
AN ABSTRACT OF THE THESIS OF

Jeffrey Douglas Cavener for the degree of Master of Science in Computer Science

presented on August 11, 1997. Title:

Visualization, Implementation, and Application of the

Walking Tree Heuristics for Biological String Matching

Abstract approved-

Paul Cull

Biologists need tools to see the structural relationships encoded in biological

sequences (strings). The Walking Tree heuristics calculate some of these relation­

ships. I have designed and implemented graphic presentations which allow the

biologist (user) to see these relations. This thesis contains background information

on the biological sequences and some background on the Walking Tree heuristics. I

demonstrate my methods by showing a visual matching of mitochondrial genomes.

I also show matchings based on amino acids and on hydrophobicity. I also show how

the parameters of the visualization can be varied to produce more useful pictures. I

implemented a parallel version of the Walking Tree heuristic and used it to produce

a phylogenetic tree for picornaviruses. I also implemented several user interfaces.

These programs are available on my WWW page which allows a user to produce a

picture of a matching by giving the sequences in Gen Bank format and by making a

few mouse clicks.

Redacted for Privacy

©Copyright by Jeffrey Douglas Cavener

August 11, 1997

All rights reserved

Visualization, Implementation, and Application of the Walking Tree Heuristics for
Biological String Matching

Jeffrey Douglas Cavener

A Thesis

submitted to

Oregon State University

in partial fulfillment of
the requirements for the

degree of

Master of Science

Completed August 11, 1997

Commencement June 1998

Master of Science thesis of Jeffrey Douglas Cavener presented on August 11, 1997

APPROVED:

Major Professor, representing Computer Science

HeacYof Department of Computer Science

Dean of Grafirate School

I understand that my thesis will become part of the permanent collection of Oregon

State University libraries. My signature below authorizes release of my thesis to any

reader upon request.

e re Douglas C. ener,

Redacted for Privacy

Redacted for Privacy

Redacted for Privacy

Redacted for Privacy

ACKNOWLEDGEMENT

I am indebted to Jim Holloway and Paul Cull, for the many conversations

enabling me to extend their work.

ii

TABLE OF CONTENTS

11 INTRODUCTION

1.1 BIOLOGICAL PROBLEMS 1

1.2 HEURISTICS 3

1.3 VISUALIZATION 4

1.4 MY CONTRIBUTIONS 5

1.5 OVERVIEW 6

2 BIOLOGICAL BACKGROUND 8

2.1 MOTIVATION 8

2.1.1 Gene Finding and Annotation of Genetic Structures 8

2.1.2 Genome Alignment 8

2.1.3 Phylogenetic Analysis 9

2.2 BACKGROUND 9

2.2.1 The central dogma 9

2.2.2 Complications 11

2.2.2.1 Coding and non-coding strands 11

2.2.2.2 Errors and Indels 13

2.2.2.3 Introns and Exons 14

2.2.2.4 Transpositions 15

2.2.2.5 Inversions 15

2.2.3 Summary 15

3 METHODS 17

3.1 SEQUENCE MATCHING FOR GENE DISCOVERY 17

111

3.2	 ANNOTATION OF GENETIC STRUCTURES AND GENOME

ALIGNMENT 21

3.3	 PHYLOGENETIC TREE CALCULATION 21

4 APPROACHES AND CONSIDERATIONS	 24

4.1 MATCHING AND SEQUENCE INTERPRETATION	 24

4.1.1 Nucleic Acid Sequences	 24

4.1.2 Amino Acid Sequences	 24

4.1.2.1 Protein Back-translation	 24

4.1.2.2 DNA Translation	 28

4.1.2.3 Amino Acid Similarity	 29

4.1.2.4 Hydrophobicity	 29

4.1.2.5 Matching and Visualization	 31

4.2 DESIGN CONSIDERATIONS	 31

4.2.1	 Pre-alignment 31

4.2.2 Alignment	 33

4.2.3	 Visualization rendering 33

5 IMPLEMENTATION	 34

5.1 WWW INTERFACE	 34

5.2 GRAPHICAL INTERFACE	 34

5.2.1 A Sample Run	 36

5.2.2 Invocation	 36

5.2.3 Bringing up the Align dialog	 37

5.2.4 Performing an alignment	 37

5.2.5	 Printing the alignment visualization 37

iv

5.3 COMMAND-LINE INTERFACE AND UTILITIES 37

6 APPLICATION 46

6.1 GENE ANNOTATION AND GENOME ALIGNMENT 46

6.1.1 An Alignment of Two Mitochondrial Genomes 46

6.1.2 Maximum Gap Length 46

6.1.3 Minimum Contig Length 47

6.2 PHYLOGENETIC TREE CALCULATION 55

7 CONCLUSION 57

7.1 SUMMARY 57

7.2 FUTURE WORK 57

BIBLIOGRAPHY 59

APPENDICES 62

APPENDIX A: COMMAND LINE INTERFACE REFERENCE 63

APPENDIX B: SUPPLEMENTAL PAPER ON THE WALKING TREE 94

V

LIST OF FIGURES

Figure Page

2.1 The central dogma of molecular biology. 11

2.2 Double-stranded DNA 13

2.3 The six reading frames of translation. 14

2.4 Introns and exons. 14

2.5 Transposition within dsDNA 15

2.6 Inversion within dsDNA. 16

3.1 Artificial DNA and related sequence 18

3.2 A Walking Tree alignment (raw) 19

3.3 A Walking Tree alignment (filtered) 20

3.4 Visualization of a walking tree alignment of two mitochondrial genomes. 22

3.5 Phylogenetic tree of viruses based on pair-wise alignment scores. 23

4.1 Cytochrome C identity matching of DNA 25

4.2 Cytochrome C identity matching of amino acids 26

4.3 Cytochrome C hydrophobicity matching of amino acids 32

5.1 WWW access to a walking tree implementation. 35

5.2 A first GUI. 36

5.3 The About dialog window 37

5.4 The Background dialog window 38

5.5 The Usage dialog window. 39

3.6 The Align dialog window 39

5.7 The Zoom dialog window. 40

5.8 The View Alignment dialog window. 40

5.9 The Print dialog window 40

vi

5.10 GUI Invocation 41

5.11 Bringing up the Align dialog 41

5.12 Starting an alignment 42

5.13 The resultant alignment visualization 43

5.14 Bringing up the print dialog 44

5.15 Printing options 45

6.1 Maximum Gap Length = 1 48

6.2 Maximum Gap Length = 16 49

6.3 Maximum Gap Length = 64 50

6.4 Minimum Contig Length = 36 51

6.5 Minimum Contig Length = 12 52

6.6 Minimum Contig Length = 6 53

6.7 Minimum Contig Length = 1 54

vii

LIST OF TABLES

Table Page

2.1 The standard amino acids 10

2.2 Codon translation table (standard) 12

4.3 Codon frequency for highly expressed human genes 28

4.4 Common ambiguous nucleotide codes. 29

4.5 Binary hydrophobicity of common amino acid residues 30

viii

DEDICATION

To Mom, without whom this would have been impossible.

VISUALIZATION, IMPLEMENTATION, AND

APPLICATION OF THE WALKING TREE HEURISTICS

FOR BIOLOGICAL STRING MATCHING

1. INTRODUCTION

1.1. BIOLOGICAL PROBLEMS

"Know thyself" the philosopher says, and mankind from time immemorial

has tried to obey this injunction.

Strangely enough computer science has contributed to this search for self-

knowledge. Theory of computation has dealt with the meaning of knowledge and

computation. Artificial intelligence has dealt with the modeling and simulation of

thought. While these specialties have pursued mind, the ghost in the machine'

advances in biology have provided a glimpse of the genetic code, the program within

the machine" . These advances have in turn produced a new series of problems

for computer science. The major problem is, of course. understanding how this

genetic programming language works and how the biological machine interprets and

executes the instructions in this language. While this major problem is beyond

our present abilities, there are several smaller problems whose solutions may aid in

solving the major problem.

First and most obvious is the simple problem of storing masses of data.

Megabytes, gigabytes and terabytes stream out of labs, and are safely stored in

computer databases.

The next problem is how to access data within these databases. Annotation

of the sequence provides a partial solution. It is often possible to use the annotations

7

to find sequences from a particular species or from a particular chromosome or with

a known specified gene. Of course. very few sequences are fully annotated. so finding

all sequences within a particular gene may be much harder. Computer science has

produced various string matching (actually string finding) algorithms that make

finding a particular string within a large string a relatively easy operation. These

algorithms allow for a certain degree of inexactness. If local changes like insertions,

deletions, arid substitutions are the only permitted changes then these algorithms

can do a good job if finding approximate matches. On the other hand if nonlocal

changes like translocations are allowed, these algorithms will be stymied. These

algorithms can handle inversions by looking for matches with both the inverted

string and the noninverted string. But again inversions within inversions will cause

these algorithms to fail to find matches.

In the previous problems a "gene" was a contiguous substring, but in higher

organisms a -gene" often consists of several exons which are contiguous substrings

that are distributed within a large sequence. So local matching methods will have

difficulty finding such genes.

Another problem is that when sequences are found their function may be

completely unknown. If one could find strongly matching subregions between two

or more strings, one could infer that these matching regions probably are biologically

important. The location and characterization of these important substrings could

have a large commercial impact.

Even if one does not know the function of a sequence, the similarity among

sequences could be used to infer the relatedness of the organisms from which the

sequences were derived. Recent work in this area has produced the hypothesis of a

mitochondrial Eve. and the hypothesis that the Neanderthals were not our ancestors.

If relatedness were a metric then one could use it to infer phylogenetic trees.

3

1.2. HEURISTICS

Many of the problems of the previous section are computationally intractable

and/or ill-specified. For example, no one knows exactly what causes changes in

genetic sequences. and so the calculation of relatedness between sequences is ill-

specified. Of course, one can create models that exactly specify relatedness, but one

does not know if these models are correct. Much of the effort in computer science has

focused on the edit distance model because computing matchings in this model only

takes time proportional to the product of the string lengths. But it is well known

among biologists that this simple model does not capture all of the biological possi­

bilities. Unfortunately when one considers more biologically reasonable models, the

matching problems become computationally intractable. For example, even finding

the minimum number of flips needed to sort a sequence is an NP-hard problem. For

these reasons, one is forced to use heuristics to study biological string matching. A

heuristic is a computational procedure which usually computes something close to

the desired result.

In this thesis. I concentrated on the walking tree heuristics developed by Jim

Holloway and Paul Cull [1-7]. This heuristic. or really family of heuristics, attempts

to find a good approximate matching between two strings called the pattern and

the text. The basic idea of the heuristic is to form a tree data structure based

on the pattern and walk this data structure across the text. The leaves of the tree

correspond to the characters of the pattern. and at each step each leaf simply reports

on how similar its pattern character is to the text character it is looking at. A higher

level node in the tree corresponds to the pattern substring represented by the leaf

nodes which are descendents of the higher level node. A higher level node computes

a score and a position for its substring based on the currently remembered score

4

and the scores and positions compared by the node's two children. The functions

computed by the nodes can be chosen for the desired application.

Modifications of this heuristic allow it to compute alignments between strings,

and to deal with inversions and even inversions within inversions. Pleasantly heuris­

tic and its various modifications all run in time approximately proportional to the

product of the lengths of the two strings.

Because of the simple tree structure of this heuristic, it can be parallelized

relatively easily. Again because of the simple structure and the low degree of com­

munication needed between processors, one would expect almost full speedup, so

that running a parallel version on P processors would take about 1/P of the time to

run the job using only a single processor.

1.3. VISUALIZATION

Humans are largely visual animals. To understand a mass of data, humans

find one picture preferable to thousands of numbers stored in a table. How can

string matching be conveyed by a picture?

The simplest idea is to present an alignment as a graph in which there is an

edge (or visually a line) from a character in one string to the aligned character in

the other string. A little thought indicates that while this might be reasonable for

very short strings. it would present a confusing mess for longer strings. Since typical

biological strings are several thousand characters in length, one needs a method that

suppresses single character matches in favor of longer matches. On the other hand,

if one had a block from say character i to character j in one string that aligned with

a character 1 to character m in the other string, one would not want the fact that

character i --17 did not align with character 1±17 to mess up the block match.

5

These considerations led me to consider two important parameters, contig

length and percent identity.

Contig length is the length of a contiguous pattern substring which is matched

to a contiguous text substring. Percent identity of a pattern substring is the percent­

age of the characters in that substring which are mapped to the identical characters

in the text. By varying these two parameters I can decide to show only those sub­

strings that are of at least the contig length and match by at least the specified

percentage.

To make the visualization better, I decided to use different colors, green for

direct matches and red for inverted matches. These distinct colors will make the two

kinds of matches easier to see. The use of color also has another advantage. I could

use a light color to indicate a match which had just met the percentage threshold,

and use a deeper color to indicate a higher percentage match.

Finally, I realized that outlining matching bands in black made them much

easier to see.

