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VISUALIZATION, IMPLEMENTATION, AND
 

APPLICATION OF THE WALKING TREE HEURISTICS
 

FOR BIOLOGICAL STRING MATCHING 

1. INTRODUCTION 

1.1. BIOLOGICAL PROBLEMS 

"Know thyself" the philosopher says, and mankind from time immemorial 

has tried to obey this injunction. 

Strangely enough computer science has contributed to this search for self-

knowledge. Theory of computation has dealt with the meaning of knowledge and 

computation. Artificial intelligence has dealt with the modeling and simulation of 

thought. While these specialties have pursued mind, the ghost in the machine' 

advances in biology have provided a glimpse of the genetic code, the program within 

the machine" . These advances have in turn produced a new series of problems 

for computer science. The major problem is, of course. understanding how this 

genetic programming language works and how the biological machine interprets and 

executes the instructions in this language. While this major problem is beyond 

our present abilities, there are several smaller problems whose solutions may aid in 

solving the major problem. 

First and most obvious is the simple problem of storing masses of data. 

Megabytes, gigabytes and terabytes stream out of labs, and are safely stored in 

computer databases. 

The next problem is how to access data within these databases. Annotation 

of the sequence provides a partial solution. It is often possible to use the annotations 
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to find sequences from a particular species or from a particular chromosome or with 

a known specified gene. Of course. very few sequences are fully annotated. so finding 

all sequences within a particular gene may be much harder. Computer science has 

produced various string matching (actually string finding) algorithms that make 

finding a particular string within a large string a relatively easy operation. These 

algorithms allow for a certain degree of inexactness. If local changes like insertions, 

deletions, arid substitutions are the only permitted changes then these algorithms 

can do a good job if finding approximate matches. On the other hand if nonlocal 

changes like translocations are allowed, these algorithms will be stymied. These 

algorithms can handle inversions by looking for matches with both the inverted 

string and the noninverted string. But again inversions within inversions will cause 

these algorithms to fail to find matches. 

In the previous problems a "gene" was a contiguous substring, but in higher 

organisms a -gene" often consists of several exons which are contiguous substrings 

that are distributed within a large sequence. So local matching methods will have 

difficulty finding such genes. 

Another problem is that when sequences are found their function may be 

completely unknown. If one could find strongly matching subregions between two 

or more strings, one could infer that these matching regions probably are biologically 

important. The location and characterization of these important substrings could 

have a large commercial impact. 

Even if one does not know the function of a sequence, the similarity among 

sequences could be used to infer the relatedness of the organisms from which the 

sequences were derived. Recent work in this area has produced the hypothesis of a 

mitochondrial Eve. and the hypothesis that the Neanderthals were not our ancestors. 

If relatedness were a metric then one could use it to infer phylogenetic trees. 
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1.2. HEURISTICS 

Many of the problems of the previous section are computationally intractable 

and/or ill-specified. For example, no one knows exactly what causes changes in 

genetic sequences. and so the calculation of relatedness between sequences is ill-

specified. Of course, one can create models that exactly specify relatedness, but one 

does not know if these models are correct. Much of the effort in computer science has 

focused on the edit distance model because computing matchings in this model only 

takes time proportional to the product of the string lengths. But it is well known 

among biologists that this simple model does not capture all of the biological possi­

bilities. Unfortunately when one considers more biologically reasonable models, the 

matching problems become computationally intractable. For example, even finding 

the minimum number of flips needed to sort a sequence is an NP-hard problem. For 

these reasons, one is forced to use heuristics to study biological string matching. A 

heuristic is a computational procedure which usually computes something close to 

the desired result. 

In this thesis. I concentrated on the walking tree heuristics developed by Jim 

Holloway and Paul Cull [1-7]. This heuristic. or really family of heuristics, attempts 

to find a good approximate matching between two strings called the pattern and 

the text. The basic idea of the heuristic is to form a tree data structure based 

on the pattern and walk this data structure across the text. The leaves of the tree 

correspond to the characters of the pattern. and at each step each leaf simply reports 

on how similar its pattern character is to the text character it is looking at. A higher 

level node in the tree corresponds to the pattern substring represented by the leaf 

nodes which are descendents of the higher level node. A higher level node computes 

a score and a position for its substring based on the currently remembered score 
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and the scores and positions compared by the node's two children. The functions 

computed by the nodes can be chosen for the desired application. 

Modifications of this heuristic allow it to compute alignments between strings, 

and to deal with inversions and even inversions within inversions. Pleasantly heuris­

tic and its various modifications all run in time approximately proportional to the 

product of the lengths of the two strings. 

Because of the simple tree structure of this heuristic, it can be parallelized 

relatively easily. Again because of the simple structure and the low degree of com­

munication needed between processors, one would expect almost full speedup, so 

that running a parallel version on P processors would take about 1/P of the time to 

run the job using only a single processor. 

1.3. VISUALIZATION 

Humans are largely visual animals. To understand a mass of data, humans 

find one picture preferable to thousands of numbers stored in a table. How can 

string matching be conveyed by a picture? 

The simplest idea is to present an alignment as a graph in which there is an 

edge (or visually a line) from a character in one string to the aligned character in 

the other string. A little thought indicates that while this might be reasonable for 

very short strings. it would present a confusing mess for longer strings. Since typical 

biological strings are several thousand characters in length, one needs a method that 

suppresses single character matches in favor of longer matches. On the other hand, 

if one had a block from say character i to character j in one string that aligned with 

a character 1 to character m in the other string, one would not want the fact that 

character i --17 did not align with character 1±17 to mess up the block match. 
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These considerations led me to consider two important parameters, contig 

length and percent identity. 

Contig length is the length of a contiguous pattern substring which is matched 

to a contiguous text substring. Percent identity of a pattern substring is the percent­

age of the characters in that substring which are mapped to the identical characters 

in the text. By varying these two parameters I can decide to show only those sub­

strings that are of at least the contig length and match by at least the specified 

percentage. 

To make the visualization better, I decided to use different colors, green for 

direct matches and red for inverted matches. These distinct colors will make the two 

kinds of matches easier to see. The use of color also has another advantage. I could 

use a light color to indicate a match which had just met the percentage threshold, 

and use a deeper color to indicate a higher percentage match. 

Finally, I realized that outlining matching bands in black made them much 

easier to see. 

1.4. MY CONTRIBUTIONS 

The main effort reported in this thesis is the design of visual interfaces for 

the walking tree heuristic. Of course, these interfaces could have been used on top 

of other heuristics. but I did not investigate this possibility. 

The first interface I designed was based on Tcl/Tk. The second inter­

face was designed using HTML and is available on the World Wide Web at 

http://www.cs.orst.edu/ cavenej/chasm-view.html 

I used these interfaces to present some studies of the efficacy of the walking 

tree heuristic. I did this by taking a sequence, permuting and inverting this sequence, 

http:http://www.cs.orst.edu
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and then applying the walking tree heuristic to the pair of changed and unchanged 

sequences. 

I also experimented with some real biological data to see which values of the 

parameters gave a reasonable presentation of the matching between sequences. 

As mentioned above, the walking tree heuristics should parallelize easily. 

Jim Holloway had demonstrated this by creating a parallel form for the Sequent 

Balance which is a shared memory parallel machine H. Holloway demonstrated" 

his program by using it to find the relatedness scores for a family of viral genomes. 

He then converted these scores to distances and used these distances to construct a 

phylogenetic tree for these viruses. Holloway showed that his program displayed an 

almost linear speedup in the number of processors used. Unfortunately, our Sequent 

has now been decommissioned, so his programs can no longer be run. I designed 

a parallel program using PVM which would run on a network of workstations. 

used this program to compute distances between viral genomes and then fed these 

distances to an available program which constructed the phylogenetic tree. The 

major advance here is that my program could calculate the distances for a family of 

38 genomes in less time than Holloway's program took to compute the distances for 

a family of 20 genomes. This speedup is mainly the result of the speed advantage 

of the workstations over the Sequent Balance. 

1.5. OVERVIEW 

In Chapter 2 I have given background on basic concepts of molecular biology. 

I introduce the applicability of the Walking Tree [1-7] to gene discovery, annotation 

of genetic structures. genome alignment and phylogenetic tree calculation in Chapter 

3. I also present. an alignment of the mitochondrial genomes of the human and 

the earthworm which I produced with my software for visualization of genomic 

I 



alignments. as well as my phylogenetic tree of thirty-eight picornaviruses. In Chapter 

4. I discuss bases of sequence interpretation and matching for this and future work. 

and relate my design considerations for current and future software implementations. 

In Chapter 5. I present my World Wide Web interface for genome alignment and 

visualization, which provides access to my software via a compiled CGI program. 

I also show a sample run of my software using the graphical user interface which I 

prototyped in Tcl/Tk, and a brief introduction to some of the underlying programs 

that I have written (which are detailed in the command-line reference in Appendix 

A). In Chapter 6. I provide further detail regarding my production of a genomic 

alignment visualization for mitochondrial genomes of the human and the earthworm, 

and of my fast construction of a phylogenetic tree for Picornaviridae using the 

Parallel Virtual Machine. I conclude in Chapter 7 with suggestions for further work. 

Appendix A is the command-line interface reference for my software. Appendix B 

is a supplement describing the Walking Tree heuristic algorithm, my contribution 

therein being only the reorganization of material drawn from [1-7] for a poster 

session presentation. 
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2. BIOLOGICAL BACKGROUND 

2.1. MOTIVATION 

Biologists are overwhelmed by the results of advances in DNA and protein 

sequencing technologies, which have caused an exponential growth in the amount 

of sequence data available for analysis. The extent to which this information can 

be navigated and classified drives advances in medicine and many sciences. New 

software tools are constantly being developed to leverage the data, many of which 

rely on the matching of one sequence of DNA, RNA, or protein to another, and those 

which are able to cope with the alignment difficulties of transpositions and inversions 

as well as indels. may prove to be the most useful. Herein, after mentioning a few 

of the high points (see [27] or a similar work for a more general introduction), I 

report on my experience extending one such tool which provides scored alignments 

for sequences. and suggest future directions for research. 

