is randomly selected as bit position 5 

(counting from the right, starting with zero). The results of this mating are two child 

strings. However, in this particular implementation, the second child is always rejected, 

so as to maintain the initial population size. (Both "children" strings could be selected if 

the mating process were reduced by half. Both methods are commonly employed.) 
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Figure 2.4 Detail of Crossover operation 

0 0 1 0 1 1 1 0 0 0 Parent - String 1 

Cross-Site = 5 
0 1 0 1 1 0 0 1 0 Parent String 5 

0 0 1 0 1 1 0 0 1 0 Child 1 

and 

Child 2 

The Crossover operation is continued in thesame manner for the entire population. 

Mate strings and cross-sites are chosen randomly. This is illustrated in the continuation 

of the previous example, shown in Table 2.3. Notice that the total fitness values have 

improved after the crossover operation from that of the original population, from -5.43 

to 3.87, respectively. 
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Table 2.3 Crossover operation for example GA 

New String Chosen Mate String Cross- Result String Fitness 
Generation Population Mate Site of 
(Offspring) Result 
String 1 001-0111-000 String 5 011-0110-010 5 001-0110-010 -0.35 
String 9 111-1100-010 String 1 001-0111-000 0 111-1100-010 -0.18 
String 5 011-0110-010 String 6 100-0111-011 6 011-0111-011 -0.57 
String 1 001-0111-000 String 4 001-0010-001 1 000-0111-001 -0.15 
String 3 101-1001-011 String 8 100-1011-101 8 100-1011-101 -0.57 
String 1 001-0111-000 String 9 111-1100-010 3 001-0110-010 -0.35 
String 5 011-0110-010 String 2 011-1000-100 7 011-1000-100 -0.67 
String 3 101-1001-011 String 1 001-0111-000 4 101-1011-000 0 

String 8 100-1011-101 String 7 010-1110-111 8 110-1110-111 -0.73 
String 9 111-1100-010 String 3 101-1001-011 2 111-1100-011 -0.3 

Total Fitness (after Crossover) = -3.87 
Average Fitness (after Crossover) = -0.387 

In a GP, the bit string crossover is performed in the same manner, but with rules 

maintaining the tree structure. For the GP tree structure, an entire tree branch, starting 

from the node chosen for the crossover reference and proceeding to the root of the tree, 

is swapped and joined to the selected node of the opposite parent. For example, with the 

solution to the quadratic equation as the goal of the GP breeding process, let us observe 

the breeding of the following trees in Figures 2.5 and 2.6, where the branches selected 

for the crossover exchange are indicated by the dashed lines. The resulting "child" trees 

are shown in Figures 2.7 and 2.8. 
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Figure 2.5 Parent 1 in Crossover operation for example GP 
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Figure 2.6 Parent 2 in Crossover operation for example GP 
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Figure 2.7 Child 1 in Crossover operation for example GP 
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Figure 2.8 Child 2 in Crossover operation for example GP 
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The final standard operator for GA and GP is Mutation. The Mutation operator 

introduces a genetic diversity factor. Mutations are random changes in the binary 

genetic code, which can introduce some non-inherited characteristics, particularly 

important as a population may be converging prematurely. Generally this operation is 

performed by selecting at a given probability, a single bit, from all the bit strings in the 

population, and inverting it. In a binary system, the inversion changes a 0 logic state to a 

1, and vice versa. In GP, as a precaution against undefined tree structures, the code is 

written such that when the inversion takes place, a function is exchanged only for 

another function and a terminal is exchanged only for another terminal. A number of GP 
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studies have shown that effective rates of mutation are sma11123. As "survival of the 

fittest" determines the outcome of the evolutionary process, the effects of mutation 

which are shown to be harmful are quickly eliminated, whereas those which are 

beneficial are propagated through the population. Continuing with the previous 

example, the mutation probability rate is arbitrarily set at 1/100 bits. Therefore in Table 

2.4 it is shown that a single bit, within the population often bit strings often bits each, is 

inverted. Note that in this example, the total and average fitness values have been 

improved by the Mutation operator. 

Table 2.4 Mutation operation for example GP 

Crossover Result Mutation Gen=1 Fitness 
Population Fitness String Population 
001-0110-010 -0.35 xxx- xxxx -xxx 001-0110-010 -0.35 
111-1100-010 -0.18 xxx- xxxx -xxx 111-1100-010 -0.18 
011-0111-011 -0.57 xxx- xxxx -xxx 011-0111-011 -0.57 
000-0111-001 -0.15 xxx- xxxx -xxx 000-0111-001 -0.15 
100-1011-101 -0.57 xxx- xxxx -xxx 100-1011-101 -0.57 
001-0110-010 -0.35 xxx- xxxx -xxx 001-0110-010 -0.35 
011-1000-100 -0.67 xxx- xxxx -Oxx 011-1000-000 0 
101-1011-000 0 xxx-xxxx-xxx 101-1011-000 0 

110-1110-111 -0.73 xxx- xxxx -xxx 110-1110-111 -0.73 
111-1100-011 -0.3 xxx- xxxx -xxx 111-1100-011 -0.3 
Total Fitness (after Mutation) = -3.2 
Average Fitness (after Mutation) = -0.32 

1 John R. Koza, Genetic Programming: On the Programming of Computers by Means of Natural 
Selection (Cambridge: The MIT Press, 1992), pp. 599-600. 

2 Koza, pp. 105-106.
 

3 David E. Goldberg, Genetic Algorithms in Search, Optimization, & Machine Learning (New York:
 
Addison-Wesley Publishing Company, Inc.), p. 33.
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With the completion of the Reproduction, Crossover, and Mutation operations, a 

new generation is created. The artificial evolution of a GA or a GP is conducted over 

the "millennia", as the process is run for a number of generations. This number of 

generations can be either preset or based on the optimization performance. Through the 

simple example given, it is shown that the genetic operators improve the merit of the 

encoded solutions. The formal theory demonstrating the effectiveness of the genetic 

process is given as the Schemata Theorem4 and is based on probability and pattern 

recognition. 

2.3 Rationale for the Effectiveness of Genetic Operators 

There is much information, about the characteristics of effective and non

effective solutions, present within the genetic population. Encoded within each 

generation is a history of its "race". This history pertains to the successes and failures of 

solution characteristics, inherent in the genetic codes (or chromosomes) of the ancestors, 

which are pronounced in the current generation. Selective breeding pressures cause the 

combination of the successful characteristics to be combined, as strings of high merit 

breed with others of like fitness. 

The characteristics in the genetic codes, which are transmitted through breeding, 

are represented with bit patterns known as schemata. (Schema is the singular form; 

schemata is the plural form.) In the binary system, all the elements of bit strings can be 

represented by the following set {0, 1, *}, where * represents a don't care, but must be 

composed of the elements (0,1). For example, given the schemata {000*1**11}, Figure 

2.9 shows the strings which are represented. The matching elements are underlined. 

4 Goldberg, pp. 30-33. 
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Figure 2.9 Schemata example 

Strings Schemata 
000010011 000*1**11 
000010111 
000011011 
000011111 
000110011 
000110111 
000111011 
000111111 

For a string with length / and cardinality k (k=2 for a binary encoding), there are 

(k+1)1 schemata. For a population of size n, there is an upper bound on the number of 

schemata as n2', where the bound depends on the particular population's diversity. It is 

these schemata which are processed in parallel through the application of the genetic 

operators. 

The standard genetic operators of Reproduction, Crossover, and Mutation all 

effect the propagation of schemata to the next generation, but in varying degrees. As the 

Reproduction operator determines the pool of potential parents, it is the most important 

determinant of schemata propagation. With the implementation of a selection bias based 

on higher fitness, it is probable that these "good" parents will produce good or better 

offspring. The inherent qualities which make these selected parent strings superior are 

contained within their schemata, and as such, should be combined with the good 

characteristics of their mate, producing offspring which inherit a number of high-quality 

characteristics. Offspring of poor quality should die out quickly, and due to the high-

performance breeding pressures, the poor characteristics inherent in their schemata 

should decline in number throughout the population rapidly. Through the breeding 
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process, the propagation and decline of good and bad traits in the schemata can be 

summarized numerically. "A particular schema grows as the ratio of the average fitness 

of the schema to the average fitness of the population."5 The Reproductive Schema 

Growth Equation6 is given for all the schemata existing at one time within a population, 

as the following: 

m(H,t+1) = m(H,t) f(H) / avg. f 

where, 

m(H,t+1) m samples of a unique schema H, within a population A(t), at a time t +1 

m(H,t) m samples of schema H at time t 

f(H) average fitness of the strings in schema H, at time t 

avg. f average population fitness 

Thus, it can be demonstrated that through the genetic operators of Reproduction, 

Crossover, and Mutation the "good" schemata propagate through the population and 

increase over a number of generations. Consequently the solution traits of high merit are 

increased in the artificial evolution. 

5 Goldberg, p. 30. 
6 Ibid. 
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CHAPTER 3 - THESIS CONTRIBUTIONS AND VERIFICATIONS
 

3.1 Experimental Overview 

In this research several aspects of applying genetic search methodologies to the 

motion estimation problem will be explored. The genetic search methodologies will be 

used to determine motion vectors and motion regions in place of other search 

methodologies in order to determine their appropriateness to the problem. Fixed block 

size motion estimation, variable block size motion estimation, and region motion 

estimation are the areas which will be examined. 

The software for the tests includes a C++ implementation of a GA and a GP 

(refer to Appendix D). These programs are used in the following experiments: 

Block motion estimation with fixed block sizes 

Block motion estimation with variable block sizes 

Region based motion estimation 

These tests provide a diverse representation of the motion estimation problem and as 

such, should provide adequate results indicating whether this research should be pursued 

further. 

3.2 Block Motion Estimation with Fixed Block Sizes 

The first area of investigation will be the simple block motion estimation, as is 

used in MPEG and other video compression formats. This is a good starting point 

because it is fairly simple and the brute force algorithm (exhaustive search) is 

straightforward, which makes it a good reference for comparison purposes. It is also 

computationally intensive and thus can benefit from any improvement. 
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When evaluating motion vectors it must be noted that there are two separate 

frames, the current frame and the previous frame. The current frame is the starting 

point. It is divided into blocks for which matches are found in the previous frame. This 

guarantees coverage of the current frame. If the reference were taken in the opposite 

direction, dividing the previous frame into blocks and finding matches in the current 

frame, the current frame may not have the best coverage. This is because there may be 

more then one correct motion vector for a block. For example, if the previous frame and 

the current frame both have a large area which is a uniform color or pattern and the 

actual motion block size is smaller than this pattern, there may be more than one correct 

motion vector to correlate the blocks between the frames. Therefore the evaluation of 

motion vectors starts from the current frame and works backwards. 

A generic GA is utilized for the motion estimation. It is quite rudimentary, 

making use of the genetic operators of Reproduction, single point Crossover (previously 

described), and Mutation. These basic operations are implemented in the same method 

as is show in the example of Section 2. While a number of other implementation 

methods exist for the genetic operators, the basic GA has been shown to be quite robust, 

and there is rarely a need for more exotic features in these operations. 

3.2.1 Fixed Size Block Motion Estimation, Iterative Method 

The purpose of this experiment is to examine how well a GA can determine the 

motion vectors to correlate two video frames using fixed size blocks. An iterative 

approach will be used in which only one motion vector will be computed at a time. 
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The first step is to divide the video frame into equal sized blocks; blocks of eight 

pixels by eight pixels will be used. A GA is then instantiated for every block and tries to 

find a matching block in the previous frame. Every instantiation of the GA uses a 

population size of 50 and runs a maximum of 20 generations. The GA uses tournament 

selection, a crossover probability of 0.6, and a mutation probability of 0.0005. 

It was chosen to encode the motion vectors into eight-bit strings for the GA. 

The first four bits are for the horizontal motion vector and the last four bits are for the 

vertical motion vector. Each four bit vector can have a value from 0 to 15, but since 

negative as well as positive values are necessary, a 7 is subtracted from the vector value 

to give the actual displacement value of the motion vector. Thus motion vector ranges 

are from 7 to +8 for both the horizontal and vertical components. There is no need to 

allow the motion vectors to have larger values, since the motion from one frame to the 

next is typically small. Larger vectors would increase the search space, making it more 

difficult to find correct vectors. The GA fitness function uses these motion vector values 

to determine merit. This is done by comparing the selected block in the current frame to 

the same block in the previous frame, displaced by the motion vectors. The red, green, 

and blue values of the pixels are subtracted, their absolute values taken, and then 

summed to generate an error value. Since the goal of the GA is to maximize the fitness 

values, the error value is multiplied by a -1. 

This is very similar to the brute force, exhaustive search, approach with the only 

difference being that a GA is utilized to find the motion vectors. In both cases the 

motion vectors for the blocks are determined sequentially, one at a time. 
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The experimentation for the Fixed Block Size Motion Estimation consisted of 

eight individual tests. Each test consists of finding the motion vectors to correlate blocks 

between two consecutive video frames using the method described above. The first four 

tests use consecutive frames from a video of a woman singing (refer to Appendix A), 

while the following four tests use consecutive frames from a video sequence of a 

marching army (refer to Appendix B). 

The results of these tests are analyzed in two ways. The first measure of merit 

simply rates the quality of the end result (i.e., are the motion vectors worthwhile?). This 

is calculated with the following formula: 

cR[Y][x] gR[y][x] I + I cG[Y][x] gG[Y][x]l + I c-B[Y][x] gB[y][x]l 
y=0 x=0 

Where: 

cR[y][x] is the red componant of the specified pixel in the current frame 

gR[y][x] is the red componant of the specified pixel in the generated frame 

cG[y] [x] is the green componant of the specified pixel in the current frame 

gG[y][x] is the green componant of the specified pixel in the generated frame 

cB[y][x] is the blue componant of the specified pixel in the current frame 

gB[y][x] is the blue componant of the specified pixel in the generated frame 

This formula simply sums the absolute values of the differences of the red, green, and 

blue pixel components between the original current frame and the current frame which 

was built by applying the generated motion vectors to the previous frame. The second 

measure of merit is the computation time necessary to calculate the motion vectors. The 

simplest way of determining this is to record the number of times an individual block in 
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the current frame was compared to a block in the previous frame, as this gives a close 

approximation of the amount of calculations performed, which can easily be compared to 

an exhaustive search. 