1.4. MY CONTRIBUTIONS

The main effort reported in this thesis is the design of visual interfaces for

the walking tree heuristic. Of course, these interfaces could have been used on top

of other heuristics. but I did not investigate this possibility.

The first interface I designed was based on Tcl/Tk. The second inter­

face was designed using HTML and is available on the World Wide Web at

http://www.cs.orst.edu/ cavenej/chasm-view.html

I used these interfaces to present some studies of the efficacy of the walking

tree heuristic. I did this by taking a sequence, permuting and inverting this sequence,

http:http://www.cs.orst.edu

6

and then applying the walking tree heuristic to the pair of changed and unchanged

sequences.

I also experimented with some real biological data to see which values of the

parameters gave a reasonable presentation of the matching between sequences.

As mentioned above, the walking tree heuristics should parallelize easily.

Jim Holloway had demonstrated this by creating a parallel form for the Sequent

Balance which is a shared memory parallel machine H. Holloway demonstrated"

his program by using it to find the relatedness scores for a family of viral genomes.

He then converted these scores to distances and used these distances to construct a

phylogenetic tree for these viruses. Holloway showed that his program displayed an

almost linear speedup in the number of processors used. Unfortunately, our Sequent

has now been decommissioned, so his programs can no longer be run. I designed

a parallel program using PVM which would run on a network of workstations.

used this program to compute distances between viral genomes and then fed these

distances to an available program which constructed the phylogenetic tree. The

major advance here is that my program could calculate the distances for a family of

38 genomes in less time than Holloway's program took to compute the distances for

a family of 20 genomes. This speedup is mainly the result of the speed advantage

of the workstations over the Sequent Balance.

1.5. OVERVIEW

In Chapter 2 I have given background on basic concepts of molecular biology.

I introduce the applicability of the Walking Tree [1-7] to gene discovery, annotation

of genetic structures. genome alignment and phylogenetic tree calculation in Chapter

3. I also present. an alignment of the mitochondrial genomes of the human and

the earthworm which I produced with my software for visualization of genomic

I

alignments. as well as my phylogenetic tree of thirty-eight picornaviruses. In Chapter

4. I discuss bases of sequence interpretation and matching for this and future work.

and relate my design considerations for current and future software implementations.

In Chapter 5. I present my World Wide Web interface for genome alignment and

visualization, which provides access to my software via a compiled CGI program.

I also show a sample run of my software using the graphical user interface which I

prototyped in Tcl/Tk, and a brief introduction to some of the underlying programs

that I have written (which are detailed in the command-line reference in Appendix

A). In Chapter 6. I provide further detail regarding my production of a genomic

alignment visualization for mitochondrial genomes of the human and the earthworm,

and of my fast construction of a phylogenetic tree for Picornaviridae using the

Parallel Virtual Machine. I conclude in Chapter 7 with suggestions for further work.

Appendix A is the command-line interface reference for my software. Appendix B

is a supplement describing the Walking Tree heuristic algorithm, my contribution

therein being only the reorganization of material drawn from [1-7] for a poster

session presentation.

8

2. BIOLOGICAL BACKGROUND

2.1. MOTIVATION

Biologists are overwhelmed by the results of advances in DNA and protein

sequencing technologies, which have caused an exponential growth in the amount

of sequence data available for analysis. The extent to which this information can

be navigated and classified drives advances in medicine and many sciences. New

software tools are constantly being developed to leverage the data, many of which

rely on the matching of one sequence of DNA, RNA, or protein to another, and those

which are able to cope with the alignment difficulties of transpositions and inversions

as well as indels. may prove to be the most useful. Herein, after mentioning a few

of the high points (see [27] or a similar work for a more general introduction), I

report on my experience extending one such tool which provides scored alignments

for sequences. and suggest future directions for research.

2.1.1. Gene Finding and Annotation of Genetic Structures

Much of the available genetic sequence data has yet to be classified. Because

similar sequences usually have similar biological functions, the matching of char­

acterized sequences to new ones is of great importance in the annotation of new

data. Additionally. matches between uncharacterized sequences may be useful in

the detection of previously unknown genes.

2.1.2. Genome Alignment

Complete genome sequences are now known for some organisms, and the

human genome should be available in a few years. Alignments of entire genomic

sequences reveal similarities between them which may allow the discovery of shared

9

mechanisms of molecular genetics. as well as exceptions to common mechanisms.

and provide for cross-annotation of previously known genes and other features.

2.1.3. Phylogenetic Analysis

The phylogenetic study of molecular sequences is of help in understanding

relationships between organisms. Local and global sequence comparison techniques

enable the automatic generation of phylogenetic trees for the organisms involved.

2.2. BACKGROUND

The field of computational molecular biology is the application of computa­

tional methods to the study of relationships between biological molecules of interest.

Common application areas include the understanding of the genetic mechanisms of

organisms, viruses. or cancer and other genetic diseases. Much of the work is con­

cerned with comparisons of deoxyribonucleic acid (DNA), ribonucleic acid (RNA),

or proteins. DNA is a linear chain molecule, containing a sequence of the bases ade­

nine (A). guanine (G). cytosine (C). and thymine (T), linked by a backbone. RNA

is similar to DNA. but uses uracil (U) instead of thymine. Protein as produced

is a linear chain molecule composed of a combination of the twenty amino acids in

Table 2.1. We would like to exploit our knowledge of the relationship between DNA.

RNA, and protein products, but there are complications.

2.2.1. The central dogma

The central dogma of molecular biology is illustrated in Figure 2.1. DNA

serves as a template for the construction of an RNA copy in a process called tran­

10

Codes Amino acid
A Ala Alanine

C Cys Cysteine

D Asp Aspartic Acid

E Glu Glutamic Acid

F Phe Phenylalanine

G Gly Glycine

H His Histidine

I Ile Isoleucine

K Lys Lysine

L Leu Leucine

M Met Methionine

N Asn Asparagine

P Pro Praline

Q Gln Glutamine

R Arg Arginine

S Ser Serine

T Thr Threonine

Val Valine

W Trp Tryptophan

Y Tyr Tyrosine

Table 2.1. The standard amino acids.

11

scription. The transcribed RNA (messenger RNA, abbreviated as mRNA) is then

used as a coded template to produce protein in the process known as translation.

Triplets of RNA bases, called codons, specify each amino acid that is to be included

in the protein. as shown in Table 2.2.

DNA mRNA Protein
transcription translation

Figure 2.1. The central dogma of molecular biology.

2.2.2. Complications

2.2.2.1. Coding and non-coding strands

The DNA molecule has directionality. and is usually present as double-

stranded DNA (dsDNA), with the two strands running in opposite directions, as

depicted in Figure 2.2. In dsDNA, each adenine base in one strand is paired with

a thvmine base in the other strand. and each cytosine base in one strand is paired

with a guanine base in the other strand. Some bases code for genes, and some do

not. In dsDNA. we often speak of a coding strand and a non-coding strand. wherein

one strand codes for genes, and the other, complementary strand, running in the

reverse direction. does not. In reality, either strand may contain genetic information

at different locations in its sequence. and in some cases both strands actually code

for genes along the same stretch of dsDNA.

12

Codon Amino

(RNA) Acid

1 AAA Lys

2 AAC Asn

3 AAG Lys

4 AAU Asn

5 ACA Thr

6 ACC Thr

7 ACG Thr

8 ACU Thr

9 AGA Arg

10 AGC Ser

11 AGG Arg

12 AGU Ser

13 AUA Ile

14 AUC Ile

15 AUG Met

16 AUU Ile

17 CAA Gin

18 CAC His

19 CAG Gin

20 CAU His

21 CCA Pro

22 CCC Pro

23 CCG Pro

24 CCU Pro

25 CGA Arg

25 CGC Arg

27 CGG Arg

28 CGU Arg

29 CUA Leu

30 CUC Leu

31 CUG Leu

32 CUU Leu

33 GAA Glu

34 GAC Asp

35 GAG Glu

35 GAU Asp

37 GCA Ala

38 GCC Ala

39 GCG Ala

40 GCU Ala

41 GGA Gly

42 GGC Gly

43 GGG Gly

44 GGU Gly

45 GUA Val

46 GUC Val

47 GUG Val

48 GUU Val

49 UAA END

50 UAC Tyr

51 UAG END

52 UAU Tyr

53 UCA Ser

54 UCC Ser

55 UCG Ser

55 UCU Ser

57 UGA END

58 UGC Cys

59 UGG Trp

63 UGU Cys

51 UUA Leu

62 UUC Phe

63 UJG Leu

64 UUU Phe

Table 2.2. Codon translation table (standard).

13

.-GTACTGAAT-0­
dsDNA III II II III II III II II II

-3V19VILLV-­

base pairing: A:T and G:C

Figure 2.2. Double-stranded DNA.

2.2.2.2. Errors and Indels

Differences between reported DNA sequences and the actual DNA, and be­

tween reported DNA from different species, may arise naturally or as the result of

errors in the lab. One case of this is the substitution of one DNA base for another,

whether actual or as a detection error. Another common problem area is that of

indels (insertions and deletions of one or more DNA bases) in one DNA sequence

relative to another. If the error is one of detection in the lab, identifying the function

of the gene encoded becomes that much more difficult. If the difference is naturally

occurring, we may be faced with a sequence that looks like a gene but is not actu­

ally expressed correctly, or with a sequence that has markedly changed relative to

another while retaining the same function. Some of these problems involve a shift

in reading frame. Six possible reading frames of a sequence, and their resultant

protein products (only one of which is usually correct), are shown in Figure 2.3. In

most cases, only one of the six reading frames of a sequence is ever used in a healthy

organism.

14

Met ProGluLeuTranslation in
CysGinSersix reading frames A 1 aArgVa.1

AUGCCAGAGLTUG-10­
-41- n/f0 eDn0f10 VV-3

Codon examples: rilna rl a LI
AUG = Met(hionine) 11-i&laSuslzr
CAU = His(tidine) sT1-101-1,LnarluT3

Figure 2.3. The six reading frames of translation.

2.2.2.3. Introns and Exons

In eukarvotes (organisms with nuclei), the DNA for a gene is often coded for

by several parts called exons, which are separated by sections called introns. These

introns must be removed from the RNA transcript, and the exons must be spliced

together. before translation into protein takes place. This process is illustrated in

Figure 2.4.

exonl intron exon2 intron exon3
DNA

transcription

exonl intron exon2 intron exon3
RNA L-1791g1

post-transcription processing
intron182

RNA NOMOIEl intron
Mai

Figure 2.4. Introns and exons.

15

2.2.2.4. Transpositions

Two DNA sequences may differ by a transposition, as shown in Figure 2.5.

where two sequences (the middle two in this case) are swapped in a copy of the

DNA. This can occur via a number of mechanisms. including multiple inversions.

Ir 1"P VIP Ifev0v0'4.0v0Mrein-Q-esj!2-021;
3r*Sae04313fdsDNA

transposition

vovovn***** 0000aa

dsDNA

Figure 2.5. Transposition within dsDNA.

2.2.2.5. Inversions

Occasionally, a section of dsDNA gets inverted, as shown in Figure 2.6. De­

pending on where this occurs and how long a sequence is involved, genes may be

changed. broken. regulated [20], or moved a great distance.

2.2.3. Summary

The central dogma provides a model which we may use to study relationships

between DNA, RNA. and proteins, but comparison of these molecular sequences is

complicated by many details, including errors, substitutions, insertions, deletions,

gene segmentation into exons, reading frame shifts, transpositions, and inversions.

16

dsDNA

inversion

N

op4.4.4.4.iry

dsDNA

Figure 2.6. Inversion within dsDNA.

17

3. METHODS

The Walking Tree, a heuristic algorithm for approximate string matching,

has been described in [1-7]. Here I recap some of its potential application areas in

bioinformatics as they related to my investigations.

3.1. SEQUENCE MATCHING FOR GENE DISCOVERY

Similar sequences often have similar regulatory functions or code for related

proteins. Thus. finding a close match between regions of two sequences may uncover

related genes. There are many methods for sequence matching, including [8-10], and

these vary in the degrees to which they handle the complications discussed in Sec­

tion 2.2.2. The Walking Tree produces a similarity score by a method which seems

to circumvent these difficulties. The Walking Tree can also produce an inner align­

ment between two sequences (an alignment which is no larger than the larger of

the two sequences), providing information on the locations of mutually conserved

regions which can provide clues to the nature of the relationship between the se­

quences. With Figures 3.1 through 3.3 I briefly illustrate the alignment capabilities

of the Walking Tree with respect to inversions and translocations (transpositions).

Figure 3.1 shows the true relationship between an artificial DNA sequence (on the

left) and the same sequence after repeated inversions and translocations (right).

Regions which are relatively inverted are shown in red, and those which are not are

shown in green. Figure 3.2 shows a visualization of raw results from a Walking Tree

alignment for these two sequences. Inverse complementary matches are shown in

red, and direct matches are shown in green. Most of the features were detected.