2.1.1. Gene Finding and Annotation of Genetic Structures 

Much of the available genetic sequence data has yet to be classified. Because 

similar sequences usually have similar biological functions, the matching of char­

acterized sequences to new ones is of great importance in the annotation of new 

data. Additionally. matches between uncharacterized sequences may be useful in 

the detection of previously unknown genes. 

2.1.2. Genome Alignment 

Complete genome sequences are now known for some organisms, and the 

human genome should be available in a few years. Alignments of entire genomic 

sequences reveal similarities between them which may allow the discovery of shared 
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mechanisms of molecular genetics. as well as exceptions to common mechanisms. 

and provide for cross-annotation of previously known genes and other features. 

2.1.3. Phylogenetic Analysis 

The phylogenetic study of molecular sequences is of help in understanding 

relationships between organisms. Local and global sequence comparison techniques 

enable the automatic generation of phylogenetic trees for the organisms involved. 

2.2. BACKGROUND 

The field of computational molecular biology is the application of computa­

tional methods to the study of relationships between biological molecules of interest. 

Common application areas include the understanding of the genetic mechanisms of 

organisms, viruses. or cancer and other genetic diseases. Much of the work is con­

cerned with comparisons of deoxyribonucleic acid (DNA), ribonucleic acid (RNA), 

or proteins. DNA is a linear chain molecule, containing a sequence of the bases ade­

nine (A). guanine (G). cytosine (C). and thymine (T), linked by a backbone. RNA 

is similar to DNA. but uses uracil (U) instead of thymine. Protein as produced 

is a linear chain molecule composed of a combination of the twenty amino acids in 

Table 2.1. We would like to exploit our knowledge of the relationship between DNA. 

RNA, and protein products, but there are complications. 

2.2.1. The central dogma 

The central dogma of molecular biology is illustrated in Figure 2.1. DNA 

serves as a template for the construction of an RNA copy in a process called tran­
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Codes Amino acid 
A Ala Alanine 

C Cys Cysteine 

D Asp Aspartic Acid 

E Glu Glutamic Acid 

F Phe Phenylalanine 

G Gly Glycine 

H His Histidine 

I Ile Isoleucine 

K Lys Lysine 

L Leu Leucine 

M Met Methionine 

N Asn Asparagine 

P Pro Praline 

Q Gln Glutamine 

R Arg Arginine 

S Ser Serine 

T Thr Threonine 

Val Valine 

W Trp Tryptophan 

Y Tyr Tyrosine 

Table 2.1. The standard amino acids. 
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scription. The transcribed RNA (messenger RNA, abbreviated as mRNA) is then 

used as a coded template to produce protein in the process known as translation. 

Triplets of RNA bases, called codons, specify each amino acid that is to be included 

in the protein. as shown in Table 2.2. 

DNA mRNA Protein 
transcription translation 

Figure 2.1. The central dogma of molecular biology. 

2.2.2. Complications 

2.2.2.1. Coding and non-coding strands 

The DNA molecule has directionality. and is usually present as double-

stranded DNA (dsDNA), with the two strands running in opposite directions, as 

depicted in Figure 2.2. In dsDNA, each adenine base in one strand is paired with 

a thvmine base in the other strand. and each cytosine base in one strand is paired 

with a guanine base in the other strand. Some bases code for genes, and some do 

not. In dsDNA. we often speak of a coding strand and a non-coding strand. wherein 

one strand codes for genes, and the other, complementary strand, running in the 

reverse direction. does not. In reality, either strand may contain genetic information 

at different locations in its sequence. and in some cases both strands actually code 

for genes along the same stretch of dsDNA. 
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Codon Amino
 
(RNA) Acid
 

1 AAA Lys
 
2 AAC Asn
 
3 AAG Lys
 
4 AAU Asn
 
5 ACA Thr
 
6 ACC Thr
 
7 ACG Thr
 
8 ACU Thr
 
9 AGA Arg
 

10 AGC Ser
 
11 AGG Arg
 
12 AGU Ser
 
13 AUA Ile
 
14 AUC Ile
 
15 AUG Met
 
16 AUU Ile
 
17 CAA Gin
 
18 CAC His
 
19 CAG Gin
 
20 CAU His
 
21 CCA Pro
 
22 CCC Pro
 
23 CCG Pro
 
24 CCU Pro
 
25 CGA Arg
 
25 CGC Arg
 
27 CGG Arg
 
28 CGU Arg
 
29 CUA Leu
 
30 CUC Leu
 
31 CUG Leu
 
32 CUU Leu
 
33 GAA Glu
 
34 GAC Asp
 
35 GAG Glu
 
35 GAU Asp
 
37 GCA Ala
 
38 GCC Ala
 
39 GCG Ala
 
40 GCU Ala
 
41 GGA Gly
 
42 GGC Gly
 
43 GGG Gly
 
44 GGU Gly
 
45 GUA Val
 
46 GUC Val
 
47 GUG Val
 
48 GUU Val
 
49 UAA END
 
50 UAC Tyr
 
51 UAG END
 
52 UAU Tyr
 
53 UCA Ser
 
54 UCC Ser
 
55 UCG Ser
 
55 UCU Ser
 
57 UGA END
 
58 UGC Cys
 
59 UGG Trp
 
63 UGU Cys
 
51 UUA Leu
 
62 UUC Phe
 
63 UJG Leu
 
64 UUU Phe
 

Table 2.2. Codon translation table (standard). 
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.-GTACTGAAT-0­
dsDNA III II II III II III II II II 

-3V19VILLV-­

base pairing: A:T and G:C 

Figure 2.2. Double-stranded DNA. 

2.2.2.2. Errors and Indels 

Differences between reported DNA sequences and the actual DNA, and be­

tween reported DNA from different species, may arise naturally or as the result of 

errors in the lab. One case of this is the substitution of one DNA base for another, 

whether actual or as a detection error. Another common problem area is that of 

indels (insertions and deletions of one or more DNA bases) in one DNA sequence 

relative to another. If the error is one of detection in the lab, identifying the function 

of the gene encoded becomes that much more difficult. If the difference is naturally 

occurring, we may be faced with a sequence that looks like a gene but is not actu­

ally expressed correctly, or with a sequence that has markedly changed relative to 

another while retaining the same function. Some of these problems involve a shift 

in reading frame. Six possible reading frames of a sequence, and their resultant 

protein products ( only one of which is usually correct), are shown in Figure 2.3. In 

most cases, only one of the six reading frames of a sequence is ever used in a healthy 

organism. 
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Met ProGluLeuTranslation in 
CysGinSersix reading frames A 1 aArgVa.1 

AUGCCAGAGLTUG-10­
-41- n/f0 eDn0f10 VV-3 

Codon examples: rilna rl a LI 
AUG = Met(hionine) 11-i&laSuslzr 
CAU = His(tidine) sT1-101-1,LnarluT3 

Figure 2.3. The six reading frames of translation. 

2.2.2.3. Introns and Exons 

In eukarvotes (organisms with nuclei), the DNA for a gene is often coded for 

by several parts called exons, which are separated by sections called introns. These 

introns must be removed from the RNA transcript, and the exons must be spliced 

together. before translation into protein takes place. This process is illustrated in 

Figure 2.4. 

exonl intron exon2 intron exon3 
DNA 

transcription 

exonl intron exon2 intron exon3 
RNA L-1791g1 

post-transcription processing 
intron182 

RNA NOMOIEl intron
Mai 

Figure 2.4. Introns and exons. 
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2.2.2.4. Transpositions 

Two DNA sequences may differ by a transposition, as shown in Figure 2.5. 

where two sequences (the middle two in this case) are swapped in a copy of the 

DNA. This can occur via a number of mechanisms. including multiple inversions. 

Ir 1"P VIP Ifev0v0'4.0v0Mrein-Q-esj!2-021;
3r*Sae04313fdsDNA 

transposition 

vovovn***** 0000aa
 
dsDNA 

Figure 2.5. Transposition within dsDNA. 

2.2.2.5. Inversions 

Occasionally, a section of dsDNA gets inverted, as shown in Figure 2.6. De­

pending on where this occurs and how long a sequence is involved, genes may be 

changed. broken. regulated [20], or moved a great distance. 

2.2.3. Summary 

The central dogma provides a model which we may use to study relationships 

between DNA, RNA. and proteins, but comparison of these molecular sequences is 

complicated by many details, including errors, substitutions, insertions, deletions, 

gene segmentation into exons, reading frame shifts, transpositions, and inversions. 
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dsDNA 

inversion 

N
 

op4.4.4.4.iry 

dsDNA 

Figure 2.6. Inversion within dsDNA. 



17 

3. METHODS 

The Walking Tree, a heuristic algorithm for approximate string matching, 

has been described in [1-7]. Here I recap some of its potential application areas in 

bioinformatics as they related to my investigations. 

3.1. SEQUENCE MATCHING FOR GENE DISCOVERY 

Similar sequences often have similar regulatory functions or code for related 

proteins. Thus. finding a close match between regions of two sequences may uncover 

related genes. There are many methods for sequence matching, including [8-10], and 

these vary in the degrees to which they handle the complications discussed in Sec­

tion 2.2.2. The Walking Tree produces a similarity score by a method which seems 

to circumvent these difficulties. The Walking Tree can also produce an inner align­

ment between two sequences (an alignment which is no larger than the larger of 

the two sequences), providing information on the locations of mutually conserved 

regions which can provide clues to the nature of the relationship between the se­

quences. With Figures 3.1 through 3.3 I briefly illustrate the alignment capabilities 

of the Walking Tree with respect to inversions and translocations (transpositions). 