Figure 3.1 illustrates the merit of the motion vectors. It shows the color 

differences between the current video frame and the video frame generated by the GA's 

motion vectors (applied to the previous frame). This color difference (error) value is 

displayed for each of the eight tests. In addition, the color difference between the 

current video frame and the video frame of the exhaustive search's motion vectors is also 

displayed. As can be seen, the images generated by the GA's motion vectors have a 

substantially higher error than the images generated by the exhaustive search's motion 

vectors. 

Figure 3.1 Color difference of fixed block size iterative and exhaustive search 
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Figure 3.2 shows the number of compares performed for each block in Test 1. 

The horizontal axis shows the block number (only one block is being processed at a 

time), while the vertical axis shows the number of block compares performed until the 

best motion vector for that block was found. The average number of compares 

performed for each block was 98.86. Since the exhaustive search performs 64 compares 

for every block, these results are not very good. 

Figure 3.2 Number of compares for fixed block size iterative search, Test 1 
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Figure 3.3 shows the number of compares performed for each block in Test 2, 

until the best motion vectors were found. The average number of compares performed 

for each block was 97.40. 
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Figure 3.3 Number of compares for fixed block size iterative search, Test 2 
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Figure 3.4 shows the number of compares performed for each block in Test 3, 

until the best motion vector was found. The average number of compares performed for 

each block was 105.04. 
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Figure 3.4 Number of compares for fixed block size iterative search, Test 3 
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Figure 3.5 shows the number of compares performed for each block in Test 4, 

until the best motion vector was found. The average number ofcompares performed for 

each block was 94.87. 
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Figure 3.5 Number of compares for fixed block size iterative search, Test 4 
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Figure 3.6 shows the number of compares performed for each block in Test 5, 

until the best motion vector was found. The average number of compares performed for 

each block was 104.53. 
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Figure 3.6 Number of compares for fixed block size iterative search, Test 5 
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Figure 3.7 shows the number of compares performed for each block in Test 6, 

until the best motion vector was	 for 

each block was 99.37. 
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Figure 3.7 Number of compares for fixed block size iterative search, Test 6 
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Figure 3.8 shows the number of compares performed for each block in Test 7, 

until the best motion The average number of compares performed for 

each block was 97.52. 
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Figure 3.8 Number of compares for fixed block size iterative search, Test 7 
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Figure 3.9 shows the number of compares performed for each block in Test 8, 

The average number of compares performed for 

each block was 97.36. 
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Figure 3.9 Number of compares for fixed block size iterative search, Test 8 
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The results of this experiment did not give very promising results for the GA 

implementation of the Fixed the Iterative Method. 

The exhaustive search outperformed the GA in both execution speed (the exhaustive 

search uses 64 compares per block, while the GA uses on average 99.37) and in the 

quality of results (refer to Figure 3.1). It is, of course, not possible to outperform the 

quality of the exhaustive search, since it will always find the best solution. A good 

algorithm, however, should closely approximate the results of the exhaustive search. 

One technique commonly used in GAs is to "seed" the initial population with 

some known good values. The previous experiment initialized the population with 

random values. The following experiment initializes 2 out of 50 (4%) members of the 

initial population with null vectors, i.e. vectors of the original, unmoved image. 

Figure 3.10 illustrates the merit of the evolved motion vectors. The color 

differences between the current video frame and the video frame generated by the GA's 
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motion vectors (applied to the previous frame) are shown. This color difference (error) 

value is displayed for each of the eight tests. In addition, the color difference between 

the current video frame and the video frame generated by the exhaustive search's motion 

vectors is also displayed. However, as can be seen, the images generated in this 

experiment have a substantially higher error than the images generated by the exhaustive 

search's motion vectors. 

Figure 3.10 Color difference of improved fixed block size iterative and exhaustive 
search 
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Comparing these results to Figure 3.1, there is about a 25% improvement in the 

color difference values of the video frames generated by the improved GA's motion 

vectors. 
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Figure 3.11 shows the number of compares performed for each block in Test 1, 

until the best motion vector was found. The average number of compares performed for 

each block was 89.70. 

Figure 3.11 Number of compares for improved fixed block size iterative search, Test 1 

1000
 

900
 
800
 
700
 
600
 mil500 
400 ,p_Ipm
 
300
 
200 r Ell 77 Pi 

l
 

!r100 
I
1111111 III
0 

Figure 3.12 shows the number of compares performed for each block in Test 2, 

until the best motion vector was found. The average number of compares performed for 

each block was 47.94. 
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Figure 3.12 Number of compares for improved fixed block size iterative search, Test 2 
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Figure 3.13 shows the number of compares performed for each block in Test 3, 

until the best motion vector was found. The average number of compares performed for 

each block was 43.60. 
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Figure 3.13 Number of compares for improved fixed block size iterative search, Test 3 

1000 

900 

800 

700 

600 

500 

400 

300 

200 

100 

0 
, to 

r.
cr) ol r-Nr N Na N 

et: 

C') 

11)
'4'
V' 

CDa 
LO 

01 
CY) 
LO 

r-
CO 
CO 

. 11) CD 

N. a CO DN. CO CC?) 

V U) CO 
V. CO U)- ..l... Nr r a-

Block Number 

Figure 3.14 shows the number of compares performed for each block in Test 4, 

until the best motion vector was found. The average number of compares performed for 

each block was 37.77. 
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Figure 3.14 Number of compares for improved fixed block size iterative search, Test 4 
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Figure 3.15 shows the number of compares performed for each block in Test 5, 

until the best motion vector was found. The average number of compares performed for 

each block was 80.41. 
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Figure 3.15 Number of compares for improved fixed block size iterative search, Test 5 
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Figure 3.16 shows the number of compares performed for each block in Test 6, 

until the best motion vector was found. The average number of compares performed for 

each block was 39.21. 
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Figure 3.16 Number of compares for improved fixed block size iterative search, Test 6 
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Figure 3.17 shows the number of compares performed for each block in Test 7, 

until the best motion vector was found. The average number of compares performed for 

each block was 62.81. 
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Figure 3.17 Number of compares for improved fixed block size iterative search, Test 7 
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Figure 3.18 shows the number of compares performed for each block in Test 8, 

until the best motion vector was found. The average number of compares performed for 

each block was 33.41. 
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Figure 3.18 Number of compares for improved fixed block size iterative search, Test 8 
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Figures 3.11 through 3.18 show quite an improvement over the original Fixed 

Block Size GA search method. The average number of blocks compared until the best 

was found was 54.35, which is better than the 64 compares required for each exhaustive 

search block. 

3.2.2 Fixed Size Block Motion Estimation, One-Shot Method 

In the previous section a separate GA was used to find the motion vectors for 

each individual block. But, instantiating a GA for every block is inefficient. A better 

approach would be to use the GA to search for all of the motion vectors simultaneously. 

To accomplish this, a modified version of the string encoding used in the previous 

section is implemented. For this experiment, each string consists of a series of eight-bit 

strings concatenated together. The number of eight-bit strings concatenated together 

corresponds to the number of blocks in the current image. For an image consisting of 

1280 blocks (40 x 32), the string length will be 8 x 1280 or 10240 bits. (Note that this is 
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a fairly small image, so the strings can get very long). The fitness function is also 

modified slightly so that it evaluates the fitness of the motion vectors for each individual 

block and then sums all of these values together into a total fitness value for the entire 

image. The GA uses tournament selection, a crossover probability of 0.6, and a 

mutation probability of 0.0005. The population size was increased to 500 and the 

number of generations was increased to 50. Test 1 through Test 8 (refer to Appendix A 

and Appendix B) will be used in this experiment. 

Figure 3.19 illustrates the merit of the evolved motion vectors. The color 

differences between the current video frame and the video frame generated by the GA 

motion vectors (applied to the previous frame) are shown. This color difference (error) 

value is displayed for each of the eight tests. In addition, the color difference between 

the current video frame and the video frame generated by the exhaustive search's motion 

vectors is also displayed. As can be seen, the images generated by using the GA 

generated motion vectors have a substantially higher error than the images generated by 

the exhaustive search's motion vectors. This GA experiment did not perform as well as 

the GA implementation of Figure 3.10. Although the software is run for more 

generations, these results are understandable since in this experiment the GA must 

optimize a 10240 bit string. A much greater amount of computation is required than in 

the previous experiments. 
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Figure 3.19 Color difference of fixed block size one-shot and exhaustive search 
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Figures 3.20 through 3.27 plot the best fitness values found versus the generation 

number. Each graph shows one of the eight tests. It is interesting to note that each 

graph shows the current best found fitness steadily increasing, verifying that the GA is 

actually optimizing the 10240 bit string at a fairly constant rate. But the process is 

extremely slow due to the large amount of computations. (On a Pentium 133MHz PC, 

each test took several hours to complete). To compute the fitness of an individual string 

1280 block compares are needed. So for each generation there are 1280 x 500 = 

640,000 block compares. This is a much greater amount of computation than with the 

exhaustive search method which requires only 1280 x 64 = 81,920 compares total. The 

number of compares done by the GA could have been decreased by reducing the size of 

the GA's population, but it was kept large for the initial experiments since GAs with 

larger populations tend to work better. The performance of the Fixed Block Size One-

Shot method was worse in a number of quality measures than that of the exhaustive 

search method. Thus, there was no reason to reduce the population size for further 

experiments. 
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Figure 3.20 Best fitness per generation for fixed block size one-shot search, Test 1 
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Figure 3.21 Best fitness per generation for fixed block size one-shot search, Test 2 
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Figure 3.22 Best fitness per generation for fixed block size one-shot search, Test 3 
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Figure 3.23 Best fitness per generation for fixed block size one-shot search, Test 4 
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Figure 3.24 Best fitness per generation for fixed block size one-shot search, Test 5 
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Figure 3.25 Best fitness per generation for fixed block size one-shot search, Test 6 
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c 

Figure 3.26 Best fitness per generation for fixed block size one-shot search, Test 7 
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Figure 3.27 Best fitness per generation for fixed block size one-shot search, Test 8 
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3.3 Block Motion Estimation with Variable Block Sizes 

Block motion estimation can be generalized to include blocks of variable sizes. 

The MPEG standard does not allow for this, but using variable block sizes can be more 

efficient. Since one motion vector is required for each block, fewer motion vectors are 

required if larger common blocks are found between frames. 

One way to represent variable sized blocks common between two frames is with 

a tree structure where each node represents a common block of the two frames. The 

root node is a block that covers the entire frame. The root node can have four children, 

each of these children can have four children, and so on. Each child represents one 

quarter of the parent block. When the tree is complete, traversing the leaf nodes will 

enumerate all of the motion estimation blocks and this will provide complete coverage, 

since all of the blocks will have been checked. The following figures illustrate this 

algorithm. 

Figure 3.28 represents the root node of the current frame. The root node 

includes the entire frame. If the previous frame (the frame to which this one is being 

compared) is the same (with a possible horizontal and/or vertical displacement), then 

there is no need to have a larger tree. One single motion vector is sufficient to express 

the differences between the two frames. 
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Figure 3.28 Variable block size motion estimation, Step 1 

A
 

If the frame to which the comparison is made is not the same, the current frame 

must be divided into smaller sections so that these smaller sections can be correlated 

between the current and the previous frame. Figure 3.29 illustrates how the current 

frame is divided into four equal sized blocks (four children of the root node), which are 

compared to same sized blocks in the previous frame. In the case that only a small 

section of the image has changed, most of the blocks will have a motion vector of zero 

and will not need to be divided any further. 
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Figure 3.29 Variable block size motion estimation, Step 2 

B C 

E D 

In Figure 3.29, Block B was the only block for which a good match between the 

current and the previous frame could not be found. Therefore Block B needs to be 

further subdivided as is illustrated in Figure 3.30. This process can be repeated until the 

blocks match or until a minimum block size is reached. 
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Figure 3.30 Variable block size motion estimation, Step 3 

F G 

Figure 3.31 represents the variable size block motion estimation tree of Figures 

3.28 through 3.30. Each node represents a motion block with its own motion vector. 

Traversing the leaf nodes of the tree (C, D, E, F, G, H, I) will provide all of the blocks 

and their associated motion vectors. These vectors can then be used to reconstruct the 

current frame from the previous frame. 
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Figure 3.31 Variable block size motion estimation, Step 4 

It is possible to use a GA to find the leaf nodes, but this would necessitate using a 

GA for each individual node; it would be much more effective if the entire tree could be 

processed at once. A GP is appropriate for this purpose, since it works on tree 

structures rather than strings. Using a GP, a population of tree structures can be 

created, each of which represents the entire frame. Then through artificial evolution the 

population should converge to a tree structure that uses the fewest nodes to represent 

the best motion blocks. In this manner, it is possible to build the entire tree at once. 

In the following experiments, involving the Test 1 through Test 8 video 

sequences, the GP was run for 50 generations with a population size of 500. The 

minimum tree height was 2 and the maximum was 6. Every tree nodewas allowed four 

sub-nodes (or children). A completely filled out tree of height 6 has 1024 leaf nodes. 

Since the test image sizes are 320 pixels by 256 pixels (refer to Appendix A and 
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Appendix B), the smallest possible block is 10 pixels by 8 pixels. The largest possible 

block is the entire image. 

Figure 3.32 illustrates how well the GP performed its variable block size search 

compared to the exhaustive search. It is interesting to note that this search performed 

slightly better then the Improved Fixed Block Size Iterative search (Figure 3.10); the 

average color difference for each test is about 6% less then that of the Improved Fixed 

Block Size Iterative search. However, this was the slowest of all the search methods 

tested. 

