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Interactions and feedbacks among climate change effects and continued human 

impacts will exacerbate impacts to water resources in complex ways.  An urgent 

imperative of the hydrologic community is to understand the response of hydrologic 

systems to these perturbations, thus contributing to long-term sustainability of water 

resources in an uncertain future.  Critical to anticipating and mitigating changes to 

water resources is a thorough characterization of hydrologic processes across a variety 

of systems and spatiotemporal scales.  However, major gaps in our understanding 

persist, particularly regarding the movement of water through the catchment and 

streamflow generation, despite decades of research supported by large amounts of 

highly complex hydrological observation data.  We suggest that a new type of 

information-rich data, which can be easily collected and analyzed, might be the key to 

new insights that propel the field toward a deeper, more fundamental understanding of 

hydrologic processes.  Genetic material (i.e., DNA) is a naturally-occurring, high-

dimensional digitally-encoded dataset, and DNA analysis has become much cheaper 

and more widely available in recent years.  Microbial communities, characterized 

taxonomically by sequencing the 16S rRNA gene in DNA, are highly diverse and 

respond dynamically to environmental conditions.  Here, we investigate the 

streamwater microbial community as a novel hydrologic dataset.  We collected DNA 

samples over three years, from 2017-2020, from more than 60 streams across the 



 

Willamette, Deschutes, and John Day watersheds, three large and characteristically 

divergent watersheds in Oregon, USA.  We found that differences in microbial 

community composition among streams, particularly in headwater streams, was 

statistically related to differences in geomorphic and climatic characteristics of the 

drainage catchment.  We furthermore found through an information-theoretic 

approach, that specific summer community constituents (i.e., microbial taxa) were 

related to stream discharge metrics at multiple temporal and flow scales.  We also 

observed that streamwater microbial diversity exhibited a rich and dynamic response 

to event hydrograph dynamics on the Marys River in the Willamette Valley of Oregon.  

In that analysis, we furthermore classified microbial taxa (and broader phylogenetic 

groups) according to whether they are mobilized or diluted with streamflow, potentially 

contributing new insights regarding the sources of streamflow, as well as a new way of 

characterizing taxa in microbial ecology studies.  Results of this research support 

further investigation of the hydrologic information encoded within microbial 

communities, as well as ways in which the field might best extract and apply this new 

information to further our understanding of hydrologic systems and contribute fresh 

insight to unsolved questions in hydrology.  
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1 Introduction  
 

In recent years, earth systems have been reflecting more conspicuously the 

ramifications of a rapidly changing climate, in the form of more dramatic weather 

events and increasing fire frequency and severity, for example.  As the climate 

continues to warm, drought frequency is projected to continue to increase, reducing 

surface and groundwater availability in arid regions and negatively impacting 

freshwater ecosystems and reducing surface water quality (Jiménez Cisneros et al., 

2014; Delpla et al., 2009).  Interactions and feedbacks among these effects and 

continued human impacts will exacerbate impacts to water resources in complex ways 

(e.g., IPCC, 2019; Feddema et al., 2005).  A central imperative of contemporary 

hydrology is to understand and predict the response of hydrologic systems to these 

perturbations, thus contributing to long-term sustainability of water resources; yet 

major gaps in our understanding of these systems persist, particularly regarding 

subsurface processes (Blöschl et al., 2019). 

  Streamflow volume is arguably the most fundamental hydrologic measurement.  

An expression of landscape scale hydrology, stream discharge  integrates physical 

aspects of the catchment such as topographic organization , lithology, and climatology, 

as well as biological influences, such as vegetation cover and soil type (Dingman, 

2015).  Thus, much can be learned about hydrologic function by analyzing stream gage 

records; yet many parts of the world, and indeed parts of the American arid southwest, 

Alaska, and Hawai’i (Kiang et al., 2013) lack sufficient spatial coverage of stream 

gages for even basic water resource monitoring.  Seibert & McDonnell (2015) found, 

however, that key pieces of data collected on short, intensive field campaigns (i.e., ‘soft 

data’) could be powerful tools in characterizing catchment function in ungaged basins.    

Yet even in areas covered by expansive networks of sophisticated observation 

data, including meteorological, eddy covariance, stable isotopes, and remotely sensed 

earth observation data, the specific mechanisms and drivers of many aspects of 

hydrologic function are still not well understood.  For example, the field still lacks a 

thorough process-based understanding of the dynamics of streamflow generation, 

including specific sources of streamwater, flow paths of precipitation inputs, and transit 

time distributions, for example, which remain areas of active research (Kirchner, 2016; 
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Stockinger et al., 2016; Blöschl et al., 2019).  It may be that new hydrologic knowledge 

may be limited not by the amount of data, but by the type of data traditionally employed 

in hydrologic studies.  Thus, there is opportunity in hydrologic research, both in heavily 

instrumented and in ungaged basins, for a novel, information-dense dataset to promote 

transformative hydrologic insight.  

DNA is a large, digitally-encoded dataset that has been applied across an 

increasingly wide array of research domains in recent years.  Microbial communities 

native to an environment (i.e., microbiomes), commonly characterized by sequencing 

the 16S rRNA gene in DNA, are commonly employed in studies from oceanography 

to human health.   Microbial communities are composed of many thousands of 

taxonomically and functionally diverse groups and are sensitive to perturbations, 

shifting species composition in response to changes in environmental conditions 

(Thompson et al., 2017).  The composition of streamwater microbial communities has 

been found to be strongly related to hydrologic properties, including stream discharge 

(Crump and Hobbie, 2005; Doherty et al., 2017), and characteristics related to in-

stream residence time, such as cumulative stream length upstream of the community 

(Read et al., 2015),  river kilometer, dendritic stream length, and catchment size (Savio 

et al., 2015).  These highly diverse communities may therefore comprise a rich dataset 

of information valuable to hydrologic studies.  

 Here, we investigate the potential utility and application of microbial DNA as 

a novel, informative hydrologic observation.  We collected and analyzed DNA samples 

from more than 60 streams and rivers across three major, ecoclimatically divergent 

watersheds in Oregon, USA between 2017 and 2020.  First, we relate streamwater 

microbial community composition to the physical characteristics of the catchment that 

also shape hydrologic function (Chapter 2).   We next identify and quantify 

relationships between microbial taxa and hydrologic discharge at multiple temporal and 

flow scales (Chapter 3).  We then capture and analyze the response of the microbial 

community to stream discharge dynamics over the course of an isolated precipitation 

event on the Marys River, and we compare this response to that of a traditional 

geochemical tracer (stable water isotopes; Chapter 4).  Finally, we highlight our most 
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significant findings, discuss the broader implications of this research, and propose 

opportunities for further investigation (Chapter 5).  
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2 River Microbiome Composition Reflects Macroscale Climatic 

and Geomorphic Differences in Headwater Streams 

2.1 Abstract 

Maintaining the quality and quantity of water resources in light of complex 

changes in climate, human land use, and ecosystem composition requires detailed 

understanding of ecohydrologic function within catchments, yet monitoring relevant 

upstream characteristics can be challenging. In this study, we investigate how 

variability in riverine microbial communities can be used to monitor the climate, 

geomorphology, land-cover, and human development of watersheds. We collected 

streamwater DNA fragments and used 16S rRNA sequencing to profile microbiomes 

from headwaters to outlets of the Willamette and Deschutes basins, two large 

watersheds prototypical of the U.S. Pacific Northwest region. In the temperate, north-

south oriented Willamette basin, microbial community composition correlated most 

strongly with geomorphic characteristics (mean Mantel test statistic r = 0.19). 

Percentage of forest and shrublands (r = 0.34) and latitude (r = 0.41) were among the 

strongest correlates with microbial community composition. In the arid Deschutes 

basin, however, climatic characteristics were the most strongly correlated to microbial 

community composition (e.g., r = 0.11).  In headwater sub-catchments of both 

watersheds, microbial community assemblages correlated with catchment-scale 

climate, geomorphology, and land-cover (r = 0.46, 0.38, and 0.28, respectively), but 

these relationships were weaker downstream. Development-related characteristics 

were not correlated with microbial community composition in either watershed or in 

small or large sub-catchments.  Our results build on previous work relating streamwater 

microbiomes to hydrologic regime and demonstrate that microbial DNA in headwater 

streams additionally reflects the structural configuration of landscapes as well as other 

natural and anthropogenic processes upstream.  Our results offer an encouraging 

indication that streamwater microbiomes not only carry information about microbial 

ecology, but also can be useful tools for monitoring multiple upstream watershed 

characteristics. 
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2.2 Introduction 

Water quality and availability depends on the integrity of water resource 

systems, which are sensitive to changes in climate (Jiménez Cisneros et al., 2014), 

human land use (Foley et al., 2005), and ecosystem composition.  Climate change is 

projected to increase drought frequency and reduce surface and groundwater 

availability in arid regions, and to negatively impact freshwater ecosystems and reduce 

surface water quality (Jiménez Cisneros et al., 2014; Delpla et al., 2009).  It is well 

understood that human development and land-use change results in increased surface 

runoff, eventually leading to larger flooding events and reduced groundwater recharge 

(e.g., Carter, 1961; Gregory et al., 2006; Moscrip & Montgomery, 1997; Wheater and 

Evans, 2009).  Interactions among these factors exacerbate impacts to water resources 

(e.g., IPCC, 2019; Feddema et al., 2005), and better tools are needed to diagnose these 

effects on catchment ecohydrology at local scales. 

In watershed catchments lacking sufficient hydrologic data, Seibert & 

McDonnell (2015) found that key pieces of data collected on short field campaigns 

(i.e., ‘soft data’) can prove useful for understanding catchment functions.  Leveraging 

a source of information-rich soft data could thus prove especially powerful in 

characterizing ungauged basins. DNA is gaining traction as a valuable source of data 

across research disciplines.  One of the appeals of genetic data is the vast quantity of 

information (thousands of features or more) that can be extracted with relative ease 

from a single sample. In addition to falling costs, improved methods of DNA extraction 

and sequencing, resulting in higher-quality data (Li et al., 2015), have increased the 

appeal of genetic data for a wider range of applications, including hydrological studies.  

For instance, Mächler et al. (2019) used environmental DNA (eDNA) released from 

macro organisms to characterize hydrologic flow paths in an Alpine catchment in 

Switzerland.  Analysis of aquatic DNA in boreal forests has been indicative of key 

gradients in catchment condition similar to morphologically derived stream 

macroinvertebrate metrics (Emilson et al., 2017), while similar DNA information has 

also been used to map landscape-level terrestrial biodiversity (Sales et al., 2020). 

Sugiyama et al. (2018) found that microbial DNA analysis, coupled with general 

information about optimal growth conditions of certain microbial groups, revealed 
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information about groundwater flow paths that was not captured with chemical 

analyses. Microbial communities, or ‘microbiomes,’ with their high biodiversity, are 

hypothesized to hold new clues that traditional hydrologic tracers have not been able 

to elucidate.   

Streamwater microbiomes respond to conditions that are also likely related to 

biogeochemical cycling and streamflow including  nutrient concentrations, pH, 

temperature (Read et al., 2015; Savio et al., 2015;  Fortunato et al., 2013; Doherty et 

al., 2017).  Given that streamwater microbiomes are composed primarily of microbes 

that originate in upslope soil and groundwater environments; but see Hermans et al., 

2019), it follows that these microbiomes could be rich sources of data about hydrologic 

function and upslope catchment conditions. Beyond potential source variation, the 

characteristics of how genetic material is transported, retained, and resuspended has 

been examined for environmental DNA fragments (Shogren et al., 2017; Jerde et al., 

2016) as well as for microorganisms themselves (Droppo et al., 2009; Newby et al., 

2009), wherein stream water microbial composition is influenced by both abiotic 

factors (e.g., flow rate, mixing with sediment waters) and biotic factors such as 

predation, intrinsic cell mobility, and reproduction.  Read et al. (2015) found that 

stream microbiomes were related to upstream hydrology, and Good et al. (2018) 

employed microbial community composition to characterize flow regimes in a set of 

large Arctic rivers.  Savio et al. (2015) found that stream microbiomes were more 

strongly correlated with macroscale properties related to catchment hydrology, such as 

stream length and catchment size than with water temperature or pH along the length 

of the Danube River.  It is unclear, however, whether and to what extent other 

macroscale catchment factors may shape the microbial community. Our overarching 

objective is to employ stream microbiomes to gain insight about watershed conditions 

and catchment function and how they shape downstream water quality and availability. 

The first step toward this goal is to understand how watersheds may influence 

streamwater microbial community composition. In this study, we explored how 

streamwater microbial community composition, characterized with aquatic DNA 

fragments, correlates with upstream catchment properties. 16S rRNA gene fragments 

have been used in microbiology since the 1980s to classify bacterial taxonomy (Kolbert 
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& Persing, 1999), and the 16S rRNA gene is the most widely used phylogenetic marker 

gene for assessing prokaryotic microbiomes (Goodrich et al., 2014).  We isolated and 

sequenced 16S rRNA collected from streamwater and examined how differences 

between microbial (bacteria and archaea) communities among catchments were related 

to differences in catchment characteristics across major watersheds and across spatial 

scales. 

2.3 Materials and Methods 

2.3.1 Watershed and Sub-Catchment Characteristics 

The Willamette and Deschutes basins, two similarly sized large (Willamette = 

29,000 km2; Deschutes = 27,700 km2), adjacent watersheds separated by the Cascade 

Mountains in Oregon, USA were surveyed for variability in streamwater microbial 

communities. Mean elevation is 560 m in the Willamette Basin and 1,230 m in the 

Deschutes Basin. The Willamette Basin, on the windward side of the Cascades, 

receives a mean annual precipitation of 1,640 mm, but the Deschutes Basin on the 

leeward side receives a mean of just 530 mm annually. Mean annual discharge of the 

Willamette River (933 m3/s) is thus much greater than the Deschutes River (165 m3/s; 

U.S. Geological Survey, 2016) at their respective outlets draining into the Columbia 

River at Oregon’s northern border.  Temperatures are comparable between the basins 

(mean annual minimum and maximum temperatures are 4 °C and 15 °C in the 

Willamette Basin and 0 °C and 14 °C in the Deschutes Basin, respectively).  Both 

basins exhibit a range of land use, including minimally disturbed upper elevation 

headwater streams, crop and livestock agriculture, and highly developed urban areas; 

however the Willamette Basin is more developed overall, with greater percentages of 

impervious area and low-, medium-, and high-intensity development (Table 2.S1). 

Sub-catchment characteristics for areas upstream of DNA sample collection 

points throughout the Willamette and Deschutes watersheds were obtained using the 

StreamStats tool developed by the United States Geological Survey 

(https://streamstats.usgs.gov/ss/; Ries et al., 2017). StreamStats is a national map-based 

web application that allows users to obtain basin boundaries, basin characteristics, and 

streamflow statistic estimates for gauged or ungauged user-specified sites.  StreamStats 

employs a wide array of digital geospatial raster data layers which are processed 

https://streamstats.usgs.gov/ss/
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through an online geographic information system to define drainage basin 

characteristics for any location (although available information varies by state). A 

python script was developed to obtain all available StreamStats basin characteristics 

for each of our 61sampling sites distributed throughout the two watersheds (URycki 

and Good, 2020a).  The program queries the StreamStats Service API for a list of 

available basin characteristics for a specified state (OR) and the values for those 

characteristics given the latitude and longitude for each sample location retrieved from 

an input spreadsheet. The StreamStats Service API outputs a JSON file with the 

requested data, which our python script decodes and writes to a csv file containing the 

list of sites and associated drainage basin characteristics.  For this analysis, StreamStats 

quantities reported in English units were converted to metric.  

Our analysis considered 42 macroscale sub-catchment characteristics for a 

relationship with streamwater microbial communities (Table 2.1).  In addition to the 

StreamStats characteristics, we calculated topographic index and added latitudinal and 

longitudinal coordinates.  From an initial suite of 46 available characteristics for each 

sample point, we then eliminated all but one of any redundant variables and summed 

three StreamStats characteristics ‘MINOR ROADS’, ‘STATE HIGHWAY ROADS’, 

and ‘MAJOR ROADS’ into a new variable ‘ALL ROADS’ (Table 2.S1).  We then 

grouped remaining variables into four categories: climatic, geomorphic, land-cover, 

and development characteristics.   

2.4 DNA Collection and Sequencing 

We collected streamwater DNA from a set of 61 sites in the summer of 2017. 

We sampled 40 sites in the Willamette watershed (25 July-8 August) and 21 sites in 

the Deschutes watershed (2-4 August; Fig. 2.1). Sample sites spanned headwaters and 

tributaries to the main stem outlet at the bottom of the watershed. Sites were selected 

to capture the range of land cover, land use, and level of disturbance in each sub-

catchment.   
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Table 2.1. Mean, standard deviation, and correlation with microbial community similarity (Mantel statistic [r]) for statistically significant StreamStats macroscale 

basin characteristics by watershed and in small and large sub-catchments across the Willamette and Deschutes watersheds, Oregon, USA.  Note that only basin 

characteristics that were significantly correlated with microbial community similarity (Bonferroni-adjusted p < 0.1) in at least one group of sub-catchments are 

presented here (see Table 2.S2 for results of all characteristics).   

Characteristic 

Willamette Deschutes All Small Large 

Description 
mean (SD) r mean (SD) r mean (SD) r mean (SD) r mean (SD) r 

G
eo

m
o

rp
h

ic
 

ORREG2 

(dimensionless) 
10001 (0) - 363 (0) - 7020 (4490) 0.31***

a
 7590 (4250) 0.62*** 6430 (4740) 0.04 Oregon Region Number 

ELEV (m
b
) 693 (326) 0.19 1480 (214) 0.02 935 (469) 0.26*** 925 (491) 0.44*** 946 (454) 0.07 Mean basin elevation 

DISTANCE (km) 83.01 (50.27) 0.36*** 72.20 (55.63) 0.15 104.1 (57.64) 0.24*** 81.60 (55.63) 0.41*** 116.1 (61.58) 0.02 Great-circle distance between sample sites 

MINBELEV (m) 258 (275) -0.10 1030 (415) 0.21 498 (483) 0.26*** 621 (486) 0.39** 370 (454) 0.11 Minimum basin elevation 

BSLOPD (degrees) 16 (6.0) 0.15 6.5 (1.6) -0.03 13 (7) 0.14 16 (8) 0.38*** 11 (5) 0.03 Mean basin slope measured in degrees 

LATITUDE 

(decimal degrees) 
44.58 (0.560) 0.41*** 44.15 (0.546) 0.12 44.45 (0.586) 0.21** 44.28 (0.516) 0.35*** 44.62 (0.614) 0.02 Latitudinal coordinate 

ELEVMAX (m) 1720 (930) 0 2630 (523) 0.26 2000 (923) -0.01 1500 (704) 0.30* 2520 (845) 0.10 Maximum basin elevation 

OR_HIPERMA 

(percent) 
10.9 (13.3) 0.35** 6.89 (7.04) -0.02 9.64 (11.8) 0.13 5.44 (10.3) 0.17 14.0 (11.9) 0.07 

Percent basin surface area containing high perm-

eability aquifer units as defined in SIR 2008-5126 

C
li

m
at

ic
 

JANMINTMP 

(degrees C) 
-1.40 (1.26) 0.08 -6.89 (0.758) 0.01 -3.09 (2.80) 0.27** -2.75 (2.77) 0.55*** -3.45 (2.83) 0.04 Mean minimum January temperature 

MINTEMP 

(degrees C) 
3.65 (1.25) 0.09 -1.01 (0.975) 0.06 2.21 (2.47) 0.27*** 2.38 (2.56) 0.53*** 2.02 (2.39) 0.04 

Mean annual minimum air temperature over basin 

surface area as defined in SIR 2008-5126 

JANMAXTMP 

(degrees C) 
6.15 (0.99) -0.10 2.45 (1.00) 0.00 5.01 (1.99) 0.25** 5.23 (2.25) 0.50*** 4.77 (1.68) 0.04 Mean maximum January temperature 

JANMINT2K 

(degrees C) 
-0.83 (1.18) -0.09 -6.46 (0.66) 0.11 -2.57 (2.83) 0.22** -2.12 (2.70) 0.49*** -3.04 (2.93) 0.02 

Mean minimum January temperature from 2K 

resolution PRISM PRISM 1961-1990 data 

MAXTEMP 

(degrees C) 
15.2 (1.1) -0.08 12.6 (1.8) 0.09 14.4 (1.8) 0.23** 14.5 (2.3) 0.46** 14.3 (1.3) 0.10 

Mean annual maximum air temperature over basin 

area from PRISM 1971-2000 800-m grid 

JANAVPRE2K 

(mm) 
264 (41) 0.21 141 (66) 0.13 226 (76) 0.17 250 (57) 0.45*** 201 (85) 0.05 Mean January precipitation 

PRECIP (mm) 1860 (339) 0.14 979 (440) 0.16 1590 (552) 0.13 1800 (449) 0.39*** 1370 (569) 0.03 Mean Annual precipitation 

JANMAXT2K 

(degrees C) 
6.34 (1.07) -0.13 4.08 (1.40) 0.33 5.64 (1.57) 0.24*** 5.55 (1.84) 0.33** 5.74 (1.26) 0.12 

Mean maximum January temperature from 2K 

resolution PRISM 1961-1990 data 

L
an

d
 

co
v
er

 

SOILPERM (mm 

per hour) 
47.7 (28.0) -0.05 151 (79.3) -0.02 79.8 (68.8) 0.22* 77.1 (69.1) 0.38** 82.5 (69.8) 0.07 Average soil permeability 

LC11FORSHB 

(percent) 
83 (19) 0.34** 89 (6) 0.01 85 (16) 0.10 90 (14) 0.18 79 (17) 0.02 

Percentage of forests and shrub lands, classes 41 

to 52, from NLCD 2011 
a * p < 0.1, ** p < 0.05, *** p < 0.01 (Bonferroni-adjusted for multiple comparisons) 
b StreamStats quantities obtained in English units were converted to metric. 
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Streamwater was collected from the approximate center of the waterway.  Most 

samples were collected using a clean 2-gallon bucket lowered with a rope from a 

bridge. Although it was difficult to standardize collection depth, samples were collected 

near the surface and care was taken not to disturb the streambed.  At very small streams, 

such as those in H.J. Andrews Experimental Forest, samples were collected into a 

bucket as water exited flumes. At the few sites where either a flume or bridge were not 

available, a rope and bucket were tossed from the riverbank to the approximate center 

of the stream and pulled back to shore, again taking care not to disturb the streambed.   

 
Figure 2.1. Alpha diversity (Shannon’s index [H]) of streamwater microbiomes in the Willamette 

(squares) and Deschutes (triangles) watersheds in Oregon, USA.  Outlined symbols indicate small 

sub-catchments (i.e., those with less than median drainage area).  Inset shows vicinity of H.J. Andrews 

Experimental Forest. 
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DNA samples were filtered and extracted from collected streamwater as 

described in Crump et al. (2003). Briefly, streamwater was pumped through a 0.2-µm 

Sterivex-GP filter (Millipore, Billerica, MA, USA) with a peristaltic pump (Geotech 

Environmental Equipment, Denver, CO, USA) until the filter clogged.  DNA 

preservation/extraction buffer (100 mM Tris, 100 mM NaEDTA, 100 mM phosphate 

buffer, 1.5 M NaCl, 1% CTAB) was added to the filter with a syringe, and then filters 

were sealed and stored on dry ice until transferred to a –80 °C freezer the same day, 

where samples were stored until further processing.  DNA was isolated using phenol-

chloroform extraction and isopropanol precipitation (Crump et al., 2003; Zhou et al., 

1996; Amaral-Zettler et al., 2009) and stored at -20 °C until amplification.  

16S rRNA genes were PCR-amplified with dual-barcoded primers targeting the 

V4 region (515f GTGCCAGCMGCCGCGGTAA, 806r 

GGACTACHVGGGTWTCTAAT; Caporaso et al., 2011) that were linked to barcodes 

and Illumina adapters following Kozich et al., (2013). PCRs of DNA samples and no-

template negative controls were run with HotStarTaq DNA Polymerase Master Mix 

(Qiagen) and thermocycler conditions: 3 min at 94 °C followed by 30 cycles of 94 °C 

45 sec, 50 °C for 60 sec, and 72 °C for 90 sec, followed by 10 min at 72 °C (Caporaso 

et al., 2012).  PCR products were purified and normalized with SequalPrep 

Normalization Plates (Thermo-Fisher), and sequenced with Illumina Miseq V.2 paired 

end 250bp sequencing.  Sequences were denoised using DADA2 (Callahan et al., 2016) 

implemented in QIIME2 (Bolyen et al., 2019) using default settings to prepare an 

abundance table of unique amplified sequences variants (ASVs).  Sequences were 

taxonomically classified with the SILVA 16S rRNA gene database v.132 (Quast et al., 

2013), and ASVs were removed if they were classified as chloroplasts or mitochondria, 

or if they were not classified to the domains Bacteria and Archaea. The dataset was 

then rarefied to 1,164 sequences per sample prior to calculation of biodiversity metrics. 

