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ABSTRACT We have developed a new approach to the theory of linear dichroism in partially
ordered systems. The description of the partially ordered ensemble uses a density of states
function, D(O, X, 4), which gives the probability that the direction of polarization for incident
polarized light has spherical angles 0 and 4 in an axis system fixed with respect to the
molecule; 4 = (Al, A2 ... A.) is a set of parameters that describes the partial ordering. We
derive new formulas for linear dichroism using the density of states function and then apply
these formulas to the analysis of linear dichroism in reaction centers and whole cells of
photosynthetic bacteria. One advantage of our approach is that the order parameter, A,
provides a more complete description of the distribution function than the traditional order
parameters used by other authors. Knowledge of A gives a good physical description of the
partial ordering and allows one to calculate accurate limits for the range of possible
orientations of the transition moments.

INTRODUCTION

Linear dichroism refers to a dependence of the absorption of polarized light on the direction of
polarization. This dependence arises because the molecular absorbance due to a transition
moment M depends on the angle between ,u and the polarized field E. An analysis of linear
dichroism data can, therefore, enable one to extract structural information on the orientation
of the transition moment. The theory is straightforward for single crystals or perfectly ordered
systems (1, 2), but complex for partially ordered systems (2). We develop here a new
approach to the theory of linear dichroism in partially ordered systems.

Most previous theories of linear dichroism in partially ordered systems have introduced an
orientational distribution function P(O', 4', i/i) which gives the probability that a molecule-
fixed axis $ystem has Euler angles ', 4', and O' with respect to the laboratory axis system (2)
(Fig. 1). The distribution function can then be expanded in terms of the Wigner Rotation
Matrices (3, 4)

P(O' 00', 0') Plm,n °m,n (0', X), \/), (1)
I,m,n
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FIGURE 1 Relation between the laboratory axis system (labeled X,Y, and Z) and the molecular axis
system, (labeled x, y, and z). 9 is one of the three Euler angles (9', 4/, and 41) that relate the laboratory axis
system to the molecular axis system.
FIGURE 2 Arrangement of e and E in the molecular axis system. 9 and 4 are the spherical angles of E.

where Plmn is the lmnth moment of the distribution function defined by

21 + 1 42w ff 2w P(O', 4)', . (0',V 0',*() d' dcos 0' d#'. (2)

Use of Eq. 1 in traditional linear dichroism expressions yields equations which involve only the
I - 2 moments (3). If the distribution function is axially symmetric, the resulting equations
depend only on P2w, which is related to the traditionally used order parameter S (2) by S =
(1/3)(3 ( cos20' ) - 1) = (8ir2/5) P2., where (cos20 ) is the ensemble average of cos2ff over
the axially symmetric distribution function.

There are two basic problems with the Wigner expansion method. The first problem arises
when one wants to use a linear dichroism experiment to find the orientation of et in the
molecular axis system. This determination requires knowledge of all of the I = 2 moments.
The best way to approach this problem is to construct a model for the partially ordered
system, calculate P(0, ', 01), and then calculate the I = 2 moments. However, no general
method for calculation of P(0', 4', 41) from a model has been described. The second problem
arises when one knows the orientation of, in the molecular axis system and hopes to use a
linear dichroism experiment to learn something about the distribution function. At best, one
can find the l - 2 moments, but these may be of little value in describing the distribution
function if the Wigner expansion is slowly convergent.
Our approach to linear dichroism overcomes the above problems by using new techniques

for describing partially ordered systems (5, 6) which we have already applied to simulation of
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electron paramagnetic resonance (EPR) spectra (7). These techniques involve a general
method for representing the distribution function in terms of a set of order parameters A -
(Al, A2,AA3, ... An). We call the parametric representation of the distribution function, the
density of states function, D(O, 4), 4), and it gives the probability that the polarized field has
spherical angles 0 and 4 in an axis system fixed with respect to the transition moment e (Fig.
2). The chief difference between our approach and the Wigner expansion approach is that our
4 parameters are chosen from physical consideration of the partially ordered system, and as a
result are likely to be fewer in number and more meaningful than the Wigner expansion
moments. Note also that D(0, ), 4) is a distribution function in a molecular axis system, while
P(0', 04,) is a distribution function in the laboratory axis system. That is, we will be
orientation averaging in a molecular axis system. As will be shown later, this approach leads
to simplification of the formulas in many instances.
A brief summary of how to calculate a density of states function follows (for more details

see references 5 and 6): (a) From a model for the system, one determines a set of rotations
which rotate an axis system originally coincident with the laboratory axis system into an axis
system which is a member of the ensemble of axis systems fixed with respect to the transition
moment. (b) The rotations are assigned weighting functions giving the probability distribution
in each rotation; e.g., a Gaussian weighted rotation about some axis will have the weighting
function exp(-_p2/A2), where A is the width of the Gaussian. (c) Finally, D(0, 4, 4) is
obtained as an integral over the weighting functions (see Appendix A and references 5 and 6).
The density of states function can then be used in linear dichroism expressions to yield
equations which depend parametrically on the order parameter A.
To determine the orientation of e in the molecular axis system, one now needs to know 4

