
Seamounts, Ridges, and Reef Habitats of American Samoa  
 
Dawn J. Wright* 
 Department of Geosciences, Oregon State University, 104 Wilkinson Hall, Corvallis, Oregon 

97331-5506 USA; dawn@dusk.geo.orst.edu, 1-54-737-1229 (phone), 1-541-737-1200 (fax) 
 *corresponding author 
Jed T. Roberts 

Oregon Department of Geology and Mineral Industries, 800 NE Oregon Street #28, Suite 965, 
Portland, Oregon 97232 USA 

Douglas Fenner 
 Department of Marine & Wildlife Resources, American Samoa Government P.O. Box 3730, 

Pago Pago, American Samoa 96799 USA 
John R. Smith 
 Hawaii Undersea Research Laboratory, University of Hawaii, 1000 Pope Rd., MSB 229, 

Honolulu, HI 96822 USA 
Anthony A.P. Koppers 
 College of Oceanic and Atmospheric Sciences, Oregon State University, 104 COAS Admin. 

Building, Corvallis, Oregon 97331-5503 USA 
David F. Naar 
 College of Marine Science, University of South Florida, 140 7th Avenue South, St. Petersburg, 

Florida 33701 USA 
Emily R. Hirsch 
 Geospatial Consulting Group International, 6123 Hillview Ave., Alexandria, VA 22310 USA 
Leslie Whaylen Clift 
 Coastal Marine Resource Associates, 2847 Numana Rd., Honolulu, HI 96819 USA 
Kyle R. Hogrefe 
 US Geological Survey, Alaska Science Center, 4210 University Dr., Anchorage, AK 99508 USA 
 
Keywords: bathymetry; geomorphology; submarine volcanism; seamounts; American Samoa; South 
Pacific; coral reefs; coral reef habitat 
 
Running Title: Geomorphology of American Samoa  
 
 
Abstract: We present the geomorphology of the Eastern Samoa Volcanic Province, 

covering 28,446 km2, and depths ranging from ~50-4000 m. A new compilation of 

available multibeam data reveals 51 previously undocumented seamounts, and 

delineates major submarine rift zones, eruptive centers, and volcanic plateaus. Moving 

from a regional to local scale, and with regard to specific coral reef habitats, we report 

the results of three Pisces V submersible dives to the submerged flanks of Tutuila, 

with overall objectives of species identification of deepwater fish and invertebrates (32 

species of invertebrates and 91 species of fish identified, 9 new records), determining 

the base of extensive live bottom (i.e., coral cover of 20% and greater) as well as 

relations to any prior benthic terrain classifications at 100 m and deeper. 
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Introduction: The Samoan volcanic lineament in the southwest Pacific Ocean extends 

from the large subaerial islands of Savai’i and Upolu (independent nation of Samoa) in 

the west to the small island of Ta’u (American Samoa) in the east. Hart et al. (1) in 

addressing the longstanding debate as to whether or not the Samoan volcanic 

lineament is plume-driven, along with the direction of the lineament’s age progression, 

established a Western Samoa Volcanic Province (WSVP) and an Eastern Samoan 

Volcanic Province (ESVP).  

 

With regard to geomorphology, we focus at the broad regional scale on the ESVP, 

which is comprised of the American Samoa islands of Tutuila, Aunu’u, Ofu, Olosega, 

and Ta’u, the large submarine volcanoes known as Vailulu’u, South Bank (renamed 

“Papatua” by Hart et al. (1)), 2% Bank (renamed “Tulaga” by Hart et al. (1)), 

Southeast Bank (renamed “Malumalu” by Hart et al. (1)), Malulu, Soso, and Tama’i; 

as well as Rose Atoll (aka Motu O Manu Atoll) and numerous smaller guyots and 

submarine seamounts (aka volcanic knolls; Fig. 1). It should also be noted that Rose 

Atoll is a highly eroded edifice with stellate morphology, suggesting it is substantially 

older than the other volcanoes of the American Samoa province (2). It is therefore not 

considered a part of the ESVP and is perhaps the product of either volcanism in the 

Cook-Austral region or ancient ridge-origin and plate transport. However, it is 

included in the discussion and map compilation described below by virtue of its 

location. In addition, Swains Atoll, within the unincorporated U.S. territory of 

American Samoa, is located approximately 320 km to the north, far beyond the extent 

of the ESVP.  