Figure 3.32 Color difference of variable block size and exhaustive search 
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Figures 3.33 through 3.40 plot the current best fitness found versus the 

generation number. Each graph shows one of the eight tests. Figures 3.34, 3.35, 3.36, 

3.38, 3.39, and 3.40 all only show an increase in the best fitness in the first few 

generations and then the fitness remains unchanged for subsequent generations. Figures 
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3.33 and 3.37 only show a very small increase in the best found fitness as the generations 

progress. 

Figure 3.33 Best fitness per generation for variable block size search, Test 1 
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Figure 3.34 Best fitness per generation for variable block size search, Test 2 
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Figure 3.35 Best fitness per generation for variable block size search, Test 3 
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Figure 3.36 Best fitness per generation for variable block size search, Test 4 
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Figure 3.37 Best fitness per generation for variable block size search, Test 5 

Figure 3.38 Best fitness per generation for variable block size search, Test 6 
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Figure 3.39 Best fitness per generation for variable block size search, Test 7 
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Figure 3.40 Best fitness per generation for variable block size search, Test 8 
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3.4 Region Based Motion Estimation 

The goal of region based motion estimation is to improve on variable block size 

motion estimation by assigning motion vectors to regions, which are not necessarily 

squares or rectangles. One of the main motivations to use regions over rectangles is that 

moving objects are rarely rectangular. If these motion regions can be adequately 

determined, then the number of motion vectors needed to represent a sequence of 

moving pictures can be reduced. Region based motion estimation also reduces the 

"blockiness" (a number of block shapes detectable in the final decompressed image) 

associated with block based motion estimation at low data rates. But, this problem is 

more computationally intensive than other motion estimation algorithms since motion 

boundaries must be determined. 

Motion regions can also be used in the process of image segmentation. ln image 

segmentation the physical elements of an image are identified, for example an airplane in 

an air traffic control system or a visual inspection in a manufacturing quality control 

system which identifies faulty parts. Image segmentation is typically done using several 

different techniques combined together, since the use of a single technique (such as using 

motion) is very limited. 

3.4.1 Region Based Motion Estimation, Fixed Block Size Method 

One fairly simple implementation of region based motion estimation is to create 

regions by combining adjacent blocks that have the same motion vectors. This is pretty 

simple, but unless fairly small sized blocks are used, the motion estimated image may 

suffer from some blockiness around the region's boundaries, as can be seen in Figure 
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3.41. This process is an improvement over fixed block size motion estimation, where the 

blockiness can occur throughout the image. 

Figure 3.41 Region motion estimation, Fixed Block Size Method 

A simple way to implement region based motion estimation with a fixed block 

size is to use the motion vectors generated by a GA. The blocks with the same motion 

vectors are combined into groups which represent motion regions. The vectors can be 

generated by either the iterative method (in which the motion vectors for the blocks are 

evaluated one at a time) or the one-shot method (in which all of the blocks are processed 

simultaneously). Once the GA processes all of the blocks, the blocks are sorted into 

groups which have the same motion vectors. Each of these groups may contain several 

non-adjacent regions which can be further subdivided ifnecessary. 
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Depending on the application, adjacent blocks in these groups can be combined 

into larger blocks, reducing the overall block count. Another option is to combine all of 

the blocks in a group and specify the region by its perimeter. 

This experiment will start with the Improved Fixed Block Size Iterative Method, 

which has performed best in this research. The GA is run with the same parameters as in 

Section 3.2.1: a population size of 50, 20 generations, tournament selection, a crossover 

probability of 0.6, and a mutation probability of 0.0005. When all of the blocks have 

been processed, the best motion vectors for each block are stored in a bitmap file such 

that all blocks which have the same motion vectors are filled with the same color. This 

creates a visual representation of the motion vectors used to reconstruct a frame. 

Looking at this visual motion representation it should be possible to recognize moving 

objects. However, this is a subjective experiment. For the video sequences in Test 1 

through Test 4 refer to Appendix A. 

Figures 3.42 through 3.45 show a graphical representation of the motion vectors 

found by the GA. Figures 3.43, 3.44, 3.45 show the head of the woman singer fairly 

clearly. Figure 3.42 has quite a bit more noise in it. 
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Figure 3.42 Region motion estimation, Fixed Block Size Method, frame 1 

Figure 3.43 Region motion estimation, Fixed Block Size Method, frame 2
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Figure 3.44 Region motion estimation, Fixed Block Size Method, frame 3 

Figure 3.45 Region motion estimation, Fixed Block Size Method, frame 4 

3.4.2 Region Based Motion Estimation, Variable Block Size Method 

The region based motion estimation in the experiments in this section makes use 

of variable block sizes. It is best to use the largest possible blocks to minimize the 
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amount of information that needs to be incorporated in the compressed data stream. 

These variable sized blocks can be nicely represented in a tree structure, as has been 

previously described. Once the tree is built, it is traversed and all of the blocks that have 

the same motion vector are logically grouped together. Note that the blocks do not have 

to be adjacent, since this is a grouping of all of the regions that have the same motion. If 

needed, the groups can be divided into groupings which only contain the motion regions 

in which the blocks are adjacent. 

The region based motion estimation Variable Block Size Method differs from the 

Fixed Block Size Method in that the Variable Block Size Method is a top-down 

approach, while the Fixed Block Size Method is a bottom-up approach. The Variable 

Block Size Method is illustrated with Figures 3.46-3.49. 

Figure 3.46 shows the current frame with a region denoted, which also exists in 

the previous frame, but at a different location. To determine the boundaries of this 

region and how they relate to a similar region in the previous frame, some analysis must 

be done. First the entire current frame is compared to the entire previous frame and it is 

determined that these frames are not the same. 

http:3.46-3.49
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Figure 3.46 Region motion estimation Variable Block Size Method, Step 1 

A
 

Figure 3.47 shows how the image is next divided into four equal areas in an 

attempt to find some matching areas between this frame (the current frame) and the 

previous frame. Since it is found that the areas still do not match, it is necessary for the 

frame to be subdivided further. 
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Figure 3.47 Region motion estimation Variable Block Size Method, Step 2 

B C
 

E D 

Figure 3.48 details the smaller subdivisions in the image. The process of dividing 

the image into smaller and smaller subdivisions continues until the motion blocks can be 

matched to the previous frame or until a minimum motion block size is reached. 
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Figure 3.48 Region motion estimation Variable Block Size Method, Step 3 

F G 

After the image is divided into its motion blocks, a pass is made through the tree 

to logically group the blocks according to their motion vectors. The end result is a 

region that covers the motion area, as show in Figure 3.49. This method could also be 

used as a means to identify moving objects in an image sequence. 
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Figure 3.49 Region motion estimation Variable Block Size Method, Step 4 

Note that the image subdivision produced by the region motion estimation of the 

Variable Block Size Method is similar to the end result of the Fixed Block Size Method 

if the adjacent blocks in the Fixed Block Size Method are combined into larger blocks. 

However, the Fixed Block Size Method has the advantage that the block combinations 

are done as part of the block identification process. The advantage of the Variable Block 

Size Method over that of the Fixed Block Size Method is that the Variable Block Size 

Method should be faster. (This is because if the Variable Block Size Method finds an 

appropriate motion vector for a larger block, it can move on to the next block, while the 

Fixed Block Size Method must determine the motion vectors for all of the blocks.) 

For this experiment the Variable Block Size motion estimation GP code from 

Section 3.3 was used. Video segments shown in Test 1 through Test 4 (refer to 

Appendix A) were used in this experiment. The GP used a population size of 500 and 

ran for 50 generations. The minimum tree height was 2 and the maximum height was 6. 
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Figures 3.50 through 3.53 are the graphical representations of the motion regions 

as determined by the GP. These figures illustrate how the GP partitioned the image into 

sub-blocks. However the GP did not partition the images into the sub-blocks thatone 

would expect. The blocks created by the GP are much too large to allow recognition of 

the image of the woman singing. The GP appeared to favor smaller trees. The most 

likely explanation of this behavior is that the GP can minimize the error of the motion 

vectors more easily if there are fewer of them. 

Figure 3.50 Region motion estimation, Variable Block Size Method, frame 1 
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Figure 3.51 Region motion estimation, Variable Block Size Method, frame 2 

Figure 3.52 Region motion estimation, Variable Block Size Method, frame 3
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Figure 3.53 Region motion estimation, Variable Block Size Method, frame 4 
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CHAPTER 4 - CONCLUSIONS AND SUGGESTIONS FOR FURTHER WORK
 

Motion estimation is one of the most important components of video 

compression. To date all of the previous research has concentrated on improving motion 

estimation by creating new algorithms which sub-sample the data in various ways to 

overcome the need for an exhaustive search. In this research a totally new approach to 

motion estimation was proposed, making use of Genetic Algorithms and Genetic 

Programs. This is a major deviation from the previous work done in the field because of 

the way the evolvable search methodologies work. With this approach it is no longer 

required to develop an algorithm to find optimal motion vectors, since the evolvable 

search methodologies automatically develop the algorithm. 

Fixed block size motion estimation was first examined. The first experiments 

applied an iterative algorithm in which a GA was used to compute the individual motion 

vectors for similar sized blocks. This method was found to perform worse than the 

exhaustive search, both in the speed of execution and in the quality of the resulting 

motion vectors. 

By adding the null motion vectors to the initial population of the GA the 

performance of the fixed block size motion estimation was improved considerably. The 

average search time was better than that of the exhaustive search and the quality of the 

motion vectors was greatly improved from the previous experiments. 

Instead of performing an iterative search for fixed block size motion vectors, 

experiments were conducted using a GA to compute all of the motion vectors to 

correlate two video frames simultaneously. It was found that although the GA did 

improve the fitness values of the motion vectors over time, the progression was 
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extremely slow. The number of blocks of data compared is also considerably larger than 

the total number of blocks compared with an exhaustive search. 

The possibility of using a GP to create variable block size motion vectors was 

next investigated. (It is advantageous to have the motion blocks be as large as possible, 

since fewer motion vectors are then required.) A GP was more appropriate for this 

problem than a GA since the tree structure lends itself to a recursive representation of 

sub-blocks. Through experimentation it was found that the error between the reference 

frame and the frame generated by the motion vectors was slightly better than the fixed 

block size motion estimation with the null vectors added to the initial population. 

Unfortunately, the speed of execution for this application was the worst of all the 

experiments. 

GAs and GPs were also utilized to determine motion regions. The central goal of 

this method was to group like motion vectors to determine the shape of a moving object. 

In three out of four experiments the GA produced motion estimation image results which 

resembled the head of the woman singer (Appendix A), while the GP failed to 

accomplish this. This was attributed to the "greediness" of the GP, as it displayed a 

tendency to use the largest possible blocks and thus not create motion blocks small 

enough to represent the details of the moving images. 

After experimenting with the various forms of motion estimation and evolvable 

search methods, it can be concluded that although the approach of evolutionary motion 

estimation is both novel and interesting, it is not practical. There are currently other 

motion estimation algorithms which generate motion vectors faster and of comparable 

quality to those found by an exhaustive search. 
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There are however, a few areas of evolutionary motion estimation which hold 

promise and should be explored further. One such area is to use a GA to generate an 

algorithm or pattern, which would then be used to find motion vectors to correlate 

motion blocks between two frames of a video sequence. Depending on the video 

sequence, the algorithm or pattern may not produce useful results for the entire video 

sequence. When it is found that the quality of the vectors produced declines, the GA 

will have to be re-run to generate a new algorithm or pattern; this could be done 

automatically if the block matching rate falls below a certain level. This would 

essentially be a continuation of the work done by Cavicchio (1970) in which a GA was 

utilized in a pattern recognition problem. In this research a GA generated "detectors" or 

patterns, which were used to classify a digitized image; the GA was not directly used to 

process images. 

The use of more complex motion vectors also merits further investigation. 

Rather than just using horizontal and vertical displacement, rotation could be 

incorporated, or a polynomial could be used to express the motion vector, as in the 

research by Karczewicz et al. (1995). This should be of greater benefit as the size of 

motion blocks increase, especially in the case of using variable block sizes. 

Additionally, the region based motion estimation methods could be combined 

with other image segmentation techniques to aid in object identifications. (This is 

because motion estimation alone only works if the entire object is moving with relation 

to its background.) 
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As digital video becomes more prevalent, video compression becomes more 

important. New algorithms, implemented in both hardware and software, are being 

created at a rapid pace. New approaches are necessary to increase the speed of 

compression and playback, as well as the quality of the playback video. Better 

compression algorithms make it possible to store ever larger quantities of video images 

on current computer storage devices. This research explored artificial evolutionary 

algorithms as a new and innovative means of improving motion estimation for video 

compression. 
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APPENDIX A 

The following five frames are the video frames used in Test 1 through Test 4. 

The video frames are from the Goodtime.avi video distributed with the Microsoft 

Windows 95 CD-ROM. The frames were individually captured, resized to 320 pixels by 

256 pixels with 256 colors and saved as device independent bitmap files. 

Each test consists of taking two consecutive frames and finding the motion 

vectors which relate individual blocks in the second frame to blocks in the first frame. 

The following table illustrates which frames are used in Test 1 through Test 4. 

Test Name Previous Frame Current Frame 

Test 1 Goodtime.avi, frame 1789 Goodtime.avi, frame 1790 

Test 2 Goodtime.avi, frame 1790 Goodtime.avi, frame 1791 

Test 3 Goodtime.avi, frame 1791 Goodtime.avi, frame 1792 

Test 4 Goodtime.avi, frame 1792 Goodtime.avi, frame 1793 
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Goodtime.avi, frame 1789 

Goodtime.avi, frame 1790
 



92 

Goodtime.avi, frame 1791 

Goodtime.avi, frame 1792
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Goodtime.avi, frame 1793 
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APPENDIX B 

The following five frames are the video frames used in Test 5 through Test 8. 

The video frames are from the Robroy.avi video distributed with the Microsoft Windows 

95 CD-ROM. The frames were individually captured, resized to 320 pixels by 256 pixels 

with 256 colors and saved as device independent bitmap files. 