Rarefaction to 1,164 samples resulted in undersampling of some communities, which 

is not unusual in microbial studies, but allowed for retention of the most samples for 

the analysis (Fig 2.S1). Sequences from no-template PCR controls that passed DADA2 

quality control represented 6 ASVs that did not appear in the rarefied ASV dataset. In 

total, DNA was sequenced from 38 samples within the Willamette watershed and 17 
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from the Deschutes watershed.  DNA sequence data is archived under BioProject 

PRJNA642636 at the National Center for Biotechnology Information (NCBI). 

2.4.1 Microbial Metrics of Biodiversity  

Biodiversity is a fundamental metric used to characterize a microbial 

community.  Alpha diversity describes diversity within a site, whereas beta diversity 

describes diversity across sites (Whittaker, 1972).   Alpha diversity is often described 

with Shannon’s index (H), which is the Shannon entropy (Shannon and Weaver, 1949) 

of measured ASV within a site.  Shannon’s index accounts for both the number of ASV 

(richness) and the relative abundance of each ASV (evenness).   Shannon’s index was 

calculated using the sci-kit bio package (v 0.5.1, http://scikit-bio.org/) developed for 

the Python programming language.  In this implementation, Shannon’s index is 

calculated as  

𝐻 =  − ∑ (𝑝𝑖 ) log2(𝑝𝑖) 𝑠
𝑖=1 , 

where s is the number of ASVs detected and pi is the proportion of s represented by 

ASV i.  Note that changing the base of the logarithm changes the units of H; when base 

2 is used, as here, the resulting quantity is described in units of bits.  Larger values of 

H indicate greater diversity within a site.  Diversity data were visually approximately 

normally distributed, and variance was similar between groups, so two-sample t-tests 

were used to check for differences in means between groups. Statistical tests were 

conducted using scipy in Python 3.7.4  

Microbial dissimilarity between sites was determined by the Bray-Curtis metric 

(Bray and Curtis, 1957). Bray-Curtis dissimilarity, dBC(u, v) [unitless], calculates 

dissimilarity in the number (n) of ASVs between sites u and v as 

𝑑𝐵𝐶(𝑢, 𝑣) =  
∑ |𝑛𝑢,𝑖 −  𝑛𝑣,𝑖|𝑖

∑ |𝑛𝑢,𝑖 +  𝑛𝑣,𝑖|𝑖

 

for all ASV i (Bray and Curtis, 1957). Bray-Curtis dissimilarity is more robust than 

other distance measures like Euclidean distance, for example, where differences in 

abundance can overwhelm differences in ASV between sites, leading to 

counterintuitive results, particularly with large, sparse matrices (Ricotta and Podani, 

2017). The denominator of the Bray-Curtis dissimilarity index effectively weights the 

difference in abundance between sites by the overall abundance of each ASV, such that 

http://scikit-bio.org/
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rare ASV contribute less to differences between sites. Bray-Curtis dissimilarity ranges 

[0, 1], with a value of one indicating two sites have no ASV in common and a value of 

zero indicating identical ASV composition. The package sci-kit bio was again used to 

assemble a distance matrix of Bray-Curtis dissimilarity between all possible pairs of 

sites. Site-pairs were ranked by Bray-Curtis dissimilarity and the top 1% and top 5% 

most and least dissimilar site-pairs were analyzed to explore whether patterns emerged.   

Additionally, we were interested in how relationships between microbial 

communities and macroscale characteristics might differ between the Willamette and 

Deschutes watersheds and between small and large sub-catchments.  Therefore, 

distance matrices of Bray-Curtis dissimilarity between all pair of sites in: the 

Willamette Basin (n = 38 sites; 703 unique pairs), the Deschutes Basin (n = 17 sites; 

136 unique pairs), small sub-catchments (n = 28 sites; 378 unique pairs), and large sub-

catchments (n = 27 sites; 351 unique pairs) were assembled. Note for all 55 sites there 

were 1,485 unique pairs. Small sub-catchments were simply the smaller half of sample 

sites (drainage area ≤ 520 km2) and large sub-catchments were the larger half.  

Dissimilarity values were skewed low, so to check for differences between groups, a 

Mann-Whitney U test, which requires no distribution assumptions, was used.  Mann-

Whitney U test assumes independent samples and tests the null hypothesis that the two 

distributions are equal.  

2.4.2 Macroscale Characteristics and Microbial Community Composition 

To investigate the relationship between microbial community and macroscale 

characteristics, differences in microbial community composition were examined in 

relation to differences in catchment characteristics between sites.  Using the basin 

characteristics from StreamStats, a distance matrix of pairwise differences between 

sites for each characteristic was assembled.  Distances between points (u, v) for 

StreamStats characteristic c were calculated as absolute value arithmetic differences, 

𝑑𝑆𝑆,𝑐(𝑢, 𝑣) =  |𝑐𝑢 −  𝑐𝑣| 

with the exception of the physical distance between points.  The physical distance was 

the great-circle distance (km), which is the distance between the two points on the 

surface of a sphere containing the diameter of Earth.  As with beta diversity, distances 

matrices were assembled for all characteristics for all pairs of sites in: the Willamette 
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Basin, the Deschutes Basin, small sub-catchments, large sub-catchments, and all sub-

catchments.  We used Mantel tests to evaluate the correlation between dissimilarly 

matrices of community composition and each of the macroscale properties (Mantel, 

1967). Mantel correlations assume linear correlations between dissimilarity matrices 

and have been previously used to evaluate correspondence between microbial 

communities and other environmental factors (Read et al., 2015; Fagervold et al., 2014; 

Repert et al., 2014). When applied to raw data tables this approach may introduce bias 

due to spatial autocorrelation, though extensive testing has found this method is 

appropriate for evaluation of dissimilarly matrices constructed from autocorrelated data 

(Legendre et al., 2015).  The Mantel statistic (Z) is the standardized Pearson correlation 

between the distance matrices and ranges [-1, 1], with values close to 1 (-1) indicating 

strong positive (negative) correlation and a value of zero indicating no correlation 

between the distance matrices. To assess the relationship between microbial 

community composition and macroscale environment, we examined Mantel statistics 

between microbial distances 𝑑𝐵𝐶(𝑢, 𝑣)  and individual characteristic distances 

𝑑𝑆𝑆,𝑐(𝑢, 𝑣), as well as mean Mantel statistics for the four groups of related properties: 

geomorphic, climate, land-cover, and development characteristics.  We again used the 

package sci-kit bio for Python and calculated Mantel statistic (r) and Bonferroni-

corrected p-value for multiple comparisons over 10,000 permutations.  

We might expect to detect stronger correlations between the microbial 

community and watershed characteristics when the microbial community samples 

represent a greater range of conditions. For example, consider the case where 

catchment characteristics are identical so their standard deviation is zero.  Because 

dissimilarity among catchment characteristics would be zero in this case, correlation 

between microbial community dissimilarity and catchment dissimilarity (Mantel r) 

would also necessarily be zero.  Thus, as variability in sub-catchment characteristics 

decreases near to geospatial measurement noise associated with the StreamStats 

outputs we potentially may see lower Mantel statistics. To explore whether the strength 

of correlations identified by Mantel tests could be related to variability in those 

catchment characteristics, we analyzed the relationship between Mantel statistics and 

the standard deviation of each characteristic.  We calculated the relative sensitivity 
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(𝜀𝑆𝑆,𝑐) [unitless] of the Mantel statistic (𝑟) to the standard deviation (𝜎) of each 

StreamStats characteristic (𝑐) as: 

𝜀𝑆𝑆,𝑐(𝑚, 𝑛) =
𝑟𝑚 − 𝑟𝑛

𝜎𝑚 − 𝜎𝑛
 ×  

𝜎𝑚

𝑟𝑚
 

The relative sensitivity value quantifies the extent to which a change in variability in a 

StreamStats characteristics translates to a respective change in the correlation between 

microbial community composition and that watershed characteristic, where higher 

absolute values of  𝜀 indicate greater sensitivity and a stronger relationship between 

microbial community similarity and watershed characteristic variability. Values of 

𝜀 that significantly differ from zero may suggest variability as a potential driver of the 

strength of correlations and offer insight into the conditions in which microbiomes may 

be useful monitoring tools.  Sensitivity was calculated for each StreamStats variable 

for both Willamette versus Deschutes watersheds and small versus large sub-

catchments, and then median sensitivity for each group of characteristics for both sets 

of sub-catchments was estimated.  Sensitivity data contained several outliers and could 

not be assumed normal.  Therefore, the non-parametric one-sample Wilcoxon signed-

rank test was used to test the null hypothesis that the median sensitivity value for each 

group was equal to zero.   

Finally, to assess whether and how different ways of grouping sequence data or 

applying different diversity metrics to characterize the microbial communities impacts 

the results of the analysis, the data were reanalyzed several ways.  First, rather than 

using ASVs (100% similar), stream microbial communities were instead characterized 

by grouping raw sequences into 95%, 97%, or 99% similar operational taxonomic units 

(OTUs).  Sequence data were then rarefied to standardize sampling effort while 

retaining the greatest number of samples (95% similarity: 1,025 sequences per sample; 

97% similarity: 1,023 sequences; 99% similarity: 1,014 sequences). Communities were 

also alternatively characterized using one of five major groups of ASVs: Actinobacteria 

(rarefied to 100 sequences per sample), Bacteroidetes (500 sequences), Cyanobacteria 

(50 sequences), Gammaproteobacteria (500 sequences), or Verrucomicrobia (100 

sequences).  Two alternative measures of alpha diversity, Chao-1 index of taxonomic 

diversity and abundance-based coverage estimators (ACE) index, were calculated (also 
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using sci-kit bio).  Finally, Weighted UniFrac distances (Lozupone and Knight, 2005) 

were calculated with QIIME2 as an alternate measure of beta diversity. Unlike the 

taxon-based Bray-Curtis dissimilarity, divergence-based UniFrac distances (Lozupone 

and Knight, 2008) consider the similarity of different taxa by incorporating information 

from a phylogenetic tree relating the genetic sequences from each sample.  

All code developed for this analysis is available at www.zenodo.org (URycki and 

Good, 2020b).  

2.5 Results 

2.5.1 Spatial patterns in microbial community similarity 

We evaluated how 16S rRNA sequence data for 55 DNA samples varied across 

the Willamette and Deschutes watersheds.  Among those samples, 3,530 unique ASVs 

were detected, including typical freshwater members of the classes Bacteroidetes, 

Actinobacteria, Verrucomicrobia, and Gammaproteobacteria (which includes 

Betaproteobacteria; Fig. 2.2). Some samples also featured high abundances of 

Cyanobacteria (up to 28% of community). 

 

Figure 2.2. Phylogenetic biodiversity (relative abundance of unique amplified sequences variants 

[ASVs]) of tributary and main-stem streamwater microbial DNA samples throughout the a) Deschutes 

and b) Willamette watersheds in Oregon, USA. Samples for each watershed are presented in order of 

increasing sub-catchment drainage area (Table 2.S1). 

http://www.zenodo.org/
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Alpha diversity was similar in the Willamette and Deschutes watersheds (Wil: 

mean H = 5.81, SD = 1.08; Des: mean H = 6.58, SD = 0.93; two-sample t = 2.50, p = 

0.016; Fig. 2.1) and was not related to the sample volume filtered (R2 = 0.04, p = 

0.76, Fig. 2.S2).  Tributaries exhibited both the highest and lowest biodiversity values 

in both watersheds.  Alpha diversity generally increased from south to north in the 

Willamette Basin (latitude R2 = 0.55, p < 0.001), but this pattern was not observed in 

the Deschutes Basin (latitude R2 = -0.41, p > 0.1; Fig. 2.3).    Across both watersheds, 

small and large sub-catchments exhibited similar levels of biodiversity (small sub-

catchments: mean H = 6.09, SD = 1.22, large sub-catchments: mean H = 6.00, SD = 

0.95; two-sample t = 0.30, p = 0.762), and alpha diversity was not related to sub-

catchment drainage area (Willamette: R2 = 0.04, p = 0.80; Deschutes: R2 = -0.38, p = 

0.13; Fig. 2.S3). 

The greatest beta diversity in microbial stream communities was observed 

between watersheds.  Bray-Curtis dissimilarity (BC) was higher on average for site-

pairs spanning watersheds (mean BC = 0.912) than for pairs within watersheds (mean 

 

 
Figure 2.3. Alpha diversity (Shannon index) vs. latitudinal coordinate of streamwater microbial DNA 

samples collected from small (unfilled symbols) and large (filled symbols) sub-catchments 

throughout the Willamette (squares) and Deschutes (triangles) watersheds in Oregon, USA. 
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BC = 0.832, Mann-Whitney U = 164584.5,  p < 0.001), and the vast majority of the top 

5% BC scores were for inter-watershed sample pairs (Fig. 2.4).  In fact, the most 

dissimilar pairs (top 1% BC scores) were between points extending from the 

headwaters of the Deschutes River to the mouth of the Willamette River.  A few of the 

top 5% most dissimilar pairs were points in the same watershed that were 

geographically distant.  Visual inspection reveals no clear patterns between small and 

large watersheds among the top 5% least similar pairs of samples, and beta diversity 

was similar within small and large sub-catchments (small: mean BC = 0.856, large: 

0.875; Mann-Whitney U = 65169.5, p = 0.340).  

Beta diversity was higher within the Willamette Basin (mean BC = 0.897) than 

within the Deschutes Basin (mean BC = 0.820; Mann-Whitney U = 31305.5, p < 

0.001). The lowest beta diversity in microbial stream communities (5% lowest BC 

scores) was observed between samples within in the upper Willamette Basin (Fig. 2.4).  

Points in the H.J. Andrews Forest exhibited some of the lowest dissimilarity to other 

points within the H.J. Andrews Forest and to several other points within the Willamette 

Basin. Also, a few of the lowest dissimilarity scores were between inter-watershed 

sample pairs, including pairs spanning headwaters of one watershed to the mouth of 

 
Figure 2.4. Map of the 1% (dark lines) and 5% (light lines) most (left) and least (right) dissimilar 

microbial communities throughout the Willamette and Deschutes watersheds in Oregon, USA. Large 

(filled symbols) and small (unfilled symbols) sub-catchments are those with more than or less than 

median drainage area, respectively.  Inset shows vicinity of H.J. Andrews Experimental Forest. 
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the other watershed.  Almost all of the most similar inter-watershed pairs are samples 

from large sub-catchments (i.e., points along the mainstem of the rivers). 

2.5.2 Relation of macroscale catchment properties to microbial community similarity 

Among StreamStats characteristics determined to be statistically significant in 

at least one group of sub-catchments (Table 2.1), geomorphic-related characteristics 

were on average the most strongly correlated with microbial community composition 

in the Willamette Basin (mean r = 0.19; Fig 2.5).  Land-cover (mean r = 0.15) 

characteristics were more strongly correlated with microbial community composition 

than climatic (mean r = 0.01) characteristics.  Among the top five strongest correlates 

in the Willamette Basin were latitude (r = 0.41), percentage of area containing high 

permeability aquifer units (r = 0.35), and percentage of forest and shrublands (r = 0.34; 

Table 2.1).  In the Deschutes Basin, climatic (mean r = 0.11) characteristics were more 

strongly correlated with microbial community composition than were geomorphic 

(mean r = 0.10) characteristics.  Land-cover characteristics were very weakly 

anticorrelated (mean r = -0.01; Fig. 2.5).  Among the top five strongest correlates with 

the microbial community in the Deschutes Basin were mean maximum January 

temperature (r = 0.33), percentage of low-intensity development (r = 0.30), topographic 

index (r = 0.33), and topographic relief (r = 0.29), although none of these were 

statistically significant (all p > 0.1; Table 2.1, Table 2.S2).  No development-related 

characteristics were found to be statistically correlated with microbial community 

similarity in the Willamette or Deschutes watersheds.  

Small sub-catchments exhibited the strongest correlations between macroscale 

catchment characteristics and microbial community composition.  Among StreamStats 

characteristics determined to be statistically significant in at least one group of sub-

catchments (Table 2.1), microbial community composition in small sub-catchments 

correlated most strongly with climatic characteristics (mean r = 0.46), followed by 

geomorphic (mean r = 0.38), and land-cover (mean r = 0.28; Fig. 2.5) characteristics. 

The most strongly correlated characteristics were watershed identifier (Willamette or 

Deschutes; r = 0.62), January minimum temperature (r = 0.55), and annual minimum 

temperature (r = 0.53; Table 2.1).  Microbial community composition in large sub-

catchments exhibited much weaker correlations.  Mean maximum January temperature 
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(r = 0.12), minimum basin elevation (r = 0.10), and mean annual maximum temperature 

(r = 0.10) were among the top five strongest correlates with microbial community 

similarity, although none of these were statistically significant (all p > 0.1). No 

development-related characteristics were found to be statistically significantly 

correlated with microbial community similarity in small or large watersheds.  

 

 
Figure 2.5. Mean correlation between microbial community composition (Mantel test statistic [r]) for 

land-cover, geomorphic, and climatic related StreamStats basin characteristics by watershed and in 

small and large sub-catchments across the Willamette and Deschutes watersheds, Oregon, USA. 

 

For the macroscale characteristics we analyzed, the strength of the correlation 

with the microbial community was not sensitive to the variability of those 

characteristics across catchments.  Across all sub-catchment characteristics, an increase 

in the standard deviation of a characteristic did not translate to a statistically significant 

increase in Mantel statistic for either the Willamette versus Deschutes watersheds 
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(median ε = 0.11; Wilcoxon signed-rank W = 324.0, p = 0.678) or for small versus large 

sub-catchments (median ε = -0.01; Wilcoxon signed-rank W = 357.0, p = 0.476).  

Similarly, median sensitivity was not statistically different from zero for any of the 

characteristic groups for either the Willamette versus Deschutes watersheds or for small 

versus large sub-catchments (all Wilcoxon signed-rank p > 0.1).   

Patterns were consistent when sequence data were grouped into OTUs or when 

different diversity metrics were applied.  The strongest relationships between microbial 

communities and watershed characteristics were observed in small watersheds at all 

OTU sequence similarity levels (95%, 97%, 99%, or 100%) and for three major 

taxonomic groups: Bacteroidetes, Gammaproteobacteria, and Verrucomicrobia (Fig 

2.S4). The microbial groups Actinobacteria and Cyanobacteria exhibited no significant 

correlations with watershed characteristics.  The strongest relationships were observed 

between microbial communities and geomorphic and climatic related characteristics, 

although some microbial groups were also related to land cover characteristics (Fig 

2.S4). The Chao-1 and ACE alpha diversity metrics were strongly correlated with 

Shannon index (Chao-1: Spearman r = 0.91, p << 0.001; ACE: Spearman r = 0.90, p 

<< 0.001).  Characterizing community similarity using Weighted UniFrac instead of 

Bray-Curtis dissimilarity also resulted in strong correlations with watershed 

characteristics in small watersheds. Also, some microbial groups exhibited comparably 

strong relationships to watershed characteristics in the Willamette and Deschutes 

watersheds (Fig 2.S5). 

2.6  Discussion 

 We explored the potential influence of the upstream macroscale environment 

in shaping streamwater microbiomes.  Previous studies found that streamwater 

microbial community composition is more strongly correlated with catchment-scale 

hydrologic parameters such as stream distance and catchment area than with water 

sample physio-chemical water properties (Read et al., 2015; Savio et al., 2015). Our 

study builds on this previous work by expanding the suite of macroscale variables 

analysed for relationships with the microbial community assemblage to more than 40 

basin characteristics reflecting the geomorphology, climate, land cover, and level of 

human development in stream catchments.  
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Our results suggest that, in headwater catchments, microbial community 

assemblages are shaped by catchment-scale geomorphology and climate, but these 

influences weaken downstream. The streamwater microbial metacommunity is 

‘seeded’ from a diverse amalgamation of microbes dispersed into headwater streams 

from surrounding soil and groundwater (Crump et al., 2007, 2012), which develops and 

continually combines with local inputs as the community moves downstream with the 

flow of water (Ruiz-González et al., 2015).  In headwater streams in particular, where 

the contributing area is large relative to the stream volume (Savio et al. 2015; Read et 

al. 2015), it follows that this immigrant microbial community would reflect the 

dispersal area and upslope environment and thus exhibit a stronger correlation with 

macroscale catchment characteristics. Downstream, however, biotic and abiotic factors 

increasingly drive ecological succession (i.e., species-sorting; Leibold et al., 2004), and 

the microbial assemblage shifts to a core riverine community, dampening signals from 

the upstream catchment (Savio et al., 2015).     

The shift from diverse communities of upslope emigrants that are tightly 

coupled to the catchment to a core riverine community shaped by the local environment 

may explain the decreasing strength of the relationship between microbial community 

composition and macroscale watershed characteristics. This is supported by the low 

overall sensitivity of the correlations to variability in sub-catchment characteristics 

moving from upstream to downstream, in that moving to more (or less) variable sub-

catchment characteristics did not result in higher (or lower) correlations uniformly. 

Since sensitivity values were distributed between both positive and negative values and 

not statistically different than zero, we conclude that changes in the homogeneity of the 

landscape across which samples are collected, as measured by the standard deviation 

of landscape characteristics, is not uniformly the driving processes determining 

differences in microbial composition.  

 Watershed location in either the Willamette or Deschutes basins was the 

strongest correlate with the microbial community across all basins and within small 

basins, indicating that there are additional factors shaping distinctive microbial 

communities in each basin.  In the temperate, more developed Willamette Basin, 

latitude and the percentage of forest and shrub land and were most important 
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characteristics. Due to the north-south orientation of these basins, latitude is a likely 

proxy for multiple other interacting factors (e.g. elevation and up-stream drainage 

area), and the Willamette Basin in particular has a strong human-driven gradient due 

to Portland at the outlet.  On the other hand, in the Deschutes Basin, geomorphic 

characteristics such as topographic index and relief were more important. It is possible 

that the differences in important influences on streamwater microbial communities 

between basins is related to basin hydrology and the nature of the inputs to the stream. 

In the wetter, more crop-dominated landscape of the Willamette Basin, more constant, 

stable inputs of water—and thus microbes—may contribute to the development of a 

certain, less diverse community than in the arid, less populated Deschutes Basin, where 

flashier water inputs result in more variable contributing areas and a different, more 

diverse streamwater microbial community (Nippgen et al., 2015).     

We note that, as with many scientific analyses, our results are a product of the 

decisions made throughout the analysis.  Decisions about DNA extraction methods and 

sequencing depth may have impacted our results.  Some catchment characteristics 

obtained from StreamStats that were considered redundant were eliminated from 

analysis (see Table 2.S1), but correlation among variables was not explored.  

Eliminating correlated variables may have yielded different results, as could have 

applying different significance criteria. On the other hand, results were robust to the 

similarity of ASV groups.  When ASVs were grouped into operational taxonomic units 

(OTUs) based on 95%, 97%, or 99% DNA sequence similarity, the relative strength 

and importance of characteristic categories and of spatial scale were generally stable 

(Fig. 2.S4).  Although some major microbial groups (e.g. classes Bacteroidetes, 

Gammaproteobacteria, Verrucomicrobia) exhibited stronger relationships with 

watershed characteristics than other groups, we are not aware of any method that would 

allow for reliable targeted sampling or analysis effort in such a way as to appreciably 

conserve resources.  Our results build upon those of Good et al. (2018), in which 

streamwater microbiomes were used in a machine learning algorithm to predict 

hydrologic regime of a set of large rivers in adjacent and detached watersheds in the 

Arctic.  Here, we found that the summer microbial community within small headwater 

streams reflects both the structural configuration of the landscape as well as upstream 
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processes.  Coupled with the results of Good et al. (2018), our results offer an 

encouraging indication that streamwater microbial DNA may thus carry information 

about upstream macroscale conditions as well as hydrology and may therefore hold 

potential as a useful tool in watershed monitoring. More research is needed to 

determine whether these relationships hold in other seasons and how to optimally 

extract this information from microbiomes. 
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2.13 Supplementary Material 

Table 2.S1. Watershed basin characteristics derived from StreamStats (https://streamstats.usgs.gov/ss/; Ries et al., 2017) for sample locations in the Willamette 

and Deschutes watersheds, Oregon, USA. 