rather than the I - 2 moments. As stated above, the best approach is to construct a model,
calculate D(0, 4), 4), and interpret the linear dichroism. Because general methods exist for
constructing D(0, 4, 4) from a model, the density of states approach is more efficient than the
Wigner expansion method. Furthermore, D(0, 4), ), unlike the I - 2 moments, can be used to
interpret many types of experiments on a system, and the results often allow one to specify 4
within a small range (5-7). If all components of A can be found, a linear dichroism
experiment will yield the orientation of A in the molecular axis system. Unfortunately, 4 can
rarely be specified with certainty; our analysis, then, allows one to use the uncertainty in A to
place accurate limits on the orientation of the transition moment.
Our approach is again superior if one intends to use a known orientation of s in the

molecular axis system to learn something about the distribution function. In this case, a linear
dichroism experiment may yield 4. In contrast to the I = 2 moments, the 4 parameter
completely determines the distribution function. The 4 parameter also gives physical insight
because it is generally related to some structural property of the ordered system.
The next section describes our approach to the theory of linear dichroism based on the

density of states formalism. The new approach is then applied to reaction centers and whole
cells of photosynthetic bacteria. In the discussion, we compare our approach with others in the
literature (1-4, 8-13). We find that our approach is equivalent to the Wigner expansion
method, but it has four distinct advantages. First, compared with parameters like the 1 - 2
moments, the set of parameters A,, A2 ... A. are more intuitively descriptive of the system.
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Second, 4 gives a complete definition of the distribution function. Third, it is straightforward
to construct D(O, 4, 4) from complex physical models and to interpret linear dichroism in light
of these models. Fourth, by orientation averaging in a molecular axis system our approach is
often much more efficient. For example, when neither the laboratory reference frame nor the
molecular reference frame is axially symmetric, P(O, 4', 4') depends on all three angles,
because it takes three Euler angles to specify the orientation of one axis system with respect to
another. In contrast, D(O, X, 4) specifies the spherical angles of the applied field, which is a
vectorial quantity. Because it takes only two angles to specify the orientation of a vector,
D(O, X, 4) never requires more than two angles. We can, therefore, analyze complex models
with fewer angular variables.

THEORY

The dichroic ratio R of an absorption band is defined as the ratio of integrated absorption
bands measured with light polarized parallel, l, and perpendicular, E-, to a given direction;
i.e.,

R = Al/Al, (3)

where Al and A1 are the integrated absorbances. Most reported forms of linear dichroism can
be related to R, as discussed in Appendix B. One notable exception is for experiments that
directly measure Al - A1 (14-16) and normalize by dividing by A, which is the absorbance
of the corresponding randomly oriented sample. We call this form the dichroic polarization,
defined as:

L All - A, (4)
Ar

When the laboratory reference frame is axially symmetric, L can be related to R, but in the
general nonaxially symmetric case L cannot be related to R. Therefore, we also derive
formulas for L.

Before continuing, let us formally define the two coordinate systems which we have already
mentioned. The first coordinate system is the laboratory axis system (XYZ), and it is fixed in
the laboratory reference frame. In the laboratory axis system El, and E, are constant vectors.
The second coordinate system is the molecular axis system (xyz), and it is fixed with respect
to the transition moment whose linear dichroism is being measured; that is, a unit vector , in
the direction of the transition moment ,u is a constant vector

(/=x, Ay, A.) (5)

in the molecular axis system. In general, the set of molecular axis systems defines a partially
ordered ensemble. We have previously discussed a method for direct determination of the
density of states functions D1l(O, 4, 4) and D1(O, 4, 4) (5, 6). These functions give the
probability that El, and E, have spherical angles 0 and X in the molecular axis system; i.e., the
probability that

f=EII(sin0cos),sinOsin ),cos0). (6)
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Using the density of states formalism, we can now develop a new approach to the theory of
linear dichroism.
We begin by calculating All. The absorbance of a transition moment ,u interacting with a

polarized field E is proportional to (g * E)2 or, equivalently, to cos2(3, where $ is the angle
between g and E. For a partially ordered ensemble interacting with El,, the absorbance is

All = K f O f d("" E)2DI,(0, , 4)/ dO f d4DI (0, ^4, (7)

where ,u and E are defined by Eqs. 5 and 6, and K is an experimental constant which contains
such parameters as extinction coefficient, concentration, and path length. (Note that in Eq. 7
and throughout this paper we use unnormalized density of states functions; the denominator
furnishes the required normalization). Experimentally, the partial ordering is induced by
exerting some type of force on the system, such as an alignment field or a mechanical stretch.
Because the sign of the direction of these forces is arbitrary, the density of states has the
following symmetry properties:

(1) DI,(0, 4, 4) =DI,(0, 4 + 4r,), (8)

and

(2) DI,(O, ), 4A) =DI,(r - 0,4), ) (9a)