<Figure 1> 

 

Seamounts, guyots, and knolls, with the fluid flow, nutrient supply, and modification 

to local circulation patterns they provide, are all extremely important habitats (e.g., 

corals, invertebrates, benthic fish, sea turtles, and sharks) and may include some of the 

richest biological “hotspots” in the oceans (3, 4, 5). In the American Samoa region, the 
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most well-known and spectacular example thus far is Vailulu’u seamount at the 

eastern end of the Samoan archipelago, particularly with the hydrothermal vents 

discovered at its summit and rapidly growing Nafanua volcanic cone within the 

summit crater/caldera (6, 7, 8). Indeed, seamounts have become priority habitats under 

the Convention on Biological Diversity (9), and in 2004 the Oslo-Paris Convention for 

the Protection of the Marine Environment of the Northeast Atlantic included 

seamounts on a list of priority habitats in need of protection, along with other deep-sea 

reefs, sponge aggregations, and hydrothermal vent sites on the Mid-Atlantic Ridge 

(10). 

 

At a more local scale, and with regard to specific coral reef habitats, this project 

focuses on areas just offshore of the island of Tutuila, which is home to the Fagatele 

Bay National Marine Sanctuary (FBNMS). Geologically, the shallow flanks of 

Tutuila, and of the Samoan islands in general, are characterized by outcrops of basalt 

and limestone, biogenic and volcanic silt, sand and gravel, calcareous pavements and 

calcareous ooze (11). Many of the "cookie cutter" bays that are found along the 

southern coast of Tutuila, such as Fagatele Bay, Larsen’s Bay, Pago Pago Harbor, and 

Faga'itua are thought to be the result of volcanic collapse and erosion (e.g., 12), and 

then as the island subsided due to crustal loading, large portions of these eroded 

valleys were flooded by the sea. 

 

A particular emphasis is on understanding the mesophotic reefs in these areas, 

mesophotic meaning lower light levels at 30-150 m in the transition from euphotic to 

dysphotic. Knowledge of American Samoan mesophotic reefs is very limited, yet they 

include the deepest and most untouched by humans in the archipelago, thus helping to 

delineate what unimpacted coral reefs are like in the territory (13, 14, 15).  Knowledge 

of what natural, unimpacted reefs are like in the territory is very important for gauging 

the impacts humans have had on reefs at this location.  Unfortunately, there are no 

good examples of shallow, unimpacted reefs around Tutuila, where human impacts are 

greatest.  Mesophotic reefs around Tutuila have the potential to be some of the least 
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impacted reefs around Tutuila, and thus information on them is extremely valuable for 

determining what the baseline is and what the goal should be for reef management and 

conservation. 

 

Regional Scale Geomorphic Features - Seamounts: Previous studies of the Samoan 

islands have reported regional bathymetry as predicted from satellite altimetry (1).  

Multibeam bathymetry surveys have been restricted to local areas covered by one or 

two cruises (16, 17) that primarily supported studies of the geochemical signature and 

age progression of western portion of the Samoan volcanic province (e.g., 1, 17, 18, 

19). This case study introduces the first regional-scale, multi-cruise, multibeam 

bathymetry of the eastern portion of the Samoan lineament, providing an overview of 

the bathymetric setting west of Savaii and Upolu, and clearer implications of the 

seamount trails and other volcanic knolls revealed therein. Although we are using the 

IHO (20) definition of seamount in this book, it is useful to note that definitions of 

what constitute a “seamount” do vary, especially in light of a growing 

multidisciplinary seamount biogeosciences community where knolls are included in 

the definition (as discussed in more detail by 21). 