Basin Characteristic 
Study Site 

LTR-NOT MAR-PHI WIL-COR WIL-HAR TUA-DIL GAL-FOR WIL-ALB TUA-COR MCK-COB MOS-COT NSA-JEF MCK-SPR 

LONGITUDE (decimal degrees) -123.438 -123.316 -123.257 -123.175 -123.125 -123.116 -123.107 -123.056 -123.047 -123.005 -122.973 -122.964 

LATITUDE (decimal degrees) 44.05909 44.51943 44.56549 44.2677 45.475 45.51067 44.63873 45.50206 44.11254 43.77813 44.7079 44.07167 

ASPECT (degrees) 184 177 183 185 167 165 183 165 190 183 189 192 

BSLOPD (degrees) 12.1 11.8 13.7 15.7 11.3 13.6 13.2 11.7 15.4 20 16.9 16 

DRNAREA (square km) 116.03 396.27 11447.75 8883.66 323.75 193.47 12587.34 562.03 3444.68 246.83 1895.87 2952.59 

DRNDENSITY (dimensionless) 0.54 0.77 0.64 0.62 0.69 0.67 0.64 0.7 0.59 0.7 0.72 0.58 

ELEV (m) 250.85 289.86 731.52 886.97 310.9 310.9 688.85 294.44 963.17 603.5 920.5 1048.51 

ELEVMAX (m) 640.08 1246.63 3139.44 3139.44 1057.66 957.07 3139.44 1057.66 3139.44 1444.75 3200.4 3139.44 

FOREST (percent) 80.3 82.2 75.6 84.4 73.5 81.6 72.3 72.4 86.4 92.5 82.4 87.3 

I24H2Y (mm) 67.06 74.17 67.31 69.09 62.99 65.53 66.29 62.99 75.44 64.26 80.77 77.72 

IMPERV (percent) 0.29 0.65 1.2 0.86 1 0.79 1.32 1.19 0.37 0.0489 0.58 0.23 

JANAVPRE2K (mm) 284.48 337.82 240.28 240.79 244.09 287.02 236.98 254 264.16 246.89 322.58 271.78 

JANMAXT2K (degrees C) 8.17 7.78 6.94 6.61 6.22 5.89 7 6.22 5.89 8.39 5.17 5.5 

JANMAXTMP (degrees C) 7.89 7.67 6.39 5.94 5.83 5.72 6.5 5.89 5.44 7.22 4.72 5.06 

JANMINT2K (degrees C) 1.22 0.5 -0.56 -0.94 -0.17 -0.39 -0.44 -0.22 -1.89 0.83 -1.89 -2.44 

JANMINTMP (degrees C) 0.5 0.33 -1.33 -1.89 -0.11 -0.39 -1.17 -0.17 -2.56 -0.22 -2.89 -3 

JULAVPRE2K (mm) 9.4 13.97 18.8 21.59 17.27 16.26 18.54 16.51 25.4 12.7 26.92 26.42 

LC11BARE (percent) 2 0 1 2 1 1 1 1 3 0 1 4 

LC11CRPHAY (percent) 3 8 12 4 16 10 15 17 2 1 7 1 

LC11DEVHI (percent) 0 0 0 0 0 0 0 0 0 0 0 0 

LC11DVLO (percent) 1 1 1 1 1 1 2 2 0 0 0 0 

LC11DVMD (percent) 0 0 1 0 0 0 1 0 0 0 0 0 

https://streamstats.usgs.gov/ss/
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LC11DVOPN (percent) 6 8 2 1 3 3 2 3 1 0 1 1 

LC11FORSHB (percent) 77 75 76 87 66 79 73 68 89 92 84 90 

LC11HERB (percent) 7 5 4 4 10 5 4 8 4 5 5 3 

LC11IMP (percent) 1.03 1.4 1.34 0.8 0.82 0.77 1.49 1.09 0.26 0.0661 0.33 0.18 

LC11WATER (percent) 0 0 1 1 1 0 1 1 0 0 1 0 

LC11WETLND (percent) 3 2 1 1 1 1 1 1 0 0 1 0 

MAJ_ROADS (km) 26.39 44.9 2269.07 1348.57 54.55 31.7 2671.39 111.36 251.05 19.63 204.38 167.36 

MAXBSLOPD (degrees) 45.5 47.6 70 70 47.6 48.2 70 48.2 70 50.8 66 70 

MAXTEMP (degrees C) 17.11 16.22 15.33 14.89 14.94 14.78 15.5 15 14.33 16.11 13.39 13.94 

MINBELEV (m) 128.93 68.28 60.96 89.92 49.68 52.12 54.25 43.28 121.31 207.87 75.59 137.46 

MINBSLOPD (degrees) 0 0 0 0 0 0 0 0 0 0 0 0 

MINTEMP (degrees C) 5.39 5.06 3.61 3.11 4.83 4.56 3.78 4.78 2.56 4.61 2.44 2.06 

MIN_ROADS (km) 70 535.89 12021.24 9253.3 423.24 218.86 13389.12 703.25 2751.85 302.54 1754.1 2156.42 

ORREG2 (dimensionless) 10001 10001 10001 10001 10001 10001 10001 10001 10001 10001 10001 10001 

OR_HIPERMA (percent) 16.2 13.7 17 7.57 12.9 8.02 19.9 14 5.51 1.21 11.3 4.47 

OR_HIPERMG (percent) 0 0 23.7 30.5 0 0 21.6 0 42.2 0 37 49.3 

PRECIP (mm) 1480.82 1831.34 1620.52 1694.18 1617.98 1653.54 1597.66 1597.66 1945.64 1503.68 2108.2 2009.14 

RELIEF (m) 512.06 1176.53 3078.48 3048 1008.89 905.26 3078.48 1014.98 3023.62 1237.49 3108.96 3008.38 

SOILPERM (mm per hour) 18.54 36.07 48.51 54.1 23.11 19.3 47.24 21.34 70.1 22.35 90.42 76.45 

STATE_HWY (km) 16.09 60.35 836.82 494.05 11.2 32.19 1012.23 51.5 191.5 0 108.3 185.07 

STATSGODEP (mm) 1150.62 1107.44 1163.32 1145.54 1290.32 1292.86 1176.02 1300.48 1130.3 1206.5 1165.86 1117.6 

STRMTOT (km) 62.28 302.54 7273.9 5551.98 223.69 129.71 8014.16 395.88 2027.68 172.19 1358.22 1721.92 

WATCAPORC (mm) 3.81 3.81 3.3 3.3 4.06 4.06 3.56 4.06 3.3 3.3 3.3 3.3 

WATCAPORR (mm per mm) 0.15 0.14 0.14 0.13 0.16 0.16 0.14 0.16 0.13 0.13 0.13 0.13 

TI_index () 6.293847 7.547943 10.75706 10.36106 7.390311 6.684248 10.89054 7.906157 9.43395 6.519383 8.738742 9.239599 

ALL ROADS (km) 112.48 641.14 15127.13 11095.92 488.99 282.75 17072.74 866.11 3194.4 322.17 2066.78 2508.85 
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Table 2.S1. (CONTINUED) 

Basin Characteristic 
Study Site 

TUA-HIL MFW-JAS SSA-WAT PUD-WOO FAL-FAL TUA-WES WIL-POR NSA-MEH MFW-OAK W09-HJA W01-HJA W02-HJA 

LONGITUDE (decimal degrees) -122.952 -122.906 -122.821 -122.793 -122.775 -122.677 -122.667 -122.618 -122.438 -122.258 -122.258 -122.245 

LATITUDE (decimal degrees) 45.48999 43.998 44.49765 45.15036 43.94499 45.35047 45.505 44.78884 43.721 44.20148 44.20723 44.21244 

ASPECT (degrees) 174 182 181 192 185 177 183 185 183 264 197 215 

BSLOPD (degrees) 9.12 17 18.2 5.52 18.9 7.74 11.7 18.4 19.1 30 27.9 26.7 

DRNAREA (square km) 1225.06 3496.48 1644.64 821.03 481.74 1833.71 29007.87 1696.44 1017.87 0.03 1.01 0.62 

DRNDENSITY (dimensionless) 0.72 0.63 0.65 0.77 0.61 0.77 0.7 0.7 0.65 0 0 0 

ELEV (m) 236.83 1008.89 755.9 265.48 704.09 194.77 557.78 1002.79 1203.96 612.65 722.38 804.67 

ELEVMAX (m) 1057.66 2654.81 1767.84 1338.07 1517.9 1057.66 3200.4 3200.4 2654.81 713.23 1018.03 1078.99 

FOREST (percent) 58.4 89.1 86.2 30.7 93.5 47.4 65.3 88.8 87.8 100 99.8 100 

I24H2Y (mm) 57.66 66.55 74.42 58.42 65.53 53.85 66.04 83.31 68.33 64.26 67.31 76.45 

IMPERV (percent) 2.27 0.23 0.58 3.44 0.0688 6.95 2.36 0.36 0 0 0 0 

JANAVPRE2K (mm) 233.17 225.55 274.32 209.8 232.66 211.33 246.13 335.28 224.28 250.95 250.44 256.54 

JANMAXT2K (degrees C) 6.5 6.5 6.5 7.61 7.83 6.83 6.78 4.83 5.67 6.72 6.67 6.5 

JANMAXTMP (degrees C) 6.17 5.72 6.17 7.39 7.39 6.61 6.44 4.39 5 5.67 5.89 6.67 

JANMINT2K (degrees C) -0.22 -1 -0.72 0.22 0.94 0 -0.39 -2.11 -2.39 -0.78 -0.83 -1 

JANMINTMP (degrees C) -0.06 -2.28 -1.83 0.22 -0.78 0.22 -0.94 -3.28 -3.11 -1.67 -1.83 -1.33 

JULAVPRE2K (mm) 15.24 22.86 29.21 20.32 20.07 15.49 19.81 27.69 23.88 19.05 18.54 18.03 

LC11BARE (percent) 1 1 0 0 0 0 1 1 1 0 0 0 

LC11CRPHAY (percent) 27 1 2 52 0 27 21 1 0 0 0 0 

LC11DEVHI (percent) 0 0 0 1 0 2 1 0 0 0 0 0 

LC11DVLO (percent) 3 0 0 4 0 9 3 0 0 0 0 0 

LC11DVMD (percent) 1 0 0 2 0 6 1 0 0 0 0 0 

LC11DVOPN (percent) 3 1 1 3 0 5 3 1 0 0 0 0 

LC11FORSHB (percent) 57 92 89 33 96 44 65 91 95 100 100 100 
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LC11HERB (percent) 5 3 6 4 2 4 4 5 4 0 0 0 

LC11IMP (percent) 2.57 0.16 0.3 3.26 0.11 9.14 2.56 0.18 0.0607 0 0 0 

LC11WATER (percent) 0 2 1 0 1 0 1 1 1 0 0 0 

LC11WETLND (percent) 2 0 0 2 0 2 2 0 0 0 0 0 

MAJ_ROADS (km) 416.8 518.18 199.55 284.84 68.55 1208.56 8078.53 141.29 154.01 0 0 0 

MAXBSLOPD (degrees) 48.2 67.2 66.4 57.4 53.9 48.2 70 66 64.5 34.8 42.2 44.2 

MAXTEMP (degrees C) 15.44 14.56 14.94 16.06 16.33 15.89 15.39 13 14.06 16.5 15.94 15.83 

MINBELEV (m) 34.44 159.72 119.18 31.7 207.87 16.58 1.46 185.62 371.86 481.58 463.3 560.83 

MINBSLOPD (degrees) 0 0 0 0 0 0 0 0 0 17.4 1.15 2.34 

MINTEMP (degrees C) 5 2.78 3.56 5.22 4.39 5.28 4.11 2.11 1.89 2.67 2.94 3.72 

MIN_ROADS (km) 1599.61 3701.32 1593.18 1131.32 579.34 4393.31 38944.32 1503.06 1110.4 0 0 0 

ORREG2 (dimensionless) 10001 10001 10001 10001 10001 10001 10001 10001 10001 10001 10001 10001 

OR_HIPERMA (percent) 29.2 3.06 3.81 41.6 0 38.8 26.2 6.2 1.46 0 0 0 

OR_HIPERMG (percent) 0 35.9 9.29 6.72 0 0 20.1 41 53.6 0 0 0 

PRECIP (mm) 1450.34 1584.96 2082.8 1445.26 1691.64 1336.04 1638.3 2179.32 1582.42 2199.64 2250.44 2303.78 

RELIEF (m) 1024.13 2496.31 1648.97 1304.54 1310.64 1042.42 3169.92 2999.23 2282.95 232.87 557.78 518.16 

SOILPERM (mm per hour) 19.81 48.77 44.45 27.94 29.21 19.56 46.23 94.49 61.21 17.27 35.05 35.05 

STATE_HWY (km) 165.75 95.27 73.06 124.56 0 394.27 2928.87 88.99 0 0 0 0 

STATSGODEP (mm) 1371.6 1130.3 1132.84 1297.94 1163.32 1412.24 1211.58 1150.62 1120.14 1247.14 1201.42 1201.42 

STRMTOT (km) 885.1 2204.7 1073.38 629.22 296.11 1414.55 20276.79 1187.64 661.41 0 0 0 

WATCAPORC (mm) 4.06 3.3 3.3 3.81 3.3 4.06 3.56 3.3 3.05 3.3 2.79 2.79 

WATCAPORR (mm per mm) 0.16 0.13 0.14 0.15 0.13 0.16 0.14 0.13 0.13 0.13 0.11 0.11 

TI_index () 8.940007 9.344563 8.517633 9.047308 7.249249 9.509813 11.84992 8.536934 7.985972 -2.95725 0.645824 0.209233 

ALL ROADS (km) 2182.16 4314.77 1865.79 1540.72 647.89 5996.14 49951.72 1733.34 1264.41 0 0 0 

H_index () 4.297152 3.41858 3.101057 3.314169 2.760258 2.768154 2.914974 3.761218 3.068951 3.356252 2.607017 1.936592 
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Table 2.S1. (CONTINUED) 

Basin Characteristic 
Study Site 

W03-HJA W06-HJA W07-HJA W08-HJA MAC-HJA NSA-DET CRE-CRE ODE-LAP CUL-LAP DES-LAP MET-SIS DES-WIK 

LONGITUDE (decimal degrees) -122.243 -122.181 -122.175 -122.171 -122.167 -122.076 -121.973 -121.881 -121.796 -121.782 -121.639 -121.607 

LATITUDE (decimal degrees) 44.21915 44.26072 44.26487 44.26616 44.21944 44.701 43.5029 43.57535 43.81817 43.74484 44.4731 43.7411 

ASPECT (degrees) 210 148 171 183 180 197 149 147 172 178 134 161 

BSLOPD (degrees) 25.5 13.9 17.3 14.6 24.8 14.9 6.63 8.02 4.87 6.66 7.7 6.15 

DRNAREA (square km) 0.98 0.1 0.14 0.24 5.78 520.59 147.63 123.8 39.37 670.81 242.42 1261.32 

DRNDENSITY (dimensionless) 0 0 0 0 0.6 0.76 0.4 0.56 0.36 0.4 0.42 0.37 

ELEV (m) 783.34 941.83 1014.98 1078.99 1203.96 1280.16 1731.26 1682.5 1551.43 1636.78 1274.06 1581.91 

ELEVMAX (m) 1078.99 996.7 1094.23 1179.58 1621.54 3200.4 2648.71 2563.37 1914.14 3108.96 2368.3 3108.96 

FOREST (percent) 100 98.1 48.1 98.5 98.5 86.7 82.4 82.2 97.6 83.7 90.9 81.3 

I24H2Y (mm) 84.07 87.88 87.88 88.14 86.87 84.84 74.93 62.74 71.37 70.1 45.72 59.94 

IMPERV (percent) 0 0 0 0 0 0 0 0.0275 0 0 0.032 0.0027 

JANAVPRE2K (mm) 256.54 292.1 292.1 292.1 287.02 297.18 214.88 193.8 226.57 226.57 188.98 190.5 

JANMAXT2K (degrees C) 6.5 5 5 5 5.33 3.56 3.39 3.11 3.11 3 3.89 3.28 

JANMAXTMP (degrees C) 6.56 6.61 6.61 7.17 5.78 3.06 1.39 1.22 2.06 1.61 3 1.94 

JANMINT2K (degrees C) -1 -2.11 -2.11 -2.11 -2.17 -3.72 -7.17 -5.83 -5.72 -6.06 -5.72 -6.33 

JANMINTMP (degrees C) -1.83 -1.5 -1.44 -2.22 -2.67 -4.61 -7.33 -7.11 -6.83 -7.11 -5.61 -7.28 

JULAVPRE2K (mm) 18.03 27.94 27.94 28.19 34.04 31.5 35.31 24.89 29.46 29.21 19.56 24.89 

LC11BARE (percent) 0 0 0 0 0 3 2 1 1 6 3 4 

LC11CRPHAY (percent) 0 0 0 0 0 0 0 0 0 0 0 0 

LC11DEVHI (percent) 0 0 0 0 0 0 0 0 0 0 0 0 

LC11DVLO (percent) 0 0 0 0 0 0 0 0 0 0 0 0 

LC11DVMD (percent) 0 0 0 0 0 0 0 0 0 0 0 0 

LC11DVOPN (percent) 0 0 0 0 0 1 0 1 0 1 2 1 

LC11FORSHB (percent) 100 100 100 100 100 86 85 86 97 86 84 83 
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LC11HERB (percent) 0 0 0 0 0 9 0 0 1 2 10 4 

LC11IMP (percent) 0.041 0 0 0 0.0147 0.0496 0.0326 0.12 0.0696 0.0946 0.23 0.18 

LC11WATER (percent) 0 0 0 0 0 1 12 12 0 4 1 6 

LC11WETLND (percent) 0 0 0 0 0 0 0 0 0 1 0 2 

MAJ_ROADS (km) 0 0 0 0 0 23.17 18.18 3.4 3.06 70.81 29.45 145 

MAXBSLOPD (degrees) 51.8 24.4 29.5 23.4 48.4 65.9 65.8 55.6 28 61.3 71.5 61.3 

MAXTEMP (degrees C) 15.89 16.28 16.17 15.67 13.89 11.94 10.56 10.44 11.39 10.89 12.78 11.5 

MINBELEV (m) 481.58 868.68 935.74 972.31 762 518.16 1475.23 1356.36 1356.36 1322.83 886.97 1295.4 

MINBSLOPD (degrees) 0.65 1.6 1.23 4.11 0.93 0 0 0 0 0 0 0 

MINTEMP (degrees C) 3.22 3.56 3.56 2.94 2.06 0.61 -2.17 -1.83 -1.22 -1.5 -0.17 -1.5 

MIN_ROADS (km) 0 0.04 0.47 0.24 7.43 318.64 37.01 71.93 21.4 574.51 342.77 1581.91 

ORREG2 (dimensionless) 10001 10001 10001 10001 10001 10001 363 363 363 363 363 363 

OR_HIPERMA (percent) 0 0 0 0 0 7.47 0 0 0 0 9.88 3.89 

OR_HIPERMG (percent) 0 0 91.7 100 89.6 89.8 100 100 100 100 98.1 99.2 

PRECIP (mm) 2334.26 2125.98 2123.44 2171.7 2291.08 2197.1 1526.54 1501.14 1389.38 1518.92 1353.82 1287.78 

RELIEF (m) 600.46 129.84 158.19 204.52 859.54 2667 1173.48 1207.01 557.78 1795.27 1481.33 1825.75 

SOILPERM (mm per hour) 38.86 71.12 73.66 73.66 76.71 152.4 91.19 122.43 126.49 165.61 205.23 182.37 

STATE_HWY (km) 0 0 0 0 0 34.92 0 10.86 0 0 18.02 10.86 

STATSGODEP (mm) 1181.1 1018.54 1008.38 1008.38 1041.4 1209.04 1089.66 1122.68 1242.06 1193.8 1338.58 1219.2 

STRMTOT (km) 0 0 0 0 3.46 397.49 58.42 69.68 14.23 265.53 102.03 471.52 

WATCAPORC (mm) 2.79 4.06 4.06 4.06 3.81 3.05 2.15 2.51 2.79 3.05 2.31 3.3 

WATCAPORR (mm per mm) 0.11 0.16 0.16 0.16 0.15 0.12 0.0935 0.11 0.11 0.13 0.0991 0.13 

TI_index () 0.720087 -0.90614 -0.79965 -0.08189 2.526454 7.578923 7.146854 6.778395 6.135725 8.656075 7.491633 9.367838 

ALL ROADS (km) 0 0.04 0.47 0.24 7.43 376.73 55.19 86.19 24.46 645.32 390.24 1737.77 
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Table 2.S1. (CONTINUED) 

Basin Characteristic 
Study Site 

Description (categorya) FAL-

LAP 

TUM-

BEN 

DES-

BFA 

DES-

BEN 

DES-

MAD 

CRO-

TER 

TRO-

GAT 

DES-

BIG 

CRO-

PRI 

LONGITUDE (decimal degrees) -121.573 -121.521 -121.412 -121.306 -121.229 -121.139 -121.066 -120.914 -120.855 Longitudinal coordinate (G) 

LATITUDE (decimal degrees) 43.79595 44.03193 43.93051 44.0792 44.7609 44.36792 44.80123 45.63391 44.29618 Latitudinal coordinate (G) 

ASPECT (degrees) 147 144 177 176 173 179 190 173 180 
basin average of topographic slope compass directions from 

elevation grid (G) 

BSLOPD (degrees) 3.7 9.66 4.96 4.9 5.92 6.08 9.81 6.84 6.26 Mean basin slope measured in degrees (G) 

DRNAREA (square km) 124.32 77.44 4506.58 4817.38 20901.2 11654.95 1724.93 27712.87 7174.27 Area that drains to a point on a stream (G) 

DRNDENSITY (dimensionless) 0.18 0.55 0.33 0.33 0.48 0.54 0.76 0.56 0.64 
Basin drainage density defined as total stream length divided by 

drainage area. (G) 

ELEV (m) 1392.94 1911.1 1524 1517.9 1341.12 1359.41 1002.79 1225.3 1392.94 Mean Basin Elevation (G) 

ELEVMAX (m) 1895.86 2535.94 3108.96 3108.96 3200.4 2331.72 1807.46 3413.76 2176.27 Maximum basin elevation (G) 

FOREST (percent) 89.6 69.6 81.5 81.2 47.1 29.4 23.3 43.5 24.5 Percentage of area covered by forest (L) 

I24H2Y (mm) 37.59 60.45 45.72 44.96 30.73 23.88 24.38 30.48 23.88 
Maximum 24-hour precipitation that occurs on average once in 2 

years - Equivalent to precipitation intensity index (C) 

IMPERV (percent) 0 0 0.41 0.58 0.45 0.15 0.0729 0.36 0.0417 Percentage of impervious area  

JANAVPRE2K (mm) 108.46 185.42 132.08 129.03 73.66 42.93 40.64 75.18 44.2 Mean January Precipitation (C) 

JANMAXT2K (degrees C) 3.5 1.78 2.89 5.22 7.22 5.22 6.22 4.72 5.28 
Mean Maximum January Temperature from 2K resolution PRISM 

1961-1990 data (C) 

JANMAXTMP (degrees C) 3.33 0.06 2.61 2.67 3.28 3.22 4.11 3.33 2.89 Mean Maximum January Temperature (C) 

JANMINT2K (degrees C) -6.28 -6.61 -6.94 -6.89 -6.89 -7.44 -5.28 -6.28 -7.72 
Mean Minimum January Temperature from 2K resolution PRISM 

PRISM 1961-1990 data (C) 

JANMINTMP (degrees C) -7.44 -7.72 -7.44 -7.39 -6.78 -7.11 -4.78 -6.22 -7.44 Mean Minimum January Temperature (C) 

JULAVPRE2K (mm) 17.78 33.53 19.3 19.3 15.49 14.22 11.18 14.48 14.99 Mean July Average Precipitation (C) 

LC11BARE (percent) 0 12 2 3 1 0 0 1 0 Percentage of barren from NLCD 2011 class 31 (L) 

LC11CRPHAY (percent) 0 0 0 0 3 2 4 3 1 
Percentage of cultivated crops and hay, classes 81 and 82, from 

NLCD 2011 (L) 