D( l(D,0,4A) = Dl (0, X - , 4). (9b)
That is, DI (0,4, A) is periodic with period r and is symmetric about 7r/2. Using only these
symmetry properties, Eq. 7 reduces to

An = K'{t,[T1 (A) - Fl,(A)] + jLFii (A) + A2[1 - Ti(A)]}, (10)

where K is a new constant,

7/2 20 r/2
Tii(A) = J dOsin 0 dDDH (0, 4, A)/NIN (), (11)

F1(4) =
2

d0sin20f' do sin2D,, (0, 4), 4)/NII (4), (12)

and

N1(4) = dO , DI,(0, A,4). (13)

In a random sample, All = A,, DI, (0, 4, 4) = sinO, Tii (4) - 2/3, and Fii (4) 1/3. Using these
facts, we find that K' = 3A,, and Eq. 10 for the ordered sample becomes

Al = 3A,rA2 [Ti (4) - Fii(4)] + ,u2FIF(4) + ,2[ - TH (4)]} (14)

An analogous expression holds for A1, where we define T1(4), F1(4), and N1(4) using
D1(O, 4, 4). The dichroic ratio is thus given by

R - A- F I[T1(4)-F1(A_)] + y2FII (4) + .u2[I-TI, (4)]
A1 ,I[T1(4) - F1(4)] + iy2FL(4) + ,4[l- T1(4)] (1)
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and the dichroic polarization is given by

L - Al - A, = 3[ux2[T4(4) - T1(4) + F1(4) - Fg(4)] + ,Y[F1(4) - F1(4)]
Ar

+ -z2 [ T1- (A)] } . (16)

Eqs. 15 and 16 take simpler forms when the density of states depends only on 0 and A,
which happens whenever the molecular reference frame is axially symmetric. Eqs. 11 and 12
become

Ti(4) = ,j sin2OD, (0, 4) dO/
r

Di(0, A) dO (17)

and

F1i (4) = 1/2T (4). (18)

The dichroic ratio reduces to

TR (4) + M2[2 - 3T1 (4)]
T1(4) + y[2 - 3T1(4)]

If the laboratory reference frame is also axially symmetric and El is along the symmetry
axis,

A,r = /3(Ag + 2A1_). (20)

When Eq. 20 holds, we can relate T1(4) to T1(4); that relation is

T1(4) = 1 - '/2Tii (4). (21)

Furthermore

L = 3(A1 - A1) (22)
All + 2A1

L in this form is related to R, as shown in Appendix B. If El is not along a laboratory
symmetry axis, Eq. 20 is no longer valid, but we can still write

L = 3/2 {[T14) - T1(4)](3gz2 - 1)1. (23)

We choose the z axis to be the axis of symmetry in the molecular axis system. The angle
between the z axis and the transition moment g is (Fig. 2)

E= cos-'tZ. (24)

From Eq. 19

I
O- 1 -1/2
3cs 2(1 -R) (25)

RT1(4) - Tl (4)

BIOPHYSICAL JOURNAL VOLUME 32 1980738



We now consider some special cases of Eq. 19. One type of perfect ordering is where all
molecular z axes line up with the laboratory Z axis. If linear dichroism is measured with Ell =
(0, 0, 1) and E, = (1, 0, 0), we have Dg(O) = b(0), D.(0) = 6[(7r/2) - 0], Tl (4) = 0, and
T,(A) = 1, where 6 is a Dirac delta function.

Substitution into Eq. 19 gives the result first derived by Fraser (8):

R = 2cot2E. (26)

The opposite extreme is a random sample, where D"(0) = DJ(0) = sin 0 and Tg = T1 = 2/3.
The dichroic ratio is R = 1; i.e., there is no linear dichroism. In the general partially ordered
case, a calculation of T1(4) and T1(A) is sufficient to interpret the linear dichroism.

In the next section, we will apply these formulas to some examples. Most reports of dichroic
ratios are ratios of the peak absorbances rather than the integrated absorbances. As long as
the parallel and perpendicular lineshapes do not differ too much, the ratio of peak absorbances
is a close approximation to the "true" dichroic ratio. We will therefore ignore this difficulty.
Another difficulty arises from band overlap of several transitions. When band overlap occurs,
it is difficult to measure the dichroic ratio by measuring peak absorbances. We will attempt to
analyze only pure transitions and hence avoid this problem.

RESULTS

The procedure for analyzing linear dichroism is the same for all systems. First, from a
characterization of the absorption spectrum, one decides which bands are pure enough for an
analysis. Second, from a consideration of the symmetry properties of the system, one
calculates the parallel and perpendicular density of states, D11(0, X, 4) and D1(0, X, 4). Last,
the formulas in the last section are used to extract all of the possible structural information.
We begin by analyzing the linear dichroism for a common experimental situation.