Each test consists of taking two consecutive frames and finding the motion 

vectors which relate individual blocks in the current frame to blocks in the previous 

frame. The following table illustrates which frames are used in Test 5 through Test 8. 

Test Name Previous Frame Current Frame 

Test 5 Robroy.avi, frame 1736 Robroy.avi, frame 1737 

Test 6 Robroy. avi, frame 1737 Robroy. avi, frame 1738 

Test 7 Robroy.avi, frame 1738 Robroy.avi, frame 1739 

Test 8 Robroy.avi, frame 1739 Robroy.avi, frame 1740 
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Robroy, frame 1736 

Robroy, frame 1737
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Robroy, frame 1738 

Robroy, frame 1739
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Robroy, frame 1740
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APPENDIX C 

This appendix describes how to run the software used in this research. 

There is one executable file named motion.exe which contains the necessary code 

to run any of the tests. The command line options are as follows: 

motion test curr.bmp prev.bmp outBlock.bmp outVect.bmp > out.txt
 

Where test is one of the following: 

test Test description
 

1 Fixed block size iterative search (normal and enhanced)
 

2 Fixed block size one-shot search
 

3 Variable block size search
 

4 Region motion estimation, fixed block size search
 

5 Region motion estimation, variable block size search
 

6 Exhaustive search
 

The file curr. bmp and prey. bmp are the Device Independent Bitmap files which 

represent the current and the previous frame for the specified test (the current 

implementation is limited to using 256 color bitmap files). The file outBlock.bmp is a 

Device Independent Bitmap file which is created by the motion.exe program. This file is 

the video frame which results from applying the best motion vectors found in the test to 

the previous frame. The file outVect.bmp is only used in the region motion estimation 

experiments. It is created by motion.exe and contains a graphical representation of the 

motion vectors. The file out. txt captures the program's standard output which provides 

additional information on search performance. 
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APPENDIX D 

This appendix lists the software used for this research. All of the code is written 

in standard C++. The compiler used is Borland C++ Builder Standard Edition. The 

target system was a Pentium 133MHz PC running Microsoft Windows 95. The 

application was run in Console mode. 

File: ga.h 

//
 
#ifndef gaH
 
#define gaH
 
//
 

// This class a complete Genetic Algorithm implementation. All that
 
// needs to be supplied is the fitness function (this is an abstract
 
// base class, so it cannot be instantiated). The way to do this is
 
// to derive a class from this one, and define the fitness function
 
// in there.
 
class GA
 
{
 

public:
 
GA(unsigned populationSize, unsigned stringLength);
 
virtual -GA();
 
virtual void init();
 
void work(unsigned numGenerations);
 
const char * const getBestString();
 
double getBestFitness();
 
unsigned getBestGeneration();
 

protected:
 
unsigned populationSize_;
 
unsigned stringLength;
 

double selectionProb_;
 
double reproductionProbj
 
double mutationProb;
 

unsigned currentGeneration_;
 

struct Individual
 
1
 

char *string_;
 
char *tempString_;
 
double fitness_;
 
double tempFitness_;
 

1;
 

Individual *pool;
 
Individual best_;
 
unsigned bestGeneration_;
 
bool abortSearch_;
 

void evalFitness();
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void select();
 
void reproduce();
 
void mutate();
 

// This method needs to be defined by the derived class
 
// It needs to calculate the fitness of a string, and
 
// store that value in the fitness_ field of the individual.
 
virtual void fitness(Individual &indiv) = 0;
 

virtual void notifyStartGeneration() {};
 

virtual void notifyEndGeneration() {};
 

virtual void notifyNewBest() {};
 

1; 

#endif
 
// eof
 

File: ga.cpp 

//
 
#include <assert.h>
 
#include <iostream.h>
 
#include <memory.h>
 
#pragma hdrstop
 

#include "ga.h"
 
#include "random.h"
 
//
 

//
 
// GA::GA()
 
//
 
// Constructor for the GA class. The strings are all allocated, but
 
// not initialized.
 
//
 
GA::GA(unsigned populationSize, unsigned stringLength)
 

:
 populationSize_(populationSize),
 
stringLength_(stringLength)
 

pool_ = new Individual[populationSize_];
 
for (unsigned i=0 ; i<populationSize_ ; i++)
 

poolii].string_ = new char [stringLength_];
 
pool_[i].tempString_ = new char [stringLength_];
 
pool_[i].fitness_ = 0.0;
 

best_.string_ = new char [stringLength_];
 
best_.tempString_ = 0;
 
// Initialize the best fitness to a very negative number so that no
 
// real fitness would be more negative.
 
best_.fitness_ = -1.7e308;
 
bestGeneration_ = 0;
 
abortSearch = false;
 

// Setup the default probabilities.
 
selectionProb_ = 0.6;
 
reproductionProb_ = 0.6;
 
mutationProb = 0.0005;
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//
 
// GA::-GA()
 
//
 
// The destructor is necessary because the class contains dynamically
 
// allocated elements.
 
GA::-GA()
 
1
 

for (unsigned i=0 ; i<populationSize_ ; i++)
 

delete [] poolii].string_;
 
delete [] poolii].tempString_,
 

1
 

delete [] pool_;
 
delete [] best_.string;
 

1
 

//
 
// GA::init()
 
//
 
// This method is used to initialize the strings in the population to
 
// random bit values.
 
//
 
void GA::init()
 
1
 

randomInit();
 

currentGeneration = 0;
 

for (unsigned i=0 ; i<populationSize_ ; i++)
 

1
 

for (unsigned j=0 ; j<stringLength_ ; j++)
 

pool_[i].string_[j] = (char) (randomInt() % 2);
 

1
 

1
 

1
 

//
 
// GA::work()
 
//
 
// This is the main genetic algorithm method. It performs the genetic
 
// operations for the specified number of generations. It can be
 
// called several times if desired.
 
//
 
void GA::work(unsigned numGenerations)
 
1
 

for (unsigned i=0 ; i<numGenerations && !abortSearch_ ; i++)
 

currentGeneration++;
 

notifyStartGeneration();
 

evalFitness();
 
select();
 
reproduce();
 
mutate();
 

notifyEndGeneration();
 
1
 

1
 



102 

1 

//
 
// GA::getBestString()
 
//
 
// Returns a pointer to the best string found so far.
 
//
 
const char * const GA::getBestString()
 

return best.string_;
 

//
 
// GA::getBestFitness()
 
//
 
// Returns the fitness of the best string found so far.
 
//
 
double GA::getBestFitness()
 

return best.fitness;
 

//
 
// GA::getBestGeneration()
 
//
 
// Returns the generation in which the best string found so far
 
// was found.
 
//
 
unsigned GA::getBestGeneration()
 

return bestGeneration;
 

//
 
// GA: :evalFitness ()
 
//
 
// Evaluate the fitness of the entire population of strings.
 
//
 
void GA::evalFitness()
 

for (unsigned i=0 ; i<populationSize_ && !abortSearch_ ; i++)
 

fitness(pool_[i]);
 
if (pool_[i].fitness_ > best_.fitness_)
 

memcpy(best_.string_, stringLength_);
 
best_.fitness_ = pool_[i].fitness_;
 
bestGeneration_ = currentGeneration_;
 
notifyNewBest();
 

//
 
// GA::select()
 
//
 
// Perform the selection operator on the population of strings.
 
// Tournament selection is used to maintain evolutionalry pressure.
 
//
 
void GA::select()
 

for (unsigned i=0 ; i<populationSize_ ; i++)
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unsigned j;
 
j = randomInt() % populationSize_;
 

if (pool_[i].fitness_ > pool_[j].fitness_ )
 

memcpy(pool_[1].tempString_, pool_[1].string_, stringLength_);
 
pool_[i].tempFitness_ = pool_[i].fitness_;
 

else
 

memcpy(pool_[i].tempString_, pool_[j].string_, stringLength_);
 
pool_[i].tempFitness_ = pool_[j].fitness_;
 

for (unsigned i=0 ; i<populationSize_ ; i++)
 

memcpy(pool_[1].string_, pool_[1].tempString_, stringLength_);
 
pool[1].fitness = pool[1].tempFitness;
 

//
 
// GA::reproduce()
 
//
 
// The reproduction operator. Strings are chosen in pairs, which are
 
// the subjected to single point crossover.
 
//
 
void GA::reproduce()
 

unsigned matel;
 
unsigned mate2;
 
unsigned slice;
 
char *tempi;
 
char *temp2;
 
for (unsigned i=0 ; i<populationSize_ ; i++)
 

if ( randomFloat() <= reproductionProb_ )
 

matel = randomInt() % populationSize_;
 
mate2 = randomInt() % populationSize_;
 
slice = (randomInt() % (stringLength 1)) + 1;
 

tempt = new char[stringLength_];
 
memcpy(templ, pool[matel].string, slice);
 
memcpy(templ + slice, pool[mate2].string_ + slice,
 

stringLength slice);
 

temp2 = new char[stringLength_];
 
memcpy(temp2, poolimate21.string_, slice);
 
memcpy(temp2 + slice, poolimatel].string_ + slice,
 

stringLength_ slice);
 

memcpy(poolimatell.string_, tempi, stringLength_);
 
memcpy(pool[mate2].string_, temp2, stringLength_);
 
delete H templ;
 
delete H temp2;
 

//
 
// GA::mutate()
 
//
 

1 
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// The mutation operator. When a point is chosen for mutation, a
 
// random bit is used to replace the current one.
 
//
 
void GA::mutate()
 
{
 

for (unsigned i=0 ; i<populationSize_ ; i++)
 

{
 

for (unsigned j=0 ; j<stringLength_ ; j++)
 
{
 

if randomFloat() <= mutationProb_ )
(
 

{
 

pool_[i].string_[j] = (char) (randomInt() % 2);
 

1 

} 

} 

} 

// eof
 

File: gp.h 

//
 
#ifndef gpH
 
#define gpH
 

#include "gpnode.h"
 
//
 

// This class represents a singe GP tree structure. These are used
 
// by the GPPool class. This GP class contains an instance of a
 
// Node which needs to be defined elseware.
 
class GP
 

friend ostream & operator <<(ostream & out, const GP & gp);
 

public:
 
GP();
 
GP(int minHeight, int maxHeight);
 
-GP();
 
GP & operator =(const GP &other);
 
unsigned depth(bool refresh=false, unsigned parentDepth=0);
 
unsigned length();
 
GP * subNode(unsigned index);
 
double fitness();
 
void crossover(GP *other, double prob, unsigned maxHeight);
 
void mutate(double prob, unsigned minHeight, unsigned maxHeight);
 

private:
 
Node node;
 
double fitness_;
 
unsigned depth_;
 
enum { MAX_CHILDREN=4 };
 
GP *children[MAXCHILDREN];
 

double fitness(unsigned &nodeNumber, unsigned *tPath);
 
void traverse(unsigned &length, unsigned index, GP **node);
 

; 
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// This is the Genetic Programming implementation. It contains all
 
// of the operators required to evolve genetic programs.
 
class GPPool
 

friend ostream & operator <<(ostream & out, const GPPool & pool);
 

public:
 
GPPool(unsigned populationSize, unsigned minTreeHeight,
 

unsigned maxTreeHeight);
 
virtual -GPPool();
 
virtual void init();
 
void work(unsigned numGenerations);
 
GP * getBestTree();
 
double getBestFitness();
 
unsigned getBestGeneration();
 

protected:
 
unsigned populationSize;
 
unsigned minTreeHeight;
 
unsigned maxTreeHeight_;
 

double selectionProb_;
 
double reproductionProb_;
 
double mutationProb_;
 

unsigned currentGeneration_;
 
unsigned bestGeneration_;
 

GP * *pool_;
 
GP *best;
 

void evalFitness();
 
void select();
 
void reproduce();
 
void mutate();
 

virtual void notifyStartGeneration() {};
 

virtual void notifyEndGeneration() 11;
 

virtual void notifyNewBest() {};
 

; 

#endif
 
// eof
 

File gp.cpp 

//
 
#include <assert.h>
 
#include <memory.h>
 
#pragma hdrstop
 

#include "gp.h"
 
#include "random.h"
 
//
 

//
 
// GP::GP()
 
//
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// Only the root node is made. 
//
 
GP::GP()
 

fitness_ = 0.0;
 
depth_ = 0;
 

for (int i=0 ; i<MAX_CHILDREN ; i++)
 

children ii] = 0;
 

//
 
// GP::GP()
 
//
 
// A GP is constructed with every branch of the tree having a depth
 
// of at least minHeight, but no more then maxHeight.
 
//
 
GP::GP(int minHeight, int maxHeight)
 
{
 

//assert(minHeight > 0);
 
assert(maxHeight > 0);
 
fitness = 0.0;
 
depth_ = 0;
 

bool hasChildren = (minHeight > 1)
 
II ((maxHeight > 1) && (randomInt() % maxHeight)!=0);
 

for (int i=0 ; i<MAX_CHILDREN ; i++)
 

children [i] = 0;
 
if ( hasChildren ) 

1 

1 

childrenii] = new GP(minHeight 1, maxHeight 1); 

//
 
// GP::-GP
 
//
 
// This deletes the nodes of the tree which were dynamically
 
// allocated.
 
//
 
GP::-GP()
 

for (int i=0 ; i<MAX_CHILDREN ; i++)
 
{
 

delete children ii];
 

//
 
// GP::operator=()
 
//
 
// Assignment operator for the GP class. This needs to be explicitly
 
// defined since a GP contains dynamically allocated objects.
 
//
 
GP & GP::operator =(const GP &other)
 

if ( this != &other )
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assert(this);
 
assert(&other);
 
node_ = other.node_;
 
fitness_ = other.fitness_;
 
depth_ = other.depth_;
 

for (int i=0 ; i<MAX_CHILDREN ; i++)
 

delete children_[i];
 
children_[i] = 0;
 
if other.children_[i]
( )
 

children_[i] = new GP(1, 1);
 
*children[i] = *other.children_[i];
 

return *this;
 

//
 
// GP::depth()
 
//
 
// Find the depth of the nodes in the tree.
 