Figure 3.3 shows another visualization of the same Walking Tree alignment, with

much of the noise filtered out by my software.

Figure 3.1. Artificial DNA and related sequence

19

Figure 3.2. A Walking Tree alignment (raw)

20

02 021

9 /u _970

919
 919

868
 868

817
 817

766 7 766

715 715

661
 4
 664

613 _613

5

511-
,s\--1

46,
 w-=-Aill

307 307

25. 56

Figure 3.3. A Walking Tree alignment (filtered)

21

3.2. ANNOTATION OF GENETIC STRUCTURES AND GENOME
ALIGNMENT

Many programs are available for classifying regions within DNA sequences,

including BLAST [11] and Gene Mark [12]. If large sequences which have many

similarities are to be compared, the Walking Tree can be used to try to find the

matching subsequences in the face of the complications mentioned in Section 2.2.2,

and the two sequences may thusly be cross-annotated based upon previously classi­

fied regions. An example of this is shown in Figure 3.4, (discussed in more detail in

Section 6.1.1) a visualization of sequence relationships between two mitochondrial

genomes.

3.3. PHYLOGENETIC TREE CALCULATION

Phylogenetic trees serve to organize the relationships within a group of ge­

netic sequences and the organisms from which they come. To produce a phylogenetic

tree for related organisms, methods [19] are available which take as input a distance

matrix containing pair-wise distances (based on arbitrary distance metrics) between

the sequences. Similarity scores from the Walking Tree can be normalized to obtain

approximate edit distances which can be used to construct the required matrix for a

phylogenetic tree. Figure 3.5 shows one such tree which I produced for thirty-eight

related viral genomes.

22

]cytochrome

protein 6

protein E

protein q

protein 4d

protein 31

cytochr oxidase subunit

ATPase le
 1

protein A611

cytochrome oxidase subunit

cytochrome oxidase subunit

protein

protei

1530

1445

1360

ND]1275

1190

11051

10201

9351

8501

7651

6801

595

5101

9251

3401

2551

1701

85

1

_..16151

_15301

14451

ND

3601ND1

12751

11901

110548N

10201rRN

9351

ND

_8501
 NO9d

6801

Not

In
5951

ATPase

5101

4251

cytt

401

COI]
551

ATPased

1701 co]

851

Co

Figure 3.4. Visualization of a walking tree alignment of two mitochondrial genomes.

C
X

13
5C

G
A

S
V

D
C

E
C

H
O

V
S

 X
X

E
V

9G
E

N
O

M
E

C
X

A
 1

 G

C
X

A
3C

G

C
X

A
H

3C
G

C
X

B
4S

P
IC

O
X

B
4

P
F

V
V

G
52

 7

H
R

V
P

P

H
R

V
89

H
R

V
A

C
G

P
IH

R
V

2G

H
R

V

C
X

A
2

IC
C

C
X

A
24

C
G

P
IP

03
X

X

P
01

 3
1

1
2C

G

P
O

L
1

P
O

LI
O

 I
B

i(
P

O
LI

O
 I

A

r-
P

O
LI

O
S

 I

P
01

 2
C

G
 I

P
O

L2
LA

N

E
V

7O
C

G

E
M

C
B

C
G

E
M

C
D

C
G

X
X

E
V

C
C

E
V

C
G

tV

M
N

G
P

O
LY

T
M

E
C

G

T
M

E
G

D
V

C
G

T
M

E
V

C
P

I T

T
M

E
P

P

H
P

A

H
P

A
A

H
P

A
C

G

24

4. APPROACHES AND CONSIDERATIONS

4.1. MATCHING AND SEQUENCE INTERPRETATION

4.1.1. Nucleic Acid Sequences

The visualization examples in Chapter 2 are based on identity comparisons

between bases in DNA sequences. Figure 4.1 shows another example, in this case,

a matching of the DNA sequences for genes for the protein Cytochrome C in two

species. Such comparisons reveal genetic relationships. It should be noted that other

comparisons are possible, particularly those of amino acid sequence comparison,

which provide more information on protein function..

4.1.2. Amino Acid Sequences

Figure 4.2 is a comparison of the amino acid sequences for the protein Cy­

tochrome C in two species. based on identity matching of the amino acids. A number

of other amino-acid-based approaches to sequence comparison are possible. and the

method used may be dictated by the form of the data available. The nature of these

sequence interpretations is such that the use of different visualization methods for

alignments produced by the Walking Tree may be beneficial, taking advantage of

different measures of amino acid similarity.

4.1. 2.1. Protein Back-translation

If a nucleic acid comparison is desired, but one or both sequences are pro­

teins, amino acid sequences may be back-translated into inferred mRNA precur­

sors. For example, given the tetramer MetProGluLeu in Figure 2.3, Table 2.2

can be used to infer the mRNA sequence one codon at a time. Starting with

Met, only one codon. AUG. is found in the table, so the first three inferred bases

25
1021

970,

919

868..

917

766

1021

_970

919

868

.817

766

460460
cytochrome

409 109

358 . 358
cytochrome

307._. 307

256256

Figure 4.1. Cytochrome C identity matching of DNA

26

???

127.....

121

115

109..

103

97.......

91...

85....

79...

73...

67

61.

55....

49

43.

37

31

25

19.
13t
7

_127

, 121

_115

109

103

97

.93.

...XS

79

73

67

61

-55

49

.43

37

1

.25

1.9

3.3

7

Figure 4.2. Cytochrome C - identity matching of amino acids

27

are AUG. For Pro, there are four possible codons, all four of which begin with

CC. So far there are now four possible inferred sequences, AUGCCA, .AUGCCC,

AUGCCG. and AUGCCU. For the sake of convenience, these sequences may be

written together as a single regular expression AUGCC[A.C,G,U]. For Glu, there

are two codons from which to choose, GAA and GAG, extending our inference to

eight possible sequences, AUGCC[A,C,G,U]GA[A,G]. For Leu, there are six differ­

ent codons, ULTA, LTG. CUA, CUC, CUG, and CUU. The ones beginning with

uracil may be written as UU[A,G], and the four codons beginning with cytosine

written as CU[A.C,G,U]. so for Leu, our six codons are [UU[A,G],CU[A,C,G,U]].

So, for the amino acid sequence MetProGluLeu, the forty-eight mRNA sequences

AUGCC[A,C,G,U]GA[A,G][UU[A,G].CU[A,C,G,U]] may be inferred and used for

sequence matching. Alternatives to producing all possible back-translations include

choosing codons based on their likelihoods, or using ambiguous nucleotide codes.

Codon likelihood Although the amino acids in our example sequence Met-

ProGluLeu have several possible codons, some codons are more likely than others

to be found in a particular type of protein or in a particular organism. Thus, a

codon may be chosen over others based upon relative likelihood. For example, if

our protein is known to have come from a human, a codon frequency table such as

Table 4.3 [21] for Homo sapiens may be used to construct the most likely mRNA

sequence. For our example, there is one choice of AUG for Met, and most likely

choices of CCC for Pro, GAG for Glu, and CUG for Leu, for an inferred sequence

of AUGCCCGAGCUG.

Ambiguous nucleotide codes Where the identities of nucleic acids in a se­

quence are ambiguous, extensions to nucleic acid representation such as that shown

28

Ala GCA 0.13 end UAG 0.21 Leu UUA 0.02 Ser UCA 0.05
Ala GCG 0.17 end UAA 0.23 Leu CUA 0.03 Ser UCG 0.09
Ala GCU 0.17 end UGA 0.55 Leu CUU 0.05 Ser AGU 0.10
Ala GCC 0.53 Leu UUG 0.06 Ser UCU 0.13

Gln CAA 0.12 Leu CUC 0.26 Ser UCC 0.28
Arg CGA 0.06 Gln CAG 0.88 Leu CUG 0.58 Ser AGC 0.34
Arg CGU 0.07
Arg AGA 0.10 Glu GAA 0.25 Lys AAA 0.18 Thr ACA 0.14
Arg AGG 0.18 Glu GAG 0.75 Lys AAG 0.82 Thr ACU 0.14
Arg CGG 0.21 Thr ACG 0.15
Arg CGC 0.37 Gly GGU 0.12 Net AUG 1.00 Thr ACC 0.57

Gly GGA 0.14
Asn AAU 0.22 Gly GGG 0.24 Phe UUU 0.20 Trp UGG 1.00
Asn AAC 0.78 Gly GGC 0.50 Phe UUC 0.80

Tyr UAU 0.26
Asp GAU 0.25 His CAU 0.21 Pro CCA 0.16 Tyr UAC 0.74
Asp GAC 0.75 His CAC 0.79 Pro CCG 0.17

Pro CCU 0.19 Val GUA 0.05
Cys UGU 0.32 Ile AUA 0.05 Pro CCC 0.48 Val GUU 0.07
Cys UGC 0.68 Ile AUU 0.18 Val GUC 0.25

Ile AUC 0.77 Val GUG 0.64

Table 4.3. Codon frequency for highly expressed human genes

in Table 4.4 [22] are often used. Using Table 4.3 and Table 4.4, our example pro­

tein MetProGluLeu may be back-translated to the ambiguous sequence AUGCCN­

GARYUN, with .AUG for Met, CCN for Pro, GAR for Glu. and YUN for Leu.

..1.2.2. DNA Translation

DNA sequences may be translated (using an appropriate translation table,

such as Table 2.2) in all six reading frames (see Figure 2.3) and the resulting amino

acid sequences used in matching. This allows nucleic acid sequences to be compared

to other sequences based upon the similarities of the amino acids for which they

may code.

29

Amb. Possible

Code Nucleotides

N A C G1U
A C G

H A C U
D A G U
B C G U
M A C
R A G
W A U
K G U
S C G
Y C U
A A
C C
G G
U U

Table 4.4. Common ambiguous nucleotide codes.

4.1.2.3. Amino Acid Similarity

Amino acids may be compared based on a variety of properties, including

electric charge. hydrophobicity, size, codon mutation tolerance and distance, and

roles typically played in secondary, tertiary and quaternary structures, all of which

may be important to protein structure and function. The most widely successful

comparison methods based on these properties are the intricate PAM and BLO­

SUM matrix families, including PAM250 [23] and BLOSUM62 [24], but for many

applications, a simple binary measure of hydrophobicity is the method of choice.

4.1.2.4. Hydrophobicity

Hydrophobicity here is a measure of whether an amino acid residue's side-

chain tends not to associate with water molecules. This serves as a predictor of

whether or not the amino acid will be exposed to water in a protein's folded struc­

30

ture. Because related or similar proteins typically have hydrophobic regions in

common, this quality is useful in matching sequences.

Table 4.5 [251 shows binary hydrophobicities for the standard amino acids.

The primary advantage of reducing hydrophobicity to a binary variable is a compu­

tational one. A single amino acid, the product of a three-nucleotide codon, may be

represented by one binary bit, sequences of which may be efficiently stored, manip­

ulated, and compared.

Residue Hydrophobic

Ala 1

Arg 0

Asn 0

Asp 0

Cys 1

Gln 0

Glu 0

Gly 1

His 0

Ile
Leu 1

Lys 0

Met 1

Phe 1

Pro 0

Ser 0

Thr 0

Trp 1

Tyr
Val

1

1

Table 4.5. Binary hydrophobicity of common amino acid residues.

Figure 4.3 shows a comparison of the amino acid sequences for the protein

Cytochrome C in two species, based on the binary hydrophobicity of the amino

acids. Gaps in the alignment are primarily due to false inversions [30] which have

31

been filtered out. This suggests that in some cases the Walking Tree is more useful

without the inversion capability.

4.1.2.5. Matching and Visualization

Although the matching and visualization studies herein are based on base

identity between DNA sequences, other routes to comparison exist via translation

and back-translation of sequence data. With protein sequence data, the application

and rendering of knowledge of amino acid residue properties such as charge, size,

typical roles, codon mutation distance, and hydrophobicity are possible.

4.2. DESIGN CONSIDERATIONS

It was desirable to produce a system amenable to the use of additional com­

parison methods such as those above.

To this end, I wrote programs allowing for the use of additional data input

formats, alignment programs, visualization bases, and output formats.

I have initially configured the system for the comparison of DNA sequences

based on identity and complementarily, with the Gen Bank format for data input, an

existing Walking Tree implementation [26], and the PostScript format for graphical

output.

4.2.1. Pre-alignment

I chose the Gen Bank format for input because of its widespread usage, sim­

plicity, online availability, and incorporation of DNA, RNA, protein, and annotation

data together in one file.

32
127. _127

121 121

_115

109. _109

103 _103

97 -.97

91 X91

85

79

73 73

.67

61 61

55

49 X49

37

31-.. 31

25 5

19, 19

13 13

7 - 7

777 1 _1

Figure 4.3. Cytochrome C - hydrophobicity matching of amino acids

33

4.2.2. Alignment

I chose the Walking Tree implementation of [26] because it had been well

tested by prior usage. is highly portable. and was immediately available.