Gaussian Uniaxial Model
A common situation in which the molecular reference frame is axially symmetric is when the
symmetry axis tends to align along the direction of an applied force (e.g., magnetic field
direction or stretch direction). If we take the applied force to be along the laboratory Z axis,
then deviations from perfect order are manifested by a nonzero angle A3, between the
symmetry axis and the laboratory Z axis. A partially ordered ensemble will be described by a
probability distribution in f. In the Gaussian Uniaxial Model, we take the distribution to be a
Gaussian of width AG

WG = w(f3) = exp (_,B9/A2). (27)

(Note: Throughout this paper it is understood that our weighting functions are defined on the
interval -90 to 900 and extended beyond this interval by symmetry; i.e., the weighting
functions are periodic with a period of 1800 and symmetric about 900.) This situation is
illustrated in Fig. 3 a; each symmetry axis that points along the cone of half angle f3 about the
laboratory Z axis will have the same probability of occurrence.
We seek a set of n rotations RI(a1), R2(a2), ... Rj(an) and a weighting function w(a1, a2,

... a.) that will generate the ensemble in the Gaussian Uniaxial Model. That is, a weighting
function which describes the probability that the molecular axis system for a member of the
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FIGURE 3 (a) Schematic representation of the Gaussian Uniaxial Model. ,B is the half-angle of the cone
centered on the laboratory Z axis. (b) Schematic representation of the Elliptical Gaussian Uniaxial Model.
X is the angle between the laboratory Z axis and the line in the YZ plane that points to the ellipse. a and b
are the major and minor axes of the ellipse.

ensemble is related to the laboratory axis system by n rotations of a,, a2 ... a,, respectively.
The ensemble in the Gaussian Uniaxial Model can be generated by the following three-
rotation scheme: a free rotation of a about the laboratory Z axis (by free rotation, we mean
the weighting function does not depend on a); a Gaussian weighted rotation of : about the
laboratory Y axis; a free rotation of y of about the laboratory Z axis. The weighting function
for these three rotations is given by Eq. 27. As discussed in references 5 and 6, (see Appendix
A), the density of states is easy to calculate given WG, E1l, and E. Typically, El is along the
laboratory Z axis and E is along the laboratory X axis (or any axis in the XY plane), which
means DI(O, AG) and D1(O, AG) are (in the notation of reference 6; see Appendix A)

Di (O, AG) = D z [0, WG (28)

and

D_ (0, AG) = DZYZ [0, WGI. (29)

DI(0, AG), D1(0, AG), Ti(AG) and TI(AG) are plotted in Fig. 4 for several values of AG.
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FIGURE 4 (a) Dl (0, A6) for the Gaussian Uniaxial Model for several values of A6 in radians. (b)
D1 (0, AC) for the Gaussian Uniaxial Model for several values of A6 in radians. (c) Tl (A6) and T1 (A6) for
the Gaussian Uniaxial Model (Ae = 1.0) and for the Elliptical Gaussian Uniaxial Model with Af = 0.2.

In Fig. 5, we plot the dichroic ratio, R, as calculated from Eq. 19, versus the angle between
the symmetry axis of the particle and the transition moment. Note that perfect ordering, AG =
0.0, corresponds to R = 2 cot2 c, as shown in the Theory section. For perfect ordering, R can
assume any positive number; but, as AG increases, R becomes bounded on both sides. This fact
can often be useful in determining an upper limit for AG. In Fig. 6, we plot E versus AG for
various values of R. If R < 1, e ranges from the perfect order value derived from Eq. 26 to 900
and, if R> 1, e ranges from the perfect order value to 00. Fig. 6 allows one again to infer limits
on AG, given a measurement of R, because e cannot fall outside the range 0 to 900.

Rhodopseudomonas sphaeroides in Stretched Films
Two recent papers by Rafferty and Clayton (17, 18) describe the linear dichroism spectra of
reaction centers of Rps. sphaeroides in both stretched and unstretched films. The reaction
center particles contain four bacteriochlorophyll a (BChl a) molecules and two bacteriopheo-
phytin a (BPh a) molecules, which all contribute to a complicated absorption spectrum (19).
We choose to study the 860-nm transition because it is believed to be a pure transition of
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FIGURE 5 Dichroic ratio R versus angle e between the transition moment e and the symmetry axis of the
molecular reference frame. The plots are for the Gaussian Uniaxial Model with several values of AG in
radians.

P860, which is a BChl a dimer that functions as the primary electron donor in Rps.
sphaeroides (20).
We assume, as did Rafferty and Clayton (17, 18), that the reaction center particles possess

an axis of symmetry which tends to align with the stretch direction. As a first approximation,
this assumption is isomorphic to the Gaussian Uniaxial Model; we take the width of the
Gaussian distribution of particle orientations within their stretched film to be AS.
At 860 nm, Rafferty and Clayton (17, 18) measure R = 2.28, which means E < 430.