//
 
unsigned GP::depth(bool refresh, unsigned parentDepth)
 

if refresh
( )
 

depth_ = parentDepth + 1;
 
for (int i=0 ; i<MAX_CHILDREN ; i++)
 
{
 

if ( children_[i] )
 

children_[i]->depth(true, depth_);
 

return depth_;
 

//
 
// GP::length()
 
//
 
// Find the length of the tree, ie the total number of nodes
 
// in the tree.
 
//
 
unsigned GP::length()
 

unsigned length = 1;
 
for (int i=0 ; i<MAXCHILDREN ; i++)
 

if children_[i]
( )
 

length += children_[i]->length();
 

return length;
 

//
 
// GP::subNode()
 
//
 
// Return a pointer to the specified node. The "index" argument
 
// must be in the range of 0..length()-1.
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//
 
GP * GP::subNode(unsigned index)
 

unsigned length = 0;
 
GP *tempNode = 0;
 
GP **node = &tempNode;
 
traverse(length, index, node);
 
return *node;
 

//
 
// GP::fitness()
 
//
 
// Evaluate the fitness of this GP. The current path is always
 
// stored in treePath. Some outside routines need to know what
 
// the path to the node is.
 
//
 
static unsigned treePath[20];
 
double GP::fitness()
 

unsigned nodeNumber = 0;
 
return fitness(nodeNumber, treePath);
 

//
 
// GP::crossover()
 
//
 
// This performs the crossover operation with the current tree,
 
// and the one specified in the argument list.
 
//
 
void GP::crossover(GP *other, double prob, unsigned maxHeight)
 

// Find a common node which we can switch.
 
GP *crossl = this;
 
GP *cross2 = other;
 
int branch;
 
int height = randomInt() % maxHeight;
 
for (int i=0 ; i<height ; i++)
 

branch = randomInt() % MAX_CHILDREN;
 
if ( crossl->children_[branch]==0 II cross2->children_[branch]==0
 )
 

break;
 
crossl = crossl->children_[branch];
 
cross2 = cross2 >children [branch];
 

assert (crossl);
 
assert (cross2);
 

// Perform the actual crossover.
 
GP temp;
 
temp = *crossl;
 
*crossl = *cross2;
 
*cross2 = temp;
 

//
 
// GP::mutate()
 
//
 
// This method performs a possible mutation on the GP. If a mutation
 
// occurs, the subtree of the selected node is deleted and replaced
 
// with a new randomly created tree.
 
//
 
void GP::mutate(double prob, unsigned minHeight, unsigned maxHeight)
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.
// Find a node to mutate
 
unsigned len = length();
 
for (unsigned i=0 ; i<len ; i++)
 
{
 

if ( prob >= randomFloat() )
 

{
 

depth(true /*refresh*/);
 
GP *node = subNode(randomInt() % length());
 
GP newNode(minHeight node->depth() + 1,
 

maxHeight node->depth() + 1);
 
*node = newNode;
 

// Since we modified the tree, update the loop count to
 
// correspond to the current tree length.
 
len = length();
 

//
 
// GP::fitness()
 
//
 
// This is the recursive fitness method which is called by the
 
// main fitness routine. It in turn calls the nodes fitness
 
// function.
 
//
 
double GP::fitness(unsigned &nodeNumber, unsigned *tPath)
 
{
 

bool leafNode = true;
 
fitness_ = 0.0;
 
for (int i=0 ; i<MAX_CHILDREN ; i++)
 

1
 

)
if ( childrenii)
 

leafNode = false;
 
*tPath = i + 1;
 
fitness_ += children_[i]->fitness(nodeNumber, tPath+1);
 

*tPath = 0;
 
if ( leafNode )
 

1
 

fitness += node.fitness(nodeNumber++, treePath);
 

return fitness;
 

//
 
// GP::traverse()
 
//
 
// This method traverses the GP.
 
//
 
void GP::traverse(unsigned &length, unsigned index, GP **node)
 

if ( length++ == index )
 

{
 

*node = this;
 

for (int i=0 ; i<MAX_CHILDREN ; i++)
 

if children_[i]
( )
 

children[i]->traverse(length, index, node);
 



110 

1 

//
 
// operator<<()
 
//
 
// This is the stream operator for the GP. It is a simple way
 
// to print out a tree for debugging purposes.
 
//
 
ostream & operator <<(ostream & out, const GP & gp)
 
{ 

out << gp.node_;
 
out « "(";
 
for (int i=0 ; i<GP::MAX CHILDREN ; i++)
 

if ( gp.children_[i] ) 

{ 

out << *(gp.children_[i]); 
1 

out << ") ";
 

return out
 

//
 
// GPPool:: GPPool()
 
//
 
// Constructs a GPPool which is a collection of GPs
 
//
 
GPPool::GPPool(unsigned populationSize, unsigned minTreeHeight,
 

unsigned maxTreeHeight)
 
:
 populationSize_(populationSize),
 
minTreeHeight_(minTreeHeight),
 
maxTreeHeight_(maxTreeHeight)
 

pool_ = new GP* [populationSize_];
 

// Setup the default probabilities.
 
selectionProb_ = 0.6;
 
reproductionProb_ = 0.6;
 
mutationProb = 0.0001;
 

//
 
// GPPool::-GPPool()
 
//
 
// The destructor is required since the GPPool contains dynamically
 
// allocated objects.
 
GPPool::-GPPool()
 

for (unsigned i=0 ; i<populationSize_ ; i++)
 
delete pool_[i];
 

delete [] pool;
 

//
 
// GPPool::init()
 
//
 
// Initialize the population with random trees, and clear out the
 
// best GP found so far.
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//
 
void GPPool::init()
 

randomInit();
 

currentGeneration = 0;
 

for (unsigned i=0 ; i<populationSize_ ; i++)
 

= new GP(minTreeHeight_, maxTreeHeight_);
 
}
 

best_ = new GP;
 
*best_ = *pool_[0];
 
bestGeneration = 0;
 

//
 
// GPPool::work()
 
//
 
// This is the main genetic programming loop. When called it cycles
 
// through the indicated number of generations. If desired it can
 
// be called multiple times.
 
//
 
void GPPool::work(unsigned numGenerations)
 

for (unsigned i=0 ; i<numGenerations ; i++)
 

currentGeneration++;
 

notifyStartGeneration();
 

evalFitness();
 
select();
 
reproduce();
 
mutate();
 

notifyEndGeneration();
 

//
 
// GPPool::getBestTree()
 
//
 
// Return a pointer to the best GP found so far.
 
//
 
GP * GPPool::getBestTree()
 

return best_;
 

//
 
// GPPool::getBestFitness()
 
//
 
// Return the fitness value of the best GP found so far.
 
//
 
double GPPool::getBestFitness()
 

return best->fitness();
 

//
 
// GPPool::getBestGeneration()
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//
 
// Return the generation in which the best GP so far was found.
 
//
 
unsigned GPPool::getBestGeneration()
 
{
 

return bestGeneration;
 

//
 
// GPPool::evalFitness()
 
//
 
// Evaluate the fitness of all of the GPs in the pool. If a new
 
// best is found, make a note of it.
 
//
 
void GPPool::evalFitness()
 
{
 

for (unsigned i=0 ; i<populationSize_ ; i++)
 

if (pool_[i]->fitness() > best_->fitness())
 
{
 

*best_ = *pool_[i];
 
bestGeneration_ = currentGeneration_;
 
notifyNewBest();
 

//
 
// GPPool::select()
 
//
 
// Selection operator for the genetic programming. Tournament selection
 
// is used to maintain evolutionary pressure.
 
//
 
void GPPool::select()
 

GP *tempPool = new GP[populationSize_];
 

for (unsigned i=0 ; i<populationSize_ ; i++)
 

{
 

unsigned j;
 
j = randomInt() % populationSize_;
 

)
if (pool_[i]->fitness() > pool_[j]->fitness()
 
{
 

tempPool[i] = *pool_[i];
 
1
 

else
 
1
 

tempPool[i] = *pool_[j];
 
1
 

// Move the temporary pool to the real pool
 
for (unsigned i=0 ; i<populationSize_ ; i++)
 

// Copy all of the temporary nodes back to main nodes.
 
*pool_[i] = tempPool[i];
 

delete [] tempPool;
 

//
 
// GPPool::reproduct()
 

1 
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//
 
// Reproduction operator for the genetic programming. This selects
 
// two nodes at a time, and performs a crossover operation on them.
 
void GPPool::reproduce()
 

for (unsigned i=0 ; i<populationSize_ ; i++)
 

unsigned mother = randomInt() % populationSize_;
 
unsigned father = randomInt() % populationSize_;
 
assert (pool_[mother]);
 
assert (pool_[father]);
 
pool_[mother]->crossover(pool_[father], reproductionProb_,
 

maxTreeHeight_);
 

//
 
// GPPool::mutate()
 
//
 
// Mutation operator for the genetic programming.
 
//
 
void GPPool::mutate()
 
{
 

for (unsigned i=0 ; i<populationSize_ ; i++)
 

poolii]->mutate(mutationProb_, minTreeHeight_, maxTreeHeight_);
 

//
 
// operator«()
 
//
 
// Stream operator which allows the printing of the best GP found
 
// so far. This is useful for debugging purposes.
 
//
 
ostream & operator << (ostream & out, const GPPool & pool)
 

out << *(pool.best_);
 
return out;
 

// eof
 

File: bitmap.h 

//
 
#ifndef bitmapH
 
#define bitmapH
 
//
 

// This class is used to store pixel blocks of various sizes.
 
class Block
 

public:
 
Block(unsigned width, unsigned height);
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-Block();
 
void fill(unsigned char colorIndex);
 
unsigned width() { return width_; }
 

unsigned height() { return height_; }
 

unsigned *pixel,
 
unsigned char *index;
 

private:
 
unsigned width_;
 
unsigned height;
 

1 ; 

// The BitMap class allows reading, saving, and manipulation of a
 
// Windows Device Independant Bitmap file. It is currently limited
 
// to using 256 color bitmap files.
 
class BitMap
 
{
 

public:
 
BitMap(const char * file);
 
-BitMap();
 

unsigned height();
 
unsigned width();
 
unsigned char pixellndex(unsigned x, unsigned y);
 
unsigned pixelColor(unsigned x, unsigned y);
 
unsigned color(unsigned index);
 
Block * getBlock(unsigned x, unsigned y, unsigned width,
 

unsigned height);
 

void clear();
 
void putBlock(Block *blk, unsigned x, unsigned y);
 
void writeFile(const char * file);
 

protected:
 
enum
 
{
 

DATAPTR_OFFSET Ox0000000AL,
 
WIDTH_OFFSET 0x00000012L,
 
HEIGHT_OFFSET Ox00000016L,
 
COLORTABLE OFFSET = 0x00000036L,
 

; 

unsigned *colorTable_;
 
unsigned char *pixMap_;
 
unsigned char *data_;
 

1 ; 

#endif
 
// eof
 

File: bitmap.cpp 

// 
#include <assert.h>
 
#include <fstream.h>
 
#pragma hdrstop
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#include "bitmap.h"
 
//
 

//
 

// Block::Block()
 
//
 
// The constructor create a block of the given size. The data
 
// is not initialized.
 
//
 
Block::Block(unsigned width, unsigned height)
 

:
 width_(width), height_(height)
 

pixel_ = new unsigned [height_ * width_];
 
index_ = new unsigned char [height_ * width_];
 

//
 
// Block::-Block()
 
//
 
// The destructor is necessary since the Block class contains
 
// dynamically allocated elements.
 
//
 
Block::-Block()
 

delete [] pixel_;
 
delete [] index_;
 

//
 
// Block::fill()
 
//
 
// This routine will fill all of the block's pixels with the given
 
// color index value.
 
//
 
void Block::fill(unsigned char colorIndex)
 

for (unsigned i=0 ; i<width_ * height_ ; i++)
 

{
 

index [ ] = colorIndex;
 

//
 
// BitMap::BitMap()
 
//
 
// Constructor for the BitMap class. When a BitMap is constructed
 
// it in initialzed with the data from the specified bitmap file.
 
//
 
BitMap::BitMap(const char * file)
 

// Format of BMP file
 
//
 
// 0012 0015 : width of image
 
// 0016 0019 : height of image
 
// 0036 0435 : color table, 256 entries, each entry is four bytes
 
// BB GG RR 00
 
// 0436 eof : pixel data, from left to right, bottom to top; each
 
// pixel represents anindex into the color table
 
//
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ifstream in(file, ios::in+ios::binary); 

unsigned char data;
 
unsigned totalSize = 0;
 
in.seekg(2L);
 
for (int i=0 ; i<sizeof(unsigned) ; i++)
 

in.get(data);
 
totalSize += data << (8 * i);
 

in.seekg(OL);
 
data = new unsigned char [totalSize];
 
for (unsigned i=0 ; i<totalSize ; i++)
 

in.get(data_[i]);
 
1
 

colorTable_ = (unsigned *) (data_ + COLORTABLE_OFFSET);
 
pixMap_ = data_ + *((unsigned *)(data_ + DATAPTR_OFFSET));
 

//
 
// BitMap::-BitMap()
 
//
 
// The destructor is necessary since the class contains dynamically
 
// allocated elements.
 
//
 
BitMap::-BitMap()
 

delete [] data_;
 
1
 

//
 
// BitMap::width()
 
//
 
// Return the width of the bitmap image in pixels.
 
//
 
unsigned BitMap::width()
 

return *((unsigned *)(data_ + WIDTH_ OFFSET));
 
1 

//
 
// BitMap::height()
 
//
 
// Return the height of the bitmap image in pixels.
 