It should be noted that [26] is a single-processor implementation that takes

time proportional to the product of the lengths of the two sequences being compared.

which is prohibitive for very large sequences, and so parallel implementations are

needed for large genomes. I have implemented a parallel version of the Walking

Tree (direct tree only) on the Sequent Balance and noted a near-linear speedup,

duplicating the parallelization results of [7], and I am also working on a checkpointing

Walking Tree implementation in C++ for the PVM [18].

4.2.3. Visualization rendering

I chose the PostScript format for rendering visualizations because of its sup­

port of subroutines and vector graphics (which reduce file size). the widespread

installed base of free viewing software on all major platforms. and the availability

of PostScript printers for standard and oversized color printing.

34

5. IMPLEMENTATION

5.1. WWW INTERFACE

I developed a web page. shown in Figure 5.1. to allow others convenient

use of the alignment visualization software. My compiled CGI program processes

submitted data and provides the user with a PostScript format visualization of the

alignment. This format is suitable for viewing or high quality printing. Refer to

Chapter 5 for details on the visualization parameters available on the web page.

Figure 5.1

5.2. GRAPHICAL INTERFACE

Before I created a WWW interface, I prototyped a graphical user interface for

alignment visualization in Tcl/Tk. I chose Tcl/Tk because the GUI would be easy

to modify, and because the Canvas widget would allow easy generation of PostScript

output.

A screenshot of the original main window is shown in Figure 5.2. The help

dialogs are shown in Figures 5.3. 5.4. and 5.5, The dialogs for alignment generation,

viewing. and printing are shown in Figures 5.6, 5.7, 5.8. and 5.9.

I found the Tcl/Tk PostScript generation capabilities unsatisfactory, and

changed to a completely customized PostScript model of representation for visual­

ization and printing. It was easy to modify the GUI to call my new command-line

interface code for alignment and visualization.

--- --

35

File Edit View Go Bookmarks Options Directory Win m

Back FarwardiiiWme Edit Reload imageslOpen... Print... Find...

Location: tittp://www.engr.orst.edu/-cavenej/chasmview.html

What's New? What's Cool? Destinations Net Search People Softwarej

Enter your possibly related sequences here...

Minimum contig pair length: i;

Maximum gap length: I'm

Outlining:

GenBank data for sequence A:

LOCUS NEUMTCO3G 1254 by DNA PLN
 30-SEP-1988

,DEFINITION N,crassa mt cytochrome oxidase subunit III (CoIII) gene, complete

coding sequence.

GenBank data for sequence B:

OCUS HUMMTCDK 900 by DNA PRI 15-APR-1994

,DEFINITION Human mitochondrion cytochrome oxidase subunit II (COII), Asp-tRNA

and Lys-tRNA genes, complete cds.

;View A x B Clear

This server is running on a general use web server for now,

so please limit your sequence lengths to less than 2000

bases. If you would like to try something larger, do let me

know.

The output irc a Postscript visualization of an approximate

'compressed' alignment of the two sequences. For more

details, see Holloway, J.L., and Cull, P. Aligning genomes

with inversions and swaps. Second International Conference

on Intelligent Sytstems for Molecular Biology. Proceedings

of ISMB'94. AAAI Press, Menlo Park CA 1994.

IF_Maintained by cavenejacs.orst.edu

zws

Figure 5.1. WWW access to a walking tree implementation.

http:cavenejacs.orst.edu

36

Figure 5.2. A first GUI.

5.2.1. A Sample Run

Figures 5.10 through 5.15 show the steps necessary to produce an alignment

visualization via the graphical interface for two arbitrary Gen Bank data files, cyt2

and cyt3.

5.2.2. Invocation

The graphical interface is started by the Tcl/Tk script xdnc (Figure 5.10).

37

,dric
H genor nNent tool bu i I It around the

Jull 10 1,10 lad H roxliqatc, SA4ns M4chin is oriti

Figure 5.3. The About dialog window.

5.2.3. Bringing up the Align dialog

The Align dialog is brought up via the Align menu (Figure 5.11).

5.2.4. Performing an alignment

Figure 5.12 shows the Align dialog, in which the names of two local Gen Bank

data files are entered. After the Align button is pushed, alignment is performed,

and the resultant alignment visualization appears (Figure 5.13).

5.2.5. Printing the alignment visualization

The Print dialog is brought up via the Print item in the File menu (Fig­

ure 5.14), and desired printing options are selected in the Print dialog (Figure 5.15).

5.3. COMMAND-LINE INTERFACE AND UTILITIES

A variety of scripts are provided to aid the user in the initiation of alignments

and the production of visualizations. Of particular interest to the new user will

38

Heur.i.dti - based on the Cul I-Holloway

Apprdx4Tila rin.c..Ma:t.c...ning. algorithm

are useful'. for 9enoNe al ignrfient, .gene

finding .,:...and ph idlOqnet.l.c.,tr:ee

ltulat ion .

For ear i(1 representative -P RI. cation,-;,.

.1-4611o.464.,... T. L4 and '. Cull.. P 1994,::

r-Ilignin.g..genones.:.1.44+..n inyer4Oht 6nd....

sma.p... cond.internation.61....Cnfel'--ec.i
..:...

Intelljgent t fpr.Molecular....T1616i.

Proceeding. MB '94.1..c.157202". .fi411.:''

.,,Prez. Men

Figure 5.4. The Background dialog window.

be the programs Align and View, and the PostScript post-processing utilities out­

linePSContigs and adjustPSMargins. See the command reference section (pages 63

through 93 of Appendix A) for details.

http:r-Ilignin.g..genones.:.1.44

39

F11 -if r t. Brings. up dialo9 to print the ourrent view of an alignment.

File ->Load Setting::: -.Reload Settings.tol

Exit the program.

7 Aligh....i!z:equences.trom:..two GenBank

!Oliem..-)2:6Om in 200N:7., In b!:1 a.. f.aotor. Of:2*:

'view ->Zoom..-out Zoows-out bq a factoriof..2,

Bring-,.-up dialog to specdfij view :,i;caling.Paramete

Yiew->Hlignment.... -Review a prewiou,:41.00mputed alignment.

Vera:ibn.'information.:

prowam f-.unotionality.

7'.**,lication -and .refeT.erice.

Figure 5.5. The Usage dialog window.

a. I I n

H alignment of

Figure 5.6. The Align dialog window.

40

Figure 5.7. The Zoom dialog window.

m en
View ali9nment of

Figure 5.8. The View Alignment dialog window.

Figure 5.9. The Print dialog window.

41

tcsh

adamis@luser/c-3vener/Mailfimport:evpor
 Ytinc. tc1

Figure 5.10. GUI Invocation

Figure 5.11. Bringing up the Align dialog

42

t.csh

adams@iuser/cavener/Maiiiimport/export> xdnc. tcl

Xdrc

File Hliun VieL

Create alignment of

cyt2

Figure 5.12. Starting an alignment

4:3

Figure 5.13. The resultant alignment visualization

44

hood SPttin9S 7

align
 !T'H

Quit 1 alignment of

Figure 5.14. Bringing up the print dialog

45

Print command : 1p

int opt ion s :

...............Y.s.......4.onnaimia....1

color ' gray monochrome
 Print,
 _

Create alignment of

cyt2

X

cyt 3

411.41.6.4.1.44111,14.41.44

ign

Figure 5.15. Printing options

http:411.41.6.4.1.44111,14.41.44

46

6. APPLICATION

6.1. GENE ANNOTATION AND GENOME ALIGNMENT

6.1.1. An Alignment of Two Mitochondrial Genomes

Figure 3.4 on page 22 shows a visualization of an automated comparison

of the complete mitochondrial genomes of the human [13] and the common earth­

worm [141. I produced the visualization with my programs Align.pl [15]. View.pl.

and outlinePSContigs.pl from Gen Bank [16] entries for the two sequences. It is eas­

ily seen that the method produced reasonable matches between the known related

regions of the sequences in most cases. e.g. the cytochrome oxidase subunits 1 and 2

of the human mitochondrion (left) match the corresponding genes COII and COM

of the worm mithchondrion (right), and protein 4 of the human matches the cor­

responding protein ND4 of the worm. The content of the visualizations produced

from the alignment data may however be varied by adjusting the maximum gap

length and the minimum contig length.

6.1.2. Maximum Gap Length

If there is a poorly conserved region within a gene, matching that same gene

from two different species may result in two separate partial matches for the gene.

with a gap in between them due to the poorly conserved region. By specifying a

gap length which may be bridged to join separately matching regions, matches may

be combined to aid in the identification of the gene as a single feature. Figures 6.1

through 6.3 show the effect of increasing the maximum gap length. In Figure 6.1,

with a maximum gap length of one, there are hundreds of tightly packed matches,

many more than the number of genes (and ribosomal subunits). Increasing the max­

imum to sixteen (Figure 6.2) results here in a slightly noticeable improvement. With

http:outlinePSContigs.pl
http:Align.pl

47

the maximum increased to 64, pronounced matches for protein 4/ND4, cytochrome

oxidase subunit 3/COIII. ATPase6. and cytochrome oxidase subunits 1.2 /COI,II

appear. Note that I used a constant minimum contig length of six. and that dif­

ferent results will be obtained by varying the minimum contig length parameter.

6.1.3. Minimum Contig Length

The inner alignment data provided by the walking tree contains subsequence

matches of length increasing with the degree of conservation within a region of the

genome. Here I show the effect of filtering out the lesser of these contiguous (gapless)

regions by varying the minimum contig length. Note that here. I used a constant

maximum gap length of one, and that different results will be obtained with lower

and higher parameters. In Figure 6.4, contiguously matched regions of thirty-six

bases or more are shown. Many appear in a band for cytochrome oxidase subunit 1,

and matches are also shown (from the top left) within cytochrome b, NADH subunit

4. NADH subunit 2, and 16s ribosomal RNA. The lightness of the match within the

16s ribosomal RNA represents a low percentage base identity within the match. In

Figure 6.5, done with a minimum contig length of twelve, matches appear for all of

the shown features. excepting NADH subunits 6. 4L, and 3, and ATPase subunit 8

on the right. With a minimum contig length of six, (Figure 6.6). unlikely matches

appear for these four subunits, as well as other noise, and with a minimum contig

length of one. (Figure 6.7) all matches are shown as assigned in the raw walking

tree alignment data. including questionable low significance inverted matches (in

red) and noise.

48
1656

15733

]cytochrome
1490

protein 6 14077

13249

protein

11593

protein

protein 411

proteinJ
9937

oxidase subunit

ATPase 9
protein A611

31
9109

828

cytochrome oxidase subunit
7453

6625

cytochrome oxidase subunit
5797

protein]

4969

414

protein 11 3313

248

165 rr.:1 1657

12s
829

_16561

...15733

14905

14077

13249

12921ND

11593

0765

large ribosomal subunit RN1

9937

small ribosomal subunit

9109

8281
ND4i

_7453

...6625
ND

5797

4969

ATPase

4141

313
ND

485
ATPased

1657 COI]

829
1.1
AE

1 1 Co

Figure 6.1. Maximum Gap Length = 1

49

cytochrome 11

protein 6

protein

protein

protein 41

protein I

cytochr oxidase subunit

ATPase re

protein A61.1

cytochrome oxidase subunit

cytochrome oxidase subunit

protein

protei

rPN

rRN

16151.*

1530

1445

1360

1275

1190

1105

1020

935

850

7651

6801

595

510

9251

390

2551

170

851

_16151

-.15301

14451

ND

3601ND31

12751

ND

11901

11051r8N

10201rPN

9351

ND

....8501 j

.7651

6801

ND

951

ATPase

5101

4251

cytND

901

COI]
._2551

ATPased

1701

COI]

851

COI

Figure 6.2. Maximum Gap Length = 16

50

]cytochrome

protein
 ,

protein
 '

protein

protein 41.1

protein I

cytochr oxidase subunit

ATPase re
 1

protein A611

cytochrome oxidase subunit

cytochrome oxidase subunit

protein]

protein 11

rPNI

rRNPI

16151,

1530

14451mm.

136014

1275

1190

1105

1020

935

8501

7651_

680

595

510

425

340

iJ

2551

170

85

_15301

4451

ND

13601NDj

i12751
ND

11901

11051r8N

10201rm

351

NDI

.m.8501

4

7651

6801

ND

.-5951

ATPaseJ
101

4251

HYDI
401

COII]

ATPased

1701

COI]

851

Figure 6.3. Maximum Gap Length = 64

51

jcytochrome

protein E

protein E

protein q

protein 4J

protein I

oxidase subunit 31

ATPase J

protein A611

cytochrome oxidase subunit

cytochrome oxidase subunit

protein 21

protein

16S rRN7

12S rRNP

16561.

15733...

14905...

14077

13249...

12421.,

11593...