Figure 3.1 shows the true relationship between an artificial DNA sequence (on the 

left) and the same sequence after repeated inversions and translocations (right). 

Regions which are relatively inverted are shown in red, and those which are not are 

shown in green. Figure 3.2 shows a visualization of raw results from a Walking Tree 

alignment for these two sequences. Inverse complementary matches are shown in 

red, and direct matches are shown in green. Most of the features were detected. 

Figure 3.3 shows another visualization of the same Walking Tree alignment, with 

much of the noise filtered out by my software. 



Figure 3.1. Artificial DNA and related sequence 
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Figure 3.2. A Walking Tree alignment (raw) 
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Figure 3.3. A Walking Tree alignment (filtered) 
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3.2. ANNOTATION OF GENETIC STRUCTURES AND GENOME 
ALIGNMENT 

Many programs are available for classifying regions within DNA sequences, 

including BLAST [11] and Gene Mark [12]. If large sequences which have many 

similarities are to be compared, the Walking Tree can be used to try to find the 

matching subsequences in the face of the complications mentioned in Section 2.2.2, 

and the two sequences may thusly be cross-annotated based upon previously classi­

fied regions. An example of this is shown in Figure 3.4, (discussed in more detail in 

Section 6.1.1) a visualization of sequence relationships between two mitochondrial 

genomes. 

3.3. PHYLOGENETIC TREE CALCULATION 

Phylogenetic trees serve to organize the relationships within a group of ge­

netic sequences and the organisms from which they come. To produce a phylogenetic 

tree for related organisms, methods [19] are available which take as input a distance 

matrix containing pair-wise distances (based on arbitrary distance metrics) between 

the sequences. Similarity scores from the Walking Tree can be normalized to obtain 

approximate edit distances which can be used to construct the required matrix for a 

phylogenetic tree. Figure 3.5 shows one such tree which I produced for thirty-eight 

related viral genomes. 
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Figure 3.4. Visualization of a walking tree alignment of two mitochondrial genomes. 
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4. APPROACHES AND CONSIDERATIONS 

4.1. MATCHING AND SEQUENCE INTERPRETATION 

4.1.1. Nucleic Acid Sequences 

The visualization examples in Chapter 2 are based on identity comparisons 

between bases in DNA sequences. Figure 4.1 shows another example, in this case, 

a matching of the DNA sequences for genes for the protein Cytochrome C in two 

species. Such comparisons reveal genetic relationships. It should be noted that other 

comparisons are possible, particularly those of amino acid sequence comparison, 

which provide more information on protein function.. 

4.1.2. Amino Acid Sequences 

Figure 4.2 is a comparison of the amino acid sequences for the protein Cy­

tochrome C in two species. based on identity matching of the amino acids. A number 

of other amino-acid-based approaches to sequence comparison are possible. and the 

method used may be dictated by the form of the data available. The nature of these 

sequence interpretations is such that the use of different visualization methods for 

alignments produced by the Walking Tree may be beneficial, taking advantage of 

different measures of amino acid similarity. 

4.1. 2.1. Protein Back-translation 

If a nucleic acid comparison is desired, but one or both sequences are pro­

teins, amino acid sequences may be back-translated into inferred mRNA precur­

sors. For example, given the tetramer MetProGluLeu in Figure 2.3, Table 2.2 

can be used to infer the mRNA sequence one codon at a time. Starting with 

Met, only one codon. AUG. is found in the table, so the first three inferred bases 
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are AUG. For Pro, there are four possible codons, all four of which begin with 

CC. So far there are now four possible inferred sequences, AUGCCA, .AUGCCC, 

AUGCCG. and AUGCCU. For the sake of convenience, these sequences may be 

written together as a single regular expression AUGCC[A.C,G,U]. For Glu, there 

are two codons from which to choose, GAA and GAG, extending our inference to 

eight possible sequences, AUGCC[A,C,G,U]GA[A,G]. For Leu, there are six differ­

ent codons, ULTA, LTG. CUA, CUC, CUG, and CUU. The ones beginning with 

uracil may be written as UU[A,G], and the four codons beginning with cytosine 

written as CU[A.C,G,U]. so for Leu, our six codons are [UU[A,G],CU[A,C,G,U]]. 

So, for the amino acid sequence MetProGluLeu, the forty-eight mRNA sequences 

AUGCC[A,C,G,U]GA[A,G][UU[A,G].CU[A,C,G,U]] may be inferred and used for 

sequence matching. Alternatives to producing all possible back-translations include 

choosing codons based on their likelihoods, or using ambiguous nucleotide codes. 

Codon likelihood Although the amino acids in our example sequence Met-

ProGluLeu have several possible codons, some codons are more likely than others 

to be found in a particular type of protein or in a particular organism. Thus, a 

codon may be chosen over others based upon relative likelihood. For example, if 

our protein is known to have come from a human, a codon frequency table such as 

Table 4.3 [21] for Homo sapiens may be used to construct the most likely mRNA 

sequence. For our example, there is one choice of AUG for Met, and most likely 

choices of CCC for Pro, GAG for Glu, and CUG for Leu, for an inferred sequence 

of AUGCCCGAGCUG. 

Ambiguous nucleotide codes Where the identities of nucleic acids in a se­

quence are ambiguous, extensions to nucleic acid representation such as that shown 
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Ala GCA 0.13 end UAG 0.21 Leu UUA 0.02 Ser UCA 0.05 
Ala GCG 0.17 end UAA 0.23 Leu CUA 0.03 Ser UCG 0.09 
Ala GCU 0.17 end UGA 0.55 Leu CUU 0.05 Ser AGU 0.10 
Ala GCC 0.53 Leu UUG 0.06 Ser UCU 0.13 

Gln CAA 0.12 Leu CUC 0.26 Ser UCC 0.28 
Arg CGA 0.06 Gln CAG 0.88 Leu CUG 0.58 Ser AGC 0.34 
Arg CGU 0.07 
Arg AGA 0.10 Glu GAA 0.25 Lys AAA 0.18 Thr ACA 0.14 
Arg AGG 0.18 Glu GAG 0.75 Lys AAG 0.82 Thr ACU 0.14 
Arg CGG 0.21 Thr ACG 0.15 
Arg CGC 0.37 Gly GGU 0.12 Net AUG 1.00 Thr ACC 0.57 

Gly GGA 0.14 
Asn AAU 0.22 Gly GGG 0.24 Phe UUU 0.20 Trp UGG 1.00 
Asn AAC 0.78 Gly GGC 0.50 Phe UUC 0.80 

Tyr UAU 0.26 
Asp GAU 0.25 His CAU 0.21 Pro CCA 0.16 Tyr UAC 0.74 
Asp GAC 0.75 His CAC 0.79 Pro CCG 0.17 

Pro CCU 0.19 Val GUA 0.05 
Cys UGU 0.32 Ile AUA 0.05 Pro CCC 0.48 Val GUU 0.07 
Cys UGC 0.68 Ile AUU 0.18 Val GUC 0.25 

Ile AUC 0.77 Val GUG 0.64 

Table 4.3. Codon frequency for highly expressed human genes 

in Table 4.4 [22] are often used. Using Table 4.3 and Table 4.4, our example pro­

tein MetProGluLeu may be back-translated to the ambiguous sequence AUGCCN­

GARYUN, with .AUG for Met, CCN for Pro, GAR for Glu. and YUN for Leu. 

..1.2.2. DNA Translation 

DNA sequences may be translated (using an appropriate translation table, 

such as Table 2.2) in all six reading frames (see Figure 2.3) and the resulting amino 

acid sequences used in matching. This allows nucleic acid sequences to be compared 

to other sequences based upon the similarities of the amino acids for which they 

may code. 
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Amb. Possible
 
Code Nucleotides
 

N A C G1U 
A C G 

H A C U 
D A G U 
B C G U 
M A C 
R A G 
W A U 
K G U 
S C G 
Y C U 
A A 
C C 
G G 
U U 

Table 4.4. Common ambiguous nucleotide codes. 

4.1.2.3. Amino Acid Similarity 

Amino acids may be compared based on a variety of properties, including 

electric charge. hydrophobicity, size, codon mutation tolerance and distance, and 

roles typically played in secondary, tertiary and quaternary structures, all of which 

may be important to protein structure and function. The most widely successful 

comparison methods based on these properties are the intricate PAM and BLO­

SUM matrix families, including PAM250 [23] and BLOSUM62 [24], but for many 

applications, a simple binary measure of hydrophobicity is the method of choice. 

4.1.2.4. Hydrophobicity 

Hydrophobicity here is a measure of whether an amino acid residue's side-

chain tends not to associate with water molecules. This serves as a predictor of 

whether or not the amino acid will be exposed to water in a protein's folded struc­
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ture. Because related or similar proteins typically have hydrophobic regions in 

common, this quality is useful in matching sequences. 

Table 4.5 [251 shows binary hydrophobicities for the standard amino acids. 

The primary advantage of reducing hydrophobicity to a binary variable is a compu­

tational one. A single amino acid, the product of a three-nucleotide codon, may be 

represented by one binary bit, sequences of which may be efficiently stored, manip­

ulated, and compared. 

Residue Hydrophobic 

Ala 1 

Arg 0 

Asn 0 

Asp 0 

Cys 1 

Gln 0 

Glu 0 

Gly 1 

His 0 

Ile 
Leu 1 

Lys 0 

Met 1 

Phe 1 

Pro 0 

Ser 0 

Thr 0 

Trp 1 

Tyr
Val 

1 

1 

Table 4.5. Binary hydrophobicity of common amino acid residues. 

Figure 4.3 shows a comparison of the amino acid sequences for the protein 

Cytochrome C in two species, based on the binary hydrophobicity of the amino 

acids. Gaps in the alignment are primarily due to false inversions [30] which have 
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been filtered out. This suggests that in some cases the Walking Tree is more useful 

without the inversion capability. 