//
 
unsigned BitMap::height()
 

return *((unsigned *)(data_ + HEIGHT_OFFSET));
 

//
 
// BitMap::pixelColor()
 
//
 
// Return the color of the specified pixel. The format of
 
// the color is as follows:
 
// 0000 0000 BBBB BBBB GGGG GGGG RRRR RRRR
 
// It is a 32 bit value with the RGB values each taking up
 
// one byte. The top eight bits are 0.
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//
 
unsigned BitMap::pixelColor(unsigned x, unsigned y)
 
{
 

return color(pixellndex(x, y));
 

//
 
// BitMap::pixelIndex()
 
//
 
// Return the color index value of the specified pixel.
 
//
 
unsigned char BitMap::pixelIndex(unsigned x, unsigned y)
 
{
 

assert(x < width());
 
assert(y < height());
 
return pixMap_[y * width() + x];
 

//
 
// BitMap::color()
 
//
 
// Return the color of the specified index value. The format of
 
// the color is as follows:
 
// 0000 0000 BBBB BBBB GGGG GGGG RRRR RRRR
 
// It is a 32 bit value with the RGB values each taking up
 
// one byte. The top eight bits are O.
 
//
 
unsigned BitMap::color(unsigned index)
 

assert(index < 256);
 
return colorTableiindex];
 

//
 
// BitMap::getBlock()
 
//
 
// This method returns a pointer to a Block which contains the
 
// image data copied from the specifed coordinates.
 
//
 
Block * BitMap::getBlock(unsigned x, unsigned y,
 

unsigned width, unsigned height)
 

Block *blk = new Block(width, height);
 
for (unsigned i=0 ; i<height ; i++)
 

for (unsigned j=0 ; j<width ; j++)
 

blk->pixel_[i * width + j] = pixelColor(x+j, y+i);
 
blk->index[i * width + j] = pixellndex(x +j, y+i);
 

1
 

return blk;
 

//
 
// BitMap::clear()
 
//
 
// This method erases the entire bitmap image by setting all of the
 
// pixel color index values to Oxff.
 
//
 
void BitMap::clear()
 

1 
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for (unsigned y=0 ; y<height() ; y++)
 

for (unsigned x=0 ; x<width() ; x++)
 

1
 

pixMap[y*width() + x] = Oxff;
 

//
 
// BitMap::putBlock()
 
//
 
// Copies the specified Block to the bitmap image at the
 
// specified coordinates.
 
//
 
void BitMap::putBlock(Block *blk, unsigned x, unsigned y)
 

for (unsigned i=0 ; i<blk->height() ; i++)
 

{
 

for (unsigned j=0 ; j<blk->width() ; j++)
 

{
 

pixMap_[(y+i) * width() + x + j]
 
= blk- >index [i * blk->width() + j];
 

//
 
// BitMap::writeFile()
 
//
 
// Write the bitmap to the specifed file. The resulting file is a
 
// Windows Device Independant Bitmap file. If the file already
 
// exists it is overwritten.
 
//
 
void BitMap::writeFile(const char * file)
 

ofstream out(file, ios::out+ios::binary);
 
unsigned totalSize = *((unsigned *)(data_+2));
 
for (unsigned i=0 ; i<totalSize ; i++)
 

out.put(data[i]);
 

// eof
 

File: random.h 

//
 
#ifndef randomH
 
#define randomH
 
//
 

// This is used to set the seed to the current time.
 
void randomInit();
 

// Return a random integer of 0 to MAX_RAND.
 
unsigned randomInt();
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// Return a random float, in the range of 0 to 1.
 
double randomFloat();
 

#endif
 
// eof
 

File: random.c pp 

//
#include <assert.h>
 
#include <iostream.h>
 
#include <stdlib.h>
 
#include <time.h>
 
#pragma hdrstop
 

#include "random.h"
 
//
 

//
 
// randomInit()
 
//
 
// This is used to set the seed to the current time.
 
//
 
void randomInit()
 
1
 

srand((unsigned)time(0));
 
1
 

//
 
// randomInt()
 
//
 
// Return a random integer of 0 to MAX_RAND.
 
//
 
unsigned randomInt()
 

return rand();
 

//
 
// randomFloat()
 
//
 
// Return a random float, in the range of 0 to 1.
 
//
 
double randomFloat()
 

unsigned randMax = (unsigned) RAND_MAX * (unsigned) RAND_MAX;
 
unsigned random = (unsigned) rand() * (unsigned) rand();
 
return (double) random / (double) randMax;
 

// eof
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File: gpnode.h 

//
 
#ifndef gpnodeH
 
#define gpnodeH
 

#include "bitmap.h"
 
#include <iostream.h>
 
//
 

// This is the Node class used by the Genetic Programming portion of
 
// this program. This class contains the data values which occur at
 
// every node in a GP tree. So this class is problem specific.
 
class Node
 

friend ostream & operator <<(ostream & out, const Node & node);
 

public:
 
// Constructor initializes the nodes displacement vectors
 
// to random values.
 
Node();
 

// This method returns the current fitness value of this
 
// node.
 
double fitness(unsigned nodeNumber, unsigned *path);
 

// Static value used by the fitness function to determine
 
// if it should apply the motion vectors to an image.
 
static bool useNode;
 

private:
 
// The most recently calculated fitness value.
 
double fitness;
 

// The horizontal displacement motion vector.
 
int xMotion;
 

// The vertical displacement motion vector.
 
int yMotion;
 

1 ; 

#endif
 
// eof
 

File: motion.cpp 

//
 
#include <assert.h>
 
#include <iostream.h>
 
#include <stdlib.h>
 
#include <stdio.h>
 
#pragma hdrstop
 

#include "bitmap.h"
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#include "ga.h"
 
#include "gp.h"
 
#include "random.h"
 
//
 

//
 
// This is a derived class of BitMap. The main difference is that the
 
// getBlock() and putBlock() methods use block index values rather then
 
// actual image coordinates.
 
//
 
class MyBitMap public BitMap
:
 

{
 

public:
 
MyBitMap(const char *file, unsigned blkWidth, unsigned blkHeight)
 

: BitMap(file), blockWidth_(blkWidth), blockHeight_(blkHeight) {}
 

unsigned getNumBlocks();
 
Block *myGetBlock(unsigned blockIndex, int deltaX =O, int deltaY =O);
 
void myPutBlock(Block *blk, unsigned index);
 

private:
 
unsigned blockWidth_;
 
unsigned blockHeight;
 

; 

unsigned MyBitMap::getNumBlocks()
 
{
 

return (width() / blockWidth_) * (height() / blockHeight_);
 

}
 

Block *MyBitMap::myGetBlock(unsigned blockIndex, int deltaX, int deltaY)
 
{
 

assert(blockIndex < getNumBlocks());
 

int x = (blockIndex % (width() / blockWidth_)) * blockWidth_;
 
x += deltaX;
 
if x < 0) x = 0;
(
 

if ((unsigned) (x + blockWidth_) >= width())
 
x = width() blockWidth 1;
 

int y = (blockIndex / (width() / blockWidth_)) * blockHeight_;
 
y += deltaY;
 
if ( y < 0) y = 0;
 
if ((unsigned) (y + blockHeight_) >= height())
 

y = height() blockHeight 1;
 

return getBlock(x, y, blockWidth, blockHeight);
 

void MyBitMap::myPutBlock(Block *blk, unsigned index)
 
[
 

assert(blk->width() == blockWidth_);
 
assert(blk->height() == blockHeight);
 

int x = (index % (width() / blockWidth_)) * blockWidth;
 
int y = (index / (width() / blockWidth_)) * blockHeight_;
 
putBlock(blk, x, y);
 

// This is used to store a blocks coordinates along with it's
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// motion vectors. BlockElement represents one block, while
 
// blockList points to a list of BlockElements which cover the
 
// entire image under test.
 
struct BlockElement
 

BlockElement() {used = false;}
 
bool used;
 
unsigned index;
 
unsigned x;
 
unsigned y;
 
unsigned width;
 
unsigned height;
 
int xMotion;
 
int yMotion;
 

1 ;
 

BlockElement *blockList = 0;
 

//
 
// Routine used for sorting the blockList with the qsort() routine.
 
//
 
int sortFunc(const void *a, const void *b)
 

const BlockElement *blkl = (const BlockElement *) a;
 

const BlockElement *blk2 = (const BlockElement *) b;
 

if (blkl->xMotion < blk2->xMotion)
 
return -1;
 

if (blkl->xMotion > blk2->xMotion)
 
return 1;
 

// At this point we know the xMotion vectors are the same, move
 
// on to the next sorting critera.
 
if (blkl->yMotion < blk2->yMotion)
 

return -1;
 
if (blkl->yMotion > blk2->yMotion)
 

return 1;
 
return 0;
 

// Global file name pointers
 
char *currFrameFile = 0;
 
char *prevFrameFile = 0;
 
char *outFrameSrcFile = 0;
 
char *outFrameFile = 0;
 
char *outFrameFile2 = 0;
 

// Global picture elements.
 
MyBitMap *cBmp;
 
MyBitMap *pBmp;
 
MyBitMap *oBmp;
 

BitMap *currBmp;
 
BitMap *prevBmp;
 
BitMap *outBmp;
 

1/
 
// Global routine used to compare two image blocks of the same size.
 
// An error value is return which indicates by how much the color
 
// values of all the pixels in the two blocks differ.
 
//
 
double compareBlock(Block *blkl, Block *blk2)
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assert(blkl->width() == blk2->width());
 
assert(blkl->height() == blk2->height());
 
int redl, greenl, bluel;
 
int red2, green2, blue2;
 
unsigned pixl, pix2;
 
double colorError = 0.0;
 
for (unsigned y=0 ; y<blkl->height() ; y++)
 
{
 

for (unsigned x=0 ; x<blkl->width() ; x++)
 

pixl = blkl->pixel_[y * blkl->width() + x];
 
pix2 = blk2->pixel_[y * blk2->width() + x];
 
redl = pixl & Ox000000ff;
 
red2 = pix2 & Ox000000ff;
 
greenl = (pixl >> 8) & Ox000000ff;
 
green2 = (pix2 >> 8) & Ox000000ff;
 
bluel = (pixl >> 16) & Ox000000ff;
 
blue2 = (pix2 >> 16) & Ox000000ff;
 
colorError += abs(redl-red2) + abs(greenl-green2)
 

+ abs(bluel-blue2);
 

return colorError;
 

//////////////////////////////////////////////////////////////////////////
 
////////// FIXED BLOCK SIZE ITERATIVE MOTION ESTIMATION ////////////////
 
//////////////////////////////////////////////////////////////////////////
 

//
 
// We need to derive a class from GA in order to define the fitness
 
// fucntion.
 
//
 
class MyGA : public GA
 
{
 

public:
 
MyGA(unsigned populationSize, unsigned stringLength,
 

int vectorLength, int vectorRange)
 
GA(populationSize, stringLength),
 
vectorLength_(vectorLength), vectorRange_(vectorRange),
 
blockCompares_(0), blockComparesToBest_(0) 11;
 

void setInitialValue(unsigned index, const char * const str);
 
void setAnchorBlock(int blk);
 
int stringToNum(const char * const string, unsigned length);
 
unsigned blockCompares() (return blockComparesToBest_;}
 
const int vectorLength_;
 
const int vectorRange_;
 

private:
 
int anchorBlock_;
 
unsigned blockCompares_;
 
unsigned blockComparesToBest_;
 
virtual void fitness(Individual &indiv);
 
virtual void notifyStartGeneration();
 
virtual void notifyEndGeneration();
 
virtual void notifyNewBest();
 

:
 

I ; 

//
 
// MyGA::fitness
 
//
 
// This is what evaluates the fitness of the motion vectors.
 
//
 



124 

void MyGA::fitness(Individual &indiv) 

// Translate the motion vectors from from binary strings to
 
// integer values.
 
int colVect = stringToNum(indiv.string_, vectorLength_);
 
int rowVect = stringToNum(indiv.string+vectorLength, vectorLength_);
 

// Get the src and destination blocks
 
Block *srcBlock = cBmp->myGetBlock(anchorBlock_);
 
Block *destBlock = pBmp->myGetBlock(anchorBlock, rowVect, colVect);
 

// Compute the fitness of the vectors by comparing the blocks.
 
indiv.fitness_ = compareBlock(srcBlock, destBlock);
 
blockCompares++;
 

delete srcBlock;
 
delete destBlock;
 
// Change the sign since the GA maximizes the fitness.
 
indiv.fitness *= -1.0;
 

//
 
// MyGA::notifyStartGeneration
 
//
 
/7 This method gets called at the start of every generation.
 
//
 
void MyGA::notifyStartGeneration()
 

}
 

//
 
// MyGA::notifyEndGeneration
 
//
 
// This method gets called at the end of every generation.
 
//
 
void MyGA::notifyEndGeneration()
 

cout << "gen: " << currentGeneration_
 
<< ", fit: " << best .fitness << endl;
 

//
 
// MyGA::notifyNewBest
 
//
 
// This method gets called whenever a new best is found.
 
//
 
void MyGA::notifyNewBest()
 

if best_.fitness > -0.5 )
(
 

abortSearch_ = true;
 

blockComparesToBest = blockCompares;
 

//
 
// MyGA::stringToNum
 
//
 
7/ This method takes a bit string and converts it into a vector.
 
//
 
int MyGA::stringToNum(const char * const string, unsigned length)
 

int vect = 0;
 

1 
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for (unsigned i=0 ; i<length ; i++)
 

vect = (vect << 1) + string[i];
 

vect -= (vectorRange_ 1) / 2;
 
return vect;
 

//
 
// MyGA::setInitialValue
 
//
 
// This method is used to push a value into the GP's pool of strings.
 
// This helps bias the population, and give it a starting point.
 
//
 
void MyGA::setInitialValue(unsigned index, const char * const str)
 

assert(index < populationSize_);
 
assert(pool_ != 0);
 
memcpy(pooliindex].string_, str, stringLength_);
 

//
 
// MyGA::setAnchorBlock
 
//
 
// Set the current block being worked on, so the GA can use this
 
// information.
 