10765...

9937

9109

8281.

7453.

6625

5797

4969

3313_

2.185

1657

...16561

15733

"'-1 4077 ND

ND311

13249

NMI

12421

_11593

large ribosomal subunit

...10765

small ribosomal subunit
 J
...9937

...9109

ND

ND4d
_8281

,7453

6625

ND1

5797

ATPasei

4- 969

4141

cY]l

3313

:Do]

ATPased

cod

829

...1 CO

Figure 6.4. Minimum Contig Length = 36

52

]cytochrome

protein E

protein S

protein

protein 4J

protein I

cytochr e oxidase subunit

ATPase

protein A611

cytochrome oxidase subunit

cytochrome oxidase subunit

protein 21

protein 11

16S rRN?

12S rRN

16561

15733

1490

14077

13249

12421

11593

1076

9937

9109

7453

662

5797

4969

414

3313

248

1657

_16561

...15733

Amm19905

4077

ND3I

3249

ND

12421

11593

large ribosomal subunit

10765

small ribosomal subunit

937

_9109

8281

7453

_6625
ND

5797

ATPase

4969

9191

cy

ND

313

CO]

ATPase4

1657 cOIll

829

1
 CO

Figure 6.5. Minimum Contig Length = 12

53

]cytochrome

protein 6

protein

protein

protein 411

protein

cytochr oxidase subunit

ATPase
protein A6a

cytochrome oxidase subunit

31

cytochrome oxidase subunit

o
S

pploott:1111

0
0

0

0

z

9

16S

12S r]

1656

15733

1490

14077

13249

11593

10765__

9937

828

6625

5797

4969

414

3313

2485

1657

829

1

_16561

...15733

14905

14077
ND

NDI

3249

11593

large ribosomal subunit

0765

small ribosomal subunit

937

8281

_6625

ND

5797

ATPase

4969

4141

ND

313

COI]

485

ATPased

1657 COI]

829

1 CO

Figure 6.6. Minimum Contig Length = 6

54

]cytochrome

protein

protein E

protein

protein 411

protein I

cytochr e oxidase subunit 3

1
=I. Ad

cytochrome oxidase subunit 21

cytochrome oxidase subunit

protein 21

]protein

16S rRNP

12S rRN

16561_.

15733

14905

14077

13249

12421

11593

10765...m

9937

9109

828

7453

662

5797

4969

414

3313

248

1657

829

X16561

_15733

emm14905

14077
ND

NDI

...13249

ND

12421

11593

large ribosomal subunit

10765

small ribosomal subunit

9937

mm.9109

ND

ND4d

8281

7453

___6625

ND

5797

ATRasei

4969

4141

N

313

COIF

485

ATPased

657 COI]

829

1
 1 CO

Figure 6.7. Minimum Contig Length = 1

55

6.2. PHYLOGENETIC TREE CALCULATION

Figure 3.5 on page 23 shows the resulting tree of my phylogenetic study on

thirty-eight picornavirus genomes [17]. I performed a total of 1444 alignments via

my program pairwiseAlignments.pl running under PVM [18] configured with fifty

workstations. I then constructed a distance matrix based on the alignment files with

my program alignments2distanceMatrix.pl (see Appendix A for more information).

I used the programs neighbor and drawgram in the phylogenetic analysis package

PHYLIP to construct the tree from the distance matrix (see [? 19]or more in­

formation on these programs). Note that in my vertically oriented tree, it is the

vertical component of the branches which corresponds to the distance from putative

ancestors at the branching points.

My tree contains the same clustering patterns as those of an earlier tree

of twenty picornavirus (Figure 1 of Appendix B, also in [7]). constructed by Jim

Holloway using the Walking Tree, which is nearly identical to that of [28].

The Theiler murine encephalomyelitis cardioviruses

(TMECG. TMEGDVCG. TMEPP, TMEVCPLT), the other cardioviruses

(EMCBCG, EMCDCG, EVCGAA, MNGPOLY, XXEVCG). and the Hepatitis A

viruses (HPA. HPAA, HPACG) display the same clustering patterns. The relation­

ship [29] between the swine vesicular disease virus SVDG and Coxsackie B5 virus

CXB5CGA is also retained.

Additionally, the polio viruses (PIP03XX, POL1, POL2CG1.

POL2LAN, POL3L12CG, POLIO1A, POLIO1B. POLIOS1) cluster well,

as do the human rhinoviruses (HRV, HRV89. HRVACG, HRVPP, PIHRV2G).

Interestingly, the bovine enterovirus BEVVG527 would appear to be more closely

related than is HRV to the bulk of the human rhinoviruses. The Coxsackie A

http:alignments2distanceMatrix.pl
http:pairwiseAlignments.pl

56

viruses (CXA21CG, CXA24CG) and EV7OCG (which incidentally causes acute hem­

orrhagic conjunctivitis. as does CXA24CG) cluster loosely with the polio viruses.

The Coxsackie B viruses (CXA1G (B1); CXA3CG, CXAB3CG (B3); CXB4S, PI­

COXB4 (B4)) cluster near the echo viruses (ECHOV9XX, ENT9GENOME), SVDG

and CXB5CGA.

It appears that the method clusters the sequences well according to their

relatedness. and the Walking Tree may prove useful for automating other such com­

parisons given raw sequence data.

57

7. CONCLUSION

7.1. SUMMARY

Biologists are overwhelmed by the task of utilizing the ever-increasing amount

of biological sequence data available. The problem is complicated by errors in data

collection and by biological transformations including translocation and inversion

of genetic elements. I have outlined complications of the application of the central

dogma of molecular biology to sequence matching. and suggested the Walking Tree

heuristic algorithm [1-7] as a suitable method for matching biological sequences

in light of these complications. I have presented several new user interfaces for

the Walking Tree. including a World Wide Web interface, a GUI in Tcl/Tk. and a

command-line interface, suitable for use with Walking Tree implementations such

as [26]. With these tools, I have produced a genomic alignment visualization for

mitochondrial genomes of the human and the earthworm, and a phylogenetic tree

of picornaviruses. further demonstrating applicability of the Walking Tree to gene

discovery, annotation of genetic structures, genome alignment and phylogenetic tree

calculation.

7.2. FUTURE WORK

Additional investigation and implementation is needed to support two im­

portant application areas. The first, the use of the Walking Tree in protein database

searches. requires a Walking Tree implementation which incorporates BLOSUM [24]

or PAM [23] matrices for amino acid similarity scoring. The second, the use of the

Walking Tree to align complete genomes of bacteria and higher organisms in rea­

sonable time, requires parallel implementations of the Walking Tree for available

58

machines. Both of these application areas would be addressed by a PVM [18] imple­

mentation of the Walking Tree with arbitrarily assignable subtree scoring functions.

59

BIBLIOGRAPHY

[1] J. L. Holloway. Algorithms for String Matching with Applications in Molecu­
lar Biology. Doctoral dissertation, Oregon State University, Dept. of Computer
Science. 1992

[2] P. Cull and J. L. Holloway. A divide and conquer approach to approximate string
matching. Technical Report TR-91-50-1, Oregon State University, Dept. of
Computer Science. 1991

[3] P. Cull and J. L. Holloway. Algorithms for constructing a consensus sequence.
Technical Report TR-91-20-1, Oregon State University, Dept. of Computer Sci­
ence. 1991

[4] P. Cull and J. L. Holloway. Reconstructing sequences from shotgun data. Se­
quences: Combinatorics, Compression, Security, and Transmission. Springer
Verlag, 1991

[5] P. Cull and J. L. Holloway. Optimistically building a consensus sequence using
inexact matches. Proceedings of the Hawaii International Conference on System
Sciences. Volume 1, pages 643-652, 1992

[6] P. Cull and J. L. Holloway. Approximate String Matching for Biological Se­
quences with Swaps and Inversions. Cybernetic Systems '94. Pages 879-886. R.
Trappl (editor). World Scientific. Singapore.

[7] J. L. Holloway and P. Cull. Aligning Genomes with Inversions and Swaps. Sec­
ond International Conference on Intelligent Systems for Molecular Biology, Pro­
ceedings of ISMB'94. Pages 195-202. AAAI Press, Menlo Park CA. 1994

[8] T. F. Smith and M. S. Waterman. Identification of common molecular subse­
quences. Journal of Molecular Biology. 147:195-197,1981

[9] W. R. Pearson and D. J. Lipman. Improved tools for biological sequence com­
parison. Proceedings of the National Academy of Sciences of the U.S.A. 85:2444­
2448,1988

[10] S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and D. J. Lipman. A basic
local alignment search tool. Journal of Molecular Biology. 215:403-410,1990

[11] M. Borodovsky and J.	 Mclninch. (GeneMark). Computational Chemistry.
17:123,1993

[12] Y. Xu, J. R. Einstein, R. J. Mural, M. B. Shah and E. C. Uberbacher. An
Improved System for Exon Recognition and Gene Modeling in Human DNA

60

Sequences. Second International Conference on Intelligent Systems for Molecu­
lar Biology, Proceedings of ISMB'94. AAAI Press, Menlo Park CA. 1994

[13] Anderson,S..	 Bankier,A.T., Barrell,B.G., de Bruijn,M.H.L., Coulson,A.R.,
Drouin,J., Eperon,I.C., Nierlich,D.P., Roe,B.A., Sanger,F., Schreier,P.H.,
Smith,A.J.H., Staden,R. and Young,I.G. Sequence and organization of the hu­
man mitochondrial genome. Nature. 290 (5806), 457-465 (1981)

[14] Flook,P.K., Rowell,C.H. and Gellissen,G. The sequence, organization, and	 evo­
lution of the Locusta migratoria mitochondrial genome. J. Mol. Evol. 41 (6),
928-941 (1995)

[15] The usage of this and my other programs may be found in the reference section
in the Appendix. Align.pl incorporates a Walking Tree implementation, kindly
provided by Jim Holloway, upon which this work is based.

[16] The Gen Bank database is accessible via http://www.ncbi.nlm.nih.gov.

[17] The Gen Bank entries	 for the picorna virus genomes used are acces­
sion numbers BEVVG527, CXA1G, CXA21CG, CXA24CG, CXA3CG,
CXAB3CG, CXB4S, CXB5CGA, ECHOV9XX, EMCBCG, EMCDCG,
EV7OCG, EV9GENOME, EVCGAA, HPA, HPAA, HPACG, HRV, HRV89,
HRVACG, HRVPP, MNGPOLY, PICOXB4, PIHRV2G, PIP03XX, POL1,
POL2CG1, POL2LAN, POL3L12CG, POLIO1A, POLIO1B, POLIOS1, SVDG,
TMECG, TMEGDVCG, TMEPP, TMEVCPLT, and XXEVCG.

[18] Parallel Virtual Machine.	 The latest user's guide is available via ftp from
netlib2.cs.utk.edu.

[19] PHYLIP is available via http://evolution.genetics.washington.edu/phylip.html

[20] Dybvig,K. and Yu,H. Regulation of a restriction and modification system via
DNA inversion in Mycoplasma pulmonis. Molecular Microbiology 12 (4), 547-560
(1994)

[21] Adapted from http://www.gcg.com/techsupport/data/human_high.cod which
is also available in gcg (Wisconsin Package Version 9.0, Genetics Computer
Group (GCG), Madison, Wisc.)

[22] Adapted from an internal table in dnaparse.c from the PHYLIP package.

[23] Schwartz, R. M. and Dayhoff, M. 0. Atlas of Protein Sequence and Struc­
ture. Dayhoff, M. 0. Ed, National Biomedical Research Foundation, Washing­
ton D.C. [1979] pp. 353-358.

[24] Henikoff, S. and Henikoff, J. G. Amino acid substitution matrices from protein
blocks. Proc. Natl. Acad. Set. USA. 89: 10915-10919 (1992).

http://www.gcg.com/techsupport/data/human_high.cod
http://evolution.genetics.washington.edu/phylip.html
http:netlib2.cs.utk.edu
http:http://www.ncbi.nlm.nih.gov
http:Align.pl

61

[25] J.	 Janin. Surface and Inside Volumes in Globular Proteins. Nature.
277(1979)491-492.

[26] One of J. L. Holloway's Walking Tree implementations, formerly available via
ftp at ftp.cs.orst.edu/holloway/dnc.tar.Z

[27] Setubal, J. and Carlos, J. Introduction to computational molecular biology.
PWS Publishing Company. 1997.

[28] Stanway,G. Structure, function, and evolution of picornaviruses. Journal of
General Virology. 87:2483-2501 (1990).

[29] Zhang.G., Wilsden,G., Knowles,N.J. and McCauley,J.W. Complete nucleotide
sequence of a coxsackie B5 virus and its relationship to swine vesicular disease
virus. J. Gen. Virol. 74 (Pt 5), 845-853 (1993).