4.1.2.5. Matching and Visualization 

Although the matching and visualization studies herein are based on base 

identity between DNA sequences, other routes to comparison exist via translation 

and back-translation of sequence data. With protein sequence data, the application 

and rendering of knowledge of amino acid residue properties such as charge, size, 

typical roles, codon mutation distance, and hydrophobicity are possible. 

4.2. DESIGN CONSIDERATIONS 

It was desirable to produce a system amenable to the use of additional com­

parison methods such as those above. 

To this end, I wrote programs allowing for the use of additional data input 

formats, alignment programs, visualization bases, and output formats. 

I have initially configured the system for the comparison of DNA sequences 

based on identity and complementarily, with the Gen Bank format for data input, an 

existing Walking Tree implementation [26], and the PostScript format for graphical 

output. 

4.2.1. Pre-alignment 

I chose the Gen Bank format for input because of its widespread usage, sim­

plicity, online availability, and incorporation of DNA, RNA, protein, and annotation 

data together in one file. 
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4.2.2. Alignment 

I chose the Walking Tree implementation of [26] because it had been well 

tested by prior usage. is highly portable. and was immediately available. 

It should be noted that [26] is a single-processor implementation that takes 

time proportional to the product of the lengths of the two sequences being compared. 

which is prohibitive for very large sequences, and so parallel implementations are 

needed for large genomes. I have implemented a parallel version of the Walking 

Tree (direct tree only) on the Sequent Balance and noted a near-linear speedup, 

duplicating the parallelization results of [7], and I am also working on a checkpointing 

Walking Tree implementation in C++ for the PVM [18]. 

4.2.3. Visualization rendering 

I chose the PostScript format for rendering visualizations because of its sup­

port of subroutines and vector graphics (which reduce file size). the widespread 

installed base of free viewing software on all major platforms. and the availability 

of PostScript printers for standard and oversized color printing. 
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5. IMPLEMENTATION 

5.1. WWW INTERFACE 

I developed a web page. shown in Figure 5.1. to allow others convenient 

use of the alignment visualization software. My compiled CGI program processes 

submitted data and provides the user with a PostScript format visualization of the 

alignment. This format is suitable for viewing or high quality printing. Refer to 

Chapter 5 for details on the visualization parameters available on the web page. 

Figure 5.1 

5.2. GRAPHICAL INTERFACE 

Before I created a WWW interface, I prototyped a graphical user interface for 

alignment visualization in Tcl/Tk. I chose Tcl/Tk because the GUI would be easy 

to modify, and because the Canvas widget would allow easy generation of PostScript 

output. 

A screenshot of the original main window is shown in Figure 5.2. The help 

dialogs are shown in Figures 5.3. 5.4. and 5.5, The dialogs for alignment generation, 

viewing. and printing are shown in Figures 5.6, 5.7, 5.8. and 5.9. 

I found the Tcl/Tk PostScript generation capabilities unsatisfactory, and 

changed to a completely customized PostScript model of representation for visual­

ization and printing. It was easy to modify the GUI to call my new command-line 

interface code for alignment and visualization. 
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Figure 5.1. WWW access to a walking tree implementation. 

http:cavenejacs.orst.edu
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Figure 5.2. A first GUI. 

5.2.1. A Sample Run 

Figures 5.10 through 5.15 show the steps necessary to produce an alignment 

visualization via the graphical interface for two arbitrary Gen Bank data files, cyt2 

and cyt3. 

5.2.2. Invocation
 

The graphical interface is started by the Tcl/Tk script xdnc (Figure 5.10).
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Figure 5.3. The About dialog window. 

5.2.3. Bringing up the Align dialog
 

The Align dialog is brought up via the Align menu (Figure 5.11).
 

5.2.4. Performing an alignment 

Figure 5.12 shows the Align dialog, in which the names of two local Gen Bank 

data files are entered. After the Align button is pushed, alignment is performed, 

and the resultant alignment visualization appears (Figure 5.13). 

5.2.5. Printing the alignment visualization 

The Print dialog is brought up via the Print item in the File menu (Fig­

ure 5.14), and desired printing options are selected in the Print dialog (Figure 5.15). 

5.3. COMMAND-LINE INTERFACE AND UTILITIES 

A variety of scripts are provided to aid the user in the initiation of alignments 

and the production of visualizations. Of particular interest to the new user will 
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Figure 5.4. The Background dialog window. 

be the programs Align and View, and the PostScript post-processing utilities out­

linePSContigs and adjustPSMargins. See the command reference section (pages 63 

through 93 of Appendix A) for details. 

http:r-Ilignin.g..genones.:.1.44
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Figure 5.6. The Align dialog window. 
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Figure 5.7. The Zoom dialog window. 

m en 
View ali9nment of 

Figure 5.8. The View Alignment dialog window. 

Figure 5.9. The Print dialog window. 
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Figure 5.11. Bringing up the Align dialog 
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Figure 5.12. Starting an alignment 
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Figure 5.13. The resultant alignment visualization 
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Figure 5.14. Bringing up the print dialog 
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6. APPLICATION 

6.1. GENE ANNOTATION AND GENOME ALIGNMENT 

6.1.1. An Alignment of Two Mitochondrial Genomes 

Figure 3.4 on page 22 shows a visualization of an automated comparison 

of the complete mitochondrial genomes of the human [13] and the common earth­

worm [141. I produced the visualization with my programs Align.pl [15]. View.pl. 

and outlinePSContigs.pl from Gen Bank [16] entries for the two sequences. It is eas­

ily seen that the method produced reasonable matches between the known related 

regions of the sequences in most cases. e.g. the cytochrome oxidase subunits 1 and 2 

of the human mitochondrion (left) match the corresponding genes COII and COM 

of the worm mithchondrion (right), and protein 4 of the human matches the cor­

responding protein ND4 of the worm. The content of the visualizations produced 

from the alignment data may however be varied by adjusting the maximum gap 

length and the minimum contig length. 

6.1.2. Maximum Gap Length 

If there is a poorly conserved region within a gene, matching that same gene 

from two different species may result in two separate partial matches for the gene. 

with a gap in between them due to the poorly conserved region. By specifying a 

gap length which may be bridged to join separately matching regions, matches may 

be combined to aid in the identification of the gene as a single feature. Figures 6.1 

through 6.3 show the effect of increasing the maximum gap length. In Figure 6.1, 

with a maximum gap length of one, there are hundreds of tightly packed matches, 

many more than the number of genes (and ribosomal subunits). Increasing the max­

imum to sixteen (Figure 6.2) results here in a slightly noticeable improvement. With 

http:outlinePSContigs.pl
http:Align.pl


47 

the maximum increased to 64, pronounced matches for protein 4/ND4, cytochrome 

oxidase subunit 3/COIII. ATPase6. and cytochrome oxidase subunits 1.2 /COI,II 

appear. Note that I used a constant minimum contig length of six. and that dif­

ferent results will be obtained by varying the minimum contig length parameter. 

6.1.3. Minimum Contig Length 

The inner alignment data provided by the walking tree contains subsequence 

matches of length increasing with the degree of conservation within a region of the 

genome. Here I show the effect of filtering out the lesser of these contiguous (gapless) 

regions by varying the minimum contig length. Note that here. I used a constant 

maximum gap length of one, and that different results will be obtained with lower 

and higher parameters. In Figure 6.4, contiguously matched regions of thirty-six 

bases or more are shown. Many appear in a band for cytochrome oxidase subunit 1, 

and matches are also shown (from the top left) within cytochrome b, NADH subunit 

4. NADH subunit 2, and 16s ribosomal RNA. The lightness of the match within the 

16s ribosomal RNA represents a low percentage base identity within the match. In 

Figure 6.5, done with a minimum contig length of twelve, matches appear for all of 

the shown features. excepting NADH subunits 6. 4L, and 3, and ATPase subunit 8 

on the right. With a minimum contig length of six, (Figure 6.6). unlikely matches 

appear for these four subunits, as well as other noise, and with a minimum contig 

length of one. (Figure 6.7) all matches are shown as assigned in the raw walking 

tree alignment data. including questionable low significance inverted matches (in 

red) and noise. 
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6.2. PHYLOGENETIC TREE CALCULATION 

Figure 3.5 on page 23 shows the resulting tree of my phylogenetic study on 

thirty-eight picornavirus genomes [17]. I performed a total of 1444 alignments via 

my program pairwiseAlignments.pl running under PVM [18] configured with fifty 

workstations. I then constructed a distance matrix based on the alignment files with 

my program alignments2distanceMatrix.pl (see Appendix A for more information). 

I used the programs neighbor and drawgram in the phylogenetic analysis package 

PHYLIP to construct the tree from the distance matrix (see [? 19]or more in­

formation on these programs). Note that in my vertically oriented tree, it is the 

vertical component of the branches which corresponds to the distance from putative 

ancestors at the branching points. 

My tree contains the same clustering patterns as those of an earlier tree 

of twenty picornavirus (Figure 1 of Appendix B, also in [7]). constructed by Jim 

Holloway using the Walking Tree, which is nearly identical to that of [28]. 

The Theiler murine encephalomyelitis cardioviruses 

(TMECG. TMEGDVCG. TMEPP, TMEVCPLT), the other cardioviruses 

(EMCBCG, EMCDCG, EVCGAA, MNGPOLY, XXEVCG). and the Hepatitis A 

viruses (HPA. HPAA, HPACG) display the same clustering patterns. The relation­

ship [29] between the swine vesicular disease virus SVDG and Coxsackie B5 virus 

CXB5CGA is also retained. 

Additionally, the polio viruses (PIP03XX, POL1, POL2CG1. 

POL2LAN, POL3L12CG, POLIO1A, POLIO1B. POLIOS1) cluster well, 

as do the human rhinoviruses (HRV, HRV89. HRVACG, HRVPP, PIHRV2G). 