LC11DEVHI (percent) 0 0 0 0 0 0 0 0 0 
Percentage of area developed, high intensity, NLCD 2011 class 24 

(D) 

LC11DVLO (percent) 0 0 0 1 1 0 0 1 0 
Percentage of developed area, low intensity, from NLCD 2011 

class 22 (D) 

LC11DVMD (percent) 0 0 0 0 0 0 0 0 0 
Percentage of area developed, medium intensity, NLCD 2011 class 

23 (D) 

LC11DVOPN (percent) 1 0 1 2 1 1 1 1 0 Percentage of developed open area from NLCD 2011 class 21 (D) 
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LC11FORSHB (percent) 98 86 87 86 89 94 94 89 96 
Percentage of forests and shrub lands, classes 41 to 52, from 

NLCD 2011 (L) 

LC11HERB (percent) 1 2 5 5 3 1 2 3 0 Percentage of herbaceous from NLCD 2011 classes 71-74 (L) 

LC11IMP (percent) 0.26 0.0165 0.46 0.6 0.6 0.33 0.3 0.51 0.19 
Average percentage of impervious area determined from NLCD 

2011 impervious dataset (D) 

LC11WATER (percent) 0 0 2 2 1 0 0 1 0 Percent of open water, class 11, from NLCD 2011 (L) 

LC11WETLND (percent) 0 0 2 1 1 1 0 1 1 Percentage of wetlands, classes 90 and 95,  from NLCD 2011 (L) 

MAJ_ROADS (km) 25.43 3.91 455.42 537.5 2542.65 1194.08 197.94 3299 577.73 Length of non-state major roads in basin (D) 

MAXBSLOPD (degrees) 40 56.8 65.8 65.8 74.1 58.8 68.4 74.1 57.2 
Maximum basin slope, in degrees, using ArcInfo Grid with 

NHDPlus 30-m resolution elevation data. (G) 

MAXTEMP (degrees C) 13.61 9.22 12.78 12.89 14.17 14.5 15.56 14.33 14.33 
Mean annual maximum air temperature over basin area from 

PRISM 1971-2000 800-m grid (C) 

MINBELEV (m) 1283.21 1438.66 1264.92 1072.9 411.48 813.82 429.77 50.6 868.68 Minimum basin elevation (G) 

MINBSLOPD (degrees) 0 0 0 0 0 0 0 0 0 
Minimum basin slope, in degrees, using ArcInfo Grid with 

NHDPlus 30-m resolution elevation data. (G) 

MINTEMP (degrees C) -1.22 -2.28 -1.56 -1.5 -0.56 -0.56 1.78 0.11 -0.67 
Mean annual minimum air temperature over basin surface area as 

defined in SIR 2008-5126 (C) 

MIN_ROADS (km) 271.97 51.5 7032.51 7692.31 23978.11 9880.91 1298.68 29771.48 5342.77 Length of non-state minor roads in basin (D) 

ORREG2 (dimensionless) 363 363 363 363 363 363 363 363 363 Oregon Region Number (G) 

OR_HIPERMA (percent) 22.1 0 17.1 16 9.68 8.46 2.47 7.51 6.68 
Percent basin surface area containing high permeability aquifer 

units as defined in SIR 2008-5126 (G) 

OR_HIPERMG (percent) 95.4 100 65.4 67.4 36.3 20.5 0 35 10.6 
Percent basin surface area containing high permeability geologic 

units as defined in SIR 2008-5126 (G) 

PRECIP (mm) 698.5 1264.92 916.94 896.62 533.4 350.52 342.9 530.86 365.76 Mean Annual Precipitation (C) 

RELIEF (m) 609.6 1097.28 1856.23 2045.21 2773.68 1517.9 1377.7 3352.8 1307.59 Maximum - minimum elevation (G) 

SOILPERM (mm per hour) 299.72 146.05 264.16 261.62 121.41 71.88 13.97 100.58 34.8 Average Soil Permeability (L) 

STATE_HWY (km) 0 0 160.44 183.46 872.22 411.97 84.81 1221.44 202.77 Length of state highways in basin (D) 

STATSGODEP (mm) 1524 1054.1 1397 1379.22 1038.86 924.56 1244.6 1026.16 838.2 
Area-weighted average soil depth from NRCS STATSGO database 

(G) 

STRMTOT (km) 22.37 42.32 1499.84 1604.44 10090.12 6324.43 1311.55 15690.38 4570.33 total length of all mapped streams (1:24,000-scale) in the basin (G) 

WATCAPORC (mm) 4.83 1.79 4.06 4.06 3.05 2.79 3.3 3.05 2.54 
Available water capacity  from STATSGO data using methods 

from SIR 2005-5116 (G) 

WATCAPORR (mm per mm) 0.19 0.0782 0.17 0.16 0.12 0.11 0.13 0.12 0.1 
Available water capacity from STATSGO data using methods from 

SIR 2008-5126 (G) 

TI_index () 7.561362 6.120198 10.85761 10.93654 12.21388 11.60295 9.207927 12.35033 11.08831 Topographic index (G) 

ALL ROADS (km) 297.4 55.41 7648.37 8413.27 27392.98 11486.96 1581.43 34291.92 6123.27 
Length of state highways and non-state major and minor roads in 

basin (D) 

aCategories: C – climatic; D – development; G – geomorphic; L – land cover 
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Table 2.S2. Mean, standard deviation (SD), correlation with microbial community similarity (Mantel statistic [r]) 

and associated Bonferroni-adjusted p-value for all StreamStats macroscale basin characteristics by watershed and in 

small and large sub-catchments across the Willamette and Deschutes watersheds, Oregon, USA. 

Basin characteristic 

Willamette Deschutes 

Mean SD r p Mean SD r p 

MINBELEV (m) 294.123 304.842 0.035 1 1021.813 435.058 0.277 0.73 

JANMINTMP (degrees C) -1.552 1.296 0.083 1 -6.906 0.797 -0.015 1 

MINTEMP (degrees C) 3.468 1.243 0.074 1 -0.99 1.035 0.059 1 

JANMINT2K (degrees C) -1.029 1.168 0.05 1 -6.477 0.697 0.085 1 

ORREG2 (dimensionless) 10001 0   363 0   

JANMAXTMP (degrees C) 6.083 1.059 0.067 1 2.448 1.056 -0.001 1 

ELEV (m) 741.759 337.075 0.089 1 1475.029 226.315 0.027 1 

JANMAXT2K (degrees C) 6.218 1.062 0.043 1 4.122 1.466 0.211 1 

MAXTEMP (degrees C) 15.152 1.201 -0.015 1 12.597 1.849 0.097 1 

PRECIP (mm) 1884.116 320.239 0.016 1 965.2 463.794 0.159 1 

DISTANCE (km) 80.89 49.559 0.202 0.298 75.228 57.446 0.219 1 

BSLOPD (degrees) 16.496 6.135 -0.074 1 6.544 1.71 -0.157 1 

LATITUDE (decimal degrees) 44.532 0.54 0.201 0.61 44.17 0.57 0.186 1 

OR_HIPERMG (percent) 26.604 33.251 0.042 1 68.527 37.817 0.227 1 

JANAVPRE2K (mm) 263.858 34.971 0.083 1 138.193 70.054 0.158 1 

LONGITUDE (decimal degrees) -122.69 0.411 0.048 1 -121.446 0.351 0.242 1 

TI_index () 6.138 4.341 -0.063 1 9.168 2.22 0.325 0.389 

ELEVMAX (m) 1858.942 979.223 -0.042 1 2619.451 531.879 0.19 1 

MAJ_ROADS (km) 591.609 1605.174 -0.021 1 606.904 1005.218 0.306 0.413 

DRNDENSITY (dimensionless) 0.497 0.305 -0.031 1 0.459 0.145 -0.033 1 

LC11FORSHB (percent) 83.593 18.232 0.138 1 89.333 5.066 0.009 1 

SOILPERM (mm per hour) 51.956 30.824 -0.004 1 147.167 83.689 0.002 1 
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DRNAREA (square km) 2700.613 5985.725 -0.023 1 5411.953 8457.813 0.326 0.278 

ALL ROADS (km) 3997.38 9943.83 -0.024 1 6682.012 10561.01 0.319 0.235 

MIN_ROADS (km) 3182.217 7765.083 -0.025 1 5863.318 9200.694 0.322 0.269 

LC11WATER (percent) 0.481 0.58 0.011 1 2.733 4.131 -0.087 1 

LC11CRPHAY (percent) 7.556 12.373 0.185 1 0.867 1.407 0.176 1 

STRMTOT (km) 1803.267 4108.677 -0.023 1 2809.146 4608.79 0.304 0.442 

LC11DVLO (percent) 1 1.961 0.041 1 0.2 0.414 0.348 0.418 

OR_HIPERMA (percent) 9.754 12.043 0.121 1 6.918 7.092 0.08 1 

LC11IMP (percent) 0.957 1.868 0.012 1 0.266 0.197 0.272 0.912 

LC11HERB (percent) 3.556 2.926 0.066 1 2.6 2.64 0.201 1 

STATE_HWY (km) 223.555 582.069 -0.02 1 211.79 364.285 0.288 0.638 

LC11DVOPN (percent) 1.63 2.06 0.071 1 0.867 0.64 0.093 1 

JULAVPRE2K (mm) 21.994 5.973 0.006 1 21.573 7.539 0.094 1 

LC11WETLND (percent) 0.667 0.92 0.066 1 0.667 0.724 0.246 1 

LC11BARE (percent) 0.852 1.099 -0.007 1 2.4 3.158 -0.127 1 

WATCAPORC (mm) 3.517 0.432 -0.003 1 3.039 0.8 -0.116 1 

RELIEF (m) 1562.495 1111.023 -0.026 1 1598.574 737.501 0.257 0.797 

WATCAPORR (mm per mm) 0.139 0.016 -0.012 1 0.123 0.03 -0.114 1 

FOREST (percent) 81.411 18.096 0.048 1 67.187 26.003 0.165 1 

I24H2Y (mm) 72.531 10.225 0.027 1 47.125 18.357 0.174 1 

ASPECT (degrees) 186.63 20.311 -0.212 1 165.333 16.855 -0.016 1 

MINBSLOPD (degrees) 1.089 3.396 -0.118 1 0 0   

STATSGODEP (mm) 1173.762 100.949 0.083 1 1175.512 187.592 0.111 1 

MAXBSLOPD (degrees) 53.381 14.488 0 1 60.3 12.439 -0.072 1 

LC11DEVHI (percent) 0.148 0.456 -0.015 1 0 0   

LC11DVMD (percent) 0.407 1.217 0.001 1 0 0   
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Table 2.S2. (Continued)     

Basin characteristic 

Small Large All 

Mean SD r p Mean SD r p Mean SD r p 

MINBELEV (m) 745.802 495.714 0.411 0.005 362.222 430.851 -0.004 1 546.337 501.766 0.219 0.01 

JANMINTMP (degrees C) -3.261 2.954 0.398 0.014 -3.667 2.764 -0.006 1 -3.367 2.796 0.156 0.082 

MINTEMP (degrees C) 1.873 2.679 0.377 0.029 1.878 2.272 -0.017 1 1.938 2.45 0.161 0.067 

JANMINT2K (degrees C) -2.712 2.776 0.356 0.053 -3.237 2.928 0 1 -2.859 2.763 0.146 0.091 

ORREG2 (dimensionless) 6788.333 4655.596 0.344 0.058 6329.381 4795.997 0.027 1 6709.976 4627.121 0.168 0.072 

JANMAXTMP (degrees C) 4.827 2.464 0.325 0.062 4.743 1.592 -0.032 1 4.831 2.052 0.18 0.024 

ELEV (m) 1022.532 516.09 0.31 0.077 984.751 419.168 -0.01 1 994.146 466.389 0.134 0.13 

JANMAXT2K (degrees C) 5.156 1.848 0.3 0.125 5.783 1.213 -0.047 1 5.474 1.595 0.195 0.014 

MAXTEMP (degrees C) 14.124 2.459 0.292 0.106 14.355 1.158 -0.074 1 14.237 1.926 0.141 0.221 

PRECIP (mm) 1784.29 444.05 0.271 0.134 1327.573 619.941 0.068 1 1584.96 556.086 0.071 1 

DISTANCE (km) 80.665 58.836 0.26 0.043 115.581 61.142 0.046 1 104.244 57.873 0.14 0.13 

BSLOPD (degrees) 14.697 8.057 0.257 0.134 11.186 5.228 0.067 1 13.104 6.944 0.047 1 

LATITUDE (decimal degrees) 44.238 0.512 0.233 0.149 44.567 0.592 0.019 1 44.405 0.578 0.121 0.485 

OR_HIPERMG (percent) 50.695 49.626 0.229 0.504 32.458 25.464 0.035 1 42.332 40.228 0.136 0.125 

JANAVPRE2K (mm) 246.319 50.688 0.195 0.758 191.637 92.195 0.048 1 223.241 74.413 0.07 1 

LONGITUDE (decimal degrees) -122.269 0.561 0.171 1 -122.222 0.858 0.014 1 -122.279 0.69 0.081 1 

TI_index () 4.439 3.794 0.151 1 10.001 1.318 0.032 1 7.126 3.975 -0.017 1 

ELEVMAX (m) 1644.614 793.192 0.147 1 2616.49 773.555 0.099 1 2129.437 928.256 -0.006 1 

MAJ_ROADS (km) 23.008 30.906 0.125 1 1171.135 1834.118 0.03 1 597.543 1424.251 0.014 1 

DRNDENSITY (dimensionless) 0.359 0.294 0.124 1 0.607 0.134 0.039 1 0.479 0.26 -0.009 1 

LC11FORSHB (percent) 90 11.243 0.119 1 81.286 17.312 0.033 1 85.39 15.174 0.054 1 

SOILPERM (mm per hour) 88.513 73.573 0.093 1 83.408 71.287 0.01 1 87.208 72.022 0.029 1 

DRNAREA (square km) 182.624 219.409 0.092 1 7155.273 8638.501 -0.025 1 3583.453 7055.737 0.005 1 

ALL ROADS (km) 223.606 282.492 0.086 1 9688.748 12766.33 -0.001 1 4927.711 10247.52 0.007 1 
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MIN_ROADS (km) 190.935 241.722 0.085 1 8088.571 10406.93 -0.009 1 4110.411 8397.442 0.005 1 

LC11WATER (percent) 1.571 3.586 0.082 1 1 1.342 -0.063 1 1.317 2.715 0.072 1 

LC11CRPHAY (percent) 2.095 5.127 0.081 1 8.238 13.262 0.056 1 5.268 10.514 0.082 1 

STRMTOT (km) 107.43 140.921 0.077 1 4217.589 5330.402 -0.013 1 2103.782 4301.461 0.007 1 

LC11DVLO (percent) 0.238 0.539 0.056 1 1.19 2.159 -0.08 1 0.732 1.644 0.005 1 

OR_HIPERMA (percent) 4.583 7.118 0.054 1 12.899 11.86 0.03 1 8.791 10.663 0.066 1 

LC11IMP (percent) 0.256 0.428 0.052 1 1.165 2.043 -0.088 1 0.723 1.546 -0.012 1 

LC11HERB (percent) 2.714 3.73 0.048 1 3.714 1.419 0.123 1 3.293 2.822 0.027 1 

STATE_HWY (km) 9.664 17.86 0.043 1 429.042 663.89 0.021 1 219.758 516.426 0.012 1 

LC11DVOPN (percent) 1.238 2.166 0.039 1 1.476 1.167 -0.03 1 1.39 1.73 0.017 1 

JULAVPRE2K (mm) 23.344 7.375 0.038 1 20.344 5.209 0.08 1 22.011 6.475 0.068 1 

LC11WETLND (percent) 0.381 0.805 0.018 1 0.952 0.805 0.184 0.662 0.659 0.855 0.073 1 

LC11BARE (percent) 1.524 2.839 0.011 1 1.286 1.271 0.024 1 1.439 2.191 0.028 1 

WATCAPORC (mm) 3.294 0.787 0.006 1 3.398 0.42 0.024 1 3.366 0.62 0.021 1 

RELIEF (m) 898.724 613.117 -0.013 1 2252.037 805.37 0.103 1 1581.912 995.584 0.027 1 

WATCAPORR (mm per mm) 0.131 0.028 -0.018 1 0.135 0.017 0.069 1 0.134 0.023 0.015 1 

FOREST (percent) 87.029 13.36 -0.027 1 65.633 24.037 0.107 1 77.595 20.724 0.041 1 

I24H2Y (mm) 70.635 13.599 -0.029 1 56.279 19.745 0.058 1 64.422 17.361 0.023 1 

ASPECT (degrees) 176.857 29.773 -0.032 1 181.19 7.587 0.007 1 179 21.838 -0.051 1 

MINBSLOPD (degrees) 1.4 3.812 -0.041 1 0 0   0.717 2.787 -0.058 1 

STATSGODEP (mm) 1175.899 126.099 -0.058 1 1172.875 148.247 0.067 1 1182.587 126.677 0.011 1 

MAXBSLOPD (degrees) 46.971 13.649 -0.099 1 64.733 7.233 0.02 1 55.82 14.215 -0.016 1 

LC11DEVHI (percent) 0 0   0.19 0.512 -0.049 1 0.098 0.374 -0.009 1 

LC11DVMD (percent) 0 0   0.524 1.365 -0.107 1 0.268 1.001 -0.023 1 
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Figure 2.S1. Amplified sequence variant (ASV) rarefaction curves for each sample in the Willamette 

and Deschutes watersheds, Oregon, USA. 
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Figure 2.S2: Alpha diversity (Shannon index) of microbial DNA vs. filtered volume of streamwater 

collected from small (unfilled symbols) and large (filled symbols) sub-catchments throughout the 

Willamette (squares) and Deschutes (triangles) watersheds in Oregon, USA. 

 

 

 
Figure 2.S3. Alpha diversity (Shannon index) of microbial DNA collected from streamwater vs. sub-

catchment drainage area in small (unfilled symbols) and large (filled symbols) sub-catchments 

throughout the Willamette (squares) and Deschutes (triangles) watersheds in Oregon, USA. 
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Figure 2.S4. Mean correlation between microbial community composition (Mantel test statistic [r]) 

for land-cover, geomorphic, climatic and development related StreamStats basin characteristics by 

watershed and in small and large sub-catchments across the Willamette and Deschutes watersheds, 

Oregon, USA. Microbial communities were characterized based on: 1) raw sequence data grouped 

into 95%, 97%, 99% operational taxonomic units (OTUs) or 100% similar amplified sequence 

variants (ASVs); or 2) one of three subsets of ASVs (classes Bacteroidetes, Gammaproteobacteria, 

Verrucomicrobia).  Community similarity was based on Bray-Curtis dissimilarity metric. 
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Figure 2.S5. Mean correlation between microbial community composition (Mantel test statistic [r]) 

for land-cover, geomorphic, climatic and development related StreamStats basin characteristics by 

watershed and in small and large sub-catchments across the Willamette and Deschutes watersheds, 

Oregon, USA. Microbial communities were characterized based on: 1) raw sequence data grouped 

into 95%, 97%, 99% operational taxonomic units (OTUs) or 100% similar amplified sequence 

variants (ASVs); or 2) one of five subsets of ASVs (classes Bacteroidetes, Gammaproteobacteria, 

Verrucomicrobia, Actinobacteria and Cyanobacteria).  Community similarity was based on Weighted 

UniFrac distance metric. 
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3 The Streamwater Microbiome Encodes Hydrologic Data across 

Scales 

3.1 Abstract  

Many fundamental questions in hydrology remain unanswered due to the limited 

information that can be extracted from existing data sources. Microbial communities 

constitute a novel type of environmental data, as they are comprised of many thousands 

of taxonomically and functionally diverse groups known to respond to both biotic and 

abiotic environmental factors. As such, these microscale communities reflect a range 

of macroscale conditions and characteristics, some of which also drive hydrologic 

regimes. Here, we assess the extent to which streamwater microbial communities (as 

characterized by 16S gene amplicon sequence abundance) encode information about 

catchment hydrology across scales.  We analyzed 64 summer streamwater DNA 

samples collected from subcatchments within the Willamette, Deschutes, and John Day 

river basins in Oregon, USA, which range 0.03-29,000 km 2 in area and 343-2,334 

mm/year of precipitation. We applied information theory to quantify the breadth and 

depth of information about common hydrologic metrics encoded within microbial taxa.  

Of the 256 microbial taxa that spanned all three watersheds, we found 9.6% (24.5/256) 

of taxa, on average, shared information with a given hydrologic metric, with a median 

15.6% (range = 12.4 – 49.2%) reduction in uncertainty of that metric based on 

knowledge of the microbial biogeography.  All of the hydrologic metrics we assessed, 

including daily discharge at different time lags, mean monthly discharge, and seasonal 

high and low flow durations were encoded within the microbial community. Summer 

microbial taxa shared the most information with winter mean flows.  Our study 

demonstrates quantifiable relationships between streamwater microbial taxa and 

hydrologic metrics at different scales, likely resulting from the integration of multiple 

overlapping drivers of each.  Streamwater microbial communities are rich sources of 

information that may contribute fresh insight to unresolved hydrologic questions. 

3.2 Introduction 

Hydrology spans earth and life sciences. The living environment is shaped by 

water and in turn shapes the hydrological cycle (e.g.,Dingman, 2015). A deeper 

knowledge of these interactions requires data that integrates processes at multiple 
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spatial and temporal scales, beyond our direct human observations. Meteorological, 

eddy covariance, stable isotopes, and remotely sensed earth observation data have made 

high-resolution hydrologic observations more widely available than ever before, 

through observation networks such as FLUXNET (Baldocchi et al., 2001), the National 

Ecological Observatory Network (NEON; Schimel et al., 2007), and the Critical Zone 

Collaborative Network (CZNet; https://criticalzone.org/).  Despite this growing amount 

of data, the specific mechanisms and interactions of many drivers of hydrologic 

function are still not well understood.  A fundamental process-based understanding of 

streamflow generation, for example, is necessary to predict water availability and adapt 

to changing climate and landcover conditions, yet the dynamics of streamflow sources 

and transit time distribution remain areas of active research (Blöschl et al., 2019). The 

ability to develop new hydrologic insight may not be limited by the amount of data, but 

instead by the type of data available for hydrologic study. Patterns that are not always 

apparent from data traditionally employed in hydrology may emerge when analyzed 

with biotic data that integrates information about the spatiotemporal dynamics of the 

hydrological cycle and its drivers (Seibert and McDonnell, 2002). 

Microbial communities native to an environment (i.e., microbiomes) constitute 

a novel type of environmental data that comprise many thousands of taxonomically and 

functionally diverse groups.  These communities are most often assessed taxonomically 

using DNA sequences of the phylogenetically informative 16S rRNA gene.  This 

approach to assessing microbiomes is common in a range of research fields from 

oceanography to human health.  The taxonomic composition of microbial communities 

is diagnostic of environment types (e.g., freshwater, soil, seawater, etc.) and is sensitive 

to perturbations, shifting species composition in response to changes in environment 

(Thompson et al., 2017).  Moreover, these communities are often highly diverse and 

include hundreds of abundant taxa and many thousands of rare taxa, thus providing a 

rich dataset of information about biological responses to environmental conditions.  

Streamwater microbiomes originate primarily from upslope soil, groundwater, 

and sediment (Crump et al., 2007, 2012; Sorensen et al., 2013; Hermans et al., 2019; 

Miller et al., 2021) and subsequently develop, through species-sorting and dispersal, in 

response to biotic factors such as predation and reproduction, but also to abiotic 
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subsurface and environmental factors, including soil saturation and streamflow rate 

(Newby et al., 2009), water residence time and network connectivity (Hrachowitz et 

al., 2016), and interactions with sediment (Droppo et al., 2009). These microscale 

communities thus reflect a range of macroscale characteristics and processes that also 

influence and interact with catchment scale hydrology.   

Spatial characteristics related to water residence time have been identified as 

the strongest correlates with streamwater microbial community composition, even 

among physicochemical factors, along the River Thames (Read et al., 2015) and the 

Danube River  (Savio et al., 2015).  Microbial community composition has also been 

linked to a broader range of landscape scale climatological and geomorphological 

characteristics (URycki et al., 2020), which are important drivers of hydrologic 

function.  Recent hydrologic studies have employed microbial communities as tracers 

to elucidate groundwater recharge and flow paths (Sugiyama et al., 2018; Miller et al., 

2021), and it has been suggested that microbial information may be useful for 

hydrologic prediction (Good et al., 2018).  However, the breadth of hydrologic data 

encoded within microbiomes, and the timescales over which microbial communities 

may be informative, has yet to be quantified and explored. 