Furthermore, As s 1.0 rad (see AG = 1.0 curve in Fig. 5). We can narrow the limits on As
further by considering the value ofR at a different wavelength. At 597 nm, they measure R =
0.48. If we assume this to be a pure transition, we have a new limit: As < 0.75 rad. In reality,
the 597-nm transition is not a pure transition, but this means that the 597-nm linear dichroism
must contain at least one component whose R value is not greater than 0.48. Therefore, the
limit of 0.75 rad on As is an upper limit because it is based on the conservative assumption that
the 597-nm transition is a pure transition. Rafferty and Clayton (17, 18) did experiments on
films that were stretched to different extents. At 860 nm in one such film, they determined R
to be as high as 2.50. An R of 2.50 means that e must be < 420. Returning to the film where
R = 2.28, we find that imposing the restriction of e s 420 requires that As must be s 0.30 rad.
The final, most conservative, limits on As are

0.30 rad < As_ 0.75 rad. (30)

From Eq. 25, the limits of e are

290 e _ 420. (31)
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FIGURE 6 Angle between the transition moment M and the symmetry axis of the molecular reference
frame versus AG in radians. The plots are for the Gaussian Uniaxial Model with several values of the
dichroic ratio R.

Perhaps the Gaussian Uniaxial Model is an oversimplification, because it neglects the
anisotropy of the unstretched film; i.e., it neglects the possibility that the particle symmetry
axes lie in the plane of the unstretched film. We will therefore consider a more sophisticated
model. Instead of giving equal weights to all symmetry axes that lie on the circle in Fig. 3 a,
we can use the model illustrated in Fig. 3 b, where all symmetry axes that lie on an ellipse have
equal weights. Upon stretching, it is more likely that the tilt of the particle symmetry axis
away from the laboratory Z axis is in, rather than out of, the plane of the film. Therefore, the
ratio of the ellipse axes he = b/a is <1. We call this model the Elliptical Gaussian Uniaxial
Model; it can be generated by the same rotations as the Gaussian Uniaxial Model, but the
product of the weighting functions is now

WEG = wQ3,s ') = exp (-x2/As), (32)

where

X= tan- '[|tan ,3(sinY + cos2.Y)1/2]1. (33)

Despite the loss of axial symmetry in the laboratory reference frame, D11(O, as, Ae) and
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D1(O, As, Ae) are still axially symmetric. In the Wigner expansion method, axial symmetry
would be lost and the analysis would become much more complicated.

T1(As, Ae) and T(JAS, Ae) for Ae = 1.0 (Gaussian Uniaxial Model) and Ae = 0.2 are plotted
in Fig. 4 c. We can pick a trial value for Ae and analyze the linear dichroism data just as we
did with the Gaussian Uniaxial Model. We find that the limits on E in Eq. 31 are independent
of Ae, and thus Eq. 31 is consistent with the Elliptical Gaussian Uniaxial Model.

Rafferty and Clayton (17, 18) calculated e to be 40.80 by assuming that an extrapolated
value of R = 2.68 at 860 nm corresponds to perfect order. This value falls within our limits
but, if the extrapolation is invalid, the range of e in Eq. 31 provides a more realistic
interpretation of their data. The question can be resolved by using D11(O, AS) and DJ(O, AS) to
analyze other types of experiments and thereby pin down AS.

Rps. sphaeroides in Unstretched Films

Rafferty and Clayton (17, 18) also did some linear dichroism experiments on unstretched film
containing reaction center particles of Rps. sphaeroides. We use a model similar to Rafferty
and Clayton's (17, 18) which assumes that the reaction center particle symmetry axis lies
close to the plane of the film. However, the film is not perfectly ordered; some of the symmetry
axes are not in the plane of the film but are tilted out of the film by an angle (3. The partial
ordering is thus described by a probability distribution in ,B for which we use a Gaussian

wus = w(f3) = exp (-#2/A2,) (37)

where Aus is the width of the Gaussian distribution.
The Gaussian Uniaxial Model is not appropriate here. But, using the coordinate system

shown in Fig. 3 b, this ensemble can be generated with the following three-rotation scheme: a
free rotation of a about the laboratory Z axis; a Gaussian weighted rotation of : about the

Y

\XE XX~~

/ ~~~~
FIGURE 7 Propagation of E, through unstretched films as in the experimental set up of Rafferty and
Clayton (17, 18).
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FIGURE 8 (a) DI (0, Aus) for unstretched films for several values of AuS in radians. (b) D1 (0, Aus) for
unstretched films for several values of Aus in radians. (c) T1 (Aus) and T1 (Aus) for unstretched films.

laboratory Y axis; and a free rotation of about the laboratory X axis. The product of the
weighting functions for these rotations is given by Eq. 37.
To observe linear dichroism in unstretched films, the experiment must be done with a light

propagation direction that is not normal to the plane of the film. Fig. 7 shows the geometry
employed by Rafferty and Clayton (17, 18). Within the boundaries of the film, Eg1 = (0, 0, 1)
and E1 = (sin+, cosf, 0), where if1 = 37.30. In the notation of reference 6,

and

Di(O, Au5) = Dz3s'x[0, wus],

D1_(, Au5) = DzI4x [0, wus,].

(38)

(39)

DI1(0, Aus), D1(0, Aus), Tg (Aus), and T±(Aus) are plotted for several values of Aus in Fig. 8.