Interestingly, the bovine enterovirus BEVVG527 would appear to be more closely 

related than is HRV to the bulk of the human rhinoviruses. The Coxsackie A 

http:alignments2distanceMatrix.pl
http:pairwiseAlignments.pl
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viruses (CXA21CG, CXA24CG) and EV7OCG (which incidentally causes acute hem­

orrhagic conjunctivitis. as does CXA24CG) cluster loosely with the polio viruses. 

The Coxsackie B viruses (CXA1G (B1); CXA3CG, CXAB3CG (B3); CXB4S, PI­

COXB4 (B4)) cluster near the echo viruses (ECHOV9XX, ENT9GENOME), SVDG 

and CXB5CGA. 

It appears that the method clusters the sequences well according to their 

relatedness. and the Walking Tree may prove useful for automating other such com­

parisons given raw sequence data. 



57 

7. CONCLUSION 

7.1. SUMMARY 

Biologists are overwhelmed by the task of utilizing the ever-increasing amount 

of biological sequence data available. The problem is complicated by errors in data 

collection and by biological transformations including translocation and inversion 

of genetic elements. I have outlined complications of the application of the central 

dogma of molecular biology to sequence matching. and suggested the Walking Tree 

heuristic algorithm [1-7] as a suitable method for matching biological sequences 

in light of these complications. I have presented several new user interfaces for 

the Walking Tree. including a World Wide Web interface, a GUI in Tcl/Tk. and a 

command-line interface, suitable for use with Walking Tree implementations such 

as [26]. With these tools, I have produced a genomic alignment visualization for 

mitochondrial genomes of the human and the earthworm, and a phylogenetic tree 

of picornaviruses. further demonstrating applicability of the Walking Tree to gene 

discovery, annotation of genetic structures, genome alignment and phylogenetic tree 

calculation. 

7.2. FUTURE WORK 

Additional investigation and implementation is needed to support two im­

portant application areas. The first, the use of the Walking Tree in protein database 

searches. requires a Walking Tree implementation which incorporates BLOSUM [24] 

or PAM [23] matrices for amino acid similarity scoring. The second, the use of the 

Walking Tree to align complete genomes of bacteria and higher organisms in rea­

sonable time, requires parallel implementations of the Walking Tree for available 
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machines. Both of these application areas would be addressed by a PVM [18] imple­

mentation of the Walking Tree with arbitrarily assignable subtree scoring functions. 
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APPENDIX A: COMMAND LINE INTERFACE REFERENCE 

Align 

IT,( 1q( 

Align.pl pat tern-root-name patternGBfile text-root-name textGBfile 

[maxBaseImlex] 

D C.tirripti011. 

This wrapper script takes two GenBank files and produces an alignment of 

the first into the second. 

AI:gun/cuts 

In order. the arguments are: 

pattern-root-name The desired root name to use to represent the pattern sequence. 

patternGBfile The GenBank file containing the pattern sequence. 

text- root -mine The desired root name to use to represent the text sequence. 

text GBfile The GenBank file containing the text sequence. 

maxBaseindex Optionally specified maximum sequence length to assume for pur­

poses of visualization construction. 

Filc,s 

Required files involved: 

patteruGBfile The GenBank file for the pattern sequence. 

text GBfile The GenBank file for the text sequence. 

http:Align.pl
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Notes 

The default parameters defaultMinContigLength and defaultMaxGap are set 

rather conservatively. Several intermediate files are produced. 

View 

Usage 

View.pl pattern-root-name patternGBfile text-root-name textGBfile 

min-contig-length max-gap [maxBaselndex] 

Description 

This wrapper script takes two Gen Bank files for which an alignment has been 

previously computed. and produces a visualization of the alignment. The filename 

for the resulting PostScript file is constructed as pattern-root-name_X_text-root­

name.min-contig-length.max-gap.ps 

Arguments 

In order, the arguments are: 

pattern-root-name The desired root name to use to represent the pattern sequence. 

patternGBfile The GenBank file containing the pattern sequence. 

text-root-name The desired root name to use to represent the text sequence. 

textGBfile The GenBank file containing the text sequence. 

min-contig-length Aligned subsequences must be at least this long to be included 

in the visualization. 

max-gap Aligned subsequence pairs separated by gaps no longer than max-gap on 

http:name.min-contig-length.max-gap.ps
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both sequences will be joined.
 

maxBaseIndex Optionally specified maximum sequence length to assume for pur­

poses of visualization construction.
 

Files 

Required files involved: 

patternGBfile The Gen Bank file for the pattern sequence. 

textGBfile The Gen Bank file for the text sequence. 

pattern-root-name _X_text-root-name.alignment The previously generated align­

ment of the pattern sequence into the text sequence. 

Notes 

Several intermediate files are produced. 

a2c
 

Usage
 

a2c.p1 minimum-contig-length max-gap pattern-root-name 

text-root-name 

Description. 

This wrapper script assembles aligned contig pairs from a raw alignment. 
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Arguments 

In order, the arguments are: 

minimum-contig-length max-gap pattern-root-name text-root-name minimum-

contig-length Aligned subsequences must be at least this long to be included in 

the visualization. 

max-gap Aligned subsequence pairs separated by gaps no longer than max-gap on 

both sequences will be joined. 

pattern-root-name The root name to use to represent the pattern sequence. 

text-root-name - The root name to use to represent the text sequence. 

Files 

Required files involved: 

pattern_X_text.alignment The raw alignment file. 

Notes 

None. 

adjustPSMargins 

Usage 

adjustPSNIargins.pl leftin_points bottomin_points [yourfile.ps] 

http:yourfile.ps
http:adjustPSNIargins.pl
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Description 

This utility script changes the left and bottom margins of a PostScript align­

ment to those specified as arguments. 

Arguments 

In order, the arguments are: 

left_in_points The new left margin in printer's points. 

bottomin_points The new bottom margin in printer's points. 

yourfile.ps Optionally specified alignment visualization file. 

Files
 

Required files involved:
 

Notes
 

72 printer's points = 1 inch.
 

alignment2contigsList
 

Usage
 

alignment2contigsList.pl minLengthForContig [alignmentFileName]
 

Description
 

This script extracts aligned contig pairs from an alignment.
 

http:alignment2contigsList.pl
http:yourfile.ps
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Arguments 

In order. the arguments are: 

minLengthForContig Contigs must be at least this long to be included in the list. 

Files 

Required files involved: 

Notes 

None. 

alignments2reflexive
 

Usage
 

alignments2reflexive firstAlignmentFile secondAlignmentFile 

Description 

This script finds the reflexive alignment of two alignments. 

Arguments 

In order; the arguments are: 

firstAlignmentFile a_X_b.alignment 

secondAlignmentFile b_X_a.alignment 
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Files 

Required files involved: 

Two alignment files. 

Notes 

For various reasons, an alignment of a sequence A into a sequence B may 

differ from that of B into A. Given two such alignments. the reflexive alignment 

consists of those paired (matched) bases in the first alignment which were also a 

matched pair in the second alignment. 

annotateContigsListWithPatternAnnotations 

Usage 

annotateContigsListWithPatternAnnotations.pl contigsList 

patternAnnotationFeatures 

Description 

Where two individually contiguous subsequences are aligned to one another. 

it is insightful to share annotations between the two. This script annotates a con­

tigsList with annotations of the original pattern sequence. 

Arguments 

In order. the arguments are: 

contigsList File containing aligned contig pairs. 

http:annotateContigsListWithPatternAnnotations.pl
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patternAnnotationFeatures Features file of the pattern sequence to annotate the 

contigsList with. 

Files 

Required files involved: 

p_X_t.contigsList* and p.features 

Notes on containment and coverage 

It is useful to know the degree to which a contig covers another, and also 

the degree to which a contig is contained within another, to assess the relevance 

of such shared annotations. Herein, the degrees of containment and of coverage 

are defined as follows. Given two sequence ranges X and Y. the coverage by X 

of Y. COV(X,Y), is defined to be (min(Xend,Yend)-max(Xstart,Ystart))/(Yend-

Ystart) where this value is non-negative. (see Figure). The containment of X by Y, 

CON(X,Y), is defined to be (min(Xend,Yend)-max(Xstart,Ystart))/(Xend-Xstart) 

where this value is non-negative. (see Figure). Note that COV(X.Y)= CON(Y.X). 

annotateContigsListWithTextAnnotations 

Usage 

annotateContigsListWithTextAnnotations.pl contigsList 

textAnnotationFeatures 

http:annotateContigsListWithTextAnnotations.pl
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Description 

This script annotates a contigsList with annotations of the original text se­

quence. See annotateContigsListWithPatternAnnotations for discussion. 

Arguments 

In order, the arguments are: 

contigsList File containing aligned contig pairs. 

textAnnotationFeatures Features file of the text sequence to annotate the con­

tigsList with. 

Files 

Required files involved: 

pA_t.contigsList* and t.features 

Notes 

None. 

c2ps
 

Usage
 

c2ps.p1 a-rootANord b-rootWord min-length-contig 

Description 

Wrapper script for PostScript rendering of aligned contig pairs. 
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Arguments 

In order, the arguments are: 

a-root Word The root name to use to represent the pattern sequence. 

b-rootWord The root name to use to represent the text sequence. 

min-length-contig Used here to choose a contigsList file. 

Files 

Required files involved: 

See contigsList2ps.pl and filterPSFeatures.pl. 

Notes 

Contains default parameters for layout of rendering. 

changePSFeatures
 

Usage
 

changePSFeatures.pl feature-text new-feature-text [contigsList.ps-file]
 

Description
 

Modifies feature annotation text in existing PostScript visualizations.
 

Arguments
 

In order, the arguments are: 

feature-text The text that is to be found and modified. 

http:changePSFeatures.pl
http:filterPSFeatures.pl
http:contigsList2ps.pl
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new-feature-text The desired new text:
 

contigsList.ps-file Optionally specified alignment visualization file.
 

Files 

Required files involved: 

None. 