//
 
void MyGA::setAnchorBlock(int blk)
 

anchorBlock = blk;
 

//
 
// This method is the main routine of the Genetic Algorithm portion
 
// of the motion estimator.
 
//
 
double gaPoint(unsigned numGenerations, unsigned popSize,
 

unsigned blocklndex)
 

const int VECTOR_LENGTH = 4;
 
const unsigned STRING LENGTH = VECTOR LENGTH * 2;
 
const int VECTOR RANGE = 16;
 

// create the GA and do the work.
 
MyGA ga(popSize, STRING_LENGTH, VECTOR_LENGTH, VECTOR_RANGE);
 
ga.init();
 
ga.setInitialValue(0, "\x00\x01\x01\x01\x00\x01\x01\x01");
 
ga.setlnitialValue(l, "\x00\x01\x01\x01\x00\x01\x01\x01");
 
ga. setAnchorBlock(blocklndex);
 
ga.work(numGenerations);
 

// Display the best one found.
 
const char * const str = ga.getBestString();
 
int xVect = ga.stringToNum(str, ga.vectorLength);
 
int yVect = ga.stringToNum(str+ga.vectorLength, ga.vectorLength_);
 

Block *copyBlock = pBmp- >myGetBlock(blocklndex, xVect, yVect);
 
oBmp->myPutBlock(copyBlock, blocklndex);
 
delete copyBlock;
 

cout << "blk: " << blocklndex « ", "
 

<< " deltaX: " << xVect << ", deltaY: " << yVect
 
<< ", #compares: " << ga.blockCompares() << endl;
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1 

return ga.getBestFitness();
 

//
 
// Fixed block size, iterative motion estimation
 
//
 
void gaFixedIterative()
 
{
 

const unsigned NUM_ GENERATIONS = 20;
 
const unsigned POPULATION_ SIZE = 50;
 
const unsigned BLOCK SIZE = 8;
 

cBmp = new MyBitMap(currFrameFile, BLOCK_SIZE, BLOCK_SIZE);
 
pBmp = new MyBitMap(prevFrameFile, BLOCK SIZE, BLOCK_SIZE);
 
oBmp = new MyBitMap(outFrameSrcFile, BLOCK_SIZE, BLOCK SIZE);
 
oBmp->clear();
 

// Display the initial conditions.
 
cout << "// Fixed Block Size Iterative Motion Estimation." << endl;
 
cout << "// Creating GA with:" << endl;
 
cout << "// # generations: " << NUM_ GENERATIONS << endl;
 
cout << "// population size: " << POPULATION_ SIZE << endl;
 

double totalFitness = 0.0;
 
for (unsigned i=0 ; i<cBmp->getNumBlocks() ; i++)
 

totalFitness += gaPoint(NUM_GENERATIONS, POPULATION_ SIZE, i);
 

oBmp->writeFile(outFrameFile);
 
cout << "// totalFitness = " << totalFitness << endl;
 

delete cBmp;
 
delete pBmp;
 
delete oBmp;
 

//////////////////////////////////////////////////////////////////////////
 
////////// FIXED BLOCK SIZE ONE SHOT MOTION ESTIMATION /////////////////
 
//////////////////////////////////////////////////////////////////////////
 

//
 
// We need to derive a class from GA in order to define the fitness
 
// fucntion.
 
//
 
class MyGA2 public GA
:
 

public:
 
MyGA2(unsigned populationSize, unsigned stringLength,
 

int vectorLength, int vectorRange)
 
: GA(populationSize, stringLength),
 

vectorLength_(vectorLength), vectorRange_(vectorRange),
 
blockCompares_(0), blockComparesToBest_(0) { );
 

int stringToNum(const char * string, unsigned index);
 
unsigned blockCompares() {return blockCompares_;}
 
const int vectorRange_;
 
const unsigned vectorLength_;
 

private:
 
unsigned blockCompares_;
 
unsigned blockComparesToBest_;
 
virtual void fitness(Individual &indiv);
 
virtual void notifyStartGeneration();
 
virtual void notifyEndGeneration();
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virtual void notifyNewBest();
 
I ;
 

//
 
// MyGA2::fitness
 
//
 
// This is what evaluates the fitness of the motion vectors.
 
//
 
void MyGA2::fitness(Individual &indiv)
 

indiv.fitness_ = 0.0;
 
int colVect, rowVect;
 
Block *srcBlock;
 
Block *destBlock;
 
for (unsigned i=0 ; i<cBmp->getNumBlocks() ; i++)
 

// Translate the motion vectors from from binary strings to
 
// integer values.
 
colVect = stringToNum(indiv.string_, i);
 
rowVect = stringToNum(indiv.string+vectorLength, i);
 

// Get the blocks to compare.
 
srcBlock = cBmp->myGetBlock(i);
 
destBlock = pBmp->myGetBlock(i, rowVect, colVect);
 

// Compute the fitness of the vectors.
 
indiv.fitness_ += compareBlock(srcBlock, destBlock);
 
blockCompares_++;
 

delete srcBlock;
 
delete destBlock;
 

// Change the sign since the GA maximizes the fitness.
 
indiv.fitness *= -1.0;
 

//
 
// MyGA2::notifyStartGeneration
 
//
 
// This method gets called at the start of every generation.
 
//
 
void MyGA2::notifyStartGeneration()
 

}
 

//
 
// MyGA2::notifyEndGeneration
 
//
 
// This method gets called at the end of every generation.
 
//
 
void MyGA2::notifyEndGeneration()
 

cout << "gen: " << currentGeneration_
 
<< ", fit: " << best .fitness << endl;
 

//
 
// MyGA2::notifyNewBest
 
//
 
// This method gets called whenever a new best is found.
 
//
 
void MyGA2::notifyNewBest()
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blockComparesToBest_ = blockCompares_;
 

//
 
// MyGA2::stringToNum
 
//
 
// Converts the bit strings used by the GA into motion vector
 
// values.
 
//
 
int MyGA2::stringToNum(const char * string, unsigned index)
 

int vect = 0;
 
string += index * (vectorLength_ * 2);
 
for (unsigned i=0 ; i<vectorLength_ ; i++)
 

vect = (vect << 1) + string[i];
 

vect -= (vectorRange_ 1) / 2;
 
return vect;
 

//
 
// Fixed block size, one shot motion estimation.
 
//
 
void gaFixedOneShot()
 

const unsigned BLOCK_SIZE = 8;
 
cBmp = new MyBitMap(currFrameFile, BLOCK_SIZE, BLOCK_SIZE);
 
pBmp = new MyBitMap(prevErameFile, BLOCK_SIZE, BLOCK_SIZE);
 
oBmp = new MyBitMap(outFrameSrcFile, BLOCK_SIZE, BLOCK_SIZE);
 
oBmp->clear();
 

const unsigned NUM GENERATIONS = 50;
 
const unsigned POPULATION_ IZE = 500;
 
const unsigned VECTOR_LENGTH = 4;
 
const unsigned STRING_LENGTH = VECTOR_LENGTH * 2 * cBmp->getNumBlocks();
 
const int VECTOR RANGE = 16;
 

// Display the initial conditions.
 
cout << "// Fixed Block Size One Shot Motion Estimation." << endl;
 
cout << "// Creating GA with:" << endl;
 
cout << "// # generations: " << NUM_GENERATIONS << endl;
 
cout << "// population size: " << POPULATION_SIZE << endl;
 
cout << "// string length: " << STRING LENGTH << endl;
 

// Create the GA and do the work.
 
MyGA2 ga(POPULATION_SIZE, STRING_LENGTH, VECTOR_LENGTH, VECTOR_RANGE);
 
ga.init();
 
ga.work(NUM_GENERATIONS);
 

// Display the best one found.
 
const char * str = ga.getBestString();
 
int xVect, yVect;
 
Block *copyBlock;
 
for ( unsigned i=0 ; i<cBmp->getNumBlocks() ; i++)
 
{ 

xVect = ga.stringToNum(str, i);
 
yVect = ga.stringToNum(str+ga.vectorLength, i);
 

copyBlock = pBmp->myGetBlock(i, xVect, yVect);
 
oBmp->myPutBlock(copyBlock, i);
 
delete copyBlock;
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cout « "blk: " « i « ", "
 

« " deltaX: " << xVect << ", deltaY: " << yVect
 
« ", #compares: " « ga.blockCompares() << endl;
 

oBmp->writeFile(outFrameFile);
 

delete cBmp;
 
delete pBmp;
 
delete oBmp;
 

//////////////////////////////////////////////////////////////////////////
 
////////// VARIABLE BLOCK SIZE MOTION ESTIMATION ///////////////////////
 
//////////////////////////////////////////////////////////////////////////
 

//
 
// We need to derive a class from GP in order to define the fitness
 
// function.
 
//
 
class MyGPPool public GPPool
:
 

public:
 
MyGPPool(unsigned populationSize, unsigned minTreeHeight,
 

unsigned maxTreeHeight)
 
:
 GPPool(populationSize, minTreeHeight, maxTreeHeight)
 
{blockCompares_ = 0;};
 

static unsigned blockCompares;
 
static unsigned blockComparesToBest_;
 

private:
 
virtual void notifyStartGeneration();
 
virtual void notifyEndGeneration();
 
virtual void notifyNewBest();
 

1 ; 

// The total number of compares performed.
 
unsigned MyGPPool::blockCompares_ = 0;
 
// The number of compares performed to find the current best.
 
unsigned MyGPPool::blockComparesToBest = 0;
 

// Used to indicate to the fitness funcion that it should store
 
// the motion vectors in the blockList.
 
bool Node::useNode = false;
 

//
 
// This is the ostream operator<< for the Node class.
 
//
 
ostream & operator «(ostream & out, const Node & node)
 

out << '(' << node.xMotion_ « << node.yMotion_ << ')';
 
return out;
 

//
 
// Node::Node
 
//
 
// Constructor for the node object.
 
//
 
Node::Node()
 

const VECTOR_RANGE = 16;
 
// The X and Y motion vectors can be positive or negative,
 
// so VECTOR_RANGE/2 is subtracted to make this possible.
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fitness_ = 0.0;
 
xMotion_ = (randomInt() % VECTOR_RANGE) (VECTOR_RANGE-1) / 2;
 
yMotion = (randomInt() % VECTOR RANGE) (VECTOR RANGE -1) / 2;
 

//
 
// Node::fitness
 
//
 
// This method calculates the fitness of the node. It does this by
 
// applying the motion vectors to the image sequence, and using the
 
// image differences as a fitness value. The nodeNumber parameter
 
// is used to determine which block this node refers to.
 
//
 
double Node::fitness(unsigned nodeNumber, unsigned *path)
 

// Start by determining the coordinates of out node
 
int x = 0;
 
unsigned width = currBmp->width();
 
int y = 0;
 
unsigned height = currBmp->height();
 

int i = 0;
 
while path[i]
( )
 

switch (path[i])
 
{
 

case 1:
 
width /= 2;
 
height 7= 2;
 
break;
 

case 2:
 
x += width / 2;
 
width /= 2;
 
height /= 2;
 
break;
 

case 3:
 
y += height / 2;
 
width 7= 2;
 
height /= 2;
 
break;
 

case 4:
 
x += width / 2;
 
y += height / 2;
 
width /= 2;
 
height 1= 2;
 
break;
 

default:
 
assert(!"invalid path");
 

// Make sure the moved block is in the frame.
 
Block *srcBlock = currBmp->getBlock(x, y, width, height);
 
int destX = x + xMotion_;
 
int destY = y + yMotion_;
 
if (destX<0) destX = 0;
 
if (destY <0) destY = 0;
 
if destX + width >= prevBmp->width() )
(
 

destX = prevBmp->width() width 1;
 

if ( destY + height >= prevBmp->height() )
 

destY = prevBmp->height() height 1;
 

Block *destBlock = prevBmp->getBlock(destX, destY, width, height);
 

fitness = compareBlock(srcBlock, destBlock);
 



131 

1 

MyGPPool::blockCompares++;
 

if ( useNode_ )
 

outBmp->putBlock(destBlock, x, y);
 

if (blockList)
 

blockList[nodeNumber].used = true;
 
blockList[nodeNumber].x = x;
 
blockList[nodeNumber].y = y;
 
blockList[nodeNumber].width = width;
 
blockList[nodeNumber].height = height;
 
blockList[nodeNumber].xMotion = xMotion_;
 
blockList[nodeNumber].yMotion = yMotion_;
 

delete srcBlock;
 
delete destBlock;
 

// Change the sign since the GA maximizes the fitness.
 
fitness_ *= -1.0;
 
return fitness;
 

//
 
// MyGPPool::notifyStartGeneration
 
//
 
// This method gets called at the start of every generation.
 
//
 
void MyGPPool::notifyStartGeneration()
 

//
 
// MyGPPool::notifyEndGeneration
 
//
 
// This method gets called at the end of every generation.
 
//
 
void MyGPPool::notifyEndGeneration()
 

cout << "gen: " « currentGeneration_
 
« ", fit: " << best -> fitness() << endl;
 

//
 
// MyGPPool::notifyNewBest
 
//
 
// This method gets called whenever a new best is found.
 
//
 
void MyGPPool::notifyNewBest()
 
{
 

blockComparesToBest = blockCompares;
 

//
 
// Variable block size motion estimation.
 
//
 
void gpVariable()
 

currBmp = new BitMap(currFrameFile);
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prevBmp = new BitMap(prevFrameFile);
 
outBmp = new BitMap(outFrameSrcFile);
 
outBmp->clear();
 

const unsigned NUM_ GENERATIONS = 50;
 
const unsigned POPULATION_SIZE = 500;
 
const unsigned MIN TREE HEIGHT = 2;
 
const unsigned MAX = 6;
 

// Display the initial conditions.
 
cout << "// Variable Block Size Motion Estimation." << endl;
 
cout << "// Creating GP with:" << endl;
 
cout << "// # generations: " << NUM_ GENERATIONS << endl;
 
cout << "// population size: " << POPULATION_SIZE << endl;
 
cout << "// min tree height: " << MIN_TREE_HEIGHT << endl;
 
cout << "// max tree height: " << MAX TREE HEIGHT << endl;
 

// A height of 7 generates a tree with 4096 leaf nodes (5461 nodes
 
// total), which covers a 64x64 image.
 