From the range of e given in Eq. 31, we can determine a range for Aus; that is, a linear
dichroism analysis will tell us how well the reaction center particles orient in unstretched
films. Rafferty and Clayton (17, 18) measured a dichroic ratio of R = 1.14 at 860 nm. From
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Eq. 19 we find that the width of the Gaussian distribution in : is restricted to the range

0.45 rad -< Aus c 0.90 rad. (40)

In the next two sections, we consider some additional systems where experiments have been
done that determine A to within a small range.

Rhodopseudomonas viridis and Rhodopseudomonas palustris in a
Magnetic Field: the Density ofStates

Both Rps. viridis cells and Rps. palustris cells are cylindrical (21, 22), and can be aligned in a
magnetic field such that the long axis of the cylinder is perpendicular to the alignment field
(23). Inside the cells are cylindrical membrane shells (21, 22) containing bound chromo-
phores. We choose the molecular axis system to have its z axis along the membrane normal.
We select a model which assumes that the chromophores are bound in a fixed relation to, and
distributed around, the membrane normal, an assumption consistent with experiments. In this
model, the molecular reference frame is axially symmetric. Furthermore, the angle e will be
the angle between the membrane normal and the transition moment.

In this system, we cannot use the Gaussian Uniaxial Model as an approximation, because
the z axis of the molecular axis system does not align preferentially along the magnetic fleld.
It is the whole cells that are oriented by the magnetic field; the ensemble of molecular axis
systems distributed throughout the membranes is oriented as a consequence. As a model, we
assume that the long axis of the cylinder representing the cell is perpendicular to the
alignment field and that deviations from perfect order are due to deviations of the membranes
from perfect cylinders. The angle between the actual membrane normal and the hypothetical
perfect cylinder normal is assumed to have a Gaussian distribution with width Ac. (AC = ARV
for Rps. viridis and Ap for Rps. palustris.) Calculation of DI, (0, Ac) and D1(0, Ac) is

z

N N

n || n

HA
FIGURE 9 Definition of the angles and axis systems for Rps. viridis and Rps. palustris in a magnetic
field. The alignment field HfA is along the Z axis of the laboratory axis system (XYZ). El is parallel to HA.
and E, is perpendicular to H4. ,8 is the angle between the normal to the membrane fi (A is also the z axis of
the molecular axis system) and the hypothetical normal to a perfect cylinder N.
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FIGURE 10 Tl (AC) and T, (Ac) for Rps. viridis and Rps. palustris in a magnetic field.

complicated by the morphology; briefly, using the coordinate system shown in Fig. 9, we
found that a four-rotation scheme ZXYZ (angles a, jl, y, and X) with weighting function Wc =
exp (.j2/c) will generate this ensemble (see reference 5 or 7 for details). The first two
rotations locate the molecular axis system with respect to the cylindrical membranes, and the
last two rotations locate the cylinder with respect to the laboratory axis system. Note that the
last two free rotations require that the cylinder be perpendicular to the alignment field. The
density of states for El along the alignment field and E perpendicular to the alignment field
are

Di (, Ac) = DZ39O0 [0,Wc] (41)

and

D,(O, AC) = D2,0 [0 WC] (42)

T1 (Ac) and T1 (Ac) are plotted in Fig. 10.
In reference 7, we used Dl (0, Ac) and D±(0, Ac) to simulate the EPR spectra of the triplet

state of the primary electron donors in both Rps. viridis and Rps. palustris. We were able to
calculate the orientation of the principal magnetic axes with respect to the membrane normal.
As a byproduct of our calculation, we found that ARV and Ap are restricted to small regions:

0.3 rad AARV C 0.5 rad (43)

and

0.4 rad Ap < 0.6 rad. (44)

We can now use this information for linear dichroism calculations on the same systems.

Rps. viridis Linear Dichroism
The long wavelength absorption maximum in whole cells of Rps. viridis is due to antenna
BChl b molecules. Because these molecules do not all have the same orientation with respect
to the membrane normal, the long wavelength absorption does not correspond to a single
molecular species with a unique orientation. This problem can be circumvented by treating
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absorption changes induced by unpolarized light and measuring AA 1 and AA, with light
polarized parallel and perpendicular to the alignment field, respectively. For light-induced
absorption changes, there is a pure transition at 970 nm due to the oxidation of the reaction
center BChl b dimer P970, which functions as the primary electron donor in Rps. viridis (24).
Lastly, we note that the same formulas that apply to R and L in the Theory section also apply
to AR and AL defined using AAI and AA1.

Paillotin et al. (13) have measured the absorption change linear dichroism of magnetically
aligned whole cells of Rps. viridis and found AL = -0.42 at 970 nm. From Eq. 23 and the
limits of ARV in Eq. 42, AL cannot be < -0.33, which results in a discrepancy with
experiment. There are two possible explanations: (a) The EPR experiments of Frank et al. (7)
where ARV was determined were done under experimental conditions different from those of
the linear dichroism experiments, which may affect ARV. (b) Perhaps the cell morphology is
not adequately defined by our model.
The large negative value for AL indicates that e is probably close to 900. The ideal

experiment to do next is magnetophotoselection (25) on P970; this experiment combined with
the results in reference 7 would yield an independent value of e.