Notes 

None. 

contigsList2ps
 

Usage
 

contigsList2ps.pl pat TitlexOffset patTitleyOffset 

psPatternTitleFile textTitlexOffset textTitleyOffset psTextTitleFile patLa­

belOffset patRangeBarOffset patNumberOffset patternFeaturesPSfile text-

Label Offset textRangeBarOffset textNumberOffset textFeaturesPSfile start-

Base Index maxBaseIndex pattern-x-Offset text-x-Offset contigsListFile 

Description 

Assembles and generates PostScript fragments for rendering aligned contig 

pairs. 

http:contigsList2ps.pl
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Arguments 

In order, the arguments are: 

patTitlexOffset Horizontal offset for the pattern title. 

patTitleyOffset Vertical offset for the pattern title. 

psPatternTitleFile PostScript file holding the pattern title. 

textTitlexOffset Horizontal offset for the text title. 

textTitlexOffset Vertical offset for the text title. 

psTextTitleFile PostScript file holding the text title. 

patLabelOffset Horizontal offset for pattern feature annotation labels. 

patRangeBarOffset Horizontal offset for pattern feature range bars. 

patNumberOffset Horizontal offset for pattern base index numbers. 

patternFeaturesPSfile PostScript file holding the pattern's feature annotations. 

textLabelOffset Horizontal offset for text feature annotation labels. 

textRangeBarOffset Horizontal offset for text feature range bars. 

textNumberOffset Horizontal offset for text base index numbers. 

textFeaturesPSfile PostScript file holding the pattern's feature annotations. 

startBaseIndex Index of the first base location rendered. 

maxBaseIndex Maximum base index for which to allow. 

pattern-x-Offset Horizontal offset for the pattern-side of aligned contig pairs. 

text-x-Offset Horizontal offset for the text-side of aligned contig pairs. 

contigsListFile File containing the list of aligned contig pairs. 

Files 

Required files involved: 

pattern-root-name.title.pat.ps psPatternTitleFile 

http:pattern-root-name.title.pat.ps
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text-root-name.title.text.ps psTextTitleFile 

pattern-root-name.features.pat.ps patternFeaturesPSfile 

text-root-name.features.text.ps textFeaturesPSfile 

contigsListFile File containing aligned contig pairs. 

Notes 

Offsets are in printer's points. 

f2ps 

Usage 

f2ps.pl pattern-root-name pat-GB-file text-root-name text-GB-file 

Description 

This wrapper script extracts features from Gen Bank files and generates 

PostScript fragment files for rendering their labels at their locations along the pat­

tern and text sequences. 

Arguments 

In order, the arguments are: 

pattern-root-name The root name used to represent the pattern sequence. 

pat-GB-file The Gen Bank file containing the pattern sequence. 

text-root-name The root name used to represent the text sequence. 

text-GB-file The Gen Bank file containing the text sequence. 

http:text-root-name.features.text.ps
http:pattern-root-name.features.pat.ps
http:text-root-name.title.text.ps
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Files 

Required files involved: 

pat-GB-file The Gen Bank file for the pattern sequence. 

text-GB-file The Gen Bank file for the text sequence. 

Notes 

None. 

filterPSFeatures
 

Usage
 

filterPSFeatures.pl [ps-file] 

Description 

This script takes a PostScript alignment visualization as input, and outputs 

the visualization with certain feature annotation labels removed. By default, mRNA 

is stripped. 

Arguments 

In order, the arguments are: 

ps-file Optionally specified PostScript alignment visualization. 

http:filterPSFeatures.pl
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Files 

Required files involved: 

None. 

Notes 

Additional undesirable feature annotations may be specified by completing 

the template inside of this script. 

g2i
 

Usage
 

g2i.pl pattern-root-name pattern-GB-file text-root-name text-GB-file 

Description 

This wrapper script prepares input files for the sequence alignment exe­

cutable. Sequences are extracted from the specified Gen Bank files and assembled in 

an input file, which is then specified in the generated simscript file. 

Arguments 

In order, the arguments are: 

pattern-root-name The root name used to represent the pattern sequence. 

pattern-GB-file The Gen Bank file containing the pattern sequence. 

text-root-name The root name used to represent the text sequence. 

text-GB-file The Gen Bank file containing the text sequence. 
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Files 

Required files involved: 

pattern-GB-file The Gen Bank file containing the pattern sequence. 

text-GB-file - The Gen Bank file containing the text sequence. 

Yotes 

None. 

gb2features 

Usage 

gb2features.pl [gb-file] 

Description 

Extracts and labels annotations from the features section of a Gen Bank file. 

Arguments 

In order, the arguments are: 

gb-file Optionally specified Gen Bank file containing the sequence of interest. 

Files 

Required files involved: 

None. 

http:gb2features.pl
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Notes
 

Preprocess input with gbFeatureFix.pl to handle long annotations.
 

gb2psPatternTitle 

Usage 

gb2psPatternTitle.pl [GenBankFile] 

Description 

This script extracts the definition and accession fields from a Gen Bank file. 

and uses them to produce a PostScript fragment for the pattern title. 

Arguments 

In order. the arguments are: 

GenBankFile Optionally specified Gen Bank file containing the sequence of interest. 

Files 

Required files involved: 

None. 

Notes 

None. 

http:gb2psPatternTitle.pl
http:gbFeatureFix.pl
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gb2psTextTitle
 

Usage
 

gb2psTextTitle.pl [GenBankFile]
 

Description
 

This script extracts the definition and accession fields from a Gen Bank file.
 

and uses them to produce a PostScript fragment for the text title. 

Arguments 

In order, the arguments are: 

GenBankFile Optionally specified Gen Bank file containing the sequence of interest. 

Files 

Required files involved: 

None. 

Notes 

None. 

gb2seq
 

Usage
 

gb2seq.pl [gb-file] 

http:gb2seq.pl
http:gb2psTextTitle.pl
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Description 

This script extracts the sequence data from a Gen Bank file, and prints it on 

a single line without the digits and whitespace. 

Arguments 

In order, the arguments are: 

gb-file Optionally specified Gen Bank file containing the sequence of interest. 

Files 

Required files involved: 

None. 

Notes 

A new line character is appended to the output sequence. 

gbFeatureFix
 

Usage
 

gbFeatureFix.pl [gb-file]
 

Description
 

This filter prepares GenBank input for feature extraction.
 

http:gbFeatureFix.pl
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Arguments
 

In order, the arguments are:
 

gb-file Optionally specified Gen Bank file containing the sequence of interest. 

Files 

Required files involved: 

None. 

Notes 

This filter serves to merge each multi-line join of subsequences onto a single 

line. 

grid
 

Usage
 

grid.pl pgb tgb 

Description 

This script serves only as an example of running View.pl with a spread of 

parameters. 

Arguments 

In order. the arguments are: 

pgb The root name used to represent the pattern sequence, and here also the Gen-

Bank file. 
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tgb The root name used to represent the text sequence. and here also the Gen Bank 

file. 

Files
 

Required files involved:
 

Two Gen Bank files, specified by the arguments pgb and tgb. 

Notes 

This is only an exemplary script, and the name of each Gen Bank file doubles 

as the root name for that sequence's files. 

itoa
 

Usage
 

itoa.pl pattern-root-name text-root-name 

Description 

This wrapper script calls the sequence alignment executable. giving it a sim­

script file as input, and capturing output in an alignment file.. 

Arguments 

In order. the arguments are: 

pattern-root-name The root name used to represent the pattern sequence. 
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text-root-name The root name used to represent the text sequence. 

Files 

Required files involved: 

pattern-root-name_X_text-root-name.input Input file holding the text and pattern 

sequences. 

pattern-root-name A_text-root-name.simscript Commands to be executed by the 

sequence alignment executable. 

Notes 

None. 

joinContigs
 

Usage
 

joinContigs.pl max-gap [contigsListFile] 

Description 

This script joins (merges) adjacent pairs of aligned contigs which are sepa­

rated by no more than max-gap base pairs, creating larger aligned contig pairs from 

smaller ones. 

http:joinContigs.pl
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Arguments 

In order, the arguments are: 

max-gap Aligned subsequence pairs separated by gaps no longer than max-gap on 

both sequences will be joined. 

contigsListFile Optionally specified contigsList file. 

Files 

Required files involved: 

None. 

Notes 

Resultant contigs within an aligned pair may be of different lengths if the 

corresponding gaps are of different lengths. 

makeSimScript 

Usage 

makeSimScript.pl input-file-name 

Description 

This script generates commands for the sequence alignment executable. 

Arguments 

In order. the arguments are: 

input-file-name The file containing the text and pattern sequences. 

http:makeSimScript.pl
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Files 

Required files involved: 

The argument input-file-name is intended to be of the form p_XA.input representing 

an existing file. 

Notes 

None. 

outlinePSContigs
 

Usage
 

outlinePSContigs.pl [PostScript-alignment-visualization-file] 

Description 

This utility script outlines the bars of each aligned contig pair in the specified 

PostScript file. 

Arguments 

In order, the arguments are: 

PostScript-alignment-visualization-file Optionally specified. 

Files 

Required files involved: 

None. 

http:outlinePSContigs.pl
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Notes
 

The specified file is modified after a backup copy is created.
 

patternFeatures2ps 

Usage 

patternFeatures2ps.pl [pattern-features-file] 

Description 

This script produces PostScript fragments for pattern feature annotations. 

Arguments 

In order, the arguments are: 

pattern-features-file Optionally specified file containing feature annotations for the 

text sequence. 

Files 

Required files involved: 

None. 

Notes 

The script heuristically extracts (or excludes) a meaningful annotation from 

the wealth of available feature information. The selection criteria are easily modified 

in the script. 

http:patternFeatures2ps.pl
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rawAlignment2alignment
 

Usage
 

rawAlignment2alignment.p1 [raw-alignment-file] 

Description 

This script extracts the alignment information from the raw output of the 

sequence alignment executable. 