One major challenge of employing microbial communities as hydrologic 

observations is identifying informative constituents among thousands or even millions 

of taxa subject to complex ecosystem interactions that remain poorly understood.  The 

tools of information theory, based on Shannon’s entropy (Shannon, 1948), capture 

linear and nonlinear relationships; analysis of information flows are thus a powerful 

framework to understand complex patterns in Earth systems science (Goodwell et al., 

2020).  Here, we sought to leverage information theory to explore the extent to which 

microbial communities inform the hydrology of the ecosystems in which they occur.  

We analyze microbial community samples from 64 gauged streams across three major 

watersheds in the state of Oregon, USA. Our objective is to quantify the information 

shared between microbial taxa and a set of hydrologic metrics that represent watershed 

function and characteristic water balance dynamics. Results of this analysis can 

contribute to a broader understanding of the relationships between hydrology and 
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streamwater microbial communities and offer insights about the value of microbial 

communities as a novel source of information to answer open hydrological questions. 

3.3 Data and Methods  

3.3.1 Study Area 

The Willamette, Deschutes, and John Day basins, three similarly sized adjacent 

watersheds, are exceptional in that together they span a wide range of ecoclimatic 

conditions yet all lie within the state of Oregon, USA; although all three basins 

experience wetter winters and drier summers characteristic of the Pacific Northwest, 

the effect diminishes eastward.  Westernmost of the three, the Willamette Basin, 

encompassing 29,000 km2 with a mean elevation of 560 m, is bounded by the Coast 

Range to the west and the Cascade Range to the east (United States Geological Survey, 

2017).  The Willamette Basin is the wettest and most temperate of the three watersheds, 

receiving 1,640 mm precipitation annually (246 mm in January and 20 mm in July, on 

average) and with mean annual minimum and maximum temperatures of 4 °C and 

15 °C, respectively (Fig. 3.1).  The Deschutes Basin, encompassing 27,700 km2 to the 

east of the Cascades, lies at a mean elevation of 1,230 m and is considerably drier and 

cooler than the Willamette Basin, receiving just 530 mm precipitation annually (75 mm 

[Jan] and 14 mm [Jul]) and with mean annual minimum and maximum temperatures of 

0 °C and 14 °C, respectively.  To the east of the Deschutes Basin, the John Day Basin 

encompasses 20,500 km2 and rises to a mean elevation of 1,170 m.  Climatically more 

similar to the Deschutes Basin, the John Day Basin receives 460 mm precipitation 

annually (53 mm [Jan] and 15 mm [Jul]) with mean annual minimum and maximum 

temperatures of 1 °C and 14 °C, respectively.  

All three basins are generally oriented with water flowing south to north and 

ultimately drain to the Columbia River at the northern border of Oregon.  Median 

winter (Jan, Feb, Mar [JFM]) discharge (50% flow duration) at the outlet is 1,260 m3/s 

on the Willamette River, 178 m3/s on the Deschutes River, and 52 m3/s on the John 

Day River; whereas median summer (Jul, Aug, Sep [JAS]) discharge is 289 m3/s on the 

Willamette River, 132 m3/s on the Deschutes River, and 3 m3/s on the John Day River 

(Risley et al. 2008).  The Willamette Basin is the most developed of the three study 

basins (6% developed area), containing the city of Portland at the mouth of the 
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Willamette River, as well as some additional urban development along the Willamette 

Valley; the Deschutes Basin (1% developed area), including the city of Bend, and the 

John Day Basin (<1% developed area) are far less developed (United States Geological 

Survey, 2017).  

 

Figure 3.1. Map of co-located stream gages and streamwater DNA sample collections in streams 

across Willamette (2017), Deschutes (2017), and John Day (2018) basins in Oregon, USA.  Marker 

colors indicate mean annual precipitation in sample catchments (United States Geological Survey, 

2017).  Inset indicates number of unique and common microbial amplified sequence variants detected 

in n samples across each basin. 

 

3.3.2 DNA Collection and Sequencing 

We collected DNA samples near active stream gages from 40 sites in the 

Willamette Basin and 21 sites in the Deschutes Basin between 21 July and 8 August 

2017 and from 20 sites in the John Day Basin from 6-8 August 2018 (Fig. 3.1).  We 

collected most samples from the approximate center of the waterway by lowering from 

a bridge a two-gallon bucket that had been sanitized at the beginning of the day and 

sample-rinsed between sites.  We filtered and extracted DNA samples from collected 

streamwater as described in Crump, Kling, Bahr, & Hobbie (2003).  We sequenced 16S 

rRNA with Illumina Miseq V.2 paired end 250bp sequencing after isolating the DNA 
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and preparing the library following common accepted protocols.  A detailed description 

of collection and processing of this dataset is found in URycki et al. (2020). To 

approximate even sampling depth, we rarefied the sequence dataset to 1,450 sequences 

per sample.  We selected a rarefaction threshold of 1,450 sequences because it 

represents the largest tolerable loss of data to retain as many samples as possible (to 

avoid excluding samples with fewer sequences).  Sequences were taxonomically 

classified with the SILVA 16S rRNA gene database v.132 (Quast et al., 2013). We 

analyzed these data as a matrix of the relative abundance (i.e., sequence counts) of each 

unique amplified sequence variant (ASV) detected at each site.  In microbiome 

research, individual ASVs are considered distinct taxonomic groups, usually at the 

genus level; as such, we use the terms ASV and taxon interchangeably throughout this 

paper.   

After rarefying the raw sequences, our dataset consisted of 4,701 unique ASVs 

from 64 sample sites across the three watersheds.  We detected 1,742 unique ASVs 

across 31 samples in the Willamette Basin, 1,584 unique ASVs across 18 samples in 

the Deschutes Basin, and 2,484 unique ASVs across 15 samples in the John Day Basin 

(Fig. 3.1).  To reduce computational and analytical complexity, we selected a subset of 

the microbial taxa detected across our study sites.  Here, we analyzed the 256 ASVs 

detected at least once in all three watersheds (Fig. 3.1 and within this subset we identify 

these unique ASVs by their abundance rank, with the most abundant ASV across all 

sites identified as ASV 1 and the least abundant as ASV 256 (Table 3.S2).      

3.3.3 Hydrologic Metrics 

We calculated hydrologic metrics from records at 64 stream gages (Fig. 3.1). 

Study site stream gages spanned headwaters, tributaries, and outlets of the three major 

rivers and with the intention to sample the range of land use, landcover, and disturbance 

in each watershed. Stream gages were managed by United States Geological Survey 

(USGS; U.S. Geological Survey, 2016), Oregon Water Resources Department (Oregon 

Water Resources Department, 2021), or H.J. Andrews Experimental Forest (Johnson, 

Rothacher, & Wondzell, 2020).  We obtained available records of daily mean discharge 

(ft3/s; converted to m3/s) for each stream gage for the 10-year period preceding DNA 

sample collection (see 3.3.2 DNA Collection and Sequencing). We obtained 10 years 
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of data for 54 sites; 6.9-9.9 years of data for six sites, and <5 years of data for four sites 

(Table 3.S1).   

We sought to analyze a set of metrics that would characterize the hydrology in 

our study area at different time and flow scales.  We therefore calculated 74 hydrologic 

metrics across three categories: daily discharge, mean monthly discharge, and seasonal 

flow durations.  To describe current hydrologic conditions, we calculated daily absolute 

discharge [m3/s] on to the date (t) of DNA sample collections and at lags of even 

numbers of days, up to 30 days, prior to sampling 

(𝑄𝑡, 𝑄(𝑡−2 𝑑𝑎𝑦𝑠), 𝑄(𝑡−4 𝑑𝑎𝑦𝑠), … , 𝑄(𝑡−30 𝑑𝑎𝑦𝑠)) at all 64 stream gages. To characterize 

typical catchment conditions, we calculated mean monthly absolute discharge (𝑄̅𝑚𝑜𝑛) 

over the period of study for each month of the water year from October to September 

for the 60 sites for which we had >6.9 years of data. To capture more extreme 

hydrologic responses, we calculated seasonal high and low flow durations over the 

period of study for each of four seasons and annually beginning at the start of the water 

year (𝑄𝑃,𝑠 for P = 5- and 95-percent exceedance probability [95th and 5th percentile, 

respectively] for seasons s = OND, JFM, AMJ, JAS, and Ann [annual]), again for the 

60 sites for which we had >6.9 years of data. We normalized absolute discharge values 

by the sub-catchment area, derived from the StreamStats web application developed by 

the USGS (https://streamstats.usgs.gov/ss/; USGS, 2017), to obtain daily specific 

discharge (𝑞(𝑡−𝑛 𝑑𝑎𝑦𝑠) [m3km-2s-1]), mean monthly specific discharge (𝑞̅𝑚𝑜𝑛), and 

seasonal specific discharge flow durations (𝑞𝑃,𝑠).  

Across sites, daily discharge generally decreased in the 30 days prior to 

sampling, ranging 𝑄(𝑡−2 𝑑𝑎𝑦𝑠) =  0 – 297 m3/s, 𝑄(𝑡−10 𝑑𝑎𝑦𝑠) =  0 − 340 m3/s, and 

𝑄(𝑡−30 𝑑𝑎𝑦𝑠) =  0 − 521 m3/s (Table 3.S1). Mean monthly discharge across sites in 

January and July ranges 𝑄̅𝐽𝑎𝑛  =  0 − 1,755 m3/s and 𝑄̅𝐽𝑢𝑙 =  0 − 343 m3/s.  Summer 

and winter low flows across sites range 𝑄95,𝐽𝐴𝑆  =  0 –  208 m3/s and 𝑄95,𝐽𝐹𝑀 =

0 –  479 m3/s. Summer and winter high flows range 𝑄5,𝐽𝐴𝑆 = 0 − 456 m3/s and 

𝑄5,𝐽𝐹𝑀 = 0 − 3512 m3/s.  
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Median catchment drainage area ranges 0.03 − 29,007.89 km2 (Table 3.S1). 

Daily specific discharge  across  sites  ranged  from  zero  to 0.05 m3km-2s-1, 0.06  

m3km-2s-1, and 0.09 m3km-2s-1 for 𝑞(𝑡−2 𝑑𝑎𝑦𝑠), 𝑞(𝑡−10 𝑑𝑎𝑦𝑠), and 𝑞(𝑡−30 𝑑𝑎𝑦𝑠) 

respectively.  Mean monthly specific discharge in January and July ranges 𝑞̅𝐽𝑎𝑛 =

0.0 − 0.22 m3km-2s-1 and 𝑞̅𝐽𝑢𝑙 = 0.0 − 0.05 m3km-2s-1. Summer and winter low flows 

across   sites   range  𝑞95,𝐽𝐴𝑆 = 0.0 − 0.04   m3km-2s-1  and  𝑞95,𝐽𝐹𝑀 = 0.0 − 0.03  

m3km-2s-1. Summer and winter high flows range  𝑞5,𝐽𝐴𝑆 = 0.0 − 0.06 m3km-2s-1 and 

𝑞5,𝐽𝐹𝑀 0.0 − 0.66   m3km-2s-1. 

3.3.4 Information Metrics  

We leveraged information theory to analyze the relationships between 

microbial communities and catchment hydrology.  Information theory is useful for 

understanding complex systems in a range of research domains, including in hydrology 

and in the geosciences more broadly (Ruddell and Kumar, 2009; Ehret et al., 2014; 

Olds et al., 2016; Franzen et al., 2020; Goodwell et al., 2020; Li et al., 2021). 

Information theory is based on Shannon’s entropy (H(X) [bits]), which quantifies the 

amount of uncertainty in a discrete random variable X (Shannon, 1948) and is defined 

as:  

𝐻(𝑋) =  − ∑ 𝑝(𝑥)𝑙𝑜𝑔2𝑝(𝑥),     (1) 

where 𝑝(𝑥) is the probability distribution function of random variable X and summation 

is over all possible states of X=x  Likewise, the joint entropy (𝐻(𝑋, 𝑌)[𝑏𝑖𝑡𝑠]), is the 

total amount of information necessary to describe two random variables X and Y, is 

defined as:  

𝐻(𝑋, 𝑌) =  − ∑ 𝑝(𝑥, 𝑦)𝑙𝑜𝑔2𝑝(𝑥, 𝑦),     (2) 

where (𝑝(𝑥, 𝑦)) is the joint probability distribution of X and Y and summation is over 

all possible states of X=x and Y=y.  Mutual information (𝐼(𝑋;  𝑌) [𝑏𝑖𝑡𝑠]) is the reduction 

in uncertainty in one random variable X as a result of knowledge of a second random 

variable Y and is calculated from the joint and marginal probability distributions of X 

and Y as: 

𝐼(𝑋;  𝑌) =  ∑ 𝑝(𝑥)𝑙𝑜𝑔2
𝑝(𝑥,𝑦)

𝑝(𝑥)𝑝(𝑦)
 .     (3) 
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Mutual information can be equivalently expressed (Cover and Thomas, 2005) in terms 

of the entropy of X and Y as: 

𝐼(𝑋; 𝑌) = 𝐻(𝑋) + 𝐻(𝑌) − 𝐻(𝑋, 𝑌).     (4)     

 We calculated the mutual information shared between each target hydrologic 

metric Y and abundance of microbial taxon X in terms of their marginal and joint 

entropies across study sites.  To compute the information metrics, we (i) log-

transformed hydrologic metrics and ASV abundances, adding 0.001 to each hydrologic 

metric and 1 to each ASV abundance value to avoid taking the log of zero; (ii) 

standardized the log-transformed data between zero and unity using the range of each 

variable, (iii) discretized the standardized data for each X ASV abundance and Y 

hydrologic metric into five evenly spaced bins.  We estimated the marginal and joint 

probability density functions (pdfs) with a fixed binning method to ensure that 

information metrics for each variable are comparable and transparent. We selected this 

fixed number of bins based on sample size and standard deviation according to a 

commonly used rule of thumb (Scott, 1979). We computed the optimal bin size for all 

variables and found that it ranged between 4 and 9 bins and was ≥5 bins for 95% of the 

variables. For comparison, we computed information metrics with up to 20 bins and 

using gaussian kernel densities and verified that prescribing a fixed bin size of 5 

provided the most robust results for this dataset. We also note that although the bin size 

and pdf estimation methods do influence entropy values, this choice does not typically 

affect comparison patterns (Loritz et al., 2019) which is the focus of this analysis. We 

then employed the marginal and joint fixed-bin pdfs in equations 1 and 2, respectively, 

to obtain 𝐻(𝑋), 𝐻(𝑌), and 𝐻(𝑋, 𝑌).  Finally, we applied equation (4) to compute the 

mutual information between each microbial taxon and each hydrologic metric.  

To identify statistically significant relationships between microbial taxa and 

hydrologic metrics, we used a shuffled surrogates method (Ruddell & Kumar, 2009).  

For 1,000 iterations of each pair of X and Y, we randomly shuffled X to destroy any 

structure while maintaining the distribution of the data and then computed mutual 

information of the shuffled data. We considered 𝐼(𝑋, 𝑌) statistically significant if the 

value was greater than the 99th percentile of shuffled iterations.    
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Finally, we were interested in comparing mutual information values across 

microbial taxa and hydrologic metrics, so we normalized mutual information scores by 

the entropy of the target hydrologic metrics as: 

𝐼(𝑋; 𝑌)𝑛𝑜𝑟𝑚 =
𝐼(𝑋;𝑌)

𝐻(𝑌)
 .      (5)  

The normalized mutual information value is thus the fraction reduction in uncertainty 

of the hydrologic metric that comes from observing the abundance of a particular 

microbial taxon.  

To analyze patterns in hydrologic information shared with the microbial 

community, we summarized mutual information in two ways: 1) median value of 

normalized information across all informative microbial taxa for each hydrologic 

metric, and 2) the number of informative microbial taxa for each hydrologic metric.  

We define informative taxa as those with 𝐼(𝑋; 𝑌)𝑛𝑜𝑟𝑚 > 0.   

We first sought to compare the value of information shared between the 

streamwater microbial community and absolute versus specific discharge and among 

the three major categories of hydrologic metrics: daily discharge, mean monthly 

discharge, and seasonal high and low flow durations. To compare information shared 

with absolute versus specific discharge, we applied a non-parametric Mann-Whitney 

U-test (Mann and Whitney, 1947) to test for differences in median value of information 

shared between microbial taxa and absolute versus specific discharge metrics.   We 

then applied a paired sample t-test to compare the number of informative taxa for 

absolute versus specific discharge for each hydrologic metric.  To satisfy the 

parameters of a paired sample test, we assigned a value of zero to all ASVs that did not 

share significant information with hydrologic metrics. (Throughout the rest of the 

analysis, non-significant values of mutual information were excluded from 

calculations). To compare the strength of the relationships among the three hydrologic 

categories, we applied Mann-Whitney U-tests to test for differences in median value of 

shared information, and one-way analysis of variance (ANOVA) F-test to test for 

differences in the mean number of informative ASVs, across all metrics for each 

category (e.g., across all time lags for daily discharge).   

 We performed regression analyses to analyze patterns in mutual information 

between the microbial community and discharge through time for daily discharge and 
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mean monthly discharge.  For daily discharge, we fit regression functions to the median 

value of shared information and to the number of informative ASVs across time lags.  

For mean monthly discharge, we fit regression functions to the median value of shared 

information and the number of informative ASVs across months.  We assessed model 

fit with Pearson’s correlation (𝜌).    

To assess how the strength of relationships with streamwater microbial taxa 

may be related to discharge magnitude, we used non-parametric Kruskal-Wallis H-

tests (i.e., one-way ANOVA on ranks; Kruskal and Wallis, 1952) to test for 

differences in median value of mutual information between high and low flow 

durations.  We conducted a one-way ANOVA F-test to test for differences in the 

mean number of informative ASVs between high and low flow durations.   

Finally, we sought to identify patterns in mutual information related to 

abundance of microbial taxa across sites. We applied a non-parametric Spearman’s 

rank correlation (rs) to test for relationships between the value of mutual information 

for each hydrologic metric and 1) total abundance of an ASV across all sites and 2) the 

number of sites at which an ASV was detected.  We conducted all statistical tests at 

significance level 𝛼 = 0.05 using SciPy (v 1.6.2) for Python.  

3.4 Results  

3.4.1 Stream Microbial Community Composition  

Overall, gammaproteobacteria was the most abundant taxonomic group, 

comprising 20-40% of most stream communities we sampled (Fig. 2).  Phylum 

Bacteroidota was also common across all sites.  The proportion of unclassified Other 

microbes, often consisting of more rare taxa, was generally greater in sites with lower 

daily stream discharge on the date of DNA sample collection (𝑄𝑡).  Phyla 

Verrucomicrobiota and Actinobacteriota were, very broadly, more common at sites 

with higher discharge.  Alphaproteobacteria, Cyanobacteria, and Planctomycetota were 

also detected in smaller numbers across most sites. 
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Figure 3.2. Microbial community composition by phylogenetic group for streamwater DNA samples 

collected in summer throughout the Deschutes (2017), Willamette (2017), and John Day (2018) basins 

in Oregon, USA. Samples are presented in order of increasing discharge on the date of DNA sample 

collection (𝑄𝑡; Table 3.S1). 

 

3.4.2 Mutual Information between Microbial Communities and Hydrologic Metrics 

We calculated normalized mutual information scores for each ASV common to 

all three watersheds for each hydrologic metric, resulting in a matrix of 256 ASVs × 

76 hydrologic metrics (and area; Fig. 3.3). Of the 256 common ASVs, 102 had 

statistically significant mutual information with at least one hydrologic metric, and 

each hydrologic metric shared information with at least one ASV.  Mutual information 

is generally concentrated among more abundant taxa with a notable exception.  ASV 

69, a Bacteroidota classified to the lake-inhabiting genus Lacihabitans (Joung et al., 

2014) shares information with all of the absolute and nearly all of the specific 

hydrologic metrics.  ASV 69 demonstrates an especially strong relationship with daily 

discharge (Fig 3.3; Table S2). Across all absolute and specific hydrologic metrics, 9.7% 

of taxa, on average, share information with a given hydrologic metric, reducing 

uncertainty of that metric by a median of 15.6%.  The maximum value of shared 

information is 𝐼(𝐴𝑆𝑉 4; 𝑄̅𝐹𝑒𝑏)𝑛𝑜𝑟𝑚 = 0.447 𝑏𝑖𝑡𝑠/𝑏𝑖𝑡, corresponding to a 44.7% 

reduction in uncertainty of mean February absolute discharge by observing the 

abundance of ASV 4, a Gammaproteobacteris classified to the planktonic genus 
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Limnohabitans, the fourth most abundant microbial taxon detected across all sites; the 

minimum nonzero value is 𝐼(𝐴𝑆𝑉 3; 𝑞(𝑡))𝑛𝑜𝑟𝑚 = 0.124 𝑏𝑖𝑡𝑠/𝑏𝑖𝑡. 
  

 
Figure 3.3. Heatmap illustrating the normalized mutual information (I(X;Y)norm [bits/bit]) between 

streamwater microbial amplified sequence variants (X=ASVs) and absolute discharge (Y=Q; top), 

specific discharge (Y=q; bottom) hydrologic metrics, as well as basin drainage area (top, bottom line), 

for study streams in Oregon, USA.  We collected microbial DNA samples in summer in the 

Willamette (2017), Deschutes (2017), and John Day (2018) basins.  Hydrologic metrics include daily 

discharge at time lags n days prior to DNA sample day t (𝑄(𝑡−𝑛 𝑑𝑎𝑦𝑠), 𝑞(𝑡−𝑛 𝑑𝑎𝑦𝑠)), mean monthly 

discharge (𝑄̅𝑚𝑜𝑛 , 𝑞̅𝑚𝑜𝑛) for months October to September, and seasonal high and low flow durations 

(𝑄𝑃,𝑠 , 𝑞𝑃,𝑠 for P = 5- and 95-percent exceedance probability for seasons s = fall [OND], winter [JFM], 

spring [AMJ], summer [JAS], and annually [Ann]).   

 

Microbial taxa share more information with absolute than with specific 

discharge metrics (Table 1; Fig. 3.3).  Median value of mutual information is 

significantly higher for absolute versus specific discharge (𝐼(𝑋; 𝑄)𝑛𝑜𝑟𝑚 = 0.163 𝑏𝑖𝑡𝑠/
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𝑏𝑖𝑡 vs 𝐼(𝑋; 𝑞)𝑛𝑜𝑟𝑚 = 0.150 𝑏𝑖𝑡𝑠/𝑏𝑖𝑡; 𝑈 = 126,985, 𝑝 < 0.001).  Furthermore, a 

greater number of taxa share information with absolute (28.2 ±4.1 SD) than with 

specific (21.4 ±5.5 SD) hydrologic metrics (two-sample one-sided 𝑡 = 6.13, 𝑝 <

0.001).  Because relationships with the microbial community were so much stronger, 

in terms of both number of informative taxa and median value of shared information, 

we focus the remainder of the analysis on absolute discharge metrics only. (Results of 

the complementary analyses of specific discharge metrics are presented in 

supplementary figures 3.S1-3.S6.) 

Table 3.1. Medians and ranges of entropy (𝐻(𝑌) [bits]) and normalized mutual information 

(𝐼(𝑋; 𝑌)/𝐻( 𝑌) [bits/bit]) between streamwater microbial amplified sequence variants (ASVs) and 

hydrologic metrics: absolute discharge (Q [m3s-1]) and specific (per unit area) discharge (q [m3km-

2s-]). We collected microbial DNA samples in summer in the Willamette (2017), Deschutes (2017), 

and John Day (2018) basins in Oregon, USA. Hydrologic metrics include daily discharge at time lags 

up to n = 30 days prior to DNA sample collection, mean monthly discharge for mon = all months 

October to September, and seasonal high and low flow durations for P = 5- and 95-perecent 

exceedance probability and seasons s = fall [OND], winter [JFM], spring [AMJ], summer [JAS], and 

annually [Ann].  Catchment area is derived from the StreamStats web application developed by the 

USGS (USGS, 2017). 