Rps. palustris Linear Dichroism
The only linear dichroism measurements reported for Rps. palustris have been in direct
absorption (26, 27). Although there are no isolated transitions due to a single molecular
species with a fixed orientation with respect to the membrane normal, we will analyze the
three absorption bands at 590, 800, and 870 nm and interpret the results as an average
orientation of the transition moments contributing to those peaks.
At 590, 800, and 870 nm, Breton measured dichroic ratios in magnetically aligned Rps.

palustris of 0.59, 0.81, and 0.80, respectively (26). From T11(Ap) and Tj(Ap) in Fig. 10, Eq.
19, and the range for Aj, we find the following limits on the average angles:

0 < (E59) < 200, (45)

720 < (em) < 810, (46)

and

710 < ( E870) < 780. (47)

In the next section, we use these ranges to investigate the orientation of Rps. palustris in a
flow method.

Rps. palustris in a Flow System
Morita and Miyazaki (27) have measured the linear dichroism of Rps. palustris oriented by a
velocity gradient created in a flow system. In a flow system, rod-like particles such as Rps.
palustris tend to orient such that the long axis of the rod is along a line of constant velocity of
the flowing solvent (28). Because the flow system of Morita and Miyazaki (27) has a square
cross section perpendicular to the flow direction, any tilt of the long axis away from the flow
direction will move the long axis out of a line of constant velocity. We can therefore
qualitatively analyze this flow system as a set of cells that tend to orient with the long axis of
the cell collinear with the flow direction (Fig. 1 1). We have not attempted a detailed analysis
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x

FIGURE 11 Definition of the angles and axis systems for flow-oriented Rps. palustris. The flow direction
is along the Y axis of the laboratory axis system (XYZ). El is parallel to the flow direction and E, is
perpendicular to the flow direction. ,8 is the angle between the membrane normal h (h is also the z axis of
the molecular axis system) and the hypothetical normal to a perfect cylinder NV. x is the angle between the
flow direction and the long axis of the cylinder L.

of flow orientation; instead, we introduce a Gaussian distribution for the angle between the
long axis of the cell and the flow direction x with width AF

w = w(x) = exp (-X2/AF). (48)

To generate the flow system ensemble, we begin with the same first two rotations that were
used with magnetic field alignment, because these rotations orient the molecular axis system
with respect to the hypothetical perfect cylinders, which means they are properties of the cell
and not of the alignment method. Note that with the models we are using, Ap is unaffected by
the alignment method. Three more rotations are necessary to orient the cylinder with respect
to the laboratory axis system. The three rotations are: a free rotation of y about the laboratory
Y axis; a rotation of x about the laboratory X axis weighted by the Gaussian function in Eq.
48; and a free rotation of t about the laboratory Y axis. This rotation scheme contains five
rotations (ZXYXY) which makes the density of states very difficult to evaluate. We note,
however, that the fifth rotation is superfluous for the parallel density of states because it is a
rotation about El, (Fig. 1 1). Thus

D(0,AP, AF) = D30Z[0, WFI,

where

WF(AP, AF) = exp (_#2/A2) exp (-X2/A2).
Because the laboratory reference frame is axially symmetric and El, is along the laboratory
symmetry axis, we can calculate T1(4) from TI, (4) by using Eq. 21, and thus do not need to
calculate D1(0, Ap, AF).

Morita and Miyazaki (27) measured dichroic ratios of 0.54, 1.27, and 1.26 at 590, 800, and
870 nm, respectively, in flow-oriented Rps. palustris. We first set Ap to its lower limit of 0.4
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rad; this limit corresponds to the limiting values in Eqs. 45-47 of (e59) = 200, (E800) = 720,
and (4870) = 710. Working backwards with Eq. 19, we find that AF = 0.95 rad is consistent
with these angles. This calculation reveals two important facts. First, because Ap = 0.4 is a
lower limit, AF = 0.95 rad is- an upper limit. Second, the fact that one AF value reproduces all
three angles indicates that the models are self-consistent. Analagously, from the Ap = 0.6-rad
limit, we find a lower limit on AF of 0.90 rad. In summary, the width of the Gaussian
distribution in X, which is a measure of the extent of orientation by flow method, is between
0.90 and 0.95 rad.

DISCUSSION

We have used the density of states formalism to develop a new approach to the theory of linear
dichroism. Although equivalent to the Wigner expansion and other similar techniques
(3, 4, 13), we find four distinct benefits when adopting the density of states approach.

(a) The A parameters required to represent the distribution function are likely to have
greater physical meaning and be fewer in number than the moments of the Wigner expansion.
In fact, the moments PI,,m could be written in terms of A by the equation

Pln m=ffflZl(O'(/)')F(O', , ,6', A) do' dc' di/", (49)
where F(O, 4', 4/, A) is a distribution function which could be derived from D(O, X, 4) by
converting from the molecular axis system to the laboratory axis system.