Arguments 

In order, the arguments are: 

raw-alignment-file Optionally specified. 

Files 

Required files involved: 

None. 

Notes 

None. 

seq2input
 

Usage
 

seq2input.pl text.seq pattern.seq 

http:seq2input.pl
http:rawAlignment2alignment.p1
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Description 

This script simply takes two sequence file names, and prints the sequence 

data in a form consumable by the sequence alignment executable. 

Arguments 

In order. the arguments are: 

text.seq File containing the text sequence, ended with a newline character. pat-

tern.seq File containing the text sequence. ended with a newline character. 

Files 

Required files involved: 

Two sequence files specified by text.seq and pattern.seq. 

Notes 

Yes. the text file is specified here before the pattern file. 

set MaxBaseIndex 

Usage 

seti\IaxBaselndex.pl pattern-root-name patternGBfile text-root-name 

text GBfile [maxBaselndex] 

Description 

Creates a file containing either the length of the larger of the sequences, or 

a user-specified substitute. to use in the layout of rendered visualizations. 

http:seti\IaxBaselndex.pl
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Arguments 

In order, the arguments are: 

pattern-root-name The root name used to represent the pattern sequence. 

patternGBfile The Gen Bank file containing the pattern sequence. 

text-root-name The root name used to represent the text sequence. 

textGBfile The Gen Bank file containing the text sequence. 

maxBaseIndex Optionally specified maximum base index to use in alignemnt vi­

sualizations. 

Files 

Required files involved: 

patternGBfile and textGBfile. 

Notes 

A new maxBaseIndex file is created unless the file already exists and no ar­

gument is given for maxBaseIndex on the command line. 

stripPSFeatures 

Usage 

stripPSFeatures.pl feature-text [ps-file] 

http:stripPSFeatures.pl
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Description 

This script strips (comments out) features matching the feature-text argu­

ment. Either a PostScript alignment visualization or a PostScript contigsList frag­

ment are acceptable as input. 

Arguments 

In order, the arguments are: 

feature-text Features matching this argument will be stripped from the PostScript 

view. 

ps-file Optionally specified PostScript file. 

Files 

Required files involved: 

None. 

Notes 

Using non-specific feature specifiers may result in unintended stripping, e.g., 

using the feature-text argument 'tRNA" would also strip mtRNA. 

t2ps
 

Usage
 

t2ps.p1 pattern-root-name pattern-GB-file text-root-name 

text-GB-file 
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Description 

This wrapper script creates PostScript fragment files for the pattern title and 

the text title. 

Arguments 

In order. the arguments are: 

pattern-root-name The root name used to represent the pattern sequence. 

pattern-GB-file The Gen Bank file containing the pattern sequence. 

text-root-name The root name used to represent the text sequence. 

text-GB-file The Gen Bank file containing the text sequence. 

Files 

Required files involved: 

pattern-GB-file and text-GB-file 

Notes 

None. 

textFeatures2ps
 

Usage
 

textFeatures2ps.p1 [text-features-file] 

http:textFeatures2ps.p1
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Description,
 

This script produces PostScript fragments for text feature annotations.
 

Arguments
 

In order. the arguments are:
 

text-features-file Optionally specified file containing feature annotations for the 

text sequence. 

Files 

Required files involved: 

None. 

Notes 

The script heuristically extracts (or excludes) a meaningful annotation from 

the wealth of available feature information. The selection criteria are easily modified 

in the script. 
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APPENDIX B: SUPPLEMENTAL PAPER ON THE WALKING TREE
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Abstract 
Our walking tree heuristics, for approximate string 
matching. align large biological sequence, which may 
include nested inversions and traiislocations. 
Here we show their use in phylogenetic tree calcula­
tion, genome alignment, and gene finding. 
The basic heuristic takes time proportional to the 
product of the lengths of the two sequences, uses 
workspace proportional to the length of the shorter 
sequence. and parallelizes well. 

Introduction 
There is evidence that evolution proceeds by transpos­
ing and inverting segments of a genome in addition to 
changing. inserting. and deleting individual bases in 
the genome. Many methods that are currently in use 
to align genetic sequences fail to consider the transpose 
and invert, operations. We introduce treatments given 
in (Holloway S Cull 1994) of a heuristic to facilitate 
the comparison of sequences using both types of op­
erations; the change. insert, and delete operations on 
individual bases. and the transpose and invert opera­
tions on segments of the sequences. 

Examples 
Phylogenetic Analysis 
Picornaviridae is a family of single stranded RNA
viruses that are 7.2 to 8.4 kb in length. It is com­
posed of the five genera Aphthovirus. Cardiovirus. En­
terovirus. Hepatovirus, and Rhinovirus. The RNA typ­
ically codes for four major polypeptides and several 
proteases. 

We selected the sequences from Gen Bank release 
81.0 (February 1994) with the keywords -Picornaviri­
dae". "complete-. -genoine-, and "sequence ". From 
these GenBank entries we selected the twenty entries 
that contained a complete Picornavirus genome se­
quence. Using the heuristic. we computed an align­
ment score between each pair of sequences. The align­
ment score. s. is converted to a normalized -distance". 
(1. using 

= 1 
max, 

where max,, is the maximum possible alignment score 
for the pattern sequence. We then used the Fitch 
Margoliash distance matrix method as implemented 
by Joe Felsenstein in the Phylip 3.53c package to con­
struct the phylogenetic tree in Figure 1. 

The phylogeny presented in Figure 1 is based on 
the complete viral genomes and is nearly identical 
to the phylogeny presented by (Stanway 1990) based 
on the P1 (capsidencoding) regions of each genome. 
The Hepatovirus genera (HPAACG. HPACG. HPA. 
HPAA) cluster tightly as expected since they are 
nearly identical sequences. The Cardioviruses (EVC­
GAA, EMCDCG. EMCBCG, MNGPOLY, TMECG, 
TMEPP, TMEVCPLT, and TMEGDVCG) form three 
groups. the encephalomyocarditis viruses. a men 
govirus. and the Theiler murine encephalomyelitis 
viruses. The Enteroviruses (SVDG, CXB5CGA, 
CXB4S, CXA21CG, POLIOS1, CXA24CG, and 
BEVVG527) cluster loosely. The Rhinoviruses (HRV) 
are not near any of the other Picornaviruses. 

The importance of studying methods that are ca­
pable of aligning genetic sequences that include in­
versions and translocations is evidenced by the fre­
quent mention of the rearrangement of the order and 
orientation of genes between organisms in the litera­
ture. for example (Perry. Thomsen and Roeder 1985: 
Prombona and Subramanian 1989; Devos et al. 1993). 
Further the known order and orientation of genes on 16 
mitochondrial genomes has recently been used to con­
struct a phylogenetic tree (Sankoff et al. 1992). With 
walking tree heuristics we can construct. such phylo­
genetic trees easily from either the DNA sequences or 
from the gene positions and orientations. 

Alignment and Gene Finding 
To demonstrate the utility of our heuristic, we use it. to 
align two pairs of sequences. The result of the heuris­
tics discussed in this paper is an alignment for each 
character of the pattern into the text. We are develop­
ing tools to filter out the uninteresting regions of the 
alignment and leave only the interesting regions. Cur­
rently we use two simple filters. The first filter selects 
regions that. are aligned with no gaps. A minimum 
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Figure 1: Phylogenetic tree of the Picornavirus con­
structed using distances between the complete genome 
sequences as computed by our heuristic. 
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Figure 2: An alignment of two histone gene clusters 
from Xenopus laevis, GenBank loci XELHISH2 and 
XELHISH3A. 

length is specified and only regions of the alignment 
that are at least the minimum length with no gaps 
are shown. The second filter selects only regions that 
have a percent identity greater than a specified mini­
mum percent identity. In Figures 2 and 3, the regions 
that pass through both filters are shown with red bars 
connecting regions that align directly and blue bars 
connecting regions that are the inverse complement of 
one another. The intensity of the color increases as the 
percent identity increases. 
Histone gene cluster of X. laevis We use two his-
tone gene clusters from Xenopus laevis to demonstrate 
aligning sequences with inversions. The histone gene 
cluster from X. laevis with GenBank accession number 
X03017 is 14942 base pairs in length and the histone 
gene duster from X. laevis with GenBank accession 
number X03018 is 8592 base pairs long (Perry, Thom­
sen and Roeder 1985). The orientation of exons H2A 
and H3 in X03017 is inverted to the orientation of ex­
ons H2A and H3 in X03018. Our heuristic constructed 
the alignment shown in Figure 2. The position of the 
histone genes H2A, H2B, H3, and H4 are marked on 
both sequences. Notice that the genes H3 and H4 ap­
pear twice in the left sequence, X03017, in the figure 
and both copies are aligned with the single copy of the 
gene in the right sequence, X03018. The alignment 
shows that the orientation of 112A and H3 regions are 
reversed in the two sequences. The regions of the two 
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Figure 3: An alignment of the mitochondrial genomes 
of Anopheles quadrimaculatus, GenBank locus MSQN­
CATR, and Schizosaccharomyces pombe, GenBank lo­
cus MISPCG. This alignment was calculated using 
about five minutes of computer time. 