 

Figure 1 shows a new bathymetric compilation of American Samoa based on 

multibeam sonar data available from 14 cruises from 1984 through 2006, covering an 

area of 28,446 km2. The map also shows the locations of 51 previously undocumented 

seamounts and volcanic knolls. Figure 2 summarizes the geomorphic interpretation for 

the region by delineating major rift zones, subaerial and submarine eruptive centers, 

volcanic plateaus, and the outlines of the most prominent seamounts and volcanic 

knolls. Particularly of note are the many small seamounts prevalent throughout ESVP 

from Ofu-Olosega westward, especially on the northern flank of South Bank and 

stretching from Ofu-Olosega across the inter-rift valley to the 2% Bank-Southeast 

Bank (aka Tulaga-Malumalu) saddle.  

<Figure 2> 
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In the current global census of seamounts, only 200 have been sampled, and in no 

systematic fashion (4), but future studies based on this current study hold promise for 

exploring a possible relationship between seamount shape and habitat. 

Topographic/bathymetric position index (TPI/BPI) is important in a vertical sense 

(e.g., species richness along a vertical biodiversity gradient as discussed in 25, 26, 27). 

Further studies (beyond the scope of this case study) will test the hypothesis if 

seamount size and shape (in a more horizontal cross-sectional sense) bear any 

relationship to species diversity and richness, especially with geomorphic and 

hydrodynamic processes influencing marine ecological communities on a range of 

scales (28, 29). Below we focus on some of the largest seamounts, but the reader is 

referred to Roberts (30) for more extensive description and geomorphic analysis of 

undersea volcanic features throughout the entirety of the ESVP, as well as shape and 

distribution analyses of seamounts and a discussion of the age progressions of 

volcanic lineaments. 

 

Tutuila - The large seamounts, guyots, knolls, and breaching islands of the ESVP 

demonstrate complex eruptive patterns. Perhaps the most intricate is the Tutuila 

complex, composed of five separate volcanic centers (12 and Fig. 2), and representing 

the largest structure in the ESVP with a volume of 4,957 km3 (as calculated using 

sources from 24). Tutuila is unique with its highly elongate primary rift zone that 

trends 70° (12), as opposed to the rest of the Samoan chain trending at 110°. Indeed, 

en echelon lineaments both to its east and west delineate that primary rift zone trend 

(110°), with the island itself marking an interruption in that dominant rift direction. 

Tutuila may in fact be an extension of the North Fiji Fracture Zone far to the east, 

which also trends 70° (31). 

 

The morphology of Tutuila exhibits several highly incised secondary rift zones 

radiating away from the primary trend (Fig. 3). Protruding slightly from the 

southwestern corner of the island is a rift oriented 20°. Reinstating the primary en 
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echelon trend, a massive rift protrudes at 110° and connects to 2% Bank (aka Tulaga). 

A third rifting system extends from the northeastern corner of the island in a 30° trend. 

The linear nature of these features implies structural guidance of volcanism by fault or 

fracture zone. The island flanks are in a stage of advanced erosion, exhibiting 

numerous slope failures and incised rifts (Fig. 3). Sparse populations of small 

seamounts occupy the western flank, as well as the northern and southern flanks, 

which are in line with the primary rift of South Bank. 

<Figure 3> 

 

South Bank - South Bank (aka Papatua Guyot) is the largest isolated edifice in the 

ESVP. Though it has not been radiometrically dated, it is probably at least as old as 

Tutuila, based on its location in the ESVP. The summit of South Bank sits very near 

sea level. It likely breached in the past and has since been eroded by wave action to 

produce a flat summit surface. South Bank has two perpendicular rifting zones 

trending nearly in line with the four cardinal directions (Fig. 4). Though it is probably 

at least 1 million years old (1), its northern and southwestern flanks show relatively 

little evidence of slope failure and are superimposed with small seamounts. It 

possesses an emerging stellate morphology, though it is not nearly as developed as on 

Tutuila or Northeast Bank. The shield-building stage for South Bank is not easily 

attributable to a plume source based on its divergent location and anomalous primary 

rift trending at N0°E, though Hart et al. (1) suggest that decompressional melting due 

to slab-plume interactions could account for the location of South Bank. 