[30] Most of the gaps in this visualization are due to the filtering out of false in­
versions after matching. The false inversions occured frequently because the
Walking Tree was used to match binary truth values. Turning off the inversion
functionality of the Walking Tree would result in fewer gaps in this particular
visualization.

ftp.cs.orst.edu/holloway/dnc.tar.Z

62

APPENDICES

63

APPENDIX A: COMMAND LINE INTERFACE REFERENCE

Align

IT,(1q(

Align.pl pat tern-root-name patternGBfile text-root-name textGBfile

[maxBaseImlex]

D C.tirripti011.

This wrapper script takes two GenBank files and produces an alignment of

the first into the second.

AI:gun/cuts

In order. the arguments are:

pattern-root-name The desired root name to use to represent the pattern sequence.

patternGBfile The GenBank file containing the pattern sequence.

text- root -mine The desired root name to use to represent the text sequence.

text GBfile The GenBank file containing the text sequence.

maxBaseindex Optionally specified maximum sequence length to assume for pur­

poses of visualization construction.

Filc,s

Required files involved:

patteruGBfile The GenBank file for the pattern sequence.

text GBfile The GenBank file for the text sequence.

http:Align.pl

64

Notes

The default parameters defaultMinContigLength and defaultMaxGap are set

rather conservatively. Several intermediate files are produced.

View

Usage

View.pl pattern-root-name patternGBfile text-root-name textGBfile

min-contig-length max-gap [maxBaselndex]

Description

This wrapper script takes two Gen Bank files for which an alignment has been

previously computed. and produces a visualization of the alignment. The filename

for the resulting PostScript file is constructed as pattern-root-name_X_text-root­

name.min-contig-length.max-gap.ps

Arguments

In order, the arguments are:

pattern-root-name The desired root name to use to represent the pattern sequence.

patternGBfile The GenBank file containing the pattern sequence.

text-root-name The desired root name to use to represent the text sequence.

textGBfile The GenBank file containing the text sequence.

min-contig-length Aligned subsequences must be at least this long to be included

in the visualization.

max-gap Aligned subsequence pairs separated by gaps no longer than max-gap on

http:name.min-contig-length.max-gap.ps

65

both sequences will be joined.

maxBaseIndex Optionally specified maximum sequence length to assume for pur­

poses of visualization construction.

Files

Required files involved:

patternGBfile The Gen Bank file for the pattern sequence.

textGBfile The Gen Bank file for the text sequence.

pattern-root-name _X_text-root-name.alignment The previously generated align­

ment of the pattern sequence into the text sequence.

Notes

Several intermediate files are produced.

a2c

Usage

a2c.p1 minimum-contig-length max-gap pattern-root-name

text-root-name

Description.

This wrapper script assembles aligned contig pairs from a raw alignment.

66

Arguments

In order, the arguments are:

minimum-contig-length max-gap pattern-root-name text-root-name minimum-

contig-length Aligned subsequences must be at least this long to be included in

the visualization.

max-gap Aligned subsequence pairs separated by gaps no longer than max-gap on

both sequences will be joined.

pattern-root-name The root name to use to represent the pattern sequence.

text-root-name - The root name to use to represent the text sequence.

Files

Required files involved:

pattern_X_text.alignment The raw alignment file.

Notes

None.

adjustPSMargins

Usage

adjustPSNIargins.pl leftin_points bottomin_points [yourfile.ps]

http:yourfile.ps
http:adjustPSNIargins.pl

67

Description

This utility script changes the left and bottom margins of a PostScript align­

ment to those specified as arguments.

Arguments

In order, the arguments are:

left_in_points The new left margin in printer's points.

bottomin_points The new bottom margin in printer's points.

yourfile.ps Optionally specified alignment visualization file.

Files

Required files involved:

Notes

72 printer's points = 1 inch.

alignment2contigsList

Usage

alignment2contigsList.pl minLengthForContig [alignmentFileName]

Description

This script extracts aligned contig pairs from an alignment.

http:alignment2contigsList.pl
http:yourfile.ps

68

Arguments

In order. the arguments are:

minLengthForContig Contigs must be at least this long to be included in the list.

Files

Required files involved:

Notes

None.

alignments2reflexive

Usage

alignments2reflexive firstAlignmentFile secondAlignmentFile

Description

This script finds the reflexive alignment of two alignments.

Arguments

In order; the arguments are:

firstAlignmentFile a_X_b.alignment

secondAlignmentFile b_X_a.alignment

69

Files

Required files involved:

Two alignment files.

Notes

For various reasons, an alignment of a sequence A into a sequence B may

differ from that of B into A. Given two such alignments. the reflexive alignment

consists of those paired (matched) bases in the first alignment which were also a

matched pair in the second alignment.

annotateContigsListWithPatternAnnotations

Usage

annotateContigsListWithPatternAnnotations.pl contigsList

patternAnnotationFeatures

Description

Where two individually contiguous subsequences are aligned to one another.

it is insightful to share annotations between the two. This script annotates a con­

tigsList with annotations of the original pattern sequence.

Arguments

In order. the arguments are:

contigsList File containing aligned contig pairs.

http:annotateContigsListWithPatternAnnotations.pl

70

patternAnnotationFeatures Features file of the pattern sequence to annotate the

contigsList with.

Files

Required files involved:

p_X_t.contigsList* and p.features

Notes on containment and coverage

It is useful to know the degree to which a contig covers another, and also

the degree to which a contig is contained within another, to assess the relevance

of such shared annotations. Herein, the degrees of containment and of coverage

are defined as follows. Given two sequence ranges X and Y. the coverage by X

of Y. COV(X,Y), is defined to be (min(Xend,Yend)-max(Xstart,Ystart))/(Yend-

Ystart) where this value is non-negative. (see Figure). The containment of X by Y,

CON(X,Y), is defined to be (min(Xend,Yend)-max(Xstart,Ystart))/(Xend-Xstart)

where this value is non-negative. (see Figure). Note that COV(X.Y)= CON(Y.X).

annotateContigsListWithTextAnnotations

Usage

annotateContigsListWithTextAnnotations.pl contigsList

textAnnotationFeatures

http:annotateContigsListWithTextAnnotations.pl

71

Description

This script annotates a contigsList with annotations of the original text se­

quence. See annotateContigsListWithPatternAnnotations for discussion.

Arguments

In order, the arguments are:

contigsList File containing aligned contig pairs.

textAnnotationFeatures Features file of the text sequence to annotate the con­

tigsList with.

Files

Required files involved:

pA_t.contigsList* and t.features

Notes

None.

c2ps

Usage

c2ps.p1 a-rootANord b-rootWord min-length-contig

Description

Wrapper script for PostScript rendering of aligned contig pairs.

72

Arguments

In order, the arguments are:

a-root Word The root name to use to represent the pattern sequence.

b-rootWord The root name to use to represent the text sequence.

min-length-contig Used here to choose a contigsList file.

Files

Required files involved:

See contigsList2ps.pl and filterPSFeatures.pl.

Notes

Contains default parameters for layout of rendering.

changePSFeatures

Usage

changePSFeatures.pl feature-text new-feature-text [contigsList.ps-file]

Description

Modifies feature annotation text in existing PostScript visualizations.

Arguments

In order, the arguments are:

feature-text The text that is to be found and modified.

http:changePSFeatures.pl
http:filterPSFeatures.pl
http:contigsList2ps.pl

73

new-feature-text The desired new text:

contigsList.ps-file Optionally specified alignment visualization file.

Files

Required files involved:

None.

Notes

None.

contigsList2ps

Usage

contigsList2ps.pl pat TitlexOffset patTitleyOffset

psPatternTitleFile textTitlexOffset textTitleyOffset psTextTitleFile patLa­

belOffset patRangeBarOffset patNumberOffset patternFeaturesPSfile text-

Label Offset textRangeBarOffset textNumberOffset textFeaturesPSfile start-

Base Index maxBaseIndex pattern-x-Offset text-x-Offset contigsListFile

Description

Assembles and generates PostScript fragments for rendering aligned contig

pairs.

http:contigsList2ps.pl

74

Arguments

In order, the arguments are:

patTitlexOffset Horizontal offset for the pattern title.

patTitleyOffset Vertical offset for the pattern title.

psPatternTitleFile PostScript file holding the pattern title.

textTitlexOffset Horizontal offset for the text title.

textTitlexOffset Vertical offset for the text title.

psTextTitleFile PostScript file holding the text title.

patLabelOffset Horizontal offset for pattern feature annotation labels.

patRangeBarOffset Horizontal offset for pattern feature range bars.

patNumberOffset Horizontal offset for pattern base index numbers.

patternFeaturesPSfile PostScript file holding the pattern's feature annotations.

textLabelOffset Horizontal offset for text feature annotation labels.

textRangeBarOffset Horizontal offset for text feature range bars.

textNumberOffset Horizontal offset for text base index numbers.

textFeaturesPSfile PostScript file holding the pattern's feature annotations.

startBaseIndex Index of the first base location rendered.

maxBaseIndex Maximum base index for which to allow.

pattern-x-Offset Horizontal offset for the pattern-side of aligned contig pairs.

text-x-Offset Horizontal offset for the text-side of aligned contig pairs.

contigsListFile File containing the list of aligned contig pairs.

Files

Required files involved:

pattern-root-name.title.pat.ps psPatternTitleFile

http:pattern-root-name.title.pat.ps

75

text-root-name.title.text.ps psTextTitleFile

pattern-root-name.features.pat.ps patternFeaturesPSfile

text-root-name.features.text.ps textFeaturesPSfile

contigsListFile File containing aligned contig pairs.

Notes

Offsets are in printer's points.

f2ps

Usage

f2ps.pl pattern-root-name pat-GB-file text-root-name text-GB-file

Description

This wrapper script extracts features from Gen Bank files and generates

PostScript fragment files for rendering their labels at their locations along the pat­

tern and text sequences.

Arguments

In order, the arguments are:

pattern-root-name The root name used to represent the pattern sequence.

pat-GB-file The Gen Bank file containing the pattern sequence.

text-root-name The root name used to represent the text sequence.

text-GB-file The Gen Bank file containing the text sequence.

http:text-root-name.features.text.ps
http:pattern-root-name.features.pat.ps
http:text-root-name.title.text.ps

76

Files

Required files involved:

pat-GB-file The Gen Bank file for the pattern sequence.

text-GB-file The Gen Bank file for the text sequence.

Notes

None.

filterPSFeatures

Usage

filterPSFeatures.pl [ps-file]

Description

This script takes a PostScript alignment visualization as input, and outputs

the visualization with certain feature annotation labels removed. By default, mRNA

is stripped.

Arguments

In order, the arguments are:

ps-file Optionally specified PostScript alignment visualization.

http:filterPSFeatures.pl

77

Files

Required files involved:

None.

Notes

Additional undesirable feature annotations may be specified by completing

the template inside of this script.

g2i

Usage

g2i.pl pattern-root-name pattern-GB-file text-root-name text-GB-file

Description

This wrapper script prepares input files for the sequence alignment exe­

cutable. Sequences are extracted from the specified Gen Bank files and assembled in

an input file, which is then specified in the generated simscript file.

Arguments

In order, the arguments are:

pattern-root-name The root name used to represent the pattern sequence.

pattern-GB-file The Gen Bank file containing the pattern sequence.

text-root-name The root name used to represent the text sequence.

text-GB-file The Gen Bank file containing the text sequence.

78

Files

Required files involved:

pattern-GB-file The Gen Bank file containing the pattern sequence.

text-GB-file - The Gen Bank file containing the text sequence.

Yotes

None.

gb2features

Usage

gb2features.pl [gb-file]

Description

Extracts and labels annotations from the features section of a Gen Bank file.

Arguments

In order, the arguments are:

gb-file Optionally specified Gen Bank file containing the sequence of interest.

Files

Required files involved:

None.

http:gb2features.pl

79

Notes

Preprocess input with gbFeatureFix.pl to handle long annotations.

gb2psPatternTitle

Usage

gb2psPatternTitle.pl [GenBankFile]

Description

This script extracts the definition and accession fields from a Gen Bank file.

and uses them to produce a PostScript fragment for the pattern title.

Arguments

In order. the arguments are:

GenBankFile Optionally specified Gen Bank file containing the sequence of interest.

Files

Required files involved:

None.

Notes

None.

http:gb2psPatternTitle.pl
http:gbFeatureFix.pl

80

gb2psTextTitle

Usage

gb2psTextTitle.pl [GenBankFile]

Description

This script extracts the definition and accession fields from a Gen Bank file.

and uses them to produce a PostScript fragment for the text title.

Arguments

In order, the arguments are:

GenBankFile Optionally specified Gen Bank file containing the sequence of interest.

Files

Required files involved:

None.

Notes

None.

gb2seq

Usage

gb2seq.pl [gb-file]

http:gb2seq.pl
http:gb2psTextTitle.pl

81

Description

This script extracts the sequence data from a Gen Bank file, and prints it on

a single line without the digits and whitespace.