(b) Each A, is related to some structural feature of the ordered ensemble and, as such, is a
quantity of interest. This is unlike the moments Plmn, which are purely mathematical
projections of the Wigner rotation matrix elements on the distribution function. Because A
relates to structural properties of the system, it may be possible to place limits on A and
therefore to place limits on Plmn through Eq. 49. These limits could not be placed directly on
P,Mn, because there would be no justification for this procedure.

(c) There exists a formalism for calculating D(O, X, 4) from arbitrary models (5, 6).
Previous attempts by Fraser (8-11) and Beer (12) to interpret linear dichroism have relied on
simple models. One such model considers a sample to have a fraction f of the molecules
perfectly ordered and the remaining fraction 1 - f randomly ordered. The dichroic ratio is
then given by

=2fcos'2E + (2/3)(1 -f)
(0

R - fsin2 + (2/3) (1 f) (50)

Because this model is probably not realistic, f is a relatively meaningless parameter. In
contrast, our A parameter derived from more realistic models reveals more details about the
system. Also, it is straightforward to extend our techniques to include more complicated
models. For example, instead of using Gaussian weighting functions, a rotation could be
weighted by a potential energy function

w(,) = exp [-E(3, 4)/kT], (51)

where E(,j, A) is energy as a function of O., k is Boltzmann's constant, and T is temperature. In
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principle, several experiments on a system could be used to develop a detailed explanation of
the partial ordering.

(d) That we average orientations in the molecular axis system instead of the laboratory axis
system leads to simplification of the formulas in many instances. When both the laboratory
reference frame and the molecular reference frame are axially symmetric, P(O') depends only
on 0' and D(O, A) depends only on 0. But, when axial symmetry in the laboratory reference
frame is lost, P(Q, 4') depends on two angles, 0' and O', which are the spherical angles of the
molecular reference frame symmetry axis in the laboratory axis system. In contrast, D(O, A)
still depends only on 0 because it is a distribution function in the axially symmetric molecular
reference frame. We can, therefore, consider complex models with nonaxially symmetric
laboratory reference frames while still in the realm of axial symmetry. An example is the
Elliptical Gaussian Uniaxial Model for which there is no symmetry axis in the laboratory
reference frame; we were still able to use an axially symmetric analysis. When all axial
symmetry is lost, P(0, O', 0') depends on all three angles; but D(0, X, 4) never depends on
more than two angles, because it takes only two angles to specify the orientation of the
polarized field in the molecular axis system. Thus, by working in an axis system fixed with
respect to the transition moment, we gain computational efficiency.

APPENDIX A

In reference 6, we give some simple formulas and techniques for calculating density of states functions.
A brief summary of that approach is given here. The notation for a density of states is

DRS, [0, 4, W], (A-i)

where RS is the rotation scheme (i.e., the number and order of rotations required to generate the
ensemble of molecular axis systems), v is the type of field vector [v - 1 for E - (cos A, sin A, 0), v = 2 for
E = (cos 4A, 0, sin 0), and v - 3 for E - (0, cos 4A, sin 40)], 4/ is the angle in the type of field vector
indicated by v, 0 and 4 are the spherical angles of the field vector in the molecular axis system, and w is
the weighting function. Note that Ds,[t0, 4, w] is a function of the weighting function w; that is,
DV , [0, X, w] is a functional, which we denote with square brackets.
When one is faced with a density of states calculation, the procedure is as follows: (a) determine RS,

the number and order of rotations required to generate the ensemble; (b) determine w(aft ... .), the
product of the weighting functions; and (c) determine v and 4/ for the field vector. The formulas for
rotation schemes with three or four rotations are given in reference 6.

APPENDIX B

Linear dichroism is reported in a variety of forms. Here, we will relate several of those forms to R =
Al/Al or L = (Al-Aj/A, which we have used in this paper.

After separate measurements of Al and A1, the following four definitions of linear dichroism are
sometimes found

LD2= Al -A1 R -1 (B-1)

12A + 2A R+2 (B-2)
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LD3 = Al-A1 2(R- 1) (B-3)
D (Al+(A) R+1

LD4= All-A1 3(R-1). (B-4)
i (Al + 24) R + 2
3

The dichroic ratio R is related to these four forms by

1 + LD, (B-5)
1 - LD,

R= I + 2LD2 (B-6)
1 - LD2

R 2- LD3 (B-7)

R = 3+ 2LD4 (B-8)
3 - LD4

Alternatively, AI -A, can be measured by lock-in techniques (14-16) and normalized by dividing by A,
or A.pd, which is the absorbance of the oriented sample using unpolarized light. We have already
discussed normalization of Al-A1 by A,, which gives L. A..., can be written in terms of Al and A1.
Following Zbindin, (2)

Ax = A cOs2 X + A,sin2 X, (B-9)

where A. is absorbance due to a field E. whose polarization makes an angle x with El. Integrating over
x, we find

Aunpol =/2(A1 + A1). (B- 10)

Therefore

All-A1 Al-A1 = LD3, (B-I1)
(All + A1)

and we can relate this form to R by Eq. B-7.
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