<Figure 4> 

 

Northeast Bank - Northeast Bank (renamed “Muli” by Hart et al. (1)) is the second 

largest isolated edifice in the ESVP. It is partially connected to the Ofu-Olosega 

complex by a deep saddle and exhibits a near-stellate morphology, a testament to its 

highly eroded state and once circular shape (Fig. 5). Its flat summit lies within 100 m 

of sea level and therefore we speculate that like South Bank, it may have breached sea 

level at some point in the past. Northeast Bank has two primary rift zones trending at 
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30° and 120°. Its flanks are smooth and largely vacant of small seamounts. The 

exception is its eastern rift forming the saddle with the Ofu-Olosega complex, which is 

interspersed with small seamounts. 

<Figure 5> 

 

Local Scale Geomorphic Features and Habitats - Reefs: In terms of biological 

surveys in the study area, the NOAA Coral Reef Ecosystem Division (CRED) of the 

Pacific Islands Fisheries Science Center (PIFSC) surveyed the flanks of Tutuila and 

the Manu’a Islands in 2004 for management of benthic habitats associated with coral 

reefs (32). The following year, the Hawaii Undersea Research Laboratory (HURL) 

initiated another survey of the Tutuila near-shore, this time accompanied by 

submersible dives again aimed at documenting the characteristics of the benthic 

habitat (33). HURL extended its benthic habitat surveying to Rose (Motu O Manu) 

Atoll as well (34).  

 

Towed camera and SCUBA surveys in the area are ongoing, but deeper submersible 

surveys into the mesophotic, dysphotic, and aphotic zones are rarer. As such, we 

provide examples here from HURL cruise KOK0510 (Figure 6; 35). The cruise 

consisted of three Pisces V submersible dives to the submerged flanks of Tutuila, 

American Samoa, specifically the coral reef platform of Taema Bank, and the 

submerged caldera forming Fagatele Bay and Canyon, with overall objectives of 

species identification of fish and invertebrates (32 species of invertebrates and 91 

species of fish identified, 9 new records) and determining the base of extensive live 

bottom (i.e., coral cover of 20% and greater). In addition and where possible, we 

sought to ground-truth previous benthic terrain classifications at 100 m and deeper that 

had been derived from bathymetric position index and rugosity analyses in GIS. 

Lundblad et al. (36) describe these methods in complete detail and the resulting 

classifications specifically for American Samoa. 
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Taema Bank and Fagatele Bay and Canyon (Fig. 6) were chosen as primary dive sites 

due to the occurrence of previous shallow (<150 m) multibeam surveys in the area 

(especially by Oregon State University, OSU, and University of South Florida, USF, 

as described in 37-39), their importance for coral monitoring and protection, and for 

safety. Indeed, at both sites the water is suitably deep for the safe navigation of a 68-

m-long research vessel needing to track a submersible almost directly below it for 

shallow dives of 500 m or less. 

<Figure 6> 

 

Taema Bank - Taema Bank (Figs. 6 and 7) is a long narrow submarine platform 

located ~3 km off the south central coast of Tutuila. It is ~3 km long by 30 m wide 

rising ~30 m above a surrounding seafloor, averaging 50-100 m in depth (37). Because 

the platform is largely flat and fairly smooth, it is interpreted as an ancient reef terrace 

that may have once experienced wave erosion at sea level.  

 

Figure 7 shows BPI “zone” and “structure” maps for West Taema Bank, created from 

1-m-resolution multibeam bathymetry data of Lundblad et al. (36). BPI is a scale-

dependent index representing a grid cell’s location within a seascape relative to its 

local surroundings. Lundblad et al. (36) defines a “zone” as a coarse-scale surficial 

characteristic of the seafloor that combines slope with a coarse-scale BPI, to delineate 

large crests or ridges, valleys, basins, plains, and slopes. “Structures” are finer-scale 

classifications resulting from the combination of bathymetry and slope, with both 

coarse- and fine-scales of BPI. Therefore, structures includes categories such as 

narrow depressions or grooves, narrows crests or ridges, local depressions/crests on 

plains, lateral midslope depressions or grooves, lateral midslope crests or ridges, open 

slopes, shelves, and broad flats (36). Zone and structure classifications of Taema Bank 

(Fig. 7) are based on the scheme of Lundblad et al. (36) for American Samoa.  