Arguments

In order, the arguments are:

gb-file Optionally specified Gen Bank file containing the sequence of interest.

Files

Required files involved:

None.

Notes

A new line character is appended to the output sequence.

gbFeatureFix

Usage

gbFeatureFix.pl [gb-file]

Description

This filter prepares GenBank input for feature extraction.

http:gbFeatureFix.pl

82

Arguments

In order, the arguments are:

gb-file Optionally specified Gen Bank file containing the sequence of interest.

Files

Required files involved:

None.

Notes

This filter serves to merge each multi-line join of subsequences onto a single

line.

grid

Usage

grid.pl pgb tgb

Description

This script serves only as an example of running View.pl with a spread of

parameters.

Arguments

In order. the arguments are:

pgb The root name used to represent the pattern sequence, and here also the Gen-

Bank file.

83

tgb The root name used to represent the text sequence. and here also the Gen Bank

file.

Files

Required files involved:

Two Gen Bank files, specified by the arguments pgb and tgb.

Notes

This is only an exemplary script, and the name of each Gen Bank file doubles

as the root name for that sequence's files.

itoa

Usage

itoa.pl pattern-root-name text-root-name

Description

This wrapper script calls the sequence alignment executable. giving it a sim­

script file as input, and capturing output in an alignment file..

Arguments

In order. the arguments are:

pattern-root-name The root name used to represent the pattern sequence.

84

text-root-name The root name used to represent the text sequence.

Files

Required files involved:

pattern-root-name_X_text-root-name.input Input file holding the text and pattern

sequences.

pattern-root-name A_text-root-name.simscript Commands to be executed by the

sequence alignment executable.

Notes

None.

joinContigs

Usage

joinContigs.pl max-gap [contigsListFile]

Description

This script joins (merges) adjacent pairs of aligned contigs which are sepa­

rated by no more than max-gap base pairs, creating larger aligned contig pairs from

smaller ones.

http:joinContigs.pl

85

Arguments

In order, the arguments are:

max-gap Aligned subsequence pairs separated by gaps no longer than max-gap on

both sequences will be joined.

contigsListFile Optionally specified contigsList file.

Files

Required files involved:

None.

Notes

Resultant contigs within an aligned pair may be of different lengths if the

corresponding gaps are of different lengths.

makeSimScript

Usage

makeSimScript.pl input-file-name

Description

This script generates commands for the sequence alignment executable.

Arguments

In order. the arguments are:

input-file-name The file containing the text and pattern sequences.

http:makeSimScript.pl

86

Files

Required files involved:

The argument input-file-name is intended to be of the form p_XA.input representing

an existing file.

Notes

None.

outlinePSContigs

Usage

outlinePSContigs.pl [PostScript-alignment-visualization-file]

Description

This utility script outlines the bars of each aligned contig pair in the specified

PostScript file.

Arguments

In order, the arguments are:

PostScript-alignment-visualization-file Optionally specified.

Files

Required files involved:

None.

http:outlinePSContigs.pl

87

Notes

The specified file is modified after a backup copy is created.

patternFeatures2ps

Usage

patternFeatures2ps.pl [pattern-features-file]

Description

This script produces PostScript fragments for pattern feature annotations.

Arguments

In order, the arguments are:

pattern-features-file Optionally specified file containing feature annotations for the

text sequence.

Files

Required files involved:

None.

Notes

The script heuristically extracts (or excludes) a meaningful annotation from

the wealth of available feature information. The selection criteria are easily modified

in the script.

http:patternFeatures2ps.pl

88

rawAlignment2alignment

Usage

rawAlignment2alignment.p1 [raw-alignment-file]

Description

This script extracts the alignment information from the raw output of the

sequence alignment executable.

Arguments

In order, the arguments are:

raw-alignment-file Optionally specified.

Files

Required files involved:

None.

Notes

None.

seq2input

Usage

seq2input.pl text.seq pattern.seq

http:seq2input.pl
http:rawAlignment2alignment.p1

89

Description

This script simply takes two sequence file names, and prints the sequence

data in a form consumable by the sequence alignment executable.

Arguments

In order. the arguments are:

text.seq File containing the text sequence, ended with a newline character. pat-

tern.seq File containing the text sequence. ended with a newline character.

Files

Required files involved:

Two sequence files specified by text.seq and pattern.seq.

Notes

Yes. the text file is specified here before the pattern file.

set MaxBaseIndex

Usage

seti\IaxBaselndex.pl pattern-root-name patternGBfile text-root-name

text GBfile [maxBaselndex]

Description

Creates a file containing either the length of the larger of the sequences, or

a user-specified substitute. to use in the layout of rendered visualizations.

http:seti\IaxBaselndex.pl

90

Arguments

In order, the arguments are:

pattern-root-name The root name used to represent the pattern sequence.

patternGBfile The Gen Bank file containing the pattern sequence.

text-root-name The root name used to represent the text sequence.

textGBfile The Gen Bank file containing the text sequence.

maxBaseIndex Optionally specified maximum base index to use in alignemnt vi­

sualizations.

Files

Required files involved:

patternGBfile and textGBfile.

Notes

A new maxBaseIndex file is created unless the file already exists and no ar­

gument is given for maxBaseIndex on the command line.

stripPSFeatures

Usage

stripPSFeatures.pl feature-text [ps-file]

http:stripPSFeatures.pl

91

Description

This script strips (comments out) features matching the feature-text argu­

ment. Either a PostScript alignment visualization or a PostScript contigsList frag­

ment are acceptable as input.

Arguments

In order, the arguments are:

feature-text Features matching this argument will be stripped from the PostScript

view.

ps-file Optionally specified PostScript file.

Files

Required files involved:

None.

Notes

Using non-specific feature specifiers may result in unintended stripping, e.g.,

using the feature-text argument 'tRNA" would also strip mtRNA.

t2ps

Usage

t2ps.p1 pattern-root-name pattern-GB-file text-root-name

text-GB-file

92

Description

This wrapper script creates PostScript fragment files for the pattern title and

the text title.

Arguments

In order. the arguments are:

pattern-root-name The root name used to represent the pattern sequence.

pattern-GB-file The Gen Bank file containing the pattern sequence.

text-root-name The root name used to represent the text sequence.

text-GB-file The Gen Bank file containing the text sequence.

Files

Required files involved:

pattern-GB-file and text-GB-file

Notes

None.

textFeatures2ps

Usage

textFeatures2ps.p1 [text-features-file]

http:textFeatures2ps.p1

93

Description,

This script produces PostScript fragments for text feature annotations.

Arguments

In order. the arguments are:

text-features-file Optionally specified file containing feature annotations for the

text sequence.

Files

Required files involved:

None.

Notes

The script heuristically extracts (or excludes) a meaningful annotation from

the wealth of available feature information. The selection criteria are easily modified

in the script.

94

APPENDIX B: SUPPLEMENTAL PAPER ON THE WALKING TREE

95

Walking Tree Heuristics for String Matching and Gene Location

J. L. Holloway P. Cull J. D. Cavener*
Crop and Soil Science Computer Science Computer Science

Oregon State University Oregon State University Oregon State University
liollowayiThcc.orst.edu pcO,cs.orst.edu cavenej .(ics.orst.edu

Abstract
Our walking tree heuristics, for approximate string
matching. align large biological sequence, which may
include nested inversions and traiislocations.
Here we show their use in phylogenetic tree calcula­
tion, genome alignment, and gene finding.
The basic heuristic takes time proportional to the
product of the lengths of the two sequences, uses
workspace proportional to the length of the shorter
sequence. and parallelizes well.

Introduction
There is evidence that evolution proceeds by transpos­
ing and inverting segments of a genome in addition to
changing. inserting. and deleting individual bases in
the genome. Many methods that are currently in use
to align genetic sequences fail to consider the transpose
and invert, operations. We introduce treatments given
in (Holloway S Cull 1994) of a heuristic to facilitate
the comparison of sequences using both types of op­
erations; the change. insert, and delete operations on
individual bases. and the transpose and invert opera­
tions on segments of the sequences.

Examples
Phylogenetic Analysis
Picornaviridae is a family of single stranded RNA
viruses that are 7.2 to 8.4 kb in length. It is com­
posed of the five genera Aphthovirus. Cardiovirus. En­
terovirus. Hepatovirus, and Rhinovirus. The RNA typ­
ically codes for four major polypeptides and several
proteases.

We selected the sequences from Gen Bank release
81.0 (February 1994) with the keywords -Picornaviri­
dae". "complete-. -genoine-, and "sequence ". From
these GenBank entries we selected the twenty entries
that contained a complete Picornavirus genome se­
quence. Using the heuristic. we computed an align­
ment score between each pair of sequences. The align­
ment score. s. is converted to a normalized -distance".
(1. using

= 1
max,

where max,, is the maximum possible alignment score
for the pattern sequence. We then used the Fitch
Margoliash distance matrix method as implemented
by Joe Felsenstein in the Phylip 3.53c package to con­
struct the phylogenetic tree in Figure 1.

The phylogeny presented in Figure 1 is based on
the complete viral genomes and is nearly identical
to the phylogeny presented by (Stanway 1990) based
on the P1 (capsidencoding) regions of each genome.
The Hepatovirus genera (HPAACG. HPACG. HPA.
HPAA) cluster tightly as expected since they are
nearly identical sequences. The Cardioviruses (EVC­
GAA, EMCDCG. EMCBCG, MNGPOLY, TMECG,
TMEPP, TMEVCPLT, and TMEGDVCG) form three
groups. the encephalomyocarditis viruses. a men
govirus. and the Theiler murine encephalomyelitis
viruses. The Enteroviruses (SVDG, CXB5CGA,
CXB4S, CXA21CG, POLIOS1, CXA24CG, and
BEVVG527) cluster loosely. The Rhinoviruses (HRV)
are not near any of the other Picornaviruses.

The importance of studying methods that are ca­
pable of aligning genetic sequences that include in­
versions and translocations is evidenced by the fre­
quent mention of the rearrangement of the order and
orientation of genes between organisms in the litera­
ture. for example (Perry. Thomsen and Roeder 1985:
Prombona and Subramanian 1989; Devos et al. 1993).
Further the known order and orientation of genes on 16
mitochondrial genomes has recently been used to con­
struct a phylogenetic tree (Sankoff et al. 1992). With
walking tree heuristics we can construct. such phylo­
genetic trees easily from either the DNA sequences or
from the gene positions and orientations.

Alignment and Gene Finding
To demonstrate the utility of our heuristic, we use it. to
align two pairs of sequences. The result of the heuris­
tics discussed in this paper is an alignment for each
character of the pattern into the text. We are develop­
ing tools to filter out the uninteresting regions of the
alignment and leave only the interesting regions. Cur­
rently we use two simple filters. The first filter selects
regions that. are aligned with no gaps. A minimum

96

EVCGAA EMCDCG
-7 -- EMCBCG

TMECG

TMEPP MNGPOLY

TMEVCPLT

TMEGDVCG

HPAACG

HPACG

HPA
HPAAHRV

NSVDG ---- // /
.' / \ \

CXB5CGA
' \ BEw0527/

CXB4S / \ CXA24CG
CXA2ICG POLIOSI

.10

Figure 1: Phylogenetic tree of the Picornavirus con­
structed using distances between the complete genome
sequences as computed by our heuristic.

H4

13750.0

ID
12500.0

41 1B 11250.0

100000

17500

7500.0 7500.0
04

62500 6750.0

03 2
50210 5000.0

0

3750.0 3750.0
H2O

H20 2500.0 2500.0
H2O

114
12500 1750.0 H12

00

H3 0.0 0.0

Figure 2: An alignment of two histone gene clusters
from Xenopus laevis, GenBank loci XELHISH2 and
XELHISH3A.

length is specified and only regions of the alignment
that are at least the minimum length with no gaps
are shown. The second filter selects only regions that
have a percent identity greater than a specified mini­
mum percent identity. In Figures 2 and 3, the regions
that pass through both filters are shown with red bars
connecting regions that align directly and blue bars
connecting regions that are the inverse complement of
one another. The intensity of the color increases as the
percent identity increases.
Histone gene cluster of X. laevis We use two his-
tone gene clusters from Xenopus laevis to demonstrate
aligning sequences with inversions. The histone gene
cluster from X. laevis with GenBank accession number
X03017 is 14942 base pairs in length and the histone
gene duster from X. laevis with GenBank accession
number X03018 is 8592 base pairs long (Perry, Thom­
sen and Roeder 1985). The orientation of exons H2A
and H3 in X03017 is inverted to the orientation of ex­
ons H2A and H3 in X03018. Our heuristic constructed
the alignment shown in Figure 2. The position of the
histone genes H2A, H2B, H3, and H4 are marked on
both sequences. Notice that the genes H3 and H4 ap­
pear twice in the left sequence, X03017, in the figure
and both copies are aligned with the single copy of the
gene in the right sequence, X03018. The alignment
shows that the orientation of 112A and H3 regions are
reversed in the two sequences. The regions of the two

97

COX.2

175000
AT2.6,1

,62500 URF A

Allhee-6mon

11750.0 137500 COTS

1251:0.0 125060

NA1311.1
1125606 , 11230.0

CY13.13
NADH-6 1 0300. 0

NADU 41.