Hydrologic metric 

Information metric 

(Absolute discharge Q) (Specific Discharge q) 

H(Y)  

 

𝑰(𝑿; 𝒀)

𝑯(𝒀)
 

H(Y)  

 

𝑰(𝑿;𝒀)

𝑯(𝒀)
  

 Median (Range)  Median (Range) 

Daily 

discharge 

(𝑄(𝑡−𝑛 𝑑𝑎𝑦𝑠), 

𝑞(𝑡−𝑛 𝑑𝑎𝑦𝑠)) 

0 2.107 0.151 (0.100) 2.181 0.145 (0.092) 

2 2.098 0.161 (0.120) 2.179 0.147 (0.088) 

4 2.082 0.155 (0.092) 2.185 0.148 (0.068) 

6 2.078 0.158 (0.082) 2.185 0.147 (0.069) 

8 2.064 0.157 (0.108) 2.150 0.147 (0.066) 

10 2.052 0.163 (0.105) 2.148 0.146 (0.097) 

12 2.070 0.169 (0.116) 2.136 0.143 (0.085) 

14 2.093 0.166 (0.115) 2.116 0.146 (0.117) 

16 2.079 0.166 (0.114) 2.073 0.148 (0.115) 

18 2.091 0.157 (0.105) 2.069 0.147 (0.126) 

20 2.100 0.162 (0.107) 2.062 0.158 (0.130) 

22 2.065 0.164 (0.118) 2.032 0.162 (0.089) 

24 2.060 0.164 (0.087) 1.960 0.155 (0.114) 

26 2.079 0.163 (0.091) 2.047 0.151 (0.083) 

28 2.055 0.157 (0.096) 2.041 0.151 (0.094) 

30 2.055 0.157 (0.095) 2.054 0.147 (0.082) 

Oct 2.100 0.167 (0.129) 1.995 0.155 (0.078) 
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Mean 

monthly 

discharge 

(𝑄̅𝑚𝑜𝑛, 𝑞̅𝑚𝑜𝑛) 

Nov 2.208 0.164 (0.186) 1.972 0.172 (0.064) 

Dec 2.174 0.161 (0.197) 1.992 0.152 (0.077) 

Jan 2.150 0.158 (0.223) 2.115 0.153 (0.080) 

Feb 1.925 0.185 (0.304) 2.186 0.160 (0.081) 

Mar 2.003 0.164 (0.236) 2.121 0.159 (0.126) 

Apr 2.024 0.164 (0.160) 2.054 0.149 (0.114) 

May 2.000 0.165 (0.100) 2.103 0.145 (0.062) 

Jun 2.015 0.155 (0.103) 2.100 0.144 (0.041) 

Jul 1.964 0.174 (0.101) 2.142 0.151 (0.079) 

Aug 2.061 0.167 (0.091) 2.122 0.149 (0.051) 

Sep 2.092 0.172 (0.097) 2.114 0.146 (0.064) 

Seasonal flow 

durations 

(𝑄𝑃,𝑠, 𝑞𝑃,𝑠) 

5, OND 2.160 0.163 (0.236) 2.186 0.145 (0.060) 

5, JFM 2.041 0.165 (0.276) 2.100 0.150 (0.127) 

5, AMJ 2.056 0.154 (0.093) 2.074 0.165 (0.093) 

5, JAS 1.949 0.179 (0.086) 2.076 0.150 (0.066) 

5, Ann 2.012 0.171 (0.267) 2.168 0.152 (0.094) 

95, OND 2.006 0.161 (0.088) 2.205 0.142 (0.047) 

95, JFM 2.038 0.167 (0.166) 1.703 0.193 (0.095) 

95, AMJ 2.015 0.163 (0.118) 1.946 0.155 (0.049) 

95, JAS 2.067 0.165 (0.087) 2.236 0.149 (0.051) 

95, Ann 2.024 0.154 (0.088) 2.169 0.151 (0.055) 

Catchment area 1.81 0.157 (0.131)    
 

 

In comparing mutual information between the streamwater microbial 

community and the three hydrologic categories, we find that the microbial community 

is, on average, more strongly related to mean monthly discharge and typical seasonal 

extreme flows, in terms of median value of shared information but not necessarily in 

terms of the number of informative taxa. Median value of shared information between 

microbial taxa and daily discharge (𝐼(𝑋; 𝑄(𝑡−𝑛 𝑑𝑎𝑦𝑠))𝑛𝑜𝑟𝑚 = 0.159 𝑏𝑖𝑡𝑠/𝑏𝑖𝑡) was 

significantly lower than median value of shared information for mean monthly 

discharge (𝐼(𝑋; 𝑄̅𝑚)𝑛𝑜𝑟𝑚 = 0.165 𝑏𝑖𝑡𝑠/𝑏𝑖𝑡; 𝑈 = 473,779, 𝑝 < 0.001) and seasonal 

flow durations (median 𝐼(𝑋; 𝑄𝑃,𝑠)𝑛𝑜𝑟𝑚 = 0.165 𝑏𝑖𝑡𝑠/𝑏𝑖𝑡; 𝑈 = 619,418, 𝑝 < 0.001). 

Mean number of informative taxa for each category was similar: 

27.4 (±2.6 SD) taxa, 29.3 (±4.7 SD) taxa, and 28.1 (±5.2 SD) taxa for daily 

discharge, monthly mean discharge, and seasonal flow durations, respectively. 
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For daily absolute discharge, information shared with the microbial community 

across all time lags up to 30 days before sampling ranges 

𝐼(𝐴𝑆𝑉 47; 𝑄(𝑡−20 𝑑𝑎𝑦𝑠))𝑛𝑜𝑟𝑚 = 0.127 𝑏𝑖𝑡𝑠/𝑏𝑖𝑡 to 𝐼(𝐴𝑆𝑉 4; 𝑄(𝑡−2 𝑑𝑎𝑦𝑠))𝑛𝑜𝑟𝑚 =

0.250 𝑏𝑖𝑡𝑠/𝑏𝑖𝑡 (Fig. 3.4).  Median value of mutual information over time follows a 

second-order polynomial function with a peak in shared information with discharge at 

16 days prior to sampling (Pearson’s 𝜌 = 0.73, 𝑝 = 0.001; Fig. 3.4).   The number of 

informative ASVs through time also fits a second-order polynomial with a maximum 

number of informative taxa for discharge at 22 days prior to sampling (𝜌 = 0.68, 𝑝 =

0.004; Fig. 3.4).  

 

For mean monthly discharge, shared information across all months ranges 

𝐼(𝐴𝑆𝑉 4; 𝑄̅𝐹𝑒𝑏)𝑛𝑜𝑟𝑚 = 0.447 𝑏𝑖𝑡𝑠/𝑏𝑖𝑡 to 𝐼(𝐴𝑆𝑉 24; 𝑄̅𝐽𝑎𝑛)𝑛𝑜𝑟𝑚 = 0.133 𝑏𝑖𝑡𝑠/𝑏𝑖𝑡 

(Fig 3.5).  Unlike for daily discharge, we observed no trend in mutual information by 

month (Fig 3.5).  Number of informative ASVs fits a second-order polynomial with the 

greatest number of taxa sharing information with January mean discharge (𝜌 =

0.70, 𝑝 = 0.01; Fig. 3.5). Across seasons and high and low flow durations, mutual 

 
Figure 3.4.  Median value of normalized mutual information (𝐼(𝐴𝑆𝑉; 𝑄(𝑡−𝑛 𝑑𝑎𝑦𝑠))𝑛𝑜𝑟𝑚  [bits/bit]) 

between informative streamwater microbial amplified sequence variants (ASVs) and daily discharge 

at different time lags (𝑄(𝑡−𝑛 𝑑𝑎𝑦𝑠) for time lags up to n = 30 days before sample date) for study streams 

in Oregon, USA. Boxes show medians and interquartile ranges; whiskers show values within 1.5 times 

the interquartile range.  Green triangles indicate the number of ASVs with statistically significant 

mutual information (99% confidence).  Dashed lines show best fit curves between time lags and 

median value of normalized information (red) and number of informative ASVs (green), with Pearson 

correlation (r) and p-value indicated in legend. We collected microbial DNA samples in summer in 

the Willamette (2017), Deschutes (2017), and John Day (2018) basins.  
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information shared with microbial taxa ranges 𝐼(𝐴𝑆𝑉 20; 𝑄5,𝑂𝑁𝐷)𝑛𝑜𝑟𝑚 = 0.130 𝑏𝑖𝑡𝑠/

𝑏𝑖𝑡 to 𝐼(𝐴𝑆𝑉 4; 𝑄5,𝐽𝐹𝑀)𝑛𝑜𝑟𝑚 = 0.414 𝑏𝑖𝑡𝑠/𝑏𝑖𝑡 (Fig. 3.6).   We did not detect a 

difference in shared information between high versus low flows, neither in terms of 

median value of shared information nor in the number of informative taxa.   

 
Figure 3.5. Median value of normalized mutual information (𝐼(𝐴𝑆𝑉; 𝑄̅𝑚𝑜𝑛)𝑛𝑜𝑟𝑚  [bits/bit]) between 

informative streamwater microbial amplified sequence variants (ASVs) and mean monthly discharge 

(𝑄̅𝑚𝑜𝑛) of study streams in Oregon, USA. Boxes show medians and interquartile ranges; whiskers 

show values within 1.5 times the interquartile range. Purple triangles indicate the number of ASVs 

with statistically significant mutual information (99% confidence). Dashed purple line shows best fit 

curve between months and number of informative ASVs, with Pearson correlation (r) and p-value 

indicated in legend. We observed no significant relationship between month and median value of 

mutual information. We collected microbial DNA samples in July and August in the Willamette 

(2017), Deschutes (2017), and John Day (2018) basins. 

 

Mutual information increases with increasing detection of microbial taxa for all 

three categories of hydrologic metrics, although the relationship is not as strong for 

daily discharge.  For all three categories, mutual information increases linearly with the 

log of abundance of a microbial taxon across all sites for mean monthly discharge (𝜌 =

0.42, 𝑝 < 0.001), seasonal flow durations (𝜌 = 0.37, 𝑝 < 0.001), and daily discharge 

(𝜌 = 0.12, 𝑝 = 0.013; Fig 3.7).  Mutual information is most strongly correlated with 

the number of sites at which a microbial taxon is detected (𝜌 =  0.49, 0.48, 0.26  for 

mean monthly, seasonal flow durations, and daily discharge, respectively; all 𝑝 <

0.001; Fig 3.S4).   
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Figure 3.6. Normalized mutual information (𝐼(𝐴𝑆𝑉; 𝑄𝑃,𝑠)𝑛𝑜𝑟𝑚  [bits/bit]) between unique 

streamwater microbial amplified sequence variants (ASVs) and seasonal high (dark) and low (light) 

flow durations (𝑄𝑃,𝑠 for P = 5- and 95-percent exceedance probability for seasons s = fall [OND], 

winter [JFM], spring [AMJ], summer [JAS], and annually [Ann]) at study streams in Oregon, USA. 

Boxes show medians and interquartile ranges; whiskers show values within 1.5 times the interquartile 

range. Blue triangles indicate the number of ASVs with statistically significant mutual information 

(99% confidence) for high flows (dark) and low flows (light). We collected microbial DNA samples 

in summer in the Willamette (2017), Deschutes (2017), and John Day (2018) basin. 

 

  

 
Figure 3.7. Normalized mutual information (𝐼(𝐴𝑆𝑉; 𝑌)𝑛𝑜𝑟𝑚  [bits/bit]) between hydrologic metrics 

and streamwater microbial taxa versus the log of abundance of taxa in streams across Oregon, USA.  

We collected microbial DNA samples in summer in the Willamette (2017), Deschutes (2017), and 

John Day (2018) basins.  Hydrologic metrics include daily discharge at time lags up to n = 30 days 

prior to DNA sample collection (𝑄(𝑡−𝑛 𝑑𝑎𝑦𝑠); green circles), mean monthly discharge (𝑄̅𝑚𝑜𝑛; purple 

triangles), and seasonal high and low flow durations (𝑄𝑃,𝑠; 5- and 95-percent exceedence probability 

for all seasons and annually; blue squares).  Legend shows Pearson’s correlation (r) and p-value of 

the linear regression. 
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3.5 Discussion  

We detected significant relationships between summer streamwater microbial 

communities and both absolute and specific (per unit area) hydrologic metrics.  

Drainage area, the upslope area that drains to a point in a stream, is one of the strongest 

drivers of stream discharge across timescales, and as such, discharge normalized by 

area reflects a different set of controls than absolute discharge.  Streams draining large 

watersheds generally respond more slowly to precipitation events because of greater 

infiltration rates, longer transit times, and diminishing peak event flows, usually 

resulting in lower rates of discharge per unit area than might be observed in an 

otherwise similar smaller watershed (Dingman, 2015). The strength of relationships 

with microbial taxa was greater for absolute than for specific discharge, as indicated by 

both a higher median value of mutual information and a greater number of informative 

taxa across absolute discharge metrics.  However, patterns in the information shared 

between microbial taxa and absolute discharge appear different than patterns in 

information shared with specific discharge (Fig. 3.3); that is, information shared with 

discharge per unit area across the microbial community is not simply a 

characteristically lesser value of the information shared with absolute discharge.  

Furthermore, patterns in information shared between both absolute discharge and 

discharge per unit area appear independent of the patterns in information shared with 

catchment drainage area (Fig 3.3).   The different strengths and patterns of mutual 

information between microbial taxa and absolute versus specific discharge, and that 

these relationships do not appear to be driven by catchment area, suggests that distinct 

aspects of the streamwater microbial communities integrate information from a broad 

range of complex processes and interactions.   

We furthermore found that summer microbial taxa were, on average, more 

informative of long-term mean monthly discharge and seasonal flow durations than of 

daily discharge concurrent or up to 30-days antecedent to the microbial sampling dates.  

The hydrologic regime of a catchment, including typical extremes as well as average 

monthly or seasonal stream discharge, is shaped by larger scale time and space 

characteristics, such as climate and topographic organization of the catchment 

(McGuire et al., 2005). On the other hand, daily discharge is influenced to varying 



68 

 

 

degrees by short- and moderate-timescale localized variable conditions, including 

duration and intensity of recent precipitation events and antecedent soil moisture and 

storage, which impact infiltration rates and water transit times (Dingman, 2015). That 

the summer communities we sampled were more informative of metrics of general 

hydrologic regime suggests that these communities are shaped by broader catchment 

characteristics, further supporting earlier findings connecting streamwater microbial 

diversity to geomorphic and climatic characteristics of the catchment (URycki et al., 

2020).  However, the summer microbial community was also informative of recent 

daily discharge, suggesting that, although seasonality and properties of the catchment 

contribute to the development of characteristic microbial communities (Crump et al., 

2009), these communities also respond to conditions at shorter timescales.  Additional 

research on microbial community dynamics at higher temporal resolution would be 

useful to further test these responses. 

The number of informative microbial taxa is greater for discharge metrics in the 

days or months prior to DNA sampling than the day or season of sampling. For daily 

discharge, this pattern suggests that informative taxa may accumulate over time (~2 

weeks in this case) as microbial communities develop in response to environmental 

conditions that also control discharge. For monthly discharge, an explanation for this 

lag in microbial community response is less straightforward.  Given that freshwater 

microbial communities experience seasonal shifts but return to characteristic core 

summer and winter communities (Crump and Hobbie, 2005; Crump et al., 2009), we 

might expect the strongest relationships between microbial taxa and hydrologic 

measures to be observed during periods when conditions are similar to those when 

microbial communities are sampled. Our results suggest the opposite pattern may be 

true.  For monthly discharge, the number of informative ASVs is greater in months 

more distant (e.g., March and November) than those in which we sampled (i.e., July 

and August; Fig 3.5). Furthermore, although we did not observe a clear trend in the 

median value of mutual information across months, the highest values of mutual 

information shared between microbial taxa and monthly discharge occur with a time 

lag of 4-6 months, as observed by the outlying high values of mutual information in 

fall, winter, and spring months, but not in summer (Fig 3.5).   One explanation for this 
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phenomenon is that patterns in shared information might be more related to discharge 

dynamics (e.g., flow volume) than to temporal lags.  The peak in shared information 

we observed between summer microbes and winter flows might indicate that the 

microbial community is more informative of higher flow conditions, which typically 

occur in winter in the Mediterranean climate of the Pacific Northwest where our study 

is located, than the lower flows observed in summer when we collected DNA samples.  

However, the patterns in shared information we identified between seasonal high and 

low flows (i.e., 𝑄5, 𝑄95) would appear to contradict this explanation; if summer 

microbes are more informative of high flows (typically winter) than low flows 

(typically summer), we would expect to see more information shared between 

microbial taxa and seasonal high flow durations (𝑄5), but we observed no difference in 

shared information between high and low seasonal flow durations (Fig. 3.6).   Future 

research might examine whether this pattern of greater shared information with trends 

in the opposite season holds when winter microbial communities are sampled. 

Furthermore, considering that our results indicate that microbial communities also 

respond to local environmental conditions at shorter timescales (days and weeks), it 

may be that the relationships between microbial taxa and typical flow regime are 

confounded by short-term perturbations to the community.  Additional research on 

microbial community diversity at higher temporal resolution is necessary to determine 

the timescale and magnitude at which the streamwater microbial community responds 

to variable local conditions.    

Microbial community composition likely reflects different components of 

hydrologic and ecosystem function, even within the relatively small suite of discharge 

metrics we analyzed.  Future work might also analyze more closely the sets of taxa that 

share information with one metric versus another, for instance daily discharge versus 

mean monthly discharge, and whether and how those sets of informative taxa overlap.    

Investigation of the taxonomy and phylogeny of informative taxa, coupled with 

analysis of the functional roles of these taxa within the microbial community and within 

the larger ecosystem, will improve our understanding of the dynamics and interactions 

between the streamwater microbial community and hydrology, as well as contribute 

new knowledge to the fields of microbiology and ecology, among others.   
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While we identified significant shared information between a number of 

microbial taxa and catchment hydrology, it is impossible from this analysis to quantify 

the sum total informational value of the community overall.  At least some of the 

hydrologic information encoded within individual taxa likely overlaps with that of 

other taxa (i.e., is redundant); on the other hand it is also plausible that information 

encoded within different taxa is more valuable when considered jointly (i.e., is 

synergistic).  Future work might enlist additional information theory metrics, such as 

mutual information conditioned on a third microbial or hydrologic variable and 

information decomposition (Goodwell et al., 2020; Gutknecht et al., 2021). Such 

techniques can quantify joint relations and parse information types (redundant, 

synergistic and unique) to better explore causality and broaden our understanding of 

the dynamics of microbial community development and catchment hydrology. 

We evaluated possible sources of uncertainty in our results and used our best 

judgment in the analysis and parameter choices required for investigating this type 

novel type of hydrologic data.  For instance, we selected only those microbial taxa that 

appeared in all three major study watersheds, which reduced our dataset from >4,000 

taxa down to 265 taxa.  Although we reasoned that greater detection over a wider range 

of conditions would likely result in identifying stronger relationships between 

microbial taxa and hydrologic metrics, we acknowledge that this course selection 

criteria may have precluded identification of some potentially meaningful 

relationships.  However, the positive relationship between the value of information 

encoded within a particular taxon and the number of sites at which it was detected 

suggests that the strongest relationships were captured in the common taxa we analyzed 

(Fig. 3.S4). We also applied a strict significance threshold (α = 0.01) for mutual 

information values, which resulted in more robust results.  Although this conservative 

threshold likely resulted in the loss of some data, it also contributes to stronger 

confidence in the patterns we identify.   On the other hand, we opted to include some 

study sites with less than a 10-year period of hydrologic record (minimum = 6.9 years; 

Table 3.S1) in calculations of mutual information for monthly discharge and seasonal 

flow durations.  We determined that small differences in hydrologic statistics for a 

fraction of sites would not bias our overall results and that including a greater number 
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of co-located hydrological and microbial observations would strengthen the 

overarching insights gained from the analysis.  

3.6 Conclusions 

Microbial diversity and hydrologic metrics are driven by common processes, and 

we found that microbial taxonomic abundance is statistically related to all 74 

hydrologic metrics we analyzed.  An average of 9.6% of the summer streamwater 

microbial taxa we analyzed shared information with a given hydrologic metric, 

including mean monthly discharge, seasonal high and low flow durations, and daily 

discharge, in some cases reducing the uncertainty of a hydrologic metric by >40%.  The 

summer microbial community shared the most information with winter mean flows, 

which also coincide with high flow periods in our study area.  The microbial 

community also shared information with daily discharge, most strongly at an 

approximately two-week lag from sampling dates.  Considering that a single 

streamwater DNA sample can yield thousands of data points, many more than 

traditional hydrologic observations, our study lends further support to the value of 

microbial community composition as a hydrologic observation at multiple timescales.  

Microbiome analyses therefore have the potential to contribute new and complex 

insights to outstanding questions in the field of hydrology, and the value and 

application of these data should continue to be explored.  
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3.12 Supporting Information 

Table 3.S1. Abundance rank, log abundance, number of sites detected, and taxonomy of streamwater microbial amplified sequence variants (ASVs) detected 

in summer across 64 sites in all three of the Willamette (2017), Deschutes (2017), and John Day (2018) basins of Oregon, USA. 