<Figure 7> 

 

Taema Bank is made up of mostly flats and slopes in terms of zones, but there are very 
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distinct crests and depressions throughout (Fig. 7A). Open slopes surround the crests 

of the bank along with the broad flats. As the shelf reaches an escarpment near a series 

of broad flats, there is also a series of spurs and grooves. These pervasive features are 

given structure classifications of narrow crests, lateral midslope depressions and 

lateral midslope crests (Fig. 7B). The open slopes lead down to broad depressions with 

open bottoms on both sides of Taema Bank. Submersible observations on Dives P5-

648 and P5-650 visually confirmed these classifications and noted that the shelf 

contains stretches of colonized pavement covered with a veneer of sand (41). And 

within the fringing lateral midslope depressions and crests on the open slopes, 

colonized pavement and hummocky bottom with low relief and ~5% sand cover.  

 
Fagatele Bay and Canyon - Fagatele Bay (Figs. 6 and 8), and its continuation deeper 

offshore as a canyon, is the result of an ancient caldera that collapsed and subsided, 

causing the seaward rim to be breached by the ocean and flooded (37). The fringing 

coral reef is indeed of continuing interest and concern in this U.S. federal marine 

sanctuary that has essentially recovered from a near-devastating infestation of crown-

of-thorns starfish in the late 1970s (42). The bay was also affected by hurricanes in 

1990, 1991, 2004 and 2005, and a coral bleaching event occurred in 1994, possibly 

due to high sea-surface temperatures from an El Niño (43). The live coral cover has 

recovered well from near total destruction, populations of small benthic fish still 

thrive, particularly surgeonfish, damselfish and angelfish (44, 45). 

<Figure 8> 

 

The submerged caldera that is Fagatele Bay dramatically slopes downward into a 

canyon (canyon has not yet been classified with regard to habitat). At around 20 m 

open slopes dominate, which further descend toward the broad depressions with open 

bottoms (Fig. 8A. Open slopes above and on the edge of the narrow depressions in the 

center of the bay suggest prior seafloor subsidence, resulting also in a noteworthy 

ridge at the east center of the bay (~14°22”1’S, 170°45”52’W; Fig. 8B). It is classified 

as a narrow crest with fringing lateral midslope crests and depressions. The edge of the 





 

 

10 

narrow crest deepens so dramatically in some places that there is a narrow strand of 

steep slopes around it. Steep slopes are also seen at the edge of other narrow crests and 

lateral midslope features throughout the bay. The area that appears most complex, 

containing a diverse combination of BPI zones, as well as high to medium high 

rugosity, is in the southeast portion of the bay, which extends to depths safe enough 

for submersible observations. Submersible observations on Dive P5-649 visually 

confirmed the presence of narrow midslope depressions and lateral midslope crests, 

while noting also the presence of several small box canyons cut into the southeast wall 

that were not detected in the original terrain classification. Of note also is a transition 

at ~185-209 m depth from old carbonate reef to a basalt layer and then another 

carbonate layer before transitioning to sediment at ~235 m. 

 

Biological Communities: Pisces V submersible Dive P5-648 consisted of a video and 

photographic survey up the southwest wall of Taema Bank, noting 36 m as the depth 

at which the main corals extend to (base of main reef on bank) on a fairly consistent 

basis. It then proceeded to a deeper, safer contour of interest for sub/ships operations 

(down to 110 m, below significant surface wave surge), following it to the east along 

the south side of the bank, making observations of biota and physical structure.  