MyGPPool pool(POPULATION_SIZE, MIN_TREE_HEIGHT, MAX_TREE_HEIGHT);
 
pool.init();
 
pool.work(NUM_GENERATIONS);
 
GP * best = pool.getBestTree();
 

cout << "#compares: " << pool.blockComparesToBest_ << endl;
 
cout << "The best found is:" << endl << *best << endl;
 
cout << "in generation: " << pool.getBestGeneration() << endl;
 
cout << "with fitness is: " << pool.getBestFitness() << endl;
 

// Write the data to an output file.
 
Node::useNode_ = true;
 
best->fitness();
 
Node::useNode_ = false;
 
outBmp->writeFile(outFrameFile);
 

delete currBmp;
 
delete prevBmp;
 
delete outBmp;
 

//////////////////////////////////////////////////////////////////////////
 
//////// FIXED BLOCK SIZE REGION MOTION ESTIMATION /////////////////////
 
//////////////////////////////////////////////////////////////////////////
 

//
 
// This method is the main routine of the Genetic Algorithm portion
 
// of the motion estimator.
 
//
 
double gaFixedRegionPoint(unsigned numGenerations, unsigned popSize,
 

unsigned blockIndex)
 

const int VECTOR_LENGTH = 4;
 
const unsigned STRING_LENGTH = VECTOR_LENGTH * 2;
 
const int VECTOR RANGE = 16;
 

// Create the GA and do the work.
 
MyGA ga(popSize, STRING_LENGTH, VECTOR_LENGTH, VECTOR_RANGE);
 
ga.init();
 
ga.setInitialValue(0, H\x00\x01\x01\x01\x00\x°1\x01\x01");
 
ga.setInitialValue(1, "\x00\x01\x01\x01\x00\x01\x01\x01");
 
ga. setAnchorBlock(blockIndex);
 
ga.work(numGenerations);
 

// Display the best one found.
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const char * const str = ga.getBestString();
 
int xVect = ga.stringToNum(str, ga.vectorLength_);
 
int yVect = ga.stringToNum(str+ga.vectorLength_, ga.vectorLength_);
 

Block *copyBlock = pBmp->myGetBlock(blockIndex, xVect, yVect);
 

oBmp->myPutBlock(copyBlock, blockIndex);
 
delete copyBlock;
 

blockList[blockIndex].index = blockIndex;
 
blockList[blockIndex].xMotion = xVect;
 
blockList[blockIndex].yMotion = yVect;
 

cout << "bik: " << blockIndex << ", "
 

« " deltaX: " « xVect « ", deltaY: " « yVect
 
", #compares: " << ga.blockCompares() << endl;
 

return ga.getBestFitness();
 

//
 
// Fixed block size region estimator.
 
//
 
void gaFixedRegion()
 

const unsigned NUM_ GENERATIONS = 20;
 
const unsigned POPULATION_ SIZE = 50;
 
const unsigned BLOCK SIZE = 8;
 

cBmp = new MyBitMap(currFrameFile, BLOCK_SIZE, BLOCK_SIZE);
 
pBmp = new MyBitMap(prevFrameFile, BLOCK_SIZE, BLOCK SIZE);
 

oBmp = new MyBitMap(outFrameSrcFile, BLOCK_SIZE, BLOCK_SIZE);
 

oBmp->clear();
 

blockList = new BlockElement [cBmp->getNumBlocks()];
 

// Display the initial conditions.
 
cout <<
 "// Fixed Block Size Iterative Motion Estimation." << endl;
 
cout << "// Creating GA with:" << endl;
 

# generations: " << NUM_ GENERATIONS << endl;
cout « "//
 
population size: " << POPULATION SIZE << endl;
cout << "//
 

double totalFitness = 0.0;
 
for (unsigned i=0 ; i<cBmp->getNumBlocks() ; i++)
 

totalFitness += gaFixedRegionPoint(NUM_GENERATIONS,

POPULATION SIZE, i);
 

1
 

oBmp->writeFile(outFrameFile);
 
cout << "// totalFitness = " << totalFitness << endl;
 

// Sort the blockList
 
//qsort((void *) blockList, cBmp->getNumBlocks(), sizeof(blockList[0]),
 

// sortFunc);
 

// We will now loop throgh all of the blocks and save them to a BMP
 
// file using a different color for each motion vector.
 
MyBitMap ooBmp(outFrameSreFile, BLOCK_SIZE, BLOCK_SIZE);
 
ooBmp.clear();
 
Block motionBlock(BLOCK_SIZE, BLOCK_SIZE);
 
unsigned c;
 
for (unsigned i=0 ; i<ooBmp.getNumBlocks() ; i++)
 

c = ((blockList[i].xMotion & OxOf) << 4)
 

(blockList[i].yMotion & OxOf);
 
motionBlock.fill((unsigned char)c);
 

I
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ooBmp.myPutBlock(&motionBlock, blockList[i].index);
 
1
 

ooBmp.writeFile(outFrameFile2);
 

delete [] blockList;
 
blockList = 0;
 
delete cBmp;
 
delete pBmp;
 
delete oBmp;
 

//////////////////////////////////////////////////////////////////////////
 
////////// VARIABLE BLOCK SIZE REGION MOTION ESTIMATION ////////////////
 

//////////////////////////////////////////////////////////////////////////
 

//
 
// Variable block size region estimator.
 
//
 
void gpVariableRegion()
 

currBmp = new BitMap(currFrameFile);
 
prevBmp = new BitMap(prevFrameFile);
 
outBmp = new BitMap(outFrameSrcFile);
 
outBmp->clear();
 

// The actual maximum number of nodes in a depth=6 tree is 1365
 
const NUM_BLOCK_ELEMENTS = 1400;
 
blockList = new BlockElement [NUM BLOCK ELEMENTS];
 

const unsigned NUM_ GENERATIONS = 50;
 

const unsigned POPULATION_SIZE = 500;
 
const unsigned MIN_TREE_HEIGHT = 2;
 

const unsigned MAX TREE HEIGHT = 6;
 

// Display the initial conditions.
 
cout << "// Variable Block Size Motion Estimation." << endl;
 
cout << "// Creating GP with:" << endl;
 
cout << "// # generations: " << NUM_GENERATIONS << endl;
 
cout << "// population size: " << POPULATION_SIZE << endl;
 
cout << "// min tree height: " << MIN_TREE_HEIGHT « endl;
 
cout << "// max tree height: " << MAX TREE HEIGHT << endl;
 

// A height of 7 generates a tree with 4096 leaf nodes (5461 nodes
 
// total), which covers a 64x64 image.
 
MyGPPool pool(POPULATION_SIZE, MIN_TREE_HEIGHT, MAX_TREE_HEIGHT);
 
pool.init();
 
pool.work(NUM_GENERATIONS);
 
GP * best = pool.getBestTree();
 
cout << "The best found is:" << endl << *best << endl;
 
cout << "in generation: " << pool.getBestGeneration() << endl;
 
cout << "with fitness is: " << pool.getBestFitness() << endl;
 

// Write the data to an output file.
 
Node::useNode = true;
 
best->fitness();
 
Node::useNode_ = false;
 
outBmp->writeFile(outFrameFile);
 

// Sort the blockList
 
//qsort((void *) blockList, cBmp->getNumBlocks(), sizeof(blockList[0]),
 
// sortFunc);
 

// We will now loop throgh all of the blocks and save them to a BMP
 
// file using a different color for each motion vector.
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BitMap ooBmp(outFrameSrcFile);
 
ooBmp.clear();
 
Block *motionBlock;
 
unsigned c;
 
for (unsigned i=0 ; i<NUM BLOCK ELEMENTS ; i++)
 

if (blockList[i].used==false)
 
continue;
 

motionBlock = new Block(blockList[i].width, blockList[i].height);
 
c = ((blockList[i].xMotion & OxOf) << 4)
 

(blockList[i].yMotion & OxOf);
 
motionBlock->fill((unsigned char)c);
 
ooBmp.putBlock(motionBlock, blockList[i].x, blockList[i].y);
 
delete motionBlock;
 

I
 

1
 

ooBmp.writeFile(outFrameFile2);
 

delete H blockList;
 
blockList = 0;
 
delete currBmp;
 
delete prevBmp;
 
delete outBmp;
 

1 

//////////////////////////////////////////////////////////////////////////
 
////////// EXHAUSTIVE SEARCH CODE //////////////////////////////////////
 
//////////////////////////////////////////////////////////////////////////
 

//
 
// This method is for testing the exhaustive search method.
 
//
 
void exhaustiveSearch()
 

const int VECTOR_RANGE = 16;
 
const int MIN_VECTOR = (- VECTOR_RANGE / 2) + 1;
 
const int MAX_ VECTOR = VECTOR_RANGE / 2;
 
const int BLOCK SIZE = 8;
 

MyBitMap *currBmp = new MyBitMap(currFrameFile, BLOCK_SIZE, BLOCK_SIZE);
 
MyBitMap *prevBmp = new MyBitMap(prevFrameFile, BLOCK_SIZE, BLOCK_SIZE);
 
MyBitMap *outBmp = new MyBitMap(outFrameSrcFile, BLOCK SIZE,
 

BLOCK_SIZE);
 

Block *srcBlock;
 
Block *destBlock;
 
Block *copyBlock;
 
int bestX;
 
int bestY;
 
double bestFitness;
 
double fitness;
 
unsigned blockCompares = 0;
 
for (unsigned i=0 ; i<currBmp->getNumBlocks() ; i++)
 

cout << "(block " << i << ")";
 
// Get the blocks to compare.
 
srcBlock = currBmp->myGetBlock(i);
 

bestFitness = 1.7e+308;
 
for (int y =MIN VECTOR ; y<MAX_VECTOR+1 ; y++)
 

{
 

for (int x--MIN_VECTOR ; x<MAX_VECTOR+1 ; x++)
 
{
 

destBlock = prevBmp->myGetBlock(i, x, y);
 
// Compute the fitness of the vectors.
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fitness = compareBlock(srcBlock, destBlock);
 
blockCompares++;
 
delete destBlock;
 
if (fitness < bestFitness)
 
1
 

bestFitness = fitness;
 
bestX = x;
 
bestY = y;
 

delete srcBlock;
 

copyBlock = prevBmp->myGetBlock(i, bestX, bestY);
 
outBmp->myPutBlock(copyBlock, i);
 
delete copyBlock;
 

cout « "blk: " « i « ", "
 

<< " deltaX: " << bestX « ", deltaY: " << bestY
 
« ", #compares: " << blockCompares « endl;
 

outBmp->writeFile(outFrameFile);
 

delete currBmp;
 
delete prevBmp;
 
delete outBmp;
 

//
 
// Main routine of the motion estimator. This is just a dispatcher
 
// which calls the appropriate method.
 
//
 
void main(int argc, char *argv[])
 
{
 

char autoChoice = 0;
 
if ( argc == 5 11 argc == 6
 )
 
{
 

autoChoice = argv[1][0];
 
assert(autoChoice=='1' 11 autoChoice=='2' 11 autoChoice=='3' II
 

autoChoice=='4' II autoChoice=='5' 11 autoChoice=='6');
 

currFrameFile = argv[2];
 
prevFrameFile = argv[3];
 
outFrameSrcFile = argv[3];
 
outFrameFile = argv[4];
 
if argc==6
( )
 

outFrameFile2 = argv[5];
 

else
 
{
 

currFrameFile = "test01.bmp";
 
prevFrameFile = "test02.bmp";
 
outFrameSrcFile = "test02.bmp";
 
outFrameFile = "testout.bmp";
 
outFrameFile2 = "testout2.bmp";
 

cout << "currFrameFile = " << currFrameFile << endl;
 
cout << "prevFrameFile = " << prevFrameFile << endl;
 
cout << "outFrameSrcFile = " << outFrameSrcFile << endl;
 
cout << "outFrameFile = " << outFrameFile << endl;
 
cout << "outFrameFile2 = " << outFrameFile2 << endl;
 

char choice = 0;
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while choice != '0')
(
 

{
 

if autoChoice == 0
( )
 

{
 

cout « endl
 
« "Select the test to run:" << endl
 
<< " 1. Genetic Algorithm (fixed, iterative)" << endl
 
<< " 2. Genetic Algorithm (fixed, one shot)" << endl
 
« " 3. Genetic Program (variable)" << endl
 
<< " 4. Genetic Algorithm (fixed, region)" << endl
 
<< " 5. Genetic Program (variable, region)" << endl
 
<< " 6. Exhaustive Search" << endl
 
« " 0. Exit" << endl
 
<< "selection: " << flush;
 

cin >> choice;
 
}
 

else
 
choice = autoChoice;
 

switch (choice)
 
{
 

case '1':
 
cout << "Genetic Algorithm (fixed, iterative)" << endl;
 
gaFixedIterative();
 
break;
 

case '2':
 
cout << "Genetic Algorithm (fixed, one shot)" << endl;
 
gaFixedOneShot();
 
break;
 

case '3':
 
cout << "Genetic Program (variable)" << endl;
 
gpVariable();
 
break;
 

case '4':
 
cout << "Genetic Algorithm (fixed, region)" << endl;
 
gaFixedRegion();
 
break;
 

case '5':
 
cout << "Genetic Program (variable, region)" « endl;
 
gpVariableRegion();
 
break;
 

case '6':
 
cout << "Exhaustive Search" << endl;
 
exhaustiveSearch();
 
break;
 

case '0':
 
cout « "Exiting program..." « endl;
 
break;
 

default:
 
cout << "Invalid selection, try again." << endl;
 
break;
 

}
 

if autoChoice
( )
 

choice = '0';
 

// eof
 

1 