11750.0
COX-1

0750.0

NADH.0
750007500.0

COX-I
6013165 6250.0 6230.0 2
NADH-3

COX -1COX -3 5000.0 50000
2765.66

3750.0 3750.0 IC036.2

23030 2300.0
COX-1

1250.0 1230.0

NADH.2

0.0 00

Figure 3: An alignment of the mitochondrial genomes
of Anopheles quadrimaculatus, GenBank locus MSQN­
CATR, and Schizosaccharomyces pombe, GenBank lo­
cus MISPCG. This alignment was calculated using
about five minutes of computer time.

sequences that show the highest similarity are the cor­
responding genes. The walking tree heuristic properly
aligns the histone gene clusters from X. laevis because
it is capable of inverting and transposing subsequences
in the alignment that it creates.
Mitochondrial DNA genomes Our heuristic was
used to align the mitochondrial genomes of Anopheles
quadrimaculatus, GenBank locus MSQNCATR, com­
posed of 15455 bases and Schizosaccharomyces pombe,
GenBank locus MISPCG composed of 19431 bases.
The resulting alignment is given in Figure 3. The two
genomes are labeled with the CDS features as given
in the GenBank entries. The two entries have the cy­
tochrome c oxidase 1 (COX-1), cytochome b (CYT­
B), cytochrome c oxidase 2 (COX-2), ATPase-6, and
ATPase-8 CDS features in common. There are two
striking features of this alignment. The first is that
the introns that appear in the S. pombe sequences for
cytochrome c oxidase 1 and cytochrome b, but do not
appear in the A. quadrimaculatus, are correctly rep­
resented in the alignment. The second striking fea­
ture of Figure 3 is the strong alignment of the cy­
tochrome c oxidase 3 (COX-3) region on the mitochon­
dria) genome of A. quadrimaculatus with an unlabeled
region on the mitochondrial genome of S. pombe. We
later found the cytochrome c oxidase subunit 3 from

the mitochondria of S. pombe in GenBank with acces­
sion number X16868 (Tinkl and Wolf 1989) and it
exactly matches the region from bases 8959 to 9768 of
the complete mitochondrial genome of S. pombe. This
demonstrates the capability of our heuristic to identify
a previously unrecognized region of DNA by aligning
similar regions in other sequences. The heuristic cor­
rectly aligns each of these pairs of products with the
exception of the ATPase 8 product. ATPase 8 is a short
region, 162 bases in the A. quadrimaculatus genome,
and 147 bases in the S. pombe genome. The simple
filters that we currently use with the heutistic fail to
identify this region because it is short and not highly
conserved relative to the rest of the genome. When
relaxing the stringency of the filters to the level that
alignments appear for ATPase-8, the rest of the align­
ment becomes difficult to see with simple filters due to
the large number of short, less significant regions that
align.

Walking Tree Performance
The basic heuristic computes the score of an alignment
with no inversions. We modify this heuristic in three
ways: 1) to compute a better placement of gaps, 2) to
construct the alignment, and 3) to use inversions in the
alignment. The extensions to the basic heuristic may
be used individually or in combination.

We have shown the following resource usage results
for the heuristic computing only the score of an align­
ment with inversions in (Holloway 1992).

The heuristic will execute in time proportional to
the product of the length of the text and the length
of the pattern.
The work space used by the heuristic is proportional
to the length of the pattern. The work space used is
independent of the length of the text.
The heuristic underestimates the actual alignment
score of a pattern at a given position in the text
by, at most, the sum of the gap penalties in the
alignment at that position.
We have shown the following resource usage results

for the heuristic for constructing an alignment with
inversions in (Holloway 1992).

In worst case, the heuristic to construct the align­
ment will run in 0(ITIIPI log IPI) time given a text
string T and a pattern P. In practice (see Figure 4),
alignment construction takes O(ITIIPI) time, as the
log IP I factor for constructing the alignment does not
appear since a "better" alignment, requiring that the
best alignment be updated, is only rarely found as
the walking tree moves along the text.
Work space of 0(IPI log IPI) is required by the
heuristic to construct an alignment given a text
string T and a pattern P.
The heuristic never needs to go backwards in the
text.

98

Figure 4: CPU time used by our heuristic to align pairs
of equal length sequences on a Sun SPARC-10.

Basic Heuristic

Our metaphor is to consider the data structure for the
basic heuristic as a walking tree (see Figure 5) with IP!
leaves, one for each character in the pattern. When the
heuristic is considering position 1+ 1 of the text, the
leaves of the tree are positioned over the 'PI contigu­
ous characters of the text up to and including character
1+1. The leaves also remember some of the information
for the best alignment within the first 1 characters of
the text. On the basis of this remembered information
and the comparisons of the leaves with the text char­
acters under them, the leaves update their information
and pass this information to their parents. The data
will percolate up to the root where a new best score is
calculated. The tree can then walk to the next position
by moving each of its leaves one character to the right.
The whole text has been processed when the leftmost
leaf of the walking tree has processed the rightmost
character of the text.

To define a scoring system that captures some bio­
logical intuitions, we currently use a function that gives
a positive contribution based on the similarity between
aligned characters, and a negative contribution that is
related to the number and length of gaps, transloca­
tions, and inversions. A gap in an alignment occurs
when adjacent characters in the pattern are aligned
with non-adjacent characters in the text. The length
of the gap is the number of characters between the
non-adjacent characters in the text. An inversion oc­
curs when a substring, Pt = - pi, is matched
with text that has the form pi. We use to
indicate the complement of p,. A translocation occurs
when a substring P1 is matched with a text substring
T1, and a substring P2 is matched with a text substring
7'2, but PI occurs before P2 in the pattern string, while
Ti occurs after T2 in the text string.

.. -""

ctatctactatgcggagcctagagtggcagtc

best score
best position

current position

left best score right best score
eft best pos right best po

Figure 5: Data structure used to align the pattern
within the text. In this picture, each leaf node rep­
resents 8 characters of the pattern, each of the internal
nodes represents 16 characters of the pattern, and the
root node represents the entire pattern. Each of the
nodes contains the fields shown in the expanded node.

Adjusting Gaps
The basic heuristic places gaps close to their proper
positions. If we use the heuristic to align the string
"ABCDEF" in the string "ABCXXDEF" the gap may
be placed between 'B' and 'C', rather than between 'C'
and 'D'. This is a result of the halving behavior of the
basic heuristic. By searching in the vicinity of the po­
sition that the basic heuristic places a gap we can find
any increase in score that can be obtained by sliding
the gap to the left or right. The cost of finding better
placements of the gaps is a factor of log 'PI increase in
running time since at each node we have to search a
region of the text of length proportional to the size of
the substring represented by the node.

Including Inversions
The basic heuristic can be modified to find alignments
when substrings of the pattern need to be inverted to
match substrings of the text. The idea is to invert the
pattern and move, along the text, a walking tree of the
inverted pattern in parallel with the walking tree of the
original pattern. Each pair of nodes in the forward and
inverse walking trees that represent the same region of
the pattern are referred to as sister nodes. When the
match score of a region of the inverted pattern is suffi­
ciently higher than the match score of the correspond­
ing region of the pattern, the region of the inverted
pattern is used to compute the alignment score. The
introduction of an inversion can be penalized using a
function similar to the gap penalty function.

Note that inversions are incorporated into both the
walking tree and the inverted walking tree so that it

99

is possible to have inversions nested within a larger
inverted substring.

Constructing the alignment
The basic heuristic will report the score and position
of the alignment. but does not give enough information
to construct the alignment.

Alignment construction introduces a factor of log iP1
into theoretical time and space usage winch does riot
occur in practice. An additional field to hold the best
alignment of the pattern substring represented by a
node is added to each node of the walking tree.

Note that we must save the entire alignment and not
just pointers to the alignments of a node.s children be­
cause the maximum scoring alignments of the children
may change without the maximum scoring alignment
of the node changing. When the modified heuristic
completes. the alignment that produced the best score
will be stored in the root node of the walking tree.

Parallelization
We have implemented and optimized our heuristic on a
single node of a Meiko CS- 2 computer. A node consists
of one Texas Instruments SuperSPARC scalar proces­
sor and two Fujitsu 1iVP vector processors.

In practice. we let each leaf of the walking tree repre­
sent more than a single character, typically between 30
and 100 characters. This does not decrease the number
of character comparisons that the heuristic performs
since the walking tree is still moving one character at
a time across the text. but it. does decrease the size of
the walking tree. The smaller walking tree decreases
the time required to align two sequences.

Csing the vector-optimized heuristic on one node
of the Meiko CS-2. two 8192-base sequences can be
aligned in less than 1.5 CPC minutes. and aligning a
pair of sequences of length 32768 requires less than 25
minutes of CPI: time. This agrees with the predicted
run time which says that increasing both the pattern
and the text by a factor of 4 should increase the run
time by a factor of 16.

Extrapolating, an alignment of sequences one mil­
lion bases long may take two weeks_ but. fortunately
our parallel implementations have shown near-linear
speedup. The table below shows speedup results on a
28 processor Sequent. Balance 21000.

Processors 1 8 12 16 20
Speedup 1.0 1.97 3.83 7.26 10.5 13.6 16.7
It may also be possible to construct a "smarty disk

controller based on our walking tree heuristic. The
heuristic uses only a few simple operations arid never
needs to back up in the text. Each processor would
need a small. constant sized memory. and would need
to communicate with at most four other processors.
Such a disk controller would allow database search
heuristics to start with only the sequences that are
similar to the query sequence.

Summary
Complete viral and organellar genomes have been se­
quenced and are in the biological sequence databases.
Very soon, complete sequences of bacterial genomes
and some eukaryotic genomes will be available. In
the past.. while aligning short biological sequences. it
was reasonable to model the evolution of biological se­
quences with the operations: substitute one base for
another. insert a base. and delete a base. Today. with
the arrival of sequences of complete genomes, the op­
erations inversion and transposition need to be added
in order to appropriately model the evolution of these
large biological sequences. In this paper we described
a family of heuristics designed to align biological se­
quences that may include inversions and transposi­
tions. Our heuristics use time approximately propor­
tional to the product of the lengths of the sequences
being aligned and use work space approximately pro­
portional to the length of the shorter of the sequences.
As an example of the utility of our heuristic_ it. was
used successfully to align the complete mitochondrial
genomes of Schizosaccharomyces pombe and 'Anopheles
guadrimaculatus. This alignment shows the previously
unreported location of the cytochrome c oxidase sub­
unit 3 on the mitochondria' genome of S. pombe and
was completed using about five minutes of computer
time.

Acknowledgments
This work was supported in part by NSF grant CDA­
9216172.

References
Devos. K. M.; Atkinson. M. D.; Chinoy. C. N.; Fran­
cis. H. A.; Harcourt, R. L.; Koebner. R. IM. D.; Liu.
C. J.; Masojc. P.; Xie. D. X.; and Gale. M. D. 1993.
Chromosomal rearrangements in the rye genome rel­
ative to that. of wheat. Theoretical and Applied Ge­
netics 85:673-680.
Holloway. 1. L., and Cull. P. 1994. Aligning genomes
with inversions and swaps. Second International Con­
ference on Intelligent Sytstems for Molecular Biology.
Proceedings of ISMB '94 195-202. AAAI Press, Menlo
Park CA 1994
Holloway. .1. L. 1992. String Matching Algorithms
with Applications in Molecular Biology. Ph.D. Dis­
sertation. Oregon State Universtiy. Corvallis. OR..
Perry. M., Thomsen, G. H. and Roeder. R. G. (1985).
Genomic organization and nucleotide sequence of two
distinct. historic gene clusters from xenopus
Journal of Molecular Biology 185: 479-499.
Prombona. A. and Subramanian. A. R. (1989). A
new rearrangement of angiosperm chloroplast DNA
in rye (secaie cereale) involving translocation and du­
plication of the ribosomal rpS15 gene, The Journal of
Biological Chemistry 264(32): 19060-19065.

100

Sankoff, D.; Leduc. G.; Antoine. N.; Paquin. B.;
Lang. B. F.: and Cedergren. R. 1992. Gene order
comparisons for phylogenetic inference: Evolution of
the mitochondrial genome. Proceedings of the Na­
tional Academy of Science 89:6875-6579.
Stanway, G. 1990. Structure. function. and evolu­
tion of picorna.viruses. Journal of General Virology
87:2483-2501.
Trinkl. H. and Wolf. K. (1989). Nucleotide sequence
of the gene encoding subunit 3 of cytochrome c oxi­
date (coz3) in the mitochondrial genome of schizosac­
charomyces pombe strain efl. Nucleic Acids Research
17(23): 10104.