The dive followed the 110 m depth contour for ~7 km in the broad depression/open 

bottom habitat class, and noted a significant assemblages of gorgonian corals 

(Iciligorgia), sea fans (e.g., Annella reticulata, Melithaea), whip corals (Cirrhipathes), 

and sea cucumbers (Holothuria edulus, Thelonota anax ). A transition was noted from 

west to east of sea fans in the east having crinoids attached to their tops, and with 3-

armed, feathery brittle stars. There were also alternating “provinces” of barren, sloping 

calcareous (Halimeda algae) sand plains, to slopes cut by deep crevices in calcareous 

conglomerate blocks to sea fans assemblages. In this same habitat class, various 

species of groundfish (e.g.,  greeneye or Chlorophthalmus priridens, orange sea toad 

or Chaunax fimbriatus and the black botched stingray, Taeniura meyeni; Fig. 9) 

congregated in high-rugosity, carbonate rubble piles, which may have been created by 

the fish as habitat. 
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Dive P5-649 consisted of a video and photographic survey around the edge of Fagatele 

Bay and Canyon, starting from the southwest corner and reaching the far southeast 

portion of the national marine sanctuary. Most of the dive scaled both southwest and 

southeast walls of the bay and canyon, hence the predominant habitat classes were 

narrow (vertical) depression and lateral midslope crest. Main species observed 

included the harlequin grouper (Cephalopholis; Fig. 9), the bigeye (Heteropriacanthus 

cruentatus), sea fans (Annella reticulata), gorgonian corals (Iciligorgia), and 

“doughboy” sea stars (Choriaster granulatus). At the floor of the canyon, in the broad 

depression/open bottom habitat class, a notable discovery was the batfish 

(Ogcocephalidae) and black-blotched stingray (Fig. 9), as well as sightings of the 

deepwater grouper (Epinephelus timorensis) among many other fish species. 

 

Dive P5-650 returned to Taema Bank to investigate the full extent of the sheer 

carbonate wall encountered on P5-648, and hence was below the depth of prior 

benthic terrain classifications. Upon finding the base of the wall at 440 m, a video and 

photographic survey proceeded north from that point along that contour, where a 

preponderance of galatheid and hermit crabs, urchins, shrimp, a soft corals, sea 

cucumbers, small stars were noted. Farther up the bank at ~115 m (broad flat habitat 

class) a large province of foraminifers in calcareous sands was noted, genus 

Cycloclypea, largest in the world.  

 

All three dives were extremely successful with a cumulative bottom time of 18 hours 

and identification at both sites of 32 species of invertebrates and 91 species of fish, at 

least 9 of which are “new records” for American Samoa (Fig. 9). The base of 

extensive live bottom for Taema Bank (coral cover of 20% and greater) was identified 

at a depth of 36 m. Alternating sections of carbonate reef and basalt were observed 

at~185-220 m depth along both the east and west walls of Fagatele Canyon, and large, 

grooved mass-wasting scarps were noted at ~300-400 m depth near the base of the 

south central wall of Taema Bank. No evidence of eutrophication or slurry from Pago 
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Pago harbor was seen on the south side of Taema Bank. Complete species lists, dive 

track maps, and cruise report are available in Wright (41). 

<Figure 9> 

 
Surrogacy: At this time, no statistical analyses have been carried out on these data 

sets to examine relationships between physical surrogates and benthos, as we await 

additional video and photographic surveys. 
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Figure Captions 

Figure 1. Bathymetry of American Samoa and the broader Eastern Samoa Volcanic 

Province (also available online at (22)). The resolution of the multibeam bathymetry is 

200 m, but for visual continuity, a 1-km grid of bathymetry derived from the satellite 

altimetry of Sandwell and Smith (23) is used as a backdrop (this backdrop is present in 

Figures 2-4 as well). Filled circles indicate the distribution of 51 previously 

unidentified seamounts, several to be contributed to the Seamount Catalog (24). Map 

projection for this and all other figures is Mercator, and map geodetic datum is WGS-

84. 