sequences that show the highest similarity are the cor­
responding genes. The walking tree heuristic properly 
aligns the histone gene clusters from X. laevis because 
it is capable of inverting and transposing subsequences 
in the alignment that it creates. 
Mitochondrial DNA genomes Our heuristic was 
used to align the mitochondrial genomes of Anopheles 
quadrimaculatus, GenBank locus MSQNCATR, com­
posed of 15455 bases and Schizosaccharomyces pombe, 
GenBank locus MISPCG composed of 19431 bases. 
The resulting alignment is given in Figure 3. The two 
genomes are labeled with the CDS features as given 
in the GenBank entries. The two entries have the cy­
tochrome c oxidase 1 (COX-1), cytochome b (CYT­
B), cytochrome c oxidase 2 (COX-2), ATPase-6, and 
ATPase-8 CDS features in common. There are two 
striking features of this alignment. The first is that 
the introns that appear in the S. pombe sequences for 
cytochrome c oxidase 1 and cytochrome b, but do not 
appear in the A. quadrimaculatus, are correctly rep­
resented in the alignment. The second striking fea­
ture of Figure 3 is the strong alignment of the cy­
tochrome c oxidase 3 (COX-3) region on the mitochon­
dria) genome of A. quadrimaculatus with an unlabeled 
region on the mitochondrial genome of S. pombe. We 
later found the cytochrome c oxidase subunit 3 from 

the mitochondria of S. pombe in GenBank with acces­
sion number X16868 (Tinkl and Wolf 1989) and it 
exactly matches the region from bases 8959 to 9768 of 
the complete mitochondrial genome of S. pombe. This 
demonstrates the capability of our heuristic to identify 
a previously unrecognized region of DNA by aligning 
similar regions in other sequences. The heuristic cor­
rectly aligns each of these pairs of products with the 
exception of the ATPase 8 product. ATPase 8 is a short 
region, 162 bases in the A. quadrimaculatus genome, 
and 147 bases in the S. pombe genome. The simple 
filters that we currently use with the heutistic fail to 
identify this region because it is short and not highly 
conserved relative to the rest of the genome. When 
relaxing the stringency of the filters to the level that 
alignments appear for ATPase-8, the rest of the align­
ment becomes difficult to see with simple filters due to 
the large number of short, less significant regions that 
align. 

Walking Tree Performance 
The basic heuristic computes the score of an alignment 
with no inversions. We modify this heuristic in three 
ways: 1) to compute a better placement of gaps, 2) to 
construct the alignment, and 3) to use inversions in the 
alignment. The extensions to the basic heuristic may 
be used individually or in combination. 

We have shown the following resource usage results 
for the heuristic computing only the score of an align­
ment with inversions in (Holloway 1992). 

The heuristic will execute in time proportional to 
the product of the length of the text and the length 
of the pattern. 
The work space used by the heuristic is proportional 
to the length of the pattern. The work space used is 
independent of the length of the text. 
The heuristic underestimates the actual alignment 
score of a pattern at a given position in the text 
by, at most, the sum of the gap penalties in the 
alignment at that position. 
We have shown the following resource usage results 

for the heuristic for constructing an alignment with 
inversions in (Holloway 1992). 

In worst case, the heuristic to construct the align­
ment will run in 0(ITIIPI log IPI) time given a text 
string T and a pattern P. In practice (see Figure 4), 
alignment construction takes O(ITIIPI) time, as the 
log IP I factor for constructing the alignment does not 
appear since a "better" alignment, requiring that the 
best alignment be updated, is only rarely found as 
the walking tree moves along the text. 
Work space of 0(IPI log IPI) is required by the 
heuristic to construct an alignment given a text 
string T and a pattern P. 
The heuristic never needs to go backwards in the 
text. 
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Figure 4: CPU time used by our heuristic to align pairs 
of equal length sequences on a Sun SPARC-10. 

Basic Heuristic 

Our metaphor is to consider the data structure for the 
basic heuristic as a walking tree (see Figure 5) with IP! 
leaves, one for each character in the pattern. When the 
heuristic is considering position 1+ 1 of the text, the 
leaves of the tree are positioned over the 'PI contigu­
ous characters of the text up to and including character 
1+1. The leaves also remember some of the information 
for the best alignment within the first 1 characters of 
the text. On the basis of this remembered information 
and the comparisons of the leaves with the text char­
acters under them, the leaves update their information 
and pass this information to their parents. The data 
will percolate up to the root where a new best score is 
calculated. The tree can then walk to the next position 
by moving each of its leaves one character to the right. 
The whole text has been processed when the leftmost 
leaf of the walking tree has processed the rightmost 
character of the text. 

To define a scoring system that captures some bio­
logical intuitions, we currently use a function that gives 
a positive contribution based on the similarity between 
aligned characters, and a negative contribution that is 
related to the number and length of gaps, transloca­
tions, and inversions. A gap in an alignment occurs 
when adjacent characters in the pattern are aligned 
with non-adjacent characters in the text. The length 
of the gap is the number of characters between the 
non-adjacent characters in the text. An inversion oc­
curs when a substring, Pt = - pi, is matched 
with text that has the form pi. We use to 
indicate the complement of p,. A translocation occurs 
when a substring P1 is matched with a text substring 
T1, and a substring P2 is matched with a text substring 
7'2, but PI occurs before P2 in the pattern string, while 
Ti occurs after T2 in the text string. 

.. -"" 

ctatctactatgcggagcctagagtggcagtc 

best score 
best position 

current position 

left best score right best score 
eft best pos right best po 

Figure 5: Data structure used to align the pattern 
within the text. In this picture, each leaf node rep­
resents 8 characters of the pattern, each of the internal 
nodes represents 16 characters of the pattern, and the 
root node represents the entire pattern. Each of the 
nodes contains the fields shown in the expanded node. 

Adjusting Gaps 
The basic heuristic places gaps close to their proper 
positions. If we use the heuristic to align the string 
"ABCDEF" in the string "ABCXXDEF" the gap may 
be placed between 'B' and 'C', rather than between 'C' 
and 'D'. This is a result of the halving behavior of the 
basic heuristic. By searching in the vicinity of the po­
sition that the basic heuristic places a gap we can find 
any increase in score that can be obtained by sliding 
the gap to the left or right. The cost of finding better 
placements of the gaps is a factor of log 'PI increase in 
running time since at each node we have to search a 
region of the text of length proportional to the size of 
the substring represented by the node. 

Including Inversions 
The basic heuristic can be modified to find alignments 
when substrings of the pattern need to be inverted to 
match substrings of the text. The idea is to invert the 
pattern and move, along the text, a walking tree of the 
inverted pattern in parallel with the walking tree of the 
original pattern. Each pair of nodes in the forward and 
inverse walking trees that represent the same region of 
the pattern are referred to as sister nodes. When the 
match score of a region of the inverted pattern is suffi­
ciently higher than the match score of the correspond­
ing region of the pattern, the region of the inverted 
pattern is used to compute the alignment score. The 
introduction of an inversion can be penalized using a 
function similar to the gap penalty function. 

Note that inversions are incorporated into both the 
walking tree and the inverted walking tree so that it 
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is possible to have inversions nested within a larger 
inverted substring. 

Constructing the alignment 
The basic heuristic will report the score and position 
of the alignment. but does not give enough information 
to construct the alignment. 

Alignment construction introduces a factor of log iP1 
into theoretical time and space usage winch does riot 
occur in practice. An additional field to hold the best 
alignment of the pattern substring represented by a 
node is added to each node of the walking tree. 

Note that we must save the entire alignment and not 
just pointers to the alignments of a node.s children be­
cause the maximum scoring alignments of the children 
may change without the maximum scoring alignment 
of the node changing. When the modified heuristic 
completes. the alignment that produced the best score 
will be stored in the root node of the walking tree. 

Parallelization 
We have implemented and optimized our heuristic on a 
single node of a Meiko CS- 2 computer. A node consists 
of one Texas Instruments SuperSPARC scalar proces­
sor and two Fujitsu 1iVP vector processors. 

In practice. we let each leaf of the walking tree repre­
sent more than a single character, typically between 30 
and 100 characters. This does not decrease the number 
of character comparisons that the heuristic performs 
since the walking tree is still moving one character at 
a time across the text. but it. does decrease the size of 
the walking tree. The smaller walking tree decreases 
the time required to align two sequences. 

Csing the vector-optimized heuristic on one node 
of the Meiko CS-2. two 8192-base sequences can be 
aligned in less than 1.5 CPC minutes. and aligning a 
pair of sequences of length 32768 requires less than 25 
minutes of CPI: time. This agrees with the predicted 
run time which says that increasing both the pattern 
and the text by a factor of 4 should increase the run 
time by a factor of 16. 

Extrapolating, an alignment of sequences one mil­
lion bases long may take two weeks_ but. fortunately 
our parallel implementations have shown near-linear 
speedup. The table below shows speedup results on a 
28 processor Sequent. Balance 21000. 

Processors 1 8 12 16 20 
Speedup 1.0 1.97 3.83 7.26 10.5 13.6 16.7 
It may also be possible to construct a "smarty disk 

controller based on our walking tree heuristic. The 
heuristic uses only a few simple operations arid never 
needs to back up in the text. Each processor would 
need a small. constant sized memory. and would need 
to communicate with at most four other processors. 
Such a disk controller would allow database search 
heuristics to start with only the sequences that are 
similar to the query sequence. 

Summary 
Complete viral and organellar genomes have been se­
quenced and are in the biological sequence databases. 
Very soon, complete sequences of bacterial genomes 
and some eukaryotic genomes will be available. In 
the past.. while aligning short biological sequences. it 
was reasonable to model the evolution of biological se­
quences with the operations: substitute one base for 
another. insert a base. and delete a base. Today. with 
the arrival of sequences of complete genomes, the op­
erations inversion and transposition need to be added 
in order to appropriately model the evolution of these 
large biological sequences. In this paper we described 
a family of heuristics designed to align biological se­
quences that may include inversions and transposi­
tions. Our heuristics use time approximately propor­
tional to the product of the lengths of the sequences 
being aligned and use work space approximately pro­
portional to the length of the shorter of the sequences. 
As an example of the utility of our heuristic_ it. was 
used successfully to align the complete mitochondrial 
genomes of Schizosaccharomyces pombe and 'Anopheles 
guadrimaculatus. This alignment shows the previously 
unreported location of the cytochrome c oxidase sub­
unit 3 on the mitochondria' genome of S. pombe and 
was completed using about five minutes of computer 
time. 
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