Abundance 

rank 

Log 

abundance 

Number 

of sites 
Taxonomya 

1 8.4 40 
d__Bacteria, p__Bacteroidota, c__Bacteroidia, o__Cytophagales, f__Spirosomaceae, g__Pseudarcicella, 

s__uncultured_bacterium 

2 8.13 38 
d__Bacteria, p__Proteobacteria, c__Gammaproteobacteria, o__Burkholderiales, f__Comamonadaceae, 

g__unclassified_f__Comamonadaceae, s__unclassified_f__Comamonadaceae 

3 7.93 32 
d__Bacteria, p__Bacteroidota, c__Bacteroidia, o__Flavobacteriales, f__Flavobacteriaceae, g__Flavobacterium, 

s__unclassified_g__Flavobacterium 

4 7.9 40 
d__Bacteria, p__Proteobacteria, c__Gammaproteobacteria, o__Burkholderiales, f__Comamonadaceae, g__Limnohabitans, 

s__unclassified_g__Limnohabitans 

5 7.59 28 
d__Bacteria, p__Proteobacteria, c__Gammaproteobacteria, o__Burkholderiales, f__Comamonadaceae, 

g__unclassified_f__Comamonadaceae, s__unclassified_f__Comamonadaceae 

6 7.42 40 
d__Bacteria, p__Proteobacteria, c__Gammaproteobacteria, o__Burkholderiales, f__Comamonadaceae, 

g__unclassified_f__Comamonadaceae, s__unclassified_f__Comamonadaceae 

7 7.23 37 
d__Bacteria, p__Bacteroidota, c__Bacteroidia, o__Chitinophagales, f__Chitinophagaceae, g__Sediminibacterium, 

s__unclassified_g__Sediminibacterium 

8 7.15 24 
d__Bacteria, p__Bacteroidota, c__Bacteroidia, o__Flavobacteriales, f__Crocinitomicaceae, g__Fluviicola, 

s__uncultured_Flexibacter 

9 7.12 39 
d__Bacteria, p__Proteobacteria, c__Gammaproteobacteria, o__Burkholderiales, f__Comamonadaceae, g__Rhodoferax, 

s__unclassified_g__Rhodoferax 

10 6.92 18 
d__Bacteria, p__Bacteroidota, c__Bacteroidia, o__Flavobacteriales, f__Flavobacteriaceae, g__Flavobacterium, 

s__Antarctic_bacterium 

11 6.9 23 
d__Bacteria, p__Proteobacteria, c__Gammaproteobacteria, o__Pseudomonadales, f__Moraxellaceae, g__Enhydrobacter, 

s__unclassified_g__Enhydrobacter 

12 6.85 34 
d__Bacteria, p__Actinobacteriota, c__Actinobacteria, o__Frankiales, f__Sporichthyaceae, g__Sporichthyaceae, 

s__metagenome 

13 6.67 23 
d__Bacteria, p__Actinobacteriota, c__Actinobacteria, o__Frankiales, f__Sporichthyaceae, g__hgcI_clade, 

s__unclassified_g__hgcI_clade 

14 6.64 16 
d__Bacteria, p__Proteobacteria, c__Gammaproteobacteria, o__Burkholderiales, f__Comamonadaceae, 

g__unclassified_f__Comamonadaceae, s__unclassified_f__Comamonadaceae 

15 6.6 21 
d__Bacteria, p__Proteobacteria, c__Gammaproteobacteria, o__Burkholderiales, f__Burkholderiaceae, g__Polynucleobacter, 

s__unclassified_g__Polynucleobacter 

16 6.58 18 
d__Bacteria, p__Verrucomicrobiota, c__Verrucomicrobiae, o__uncultured, f__uncultured, g__uncultured, 

s__uncultured_Opitutae 

17 6.58 20 
d__Bacteria, p__Bacteroidota, c__Bacteroidia, o__Flavobacteriales, f__Crocinitomicaceae, g__Fluviicola, 

s__unclassified_g__Fluviicola 

18 6.52 23 
d__Bacteria, p__Bacteroidota, c__Bacteroidia, o__Flavobacteriales, f__Flavobacteriaceae, g__Flavobacterium, 

s__unclassified_g__Flavobacterium 
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19 6.5 18 
d__Bacteria, p__Proteobacteria, c__Gammaproteobacteria, o__Burkholderiales, f__Comamonadaceae, 

g__unclassified_f__Comamonadaceae, s__unclassified_f__Comamonadaceae 

20 6.46 18 
d__Bacteria, p__Bacteroidota, c__Bacteroidia, o__Flavobacteriales, f__Flavobacteriaceae, g__Flavobacterium, 

s__unclassified_g__Flavobacterium 

21 6.45 19 
d__Bacteria, p__Actinobacteriota, c__Actinobacteria, o__Frankiales, f__Sporichthyaceae, g__hgcI_clade, 

s__unclassified_g__hgcI_clade 

22 6.43 23 
d__Bacteria, p__Proteobacteria, c__Gammaproteobacteria, o__Burkholderiales, f__Methylophilaceae, 

g__Candidatus_Methylopumilus, s__unclassified_g__Candidatus_Methylopumilus 

23 6.42 21 
d__Bacteria, p__Actinobacteriota, c__Actinobacteria, o__Frankiales, f__Sporichthyaceae, g__hgcI_clade, 

s__unclassified_g__hgcI_clade 

24 6.42 20 
d__Bacteria, p__Bacteroidota, c__Bacteroidia, o__Chitinophagales, f__Chitinophagaceae, g__Sediminibacterium, 

s__unclassified_g__Sediminibacterium 

25 6.39 31 
d__Bacteria, p__Bacteroidota, c__Bacteroidia, o__Sphingobacteriales, f__NS11-12_marine_group, g__NS11-

12_marine_group, s__uncultured_Flexibacteraceae 

26 6.3 11 
d__Bacteria, p__Proteobacteria, c__Gammaproteobacteria, o__Burkholderiales, f__Burkholderiaceae, g__Polynucleobacter, 

s__Polynucleobacter_cosmopolitanus 

27 6.29 17 
d__Bacteria, p__Proteobacteria, c__Gammaproteobacteria, o__Methylococcales, f__Methylomonadaceae, g__Methylobacter, 

s__unclassified_g__Methylobacter 

28 6.26 27 
d__Bacteria, p__Proteobacteria, c__Gammaproteobacteria, o__Cellvibrionales, f__Cellvibrionaceae, g__Cellvibrio, 

s__uncultured_Cellvibrio 

29 6.25 20 
d__Bacteria, p__Verrucomicrobiota, c__Verrucomicrobiae, o__Pedosphaerales, f__Pedosphaeraceae, g__SH3-11, 

s__uncultured_bacterium 

30 6.2 29 
d__Bacteria, p__Proteobacteria, c__Gammaproteobacteria, o__Aeromonadales, f__Aeromonadaceae, g__Aeromonas, 

s__unclassified_g__Aeromonas 

31 6.19 19 
d__Bacteria, p__Proteobacteria, c__Gammaproteobacteria, o__Burkholderiales, f__Methylophilaceae, g__Methylotenera, 

s__unclassified_g__Methylotenera 

32 5.97 20 
d__Bacteria, p__Bacteroidota, c__Bacteroidia, o__Chitinophagales, f__Chitinophagaceae, g__Sediminibacterium, 

s__unclassified_g__Sediminibacterium 

33 5.94 27 
d__Bacteria, p__Proteobacteria, c__Gammaproteobacteria, o__Burkholderiales, f__Chitinibacteraceae, g__Deefgea, 

s__Deefgea_sp. 

34 5.9 20 
d__Bacteria, p__Actinobacteriota, c__Actinobacteria, o__Frankiales, f__Sporichthyaceae, g__hgcI_clade, 

s__unclassified_g__hgcI_clade 

35 5.9 21 
d__Bacteria, p__Verrucomicrobiota, c__Verrucomicrobiae, o__Pedosphaerales, f__Pedosphaeraceae, g__uncultured, 

s__uncultured_bacterium 

36 5.85 23 
d__Bacteria, p__Proteobacteria, c__Gammaproteobacteria, o__Alteromonadales, f__Alteromonadaceae, g__Rheinheimera, 

s__unclassified_g__Rheinheimera 

37 5.75 15 
d__Bacteria, p__Bacteroidota, c__Bacteroidia, o__Cytophagales, f__Spirosomaceae, g__Arcicella, s__uncultured_bacterium 

 

38 5.72 27 
d__Bacteria, p__Proteobacteria, c__Alphaproteobacteria, o__SAR11_clade, f__Clade_III, g__Clade_III, 

s__Candidatus_Fonsibacter 

39 5.71 16 
d__Bacteria, p__Proteobacteria, c__Gammaproteobacteria, o__Burkholderiales, f__Comamonadaceae, g__Rhodoferax, 

s__unclassified_g__Rhodoferax 

40 5.64 14 
d__Bacteria, p__Bacteroidota, c__Bacteroidia, o__Chitinophagales, f__Chitinophagaceae, g__Edaphobaculum, 

s__uncultured_bacterium 



79 

 

 

41 5.62 16 
d__Bacteria, p__Bacteroidota, c__Bacteroidia, o__Cytophagales, f__Spirosomaceae, g__Flectobacillus, 

s__Flectobacillus_fontis 

42 5.58 23 
d__Bacteria, p__Bacteroidota, c__Bacteroidia, o__Flavobacteriales, f__NS9_marine_group, g__NS9_marine_group, 

s__unclassified_g__NS9_marine_group 

43 5.56 21 
d__Bacteria, p__Bacteroidota, c__Bacteroidia, o__Chitinophagales, f__Saprospiraceae, g__uncultured, 

s__uncultured_bacterium 

44 5.53 10 
d__Bacteria, p__Bacteroidota, c__Bacteroidia, o__Sphingobacteriales, f__NS11-12_marine_group, g__NS11-

12_marine_group, s__uncultured_Flexibacteraceae 

45 5.5 28 
d__Bacteria, p__Proteobacteria, c__Gammaproteobacteria, o__Xanthomonadales, f__Xanthomonadaceae, g__Arenimonas, 

s__unclassified_g__Arenimonas 

46 5.46 21 
d__Bacteria, p__Actinobacteriota, c__Actinobacteria, o__Frankiales, f__Sporichthyaceae, g__hgcI_clade, 

s__uncultured_actinobacterium 

47 5.43 7 
d__Bacteria, p__Proteobacteria, c__Gammaproteobacteria, o__Enterobacterales, f__Yersiniaceae, 

g__unclassified_f__Yersiniaceae, s__unclassified_f__Yersiniaceae 

48 5.42 11 
d__Bacteria, p__Proteobacteria, c__Gammaproteobacteria, o__Burkholderiales, f__Comamonadaceae, 

g__unclassified_f__Comamonadaceae, s__unclassified_f__Comamonadaceae 

49 5.41 8 
d__Bacteria, p__Cyanobacteria, c__Cyanobacteriia, o__unclassified_c__Cyanobacteriia, f__unclassified_c__Cyanobacteriia, 

g__unclassified_c__Cyanobacteriia, s__unclassified_c__Cyanobacteriia 

50 5.38 12 
d__Bacteria, p__Proteobacteria, c__Alphaproteobacteria, o__Rhodobacterales, f__Rhodobacteraceae, 

g__unclassified_f__Rhodobacteraceae, s__unclassified_f__Rhodobacteraceae 

51 5.38 9 
d__Bacteria, p__Bacteroidota, c__Bacteroidia, o__Cytophagales, f__Cyclobacteriaceae, g__Algoriphagus, 

s__unclassified_g__Algoriphagus 

52 5.36 18 
d__Bacteria, p__Proteobacteria, c__Gammaproteobacteria, o__Cellvibrionales, f__Halieaceae, g__OM60(NOR5)_clade, 

s__unclassified_g__OM60(NOR5)_clade 

53 5.35 10 
d__Bacteria, p__Proteobacteria, c__Gammaproteobacteria, o__Burkholderiales, f__Comamonadaceae, 

g__unclassified_f__Comamonadaceae, s__unclassified_f__Comamonadaceae 

54 5.26 16 
d__Bacteria, p__Verrucomicrobiota, c__Verrucomicrobiae, o__Verrucomicrobiales, f__Rubritaleaceae, g__Luteolibacter, 

s__unclassified_g__Luteolibacter 

55 5.22 5 
d__Bacteria, p__Proteobacteria, c__Gammaproteobacteria, o__Burkholderiales, f__Comamonadaceae, 

g__unclassified_f__Comamonadaceae, s__unclassified_f__Comamonadaceae 

56 5.19 12 
d__Bacteria, p__Cyanobacteria, c__Cyanobacteriia, o__Cyanobacteriales, f__Xenococcaceae, g__Pleurocapsa_PCC-7319, 

s__unclassified_g__Pleurocapsa_PCC-7319 

57 5.18 8 
d__Bacteria, p__Proteobacteria, c__Gammaproteobacteria, o__Burkholderiales, f__Comamonadaceae, g__Hydrogenophaga, 

s__unclassified_g__Hydrogenophaga 

58 5.17 9 
d__Bacteria, p__Proteobacteria, c__Alphaproteobacteria, o__Sphingomonadales, f__Sphingomonadaceae, g__Sphingorhabdus, 

s__unclassified_g__Sphingorhabdus 

59 5.15 14 
d__Bacteria, p__Verrucomicrobiota, c__Verrucomicrobiae, o__Pedosphaerales, f__Pedosphaeraceae, g__uncultured, 

s__metagenome 

60 5.15 17 
d__Bacteria, p__Bacteroidota, c__Bacteroidia, o__Cytophagales, f__Cyclobacteriaceae, g__Algoriphagus, 

s__uncultured_Hongiella 

61 5.15 13 
d__Bacteria, p__Bacteroidota, c__Bacteroidia, o__Cytophagales, f__Cytophagaceae, g__Cytophaga, 

s__unclassified_g__Cytophaga 

62 5.12 10 
d__Bacteria, p__Bacteroidota, c__Bacteroidia, o__Sphingobacteriales, f__env.OPS_17, g__env.OPS_17, 

s__uncultured_bacterium 
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63 5.09 8 
d__Bacteria, p__Verrucomicrobiota, c__Verrucomicrobiae, o__uncultured, f__uncultured, g__uncultured, 

s__unclassified_g__uncultured 

64 5.08 8 
d__Bacteria, p__Proteobacteria, c__Gammaproteobacteria, o__Burkholderiales, f__Comamonadaceae, g__uncultured, 

s__unclassified_g__uncultured 

65 5.06 10 
d__Bacteria, p__Proteobacteria, c__Gammaproteobacteria, o__Burkholderiales, f__Burkholderiaceae, g__Polynucleobacter, 

s__uncultured_bacterium 

66 5.06 14 
d__Bacteria, p__Proteobacteria, c__Gammaproteobacteria, o__Cellvibrionales, f__Halieaceae, g__OM60(NOR5)_clade, 

s__unclassified_g__OM60(NOR5)_clade 

67 5.03 8 
d__Bacteria, p__Proteobacteria, c__Gammaproteobacteria, o__Burkholderiales, f__Comamonadaceae, g__Rhizobacter, 

s__unclassified_g__Rhizobacter 

68 5.02 13 
d__Bacteria, p__Proteobacteria, c__Gammaproteobacteria, o__Burkholderiales, f__Oxalobacteraceae, g__CM1G08, 

s__unclassified_g__CM1G08 

69 4.96 20 
d__Bacteria, p__Bacteroidota, c__Bacteroidia, o__Cytophagales, f__Spirosomaceae, g__Lacihabitans, 

s__uncultured_bacterium 

70 4.94 18 
d__Bacteria, p__unclassified_d__Bacteria, c__unclassified_d__Bacteria, o__unclassified_d__Bacteria, 

f__unclassified_d__Bacteria, g__unclassified_d__Bacteria, s__unclassified_d__Bacteria 

71 4.89 13 
d__Bacteria, p__Proteobacteria, c__Gammaproteobacteria, o__Burkholderiales, f__Comamonadaceae, g__Polaromonas, 

s__unclassified_g__Polaromonas 

72 4.88 9 
d__Bacteria, p__Proteobacteria, c__Gammaproteobacteria, o__Burkholderiales, f__Comamonadaceae, 

g__unclassified_f__Comamonadaceae, s__unclassified_f__Comamonadaceae 

73 4.84 12 
d__Bacteria, p__Bacteroidota, c__Bacteroidia, o__Flavobacteriales, f__Crocinitomicaceae, g__Fluviicola, 

s__unclassified_g__Fluviicola 

74 4.8 8 
d__Bacteria, p__Proteobacteria, c__Gammaproteobacteria, o__Burkholderiales, f__Methylophilaceae, 

g__unclassified_f__Methylophilaceae, s__unclassified_f__Methylophilaceae 

75 4.76 7 
d__Bacteria, p__Verrucomicrobiota, c__Verrucomicrobiae, o__Opitutales, f__Opitutaceae, g__Lacunisphaera, 

s__unclassified_g__Lacunisphaera 

76 4.71 12 
d__Bacteria, p__Bacteroidota, c__Bacteroidia, o__Flavobacteriales, f__Crocinitomicaceae, g__Fluviicola, 

s__unclassified_g__Fluviicola 

77 4.64 9 
d__Bacteria, p__Bacteroidota, c__Bacteroidia, o__Chitinophagales, f__Saprospiraceae, g__uncultured, 

s__uncultured_bacterium 

78 4.61 15 
d__Bacteria, p__Proteobacteria, c__Alphaproteobacteria, o__Rhizobiales, f__Rhizobiales_Incertae_Sedis, g__uncultured, 

s__metagenome 

79 4.58 13 
d__Bacteria, p__Bacteroidota, c__Bacteroidia, o__Bacteroidales, f__Prolixibacteraceae, g__uncultured, 

s__uncultured_prokaryote 

80 4.57 18 
d__Bacteria, p__Bacteroidota, c__Bacteroidia, o__Sphingobacteriales, f__env.OPS_17, g__env.OPS_17, 

s__unclassified_g__env.OPS_17 

81 4.53 10 
d__Bacteria, p__Campilobacterota, c__Campylobacteria, o__Campylobacterales, f__Arcobacteraceae, g__Pseudarcobacter, 

s__uncultured_bacterium 

82 4.47 11 
d__Bacteria, p__Bacteroidota, c__Bacteroidia, o__Sphingobacteriales, f__AKYH767, g__AKYH767, 

s__uncultured_Sphingobacteriales 

83 4.45 17 
d__Bacteria, p__Bacteroidota, c__Bacteroidia, o__Chitinophagales, f__Saprospiraceae, g__uncultured, 

s__uncultured_bacterium 

84 4.41 13 
d__Bacteria, p__Bacteroidota, c__Bacteroidia, o__Cytophagales, f__Spirosomaceae, g__Emticicia, 

s__unclassified_g__Emticicia 
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85 4.37 12 
d__Bacteria, p__Bacteroidota, c__Bacteroidia, o__Chitinophagales, f__Saprospiraceae, g__uncultured, 

s__uncultured_bacterium 

86 4.34 10 
d__Bacteria, p__Verrucomicrobiota, c__Verrucomicrobiae, o__Verrucomicrobiales, f__Rubritaleaceae, g__Luteolibacter, 

s__unclassified_g__Luteolibacter 

87 4.33 7 
d__Bacteria, p__Verrucomicrobiota, c__Verrucomicrobiae, o__Verrucomicrobiales, f__Rubritaleaceae, g__Luteolibacter, 

s__unclassified_g__Luteolibacter 

88 4.23 12 
d__Bacteria, p__Actinobacteriota, c__Actinobacteria, o__Frankiales, f__Sporichthyaceae, g__Candidatus_Planktophila, 

s__unclassified_g__Candidatus_Planktophila 

89 4.23 6 
d__Bacteria, p__Verrucomicrobiota, c__Verrucomicrobiae, o__Pedosphaerales, f__Pedosphaeraceae, g__uncultured, 

s__uncultured_bacterium 

90 4.19 11 
d__Bacteria, p__Proteobacteria, c__Gammaproteobacteria, o__Cellvibrionales, f__Cellvibrionaceae, g__Cellvibrio, 

s__unclassified_g__Cellvibrio 

91 4.13 10 
d__Bacteria, p__Proteobacteria, c__Gammaproteobacteria, o__B2M28, f__B2M28, g__B2M28, s__unclassified_g__B2M28 

 

92 4.11 10 
d__Bacteria, p__Cyanobacteria, c__Cyanobacteriia, o__Leptolyngbyales, f__Leptolyngbyaceae, g__uncultured, 

s__uncultured_cyanobacterium 

93 4.09 11 
d__Bacteria, p__Proteobacteria, c__Alphaproteobacteria, o__Rhodobacterales, f__Rhodobacteraceae, g__Rhodobacter, 

s__uncultured_Alphaproteobacteria 

94 4.06 11 
d__Bacteria, p__Bacteroidota, c__Bacteroidia, o__Cytophagales, f__Microscillaceae, g__OLB12, s__uncultured_bacterium 

 

95 3.99 10 
d__Bacteria, p__Planctomycetota, c__Planctomycetes, o__Pirellulales, f__Pirellulaceae, g__Pirellula, 

s__unclassified_g__Pirellula 

96 3.95 15 
d__Bacteria, p__Bacteroidota, c__Bacteroidia, o__Cytophagales, f__Spirosomaceae, g__Emticicia, 

s__unclassified_g__Emticicia 

97 3.93 12 
d__Bacteria, p__Bacteroidota, c__Bacteroidia, o__Chitinophagales, f__Saprospiraceae, g__uncultured, 

s__uncultured_bacterium 

98 3.91 9 
d__Archaea, p__Crenarchaeota, c__Nitrososphaeria, o__Nitrosopumilales, f__Nitrosopumilaceae, g__Nitrosarchaeum, 

s__uncultured_archaeon 

99 3.91 12 
d__Bacteria, p__Fibrobacterota, c__Fibrobacteria, o__Fibrobacterales, f__unclassified_o__Fibrobacterales, 

g__unclassified_o__Fibrobacterales, s__unclassified_o__Fibrobacterales 

100 3.76 11 
d__Bacteria, p__Desulfobacterota, c__Desulfuromonadia, o__Bradymonadales, f__Bradymonadales, g__Bradymonadales, 

s__uncultured_bacterium 

101 3.66 9 
d__Bacteria, p__Proteobacteria, c__Alphaproteobacteria, o__Sphingomonadales, f__Sphingomonadaceae, g__Sphingomonas, 

s__unclassified_g__Sphingomonas 

102 3.22 11 
d__Bacteria, p__Proteobacteria, c__Gammaproteobacteria, o__Cellvibrionales, f__Spongiibacteraceae, g__BD1-7_clade, 

s__uncultured_bacterium 

a d – Domain; p – Phylum; c – Class; o – Order; g – Genus; s - species 
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Figure 3.S1. Median value of normalized mutual information shared between informative 

streamwater microbial amplified sequence variants (ASVs) and daily mean discharge per unit area at 

different time lags (𝑞(𝑡−𝑛 𝑑𝑎𝑦𝑠)) for study streams in Oregon, USA. Boxes show medians and 

interquartile ranges; whiskers show values within 1.5 times the interquartile range.  Green triangles 

indicate the number of ASVs with statistically significant mutual information (99% confidence). 

Dashed red line shows best fit curve between time lag and median value of normalized mutual 

information, with Pearson correlation (r) and p-value indicated in legend. We observed no significant 

relationship between time lag and number of informative ASVs.  We collected microbial DNA 

samples in summer in the Willamette (2017), Deschutes (2017), and John Day (2018) basins. 

 

 
Figure 3.S2. Median value of normalized mutual information shared between informative unique 

streamwater microbial amplified sequence variants (ASVs) and mean monthly discharge per unit area 

of study streams in Oregon, USA. Boxes show medians and interquartile ranges; whiskers show 

values within 1.5 times the interquartile range. Purple triangles indicate the number of ASVs with 

statistically significant mutual information (99% confidence). Dashed red line shows best fit curve 

between month and median value of normalized mutual information, with Pearson correlation (r) and 

p-value indicated in legend. We observed no significant relationship between month and number of 

informative ASVs. We collected microbial DNA samples in July and August in the Willamette (2017), 

Deschutes (2017), and John Day (2018) basins. 
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Figure 3.S3. Normalized mutual information shared between unique streamwater microbial amplified 

sequence variants (ASVs) and seasonal high and low flow durations per unit area (𝑞𝑃,𝑠 for P = 5- and 

95-percent exceedance probability for seasons s = fall [OND], winter [JFM], spring [AMJ], summer 

[JAS], and annually [Ann]) at study streams in Oregon, USA. Boxes show medians and interquartile 

ranges; whiskers show values within 1.5 times the interquartile range. Blue triangles indicate the 

number of ASVs with statistically significant mutual information (99% confidence) for high flows 

(dark) and low flows (light). We collected microbial DNA samples in summer in the Willamette 

(2017), Deschutes (2017), and John Day (2018) basins. 

 

 

 
Figure 3.S4.   Mutual information shared between hydrologic metrics and streamwater microbial taxa 

versus the number of sites at which taxa were detected in streams across Oregon, USA.  We collected 

microbial DNA samples in summer in the Willamette (2017), Deschutes (2017), and John Day (2018) 

basins.  Hydrologic metrics include daily discharge at time lags up to n = 30 days prior to DNA sample 

collection (𝑄(𝑡−𝑛 𝑑𝑎𝑦𝑠); green circles), mean monthly discharge (𝑄̅𝑚𝑜𝑛; purple triangles), and seasonal 

high and low flow durations (𝑄𝑃,𝑠; 5- and 95-percent exceedance probability for all seasons and 

annually; blue squares). Legend shows Pearson’s correlation (r) and p-value of the linear regression.  
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4 Shifts in Streamwater Microbial Diversity Track Storm 

Hydrograph Dynamics 

4.1 Abstract  

A thorough understanding of watershed response to precipitation events is critical 

as our climate shifts to produce increasingly extreme precipitation and hydrologic 

events. Hydrogeochemical tools, such as stable isotope analysis, are a common 

approach for tracking precipitation and identifying the source of surface water in 

catchments, however in some cases the stable isotope signature may be difficult to 

interpret, as it integrates the multitude of complex processes involved in streamflow 

generation and water storage into a one- or two-dimensional datapoint.  In contrast, 

aquatic microbial communities in streams are composed of thousands of taxa, 

originating from a variety of sources, including groundwater, sediment, stable upstream 

communities, and the upslope terrestrial environment.  In this study, we explore the 

dynamics of the streamwater microbial community response to a precipitation event on 

the Marys River in Oregon, USA.  We collected daily DNA samples from the Marys 

River before, during, and after a large, isolated precipitation event. Stable water isotope 

ratios (δ18O and δ2H) were also analyzed.  Though isotopes signatures exhibited little 

variation, prior work in the catchment suggests that distinct pre-event, early-event, and 

late-event water sources are visible.   DNA samples were translated into the relative 

abundance of different distinct taxa (620 in total) using 16S amplicon sequencing. 

Cluster analysis of the microbial composition similarly reveals coherent pre-event, 

early-event, and late-event microbial communities. Shifts in microbial diversity reflect 

changes in discharge over the course of the storm, and abundance-discharge 

relationships (analogous to a concentration-discharge geochemical analysis) reveal that 

some taxa are mobilized and others diluted over the course of the event.  This study 

provides an approach for integrating information from DNA suspended in the water 

column into an investigation of a hydrologic response that incorporates tools from both 

hydrology and microbiology and demonstrates that microbial DNA is useful not only 

as an indicator of biodiversity but also as an innovative hydrologic tracer.  
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4.2 Introduction 

Managing increasing pressure on water resources and competing demands 

between ecosystems and societal needs requires detailed understanding of the response 

of water resources to perturbations and climate change effects.  Whereas some 

watersheds are resilient to dramatic events, others are flashier and prone to more 

extreme flows.  The way in which water resources respond to precipitation events 

depends on event characteristics, including precipitation volume and intensity, as well 

as the complex dynamics of water storage and release in the catchment basin. 