 

Figure 2. Geomorphic interpretation of major volcanic features of the islands of 

American Samoa and the broader Eastern Samoa Volcanic Province, based on the 

multibeam bathymetry of Figure 1. Major rift zones are shown in black, subaerial and 

submarine eruptive centers in red, volcanic plateaus in stipple, outlines of the most 

prominent large seamounts in dashed circles, and small seamounts in small, open 

circles. Cross-hatching is where there is no multibeam bathymetry coverage. Large 

dashed line shows the northeasterly volcanic rift trend of Tutuila, which differs 

markedly from the southeasterly trends of the two major seamount chains directly to 

the east (shorter dashed lines). 

 

Figure 3. Detailed bathymetry of Tutuila Island, based on the 200-m multibeam 

bathymetry of Figure 1, as well as available nearshore multibeam bathymetry at 2-5 m 

resolution. The morphology of Tutuila exhibits several highly incised secondary rift 

zones radiating away from the primary trend, a primary one of which extends from the 

northeastern corner of the island in a 30° trend (dashed line). The linear nature of these 

features implies structural guidance of volcanism by fault or fracture zone.  

 

Figure 4. Detailed bathymetry of South Bank (aka Papatua Guyot), the largest isolated 

edifice in the Eastern Samoa Volcanic Province. South Bank has two perpendicular 

rifting trends nearly in line with the four cardinal directions (dashed lines).  
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Figure 5. Detailed bathymetry of the Northeast Bank, the second largest isolated 

edifice in the Eastern Samoa Volcanic Province. Northeast Bank has two primary rift 

zones trending at 30° and 120°.  

 

Figure 6. Coastal terrain model of Tutuila, American Samoa with surrounding 

bathymetry, after Hogrefe et al. (40). Rectangles show the locations of the two dive 

sites of Cruise KOK0510: West Taema Bank offshore of south-central Tutuila (Dives 

P5-648 and P5-640) and Fagatele Bay and Canyon to the southwest (Dive P5-649). 

The coastal resolution coastal terrain model was developed at 5-m resolution from a 

USGS digital elevation model, the multibeam bathymetry of NOAA PIFMC, and 

nearshore bathymetry derived from IKONOS 4-m satellite imagery (40).  

 

Figure 7. A: bathymetric position index (BPI) “zone” map of West Taema Bank, 

created from 1-m-resolution multibeam bathymetry data, with classifications based on 

the scheme of Lundblad et al. (36). Dashed line shows the smoothed trackline of 

Pisces V Dive P5-648. B: Classification of same West Taema Bank bathymetry into 

“structures,” with same submersible track overlain. 

 

Figure 8. A: bathymetric position index (BPI) “zone” map of FBNMS, created from 

1-m-resolution multibeam bathymetry data, with classifications based on the scheme 

of Lundblad et al. (36). Dashed line shows smoothed track of Pisces V Dive P5-649. 

B: Classification of same FBNMS bathymetry into “structures,” with same 

submersible track overlain. 

 

Figure 9. Photographs of new records for American Samoa as observed on Dives P5-

648 and P5-649 from the Pisces V submersible, to Taema Bank, and Fagatele Bay and 

Canyon: (a) Black-blotched stingray (Taeniura meyeni), ~2 m wide, 110 m depth on 

calcareous (Halimeda algae) sand and high-rugosity carbonate rubble, broad 

depression/open bottom habitat class, Taema Bank; (b) underside of “lounge cushion” 
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sea star, recovered from 57 m depth, broad flat habitat class, Taema Bank – returned 

to ocean; (c) Harlequin grouper (Cephalopholis polleni), 93 m depth, west wall of 

Fagatele Canyon, lateral midslope crest habitat class; (d) Doughboy sea star 

(Choriaster granulatus) with orange and purple sea fans (Annella reticulata, 

Melithaea), 90 m depth, west wall of Fagatele Canyon, lateral midslope crest habitat 

class; (e) Batfish (Ogcocephalidae), 247 m depth on calcareous sand, east Fagatele 

Canyon floor, broad depression/open bottom habitat class; (f) Base of west wall of 

Fagatele Canyon, 230 m, showing clear contact between basalt flow overlying 

carbonate province. <VIDEO CLIPS AVAILABLE for e-book>  

 

 