Geochemical tracer analyses are commonly employed to analyze streamflow 

response to precipitation events.  Most notable among the variety of geochemical 

tracers employed in hydrologic studies are stable water isotopes 2H and 18O.  Stable 

isotopes are usually based on a mass balance approach (Pinder & Jones, 1969) and have 

led to transformative insights in catchment hydrology, including the observation that 

pre-event “old” water dominates streamflow during precipitation events in many 

systems (Sklash et al., 1986; Klaus and McDonnell, 2013), although the mechanisms 

driving a predominately old water stream response remain unknown.   Furthermore, 

isotopic signatures in some systems may be difficult to discern.  For example, in the 

Marys River Basin in Oregon, USA, Brooks et al., (2012) found that isotopic variation 

between tributary streams was explained primarily by differences in mean basin 

elevation among the tributaries. However, in a subsequent study in the same basin, 

Nickolas et al. (2017) observed isotopic ratios that were considerably more enriched 

than expected and did not demonstrate an elevation signal; differences in lithology have 

been proposed as an explanation for the unusual isotopic signature, but the question 

remains unresolved.    

Water transport through catchments is governed by characteristics of the 

subsurface, which are not only physically and chemically complex, but also 

biologically complex.  Whereas stable isotopes reflect some physical and chemical 

properties of the subsurface, biological interactions are not adequately captured by 

these geochemical tracers.  New approaches are necessary to gain a more complete 

understanding of the dynamic and interrelated processes shaping hydrologic regimes.   
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 Aquatic microbial communities in streams are composed of thousands of taxa 

from a variety of sources, including groundwater, sediment, stable upstream 

communities, and the upslope terrestrial environment.  Streamwater microbial 

community composition is also strongly related to stream discharge (Crump and 

Hobbie, 2005; Doherty et al., 2017), as well as other hydrologic properties related to 

water residence time such as cumulative river distance upstream (Read et al., 2015), 

river kilometer, and catchment size (Savio et al., 2015), and responds dynamically to 

changes in environmental conditions (Thompson et al., 2017).   Given the diversity of 

microbial community constituents and their sources, and the demonstrated 

relationships between microbial communities and watershed hydrology, we sought to 

investigate the precipitation event-scale dynamics between streamwater microbial 

communities and stream discharge.    

We collected daily DNA samples over the course of an isolated precipitation 

event on the Marys River in Oregon, USA, starting prior to the onset of precipitation 

and continuing through the duration of the stream response (Fig. 4.1). We assess 

microbial community diversity in relation to the stream discharge event response.  We 

compare the microbial community response to a common set of hydrologic tracers, 

stable isotope ratios of 2H and 18O.  We furthermore characterize microbial taxonomic 

groups as mobilized or diluted based on whether abundance is correlated or 

anticorrelated, respectively, with stream discharge.  While advances in technology 

have allowed for microbiome analyses in an expanding array of research areas 

including, more recently, hydrology, we are not aware of any microbial study with this 

temporal structure.  Results of this analysis carry important implications for both 

hydrology and microbiology, as well as many fields at the intersection of the two. 

4.3 Results  

4.3.1 Microbial Community Diversity 

Streamwater microbial diversity demonstrates a strong response to stream event 

flow (Fig 4.2a).  Alpha diversity closely tracks stream discharge, in terms of both 

richness (the number of unique taxa) and Shannon index, which reflects richness as 

well as evenness.  Richness rises steeply from a mean of 80.7 (SD = 10.8) taxa in the 

three days leading up to and including the first day of precipitation on 9 October, rising 
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steeply with discharge to an event maximum of 178 taxa on 14 October, and falling 

again to a post-event mean of 45.3 (SD = 2.5) taxa in the final three samples 21-25 

October (Fig 4.2a).  Shannon index follows a similar pattern, rising from a mean of 

4.26 (SD = 0.12) 7-9 October, to a maximum of 5.26 on 14 October, and falling to a 

post-event mean of 3.71 (SD = 0.03) 21-25 October (Fig 4.2a).  Both metrics of alpha 

diversity are correlated with one-day lagged discharge (richness: Pearson’s 𝜌 =

 0.45, 𝑝 = 0.07; Shannon index 𝜌 =  0.56, 𝑝 = 0.02).  The relationship is even 

stronger when the singularly high value of alpha diversity in the first sample on 6 

October is not considered (richness: 𝜌 =  0.73, 𝑝 = 0.001; Shannon index 𝜌 =

 0.77, 𝑝 < 0.001).  Alpha diversity is not correlated with precipitation or with one-day 

or two-day lagged precipitation.  

 

 

Figure 4.1. Daily precipitation, discharge, and streamwater DNA and stable water isotope (18O, 2H) 

sample collections on the Marys River before and after an isolated precipitation event in October 

2020.  Sampling began on 6 October; precipitation began on 9 October.  
 

In addition to changes in microbial alpha diversity with storm discharge, the 

microbial communities prior to the storm distinctly differ from those after the storm.  

Beta diversity, as measured by Bray-Curtis (BC) dissimilarity, is higher among pairs 
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of pre- and post-event samples than among pairs of pre-event samples taken 6-9 

October (Fig 4.2b).   Between pairs of pre-and post-event samples, mean BC 

dissimilarity is 0.27 (SD = 0.04), whereas BC among pre-event samples is, on average, 

0.13 (SD = 0.02).  As with alpha diversity, dissimilarity from the pre-event community 

tracks the storm discharge hydrograph, with the most dissimilar community, relative to 

the pre-event communities, occurring with peak discharge on 13 October (BC 

dissimilarity = 0.39, SD = 0.01).  The shift away from the pre-event microbial 

community can be observed in a principle coordinates analysis (Fig. 4.4), where a 

storm-discharge-associated community differs most drastically on 13 October (day of 

year [doy] 287) from several similar pre-event samples (doy 280-283); although the 

community is less dynamic after the event (doy >292), the community distinctly differs 

from the pre-event community.  

The isotopic signature of the stream changes little over the course of the storm 

event and stream response, despite highly enriched precipitation inputs (Fig. 4.2c).   

Mean pre-event deuterium ratio (δ2H) is -53.9 (SD = 0.2) permil, which increased to 

an event maximum of δ2H = -51.5 permil with peak stream discharge on 13 October.  

Aggregated precipitation ratios are much higher; δ2H = -38.7 permil for the two-week 

period ending on 13 October and δ2H = -23.3 permil for the following two-week period 

(Fig. 4.2c).  Similarly, mean pre-event 18O ratio (δ18O) is -7.9 (SD = 0.0) permil and 

rises to an event maximum of δ18O = -7.7 permil.  Aggregated precipitation ratios are 

δ18O = -6.3 permil and δ18O = -5.0 permil for the periods ending on 13 October and 

beginning 14 October, respectively (Fig 2c). 

 



90 

 

 

 

Figure 4.2. Responses of streamwater microbial community diversity and stable isotopes of water to 

an isolated precipitation event beginning 9 October 2020 on the Marys River, Oregon, USA.  a) 

Microbial community alpha diversity, including taxonomic richness (number of unique amplified 

sequence variants; red squares) and Shannon index (blue circles).  b) Marys River stream discharge 

[cms] and mean microbial community Bray-Curtis dissimilarity (diamonds) from pre-event samples 

(purple).  Error bars indicate one standard deviation. c) Stable isotope ratios δ2H (red) and δ18O (blue) 

measured in the stream (triangles) and in approximately 2-week aggregated precipitation (lines). 
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Figure 4.3 Principle coordinates analysis of streamwater microbial diversity over the course of a 

precipitation event and associated stream response 6-25 October 2020 on the Marys River, Oregon, 

USA.  Day of year 280 corresponds to 6 October 2020. 

 

4.3.2 Abundance – Discharge Relationships 

We explored whether microbial taxonomic abundance was related to discharge 

dynamics by conducting an abundance-discharge analysis, analogous to a 

concentration-discharge (C-Q) analysis commonly employed in chemical tracer 

studies.  Of the 68,000 sequences belonging to 620 unique taxa we analyzed, we were 

able to characterize 65,760 sequences from 111 taxa as mobilized (7,724 sequences 

across 17 unique taxa), diluted (41,936 sequences across 14 unique taxa), or static 

(16,550 sequences across 80 unique taxa) in response to changes in stream discharge 

(Fig. 4.4).  Diluted microbes compose the greatest proportion of the community on all 

sample days, accounting for an average of 61% (SD = 11%) of microbial sequences 

detected on a given day.   The fraction of the streamwater microbial community 

comprised of diluted taxa is inversely correlated with stream discharge (Pearson 𝜌 =

 −0.62, 𝑝 = 0.01), with a maximum composition of 76% of the community on 25 

October, following the hydrograph recession, and a minimum of 42% on 13 October, 

the day of peak event discharge (Fig. 4.4).  Diluted sequences are primarily classified 

as Gammaproteobacteria, accounting for an average of 34% of the overall stream 
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microbial community, Bacteroidota (21%), and Actinobacteriota (7%).  Diluted 

Verrucomicrobiota and sequences classified as Other composed <1% of the microbial 

community.  

 

Figure 4.4. Fraction of streamwater microbial sequences that were mobilized, static, and diluted with 

stream discharge dynamics in response to a precipitation event beginning 6 October 2020 on the 

Marys River, Oregon, USA.  Fraction is of the total abundance (number of sequences [n]) identified 

in at least three samples and that were positively correlated (mobilized), negatively correlated 

(diluted), or not correlated (static) with stream discharge (p < 0.1). Number of taxa represented 
 

Mobilized microbes compose a much smaller fraction of the streamwater 

microbial community, accounting for an average of 11% (SD = 4.5%) of microbial 

sequences detected on a given day (Fig 4.4). The fraction of the microbial community 

composed of mobilized taxa is correlated with stream discharge (𝜌 =  0.55, 𝑝 = 0.02), 

with a maximum composition of 20% of the community on 14 October and a minimum 

of 5% on 25 October.  Mobilized sequences are primarily classified as 

Alphaproteobacteria, accounting for an average of 6% of the overall stream microbial 

community, Gammaproteobacteria (2%), Bacteroidota (1%); Actinobacteriota, 

Verrucomicrobiota, and Other each account for <1% of the community.  

Static sequences are those that were not statistically correlated with discharge, 

and they account for a mean of 24% (SD = 5%) of the streamwater microbial 

community on a given day (Fig 4.4).  The fraction of the overall microbial community 

composed of static sequences was the group most strongly correlated with discharge 

(𝜌 =  0.73, 𝑝 < 0.001), with a peak composition of 35% on 13 October and the nadir 
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(17%) on 18 October.  Static sequences are primarily classified as Bacteroidota, 

accounting for an average of 13% of the overall microbial community, Actinobacteriota 

(6%), Gammaproteobacteria (4%), and Alphaproteobacteria (1%); Other, 

Verrucomicrobiota, and Cyanobacteria each account for <1% of the community.   

 The fraction of sequences characterized as mobilized, diluted, or static varies 

within each of the phylogentic groups, but each group is generally dominated by either 

diluted or mobilized sequences (Fig. 4.5).  For example, 84% of the 27,621 sequences 

classified as Gammaproteobacteria are characterized as diluted, whereas only 5% are 

mobilized (9% are static and 2% remain uncharacterized).  Similar patterns are 

observed among Bacteroidota, in which 58% of 5,240 sequences are diluted and only 

4% are mobilized (36% are static), and Actinobacteriota, in which 50% of 9,012 

sequences are diluted and 7% are mobilized (42% are static).  Alphaproteobacteria, on 

the other hand, is dominated by mobilized sequences: 78% of sequences are mobilized 

but none are diluted (19% are static and 3% are uncharacterized).   

 

 

Figure 4.5. Microbial taxonomic groups identified as mobilized, static, and diluted, as a fraction of 

the total abundance of each amplified sequence variant over the sampling period (left) and as a fraction 

of the number of unique taxa (right), in response to a precipitation event beginning 6 October 2020 

on the Marys River, Oregon, USA. Diluted, static, and mobilized ASVs are those that were identified 

in at least three samples and were negatively correlated, not correlated, or positively correlated with 

stream discharge (p < 0.1), respectively. 
 

4.4 Discussion 

The streamwater microbial community exhibited a rich and dynamic response 

to discharge dynamics following an isolated precipitation event on the Marys River, in 
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contrast to the dampened, bivariate response in the isotopic signature of the stream.  

Microbial community diversity was tightly coupled to the storm hydrograph, with 

number of unique microbial taxa increasing more than twofold as stream discharge 

increased, then falling to levels lower than those prior to the event (Fig. 4.2a).  

Streamwater istopic ratios 2H and 18O, on the other hand, registered only a modest 

response to this major precipitation event, especially considering the much higher ratios 

in the precipitation during the same period. 

Even after the stream discharge and microbial diversity recede, the post-event 

community remained distinctly different than the pre-event community (Fig. 4.2b).  A 

principle coordinates analysis illustrates how the community changes most drastically 

with the rising and falling limbs of the hydrograph while transitioning to a final 

community that is less dissimilar each day but still distinct from the pre-event 

community (Fig 4.3).   This dynamic response is attributable to the many thousands of 

diverse constituents that comprise the microbial community and contrasts sharply with 

the two constituents that comprise the isotopic signature.   

Beyond the scale and complexity of their response, the microbial community 

offers yet another feature for analysis: the unique characteristics of each of its diverse 

constituents.  Analysis of the relationships of microbial abundance to discharge 

(analogous to concentration – discharge [C-Q] analyses in chemical tracer studies) 

reveal that some taxa increase in abundance (are mobilized), while others decrease (are 

diluted), in response to increasing discharge.  These different responses to discharge 

likely reflect the varied sources of these taxonomic constituents, which are known to 

originate from groundwater as well as soil water, and may indicate shifting sources of 

water to the stream during an event response.  For example, we identified most 

Alphaproteobacteria sequences as mobilized with increasing discharge. 

Alphaproteobacteria are characteristically oligotrophic, originating in low-nutrient 

environments, and a growing constituency of this group likely signals an increasing 

contribution of water from a low-nutrient water pool, such as groundwater.  As such, 

the microbial community has the potential to offer key insights toward better 

understanding complex hydrologic processes, such as shifting sources of streamflow.   
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This investigation represents a transdisciplinary effort, employing analytical 

approaches and domain knowledge from both microbial ecology and hydrology and 

with important implications for both fields.   First, in analyzing microbial community 

composition in the context of a precipitation event and associated stream response, we 

find that the microbial community is highly sensitive, at daily timescales, to discharge 

dynamics, in terms of both diversity and community composition.  Thus, the hydrologic 

context may be an important consideration in studies involving analysis of surface 

water microbial communities.  Additionally, our abundance – discharge analysis, an 

analytical tool drawn from chemical hydrology, identified patterns in the response of 

microbial phylogenetic groups to hydrologic regime, which may offer new insight as 

well as a new tool for microbial ecology studies.  For hydrologic studies, we have 

demonstrated that the microbial community provides a new information-rich dataset 

with new tools for advancing process-based hydrologic understanding.   

4.5 Materials and Methods 

4.5.1 Datasets 

We collected daily DNA samples at the Marys River stream gage beginning 

three days prior to a precipitation event, continuing through the streamflow response, 

and concluding after the storm hydrograph recession; sample dates were 6-19 October, 

and 21, 23, and 25 October (Fig. 4.1).  We collected all samples at approximately 0800 

hours (range = 0730-0848 hours).  To collect DNA samples, we obtained a water 

sample from the approximate center of the stream using a plastic bucket lowered from 

a bridge; we filtered and extracted DNA from streamwater as described in Crump, 

Kling, Bahr, & Hobbie (2003).  We isolated the DNA and prepared the library 

following common accepted protocols. A detailed description of equipment preparation 

and sampling methods is found in URycki et al. (2020).   

We sequenced 16S rRNA with Illumina Miseq V.2 paired end 250bp 

sequencing. We classified sequence taxonomy with the SILVA 16S rRNA gene 

database v.132 (Quast et al., 2013) and removed ASVs classified as chloroplasts or 

mitochondria, or if they were not classified to the domains Bacteria and Archaea. The 

resultant dataset consisted of 248,286 sequences of 807 unique amplified sequence 

variants (ASVs) across the 17 stream samples.  Each sample was composed of a median 
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of 11,460 (range = 4,333-37,740) sequences. To standardize sampling depth across 

samples, we rarefied the dataset to 4,000 sequences per sample, resulting in a dataset 

of 4,000 x 17 = 68,000 counts of 620 unique ASVs. We analyzed these data as a matrix 

of the count of each unique ASV detected on each sample day.  We further grouped 

ASVs into the following eight categories based on taxonomy: phyla Actinobacteriota, 

Bacteroidota, Cyanobacteria, Planctomycetota, Verrucomicrobiota; orders 

Gammaproteobacteria and Alphaproteobacteria (both of Phylum Proteobacteria); and 

Other, for ASVs that did not classify into any of the other seven groups.  In microbiome 

research, individual ASVs are usually considered distinct taxonomic groups, and, as 

such, we use the terms ASV and taxon interchangeably throughout this analysis.   

Concurrent with DNA sample collections, we recorded stream temperature with 

a water quality sampling probe (YSI Incorporated, Yellow Springs, OH, USA) and 

collected streamwater samples for stable isotope analysis.  We also obtained average 

precipitation water stable isotope concentrations for the study period. We obtained 

streamflow records for the Marys River stream gage managed by the United States 

Geological Survey (U.S. Geological Survey, 2016).  We aggregated sub-hourly data to 

daily mean discharge (ft3/s; converted to m3/s) for the analysis period.   

4.5.2 Microbial Community Diversity 

Biodiversity is a characteristic measure of biological communities.  We 

calculated alpha diversity, or the diversity within the community, for each sample day 

using two common metrics: taxonomic richness and Shannon’s index (Fig. 4.3).  

Taxonomic richness is the total number of unique microbial taxa.  Shannon’s index (H) 

is the entropy of taxa within a community, calculated as  

𝐻 =  − ∑ (𝑝𝑖 ) 𝑙𝑜𝑔2(𝑝𝑖) 𝑠
𝑖=1 , 

where pi is the proportion of the total number of ASVs (s) represented by each unique 

ASV i (Shannon and Weaver, 1949).  The base for the logarithm is arbitrary, however, 

when base 2 is used, as here, the resultant quantity is described in units of bits.  

Shannon’s index thus accounts for richness as well as evenness, or the relative 

abundance of each taxa.  Larger values of H indicate greater diversity, and H is 

maximized when all taxa have the same relative abundance.   
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We then analyzed the extent to which Marys River post-event microbial 

communities differed from the pre-event communities.  To quantify the difference 

between communities, termed beta diversity, we employed the Bray-Curtis 

dissimilarity metric (Bray and Curtis, 1957), common in ecological studies. We 

calculated the Bray-Curtis dissimilarity, BC(u,v), between pairs of samples u and v as 

𝐵𝐶(𝑢, 𝑣) =  
∑ |𝑛𝑖,𝑢 −  𝑛𝑖,𝑣|𝑖

∑ |𝑛𝑖,𝑢 +  𝑛𝑖,𝑣|𝑖

,  

where ni,u is the relative abundance of ASV i in sample u (Bray and Curtis, 1957).  

Bray-Curtis dissimilarity ranges [0, 1], with unity indicating identical communities.  

We calculated the Bray-Curtis dissimilarity between pairs of samples (𝑢𝑙 , 𝑣𝑚), for all 

samples l = 6, 7, 8, …, 25 October and pre-event samples m = 6, 7, 8, 9 October.  We 

analyze the difference between each sample community and the pre-event community 

as the mean Bray-Curtis distance for each sample from the four pre-event samples as: 

𝐵𝐶(𝑢𝑙) =
∑ 𝐵𝐶(𝑢𝑙 , 𝑣𝑚)𝑚

4
 . 

4.5.3 Abundance – Discharge Relationships 

We performed a regression analysis to characterize how individual microbial 

taxa respond to changes in discharge.  Analogous to a concentration-discharge (C-Q) 

analysis, we assessed whether each microbial taxa exhibited a mobilization, dilution, 

or stasis response.  To characterize taxa into these three groups, we performed simple 

linear regression between taxonomic abundance (ASV counts) and stream discharge 

for all taxa identified in at least three samples (i.e., days) across the entire study period 

6-25 October.  We classified taxa as mobilized if the relationship exhibited a positive 

slope, diluted if the slope was negative, and static if the slope was not significant at a 

90% confidence level.  Uncharacterized taxa are those detected on too few (<3) days 

for linear regression.   
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5 Conclusion 

The objective of this research was to explore streamwater microbial 

communities, as characterized by 16S rRNA gene sequencing of DNA samples, as an 

information-rich dataset to advance hydrologic knowledge, which may in some cases 

be effectively limited by the types of data and approaches currently available for 

hydrologic studies.  The analyses described here are the result of a distinctly 

transdisciplinary effort, drawing on datasets, domain knowledge, literature, and 

analytical methods from across the spectrum of hydrologic and microbial research. The 

implications of this research likewise span disciplines.    

Using common tools of ecological research, we analyzed beta diversity with 

Bray-Curtis dissimilarity and demonstrated that, in our study area, aquatic microbial 

communities are influenced by landscape-scale climatological and geomorphic 

characteristics of the drainage basin, characteristics that also shape hydrologic regime, 

lending support to the hypothesis these shared drivers might result in hydrologic signals 

being encoded within the complex microbial community structure.  Relationships 

between microbial communities and catchment characteristics were stronger in 

headwater streams, suggesting that the drivers of microbial community composition 

shift in lower stream reaches.  

   We applied advanced statistical approaches derived from communication and 

information theory to quantify relationships between individual microbial taxa and 

specific hydrologic metrics at different time and flow scales.  We found that in some 

cases, observing the abundance of a particular microbial taxa could reduce the 

uncertainty of a hydrologic metric by >40%, even in an opposite season.  Additionally, 

we were able to identify taxa that demonstrated especially interesting relationships with 

hydrologic metrics, such as the Bacteroidota of genus Lacihabitans, which exhibited a 

strong relationships to many hydrologic metrics but especially to daily discharge. 

Finally, with a uniquely high temporal resolution microbial community dataset, 

we employed both ecological metrics and analytical tools from chemical hydrology and 

geochemical tracer analyses to analyze microbial community dynamics in the context 

of a precipitation and stream event response.  We found that the microbial community 

exhibits a response to stream hydrograph dynamics that is both richer and greater in 
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magnitude than the isotopic response, and with patterns in phylogeny that may reflect 

shifting sources of event flow.  With abundance – discharge analyses, adapted from 

concentration – discharge analyses in geochemical hydrology, we demonstrate a novel 

system of characterizing microbial taxa that may be useful in microbial ecology studies.  

In service of our overarching research objective, and driven by the zeal that 

comes with an exciting new idea, we collected and analyzed more than 300 DNA 

samples from large and small streams across the state of Oregon, spanning four 

watersheds, three years, and all 12 months.  The results we present here, based on a 

fraction of the samples we collected, hardly scratch the surface of the potential of this 

dataset.  This dataset, and the foundational knowledge we have established here, will 

support a variety of studies across microbial ecology and hydrology and promoting 

fundamental process-based understanding of the interactions between the biosphere 

and hydrosphere and the implications for both.  

Future investigations might begin by expanding the inferences proposed here. 

For instance, future studies might address the questions like:  

 How are winter microbial communities related to macroscale catchment 

characteristics and hydrology? How does the hydrologic information shared 

with summer microbial communities compare to that shared with winter 

microbial communities?  

 How does the relationship between the microbial community and streamflow 

change for storm events of different magnitudes, at different points during the 

rainy season, or during different seasons?  

 How does the streamwater microbial community relate to catchments and 

hydrology in different regions?  What factors appear to influence these 

relationships when compared between regions and ecoclimatic conditions? 

Future studies might also build upon this work by addressing questions such as: 

 What information about hydrologic function can be gained from metagenomics 

analysis, and how does it compare to that gained from microbiome analysis? 

 Are there patterns in the taxonomy of hydrologically informative microbes 

across seasons, flow conditions, or regions? 
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 What can we learn about ecohydrologic function from analyzing the functional 

roles and community dynamics of microbial taxa detected in streams? 

 What analytical tools and methods can be used to effectively employ naturally-

occurring DNA to strengthen process-based understanding of watershed 

function?  

The research described here establishes a foundation upon which studies of microbial 

DNA, or other types of genetic analysis, might launch in any number of new directions. 

Given the expanding availability of these types of datasets, and the tremendous amount 

of data they contain, there is much to be gained by continuing to collect, analyze, and 

employ genetic material in studies across the geosciences.    

 


